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Abstract

We study weighted pseudorandom generators (WPRGs) and derandomizations for read-once
branching programs (ROBPs). Denote n and w as the length and the width of a ROBP. We
have the following results.

For standard ROBPs, we give an explicit ε-WPRG with seed length

O

(
log n log(nw)

max {1, log logw − log log n}
+ logw

(
log log logw − log logmax

{
2,

logw

log n
ε

})
+ log

1

ε

)
.

When n = wo(1), this is better than the WPRGs of [Hoz21, CDR+21, PV21, CL20]. Further as
a direct application, we attain a WPRG for regular ROBPs with a better seed length than that
of [CHL+23, CL24].

For permutation ROBPs with unbounded widths and single accept nodes, we give an explicit
ε-WPRG with seed length

O
(
log n

(
log log n+

√
log(1/ε)

)
+ log(1/ε)

)
,

improving [CHL+23]. A key difference to [CHL+23] is that this implies a WPRG with optimal
seed length for short-wide ROBPs with multiple accept nodes. Specifically, after switching to
multiple accept nodes in a standard way by replacing ε with ε/w, this gives a WPRG with

optimal seed length O(logw) for n = 2O(
√
logw), and error 1/ polyw. The only previous work

attaining optimal seed lengths are Nisan-Zuckerman style PRGs [NZ96, Arm98] but they are

only optimal for n = poly logw, ε = 2− log0.9 w.
We also give a new Nisan-Zuckerman style derandomization for regular ROBPs with width w,

length n = 2O(
√
logw), and multiple accept nodes. We attain optimal space complexity O(logw)

for arbitrary approximation error ε = 1/ polyw. When requiring the derandomization to be in L,
again the only previous result is by Nisan-Zuckerman style PRGs [NZ96, Arm98], which are only

optimal for n = poly logw, ε = 2− log0.9 w. Also, if compared to [AKM+20, CHL+23, CL24], which

can be viewed as Saks-Zhou style derandomizations, then for n = 2O(
√
logw) our derandomization

not only improves the space complexity to optimal, but also substantially improves the time
complexity from super polynomial to standard polynomial in w. Note that derandomizations
of [AKM+20, CHL+23, CL24] has space complexity S = O(log(nw) log log(nw/ε)) and time
complexity exponential in S.

All our results are based on iterative weighted pseudorandom reductions, which can iteratively
reduce fooling long ROBPs to fooling short ones.
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1 Introduction

Randomness is a fundamental resource in computation, but is it essential? A key conjecture in
space-bounded computation is that randomized algorithms in the complexity class BPL can be
efficiently simulated by deterministic logspace algorithms, i.e. BPL = L. A central approach toward
addressing this conjecture is the derandomization of standard-order read-once branching programs
(ROBPs), which is usually defined as the following.

Definition 1.1 (Read-once branching programs (ROBP)). A read-once branching program f of
length n, width w and alphabet size |Σ| = 2s is a directed acyclic graph with n+ 1 layers V0, . . . , Vn.
For any layer Vi except Vn, each node v ∈ Vi has 2s outgoing edges to nodes in Vi+1. These edges
are labeled by distinct symbols in Σ. There exists a unique start node vstart ∈ V0 and a set of accept
nodes Vaccept ⊂ Vn. Given an input x ∈ Σn, the computation of f(x) is defined as: f(x) = 1, if
there exists a unique path vstart, v1, . . . , vn such that the edge between vi and vi+1 is labeled by xi,
and vn ∈ Vaccept; f(x) = 0 otherwise.

Every problem in BPL can be reduced to approximating Ef for a corresponding ROBP f . A
classical method for derandomizing ROBPs is constructing pseudorandom generators (PRGs).

Definition 1.2 (PRG). Let F be a class of ROBPs f : ({0, 1}s)n → {0, 1}.An ε-PRG for F is a
function G : {0, 1}d → ({0, 1}s)nsuch that for every f ∈ F , we have∣∣∣Ex∈({0,1}s)nf(x)− Er∈{0,1}df(G(r))

∣∣∣ ≤ ε.

The input length d is called the seed length of the PRG. We say that G is explicit if it can be
computed in space O(d) and time poly(d, n).

By the probabilistic method, one can show the existence of a non-uniform ε-PRG for standard-
order ROBPs of length n, width w, and alphabet size 2s, with an optimal seed length of O(s +
log(nw/ε)). However, constructing explicit PRGs that have short seed lengths turns out to be an
exceptional challenge. In a seminal work, Nisan [Nis92a] constructed an explicit ε-PRG for ROBPs
of length n, width w, and binary alphabet {0, 1}, with a seed length of O(log n log(nw/ε)). Building
on this, Saks and Zhou [SZ99] developed a celebrated algorithm to derandomize BPL, within
O(log3/2 n) space deterministically. Nisan [Nis92b] also used [Nis92a] to show that BPL ⊆ SC.
Impagliazzo, Nisan, and Wigderson [INW94] generalized the construction of [Nis92a] by using
expanders, to fool more general models in network communication. In the meantime, for short
ROBPs, Nisan and Zuckerman [NZ96] gave another remarkable PRG that has an optimal seed

length for wide but short ROBPs, i.e. with seed length O(logw) when n = poly logw, ε = 2− log0.99 w.
Armoni [Arm98] further extended [Nis92a, NZ96] to construct an improved PRG with seed length1

O
(

logn log(nw/ε)
max{1,log logw−log log(n/ε)}

)
.

1.1 Weighted Pseudorandom Generators

Despite years of research, the challenging problem of constructing better PRGs for general ROBPs
remains open. However, PRGs are not the only black-box method for derandomizations. A
remarkable work by Braverman, Cohen, and Garg [BCG19] improves the seed length by introducing
and constructing WPRGs.

1[Arm98] needs to use an extractor with seed length optimal up to constant factors which is discovered later than
[Arm98], e.g. [GUV09].
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Definition 1.3 (WPRG). Let F be a class of ROBPs f : ({0, 1}s)n → {0, 1}. A W -bounded
ε-WPRG for F is a function (G, σ) : {0, 1}d → ({0, 1}s)n × R such that for every f ∈ F , we have∣∣∣∣∣∣Ex∈({0,1}s)nf(x)−

∑
r∈{0,1}d

[
1

2d
σ(r) · f(G(r))

]∣∣∣∣∣∣ ≤ ε,

∀r, |σ(r)| ≤W.

The input length d is called the seed length of the WPRG. We say that (G,w) is explicit if it can be
computed in space O(d) and time poly(d, n).

As shown in [BCG19], under this notion, the seed length can be significantly improved to
Õ(log n log(nw)+ log 1

ε ), i.e. for ε there is only an isolated addend. Chattopadhyay and Liao [CL20]
further improved this construction to attain seed length O(log n log(nw) log log(nw) + log 1

ε ). Then
Cohen, Doron, Renard, Renard, Sberlo, and Ta-Shma [CDR+21], and also Pyne and Vadhan [PV21]
gave black-box error reductions from large error PRGs to small error WPRGs. They both are
based on a preconditioned Richardson Iteration, which was previously developed by Ahmadinejad,
Kelner, Murtagh, Peebles, Sidford, and Salil Vadhan [AKM+20] for high precision derandomization
of random walks on Eulerian graphs. Hoza [Hoz21] further improved the error reduction based
WPRG constructions to attain seed length O(log n log(nw) + log(1/ε)).

Following these new error reduction methods, there are several new progress on derandom-
izations. Hoza [Hoz21] improved the derandomization of Saks and Zhou [SZ99] to be BPL ⊆
DSPACE

(
log3/2 n√
log logn

)
. Cohen, Doron, Sberlo, and Ta-Shma [CDST23], also Pyne and Putterman

[PP23], showed that ROBPs with medium width w = 2O(
√
logn) can be derandomized in Õ(log n)

space. Cheng and Wang [CW24] showed that BPL ⊆ logspace-uniform AC1.
WPRG is stronger than Hitting Set Generator (HSG), while HSG is already a powerful tool in

derandomization.

Definition 1.4 (HSG). Let F be a class of ROBPs f : ({0, 1}s)n → {0, 1}. An ε-HSG for F
is a function H : {0, 1}d → ({0, 1}s)n such that for every f ∈ F , if Ex∈({0,1}s)nf(x) ≥ ε, then

∃r ∈ {0, 1}d, f(H(r)) = 1.
The input length d is called the seed length of the HSG. We say that H is explicit if it can be

computed in space O(d) and time poly(d, n).

One can use HSG to find an accepting path when the acceptance probability is significant.
Actually, HSG is more powerful than this. Cheng and Hoza [CH22] showed how to approximate
the acceptance probabilities of ROBPs by HSGs for larger-size ROBPs. Pyne, Raz, and Zhan
[PRZ23] further extended the method to give a deterministic sampler for such tasks. Constructing
better HSGs is also a challenging task. Hoza and Zuckerman gave a HSG with seed length

O
(

logn log(nw)
max{1,log logw−log logn} + log(1/ε)

)
which is optimal when n = poly logw.

1.2 WPRG for short-wide standard ROBPs

Nisan-Zuckerman PRG and Armoni’s generator are better in seed length than Nisan’s PRG or INW
PRG for short-wide cases when the error is large. It is a natrual question whether one can transform
these PRGs to WPRGs to attain better seed lengths for smaller errors. A specific interesting case is
n = poly logw, for which NZ PRG [NZ96] and Armoni’s PRG [Arm98] have optimal seed lengths of

O(logw) when ε = 2− log1−v w, where v is any constant in (0, 1). However when the error is smaller
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such as ε = 1/ poly(w), the seed lengths of the WPRGs of [CDR+21, Hoz21, PV21] deteriorate to
O(logw log logw), which have no advantage than those of the PRGs [Nis92a, INW94, Arm98].

In this paper, we make progress for answering the question by giving a new WPRG construction
that has a better seed length for short-wide ROBPs. Specifically, we have the following result.

Theorem 1.5. For every n,w ∈ N, ε ∈ (0, 1), with n ≥ logw, there exists an explicit ε-WPRG
with seed length

O

(
log n log(nw)

max {1, log logw − log log n}
+ logw

(
log log logw − log logmax

{
2,

logw

log(n/ε)

})
+ log(1/ε)

)
for the class of ROBPs of width w, length n and alphabet {0, 1}.

The seed length is better than [Hoz21, CDR+21, PV21, CL20], when n ≪ w. For the Nisan-

Zuckerman regime i.e. n = poly logw, ε = 2− log1−α n for any constant α > 0, the seed length of
our Theorem 1.5 is O(logw), since the subtraction of the two triple-log terms becomes a constant.
This matches the seed length of the Nisan-Zuckerman PRG [NZ96]. Further when n is larger or
ε is smaller, our seed length is strictly better. Table 1 and Table 2 summarize the seed length of
ε-PRGs and ε-WPRGs for short-wide general ROBPs.

Seed length Type Reference

O
(

logn log(nw/ε)
log logw−log log(n/ε)

)
PRG [Arm98, KNW08]

Õ(log n log(nw) + log 1
ε ) WPRG [BCG19]

O(log n log(nw) log log(nw) + log 1
ε ) WPRG [CL20]

O (log n log(nw) + log(w/ε) log logn(1/ε)) WPRG [CDR+21]
O(log n log(nw) + log(1/ε)) WPRG [Hoz21]

O
(

logn log(nw)
log logw−log logn + logw log log logw + log(1/ε)

)
WPRG Theorem 1.5

Table 1: Comparison of seed length of ε-WPRGs for general ROBPs of width w, length n < w, and
alphabet {0, 1}.

Seed length Type Reference Note

O(logw) PRG [NZ96] ε = 2− log0.99 w

O(log(w/ε) log logw) PRG [Arm98, INW94, Nis92a] ε ≤ 1/poly(w)
O(logw log logw + log(1/ε)) WPRG [Hoz21, CDR+21] ε ≤ 1/poly(w)

O(logw) WPRG Theorem 1.5 ε = 2− log0.99 w

O(logw log log logw + log(1/ε)) WPRG Theorem 1.5 ε ≤ 1/poly(w)

O(logw + log(1/ε)) PRG folklore Optimal; non-explicit

Table 2: Comparison of seed length of ε-WPRGs for short-wide ROBPs of width w, length
n = poly(logw), and alphabet {0, 1}.

Another interesting point is that our construction deploys a new framework which iteratively
applies weighted pseudorandom reductions. We will describe this in detail in later sections.

As a direct application of our WPRG, we also attain a better WPRG for regular ROBPs.

Definition 1.6 (Regular ROBP). A regular ROBP is a standard-order ROBP f , where for every
i ∈ [n], the bipartite graph induced by the nodes in layers Vi−1 and Vi is a regular graph.
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Theorem 1.7. For every w, n ∈ N, and every ε > 0, there exists an explicit ε-WPRG with seed
length

O
(
log n

(√
log(1/ε) + logw + log log n

)
+ log(1/ε)

)
.

for regular ROBPs of width w, length n and binary alphabet.

This is better than that of Chen, Hoza, Lyu, Tal, and Wu [CHL+23] which has a seed length

Õ
(
log n

(√
log(1/ε) + logw + log log n

)
+ log(1/ε)

)
, and matches an independent work of Chen

and Ta-Shma [CTS25] for the binary case. For larger alphabets, we can actually attain a seed length
with a better dependence on the alphabet size than [CTS25]. See our Theorem 3.19 for details. The
construction of [CTS25] combines the methods of [CHL+23] and Hoza [Hoz21]. Our construction is
using our main technical theorem Theorem 3.2 to replace the INW PRG generating correlated seeds
in [CHL+23], with an argument based on weighted pseudorandom reductions.

1.3 WPRG for unbounded-width permutation ROBPs with a single accept node

Our framework works even better for constructing WPRGs against permutation ROBPs. Permu-
tation ROBPs are interesting special ROBPs, where the transition functions between layers are
permutations.

Definition 1.8 (permutation ROBP). A (standard-order) permutation ROBP is a standard-order
ROBP f , where for every i ∈ [n] and x ∈ {0, 1}s, the transition matrix from Vi to Vi+1 through
edges labeled by x, is a permutation matrix in Rw×w.

Early work on PRGs for permutation ROBPs [BV10, De11, KNP11, Ste12, RSV13, CHHL19]
focus on constant width cases. A remarkable line of recent studies develops PRG/WPRG/HSGs
for unbounded-width permutation ROBPs with single accepting nodes [HPV21a, PV21, BHPP22,
CHL+23]. Hoza, Pyne and Vadhan [HPV21a] showed an ε-PRG for unbounded-width permutation
ROBPs with seed length Õ(log n log(1/ε)). They also proved that any PRG for this class must have
seed length Ω̃(log n log(1/ε)). For the WPRG case, Pyne and Vadhan [PV21] showed a ε-WPRG
with seed length Õ(log n

√
log(n/ε) + log(1/ε)). This was improved by Chen, Hoza, Lyu, Tal, and

Wu [CHL+23] to O
(
log n

√
log(1/ε)

√
log log(n/ε) + log(1/ε) log log(n/ε)

)
.

We give an improved WPRG against permutation ROBPs as the following.

Theorem 1.9. For every n, s ∈ N and ε ∈ (0, 1), there exists an explicit ε-WPRG with seed length

O
(
s+ log n

(
log logn+

√
log(1/ε)

)
+ log(1/ε)

)
for the class of permutation ROBPs of length n and alphabet {0, 1}s with a single accept node.

The comparison of our result with the previous results is shown in Table 3.

Seed length Type Reference Note

Õ(log n log(1/ε)) PRG [HPV21a]

Õ(log n
√
log(n/ε) + log(1/ε)) WPRG [PV21]

O
(
log n

√
log(1/ε)

√
log log(n/ε) + log(1/ε) log log(n/ε)

)
WPRG [CHL+23]

O
(
log n

(
log logn+

√
log(1/ε)

)
+ log(1/ε)

)
WPRG This work

Ω(log n log(1/ε)) PRG [HPV21a] lower bound

Table 3: Comparison of seed length of ε-PRGs and ε-WPRGs for unbounded-width permutation
ROBPs of length n and alphabet {0, 1} with one accepting node.
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Note that by replacing ε with ε/w, one can attain a WPRG for multiple accept nodes. In this

way our result gives a WPRG with seed length O
(
s+ log n

(
log log n+

√
log(w/ε)

)
+ log(w/ε)

)
.

This reveals a substantial difference between our result and [CHL+23]. Notice that our seed length
is optimal O(logw) for n = 2O(

√
logw), ε = 1/ polyw, i.e. it implies a Nisan-Zuckerman style PRG

for short-wide permutation ROBPs. The only prior work attaining optimal seed length for such
ROBPs are [NZ96, Arm98] but only work for n = poly logw, ε = 2− log0.9 w. It is not clear how
to use [CHL+23] to achieve optimal seed length even for constant error, since when switching to
multiple accept nodes, the only known way is to replace ε with ε/w.

We also remark that one may want to use the sampler technique of [Hoz21] on the WPRG
of [CHL+23] to attain similar parameters to our Theorem 1.9. However, one barrier is that it is
unclear if it is possible to attain samplers supporting the sv-approximation used in the analysis of
[CHL+23], with desired parameters.

1.4 Derandomization for short-wide regular ROBPs

Our framework also provides a new derandomization for regular ROBPs. There is an extensive body
of work on constructing HSGs, WPRGs, and PRGs for regular ROBPs [BRRY14, BHPP22, De11,
RSV13, CL24, CHL+23]. For derandomization, dedicated derandomization algorithms achieve
better performance. Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan [AKM+20]
derandomized regular ROBPs of length n, width w and alphabet {0, 1} within error ε, using space
O(log(nw) log log(nw/ε)). Subsequently, Chen, Hoza, Lyu, Tal, and Wu [CHL+23] achieved the
same result with a simplified algorithm. Chattopadhyay and Liao [CL24] constructed another
alternate algorithm with the same space complexity. These derandomizations can be viewed as
Sak-Zhou style derandomizations since they can work for full length with small space. However
their time complexity is exponential in their space complexity, hence is not polynomial.

Our new derandomization, stated as the following, can be viewed as a Nisan-Zuckerman style
derandomization, since it has optimal logspace complexity for short-wide ROBPs.

Theorem 1.10. There exists an algorithm that for any input regular ROBP f of width w, length n =

2O(log1/2 w), alphabet {0, 1}s, and for any input parameter ε ≥ 1/ polyw, outputs an approximation
for E[f ] with addtive error ε. The algorithm uses O(s+ logw) bits of space.

Notice that the space complexity is optimal up to constant factors, placing the derandomization
precisely in L, as long as the alphabet bit-length s = O(logw). Also notice that this implies
our algorithm is in time poly(w). For derandomizing regular ROBPs within L, the only prior
feasible methods are Nisan-Zuckerman generator [NZ96] and Armoni’s generator [Arm98]. Our
result significantly improves the length of the regular ROBPs that can be derandomized in L from

poly logw to 2O(log1/2 w) and also improves the precision from 2− log0.99 w to arbitrary 1/polyw.
If compared to the Saks-Zhou style derandomizations of [AKM+20, CHL+23, CL24], then our

algorithm not only attains optimal space complexity O(logw), but also has a substantial improvement

for time complexity from super-polynomial to standard polynomial, as long as n = 2O(log1/2 w).
Note that derandomizations of [AKM+20, CHL+23, CL24] are not in polynomial time even if
n = poly(logw) and ε = O(1).

1.5 Technical Overview

WPRGs for standard-order ROBPs We start by reviewing the Richardson iteration based
error reduction [AKM+20, CDR+21, PV21] that attains low-error WPRGs from large-error PRGs.

6



The Richardson iteration based error reduction can be viewed as a procedure that produces high-
precision approximations for iterated matrices multiplications, given low-precision approximations.
Let {Ai}ni=1 ⊆ Rw×w be transition matrices, and {Bi,j}0≤j<i≤n ⊆ Rw×w be approximations satisfying
∥Bi,j−Ai · · ·Aj+1∥ ≤ ε0/(2(n+1)). For any integer k, a standard method, e.g. [CDR+21], indicates

there is a weighted sum P =
∑K

i=1 σiBni,1,ni,2 · · ·Bni,k−1,ni,k
of K = nO(k) terms such that

∥An · · ·A1 − P∥ ≤ ε
k/2
0 (n+ 1),

where σi ∈ {−1, 0, 1} and ∀i, the sequence ni,j , j ∈ [k] is an increasing sequence of indices in [n].2

To apply this to an ROBP f , one can instantiate the matrices as

• Ai: the stochastic matrix of f from layer i− 1 to i.

• Bi,j := Ex∼{0,1}s
[
f j→i(PRG(x))

]
, where f j→i is the transition of f from layer j to layer i, and

PRG is an ε0
2(n+1) -PRG with seed length s.

This immediately yields a high-precision approximation of the expectation of the ROBP:∣∣∣∣∣EU [f(U)]−
K∑
i=1

σi · Ex1,...,xk∼{0,1}sf
(
PRG0→ni,1(x1), . . . ,PRGni,k−1→ni,k

(xk)
)∣∣∣∣∣ ≤ ε

k/2
0 (n+ 1).

Notice that this also immediately gives a WPRG for f with error εk0(n+1) by definition. However the
k independent PRG callings cost too much randomness. [CDR+21] further reduces the randomness
by using an INW generator to generate the seeds for the k independent PRG callings. But since
INW does not have optimal seed length, this takes O(log k log kw

ε + s) randomness which has an
extra O(log k) factor in the main term. Using the sampler technique of [Hoz21], one can avoid
this factor, but only when the starting error ε0 is already 1/ polyw. If the large error PRG has
ε0 ≫ 1/polyw, then this does not work as desired. For example, if the large-error PRG is the NZ
PRG, then it is unclear how to use this to derive an optimal seed length for ε = 1/ polyw.

To address the problem, we introduce a new strategy. For each i ∈ [K], one can view

fi(y1, . . . , yk) := f
(
PRG0→ni,1(y1),PRGni,1→ni,2(y2), . . . ,PRGni,k−1→ni,k

(yk)
)
,

as a new ROBP with a shorter length k and a large alphabet, while the width is still w. To fool
f , one only need to fool these shorter ROBPs. Based on this observation, our high-level idea is to
iteratively apply the above procedure to reduce the ROBPs to even shorter ones until the length
become a constant such that the reduced ROBPs can be fooled trivially.

We use the notion weighted pseudorandom reduction to describe the construction in details.

Definition 1.11 (Weighted Pseudorandom Reduction). Let Bn0,s0,w be the class of length-n0,
width-w ROBPs over alphabet Σ0 = {0, 1}s0 . Let Bn1,s1,w be the class of length-n1, width-w ROBPs
over alphabet Σ1 = {0, 1}s1 . A (d,K, ε)-reduction from Bn0,s0,w to Bn1,s1,w is a tuple (R, σ), in which
R : ({0, 1}s1)n1 × {0, 1}d → ({0, 1}s0)n0 and σ : {0, 1}d → R. Furthermore, for every f ∈ Bn0,s0,w,
we have: ∣∣∣∣∣∣EUf(U)− 1

2d

∑
i∈{0,1}d

σ(i)EU ′ [f(R(U ′, i))]

∣∣∣∣∣∣ ≤ ε,

∀i, |σ(i)| ≤ K,

∀i, f(R(·, i)) ∈ Bn1,s1,w.

We call R the reduction function and σ the weight function.

2See Appendix B for details.
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Let the original length-n, width-w ROBP be f over alphabet Σ. For simplicity, now let the
target error ε = 1/ polyw. We plan to construct a sequence of length reductions as the following.
Let n0 = n. The i-th length reduction, which is instantiated by the Richardson iteration based error
reduction with a base εi

2(ni−1+1) -PRG, is a (di,Ki, ε)-reduction from Bni−1,si−1,w to Bni,si,w, where
we take

ni = O

(
log(ni−1/ε)

log(1/εi)

)
.

This may introduce error

ε
ni/2
i (ni−1 + 1) ≤ ε,

as it is instantiated by the Richardson iteration based error reduction. Notice that as i goes up,
one can decrease εi such that ni can be smaller and smaller. One may doubt that a smaller εi may
require a more precise base PRG, which may require a longer seed. However, the seed length depends
on ni−1, w, εi. As ni−1 is already decreased by the previous reduction, one can pick a smaller εi
without increasing the seed length. Another issue is that the alphabet is accumulating quickly as
the seed length of the base PRG will become the alphabet bit-length for the next reduction. But we
shall see later that one can add an alpahbet reduction after each length reduction to retain a small
alphabet.

More concretely, the l length reductions mentioned above are instantiated by the Richardson
iteration based error reduction with Armoni’s generator [Arm98, KNW08] as base PRGs. For a
length-n, width-w ROBP over Σ = {0, 1}s, we first choose ε0 = 2−

√
logw logn and apply a (d0 =

logK0,K0, ε)-reduction from Bn,s,w to Bn1,s′1,w
, in which n1 = O

(√
logw
logn

)
, K0 = 2O(

√
logn logw)

and s′1 = O
(
s+ logn log(nw/ε0)

log logw−log log(n/ε0)

)
. For the subsequent l − 1 reductions i.e. for i = 1, 2, . . . , l, we

setup a (di = logKi,Ki, εi) reduction from Bni,si,w to Bni+1,s′i+1,w
, where we assume si = c logw

with c being a universal constant. We choose εi = 2− logw/n
1/3
i , and consequently ni+1 = n

1/3
i ,

Ki = O
(
2n

1/3
i logni

)
= o

(
log1/2w

)
and s′i+1 = O(si + logw). We iterate for l steps until we reach

nl = O(1). One can see that l ≤ O(log log logw).
As mentioned before, for every i, after the ith length reduction, we apply an alphabet reduction to

retain a small alphabet. Each alphabet reduction is realized by a one-level NZ generator. Assume we
have a ROBP f ′ with length m = ni and alphabet bit-length s′. The one-level NZ generator which,
given a source X of n = O(s′ + logw) bits and a sequence of independent seeds Y1, . . . , Ym, each of
d = O(log(n/ε)) bits, outputs (Ext(X,Y1),Ext(X,Y2), . . . ,Ext(X,Ym)) where each Ext(X,Yi) is
of binary length s′. Now fixing X = x, the function f ′ (Ext(x, y1),Ext(x, y2), . . . ,Ext(x, ym)) can

be viewed as an ROBP on input (y1, . . . , ym) with alphabet bit-length d = O
(
log s′+logw

ε

)
. One

can check d ≤ c logw as ε = 1/ polyw, where c is a universal constant.
The seed length of our WPRG is the some of the randomness of all reductions, together with the

true randomness used to fool the final constant length ROBPs. For length reductions the seed length

is
∑l

i=0 di ≤ O (log(nw)). The first alphabet reduction contributes O
(
s+ logn log(nw)

max{1,log logw−log logn}

)
.

The remaining alphabet reductions contribute O(l · logw). The true randomness for final constant
length ROBPs is O(logw) since the alphabet bit-length is O(logw).

Finally for even smaller errors (ε≪ 1/poly(w)), we apply a variant of Hoza’s sampler [Hoz21]
technique, which can also be viewed as an extra level of weighted pseudorandom reduction.

WPRGs for unbounded-width permutation ROBPs with a single accept node We start
by reviewing the recent WPRG given by [CHL+23] in the view of weighted pseudorandom reductions.
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Their WPRG combines the INW generator and a new matrix iteration method. To fool a unbounded-
width permutation ROBP of length n and alphabet {0, 1}s within error ε, they first prepare a base

INW generator PRG : {0, 1}d → ({0, 1}s)n with moderate sv-error3 τ = 2O(log logn
√

log(1/ε)). Then
they construct the ε-WPRG (G, σ) in the following form:

G(j, x1, . . . , xm) = PRG(x1)nj,1 ,PRG(x2)nj,2−nj,1 , . . . ,PRG(xm)nj,m−nj,m−1 ,

σ(j) = σj ·K,

where j ∈ [K], K = 2O(m), m = O
(
log n · log(1/ε)log(1/τ)

)
, for each j the sequence nj,k, k ∈ [m] of indices

being such that 0 ≤ nj,1 < nj,2 < . . . < nj,m ≤ n, and σj ∈ {−1, 0, 1}. The seed length of PRG is
d = s+O (log n · (log log n+ log(1/τ))). Note that for each j ∈ [K], one can view f(G(j, x1, . . . , xm))
as a new permutation ROBP on input x1, x2, . . . , xm. [CHL+23] applies an ε/K-INW generator
to fool such reduced permutation ROBPs, which cost d+O (logm · (log logm+ log(K/ε)) bits of
randomness. This step introduces some double-logarithmic factors.

To address this problem, we introduce the following new strategy based on weighted pseudoran-
dom reductions. Let Pn,s denote the class of length-n unbounded-width permutation ROBPs over
alphabet {0, 1}s. Then (G, σ) can be viewed as a (logK,K, ε)-reduction from Pn,s to Pm,d. Let our
target error be ε. We setup l reductions as the following. The i-th reduction is a (di = logKi,Ki, εi)-

reduction from Pni−1,si−1 to Pni,si . For the first reduction, we set τ1 = O
(√

log(1/ε)
)

to ob-

tain a (logK1,K1, ε/2)-reduction from Pn,s to Pn1,s1 . One can see n1 = O
(
log n ·

√
log(1/ε)

)
,

s1 = s+ O
(
log n ·

(
log log n+

√
log(1/ε)

))
and K1 = exp

(
O
(
log n ·

√
log(1/ε)

))
. For the sub-

sequent l − 1 reductions, we set ε′ = (ε/(2K1))
2 and τi = 2

C log(1/ε′)
log2 ni−1 to obtain a(logKi,Ki, ε

′)-
reduction from Pni−1,si−1 to Pni,si , where C > 0 is a universal constant. One can deduce

that ni = O
(
log ni−1

log(1/ε′)
log(1/τi)

)
= log3 ni−1, si = si−1 + O(log ni−1 · (log logni−1 + log(1/τi))) =

si−1 +O
(
log(1/ε′)
logni−1

)
and Ki = 2O(log3 ni). We do the iteration until nl = O(1). So l = o(log log n).

We emphasize that the alphabet bit-length increment from si to si+1 is not significant. In
fact sl = s1 + O(log(1/ε′)) ·

∑l−1
i=1

1
logni

= s1 + O(log(1/ε′)). Also notice that the overall weight

K1K2K3 . . .Kl. Here K2K3 . . .Kl is bound by 2O(log3 n1) since ni decreases quickly. This is negligible
compared to ε/K1, which means that ε′ = (ε/(2K1))

2 is small enough to deduce an ε-WPRG.
Finally, we calculate the seed length. The overall random bits used in our WPRG have two
parts, the bits for the final ROBP of length nl and alphabet {0, 1}sl and the randomness used
in the weighted reductions. For the first part, we need sl · nl bits. For the second part, we need∑

i di = logK1 +
∑l

i=2 logKi = logK1 + O(log3 n1) bits. Therefore, one can deduce the overall
random bits used in our WPRG is sl · nl +

∑
i di = O(s+ log n · (log logn+

√
log(1/ε)) + log(1/ε)).

Derandomization for short-wide regular ROBPs To attain our derandomization, notice
that if we only want to derandomize permutation ROBPs with multiple accept nodes then
we can directly use our WPRG for such permutation ROBPs. Recall that the seed length

is O
(
s+ log n

(
log logn+

√
log(w/ε)

)
+ log(w/ε)

)
. Hence it is O(s + logw) if n = 2O(

√
logw),

ε = 1/ polyw. In fact, for regular ROBPs, we essentially do the same thing, except that we apply
some white-box techniques such that the framework of our WPRG for permutation ROBPs can also
work for regular ROBPs.

3See Definition 4.5.
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To derandomize regular ROBPs with binary alphabet, we show that there is a logspace algorithm
that can transform a regular ROBP into a permutation ROBP which has the same expectation
(though it probably computes a different function). Then we approximation this expectation with
our WPRG for permutation ROBPs.

The hard case is to derandomize regular ROBPs with larger alphabets. Let f be a regular
ROBP with length n, width w, alphabet bit-length s. We apply l reductions as the following. For
every p ∈ [l], let fi1,...,ip−1 be a reduced regular ROBP of length np−1, with its stochastic matrices
Ml...r from its layer l to layer r, ∀l, r ∈ [np]. fi1,...,ip−1 is f if p− 1 = 0. For every 0 ≤ l < r ≤ np−1

one can construct a τp-sv-approximation M̃l...r of Ml...r by the derandomizing square method of

[AKM+20, HPV21a, CHL+23], if fi1,...,ip−1 has a two-way labeling. A crucial point is that M̃l...r

corresponds to the stochastic matrix of a regular bipartite graph G̃l...r also with a two-way labeling,
as long as fi1,...,ip−1 has a two-way labeling. Recall that a two-way labeling for an ROBP, defined
by [RVW00, RV05], requires that every edge has two labels, each for one direction, such that for
every vertex all its out-going labels are distinct, and all its in-coming labels are also distinct. And a
two-way labeling naturally supports a rotation technique which, whenever the pseudorandom walk
arrives at a new node v from u through an edge e, switches the label of e from the out-going label of
u to the incoming label of v. In this way, though the program is only regular, it can still be fooled
by a pseudorandom walk from [AKM+20, CHL+23] with such rotations. Using an error reduction
polynomial of [CHL+23], one can decompose M0...np−1 into a signed sum:

M0...np−1 ≈
∑

ip∈[Kp]

σ
(p)
ip
·
np∏
t=1

M̃
m

(p)
ip,t−1...m

(p)
ip,t

,

where 0 = m
(p)
ip,0

< m
(p)
ip,1

< · · · < m
(p)
ip,np

= np−1 are indices partitioning fi1,...,ip−1 into np segments,

Kp denotes the number of terms, and σ
(p)
ip
∈ {−1, 0, 1} are signs. Each product in the sum

corresponds to a concatenation of regular bigraphs such that the product can also be viewed as a
regular ROBP fi1,...,ip of length np:

fi1,...,ip = G̃
m

(p)
ip,0

...m
(p)
ip,1

◦ G̃
m

(p)
ip,1

...m
(p)
ip,2

◦ · · · ◦ G̃
m

(p)
ip,np−1...m

(p)
ip,np

.

fi1,...,ip again has a two-way labeling since it is the concatenation of bigraphs with two-way labelings.
If consider all the reductions, then finally we can approximate E[f ] with a signed sum of expectations
of those reduced ROBPs:

E[f ] ≈
∑

i1∈[K1],...,il∈[Kl]

σ
(1)
i1
· · ·σ(l)

il
· E[fi1,...,il ],

where ∀p ∈ [l], ∀ip, σ(p)
ip

is a corresponding sign from the p-th reduction. It turns out all relevant

parameters (e.g. the length and alphabet of the reduced ROBPs, the signs, the seed length) can
be essentially the same as those parameters of our WPRG for permutation ROBPs. Also one can
see that since f has a two-way labeling then ∀p ∈ [l], every reduced program fi1,...,ip has a two-way
labeling by the property mentioned above. So finally for each fi1,...,il , whose length is nl = O(1),
one can apply a true random walk using rotations supported by the two-way labeling, and the
expectation can be approximated by a weighted sum of the results of these random walks. By a
more detailed analysis, we show that these rotations are again space efficient so that the overall
space complexity is only linear of the seed length.

10



2 Preliminaries

2.1 Some notations

For convenience of description, we denote B(n,s,w) as the class of ROBPs with length n, alphabet
size 2s and width w. We denote P(n,s) as the class of permutation ROBPs with unbounded width
and only one accept node, where n is the length s is the bit-length of the alphabet. We denote
R(n,s,w) as the class of regular ROBPs with length n, alphabet size 2s and width w.

Given an ROBP f , we denote f [i,j] : ({0, 1}s)j−i → Rw×w as the matrix representing the
transition function of f between layers Vi and Vj . Specifically, the entry [f [i,j](x)]u,v = 1 if there
exists a path from node u in Vi to node v in Vj that is labeled by the string x = x1 . . . xj−i.
Otherwise, [f [i,j](x)]u,v = 0.

We use ◦ to denote the composition of functions, i.e. for any two functions f, g where any output
of g can be an input of f , we have that f ◦ g(x) := f(g(x)).

2.2 Weighted pseudorandom reductions

Here we state the definition of weighted pseudorandom reduction.

Definition 2.1 (Weighted Pseudorandom Reduction). Let F0 be a class of functions ({0, 1}s0)n0 →
R. Let Fsimp be a class of functions ({0, 1}s1)n1 → R. A (d,K, ε)-weighted pseudorandom reduction
from F0 to Fsimp is a tuple (R, w), in which R : ({0, 1}s1)n1×{0, 1}d → ({0, 1}s0)n0 and σ : {0, 1}d →
R. Furthermore, for every f ∈ F0, we have:∣∣∣∣∣∣EUf(U)− 1

2d

∑
i∈{0,1}d

σ(i)EU ′ [f(R(U ′, i))]

∣∣∣∣∣∣ ≤ ε,

∀i, |σ(i)| ≤ K,

∀i, f(R(·, i)) ∈ Fsimp.

We call R the reduction function and w the weight function. In some cases, we use the notation
Ri(·) := R(·, i) for convenience.

We emphasize that throughout this work, both F0 and Fsimp are some classes of ROBPs, i.e.
all our reductions keep this read-once property which is crucial in our proof.

We will frequently use compositions of reductions.

Lemma 2.2 (Composition Lemma). Let F0,F1,F2 be classes of boolean functions within {0, 1}s0 →
R, {0, 1}s1 → R, {0, 1}s2 → R respectively. Let (R(1), σ(1)) be an explicit (d1,K1, ε1)-weighted pseu-
dorandom reduction from F0 to F1 and (R(2), σ(2)) be an explicit (d2,K2, ε2)-weighted pseudorandom
reduction from F1 to F2. Then the composition (R(1) ◦ R(2), σ(1) · σ(2)) :

(R(1) ◦ R(2))(i1,i2)(x) := R
(1)
i1

(R
(2)
i2

(x)),

σ(1) · σ(2)(i1, i2) := σ(1)(i1) · σ(2)(i2),

is an explicit (d1 + d2,K1K2, ε1 +K1ε2)-weighted pseudorandom reduction from F0 to F2.
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Proof. Let R = R(1) ◦ R(2) and σ = σ(1) · σ(2). For any f ∈ F0, we have:∣∣∣∣∣∣EUf(U)− 1

2d1+d2

∑
i1∈{0,1}d1 ,i2∈{0,1}d2

σ(i1, i2)EUs2

[
f(R(i1,i2)(Us2))

]∣∣∣∣∣∣
≤

∣∣∣∣∣∣EUf(U)− 1

2d1

∑
i1∈{0,1}d1

σ(1)(i1)EUs1

[
f(R

(1)
i1

(Us1))
]∣∣∣∣∣∣

+
1

2d1

∑
i1∈{0,1}d1

|σ(1)(i1)|

∣∣∣∣∣∣EUs1

[
f(R

(1)
i1

(Us1))
]
− 1

2d2

∑
i2∈{0,1}d2

σ(2)(i2)EUs2

[
f(R

(2)
i2

(Us2))
]∣∣∣∣∣∣

≤ ε1 +K1ε2.

Furthermore, |σ(i1, i2)| ≤ |σ(1)(i1)| · |σ(2)(i2)| ≤ K1K2. For any i1, i2, x 7→ f(R
(1)
i1

(x)) ∈ F1, sp

we can apply R
(2)
i2

to this mapping, therefore x 7→ f(R(i1,i2)(x)) ∈ F2. The seed length is d1 + d2.
The function is explicit since both components are explicit.

Lemma 2.3 (Composition Lemma for multiple reductions). For any positive integer k, let
F0,F1, . . . ,Fk be classes of boolean functions within {0, 1}s0 → R, {0, 1}s1 → R, . . . , {0, 1}sk → R
respectively. Let (R(1), σ(1)), . . . , (R(k), σ(k)) be explicit (d1,K1, ε1), . . . , (dk,Kk, εk)-weighted pseudo-
random reductions from F0 to F1, . . . ,Fk respectively. Then the composition (R(1) ◦ . . . ◦ R(k), σ(1) ·
. . . · σ(k)) :

(R(1) ◦ . . . ◦ R(k))(i1,...,ik)(x) = R
(1)
i1

(. . .R
(k)
ik

(x) . . .),

σ(1) · . . . · σ(k)(i1, . . . , ik) = σ(1)(i1) · . . . · σ(k)(ik),

is an explicit (
∑k

i=1 di,
∏k

i=1Ki,
∑k

i=1

(∏i−1
j=1Kj

)
εi)-weighted pseudorandom reduction from F0 to

Fk.

Proof. We prove this by induction on k. The base case k = 2 is shown by Lemma 2.2. Sup-
pose the statement holds for k − 1, then (R(1) ◦ . . . ◦ R(k−1), σ(1) · . . . · σ(k−1)) is an explicit

(
∑k−1

i=1 di,
∏k−1

i=1 Ki,
∑k−1

i=1

(∏i−1
j=1Kj

)
εi)-weighted pseudorandom reduction from F0 to Fk−1. Then

we can apply Lemma 2.2 on (R(1) ◦ . . . ◦ R(k−1), σ(1) · . . . · σ(k−1)) and (R(k), σ(k)), which gives the
desired result.

3 WPRG for Standard ROBPs

In this section, we provide a new construction of Weighted Pseudorandom Generator(WPRG) for
read-once branching programs(ROBPs). The main idea is iteratively approximating the expectation
of a long ROBP by a weighted sum of the expectations of much shorter ROBPs. Let f be a long
ROBP, our reduction will follow the paradigm:∣∣∣∣∣∣Ef(U)− 1

2d

∑
i∈2d

σ(i)E
[
f(R(i)(U))

]∣∣∣∣∣∣ < ε,

where f ◦ R(i) could be computed by a much shorter ROBP for any fixed i and f .
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We mainly use two types of weighted pseudorandom reductions: alphabet reduction and length
reduction.

Alphabet Reduction: In an alphabet reduction (R, σ), each R(i) is a ({0, 1}s′)n → ({0, 1}s)n
function that maps n short symbols to n long symbols. For any f ∈ B(n,s,w), f ◦R(i) can be computed
in B(n,s′,w), where the length and width are unchanged but the alphabet bit-length is reduced.

Length Reduction: In a length reduction (R, σ), each R(i) is a ({0, 1}s′)k → ({0, 1}s)n function
that maps k long symbols to n≫ k short symbols. For any f ∈ B(n,s,w), f ◦ R(i) can be computed
in B(k,s′,w), where the length is reduced from n to k but the alphabet bit-length is increased to s′.

For the rest of this section, we are going to show the following lemma. The general strategy is
to apply the two reductions alternately to reduce the length and maintain the width and alphabet
bit-length.

Lemma 3.1. For every ε ≥ 1/ poly(w), there exists an explicit ε-WPRG for B(n,s,w) with seed length

O
(
s+ logn log(nw)

max{1,log logw−log logn} + logw(log logmin{n, logw} − log log logw
log(n/ε))

)
and weight (8n)

2
√

logw
logn .

We note that for smaller target errors, one can further use the sampler trick [Hoz21] with
Lemma 3.1 to reduce the error from 1/poly(w) to an arbitrary ε > 0, attaining the following
theorem.

Theorem 3.2. For all integer n, s, w, there exists an explicit construction of a ε-WPRG for B(n,s,w)

with seed length

O

s+
log n log(nw)

max
{
1, log logw

logn

} + logw

(
log logmin{n, logw} − log logmax

{
2,

logw

log n
ε

})
+ log

1

ε

 .

Note that our main theorem Theorem 1.5 is a direct corollary of Theorem 3.2.

3.1 Alphabet Reduction

The alphabet reduction reduces the alphabet bit-length s to a much smaller O(logw) and keeps the
length n and width w unchanged. The alphabet reduction is achieved by using the Nisan-Zuckerman
(NZ) PRG, we start with the construction of the PRG and its main ingredient, extractors.

Definition 3.3 (Extractor). A (k, ε)-extractor is a function Ext : {0, 1}n × {0, 1}d → {0, 1}k such
that for any X ∈ {0, 1}n with H(X) ≥ k, the distribution of Ext(X,Ud) is ε-close to the uniform
distribution on {0, 1}k. Here H(X) = maxx∈{0,1}n − log Pr[X = x] is the min-entropy of X, and Ud

is the uniform distribution on {0, 1}d.

Theorem 3.4 (Explicit Extractor from [GUV09]). There exists a universal constant CGUV that
for all positive integer s and positive real ε, there is an explicit construction of a (2s, ε/3)-extractor
Ext : {0, 1}3s × {0, 1}d → {0, 1}s with seed length d = CGUV · log ns

ε .

We mainly use the one-level version of NZ PRG.

Lemma 3.5 (One-level NZ PRG[NZ96] with a large alphabet). Let s ≥ logw. Assume there exists
a (2s, ε

3n)-extractor Ext : {0, 1}3s×{0, 1}d → {0, 1}s. Let X and Y1, . . . , Yn be independent uniform
random variables. Then the following construction

NZ(X,Y ) = Ext(X,Y1), . . . ,Ext(X,Yn)

fools any f ∈ B(n,s,w) with error at most ε.
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The original proof of [NZ96] only considers the binary case. So we include a proof in Appendix A
for completeness.

Now we construct the alphabet reduction. Given a ROBP f ∈ B(n,s,w), we use Ef(NZ(X,Y )) to
approximate Ef . By fixing X, the computation of f(NZ(X,Y )) can be done by a program of much
smaller alphabet, that gives the following reduction.

Lemma 3.6 (Alphabet Reduction). For all positive integers w, n, s with s ≥ logw, there exists an
explicit (3s, 1, ε)-weighted pseudorandom reduction from B(n,s,w) to B(n,CGUV log ns

ε
,w).

Proof. Let Ext : {0, 1}3s×{0, 1}d → {0, 1}s be a (2s, ε
3n)-extractor with seed length d = CGUV ·log ns

ε
from Theorem 3.4. Let NZ be defined as in Lemma 3.5. We define the reduction (R, σ):

Rx(y) := NZ(x, y)

σx := 1.

Now consider that we fix x and let yi’s be free. We need to prove that the reduction (R, σ) is a
(3s, 1, ε)-weighted pseudorandom reduction.

Let f ∈ B(n,s,w), then by Lemma 3.5,

|Ef − 2−3s
∑

x∈{0,1}3s
Ef(NZ(x, ∗))| = |Ef − Ef(NZ(X,Y ))| ≤ ε.

Therefore, (R, σ) approximates f with error at most ε.
To prove that f(NZ(x, ∗)) ∈ B(n,d,w) for all f ∈ B(n,s,w) and x ∈ {0, 1}3s, y ∈ {0, 1}d. We

construct the ROBP gx := f(NZ(x, ∗)) as follows:
Let V0, . . . , Vn be the layers of f , each consisting of w nodes. The ROBP gx is also defined on

V0, . . . , Vn. The labeled edge set of gx is defined as follows:

Egx = {(u, v, y) : u ∈ Vi−1, v ∈ Vi, y ∈ {0, 1}d, ∃ an edge from u to v labeled by Ext(x, y) in f}

The start node and accept nodes of G are the same as those in f . Then gx is in B(n,d,w) and
gx(y1, . . . , yn) = f(Ext(x, y1), . . . ,Ext(x, yn)) = f(NZ(x, y)).

3.2 Length Reduction framework from Richardson Iteration

A length reduction reduces the length n to a much smaller k but may increase the alphabet bit-
length. In this subsection, we construct a length reduction using the error reduction given by
[AKM+20, CDR+21, PV21].

Lemma 3.7 (framework of the length reduction). For any positive integers n, s, w, positive odd
integer k and positive real ε, assume there exists an explicit ε

(n+1)2
-PRG for B(n,s,w) with seed

length d = d(n, s, w). Then there exists an explicit (logK,K, ε
k+1
2 · (n+ 1))-weighted pseudorandom

reduction from B(n,s,w) to B(k,d,w), where K = (8n)k+1.

To prove Lemma 3.7, we need the following error reduction.

Theorem 3.8 (Error Reduction based on Richardson Iteration [AKM+20][CDR+21][PV21]). Let
{Ai}ni=1 ⊂ Rw×w be a sequence of matrices. Let {Bi,j}ni,j=0 ⊂ Rw×w be a family of matrices such
that for every i+ 1 < j, ∥Bi,j −Ai+1 . . . Aj∥ ≤ ε/(2(n+ 1)) for some submultiplicative norm ∥ · ∥,
∥Ai∥ ≤ 1 for all i and also Bi−1,i = Ai for all i. Then for any odd k ∈ N, there exists a K = (8n)k+1,
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a set of indices {ni,j}i∈[K],j∈[k] with 0 ≤ ni,1 ≤ . . . ≤ ni,k = n, and signs σi ∈ {−1, 0, 1}, i ∈ [K]
such that (We set Bi,i = I for all i):

∥∥∥∥∥∥A−
∑
i∈[K]

σi ·B0,ni,1Bni,1,ni,2 . . . Bni,k−1,ni,k

∥∥∥∥∥∥ ≤ ε(k+1)/2 · (n+ 1).

A proof of Theorem 3.8 is in Appendix B.

Proof of Lemma 3.7. Let k,K, ni,j , σ
′
i be as in Theorem 3.8, Let PRG be a ε/(2(n+ 1))-PRG for

B(n,s,w) with seed length d in the assumption. We define the reduction (R, σ) as follows:

Ri(x1, . . . , xk) = PRG(x1)ni,1 ,PRG(x2)ni,2−ni,1 , . . . ,PRG(xk)ni,k−ni,k−1

σi = σ′iK.

Here PRG(xi)c denotes the first c symbols of PRG(xi) and each symbol is in {0, 1}s.
We will show that (R, σ) is a (logK,K, εk · (n + 1))-weighted pseudorandom reduction from

B(n,s,w) to B(k,d,w).

Let f ∈ B(n,s,w). Recall that f
[i,j](x) denotes the transition matrix of f from layer i to layer j

with input x = (x1, . . . , xj−i). Define Ai = Ex∈{0,1}sf
[i−1,i][x] and Bi,j = Ex∈{0,1}df

[i,j][PRG(x)j−i].
By the definition of the PRG, we have ∥Bi,j −Ai+1 . . . Aj∥∞ ≤ ε/(n+ 1).

Therefore, by Theorem 3.8,∣∣∣∣∣Ef − 1

K

K∑
i=1

σ(i)EXf(Ri(X))

∣∣∣∣∣
=

∥∥∥∥∥Ef [0,n] −
K∑
i=1

σiEf [0,n](PRG(X1)ni,1 ,PRG(X2)ni,2−ni,1 , . . . ,PRG(Xk)ni,k−ni,k−1
)

∥∥∥∥∥
∞

≤

∥∥∥∥∥Ef [0,n] −
K∑
i=1

σiEf [0,ni,1](PRG(X1)ni,1)Ef
[ni,1,ni,2](PRG(X2)ni,2−ni,1) · · ·

· · ·Ef [ni,k−1,ni,k](PRG(Xk)ni,k−ni,k−1
)

∥∥∥∥∥
∞

=

∥∥∥∥∥A1 . . . An −
K∑
i=1

σiB0,ni,1Bni,1,ni,2 . . . Bni,k−1,ni,k

∥∥∥∥∥
∞

≤ε
k+1
2 · (n+ 1).

The weight is K = (8n)k+1 by Theorem 3.8, and so the seed length is logK = O(k log n).
Finally, we need to show that f ◦ Ri ∈ B(k,d,w) for all f ∈ B(n,s,w) and i ∈ [K]. We construct the

ROBP g := f ◦ Ri as follows:
Let V0, . . . , Vn be the layers of f , each consisting of w nodes. The ROBP g is defined on

V0, Vni,1 , . . . , Vni,k
. The labelled edge set of g is defined as follows:

Eg = {(u, v, x) : j ∈ [n], u ∈ Vni,j−1 , v ∈ Vni,j , x ∈ {0, 1}d,
there exists a path from u to v in f through PRG(x)ni,j−ni,j−1 }

The start node and accept nodes of g are the same as that in f . Then g is in B(k,d,w) and
g(x1, . . . , xn) = f(PRG(x1)ni,1 ,PRG(x2)ni,2−ni,1 , . . . ,PRG(xk)ni,k−ni,k−1

) = f(Ri(x1, . . . , xk)).
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3.3 Length Reduction instantiated by Armoni’s PRG

We use Armoni’s PRG for B(n,s,w) to instantiate the framework of Section 3.2.

Theorem 3.9 (Armoni’s PRG[Arm98, KNW08]). For all positive integer n, s, w and positive real ε,

there exists an explicit construction of a ε-PRG for B(n,s,w) with seed length O(s+ logn log(nw/ε)
log logw−log log(n/ε)).

Here the big-O of the seed length hides a universal constant.

We have two instantiations that have different parameters.

Lemma 3.10 (Length reduction 1). For any constant a, c, C ∈ N, for all integer n,w, if n ≤ logcw,
then there exists an explicit (logK,K, 1/wa)-weighted pseudorandom reduction from B(n,C logw,w) to

B(n1/c,C′ logw,w), where K ≤ (8n)n
1/c+1, C ′ is a constant depending on c, C, a.

Proof. Fix c, C to be constants. We use Armoni’s PRG4 for B(n,C logw,w) with error ε0 =
2
−a logw

n1/c

(n+1)2
.

By Theorem 3.9, the seed length is O
(
C logw + a logw log logw

log logw/c+O(1)

)
= C ′ logw, where C ′ depends

on c, C, a. Then we can set k = 2n1/c ≥ a logw+logn
1/2·log(1/ε0) in Lemma 3.7 and invoke it to attain this

lemma.

Lemma 3.11 (Length reduction 2). For any constant a ∈ N, for all integer n, s, w, there exists an ex-
plicit (logK,K, 1/wa)-weighted pseudorandom reduction from B(n,s,w) to B(log 1

2 w,O
(
s+

logn log(nw)
log logw−log logn

)
,w

),
where K = (8n)

√
logw
logn

+1
.

Proof. We use Armoni’s PRG for B(n,s,w) with error ε0 = 2−2a
√
logn logw

(n+1) . By Theorem 3.9, the

seed length is O
(
s+ logn log(nw)

log logw−log logn

)
. Then we can set k = a logw+logn

1/2·log(1/ε0) ≤
√

logw
logn ≤ log1/2w in

Lemma 3.7 and invoke it to attain this lemma.

3.4 Combining the reductions

We combine the reductions from Lemma 3.6, Lemma 3.10 and Lemma 3.11 to give the following
reduction.

Lemma 3.12 (Main reduction). For all integer n, s, w, for all ε ≥ 1/ poly(w), there exists

an explicit

(
O
(
s+ logn log(nw)

log logw−log logn + logw(log logmin{n, logw} − log log logw
logn/ε)

)
, (8n)

2
√

logw
logn , ε

)
-

weighted pseudorandom reduction from B(n,s,w) to B(O(1),O(logw),w).

Proof. We set up the reductions as the following, which is also illustrated in Figure 1.
We have the following reductions:
Let (R(1), σ(1)) be a (d1,K1, ε/4)-weighted pseudorandom reduction from B(n,s,w) to B(n1,s1,w)

given by Lemma 3.11, where

• d1 = O(logw),

• n1 = min{n, log1/2w},

• s1 = O(s+ logn log(nw)
log logw−log logn),

4Readers can notice that for this setting, the Armoni’s PRG that we use, should automatically become the
Nisan-Zuckerman PRG.

16



• K1 = (8n)

√
logw
logn

+1
.

Let (R(2), σ(2)) be a (s2,K2, ε/(4K1))-weighted pseudorandom reduction from B(n1,s1,w) to
B(n2,s2,w) given by Lemma 3.6, where

• d2 = O(s+ logn log(nw)
log logw−log logn),

• n2 = n1,

• s2 ≤ 2CGUV log(1/ε),

• K2 = 1.

Using Lemma 2.2, (R(1) ◦R(2), σ(1) ·σ(2)) is a (d1+d2,K1, ε/2) weighted pseudorandom reduction
from B(n,s,w) to B(log1/2 w,2CGUV log(1/ε),w). We set ε′ = (ε/K1)

2 and continue the reduction with the
following parameters:

n3 = log1/2w, ni+1 = n
1/3
i for i = 3, . . . , l − 1. nl =

logw
log 1/ε′ =

logw
log 1/ε+

√
logn logw

.

It is clear that

l = log logmin{n, logw} − log log
logw

log n/ε
+O(1).

For i = 3, . . . , l − 1, let (R(i), σ(i)) be a (di,Ki, ε
′)-weighted pseudorandom reduction from

B(ni,2CGUV log(1/ε′),w) to B(ni+1,Clarge logw,w) given by Lemma 3.10, setting constants c = 3, C =
2CGUV log(1/ε′)

logw , a = logw(1/ε
′) in Lemma 3.10, where

• di = logKi = O(n
1/2
i log ni),

• Ki = exp(O(n
1/2
i log ni)).

Notice that since n3 = log1/2w and ni is monotonously decreasing, the condition ni ≤ log3w is
always satisfied, so the condition in Lemma 3.10 is always met.

For i = 3, . . . , l − 2, let (R̂(i), σ̂(i)) be a (d̂i, K̂i, ε
′)-weighted pseudorandom reduction from

B(ni+1,Clarge logw,w) to B(ni+1,2CGUV log(1/ε′),w) given by Lemma 3.6, where

• d̂i = O(logw),

• K̂i = 1.

We invoke Lemma 2.3 to compose the 2l − 7 reductions, which gives (R(3) ◦ R̂(3) ◦ R(4) ◦ R̂(4) ◦
. . . ◦ R(l−1), σ(3) · σ̂(3) · σ(4) · σ̂(4) · · · · · σ(l−1)). Also by Lemma 2.3, we know the reduction is a
(d∗,K∗, ε∗)-weighted pseudorandom reduction from B(n,s,w) to B(nl,2CGUV log(1/ε′),w). The latter class
is contained in B(O(1),CGUV logw,w).The parameters (d∗,K∗, ε∗) is shown as following:

• d∗ =
∑l−1

i=3 di = O(l logw),

• K∗ =
∏l−1

i=3Ki · K̂i = exp(
∑l−1

i=3 n
1/2
i log ni) ≤ exp(l log1/3w) < exp(log1/2w),

• ε∗ =
∑l−1

i=3 ε
′ ·
∏i−1

j=3Kj · K̂j ≤ l · ε ·K < ε′ · exp(log1/2w) < ε/(2K1).

We invoke Lemma 2.2 again and compose the (d1+d2,K1, ε/2)-weighted pseudorandom reduction
from B(n,s,w) to B(log1/3 w,2CGUV log(1/ε),w) with the (d∗,K∗, ε∗)-weighted pseudorandom reduction
from B(log1/3 w,2CGUV log(1/ε),w) to B(O(1),CGUV logw,w). We get the desired reduction with the following
parameters:
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• Seed length: s1 + s2 + s∗ = O(s+ logn log(nw)
log logw−log logn + logw(log log logw − log log logw

log(n/ε)),

• Weight: K1 ·K∗ ≤ (8n)
2
√

logw
logn ,

• Error: ε/2 +K1 · ε/(2K1) = ε.

The lemma follows.

B(n, s, w) B(n0, s0, w)

B(ni, si, w)B(n′i, s′i, w)

Length reduction 2:

n0 = log1/3w , s0 = O
(
s+ logn log(nw)

log logw−log logn

)
,

d0 = O(logw), K0 = (8n)
2
√

logw
logn , ε0 = ε/4.

Alphabet reduction:
n1 = n0 = log1/3w,
s1 = 2CGUV log 1

ε′i
,

d1 = O(s1) = O
(
s+ logn log(nw)

log logw−log logn

)
,

K1 = 1
ε1 = ε/(4K0).

Length reduction 1:

n′i = n
1/3
i , s′i = Clarge logw

di = O(ni), Ki = O(2ni), εi = (ε/(4K0))
2.

Alphabet reduction:
ni+1 = n′i , si+1 = 2CGUV log 1

ε′i
d′i = O(logw), K ′i = 1,ε′i = (ε/(4K0))

2.

Figure 1: The recursion we use to iteratively reduce the ROBP in the construction of the
WPRG Lemma 3.1. The arrows represent the reduction from an ROBP to simpler ROBPs.

The reduction naturally gives a WPRG, which is the PRG in Lemma 3.1

Lemma 3.13 (Lemma 3.1 restated). For all C > 0, ε > 1/ poly(w), there exists an explicit ε-

WPRG for B(n,C logw,w) with seed length O
(

logn log(nw)
log logw−log logn + logw(log log logw − log log logw

log(n/ε))
)

and weight (8n)
2
√

logw
logn .

Proof. Let (R, σ) be the reduction from Lemma 3.12. We construct the WPRG (G,w) with
the same weight function w and G is defined as G(x, i) = R(x, i). By Lemma 3.12, to fool the
original ROBP we only need to provide randomness for the seed of (R, σ) and also provide a
random string x which can fool an arbitrary ROBP in B(O(1),CGUV logw,w). We use true random-
ness for x and this only takes O(logw) random bits. Also the randomness used by (R, σ) is

O
(

logn log(nw)
log logw−log logn + logw(log log logw − log log logw

log(n/ε))
)
. So the total seed length is as stated.

The weight also directly follows from Lemma 3.12.
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3.5 Reducing error beyond 1/ poly(w)

To further reduce the error from 1/ poly(w) an arbitrary small ε, we use the sampler trick
from [Hoz21]. The original technique is applied on PRGs to get a WPRG with a smaller er-
ror. Here we also use the technique but we apply it on a WPRG and get a WPRG with a smaller
error.

We first recall the definition of averaging samplers:

Definition 3.14 (Averaging Sampler). A (α, γ)-averaging sampler is a function Samp : {0, 1}r ×
{0, 1}p → {0, 1}q such that for every function f : {0, 1}q → [−1, 1], it holds that:

Pr
x∈{0,1}r

∣∣∣∣∣∣2−p
∑

y∈{0,1}p
f(Samp(x, y))− E[f ]

∣∣∣∣∣∣ ≥ α

 ≤ γ.

Lemma 3.15 ([CL20] Appendix B, [Gol11, RVW00]). For all α > 0, γ > 0, there exists an explicit
(α, γ)-averaging sampler with seed length r = q + O(log(1/α) + log(1/γ)) and p = O(log(1/α) +
log log(1/γ)).

We now give the construction of a WPRG for class B(n,s,w) with small error ε. First, let (G0, σ0)
be a WPRG for B(n,s,w) with error 1/(2w · (n + 1)2) and weight W , which is constructed from
Lemma 3.12. We then set the parameters as follows:

• k = log(n/ε)
log(nw) ,

• α = 1/(W · w2 · (n+ 1)2),

• γ = ε/(2(2n)k · (W )k+1 · w2).

We assume that Samp is a (α, γ)-averaging sampler, and let K,ni,j , σi,j be as in Lemma 3.8. Our
WPRG is constructed as follows:{

G(x, y1, . . . , yk, i) = G0(Samp(x, y1))ni,1 , G0(Samp(x, y2))ni,2−ni,1 , . . . , G0(Samp(x, yk))ni,k−ni,k−1

σ(x, y1, . . . , yk, i) = σiK ·
∏k

j=1 σ0(Samp(x, yj))

Now we show that the construction serves as a good WPRG for B(n,s,w) with error ε.

Lemma 3.16. For all n, s, w, assume there exists a W -bounded 1/(2w · (n+ 1)2)-WPRG (G0, σ0)
for B(n,s,w) with seed length d, and a (α, γ)-averaging sampler Samp : {0, 1}r × {0, 1}p → {0, 1}d
with α, γ as defined above. Then there exists a ε-WPRG for B(n,s,w) with seed length r + kp and

weight σlog(n/ε)/ log(nw) · poly(nw/ε).

The proof of Lemma 3.16 is deferred to Appendix C.
Combining the lemma with Lemma 3.1, we prove the main theorem of the section:

Theorem 3.17 (Theorem 3.2 restated). For all integer n, s, w, there exists an explicit construction
of a ε-WPRG for B(n,s,w) with seed length

O

(
s+

log n log(nw)

log logw − log logn
+ logw(log logmin{n, logw} − log log

logw

log(n/ε)
) + log(1/ε)

)
and weight poly(nw/ε).
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Proof. Let (G0, σ0) be a 1/(2w · (n+ 1)2)-WPRG for B(n,s,w) with seed length

d = O

(
s+

log n log(nw)

log logw − log logn
+ logw(log logmin{n, logw} − log log

logw

log(n/ε)
)

)
and weight K = poly(nw/ε) given by Lemma 3.12.

Let Samp be a (1/(2W · w2 · (n + 1)2), ε/(2(2n)k · σk))-averaging sampler with seed length
r = d+O(log(nw/ε)) and p = O(log(nw) + log log(1/ε)) given by Lemma 3.15.

By Lemma 3.16, we get a ε-WPRG for B(n,s,w) with seed length

r + (2k + 1)p

=O

(
s+

log n log(nw)

log logw − log log n
+ logw(log logmin{n, logw} − log log

logw

log(n/ε)
) + log(1/ε)

)
and weight poly(nw/ε).

3.6 Application: a WPRG for regular branching program with a better seed
length

One application of our WPRG is to improve the WPRG for regular ROBPs by Chen, Hoza, Lyu,
Tal, and Wu[CHL+23]. Their construction can be viewed as a weighted pseudorandom reduction
from long regular ROBPs to short standard ROBPs with large alphabets. Then they fool the short
ROBPs with an INW generator. We show that if one replaces this INW generator with our WPRG
instead, then we can slightly improve the seed length.

First we recall the ’Weight’ of an ROBP defined in [BRRY14], which is different from the weight
of a WPRG.

Definition 3.18 (Weight of ROBPs). Let f ∈ Bn,s,w be an ROBP. For every v ∈ [n]× [w], let fv→

denote the subsection of f starting at v and has the same accept nodes as f . Let E be the edges of
f . We define the weight of f as:

W(f) =
∑

(u,v)∈E

|E[fv→]− E[fu→]| .

Recall that we denote the class of all regular ROBPs of length n, width w and alphabet
Σ = {0, 1}s as Rn,s,w. Our result can be stated as the following.

Theorem 3.19. For every w, n, s ∈ N , and every ε > 0, there exists an explicit ε-WPRG for Bn,s,w
with seed length

O
(
s+ log n

(√
log(1/ε) + logw + log(W(f)) + log log n

)
+ log(1/ε)

)
.

Furthermore, the weight of this WPRG is bound by poly(n1+
√

log(1/ε), w).

One main result of [BRRY14] states that the weights of regular ROBPs over a binary alphabet
are bounded by O(w2).

Lemma 3.20 (Lemma 6 of [BRRY14]). For every n,w ∈ N and f ∈ Rn,1,w, W(f) ≤ O(w2).
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Combining Lemma 3.20 with Theorem 3.19 immediately gives Theorem 1.7.
Before we prove Theorem 3.19, we recall the following from [CHL+23, CL24]. In Section 6.3 of

[CHL+23], the WPRG (G,w) : [K]× ({0, 1}s)r → {0, 1}n × R for Rn,1,w , has the form

G(i, y1, y2, . . . yr) = (Gi,1(y1), Gi,2(y2), . . . , Gi,r(yr))

σ(i, y1, y2, . . . yr) = K · γi,

where i ∈ [K] and ∀j ∈ [r], j ∈ {0, 1}s. The parameters satisfy K = nO(m), r = O(m log n), γi ∈

{−1,+1}, where m = Θ

(
log(w/ε)√

log(1/ε)+logw

)
= O

(√
log(1/ε)

)
. Gi,j is the PRG by [BRRY14] for

Rn,1,w within target error τ = min
{
2−
√

log(1/ε), 1/ poly(w,W(f), log n)
}
. Therefore, the length of

each y is

s = O
(
log n

(√
log(1/ε) + logw + log(W(f)) + log log n

))
.

We view the WPRG as a weighted pseudorandom reduction from regular ROBPs to standard
ROBPs by fixing i and let y1, . . . , yr be free. Moreover, this WPRG can naturally extend to large
alphabet cases although not explicitly stated in [CHL+23]. [CL24] gives a similar result. We restate
both of their results as the following theorem, and we include a short proof in Appendix E for
completeness.

Theorem 3.21 (Section 6.3 of [CHL+23], also Section 3 of [CL24]). For all n,w ∈ N and ε > 0,
there exists a (logK,K, ε)-weighted pseudorandom reduction from Bn,s,w to Bn1,n1,w, where K =

nO(
√

log(1/ε), n1 = O(log n
√

log(1/ε) and

s1 = O
(
s+ log n

(√
log(1/ε) + logw + log(W(f)) + log log n

))
.

Now prove Theorem 3.19.

Proof of Theorem 3.19. In the case of w > n, Theorem 3.2 already gives a suitable WPRG. So
we assume w ≤ n. Denote f ∈ Bn,s,w as the original regular ROBP. Let (R, σ) = {(Ri, σi)}i∈[K]

be the (logK,K, ε/2) -reduction from Rn,s,w to Bn1,s1,w, given by Theorem 3.21, where K =

nO(
√

log(1/ε), n1 = O(log n
√

log(1/ε)), and

s1 = O
(
s+ log n

(√
log(1/ε) + logw + log(W(f)) + log log n

))
.

Then we have ∣∣∣∣∣∣E[f ]−
∑
i∈[K]

σi
K
· Ex∈({0,1}s1 )n1 [f(Ri(x)]

∣∣∣∣∣∣ ≤ ε/2,

in which |σi| ≤ K. Let (G, σ′) : {0, 1}d → ({0, 1}s1)n1 × R be the ε/(2K)-WPRG given by
Theorem 3.2. We have

∣∣∣∣∣∣E[f ]−
∑
i∈[K]

σi
K
·
∑

y∈{0,1}d

σ′(y)

2d
[f(Ri(G(y))]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣E[f ]−
∑
i∈[K]

σi
K
· Ex∈({0,1}s1 )n1 [f(Ri(x)]

∣∣∣∣∣∣+
∑
i∈[K]

σi
K

∣∣∣∣∣∣Ex∈({0,1}s)r [f(Ri(x)]−
∑

y∈{0,1}d

σ′(y)

2d
[f(Ri(G(y))]

∣∣∣∣∣∣
≤ε/2 +K · ε/(2K) = ε.
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Therefore (R ◦G, σ · σ′) is a ε-WPRG for f with seed length dtotal = logK + d.
By Theorem 3.2, the ε/(2K)-WPRG requires

d =O

(
s1 +

log n1 log(n1w)

max {1, log logw − log log n1}
+ logw log logmin{n1, logw}+ log(K/ε)

)
We use the assumption that w ≤ n, organize the terms and find

dtotal =O
(
s+ log n

(√
log(1/ε) + logw + log(W(f)) + log log n

)
+ log n1 log n+ log(K/ε)

)
=O

(
s+ log n

(√
log(1/ε) + logw + log(W(f)) + log log n

)
+ log(1/ε)

)
,

since log n1 log(n1w) = O(log n1 log n), logw log logmin{n1, logw} = O(log n log n1).
Now we compute the weight, which is the upper bound of |σi| · |σ′(x)| over i ∈ [K], x ∈ {0, 1}d.

By Theorem 3.2, |σ′(x)| ≤ poly(r, w, ε/2K) = poly(n1+
√

log(1/ε), w). |σi| ≤ K = nO(1+
√

log(1/ε)).

Therefore, the total weight is bound by poly(n1+
√

log(1/ε), w).

4 WPRG for Permutation Read-once Branching Programs

In this section we focus on WPRGs against permutation ROBPs. First we recall the definition of
permutation ROBPs with only one accept node.

Definition 4.1 (Permutation ROBPs). A ROBP f ∈ B(n,s,w) is a permutation ROBP if for every

i ∈ [n], x ∈ {0, 1}s, the matrix f [i−1,i](x) is a permutation matrix.
We denote the class of permutation ROBPs with unbounded width and only one accept node by

P(n,s), where n is the length s is the bit-length of the alphabet.

Now we give our WPRG for P(n,s).

Theorem 4.2. [Restatement of Theorem 1.9] There exists an ε-WPRG for P(n,s) with seed length

s+O(log n(log log n+
√

log(1/ε)) + log(1/ε)) and weight 2O(logn
√

log(1/ε)).

Before we prove the theorem, we introduce some more definitions and lemmas.

Definition 4.3 (PSD norm). Let A be a w × w positive semi-definite matrix. The PSD norm on
Rw with respect to A is defined as ∥x∥A =

√
xTAx.

Definition 4.4 (sv-approximation [APP+23]). Let W̃ and W be two w × w doubly stochastic

matrices. We say that W̃ is a ε-singular-value approximation of W , denoted by W̃
sv
≈ε W , if for all

x, y ∈ Rw, ∣∣∣yT (W̃ −W )x
∣∣∣ ≤ ε

4

(
∥x∥2I−WTW + ∥y∥2I−WWT

)
.

Definition 4.5 (fooling with sv-error). Let (G, σ) : {0, 1}s → {0, 1}n × R be a WPRG. Let C be a
family of matrix valued functions B : {0, 1}s → Rw×w. We say that G fools C with ε-sv-error if for

all B ∈ C,
∑

z∈{0,1}s [
1
2sB(G(z)) · σ(x)]

sv
≈ε Ex∈{0,1}n [B(x)].

We describe the PRG against permutation ROBPs from [HPV21b]. In the following descriptions
we regard ROBPs of P(n,s) as matrix-valued functions.
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Lemma 4.6 (Lemma 4.1 in [CHL+23], originally by [HPV21b]). For all s, n, ε there exists a PRG
(actually the INW generator) that fools P(n,s) with ε-sv-error. The seed length is

s+O(log n(log log n+ log(1/ε))).

Remark. We note that Lemma 4.1 in [CHL+23] only proves the case for s = 2, but their proof can
naturally be generalized to handle arbitrary s. See Appendix D.

Next we describe the key ingredient in previous error reductions for WPRGs against permutation
ROBPs.

Lemma 4.7 (Claim 9.3 in [CHL+23]). Let n ∈ N, let τ ∈
(
0, 1

64 log2 n

)
, and let G : {0, 1}d →

({0, 1}s)n be a PRG that fools P(n,s) with sv-error τ . Let k ∈ N, and let

α =
(
4 ·
√
τ · log n

)k+1
.

Then there exists a WPRG G(k), σ(k) that can be written in the form of

G(k)(i, x1, . . . , xr) = G(x1)ni,1 , G(x2)ni,2 , . . . , G(xr)ni,r ,

σ(k)(i) = γi ·K.

where K = nO(k), i ∈ [K], r = O(k log n), γi ∈ {−1, 0, 1} and 0 ≤ ni,j ≤ n, such that G(k) fools
P(n,s) with entrywise error α.

4.1 One level of the reduction

We show that the previous lemma already gives a reduction:

Lemma 4.8. For any integer n, k, s and any ε > 0, there exists τ = Ω(ε
2

k+1 / log2 n) such
that there exists a (O(k log n), nO(k), ε)-weighted pseudorandom reduction (R, σ) from P(n,s) to
P(O(k logn),s+O(logn(log logn+log 1/τ))).

Proof. Let G be the INW PRG that fools P(n,s) with τ -sv-error, such that τ = min{ ε2/(k+1)

16 log2 n
, 1
64 log2 n

}.
Then the seed length is d = s+O(log n(log log n+ log 1/τ)) by Lemma 4.6.

We invoke Lemma 4.7 with G and k, which gives (G(k), σ(k)). This WPRG fools P(n,s)
with entrywise error (4 ·

√
τ · log n)k+1

< ε. We define the reduction (R, σ) : Ri(x1, ..., xr) =
G(k)(i, x1, ..., xr), wi = σ(k)(i). By Lemma 4.7, the weight of this reduction is bounded by K = nO(k).
The seed length of the reduction is logK = O(k log n), since we need logK = O(k log n) bits to
choose i.

Given any f ∈ P(n,s), notice that each f ◦ Ri is a permutation ROBP of length r = O(k log n)

and alphabet size 2d = 2s+O(logn(log logn+log 1/τ)). The reason is that the transition matrix of f ◦ Ri

from the j−1-th layer to the j-th layer on input x ∈ {0, 1}d can be expressed as (f ◦Ri)
[j−1,j](x). As

(f ◦R)[j−1,j](x) = f [ni,j−1,ni,j ](G(x)ni,j−ni,j−1) and the latter is a product of ni,j−ni,j−1 permutation
matrices, the transition matrix of f ◦Ri is also a permutation matrix. Hence f ◦Ri is a permutation
ROBP. Also, note that each f ◦ Ri only has one accept node since its accept node is the same as
that of f .

Therefore, the reduction is a (O(k log n), O(nk), ε)-weighted pseudorandom reduction.

Setting k =
√

log(1/ε) in Lemma 4.8, we immediately have the following lemma:
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Lemma 4.9. For any integer n, s and any ε > 0, there exists a (O(log n
√
log(1/ε)), 2O(logn

√
log(1/ε)), ε)-

weighted pseudorandom reduction from P(n,s) to P(O(logn
√

log(1/ε)),s+O(logn(
√

log(1/ε)+log logn)))
.

Setting k = O(log2 n) in Lemma 4.8, we immediately have the following lemma:

Lemma 4.10. For any integer n, s and ε > 0, there exists a (O(log3 n), 2O(log3 n), ε)-weighted
pseudorandom reduction from P(n,s) to P(log3 n,s+O(

log(1/ε)
logn

+logn log logn))
.

4.2 Recursion of reductions

We give a multi-level recursive procedure which gradually reduces the program from P(n,s) to
P
(O(1),s+O(logn(log logn+

√
log(1/ε))))

with error ε.

We start by reducing the length of the permutation ROBP to O(log n
√
log(1/ε)) and the weight

to 2O(logn
√

log(1/ε)) with error ε/2. Previous works use an INW PRG to fool the reduced ROBP,
which leads to an extra double logarithmic factor in the seed length. Here we use iterative reductions
instead to avoid this extra factor.

Lemma 4.11 (Reduction for permutation ROBP). For any integer n, s and any ε > 0, there

exists a
(
O
(
log n

√
log(1/ε)

)
, 2logn

√
log(1/ε), O(ε)

)
-weighted pseudorandom reduction from P(n,s)

to P(
O(1),s+O

(
logn

(
log logn+

√
log(1/ε)

)
+log(1/ε)

)).
Proof. Let (R(0), σ(0)) be the (d0,K0, ε/2)-weighted pseudorandom reduction from P(n,s) to P(n1,s1)

such that n1 = O(log n
√
log(1/ε)) and s1 = s+O(log n(log log n+

√
log(1/ε))). This reduction is

guaranteed by Lemma 4.9 and have the following parameters:

1. d0 = O(log n
√
log(1/ε)),

2. K0 = 2O(logn
√

log(1/ε)).

Now we define a new parameter ε′ = ε/2K0. Let

n0 = n, ni = log3 ni−1

for each i = 1, . . . , l and nl = 32768. It is clear that l ≤ log log n.
For each i = 1, . . . , l, let (R(i), σ(i)) be the (di,Ki, (ε

′)2)-weighted pseudorandom reduction
from P(ni,si) to P(ni+1,si+1), which is guaranteed by Lemma 4.10. The reduction has the following
parameters:

1. di = O(log3 ni),

2. Ki = 2log
3 ni ,

3. si+1 = si +O( log(1/ε
′)

logni
+ log ni log logni) = si +O( log(1/ε)logni

).

Using Lemma 2.3, we first composite (R(1), σ(1)), . . . , (R(l), σ(l)) to get a (d∗,K∗, ε∗)-weighted
pseudorandom reduction (R(∗), σ(∗)) from P(n0,s0) to P(nl,sl) with R(∗) = R(1) ◦ . . . ◦ R(l) and σ(∗) =

σ(1) · . . . · σ(l). We have the following parameters:

1. d∗ = d1 + . . .+ dl ≤ O(l log3 n1) ≤ O(log0.1(n/ε)),
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2. K∗ = K1 · . . . ·Kl ≤ 2O(l·log3 n1) ≤ 2O(log0.1(n/ε)),

3. ε∗ =
∑l

i=1(ε
′)2 ·

∏i−1
j=0Kj ≤ (ε′)2 ·K∗ · l ≤ ε′/2,

4. sl = s0 +
∑l

i=1(si − si−1) = s0 +
∑l

i=1O( log(1/ε
′)

logni
) = s0 +O(log 1/ε′).

The first three items are attained by directly plugging in our parameters. The last item holds because
ni decreases rapidly. Note that ni−1 = 2

3
√
ni , and when ni ≥ 215 = 32768, we have ni−1 ≥ n2

i .

When nl ≥ 32768, it holds that
∑l

i=1
log(1/ε′)
logni

≤ log 1/ε′ · (1/ log nl+1/(2 log nl)+1/(4 log nl)+ · · ·+
1/(2l log nl)) ≤ log 1/ε′.

Finally, we composite (R(∗), σ(∗)) with (R(0), σ(0)) to get the final reduction (R, σ) from P(n,s) to
P(O(1),sl)). By Lemma 2.2, the parameters are:

1. d = d∗ + d0 = O(log n
√
log(1/ε)),

2. K = K∗ ·K0 ≤ 2O(logn
√

log(1/ε)),

3. ε = ε/2 + ε′/2 ·K0 ≤ ε,

4. s = sl = s0 +O(log 1/ε′) = s+O(log n(log log n+
√

log(1/ε)) + log(1/ε)).

One can also see our reduction strategy for the above lemma through Figure 4.2.

P(n, s) P(ni, si)

n1 = O(log n
√
log(1/ε)), s1 = s+O(log n(log log n+

√
log(1/ε)))

d0 = O(log n
√
log(1/ε)), K0 = 2O(logn

√
log(1/ε)), ε0 = ε/2.

ni+1 = log3 ni, si+1 = si +O( log(W0/ε)
logni

+ log ni log log ni)

di = O(log3 ni), Wi = 2O(log3 ni), εi = (ε/(2W0))
2.

Figure 2: Reduction for permutation ROBPs in Lemma 4.11.

Now we show the main theorem of this section:

Theorem 4.12 (Theorem 4.2 restated). There exists an ε-WPRG for P(n,s) with seed length

s+O(log n(log log n+
√

log(1/ε)) + log(1/ε)) and weight 2O(logn
√

log(1/ε)).

Proof. Let (R, σ) be the reduction from Lemma 4.11. We construct the WPRG (G, σ) with the
same weight function σ, and G is defined as G(x, i) = R(x, i). By Lemma 4.11, to fool the original
ROBP we only need to provide randomness for the seed of (R, σ) and also provide a random
string x which can fool an arbitrary ROBP in P

(O(1),s+O(logn(log logn+
√

log(1/ε))+log(1/ε)))
. We can

use another ε error INW generator from [HPV21a] to generate this constant length x and this only

takes s+O
(
log n

(
log log n+

√
log(1/ε)

)
+ log(1/ε)

)
random bits. Also the randomness used by

(R, σ) is O(log n
√
log(1/ε)). So the total seed length is as stated. The weight also directly follows

from Lemma 4.11.
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It is well known that a WPRG can fool a Permutation ROBP with an arbitrary number of accept
nodes and error ε if it can fool the program with only one accept node with error ε/w. Therefore,
we immediately have the following corollary:

Corollary 4.13. There exists an ε-WPRG for length n, width w, alphabet size (out degree) 2s Per-
mutation ROBPs having an arbitrary number of accept nodes, with seed length s+O(log n(log log n+√

log(w/ε)) + log(w/ε)) and weight 2O(logn
√

log(w/ε)).

5 Derandomization for Regular Branching Programs

In this section, we show our derandomization for short-wide regular ROBPs, which indicates that

when n ≤ 2log
1/2 w and ε = 1/ poly(w), there is a O(logw) space derandomization, where the space

complexity is optimal up to constant factors. We achieve this by constructing a more general
derandomization algorithm as the following.

Theorem 5.1. There exists an algorithm that for any input regular ROBP f of width w, length n,
alphabet {0, 1}s, and any input parameter ε > 0 as input, outputs an approximation for E[f ] with
addtive error ε. The algorithm uses O(s+ log n(log log n+

√
log(w/ε)) + log(w/ε)) bits of space.

Notice that our main theorem Theorem 1.10 is a direct corollary of Theorem 5.1. We remark
that one may want to further improve the space dependence on ε by first using Theorem 5.1 and
then calling the Richardson iteration method of [AKM+20]. This can be done, but our main purpose
here is to get a derandomization in L exactly for short-wide ROBPs. If applying that additional
operation, then the algorithm is not in L and also not in polynomial time.

Next as a warm-up, we show that binary regular ROBPs can be transformed in logspace to
binary permutation ROBPs such that they have the same acceptance probability (but probably do
not compute the same function). We are unaware of any previous work stating this transformation.

Lemma 5.2. There is an algorithm which on inputting a regular ROBP P with length n width
w and binary edge labels, outputs a permutation ROBP P ′ with length n width w and binary edge
labels, such that P ′ has exactly the same acceptance probability as P (but may not computing the
same function as P ). The algorithm has workspace O(log(nw)).

Proof. P ′ has the same vertex set as that of P . The algorithm visits each layer i of P in the order
i = 0, 1, 2, . . . , n. For layer i, consider the subgraph S between Vi and Vi+1. The algorithm visits
each node v ∈ Vi in order. For each v ∈ Vi, it tests if v can be reached by any previously visited
node of Vi in S. This can be done by revisiting each previous node v′ and go through the cycle that
v′ is in. If none of the previous node can reach v, then do the following traverse in S. Starting from
v, choose an edge with label 0, and then go to the corresponding neighbor. For each next node u
visited, denote ℓ as the label of the adjacent edge through which we reach u. If the other adjacent
edge e′ of u has a label ℓ′ such that ℓ′ = ℓ, then flip the label ℓ′. After this we traverse through e′ to
go to the next neighbor. Go on doing this until it reaches v again.

Notice that starting from v the traverse can go through every node of Vi ∪ Vi+1 reachable from
v. Because for each next neighbor u, it can only be either v or a node which is not touched before
in this traverse. In other words, this traverse is going through the cycle of S containing v. Also
note that after this traverse, every node reachable from v, because of the flipping, can have different
labels for its two adjacent edges. So after we visited every v ∈ Vi, every node of S reachable by
nodes in Vi has its two adjacent edges with different labels because of the flips. Hence the graph
with these new labels is a permutation.
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The traverse can be done in logspace since recording the index of a layer takes space O(log n),
recording the index of a node in a layer takes space O(logw), and going through a cycle of S takes
space O(logw).

After this transformation, we can run our WPRG of Corollary 4.13 to attain the desired
derandomization for the binary case.

However for alphabets with size larger than 2, the problem turns out to be more complicated.
In the rest of this section, we focus on the case with large alphabets.

5.1 More preliminaries

We recall some standard definitions in the literature of [RVW00, RV05, AKM+20, CHL+23, CL24].

Definition 5.3 (Regular bigraph). A bigraph is a triple G = (U, V,E), where U and V are two
sets of vertices and E ⊆ U × V is a set of edges going from U to V . A bigraph is called d-regular if
every vertex in U has d outgoing edges and every vertex in V has d incoming edges.

The transition matrix of a regular bigraph is a the matrix M ∈ RV×U such that Mv,u is the
fraction of edges going from u that go to v.

Definition 5.4 (One-way labeling). A one-way labeling of a d-regular bigraph G assigns a label
i ∈ [d] to each edge in G such that for every vertex u ∈ U , the labels of the outgoing edges of u are
distinct. If G has a one way labeling, we say that G[u, i] = v if the outgoing edge of u that is labeled
i goes to v.

Definition 5.5 (Two-way labeling). A two-way labeling of a d-regular bigraph G is a labeling of the
edges of G such that:

• Every edge (u, v) has two labels in [d], the ‘outgoing label’ and the ‘incoming label’.

• For every vertex u ∈ U , the outgoing labels of the outgoing edges of u are distinct.

• For every vertex v ∈ V , the incoming labels of the incoming edges of v are distinct.

Definition 5.6 (Rotation map). Let G = (U, V,E) be a d-regular bigraph with a two-way labeling.
The rotation map of G is a function RotG : U × [d]→ V × [d] such that RotG(u, i) = (v, j) if there
is an edge (u, v) ∈ E with the outgoing label i and the incoming label j.

Definition 5.7 (Derandomized Product). Let G1 = (U, V,E1) and G2 = (V, T,E2) be two d-regular
bigraphs where G1 has a two-way labeling and G2 has a one-way labeling. Let H = ([d], [d], EH)
be a c-regular bigraph with one way labeling. The derandomized product of G1, G2 and H is a
(c · d)-regular bigraph with one-way labeling denoted by G1 p○HG2 defined as follows. To compute
(G1 p○HG2)[v0, (i0, j0)] for v0 ∈ U and (i0, j0) ∈ [d]× [c]:

• Let (v1, i1) = RotG1(v0, i0).

• Let i2 = H[i1, j0].

• Let v2 = G2[v1, i2].

• Output (G1 p○HG2)[v0, (i0, j0)] =: v2.
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Definition 5.8 (Two-way labeling of derandomized product). Let G1 = (U, V,E1) and G2 =
(V, T,E2) be two d-regular bigraphs where both G1 and G2 have two-way labeling. Let H =
([d], [d], EH) be a c-regular bigraph with two-way labeling. We define the two-way labeling of
the derandomized product G1 p○HG2 as follows. To compute the rotation map RotG1 p○H

G2 for any
vertex v0 ∈ U and any pair (i0, j0) ∈ [d]× [c], we do the following:

• Let (v1, i1) = RotG1(v0, i0).

• Let (i2, j1) = RotH(i1, j0).

• Let (v2, i3) = RotG2(v1, i2).

• Output RotG1 p○H
G2(v0, (i0, j0)) = (v2, (i3, j1)).

To ensure that the derandomized product behaves like the direct concatenation of the two
bigraphs, we need H to be a spectral expander.

Definition 5.9 (spectral expander). Let H = (U, V,EH) be a d-regular bigraph with transition
matrix WH ∈ RU×V , where |U | = |V |. Define J ∈ RU×V where Ji,j = 1/|U | for all i ∈ U, j ∈ V .
Then the spectral expansion of H is denoted by λ(H) and defined as follows:

λ(H) = ∥WH − J∥2

We also need the definitions for regular branching programs:

Definition 5.10 (Regular Branching Program). Let f be a ROBP in Bn,s,w. We call f a regular
branching program if all vertices in the graph of f except the vertices in the first layer have precises
2s incoming edges.

A general regular branching program may not have a two-way labeling. If we equip it with a
two-way labeling for each step of the transition, we call it a regular ROBP with two-way labeling.

Definition 5.11 (Regular ROBP with Two-way labeling). A regular ROBP with two-way labeling
is a regular ROBP f and every edge in f has two labels, the ’outgoing label’ and the ’incoming
label’. For every vertex u in V (f)\Vn, the outgoing labels of the outgoing edges of u are distinct.
For every vertex v in V (f)\V0, the incoming labels of the incoming edges of v are distinct. We
compute f according to the outgoing labels of the edges, i.e., for every (x1, . . . , xn) ∈ ({0, 1}s)n, we
find the unique path (v0 = vstart, v1, . . . , vn) in f such that for every i ∈ [n], the edge (vi−1, vi) has
the outgoing label xi, and we output 1 iff vn is an accepting vertex.

We denote the class of all regular ROBPs with two-way labeling Rtw
n,s,w.

Like bigraphs, we define Rotf : ([w]× [n])×{0, 1}s → ([w]× [n])×{0, 1}s such that Rotf (u, σ) =
(v, σ′) if there is an edge (u, v) in f with the outgoing label σ and the incoming label σ′.

We recall the derandomization algorithm for regular branching programs in [CHL+23].
Let f be a regular ROBP with two-way labeling in Rtw

n,s,w. For each i ∈ [log n], let Ht =

([2s · ct−1], [2s · ct], EHt) be a c-regular bigraph with λ(Ht) ≤ λ. Define G̃j→j+1 := (Vt−1, Vt, Et),
which is a 2s-regular bigraph with two-way labeling. Define E(SCn) = {(j, j + 2t) : j ∈ [n− 2t], t ∈
[log n], 2t is the largest power of 2 dividing j}. For each (j, j + 2t) ∈ E(SCn) recursively define the
graph G̃j→j+2t as follows:

G̃j→j+2t := G̃j→j+2t−1 p○Hi
G̃j+2t−1→j+2t

The following lemma shows that the transition matrix of the final graph G̃0→n is close to the
product of the transition matrices of the intermediate graphs.
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Lemma 5.12 (Lemma A.20 of [CHL+23]). Let n, d, c ∈ N. For each t ∈ {0, 1, . . . , log n} and each
j ∈ [n− 2t], let G̃j+2t−j =

(
Vj , Vj+2t , Ej+2t−j

)
be a (d · ct)-regular bigraph with a two-way labeling.

Furthermore, let λ ∈
(
0, 1

6 log2 n

)
, and for each t ∈ [log n], let Ht =

(
[d · ct−1], [d · ct−1], EHt

)
be a

c-regular bigraph with a one-way labeling satisfying λ(Ht) ≤ λ. Assume also that for each t ∈ [log n]
and each j ∈ [n− 2t], we have

G̃j→j+2t = G̃j→j+2t−1 p○Ht
G̃j+2t−1→j+2t ,∀t ≥ 1,

and
G̃j→j+1 = Gj→j+1,

(where the equation above merely denotes equality as graphs with one-way labelings). For each

(i, j) ∈ E(SCn), let W̃j←i be the transition matrix of G̃i→j, and let

Wj←i = W̃j←j−1 · · ·W̃i+1←i

Then
W̃n←0

sv
≈11λ·logn Wn←0.

Theorem 5.13 (Claim A.23 of [CHL+23]). The following algorithm computes

Rot
G̃0→n

(v0, (x, e1, . . . , elogn))

1. For i = 1 to n:

(a) Update (v, x)← Rot
G̃i−1→i

(v, x), so now v ∈ V (i).

(b) If i < n:

i. Let t ∈ [log n] be the smallest positive integer such that i is not a multiple of 2t, i.e.,
the binary expansion of i has precisely t− 1 trailing zeroes.

ii. Update (x, e1, . . . , et−1)← RotHt((x, e1, . . . , et−1), et).

2. Output (v, e).

We also need the efficiently computable spectral expander Ht. The following lemma shows that
such a spectral expander exists. The construction of Ht is based on Margulis-Gabber-Galil graphs
[Mar73, GG81].

Lemma 5.14 (Space-efficient expanders, Lemma A.22 of [CHL+23]). For every d ∈ N that is a
power of two, for every λ ∈ (0, 1), there is a bigraph H =

(
[d], [d], EH

)
with a two-way labeling

satisfying the following:

• λ(H) ≤ λ.

• H is c-regular where c is a power of two and c ≤ poly(1/λ).

• RotH can be evaluated in space that is linear in its input length, i.e., space O(log(d/λ)).

We use the following notation for the algorithm in Theorem 5.13 equipped with the efficiently
computable spectral expanders.
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Definition 5.15. We define the algorithm DerandWalk. Let n, s, w ∈ N, and 0 < τ < 1
6 logn . For

every t ∈ [⌈log n⌉], let c ∈ N and Ht =
(
[2s · ct−1], [2s · ct−1], EHt

)
be a c-regular bigraph with a two-

way labeling satisfying λ(Ht) ≤ λ constructed by Lemma 5.14. For any f ∈ Rtw
n,s,w, 0 ≤ l < r ≤ n,

u ∈ [w], x ∈ {0, 1}s and e1, e2 . . . , e⌈logn⌉ ∈ [c], we denote DerandWalk(τ, f, l, r, u, (x, e1, . . . , e⌈logn⌉))
as the algorithm in Theorem 5.13 instantiated with the l-th layer to the r-th layer of f and {Ht},
starting at node u with seed (x, e1, . . . , e⌈logn⌉), i.e. DerandWalk(τ, f, l, r, u, (x, e1, . . . , e⌈logn⌉)) =

Rot
G̃l→r

(u, (x, e1, . . . , elogn)), where G̃l→r is the bigraph generated by Lemma 5.12 with the l-th layer
to the r-th layer of f .

We use the following error reduction polynomial in our algorithm, which gives a good sv-
approximation for a sequence of transitions.

Theorem 5.16 (Recursion [CL24]). Let {Ai}ni=1 ⊂ Rw×w be a sequence of doubly stochastic matrices.

Let {Bi,j}ni,j=0 ⊂ Rw×w be a family of matrices such that Bi,j
sv
≈τ/(10 logn) Ai+1 . . . Aj Assuming that

Bi−1,i = Ai for all i. Then for any k ∈ N, there exists K = O((2n)k), t = O(k log n), a set of
indices mi,j for each i ∈ [K], j ∈ [t] with 0 ≤ mi,1 ≤ . . . ≤ mi,t = n and a set of signs σi ∈ {−1, 0, 1}
for each i ∈ [K] such that:∑

i∈[K]

σi ·B0,mi,1Bmi,1,mi,2 . . . Bmi,t−1,mi,t

sv
≈τk A1A2 . . . An.

5.2 The derandomization for regular ROBPs with large alphabets

Theorem 5.17 (Restatement of Theorem 5.1). There exists an algorithm that takes as input a
regular ROBP and a parameter ε > 0, and outputs an approximation of the acceptance probability
with additive error ε. Furthermore, if the regular ROBP has length n, width w and alphabet bit
length s, then the algorithm uses O(s+ log n(log log n+

√
log(w/ε)) + log(w/ε)) bits of space.

Let f ∈ Rtw
n,w,s be a regular ROBP with two-way labeling and let Ml...r denote its transition

matrix from layer l to layer r. For every 0 ≤ l < r ≤ n, we invoke Lemma 5.12, which gives
a regular bigraph G̃l...r with two-way labeling such that its transition matrix M̃l...r is a τ -sv-
approximation of Ml...r. Then by Theorem 5.16, for any k ∈ N, we have K = O((2n)k) and a
partition 0 = mi,0 < mi,1 < · · · < mi,l = n0 for every i ∈ [K] and σi such that∑

i∈[K]

σiM̃mi,0...mi,1M̃mi,1...mi,2 · · · M̃mi,l−1...mi,l
approximates M0...n0 with entry-wise error τk,

Given the summation, we can view it as a sum of regular ROBPs with two-way labelings. For
every i ∈ [K], we define fi ∈ Rtw

n1,w,s1 as the concatenation of the bipartite graphs

G̃mi,0...mi,1 , G̃mi,1...mi,2 , . . . , G̃mi,l−1...mi,l
,

which still has a two-way labeling. We set the starting vertex and accepting vertices of fi to be the
same as those of f . Then we obtain∣∣∣∣∣∣Exf(x)−

∑
i∈[K]

σiEyfi(y)

∣∣∣∣∣∣ ≤ τkw.

The same procedure can be applied to each regular ROBP fi, which gives shorter ROBPs fi1,i2
for every i2 ∈ [K2]. We repeate the procedure until we attain regular ROBPs fi1,...,iℓ with constant
length, which can be fooled by true randomness. We formalize the above into the following detailed
proof.
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Proof of Theorem 5.17. Let f ∈ Rtw
n,w,s be the regular ROBP to derandomize. Let ℓ ∈ N be the

number of iterations we need to perform and let τi, εi be the error parameters of the i-th iteration
for every i ∈ [ℓ]. The exact values of ℓ, {τi, εi}i∈[ℓ] will be specified later. For each iteration i ∈ [ℓ],
define the error reduction exponent ki = ⌈log1/τi(2/εi)⌉, and we setup ni,Ki iteratively. Let n0 = n.

Consider every i ∈ [ℓ]. Let ni = t,Ki = K, where t = O(ki · log ni−1) and K = O((2ni−1)
ki) are

the parameters whose existence is guaranteed by Theorem 5.16, when initiating Theorem 5.16 with
n = ni−1, k = ki, τ = τi.

We iteratively define fi1,i2,...,ip ∈ Rtw
np,w,sp for every i1 ∈ [K1], i2 ∈ [K2], . . . , ip ∈ [Kp] and

p ∈ {0, 1, . . . , ℓ} as follows:

1. When p = 0, fi1,i2,...,ip is defined to be f .

2. For every p ∈ [ℓ], assume we have defined fi1,i2,...,ip−1 .We denote M
(i1,i2,...,ip−1)
l...r to be the

stochastic matrix of fi1,i2,...,ip−1 from layer l to layer r. For every 0 ≤ l < r ≤ np−1,

let G̃
(i1,i2,...,ip−1)
l...r be a regular bigraph with a two-way labeling obtained by approximating

M
(i1,i2,...,ip−1)
l...r by the algorithm of Lemma 5.12 with error parameter τp

5. Let M̃
(i1,i2,...,ip−1)
l...r

be the stochastic matrix of G̃
(i1,i2,...,ip−1)
l...r . By Theorem 5.16, for every ip ∈ [Kp] we have a

partition 0 = m
(p)
ip,0

< m
(p)
ip,1

< · · · < m
(p)
ip,np

= np−1 and weights σ
(p)
ip
∈ {−1, 0, 1} such that∑

ip∈[Kp]

σ
(p)
ip

M̃
(i1,i2,...,ip−1)

m
(p)
ip,0

...m
(p)
ip,1

M̃
(i1,i2,...,ip−1)

m
(p)
ip,1

...m
(p)
ip,2

· · · M̃(i1,i2,...,ip−1)

m
(p)
ip,np−1...m

(p)
ip,np

approximates

M
(i1,i2,...,ip−1)
0...np−1

with entry-wise error τ
kp
p .

(1)

We define fi1,i2,...,ip to be the concatenation of G̃
(i1,i2,...,ip−1)

m
(p)
ip,0

...m
(p)
ip,1

, G̃
(i1,i2,...,ip−1)

m
(p)
ip,1

...m
(p)
ip,2

, . . . , G̃
(i1,i2,...,ip−1)

m
(p)
ip,np−1...m

(p)
ip,np

,

which also has a two-way labeling.

Having defined the regular ROBPs, we use |Σp| = 2sp to denote the alphabet size of fi1,i2,...,ip .
Note that for every i1 ∈ [K1], i2 ∈ [K2], . . . , ip ∈ [Kp] and p ∈ {0, 1, . . . , ℓ}, it holds that fi1,i2,...,ip
always has the same alphabet size, since all such regular ROBPs are constructed from Theorem 5.13
with the same set of parameters.

Our derandomization algorithm computes∑
i1∈[K1],i2∈[K2],...,iℓ∈[Kℓ]

σ
(1)
i1

σ
(2)
i2
· · ·σ(ℓ)

iℓ
· Ex∈({0,1}sℓ )nℓfi1,i2,...,iℓ(x).

The algorithm operates as follows, assuming we can access the ROBP fi1,i2,...,iℓ with two-way
labeling:

1. Enumerate all tuples (i1, i2, . . . , iℓ) ∈ [K1]×[K2]×· · ·×[Kℓ] and every string (x1, x2, . . . , xnℓ
) ∈

(Σℓ)
nℓ . For each tuple (i1, i2, . . . , iℓ, x1, x2, . . . , xnℓ

), we compute the following:

(a) Let u ∈ [w] be the starting vertex of fi1,i2,...,iℓ .

(b) For every t ∈ [nℓ], we compute the rotation map u← Rotfi1,i2,...,iℓ (u, xt). (Rot outputs a
new pair (u, xt), but we discard xt.)

(c) If u is an accepting vertex of fi1,i2,...,iℓ , then add σ
(1)
i1

σ
(2)
i2
· · ·σ(ℓ)

iℓ
/(2nl·sl) to the result;

otherwise, add 0 to the result.

5we always consider it as a length 2⌈lognp−1⌉ ROBP regardless of r − l

31



2. Return the result.

Since we do not have a direct access to fi1,i2,...,iℓ , we need to compute it with a recursive program. For
every p ∈ [ℓ] all tuples (i1, i2, . . . , ip) ∈ [K1]×[K2]×· · ·×[Kp] we compute (u′, x′)← Rotfi1,i2,...,ip (u, x)
with the following recursive program, under the assumption that we have already defined the program
to compute Rotfi1,i2,...,ip−1

(·, ·):

1. If p = 0, then we compute Rotf (u, x) directly with the original ROBP f .

2. Otherwise, assume u = (a, b) is the a-th vertex in the b-th layer of the ROBP fi1,i2,...,ip .
Then we let b′ ← b+ 1 and compute (a′, x′)← Rot

G̃
(i1,i2,...,ip−1)

m
(p)
ip,b

...m
(p)
ip,b+1

(a, x) with DerandWalk from

Definition 5.15:

(a) Let l← m
(p)
ip,b

, r ← m
(p)
ip,b+1.

(b) Let (a′, x′) ← DerandWalk(τp, fi1,i2,...,ip−1 , l, r, a, x), during which the algorithm calls
Rotfi1,i2,...,ip−1

.

(c) Let u′ ← (a′, b′).

(d) Output (u′, x′).

We now examine both the error bound and the complexity of the algorithm. First we bound the
error of the algorithm. By the construction of fi1,i2,...,ip , we have∣∣∣∣∣∣Exfi1,i2,...,ip−1(x)−

∑
ip∈[Kp]

σ
(p)
ip

Eyfi1,i2,...,ip(y)

∣∣∣∣∣∣ ≤ τ
kp
p w ≤ εpw

for every i1 ∈ [K1], i2 ∈ [K2], . . . , ip−1 ∈ [Kp−1]. Using triangular inequalities, we have the following
bound: ∣∣∣∣∣∣Exf(x)−

∑
i1∈[K1],i2∈[K2],...,iℓ∈[Kℓ]

σ
(1)
i1

σ
(2)
i2
· · ·σ(ℓ)

iℓ
· Eyfi1,i2,...,iℓ(y)

∣∣∣∣∣∣
≤

ℓ−1∑
p=0

∑
i1∈[K1],i2∈[K2],...,ip∈[Kp]

∣∣∣∣∣∣Exfi1,i2,...,ip(x)−
∑

ip+1∈[Kp+1]

σ
(p+1)
ip+1

Eyfi1,i2,...,ip,ip+1(y)

∣∣∣∣∣∣
≤ ε1w +K1 · ε2w +K1K2 · ε3w + · · ·+K1K2 · · ·Kℓ−1 · εℓw

For the complexity of the algorithm, notice that the recursive algorithm computing Rotfi1,i2,...,ip
requires (sp − sp−1) + log np more bits than that of the algorithm computing Rotfi1,i2,...,ip−1

, since it

only needs to store bl, br and the current e1, e2, . . . , elog⌈np−1⌉ during the computation of ((a, b), y)←
Rotfi1,i2,...,ip−1

((a, b), y). Given that the base case p = 0 requires O(log n0 + s0 + logw) bits of space,

the algorithm to compute Rotfi1,i2,...,iℓ requires O(
∑ℓ

p=0 log np + sℓ + logw) bits of space. The main

algorithm to compute the expectation of fi1,i2,...,iℓ requires O(sℓ +
∑ℓ

p=0 logKp + logw) bits to
store the current tuple (i1, i2, . . . , iℓ) and the current string (x1, x2, . . . , xnℓ

) and maintain the result.
Therefore, the total space complexity of the algorithm is

O

 ℓ∑
p=0

log np + sℓ + logw +

ℓ∑
p=0

logKp

 .
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We conclude the proof by setting up the parameters ℓ, {τi, εi}i∈[ℓ]. We set ε1 = ε/(2w), k1 =

⌈log1/τ1(2/ε1)⌉ =
√
log(2w/ε) and τ1 = min{ ε

2/(k1+1)
1

16 log2 n0
, 1
64 log2 n0

}. Then n1 = O(log n
√
log(w/ε)),K1 =

nO(logn
√

log(w/ε)). For every i ∈ {2, . . . , ℓ − 1}, we set εi = ε/(2wK1)
2, ki = O(log2 ni−1) and

τi = min{ ε
2/(ki+1)
i−1

16 log2 ni−1
, 1
64 log2 ni−1

}. ki is chosen such that ni = O(ki log ni−1) = log3 ni−1 and

Ki = O((2ni−1)
ki) = nO(log3 ni−1). We set ℓ to be the smallest integer such that nℓ ≤ 32768. We can

easily verify that ℓ = o(log log n). Given the parameters, the construction of Lemma 5.12 gives si =
si−1+O(log ni(log log ni+log τi)) for every i ∈ [ℓ]. Therefore, s1 = s+O(log n(log log n+

√
log(w/ε)))

and si = si−1 +O( log(wK1/ε)
logni−1

) for every other i ∈ [ℓ].
Plugging the parameters into the error bound, we have∣∣∣∣∣∣Exf(x)−

∑
i1∈[K1],i2∈[K2],...,iℓ∈[Kℓ]

σi1σi2 · · ·σiℓ · Eyfi1,i2,...,iℓ(y)

∣∣∣∣∣∣
≤ε1w +K1 · ε2w +K1K2 · ε3w + · · ·+K1K2 · · ·Kℓ−1 · εℓw

≤ε/2 + ℓ ·K1K2 · · ·Kℓ−1 ·
ε

2wK2
1

· w ≤ ε,

by noticing that K1K2 · · ·Kℓ−1 ≤ K2
1 .

Plugging the parameters also gives the space complexity of the algorithm as

O

(
ℓ∑

i=0

log ni + sℓ + logw +
ℓ∑

i=0

logKi

)
=O

(
s+ log n

(
log log n+

√
log(w/ε)

)
+ log(w/ε)

)
.
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A A proof for Lemma 3.5

We reprove the lemma for completeness.

Definition A.1 (total variation). Let A and B be two random variables defined on a common
probability space X. The total variation distance between A and B is defined as

dTV (A,B) =
1

2

∑
x∈X
|Pr[A = x]− Pr[B = x]| .

Definition A.2 (Min-Entropy). Let X be a random variable. The min-entropy of X is defined as

H∞(X) = − log2

(
max
x∈X

Pr[X = x]

)
.

Definition A.3 (Conditional Min-Entropy [Vad12] Problem 6.7). Let X and A be two random
variables. The conditional min-entropy of X given Y is defined as

H̃∞(X|Y ) = − log2

(
E

y∈Y
sup
x∈X

Pr[X = x|Y = y]

)
.

We need the following lemmas.
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Lemma A.4 (Chain rule of Conditional Min-Entropy [Vad12] Problem 6.7). If |supp(A)| ≤ 2s,
then H̃∞(X|A) ≥ H∞(X)− s.

Lemma A.5 (Problem 6.8 of [Vad12]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor.
If H̃∞(X|A) ≥ k, then

dTV ((Ext(X,Ud), A), (Um, A)) ≤ 3ε.

(Here Um and Ud are independent uniform random variables of length m and d respectively.)

Lemma A.6 (Data Processing Inequality). Let X,Y be two random variables in the same probability
space. Let A be a random variable that is independent of both X and Y . Let f be a function. Then

dTV (f(X,A), f(Y,A)) ≤ dTV (X,Y ).

Now we can prove the lemma.

Lemma A.7 (Lemma 3.5 restated). Let s ≥ logw. Assume there exists a (2s, ε
3n)-extractor

Ext : {0, 1}3s × {0, 1}d → {0, 1}s. Let X and Y1, . . . , Yn be independent uniform random variables.
Then the following construction

NZ(X,Y ) = Ext(X,Y1), . . . ,Ext(X,Yn)

fools any f ∈ B(n,s,w) with error at most ε.

Proof. Let f ∈ B(n,s,w). Let X and Y1, . . . , Yn be independent uniform random variables. We use
a hybrid argument. Define Ui to be independent uniform random variables of length s for each
i ∈ [n]. Define Zi = Ext(X,Yi) for each i ∈ [n]. Define Ri to be the random variable over Vi,
which represents the distribution of the state of f on input U1, . . . , Ui. Define R̃i to be the random
variable over Vi which represents the distribution of the state of f on input Z1, . . . , Zi. We will
show that dTV (Ri, R̃i) ≤ i·ε

n for all i ∈ [n].

The base case i = 0 is trivial, as both R0 and R̃0 represent the initial state of f . Assume the
statement holds for i − 1. For the case i, notice that |supp(R̃i−1)| ≤ w ≤ 2s. By the chain rule
Lemma A.4,

H̃∞(X|R̃i−1) ≥ 2s.

Therefore Lemma A.5 implies

dTV ((Zi, R̃i−1), (Ui, R̃i−1)) ≤
ε

n
.

By the data processing inequality, we have

dTV ((Ui, R̃i−1), (Ui, Ri−1)) ≤ dTV (R̃i−1, Ri−1) ≤
(i− 1)ε

n
.

Using the triangle inequality, we have

dTV ((Zi, R̃i−1), (Ui, Ri−1)) ≤
iε

n
.

Denote the transition function of f from Vi−1 to Vi as Ti. Then R̃i = Ti(Zi, R̃i−1) and Ri =
Ti(Ui, Ri−1). Using the data processing inequality again, we have

dTV (Ri, R̃i) ≤ dTV ((Ui, Ri−1), (Zi, R̃i−1)) ≤
iε

n
.

Therefore, dTV (Rn, R̃n) ≤ ε and the lemma is proved.
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B A proof for Theorem 3.8

We prove Theorem 3.8 using the Richardson Iteration for completeness. The Richardson iteration is
a method to obtain a finer approximation of L−1 from a coarse approximation B of L−1 and the
invertible matrix L itself.

Lemma B.1. Let L ∈ Rm×m be an invertible matrix and B ∈ Rm×m such that ∥B −L−1∥ ≤ ε0 for
a submultiplicative norm ∥ · ∥. For any non-negative integer k, define

R(B,L, k) =
k∑

i=0

(I −BL)iB

Then ∥L−1 −R(B,L, k)∥ ≤ ∥L−1∥ · ∥L∥k+1 · εk+1
0 .

Proof.

∥L−1 −R(B,L, k)∥ =

∥∥∥∥∥
(
I −

k∑
i=0

(I −BL)iBL

)
L−1

∥∥∥∥∥
=
∥∥∥(I −BL)k+1L−1

∥∥∥
≤ ∥I −BL∥k+1 ·

∥∥L−1∥∥
≤
∥∥L−1∥∥ · ∥L∥k+1 · εk+1

0

Theorem B.2 (Theorem 3.8 restated). Let {Ai}ni=1 ⊂ Rw×w be a sequence of matrices. Let
{Bi,j}ni,j=0 ⊂ Rw×w be a family of matrices such that for every i + 1 < j, ∥Bi,j − Ai+1 . . . Aj∥ ≤
ε/(2(n + 1)) for some submultiplicative norm ∥ · ∥, ∥Ai∥ ≤ 1 for all i and also Bi−1,i = Ai for
all i. Then for any odd k ∈ N, there exists a K = (8n)k+1, a set of indices {ni,j}i∈[K],j∈[k] with
0 ≤ ni,1 ≤ . . . ≤ ni,k = n, and signs σi ∈ {−1, 0, 1}, i ∈ [K] such that (We set Bi,i = I for all i):

∥∥∥∥∥∥A−
∑
i∈[K]

σi ·B0,ni,1Bni,1,ni,2 . . . Bni,k−1,ni,k

∥∥∥∥∥∥ ≤ ε(k+1)/2 · (n+ 1).

Proof. Define L ∈ R(n+1)w×(n+1)w and B ∈ R(n+1)w×(n+1)w as follows:

L =


I 0 0 . . . 0 0
−A1 I 0 . . . 0 0
0 −A2 I . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −An I

 , B =


I 0 0 . . . 0 0

B0,1 I 0 . . . 0 0
B0,2 B1,2 I . . . 0 0
...

...
...

. . .
...

...
B0,n B1,n B2,n . . . Bn−1,n I


This means that

L−1 =


I 0 0 . . . 0 0
A1 I 0 . . . 0 0

A1A2 A2 I . . . 0 0
...

...
...

. . .
...

...
A1A2 . . . An A2 . . . An A3 . . . An . . . An I
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By assumption, there exists a submultiplicative norm ∥·∥ on Rw×w. We induce a submultiplicative
norm on ∥ · ∥A on R(n+1)w×(n+1)w: Let M = (Mi,j)

n+1
i,j=1 ∈ R(n+1)w×(n+1)w, where each Mi,j ∈ Rw×w.

Define ∥M∥A = maxj∈[n+1]

∑n+1
i=1 ∥Mi,j∥. It is easy to verify that ∥ · ∥A is a submultiplicative norm,

and ∥M∥A = ∥M∥1 when w = 1.
Beacuse ∥Bi,j − Ai+1 . . . Aj∥ ≤ ε/(n + 1)2 for all i + 1 < j, we have ∥B − L−1∥A ≤ ε. Also,

Because ∥Ai∥ ≤ 1 for all i, we have ∥L∥A ≤ 2 and ∥L−1∥A ≤ n+ 1.
Define M = R(B,L, (k − 1)/2), then

∥L−1 −M∥A ≤ ∥L−1∥A · ∥L∥
k+1
2

A ·
(

ε

n+ 1

) k+1
2

≤ ε(k+1)/2 · (n+ 1).

Expand M = (Mi,j)
n+1
i,j=1, where each Mi,j ∈ Rw×w. We foucus on M1,n+1, which is a w × w

matrix and ∥M1,n+1 −A1A2 . . . An∥ ≤ ∥L−1 −M∥A ≤ ε(k+1)/2 · (n+ 1).
To express M1,n+1, we define

∆i,j =

{
Bi,j−1Aj −Bi,j i < j,

0 i ≥ j.

Then we have

M1,n+1 = B0,n +

(k−1)/2∑
j=1

∑
0<r1<···<rj<n

∆0,r1∆r1,r2 · · ·∆rj−1,rjBrj ,n.

Defining M
(0)
i,j = Bi,j−1Aj = Bi,j−1Bj−1,j and M

(1)
i,j = Bi,j , we have

M1,n+1 = B0,n +

(k−1)/2∑
j=1

∑
0<r1<···<rj<n

∑
t1,...,tj∈{0,1}

(−1)t1+···+tjM
(t1)
0,r1

M (t2)
r1,r2 . . .M

(tj)
rj ,n.

Encoding j, r1, . . . , rj , t1, . . . , tj into a single index i ∈ [K], rewrite M
(t1)
0,r1

M
(t2)
r1,r2 . . .M

(tj)
rj ,n as

B0,ni,1Bni,1,ni,2 . . . Bni,k−1,ni,k
for some ni,1 ≤ . . . ≤ ni,k = n, define σi = (−1)t1+...+tj , we have the

desired result.
Finally, we bound K by k−1

2 · (n+ 1)(k−1)/2 · 2(k−1)/2 ≤ (8n)k+1.

C A Proof for Lemma 3.16

In this section we provide a proof for Lemma 3.16, which is similar to that of [Hoz21]. We start by
sampling a random matrix using a sampler, using a union bound.

Lemma C.1. Let Samp : {0, 1}p × {0, 1}r → {0, 1}q be a (α, γ)-averaging sampler. Then for every
matrix valued function f : {0, 1}q → Rw×w such that ∥f∥1 ≤ C, we have:

Pr
x∈{0,1}r

∥∥∥∥∥∥2−p
∑

y∈{0,1}p
f(Samp(x, y))− E[f ]

∥∥∥∥∥∥
1

≥ Cαw

 ≤ w2γ.
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Proof.

Pr
x∈{0,1}r

∥∥∥∥∥∥2−p
∑

y∈{0,1}p
f(Samp(x, y))− E[f ]

∥∥∥∥∥∥
1

≥ Cαw


= Pr

x∈{0,1}r
∃i∈[w]

∑
j∈[w]

2−p ∑
y∈{0,1}p

f(Samp(x, y))i,j − E[f ]i,j

 ≥ Cαw


≤ Pr

x∈{0,1}r
∃i∈[w],j∈[w]

∣∣∣∣∣∣2−p
∑

y∈{0,1}p
f(Samp(x, y))i,j − E[f ]i,j

∣∣∣∣∣∣ ≥ Cα


≤

∑
i∈[w],j∈[w]

Pr
x∈{0,1}r

∣∣∣∣∣∣C−12−p
∑

y∈{0,1}p
f(Samp(x, y))i,j − C−1E[f ]i,j

∣∣∣∣∣∣ ≥ α


≤w2γ.

Lemma C.2 (Lemma 3.16 restated). For all n, s, w, assume there exists a W -bounded 1/(2w ·
(n + 1)2)-WPRG (G0, w0) for B(n,s,w) with seed length d, and a (α, γ)-averaging sampler Samp :

{0, 1}r ×{0, 1}p → {0, 1}d with α, γ as defined above. Then there exists a ε-WPRG for B(n,s,w) with

seed length r + kp and weight W log(n/ε)/ log(nw) · poly(nw/ε).

Proof. Take any f ∈ B(n,s,w). LetAi = Ef [i−1,i](G0(U)) for i ∈ [n]. DefineBi,j =
1
2p
∑

z∈{0,1}d w0(z)·
f [i,j](G(z)). For any x ∈ {0, 1}r, we defineBx

i,j =
1
2p
∑

y∈{0,1}p w0(Samp(x, y))·f [i,j]((G(Samp(x, y)))j−i).
We call a seed x to be ‘good’ iff for all i, j ∈ [n], ∥Bi,j −Bx

i,j∥1 ≤ 1/(2w · (n+ 1)). Otherwise,
we call x to be ‘bad’.

Since w0 is W -bounded, ∥w0(z) ·f [i,j](G(z))∥1 is at most W . Note that Wαw ≤ 1/(2w · (n+1)2).
By Lemma C.1, for any i, j ∈ [n],

Pr
x∈{0,1}r

[∥Bi,j −Bx
i,j∥1 > 1/(2w · (n+ 1))] ≤ w2γ = ε/(2(2n)k ·W k).

By a union bound, the probability Prx∈{0,1}r [x is bad] is at most ε/(2(2n)k ·W k).
For a good seed x, we have ∥Ai . . . Aj−Bx

i,j∥1 ≤ ∥Ai . . . Aj−Bi,j∥1+∥Bi,j−Bx
i,j∥1 ≤ 1/(w·(n+1)2).

By Theorem 3.8, we have:∥∥∥∥∥A1 · · ·An −
k∑

i=1

σiB
x
0,i1B

x
i1,i2 . . . B

x
ik−1,ik

∥∥∥∥∥
1

≤ ((n+ 1)w)−k · (n+ 1) ≤ ε/2.

For a bad seed, we can upper-bound ∥Bx
i,j∥1 by K. Therefore, we have:∥∥∥∥∥A1 · · ·An −

K∑
i=1

σiB
x
0,i1B

x
i1,i2 . . . B

x
ik−1,ik

∥∥∥∥∥
1

≤ 1 +K ·W k
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Combining the two cases, we have the following inequality:∣∣∣∣∣∣Ef − 1

K · 2kp+r

∑
x∈{0,1}r

∑
y1,...,yk∈{0,1}p

w(x, y1, . . . , yk, i)f(G(x, y1, . . . , yk))

∣∣∣∣∣∣
≤

∥∥∥∥∥∥A1 · · ·An −
1

2r

∑
x∈{0,1}r

K∑
i=1

σiB
x
0,i1B

x
i1,i2 . . . B

x
ik−1,ik

∥∥∥∥∥∥
1

≤ 1

2r

∑
x∈{0,1}r
x is bad

∥∥∥∥∥A1 · · ·An −
K∑
i=1

σiB
x
0,i1B

x
i1,i2 . . . B

x
ik−1,ik

∥∥∥∥∥
1

+
1

2r

∑
x∈{0,1}r
x is good

∥∥∥∥∥A1 · · ·An −
K∑
i=1

σiB
x
0,i1B

x
i1,i2 . . . B

x
ik−1,ik

∥∥∥∥∥
1

≤ε/2 + (1 +K ·W k) · γ
≤ε.

The lemma follows.

D Proof sketch for Lemma 4.6

Though not explicitly mentioned, the analysis of the INW generator in appendix B of [CHL+23]
works for large alphabet ROBPs. Here we slightly modifies their proof to make it explicitly works.

We start with the definition of the INW generator. Some notions are defined in the preliminaries
of Section 5

Definition D.1 (INW generator for large alphabets). Let n, c, d be powers of two. For each
t ∈ [log n], let Ht be a c-regular bigraph Ht = ([d · ct−1], [d · ct], EHt), with a one-way label. Relative
to the family (Ht)t∈[logn], we recursively define the INW generator as follows:

Define INW0 : {0, 1}log d → {0, 1}log d as the trivial PRG. For each t ∈ [log n], having de-
fined INWt−1 : {0, 1}d+(t−1) log c → {0, 1}log d·2t−1

, we define INWt : {0, 1}d+t log c → {0, 1}log d·2t as
INWt(x, y) = INWt−1(x), INWt−1(Ht[x, y]). Here the comma denotes concatenation.

The INW generator relates to the derandomized product of permutation ROBPs, since they
have consistent one-way labelings.

Definition D.2 (consistent consistent one-way labelings). Let G = (U, V,E) be a d-regular bigraph.
A consistent one-way labeling of G is a one-way labeling of G such that for every v ∈ V , the labels
of the incoming edges of v are distinct, i.e., the G[v, i] = G[u, i] implies u = v. In this case, we can
extend the labeling to a two-way labelings:

RotG(u, i) = (G[u, i], i),

i.e., the incoming label and the outgoing label of an edge (u, v) are the same.

Lemma D.3 (Derandomized Product with consistent consistent one-way labelings,[RV05]). Let
G1 = (U, V,E1) and G2 = (V,W,E2) be two d-regular bigraphs with consistent one-way labelings. Let
H be a x-regular bigraph with one-way labeling. Then G1 p○HG2 has a consistent one-way labeling.
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Let f be a permutation ROBP in P(n,s). Then f is also a regular ROBP with a consistent
labeling. It can be sv-approximated with the method of Lemma 5.12. Furthermore, the method
corresponds to fooling f with the INW generator.

Lemma D.4 (equivariance between INW generator and Lemma 5.12). Let f be a permutation
ROBP in P(n,s). Let t ∈ [log n], (j, j + 2t) ∈ ESCn and G̃j,j+2t be the (d · ct)-regular bigraph with

two-way labeling as defined in Lemma 5.12. Then for any u ∈ V j and x ∈ {0, 1}d+t log c, we have

∃x′, G̃j,j+2t [u, x] = [v, x′]⇔
[
f [j,j+2t](INW(x))

]
u,x

= v,

Proof. The proof is by induction on t. For the base case t = 0, both sides mean u has an outgoing
edge labeled x going to v. Assume the statement holds for t− 1. Recall that

G̃j→j+2t = G̃j→j+2t−1 p○Ht
G̃j+2t−1→j+2t ,∀t ≥ 1,

Then for t, the left side can be computed as follows (where x = (z, y)):

(w, z) = Rot
G̃j,j+2t−1

(u, z),

(z′, y′) = RotHt(z, y),

(v, w) = Rot
G̃j+2t−1,j+2t

(z′, y′).

Where the right side can be computed as follows:

f [j,j+2t−1](INWt−1(z)) = w,

Ht[z, y] = z′,

f [j+2t−1,j+2t](INWt−1(z
′)) = v.

The induction hypothesis implies that the two sides are equivalent.

Finally, we can prove the lemma.

Lemma D.5 (Lemma 4.6 restated). For all s, n, ε there exists a PRG (actually the INW generator)
that fools P(n,s) with ε-sv-error. The seed length is

s+O(log n(log log n+ log(1/ε))).

Proof. Let λ = min{ε/(11 log n), 1/6(log2 n)}. Let d = 2s and for each t ∈ [log n], let Ht be a
c-regular expanders with λ(Ht) ≤ λ from Lemma 5.14. Let {INWt}t∈[logn] be the INW generator
from the definition. Let INW = INWlogn. Then INW is a PRG with seed lengths

log d+ t · log c = s+O(log n(log log n+ log(1/ε))).

For any f ∈ P(n,s), the derandomized product of f coincides with the the output of f ◦ INW ,

i.e. W̃n←0 = EXf [0,n](INW(X)). Since W̃n←0
sv
≈11λ logn W̃n←n−1 · · ·W̃1←0 by Lemma 5.12, INW

fools f with ε-sv-error.
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E Reduction for Regular ROBPs over Large Alphabets

In this section, we show that the WPRG construction in Section 3 of [CL24] naturally extends to
the case of regular ROBPs with large alphabets. This will immediately give us Theorem 3.21. We
start by introducing an equivalent definition of the weight of ROBPs,

Definition E.1 (An Equivalent Definition of Weight of ROBPs). Let f ∈ Bn,s,w be an ROBP. Let
V =

⋃n
i=0 Vi be its vertices and E =

⋃n
i=1Ei−1,i be its edges, where Ei−1,i ⊆ Vi−1 × Vi For every

0 ≤ l ≤ r ≤ n, Let Ml...r be the stochastic matrix of f from layer l to layer r. Let ei denote the
unitary vector at the i-th coordinate. For every y ∈ Rw, i ∈ [n], define the layer i weight of f on y
as:

W(f, i, y) =
∑

(u,v)∈Ei−1,i

∣∣eTuMi−1...iy − eTv y
∣∣

For every 0 ≤ l < r ≤ n, the total weight between layer l and layer r of f on y is defined as:

W(f, l, r, y) =

r∑
i=l+1

W(f, i,Mi...ry).

We immediately have the following facts:

Lemma E.2. 0 ≤ l < m < r ≤ n, W(f, l, r, y) = W(f, l,m,Mm...ry) +W(f,m, r, y)

Lemma E.3. W(f) = W(f, 0, n, yacc), where yacc is the accept vertices vector of f .

Proof.

W(f, 0, n, yacc) =
n∑

i=1

W(f, i,Mi...nyacc) =
∑
i∈[n]

∑
(u,v)∈Ei−1,i

∣∣eTuMi−1...nyacc − eTv Mi...nyacc
∣∣

=
∑

(u,v)∈E

|E[fu→ − fv→]| = W(f)

We need a main result of [BRRY14].

Lemma E.4 ([BRRY14]). For every n, s, w ∈ N and ε > 0, there exists a PRG G : {0, 1}d →
({0, 1}s)w such that for every f ∈ Bn,s,w and every y ∈ Rw:∥∥∥(Ex∈{0,1}df

[l,r](G(x))
)
y −Ml...ry

∥∥∥
∞
≤ εW(f, l, r, y).

Furthermore, d = s+O(log n(log log n+ log(w/ε))

We use the error reduction polynomials in [CL24]. Without loss of generality, assume that n is
a power of 2 and define the set BSn as

BSn = {(l, r) ∈ [n]2 | ∃i, k ∈ N ∪ {0}, l = i · 2k, r = l + 2k, 0 ≤ l < r ≤ n}.

Given a set of substochastic matrices {M1, . . . ,Mn}, suppose for every (l, r) ∈ BSn, we have a

matrix M
(0)
l...r that coarsely approximates the product Ml+1 · · ·Mr. They define the following

matrices M
(k)
l...r as

M
(k)
l...r =

{
Mr if r = l + 1,∑

i+j=k M
(i)
l...mM

(j)
m...r −

∑
i+j=k−1M

(i)
l...mM

(j)
m...r otherwise, where m = (l + r)/2.

(2)
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The following result of [CL24] shows that M
(k)
l...r is a good approximation as long as k is large

enough.

Theorem E.5 (Lemma 3.6 of [CL24]). For any 0 < ε < 1
30 logn Assume that for every (l, r) ∈ BSn

∀y ∈ Rw,
∥∥∥(M(0)

l...r −Ml...r

)
y
∥∥∥
∞
≤ ε

W(f, l, r, y)

W(f)

Then for every (l, r) ∈ BSn and k ∈ N

∀y ∈ Rw,
∥∥∥(M(k)

l...r −Ml...r

)
y
∥∥∥
∞
≤ (30ε · log n)kW(f, l, r, y)

W(f)

Now we prove Theorem 3.21

Proof of Theorem 3.21. Set k = O(
√
log(1/ε)). Set τ = ε1/k

30 logn·W(f)) . Let PRG : {0, 1}d →
({0, 1}s)n be the τ -PRG given by Lemma E.4 and let (PRG(·))m denote its first m symbols over

{0, 1}s. we define M
(0)
l...r := Ex∈{0,1}df

[l,r]((PRG(x))r−l) and expand M
(k)
0...n as a weighted sum of

products of M
(0)
l...r, we get the following sum:

M
(k)
0...n =

1

K

∑
i∈K

γi ·M(0)
mi,0...mi,1

M(0)
mi,1...mi,2

. . .M(0)
mi,t−1...mi,t

,

where γi ∈ {−K,K} are weights and 0 = mi,0 ≤ mi,1 ≤ · · · ≤ mi,t = n are partitions of [n]. We set
the (logK,K, ε)-reduction (R, σ) from Rn,s,w to Bt,d,w as

R(x1, x2, · · · , xt, i) = ((PRG(x1))mi,1−mi,0 , (PRG(x2))mi,2−mi,1 , · · · , (PRG(xt))mi,t−mi,t−1),

σ(i) = γi.

By Lemma E.4, ∀y ∈ Rw,
∥∥∥(M(0)

l...r −Ml...r

)
y
∥∥∥
∞
≤ ε1/k

30 logn ·
W(f,l,r,y)

W(f) . Then by Theorem E.5,∥∥∥(M(k)
0...n −M0...n

)
yacc

∥∥∥
∞
≤ ε · W(f,0,n,yacc)

W(f) = ε, which indicates that our reduction achieves the

target precision.

Given the construction of the error reduction polynomial, one can findK = nO(k) = 2O(logn
√

log(1/ε))

and t = O(k log n) = O(log n
√
log(1/ε)). Also, Lemma E.4 indicates d = s + O(log n(log log n +

logw + log(W(f)) +
√
log(1/ε)). That completes the proof.
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