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Abstract

This paper demonstrates a duality between the non-robustness of polynomial time dimension
and the existence of one-way functions. Polynomial-time dimension (denoted cdimP) quantifies
the density of information of infinite sequences using polynomial time betting algorithms called s-
gales. An alternate quantification of the notion of polynomial time density of information is using
polynomial-time Kolmogorov complexity rate (denoted Kpoly). Hitchcock and Vinodchandran
(CCC 2004) showed that cdimP is always greater than or equal to Kpoly. We first show that if
one-way functions exist then there exists a polynomial-time samplable distribution with respect
to which cdimP and Kpoly are separated by a uniform gap with probability 1. Conversely, we
show that if there exists such a polynomial-time samplable distribution, then (infinitely-often)
one-way functions exist.

Using our main results, we solve a long standing open problem posed by Hitchcock and
Vinodchandran (CCC 2004) and Stull under the assumption that one-way functions exist. We
demonstrate that if one-way functions exist, then there are individual sequences X whose poly-
time dimension strictly exceeds Kpoly(X), that is cdimP(X) > Kpoly(X). The corresponding
unbounded notions, namely, the constructive dimension and the asymptotic lower rate of un-
bounded Kolmogorov complexity are equal for every sequence. Analogous notions are equal
even at the polynomial space and finite-state levels. In view of these results, it is reasonable
to conjecture that the polynomial-time quantities are identical for every sequence and set of se-
quences. However, under a plausible assumption which underlies modern cryptography - namely
the existence of one-way functions, we refute the conjecture thereby giving a negative answer
to the open question posed by Hitchcock, Vinodchandran and Stull. Further, we show that the
gap between these quantities can be made as large as possible (i.e. close to 1). We also establish
similar bounds for strong poly-time dimension versus asymptotic upper Kolmogorov complexity
rates. Our proof uses several new constructions and arguments involving probabilistic tools
such as the Borel-Cantelli Lemma, the Kolmogorov inequality for martingales and the theorem
on universal extrapolation by Ilango, Ren, and Santhanam (implicit in Impagliazzo and Levin
1990). This work shows that the question of non-robustness of polynomial-time information
density notions, which is prima facie different, is intimately related to questions which are of
current interest in cryptography and meta-complexity.
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1 Introduction

1.1 Context and Motivation

One-way functions [DH76, Gol01, Lev03] are functions on finite strings that are easy to compute
but are hard to invert, except possibly on a negligible fraction of the input strings of a given length.
The concept of a one-way function is central in cryptography, since the existence of such functions
are both necessary and sufficient for the existence of essential cryptographic primitives like pseudo-
random generators [HILL99], digital signatures [Rom90], private key encryption [HILL99] [GM84],
authentication schemes [FS90] and commitment schemes [Nao91]. The question of existence of
one-way functions based on average case hardness of NP-complete problems has been one that has
been central in cryptography.

Recent advancements in meta-complexity reveal intriguing connections between existence of
one-way functions and the computational hardness of problems studied in meta-complexity. Char-
acterisations of existence of one-way functions have been studied based on average case hardness
of time bounded Kolmogorov complexity [LP20], average case hardness of McKTP [ACM+21],
average-case hardness of approximating Kolmogorov complexity on samplable distributions [IRS22],
average case failure of symmetry of information [HIL+23], average-case easiness of approximating
pKt complexity [HLO24], and NP-hardness of distributional Kolmogorov complexity under ran-
domized polynomial-time reductions [Hir23].

In this paper, we show that the existence of one-way functions implies the existence of dimension
gaps on polynomial time samplable distributions over infinite sequences. Furthermore, we show
that existence of such distributions implies existence of infinitely often one way functions. Using
this result, we give a surprising conditional negative resolution to the longstanding open question
of the robustness of polynomial-time dimension posed by Hitchcock, Vinodchandran, and Stull
[HV06, Stu20].

Polynomial-time dimension quantifies the asymptotic rate of information in an infinite sequence
of bits. There are several approaches towards defining polynomial time dimension. The first
approach analyzes the asymptotic compressibility of the finite prefixes of the given infinite sequence.
The polynomial-time bounded Kolmogorov Complexity of a string x is the length of the shortest
program that can output x in at most polynomial number of time steps. In the compressibility
approach, the polynomial time density of information is defined in terms of the polynomial-time
bounded Kolmogorov complexity of the prefixes of the string, denoted Kpoly. In contrast, we
can also use the gambling based approach to quantify polynomial-time density of information.
Polynomial-time dimension, denoted dimP, is defined using polynomial-time betting algorithms
known as s-gales. These algorithms attempt to achieve profit by placing successive bets on the bits
of the sequence. Each bet made by the s-gale on a symbol reflects its confidence in the occurrence
of that corresponding symbol.

In this work, we initiate a line of investigation into the connection between cryptographic prim-
itives and the robustness of complexity notions of infinite sequences. We consider polynomial time
samplable distribution ν over Σ∞. We show that the existence of one-way functions implies dimen-
sion gaps between dimP and Kpoly over a collection of sequences in Σ∞, such that the collection
has probability 1 according to a polynomial time samplable distribution. Futhermore, we show
that the existence of such distributions with dimension gaps implies the existence of infinitely-often
one-way functions.

Formally establishing the connection between the robustness of these information density no-
tions and one-way functions in the infinite string setting requires significant technical effort and
new insights, extending beyond the well-known relationships between compressibility and indistin-
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guishability [HILL99] [Yao82] [KC00] in the setting of finite strings .

1.2 Applications

Considerable research has been devoted to understanding whether fundamental properties of un-
bounded Kolmogorov complexity survive in the time bounded setting. Recently, it was shown that
the symmetry of information of time-bounded Kolmogorov complexity is equivalent to the existence
of OWFs [HIL+23]. Along similar lines, we investigate whether the characterization of construc-
tive dimension in terms of Kolmogorov complexity [Lut03a, May02] survives in the time bounded
setting. This is the question of robustness of polynomial-time dimension was posed by Hitchcock
and Vinodchandran [HV04, HV06], and later mentioned in a survey by Stull (see Open Question
3.71 in [Stu20]). As an application of our main result, we provide a surprising negative resolution
to this longstanding open question, under the assumption that one-way functions exist.

The unbounded analogue of time-bounded dimension is known to be robust with markedly dif-
ferent approaches to its definition - via predictors, via unbounded time s-gales, and via unbounded
Kolmogorov complexity rates - all known to be equivalent [May02] [Lut03a]. At the other extreme,
finite-state analogues of these notions are also known to be robust. Hitchcock and Vinodchandran
[HV04] show that the polynomial-dimension of every sequence is at least the asymptotic lower den-
sity of the polynomial-time Kolmogorov complexity of its prefixes. Given the robustness at other
levels and the fact that the inequality holds in one direction, it is natural to conjecture that the
inequality holds in the other direction as well. This would establish the robustness of polynomial
time dimension. However, the question of robustness of dimension at the important “intermediate”
resource-bounded level of polynomial time dimension, has remained open for a long time.

Using our main theorem, we establish that the existence of one-way functions implies dimension
gaps over a suitable collection of sequences. Thus, we show that polynomial time dimension of sets
is non-robust if one-way functions exist. We then extend this result to show the stronger result that
polynomial time dimension of sequences is non-robust if one-way functions exist. Furthermore, we
show that the gap between Kpoly and dimP can be arbitrarily close to 1. Additionally, we show
that strong polynomial time-bounded dimension is also non-robust under the same assumption.

The study of meta-complexity - the complexity of computing various measure in complexity
theory has been shown to have close connections to cryptographic notions. Our work broadens the
scope of this connection. Our main results establish that the study of polynomial-time dimension
and, more generally, information-theoretic complexity notions of infinite sequences is closely con-
nected with the existence of fundamental primitives in complexity and cryptography. In doing so,
we also provide an unexpected resolution to a long-standing open problem.

1.3 Technical Background

s-gales and Kolmogorov Complexity

s-gales are betting strategies on infinite sequences. The betting game on an infinite binary sequence
X ∈ Σ∞ can be understood as follows. The player starts with an initial capital of d(λ) = 1 on
the empty string. Here d is the betting function (capital) of the s-gale. At the nth stage, having
accumulated a capital d(x1x2 . . . xn) on the first n bits of the sequence, the player is allowed to
place an amount as a “bet” on the next bit xn+1 of the sequence. The rule of the game is that the
expected value of capital received by the player after the bet is 2s times the capital they started
with, that is 2s.d(w) = d(w0) + d(w1), for any finite string w ∈ Σ∗. The player d succeeds on the
sequence X ∈ Σ∞ if they can secure an arbitrary amount of capital over the course of betting on
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the infinite sequence, more precisely if lim supn→∞ d(x1x2 . . . xn) =∞. More generally, if d satisfies
2s.d(w) ≥ d(w0) + d(w1) we refer to d as an s-supergale.

When s = 1, the average capital after the bet on w0 or w1 is equal to the previous capital d(w)
(when s = 1, an s-gales is referred to as a martingale1). Therefore, the betting strategy is fair.
When s < 1, the average capital after the bet of an s-gale is strictly less than the previous capital
d(w). Therefore, such betting strategies are inherently unfair to the player. When s = 1, the player
can bet “evenly” on the next bit if they are unsure. But as s decreases, the setting becomes more
unfavorable and the player needs to bet more aggressively to keep increasing their capital.

The Kolmogorov Complexity of a finite string x, denoted by K(x), is the length of the
shortest program that produces the string as the output. Any string x can be produced by a
program that trivially outputs the string x, and therefore the Kolmogorov complexity of a string
x is less than or equal to its length, up to an additive constant. However, if the string has lesser
amount of information, there may be programs of shorter length that outputs it. For instance, if
all the even bits of the string are 0, the program needs to encode only the bits at the odd indices to
produce the string. Therefore, its Kolmogorov complexity is at most half its length, up to additive
constants.

Polynomial-time Dimension

Resource bounded dimension is defined by placing resource bounds on the computation of
the s-gale. Analogously, resource bounded Kolmogorov complexity is defined by placing resource
bounds on the programs that can print a string.

The Polynomial time dimension quantifies the rate of information in an infinite sequence,
measured with respect to polynomial time bounded computation. It is formulated using polynomial
time s-gales. An s-gale d wins on an infinite sequence X if lim supn→∞ d(X � n) =∞. Let S∞(d)
denotes the set of sequences on which d succeeds. d is said to be polynomial-time computable if
for some p(n) ∈ poly(n), d takes at most p(n) time to compute d(w), where n is the length of w.

Definition (Polynomial-time dimension [Lut03a]). The polynomial-time dimension of F ⊆ Σ∞ is
defined as

dimP(F) = inf{s | ∃ a polynomial-time s-gale d such that F ⊆ S∞(d)}.

For a sequence X ∈ Σ∞, define dimP(X) = dimP({X}).

That is dimP(X) is the “lowest” s for which there exists a polynomial time s-gale d that succeeds
on X.

Time bounded Kolmogorov Complexity

On the other hand, we can use time bounded Kolmogorov complexity to define a polynomial time
analogue of K. For a given time bound t(n), the t-time bounded Kolmogorov complexity
Kt(x) of a string x is the length of the shortest program that generates x in at most t(|x|) time
steps (see [LV08]).

For a given time bound t(n), the quantity lim infn→∞Kt(X � n)/n gives the t-time bounded
rate of information in an infinite string X. The polynomial time analogue of K is the infimum of
this quantity over all polynomial time bounds t.

1When s = 1, an s-supergale is referred to as a supermartingale.
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Definition ([HV04, HV06]). For any F ⊆ Σ∞,

Kpoly(F) = inf
t∈poly

sup
X∈F

lim inf
n→∞

Kt(X � n)

n
.

Robustness of Dimension

Robustness at other levels

In the classical setting, we use the notion of K defined using time-unbounded Kolmogorov com-
plexity K(x) and cdim defined using lower semi-computable s-gales. Mayordomo [May02] and Lutz
[Lut03b] show that the unbounded notions of K and cdim are equivalent, hence establishing the
robustness of constructive dimension.

Theorem 1.1 (Mayordomo [May02] , Lutz [Lut03b]). For all F ⊆ Σ∞, cdim(F) = sup
X∈F

lim inf
n→∞

K(X�n)
n .

PSPACE analogues of cdim and K are defined by restricting the s-gales in the definition of
cdim to be polynomial space computable and by using polynomial space bounded Kolmogorov
complexity in the definition of K. Hitchcock [Hit03] showed that these notions of resource bounded
dimension coincide in the PSPACE setting, hence establishing the robustness of polynomial-space
dimension.

Theorem 1.2 ([Hit03]). For every F ⊆ Σ∞, cdimPSPACE(F) = KPSPACE(F).

Robustness of Polynomial time Dimension

This leads to the following question: Are the notions of polynomial time dimension formulated
using s-gales (dimP) and time bounded Kolmogorov complexity (Kpoly) equivalent?.

Hitchcock and Vinodchandran [HV06] showed that dimP is always greater than or equal to
Kpoly

2.

Theorem 1.3 ([HV04, HV06]). For every F ⊆ Σ∞, Kpoly(F) ≤ dimP(F).

The question whether the reverse inequality holds has remained elusive. Hitchcock and Vinod-
chandran [HV04, HV06] and later Stull in [Stu20] posed the following open question:

Question 1.1 ([HV04, HV06, Stu20]). Is it true that, for every sequence X ∈ Σ∞

dimP(X) = Kpoly(X) ?

Polynomial-time Strong Dimension

Polynomial-time strong dimension is a dual notion of polynomial time dimension ([AHLM07],
see also [Stu20]). As in the case of polynomial time dimension, there exist two notions, one defined
using s-gales and the other defined in terms of time bounded Kolmogorov complexity. An s-gale d
strongly succeeds on an infinite sequence X if lim inf

n→∞
d(X1X2 . . . Xn) =∞. Let S∞str(d) denotes the

set of sequences on which d succeeds strongly.

2See Section 11 for alternate proofs of Theorems 1.3 and 1.4.
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Definition (Polynomial-time strong dimension [AHLM07, Stu20]). The polynomial-time strong
dimension of F ⊆ Σ∞ is defined as

DimP(F) = inf{s | ∃ a polynomial-time s-gale d such that F ⊆ S∞str(d)}.

For a sequence X ∈ Σ∞, define DimP(X) = DimP({X}).

The strong dimension analogue of Kpoly is defined by replacing the lim inf in the definition of
Kpoly with lim sup.

Definition ([HV04, HV06]). For any F ⊆ Σ∞,

Kstr
poly(F) = inf

t∈poly
sup
X∈F

lim sup
n→∞

Kt(X � n)

n
.

Similar to the conclusion of Theorem 1.3, DimP is always greater than or equal to Kstr
poly.

Theorem 1.4 ([HV04, HV06]). For every F ⊆ Σ∞, Kstr
poly(F) ≤ DimP(F).

Stull in [Stu20] posed the following question: Are the notions of polynomial time strong dimen-
sion formulated using s-gales (DimP) and time bounded Kolmogorov complexity (Kstr

poly) equivalent?.

Polynomial time samplable distributions on infinite sequences

We generalize the notion of polynomial time samplable distributions [IRS22, HIL+23, LP20] to
probability distributions on the space of infinite sequences (see Section 2.8 for formal definitions).

Let ν be a probability measure over Σ∞. For every n, let νn(w) = ν(X ∈ Σ∞ : w v X)3

denote the probability distribution induced by ν on Σn. Now, we define polynomial time samplable
distributions on Σ∞.

Definition 1.1. A probability distribution ν over Σ∞ is polynomial time samplable if there exists a
probabilistic polynomial time Turing machine M that uses q(n) random bits, where q is a polynomial,
such that for every n and w ∈ Σn, Prr∼Σq(n) [M(1n, r) = w] = νn(w)4.

One-way functions are secure against inversion by probabilistic polynomial time adversaries.
However, polynomial time gales are defined in terms of computation using deterministic machines.
In order to bridge this gap, we define martingales and s-gales that are approximable using prob-
abilistic polynomial-time machines. Probabilistically approximable martingales were studied in
[RS98]. However, for our purposes, we require only a weaker variant of gales that admit fully
polynomial-time randomized approximation schemes (FPRAS), as defined in [RS98].

Definition 1.2. Let d : Σ∗ → [0,∞) ∩ Q be an s-supergale and ν be any probability distribution
over Σ∞. d is t(n)-time ν-approximable if for every constant k there exist a probabilistic t(n)-time
machine M and constant c < 1 such that for every n, {w ∈ Σn : M(w) 6∈ [c·d(w), d(w)]} ⊆ supp(νn)
and νn{w ∈ Σn : M(w) 6∈ [c · d(w), d(w)]} ≤ n−k.

In the above, supp(νn) denotes the support of the distribution νn, i.e. supp(νn) = {w ∈ Σn :
νn(w) > 0}. A supergale d is ν-approximable if the set of strings at which the algorithm M makes
an error in approximating d(w) up to a constant multiplicative factor lies within the support of
νn, and the measure of the set of such strings according to νn is bounded by an inverse polynomial
function.

3v denotes the prefix operator
4An alternate way of defining polynomial time samplable distributions on Σ∞ is the following: ν = {νn} is a

polynomial time samplable distribution on Σ∞ if {νn} is a polynomial time samplable distribution (in the sense of
[IRS22, HIL+23, LP20]) such that for any w ∈ Σn, νn(w) = νn+1(w.0) + νn+1(w.1). The equivalence of these notions
follows using routine measure theoretic arguments.
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1.4 Our Results

1.4.1 One way functions and Dimension gaps

Our main result (Theorem 1.5) shows that the existence of one-way functions implies the existence
of uniform dimension gaps between dimP and Kpoly over a collection of sequences in Σ∞, such that
the collection has probability 1 according to a polynomial time samplable distribution. Futhermore
we show that such a distribution implies existence of infinitely often one way functions.

Theorem 1.5. In the following, (1) =⇒ (2) =⇒ (3):

1. One-way functions exist.

2. For every s < 1
2 , there exists a polynomial-time samplable distribution ν over Σ∞ such that:

(a) Kstr
poly(X) ≤ s for almost every X ∼ ν.

(b) For every s′ ∈ (s, 1
2) and every polynomial-time ν-approximable s′-supergale d, we have

ν(S∞(d)) = 0.

3. Infinitely-often one-way functions exist5.

The existence of polynomial-time samplable distributions satisfying the condition 1 implies
that, with probability 1 according to ν, the polynomial-time Kolmogorov complexity Kpoly(X)
of X ∈ Σ∞ is at most s. We later show in the proof of Lemma 1.7 that the polynomial-time
constructive dimension dimP(X) of almost every such sequence is at least 1/2. Since s < 1/2, this
establishes the existence of a dimension gap on a probability 1 set according to ν.

1.4.2 Applications

As an application of Theorem 1.5, we show that if one-way functions exist then equality does not
hold between dimP and Kpoly for sets F ⊆ Σ∞. To show this, we prove the contrapositive statement
that if the equality holds, then one-way functions do not exist.

Theorem 1.6. If for all F ⊆ Σ∞,

dimP(F) = Kpoly(F),

then one-way functions do not exist.

We then show the stronger result that if one-way functions exist then then equality does not
hold between dimP and Kpoly for sequences X ∈ Σ∞.

Theorem 1.7. If for all X ∈ Σ∞,

dimP(X) = Kpoly(X),

then one-way functions do not exist.

5See the remarks in section 10 regarding infinitely-often one-way functions and polynomial time dimension and
also Lemma 10.1.
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Thus, conditioned on the existence of one-way functions, we demonstrate the existence of se-
quences X such that Kpoly(X) < dimP(X).

In the last section of the paper we demonstrate how the proof of Theorem 1.7 can be extended to
show that if one-way functions exist, then the distance between these quantities can be arbitrarily
close to the maximum possible value of 1.

Theorem 1.8. If one-way functions exist, then for any ε > 0, there exists X ∈ Σ∞ such that,

dimP(X)−Kpoly(X) ≥ 1− ε.

For polynomial time strong dimension, we show that if one-way functions exist, then there exist
sequences for which the gap between Kstr

poly and DimP is arbitrarily close to 1.

Theorem 1.9. If one-way functions exist then for any ε > 0, there exists X ∈ Σ∞ such that,

DimP(X)−Kstr
poly(X) ≥ 1− ε.

Therefore, we show that if one-way functions exist, the answers to both parts of Open Question
3.71 from [Stu20] are negative.

1.5 Techniques

Proof of Theorem 1.5: We use a new construction to extend pseudorandom generators to obtain
polynomial-time samplable distributions on infinite sequences for which Kstr

poly ≤ s almost every-
where (Section 4, Figure 1.6). We use existing standard s-gale manipulation techniques (Lemma
5.1 and Lemma 5.2) to convert winning gales on these distributions to martingales that win quickly
over certain blocks of bits of the input sequence. Using these we show a new technique to build
a distinguisher algorithm (Algorithm 2) that breaks the pseudorandom generators used. To show
that the distinguisher succeeds with high probability on pseudorandom outputs, we use a argument
involving the Borel-Cantelli lemma (Lemma 5.3) to transform the occurrence of infinitely many
events into the occurrence over a large fraction, as required for the distinguisher. We use the Kol-
mogorov Inequality (Lemma 5.5) to show that the distinguisher succeeds with low probability on
uniformly random outputs.

For the converse, we use the theorem on universal extrapolation by Ilango, Ren and Santhanam
(Theorem 20 from [IRS22], see also [IL89, IL90]) along with a gale construction technique.

Proof of Theorem 1.7: Non robustness of polynomial-time dimension for sets (Theorem 1.6)
follows as a corollary of Theorem 1.5, along with some compactness arguments. However, to extend
the argument to show non-robustness of polynomial-time dimension for sequences (Theorem 1.7)
requires additional technical effort. We provide a new gale combination technique (Lemma 8.1) to
construct a t(n).n. log(n) s-gale that is universal over all t(n)-time s-gales. We use this along with
a measure-based partitioning trick to construct a polynomial time s-gale that is universal over all
polynomial time s-gales (up to a positive measure subset) to prove Theorem 1.7.

1.6 Proof Outline

In this section we give an informal account of the proofs of the main results. The full proofs are
given in later sections.
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Figure 1: Illustration of the construction of g(X). The first s = 2m bits of the g(X) are 0. There-
after, for every for every n > m, the block X[s.2n−1, s.2n−1] is mapped to G2n−1(X[s.2n−1, s.2n−1])
in the output string g(X).

Dimension gaps from one-way Functions

We first show that one-way functions imply the existence of distributions over which dimension
gap exists almost everywhere. Precisely, we show that if one-way functions exist, for any s < 1/2,
there are polynomial time samplable distribution ν over Σ∞ samplable using sn bits such that for
any s′ ∈ (s, 1/2), any polynomial time s′-supergale that is ν-approximable can succeed only on a
“small” ν-measure 0 subset of Σ∞. See Section 5 for the formal proof.

Lemma 1.1. If one-way functions exist, then for every s < 1/2, there exist a polynomial time
samplable distribution ν over Σ∞ such that:

1. Kstr
poly(X) ≤ s for almost every X ∼ ν.

2. For every s′ ∈ (s, 1/2) and any polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0.

Proof Outline. We start with the assumption that one-way functions exist. This implies the
existence of pseudorandom generators {Gn}n∈N running in time t(n) ∈ poly(n) mapping strings of
length sn to strings of length n for every s < 1 [HILL99]. For the sake of convenience, take any s
such that s = 2−m for some m ∈ N, m > 1 (hence s < 1/4). We first extend the PRG {Gn}n∈N
to a mapping between infinite sequences, g : Σ∞ → Σ∞. We then use g to construct a polynomial
time samplable distribution ν on Σ∞.

The mapping g is constructed as follows. We first define mappings gk from Σk to Σ∗ such that
k = s.2n for some ∈ N. On an input w ∈ Σk, where gk first divides w into blocks xn of size s.2i

for every i < n. Then, for every block xi in w, g applies the appropriate function from {Gn}n∈N
to obtain an output block yi of length 2i. Now gk(w) is defined as the concatenation of blocks yi
for every i ≤ n. Now, for any X ∈ Σ∞ we define the function g as the limit of the mappings gk,
g(X) = limk→∞ gk(X � k). We abuse the notation and use g instead of gk when the context is
clear. Figure 1.6 gives a detailed illustration of the construction of g.

The mapping g : Σ∞ → Σ∞ naturally generates a polynomial-time samplable distribution ν
over Σ∞. The sampling algorithm M for ν on input 1n, maps a random seed of length s · 2dlog2(n)e

using g to a string of length 2dlog2(n)e, and thereafter trims the output to n bits. The number of
random bits used by M on input 1n is at most 2s ·n. We show that Kstr

poly(X) ≤ 2s for almost every
X ∼ ν.
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Towards building a contradiction, let there exist some s′ ∈ (2s, 1/2) and a polynomial-time
ν-approximable s′-supergale d′ such that ν(S∞(d′)) > 0. We show that d′ can be used to break the
PRG {Gn}n∈N, obtaining a contradiction.

Using standard techniques on gales, we convert the polynomial time ν-approximable s′-supergale
d′ to a polynomial-time ν-approximable martingale d̃ that gains a significant amount of money over
blocks of length 2n for infinitely many n. More precisely, for some s̃ ∈ (2s′, 1), for all Y ∈ g(Σ∞),
there exist infinitely many n ∈ N such that

d̃(Y � 2n+1) > 2(1−s̃)2n d̃(Y � 2n). (1)

Let M be the Turing machine that ν-approximates d̃. That is for all n ∈ N, νn{w ∈ Σn :
M(w) 6∈ [c · d(w), d(w)]} ≤ n−k where c ∈ Q, k ∈ N are constants such that c ≤ 1 and k ≥ 1. We
use M to build a distinguisher algorithm A that breaks the PRG {Gn}. We describe the behavior
of A on inputs of length 2n. Let w be an input of size 2n. The distinguisher randomly chooses s.2n

bits r and takes w′ = g(r). Now A outputs 1 if and only if:

M(w′w) ≥ c · 2(1−s̃)|w| ·M(w′).

Otherwise A outputs 0. Since M is polynomial time computable, A is a polynomial time algorithm.
To show that A breaks the PRG {Gn}n∈N, it suffices to show that for infinitely many n ∈ N,

taking N = 2n, |Prx∼Σs.N [A(g(x)) = 1]− Prw∼ΣN [A(w) = 1]| > N−c for some constant c.
We first analyse the behaviour of A on inputs of the PRG {Gn}. We have shown that d̃ satisfies

the condition (1) over Y ∈ g(Σ∞) for infinitely many n. But the fraction of strings of a particular
length n satisfying (1) may in fact be negligible. In order to overcome this difficulty, we use an
argument involving the Borel Cantelli Lemma to show that there exist infinitely many n ∈ N, such
that over at least a 1/n2 fraction of strings w ∈ Σs.2n ,

d̃(g(w)) > 2(1−s̃)2n d̃(g(w) � 2n−1)). (2)

Let n + 1 be one of the lengths at which the condition 2 holds. Let w,w′ ∈ Σ2n such that
w = G2n(x) for some x ∈ Σs.2n and w′ = g(r) for some r ∈ Σs.2n .

In order for the condition M(w′w) ≥ c · 2(1−s̃)|w| ·M(w′) to hold, it suffices that d̃(w′w) ≥
2(1−s̃)|w| · d̃(w′) and M(w′w) ≥ c · d̃(w′w) and M(w) ≤ d̃(w). From the argument given above, it
follows that the first condition holds with probability at least (n+ 1)−2. Since d̃ is ν-approximable,
it follows that the second and third conditions hold with probability at least 1− 2−(kn−1) for some
constant k.

Therefore it follows that for infinitely many n,

Pr(x,r)∼Σs·2n×Σs·2n [A(G2n(x), r)) = 1] ≥ 1

(n+ 1)2
− 1

2kn
. (3)

We now analyze the behaviour of A on uniformly random inputs. We use the Kolmogorov
inequality for supermartingales to show that this is inverse exponentially small in input size.

We need an upper bound on the number of strings w, r ∈ Σ2n such that A(w, r) = 1. This
happens when M(w′w) ≥ c ·2(1−s̃)|w| ·M(w′). Using the Kolmogorov inequality for martingales, we
show that for a fixed w′, the fraction of strings w ∈ Σ2n such that d̃(w′w) ≥ c2 · 2|w|(1−s̃).d̃(w′) is
less than c−2 ·2−|w|(1−s̃). For the remaining set of strings, we have that d̃(w′w) < c2 ·22n(1−s̃).d̃(w′).
If we have that M(w′w) ≤ d̃(w′w) and M(w′) ≥ c · d̃(w′), it follows that A(w, r) = 0. Using the
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fact that d̃ is ν-approximable, we show the following that for some constant k, for all n ∈ N, taking
N = 2n,

Prw∼ΣN Prr∈Σs.N [A(w, r) = 1] <
1

c2 · 2N(1−s̃) +
1

Nk
+

1

2N(1−s) . (4)

From Equation 3 and 4, it follows that A breaks the PRG {Gn}, which is a contradiction.

Infinitely often one-way functions from dimension gaps

We now give a proof outline that the existence of distributions over which dimension gap exists
almost everywhere implies existence of infinitely often one-way functions. See Section 6 for the
formal proof.

Lemma 1.2. If there exist an s < 1 and a polynomial time samplable distribution ν over Σ∞ such
that:

1. Kstr
poly(X) ≤ s for almost every X ∼ ν.

2. There exist some ŝ ∈ (s, 1] such that for every s′ ∈ (s, ŝ) and any polynomial-time ν-
approximable s′-supergale d, ν(S∞(d)) = 0.

Then, infinitely-often one-way functions exist.

Proof Outline. We start with the hypothesis that for some s < 1 there exist a polynomial
time samplable distribution ν over Σ∞ such that Kstr

poly(X) ≤ s for almost every X ∼ ν and there
exists ŝ ∈ (s, 1] such that for every s′ ∈ (s, ŝ) and polynomial-time ν-approximable s′-supergale d,
ν(S∞(d)) = 0. Assume that there exist no infinitely often one-way functions.

Fix arbitrary s′ and s′′′ such that s < s′ < s′′′′ < ŝ, 2s
′ ∈ Q and 2s

′′′ ∈ Q. Consider the function
d : Σ∗ → [0,∞) defined as d(w) = 2s

′′′′|w|ν(w). We show that d is an s′′′-supergale that satisfies,

ν

{
X ∈ Σ∞ : lim sup

n→∞
d(X � n) =∞

}
> 0.

We now show that if infinitely-often one-way functions do not exist, there exists a randomized
polynomial time algorithm M that ν-approximates d. Using a theorem on universal extrapolation
by Ilango, Ren and Santhanam (Theorem 20 from [IRS22], implicit in [IL89, IL90]), it follows that
for any q ≥ 1, there exists a probabilistic polynomial time algorithm A and constant c < 1 such
that for all n,

Prw∼νn [c · νn(w) ≤ A(w) ≤ νn(w)] ≥ 1−O
(

1

nq

)
.

Furthermore, since there infinitely-often one-way functions do not exist (and therefore weak infinitely-
often one-way functions do not exist), there is an algorithm I which inverts the function f : Σ∗ → Σ∗

defined as
f(x) = M(1|x|

1/c′
, x)

on all but finitely many input lengths n. We combine the algorithms A and I to give an algorithm
M satisfying the following properties: for every n, {w : M(w) 6∈ [c · d(w), d(w)]} ⊆ supp(νn) and

Prx∼νn [c · d(x) ≤M(x) ≤ d(x)] ≥ 1−O
(

1

nq

)
.

Using the fact that A and I are randomized polynomial time algorithms and q is arbitrary we show
that M approximates ν in polynomial time. Since this contradicts our hypothesis, it must be the
case that there exist infinitely-often one-way functions.
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Dimension gaps over sequences from one-way functions

We use Lemma 1.1 to show that if one-way functions exist then there exists sequences X for which
Kpoly(X) and dimP(X) are separated by a gap of 1/2. Thereafter we refine our proof to increase
the gap to any value arbitrarily close to 1. The corresponding theorems for sets is trivially implied
by considering the set F = {X}.

Theorem 1.7. If for all X ∈ Σ∞,

dimP(X) = Kpoly(X),

then one-way functions do not exist.

Proof Outline. We start with the assumption that one-way functions exist. From Lemma 1.1,
for every s < 1/2 there exist a polynomial time samplable distribution ν over Σ∞ and polynomial
t such that:

1. The number of random bits used by the sampler for ν on input 1n is at most sn.

2. For every s′ ∈ (s, 1/2) and any polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0.

Consider the following set F =
⋂
n≥1

⋃
w∈supp(νn)

Cw. Using an argument involving the compactness of

Σ∞ as a topological space, we demonstrate that F is a non-empty set such that ν(F) = 1. Since
the number of random bits used by the sampler for ν on input 1n is at most sn, Kpoly(X) ≤ s
for every X ∈ F . For the sake of contradiction, assume that there exist s′ ∈ (s, 1/2) such that
dimP(X) < s′ for every X ∈ F . So, every X ∈ F there exists an exact computable s′-gale d′X that
runs in time td′X (n) ∈ poly(n), such that d′X succeeds on X.

We now use a partitioning trick to build a set S ⊆ Σ∞ such that ν(S) > 0. Thereafter
we use a new gale combination technique to construct a nk+c-time computable s′-gale d′ that
succeeds on all sequences in S. Since d is polynomial-time computable, d is trivially a polynomial-
time ν-approximable s′-supergale. Now, since we know that ν(S∞(d)) ≥ ν(S) > 0, we obtain a
contradiction. Hence, it must be the case that there exist a sequence X ∈ F with dimP(X) > s′.
Since s′ was arbitrary, the theorem follows.

Theorem 1.8. If one-way functions exist, then for any ε > 0, there exists X ∈ Σ∞ such that,

dimP(X)−Kpoly(X) ≥ 1− ε.

Proof Outline. In order to demonstrate that for every ε, there exist sequences X for which
the gap between dimP and Kpoly is greater than 1 − ε, we combine the proof techniques in the
proofs of Lemma 1.1 and the proof of existence of sequences with gaps close to 1/2 sketched
above. Also, we require an important modification in the construction of the martingale d̃ in
the proof of Lemma 1.1. While constructing the martingale d̃ in the proof of Lemma 1.1, we
used the assumption that s′ < 1/2. This is important because in order to obtain the condition
d̃(Y � 2n+1) > 2(1−s̃)2n d̃(Y � 2n) for infinitely many n over any Y ∈ g(Σ∞), we require s̃ > 2s′.
For s̃ to be less than 1, we require s′ < 1/2. The major tool we need to overcome this hurdle is a
generalization of the construction of martingale d̃ to every s′ < 1 (see Lemma 5.2). We transform
d′ into a polynomial time martingale d̃ satisfying the following property: let s̃ and s′′ be such that
s̃ > s′′ > s′. Then for any Y ∈ g(Σ∞) there exist infinitely many n satisfying either of the following
conditions:
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1. d̃(Y � 2n) > 2(1−s̃)2n−1
d̃(Y � 2n−1).

2. There exists ` satisfying ((s̃ − s′′)/s′′) · 2n−1 ≤ ` ≤ 2n−1 such that d̃(Y � 2n−1 + `) >
2(1−s′′)(2n−1+`).

We need the second condition above to handle the case when s′ may be between 1/2 and 1.
Finally, we modify Algorithm A from the proof of Lemma 1.1 to incorporate the second condition
above. We adapt the analysis of the algorithm and the arguments involving the Borel Cantelli
lemma appropriately to show that the modified algorithm A is a distinguisher for the PRG {Gn}n∈N.

1.7 Related Work

In [LP20], Liu and Pass proved that one-way functions exist if and only if the t-time bounded
Kolmogorov complexity problem MKtP, is mildly hard on average. In a follow-up work [LP21]
they define a problem that is NP-complete under randomized reductions whose mild average case
hardness is equivalent to existence of one-way functions. Allender, Cheraghchi, Myrisiotis, Tiru-
mala and Volkovich [ACM+21] showed similar results in the setting of KT complexity, basing the
existence of one-way functions on the average case hardness of McKTP (an analogue of McKtP for
KT-complexity). Hirahara [Hir23] gave the first characterization of a one-way function by worst-
case hardness assumptions. He showed that one-way function exists if and only if it is NP-hard
to approximate the distributional Kolmogorov complexity under randomized polynomial-time re-
ductions, assuming NP is hard in the worst case. Hirahara, Lu and Oliveira [HLO24] showed the
relationship between One-way functions and pKt complexity. Ilango, Ren, and Santhanam [IRS22]
characterize the existence of OWFs by the average-case hardness of approximating Kolmogorov
complexity on samplable distributions. Hirahara, Ilango, Lu, Nanashima and Oliveira [HIL+23]
gave a complete characterization of one-way functions in terms of the average case failure of sym-
metry of information (and related properties like the conditional coding theorem) for pKt.

Considerable research has been devoted to understanding whether fundamental properties of
unbounded Kolmogorov complexity survive in the time bounded setting. One of the important
properties that was studied in this context is the symmetry of information of Kolmogorov complexity
[LV08, SUV22, DH10, Nie09]. Longpré and Mocas [LM93] (also Longpré and Watanabe [LW92])
showed that if one-way functions exist then symmetry of information does not hold for time bounded
Kolmogorov complexity. In [Hir22] and [GK22], symmetry of information for polynomial time
bounded probabilistic Kolmogorov complexity pKt (see [GKLO22, LO22]) was derived from the
stronger assumption DistNP ⊆ AvgBPP.

This work explores whether the characterization of constructive dimension in terms of Kol-
mogorov complexity [Lut03a, May02] extends to the time-bounded setting. Our results establish a
duality between the separation of dimP and Kpoly as notions of polynomial-time dimension over a
sufficiently large collection of sequences and the existence of one-way functions.

As an application of our main result, we show that if one-way functions exist then polynomial
time bounded Kolmogorov complexity does not yield a characterization of polynomial time dimen-
sion of infinite sequences, thereby refuting an open question posed by Hitchcock and Vinodchandran
in [HV04] and by Stull in [Stu20].

1.8 Open Problems

Our findings suggest several promising directions for future research. A key open question is
whether weaker hardness assumptions, such as P 6= NP, DistNP 6⊆ AvgP or DistNP 6⊆ AvgBPP
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can be characterized in terms of the separation of polynomial-time dimension, as defined using time-
bounded s-gales and time-bounded Kolmogorov complexity in appropriate settings. Specifically,
can these hardness assumptions be equivalently expressed through if-and-only-if statements involving
polynomial-time dimension?.

Our results reveal a duality between the non-robustness of polynomial-time dimension and the
existence of one-way functions. An interesting open question is whether notions of polynomial-
time randomness-defined via betting algorithms and Kolmogorov incompressibility of prefixes (see
[Stu20] for more details) capture equivalent concepts of randomness. Polynomial-time betting
algorithms that succeed on specific sequences do not necessarily provide guarantees on the rate
of capital accumulation in general. Consequently, investigating the robustness of polynomial-time
randomness and its potential connections to cryptographic and complexity-theoretic primitives may
require fundamentally new approaches.

2 Preliminaries

In this section, we introduce the basic notation and formally define the necessary concepts from
the theory of pseudorandomness and constructive dimension.

2.1 Notation

Let Σ denote the binary alphabet {0, 1}. Σn denotes the set of n-length strings and Σ∗ denotes the
set of all finite strings over Σ. For a finite string w ∈ Σ∗, |w| denotes the length of w. 1∗ denotes
the set of all finite strings in the unary alphabet {1}. Σ∞ denotes the Cantor space, or the set of
all infinite strings over Σ. We use small letters w, x to represent finite strings and capital letters
X, Y to represent infinite strings over Σ. For an infinite string X ∈ Σ∞, X[i] denotes the ith bit
of X and X � n denotes the first n bits of X. For infinite string X = X1X2X3X4 . . . and m ≥ n,
X[n : m] denotes the the substring XnXn+1Xn+2 . . . Xm. For a finite string w ∈ Σ∗, w[i], w � n and
w[n : m] are defined similarly. λ denotes the empty string. N denotes the set of natural numbers
and Q denotes the set of rationals. All the logarithms in the paper are taken to base 2 unless
specified otherwise. For any function f : Σ∞ → Σ∞ and S ⊆ Σ∞ let f(S) denote {f(X) : X ∈ S}.

For w ∈ Σ∗, Cw denotes the cylinder set of w, that is the set of all infinite sequences in Σ∞ that
begin with w. Let B(Σ∞) denote the Borel σ-algebra over Σ∞ generated by the set of all cylinder
sets {Cw : w ∈ Σ∗}. For two finite strings x, y ∈ Σ∗, x.y denotes the concatenation of the strings x
and y.

We use poly(n) to denote the set of polynomial (time) functions
⋃
c∈N{nc}. When the context is

clear, we also use poly to denote poly(n). We use Un to denote the uniform probability distribution
over Σn.

2.2 Time Bounded Kolmogorov complexity

We define time bounded Kolmogorov complexity.

Definition 2.1 (t-time bounded Kolmogorov complexity [Kol65, LV08]). Let t be a time-constructible
function, and x ∈ Σ∗ be a finite binary string. The t-time bounded Kolmogorov complexity of x is

Kt(x) = min{|Π| such that Π ∈ Σ∗ and U(Π) = x in t(|x|) steps}.

where U is any fixed universal Turing machine.
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Since in the study of resource dimension we divide Kt(x) by |x|, our results are unaffected by
the choice between prefix-free Kolmogorov complexity and plain Kolmogorov complexity. We use
plain Kolmogorov complexity in the rest of the paper.

2.3 Polynomial-time dimension

We first give the formal definition of polynomial time dimension using polynomial time s-gales. To-
wards this end, we first define the concepts of s-gales, supergales, martingales and supermartingales.

Definition 2.2 ([Lut03a, Lut03b]). For s ∈ [0,∞),

1. An s-supergale is a function d : Σ∗ → [0,∞) such that d(λ) < ∞ and for every finite string
w ∈ Σ∗,

d(w) ≥ d(w0) + d(w1)

2s
.

2. A supermartingale is a 1-supergale.

3. An s-gale is a function d : Σ∗ → [0,∞) with d(λ) <∞ for every finite string w ∈ Σ∗,

d(w) =
d(w0) + d(w1)

2s
.

4. A martingale is a 1-gale.

Unless specified otherwise, for every s-supergale d, we assume that the initial capital d(λ) = 1.

Definition 2.3 ([Lut03a, Lut03b]). The success set of an s-supergale d is

S∞(d) =

{
X ∈ N∞ | lim sup

n→∞
d(X � n) =∞

}
.

Definition 2.4 ([AHLM07]). The strong success set of an s-supergale d is

S∞str(d) =
{
X ∈ N∞ | lim inf

n→∞
d(X � n) =∞

}
.

Now, we define time bounded supergales. We first define t(n)-time computable s-gales.

Definition 2.5 (t(n)-time computability [Lut03a]). An s-supergale d : Σ∗ → [0,∞) ∩ Q is t(n)-
time computable if there exist a t(n)-time computable function f : Σ∗ × 1∗ → Q such that |d(w)−
f(w, 1n)| ≤ 2−n for every w ∈ Σ∗ and n ∈ N.

Another notion of time bounded computability is that of exact t(n)-time computability.

Definition 2.6 (Exact t(n)-time computability [Lut03a]). An s-supergale d : Σ∗ → [0,∞) ∩ Q is
exact t(n)-time computable if there exist a t(n)-time computable function f : Σ∗ → Q such that
d(w) = f(w) for every w ∈ Σ∗.

Now, we define polynomial-time dimension and strong dimension.

Definition 2.7 (Polynomial-time dimension [Lut03a]). The polynomial-time dimension of F ⊆ Σ∞

is defined as

dimP(F) = inf{s | (∃k) there is an exact nk-time computable s-gale d such that F ⊆ S∞(d)}.

For a sequence X ∈ Σ∞, define dimP(X) = dimP({X}).
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Definition 2.8 (Polynomial-time strong dimension [AHLM07, Stu20]). The polynomial-time strong
dimension of F ⊆ Σ∞ is defined as

DimP(F) = inf{s | (∃k) there is an exact nk-time computable s-gale d such that F ⊆ S∞str(d)}.

For a sequence X ∈ Σ∞, define DimP(X) = DimP({X}).

We now make an important remark. Polynomial time dimension and strong dimension are
often defined in terms of nk-time computable s-gales that need not be exact computable. But these
definitions are in fact equivalent. This is a direct consequence of the following lemma from [Lut03a]
which is also useful in proving the main results in this paper.

Lemma 2.1 (Exact Computation Lemma [Lut03a]). If there is a polynomial time computable s-
gale d such that 2s ∈ Q, then there exists an exact polynomial time computable s-gale d̃ such that
S∞(d) ⊆ S∞(d̃).

We will often use the terminology polynomial-time computable gales to refer to exact t(n)-time
computable s-gales where t(n) ∈ poly(n). Similar comment applies in the case of exact polynomial-
time computability and other notions related to gales such as martingales and supergales.

Now, we define the asymptotic polynomial-time density of information of a subset F ⊆ Σ∞.

Definition 2.9 (Kpoly and Kstr
poly [HV06, Stu20, Hit03]). For any F ⊆ Σ∞, define

Kpoly(F) = inf
t∈poly

sup
X∈F

lim inf
n→∞

Kt(X � n)

n
.

Kstr
poly(F) = inf

t∈poly
sup
X∈F

lim sup
n→∞

Kt(X � n)

n
.

For individual sequences, we define Kpoly(X) = Kpoly({X}) and Kstr
poly(X) = Kstr

poly({X}). Note

that Kpoly and Kstr
poly are equivalently defined in the following way.

Definition 2.10 (Kpoly and Kstr
poly [HV06, Stu20, Hit03]). For any X ∈ Σ∞, define

Kpoly(X) = inf
t∈poly

lim inf
n→∞

Kt(X � n)

n
and Kstr

poly(X) = inf
t∈poly

lim sup
n→∞

Kt(X � n)

n
.

From the results we prove in the following sections, it is implied that if one-way functions exist,
then Kpoly and Kstr

poly and not equivalent to dimP and DimP.

2.4 Measure over the Cantor Space

Definition 2.11 ( [Roy88]). A function µ :M→ [0,∞], where M⊆ P (Σ∞), is called a measure
over (Σ∞,M) if µ(∅) = 0 and µ is countably additive. That is, for any countable disjoint collection
{Ek}∞k=1 of measurable sets,

µ

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek).

We take M as the set of Borel Measurable sets. Note that B ⊆M, where B is the Borel sigma
algebra over Σ∞, we omit M and say that µ is a measure over Σ∞.

Note that B contains all open sets, and therefore all cylinder sets Cw for all w ∈ Σ∗.
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Definition 2.12. Let ν be a measure over Σ∞. We say that ν is a probability distribution over
Σ∞ if it holds that ν(Σ∞) = 1.

Definition 2.13. Let ν be a probability distribution over Σ∞. For every n, let νn denote the
probability distribution induced by ν on Σn defined as νn(w) = ν(Cw) for every w ∈ Σ∞.

Now we define the uniform (Lebesgue) measure over the Cantor space.

Definition 2.14 (Uniform measure over the Cantor Space [DH10, Nie09]). Let Σ∞ be the Cantor
space. The uniform measure of a cylinder set Cw determined by a finite string w is defined as:

µ(Cw) = 2−|w|.

Using routine measure theoretic arguments, µ uniquely extends to a probability measure over
(Σ∞,B(Σ∞)) (see [Bil95]).

2.5 One-way functions

The following is the definition of one-way functions secure against uniform probabilistic polynomial
time adversaries.

Definition 2.15 (One-way functions [Gol08, Vad12, Gol01]). A function fn : Σ∗ → Σ∗ is a one-way
function (OWF) if:

1. There is a constant b such that fn is computable in time nb for sufficiently large n.

2. For every probabilistic polynomial time algorithm A and every constant c > 0:

Pr[A(fn(Un)) ∈ f−1
n (fn(Un))] ≤ 1

nc

for all sufficiently large n, where the probability is taken over the choice of Un and the internal
randomness of algorithm A.

2.6 Pseudorandom generators

In order to define pseudorandom generators, we first define computational indisitinguishability.

Definition 2.16 (Computational Indistinguishability [Gol08, Vad12]). The ensembles of random
variables {Xn}n∈N and {Yn}n∈N are computationally indistinguishable if for every probabilistic poly-
nomial time algorithm T and every constant c > 0,

|Pr[T (Xn) = 1]− Pr[T (Yn) = 1]| ≤ 1

nc

where the probabilities are taken over the distributions of either Xn or Yn and the internal random-
ness of the algorithm T .

Definition 2.17 (Pseudorandom generators [Gol08, Vad12, Gol01]). A sequence of functions Gm :
Σd(m) → Σm is a pseudorandom generator (PRG) if:

1. d(m) < m

2. There exist an uniform and deterministic polynomial time algorithm M such that M(m,x) =
Gm(x).

3. {G(Ud(n))}n∈N and {Un}n∈N are computationally indistinguishable.
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2.7 One-way functions and Pseudorandom generators

The equivalence theorem stated below demonstrates that one-way functions and pseudorandom
generators are fundamentally equivalent.

Theorem 2.1 (Equivalence of One-way Functions and PRGs [HILL99, Gol08, Gol01]). The fol-
lowing are equivalent:

1. One-way functions exist.

2. There exist a pseudorandom generator with seed length d(m) = m− 1.

3. For every polynomial-time computable constant ε ∈ (0, 1), there exists a pseudorandom gen-
erator with seed length d(m) = ε.m.

2.8 Polynomial time samplable distributions on Σ∞

Now we define polynomial time samplable distributions on Σ∞.

Definition 1.1. A probability distribution ν over Σ∞ is polynomial time samplable if there exists a
probabilistic polynomial time Turing machine M that uses q(n) random bits, where q is a polynomial,
such that for every n and w ∈ Σn, Prr∼Σq(n) [M(1n, r) = w] = νn(w)6.

One-way functions are secure against inversion by probabilistic polynomial time adversaries.
However, polynomial time gales are defined in terms of computation using deterministic machines.
In order to bridge this gap, we define martingales and s-gales that are approximable using proba-
bilistic polynomial-time machines.

The support of a distribution is the set of points at which the distribution does not vanish.
That is supp(νn) = {w ∈ Σn : νn(w) > 0}.

Definition 1.2. Let d : Σ∗ → [0,∞) ∩ Q be an s-supergale and ν be any probability distribution
over Σ∞. d is t(n)-time ν-approximable if for every constant k there exist a probabilistic t(n)-time
machine M and constant c < 1 such that for every n, {w ∈ Σn : M(w) 6∈ [c·d(w), d(w)]} ⊆ supp(νn)
and νn{w ∈ Σn : M(w) 6∈ [c · d(w), d(w)]} ≤ n−k.

In other words, the set of strings at which the algorithm M makes an error in approximating
d(w) outside [c.d(w), d(w)] lies within the support of νn, and the measure of the set of such strings
according to νn is inverse polynomial.

3 One-way functions and polynomial time samplable distributions

We show that the existence of dimension gaps almost everywhere with respect to certain polynomial
time samplable distributions over Σ∞ is equivalent to the existence of one-way functions. Towards
this end, we consider polynomial time samplable distributions ν such that for almost every X
according to ν, we have that Kstr

poly(X) ≤ s.
In this work, we define the notion of a “significant” gap between Kolmogorov complexity (Kpoly)

and gale based (dimP) formulations of polynomial-time dimension for polynomial time samplable

6An alternate way of defining polynomial time samplable distributions on Σ∞ is the following: ν = {νn} is a
polynomial time samplable distribution on Σ∞ if {νn} is a polynomial time samplable distribution (in the sense of
[IRS22, HIL+23, LP20]) such that for any w ∈ Σn, νn(w) = νn+1(w.0) + νn+1(w.1). The equivalence of these notions
follows using routine measure theoretic arguments.
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distributions. The gap is said to be significant if dimP and Kpoly differ for a large collection of
the sequences in the range of the distribution. We say that there is no “significant” dimension gap
induced by ν if for any s′ < s, an s′-gale d would win on a significant fraction of the sequences in
F , ensuring that ν(S∞(d)) > 0.

We first show that one-way functions imply the existence of distributions over which dimension
gap exists almost everywhere.

Lemma 1.1. If one-way functions exist, then for every s < 1/2, there exist a polynomial time
samplable distribution ν over Σ∞ such that:

1. Kstr
poly(X) ≤ s for almost every X ∼ ν.

2. For every s′ ∈ (s, 1/2) and any polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0.

We then show the result in the converse direction that the existence of distributions over which
dimension gap exists almost everywhere implies the existence of infinitely often one-way functions.

Lemma 1.2. If there exist an s < 1 and a polynomial time samplable distribution ν over Σ∞ such
that:

1. Kstr
poly(X) ≤ s for almost every X ∼ ν.

2. There exist some ŝ ∈ (s, 1] such that for every s′ ∈ (s, ŝ) and any polynomial-time ν-
approximable s′-supergale d, ν(S∞(d)) = 0.

Then, infinitely-often one-way functions exist.

Together we obtain the following theorem between dimension gaps and existence of one-way
functions.

Theorem 1.5. In the following, (1) =⇒ (2) =⇒ (3):

1. One-way functions exist.

2. For every s < 1
2 , there exists a polynomial-time samplable distribution ν over Σ∞ such that:

(a) Kstr
poly(X) ≤ s for almost every X ∼ ν.

(b) For every s′ ∈ (s, 1
2) and every polynomial-time ν-approximable s′-supergale d, we have

ν(S∞(d)) = 0.

3. Infinitely-often one-way functions exist7.

Proof. (1) =⇒ (2) follows from Lemma 1.1. Choosing s < 1/2 and setting ŝ = 1/2, the hypothesis
of Lemma 1.2 follows from (2). And therefore we get (2) =⇒ (3) from Lemma 1.2.

4 A mapping between infinite sequences using PRGs

One of the major constructions we require in proving our results is an extension of pseudorandom
generators with constant stretch to a mapping between infinite strings.

7See the remarks in section 10 regarding infinitely-often one-way functions and polynomial time dimension and
also Lemma 10.1.
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4.1 Definition of g

Given a PRG Gn : Σsn → Σn where s = 2−m for some m ∈ N, we construct a mapping g from the
Cantor set to itself, by using the family {Gn}n∈N to map blocks within the input string to longer
blocks within the output string. Given an input X ∈ Σ∞, g(X) is constructed by applying Gn to
successive block x of size s.2n from X for all n ∈ N. We first define a sequence of mappings gk from
Σk to Σ∗. These mappings preserves the prefix ordering among finite strings and hence we define
g(X) for X ∈ Σ∞ as the limit of gk(X � k).

Definition 4.1. Let Gn : Σsn → Σn where s = 2−m for some m ∈ N and let k ∈ N. For w ∈ Σk,
define gk(w) as follows. For any n satisfying any m < n ≤ blog(k/s)c and i ∈ {2n−1 + 1, 2n−1 +
2, . . . 2n}, let

gk(w)[i] = G2n−1(x)[i− 2n−1]

where x = w[s · 2n−1, s · 2n − 1]. For i ∈ {1, 2, . . . , 2m}, we set gk(w)[i] = 0.

Note that gk(w)[2n−1 + 1, 2n] = G2n−1(w[s.2n−1, s.2n − 1]). For k ≤ 2m, gk maps any w ∈ Σk

to 02m . Observe that the sequence of mappings 〈gk〉k∈N preserves the prefix order between strings.
That is, If w′ v w, then g|w′|(w

′) v g|w|(w). Therefore, we define g as the limit of the mappings gk
as k →∞.

Definition 4.2. For every X ∈ Σ∗ let g(X) = ∩∞n=1Cg(X�n).

Notice that for any X ∈ Σ∞ and k ∈ N, gk(X � k) v g(X). For convenience, we abuse the
notation and use g to denote the mapping between infinite strings defined above or a mapping
between finite strings defined as follows: g(w) = g|w|(w) for any w ∈ Σ∗. The intended meaning is
clear from the context.

4.2 Analysis of Kt(g(X) � 2n)

Now, we prove the following lemma that the polynomial time bounded Kolmogorov complexity of
prefixes of sequences in the image set of g is low.

Lemma 4.1. For s = 2−m for some m > 1, let g : Σ∞ → Σ∞ be constructed from a PRG
Gn : Σsn → Σn that runs in time tG(n) as in Definition 4.1. There exists a constant c ∈ N such
that for all X ∈ Σ∗ and for all n ∈ N,

Ktg(g(X) � 2n) ≤ s.2n + c

where tg(n) = tG(n)n.

Proof. Consider the algorithm M which implements the mapping in Definition 4.1 as follows.

Algorithm 1 Algorithm M

1: Input: A string w.
2: if w = λ then
3: Output λ
4: else
5: Output 02m

6: end if
7: for i = m to blog(|w|2m)c − 1 do
8: Output G2i(w[2−m · 2i, 2−m · 2i+1 − 1])
9: end for
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Since Gn runs in tG(n) time, it follows that M runs in tg(n) = tG(n) · n time. Also, for any
X ∈ Σ∞ and n ≥ m, M outputs the string g(X) � 2n on input X � 2−m ·2n = X � s ·2n. Therefore,
it follows that Ktg(g(X) � 2n) ≤ s · 2n + c where the constant c depends only on the length of any
representation of M in the prefix language of the fixed universal Turing machine.

Corollary 4.1. For s = 2−m for some m > 1, let g : Σ∞ → Σ∞ be constructed from a PRG
Gn : Σsn → Σn that runs in time tG(n) as in Definition 4.1. There exists a constant c ∈ N such
that for all X ∈ Σ∗ and for all i ∈ N,

Ktg(g(X) � i) ≤ 2s · i+ 2 log(i) + c′

where tg(n) = tG(n)n.

Proof. From Lemma 4.1, we know that

Ktg(g(X) � 2dlog(i)e) ≤ s · 2dlog(i)e + c′.

By providing Kn(i) extra information specifying the value of the index i at which g(X) � 2dlog(i)e

needs to be trimmed, we obtain a program that outputs g(X) � i in tg(n)-time. There is a
trivial prefix free program which given 2 log(i) bits of information, runs in linear time and prints
i. Therefore, the value of Kn(i) is at most 2 log(i) up to an additive constant. Since 2dlog(i)e ≤ 2i,
there exists c′ > 0 such that

Ktg(g(X) � i) ≤ 2s · i+Kn(i) + c ≤ 2s · i+ 2 log(i) + c′.

5 Dimension Gap from one-way functions

In this section, we prove Lemma 1.1 by showing that if one-way functions exists, there exists a
short polynomial time samplable distribution ν with a dimension gap, that is for any s′ > s, and
any polytime ν-approximable gale d, ν(S∞(d)) = 0.

We start with the assumption that one-way functions exist. From Theorem 2.1, we have that
for s = 2−m with m ≥ 2, pseudorandom generators {Gn : Σsn → Σn} exist. Note that the
mapping g : Σ∞ → Σ∞ constructed using the ensemble {Gn} naturally generates a polynomial-
time samplable distribution ν over Σ∞. The sampling algorithm M for ν on input 1n, maps a
random seed of length s · 2dlog2(n)e using g to a string of length 2dlog2(n)e, and thereafter trims the
output to n bits. The number of random bits used by M on input 1n is at most 2s · n. We show
that the distribution ν defined by g satisfies the required properties. It follows from Corollary 4.1
that Kstr

poly(X) ≤ 2s for almost every X ∼ ν.

Towards building a contradiction, let there exist some s′ ∈ (2s, 1/2) with 2s
′ ∈ Q and a

polynomial-time ν-approximable s′-supergale d′ such that ν(S∞(d′)) > 0. We now convert the
polynomial time ν-approximable s′-supergale d′ to a polynomial-time ν-approximable martingale d̃
with a guarantee that its capital grows significantly between blocks of length 2n for infinitely many
n and ν(S∞(d̃)) > 0.

Lemma 5.1. For s′ ∈ [0,∞) if d′ : Σ∞ → [0,∞) is a t(n)-time computable ν-approximable s′-
gale, then for any s′′ satisfying s′ ≤ s′′ ≤ 1 and 2s

′′ ∈ Q, there exists an exact t(n)poly(n)-time
ν-approximable supermartingale d̃ : Σ∞ → [0,∞) such that for any X ∈ S∞(d′),

lim sup
n→∞

d̃(X � n)

2(1−s′′)n =∞.
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Proof. Let s′′ ≥ s′ such that 2s
′′ ∈ Q. We know that d′ is an exact t(n)-time s′′-supergale that

succeeds on X (see Observation 4.4 from [Lut03a]). Let d̄ be defined as d̄(w) = d′(w)2(1−s′′)|w|.
Note that as d′ is ν-approximable, it follows that d̄ is ν-approximable.

From Observation 3.2 in [Lut03b], it follows that d̄ is a supermartingale such that,

lim sup
n→∞

d̄(X � n)

2(1−s′′)n =∞.

Since 2s
′′

is rational, so is 2(1−s′′). Hence, d̄ is an exact t(n)poly(n)-time computable supermartin-
gale.

Lemma 5.2. For s′ < 1/2, let d′ : Σ∞ → [0,∞) be an t(n)-time ν-approximable s′-gale. Let s̃
be such that s̃ > s′, 2s̃ ∈ Q. Then, there exists an t(n)poly(n)-time ν-approximable martingale
d̃ : Σ∞ → [0,∞) such that for any X ∈ S∞(d′), there exists infinitely many n ∈ N such that

d̃(X � 2n) > 2(1−s̃)2n−1
d̃(X � 2n−1) (5)

Proof. Choose s′′ ∈ (s′, 1/2) such that s′ < 2s′ < 2s′′ < s̃ and 2s
′′ ∈ Q. Let d̃ be the exact

t(n)poly(n)-time computable martingale from Lemma 5.1 such that,

lim sup
n→∞

d̃(X � n)

2(1−s′′)n =∞.

We show that d̃ satisfies the required property. On the contrary, assume that there exists m > 0
such that for every n > m,

d̃(X � 2n) ≤ 2(1−s̃)2n−1
d̃(X � 2n−1).

Consider any n > m. Let ` ≤ 2n. We get that,

d̃(X � 2n + `) ≤ 2`2(1−s̃)
∑n−1

i=m 2i d̃(X � 2m)

= 2`2(1−s̃)(2n−2m)d̃(X � 2m).

If d̃(X � 2n + `) ≥ 2(2n+`)(1−s′′), then

2`s
′′ ≥ 2(1−s̃)2m

d̃(X � 2m)
22n(s̃−s′′).

Since ` ≤ 2n, we obtain

22n(s̃−2s′′) ≤ d̃(X � 2m)

2(1−s̃)2m . (6)

If there exist infinitely many k such that d̃(X � k) ≥ 2(1−s′′)k then there exist infinitely many n
satisfying 6. But, since s̃ > 2s′′, 6 cannot be true for large enough n and therefore we obtain a
contradiction. Hence, it must be the case that for infinitely many n,

d̃(X � 2n) > 2(1−s̃)2n−1
d̃(X � 2n−1)

which is the required conclusion.
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5.1 A Distinguisher Algorithm for PRGs

Let d̃ be the t(n).poly(n)-time ν-approximable martingale obtained from Lemma 5.2. Let M
be the Turing machine that ν-approximates d. That is for all n ∈ N, νn{w ∈ Σn : M(w) 6∈
[c · d(w), d(w)]} ≤ n−k where c ∈ Q, k ∈ N are constants such that c ≤ 1 and k ≥ 1. We use M to
build a distinguisher algorithm A that breaks the PRG {Gn}.

Algorithm 2 Algorithm A

1: Input: A string w where |w| = 2n

2: r ← random(s · 2n) . Generate a random seed of length s · 2n
3: for i = m to n− 1 do
4: vi ← G2i(r[s · 2i, s · 2i+1 − 1]) . Use r and G2i to get a PRG output of length 2i

5: end for
6: w′ ← 02mv1 . . . vn . Concatenate all vi
7: return 1 if M(w′w) ≥ c · 2(1−s̃)|w| ·M(w′).

5.2 Analysis of the Distinguisher Algorithm

5.2.1 Performance of the algorithm on outputs of PRGs

Now, we define the function f .

Lemma 5.3. Let f : Σ∞ ×N→ {0, 1} and S ⊆ Σ∞ such that ν(S) > 0. If for every X ∈ S, there
exist infinitely many n ∈ N such that f(X,n) = 1. Then for any c > 1, there exist infinitely many
n ∈ N, such that ν({X : f(X,n) = 1}) > n−c.

Proof. Let An = {X ∈ Σ∞ : f(X,n) = 1}. We know that,

S ⊆ lim sup
n→∞

An =
∞⋂
i=0

∞⋃
n=i

An.

Therefore, ν(lim supn→∞An) ≥ ν(S) > 0. Since for c > 1, the series
∑
n−c is convergent, using

the Borel-Cantelli Lemma (see [Bil95]), we obtain that ν(An) > n−c for infinitely many n, which
is the required conclusion.

Definition 5.1. Let f : Σ∞ × N→ {0, 1} be defined as follows,

f(X,n) =

{
1 if d̃(X � 2n) > 2(1−s̃)2n d̃(X � 2n−1)

0 otherwise.

Lemma 5.4. Given d̃ : Σ∞ → [0,∞), if for all sequences X ∈ S where ν(S) > 0, there exists
infinitely many n ∈ N such that

d̃(X � 2n) > 2(1−s̃)2n−1
d̃(X � 2n−1)

Then it holds that for infinitely many n,

Prx∼Σs.2n [d̃(g(x)) > 2(1−s̃)2n d̃(g(x � s.2n−1))] ≥ 1

n2
. (7)
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Proof. We have that for all Y ∈ S where ν(S) > 0, there exists infinitely many n ∈ N such that
d̃(Y � 2n) > 2(1−s̃)2n−1

d̃(Y � 2n−1). From the definition of the function f (Definition 5.1), we have
that for all X ∈ S, there exist infinitely many n ∈ N such that f(X,n) = 1.

Since ν(S) > 0, using Lemma 5.3, we obtain that for any c > 1 there exist infinitely many
n ∈ N such that ν({X : f(X,n) = 1}) > n−c. Then, from the definition of f , we have

ν({X : d̃(X � 2n) > 2(1−s̃)2n d̃(X � 2n−1)} > n−c.

Since ν is defined in terms of g, it follows that

Prx∼Σs.2n [d̃(g(x)) > 2(1−s̃)2n d̃(g(x � s.2n−1))] > n−c.

Putting c = 2 , we have

Prx∼Σs.2n [d̃(g(x)) > 2(1−s̃)2n d̃(g(x � s.2n−1))] > n−2.

Let n + 1 be one of the lengths at which the condition in Lemma 5.4 holds. Let w,w′ ∈ Σ2n

such that w = G2n(x) for some x ∈ Σ2sn and w′ = g(r) for some r ∈ Σ2sn .
In order for the condition M(w′w) ≥ c · 2(1−s̃)|w| ·M(w′) to hold, it suffices that d̃(w′w) ≥

2(1−s̃)|w| · d̃(w′) and M(w′w) ≥ c · d̃(w′w) and M(w) ≤ d̃(w).
From Lemma 5.4, it follows that the first condition holds with probability at least (n + 1)−2

among x, r selected uniformly at random from Σs·2n × Σs·2n and taking w = g(x), w′ = g(r).
Since d̃ is ν-approximable, for some k ∈ N, on input w ∈ Σ2n , the computations of all M(w) in
Algorithm 2 outputs a value in [c · d̃(w), d̃(w)] with probability at least 1 − 2−(kn−1) according to
the distribution ν2n . Note that the distribution according to ν2n corresponds to g applied to the
uniform distribution on 2sn.

Therefore it follows that for infinitely many n,

Pr(x,r)∼Σs·2n×Σs·2n [A(G2n(x), r)) = 1] ≥ 1

(n+ 1)2
− 1

2kn
.

Hence, taking N = 2n, for infinitely many n,

Prx∼Σs·N [A(GN (x)) = 1] ≥ 1

(logN + 1)2
− 1

Nk
. (8)

5.2.2 Performance of the algorithm on uniformly random inputs

We now analyze Prx∈Σ2n [A(x) = 1]. We use the Kolmogorov inequality for supermartingales to
show that this is inverse exponentially small in input size.

Lemma 5.5 (Kolmogorov Inequality [Lut03a]). Let d : Σ∞ → [0,∞) be a supermartingale. For
any w′ ∈ Σ∗ and n, c ∈ N, the number of strings w ∈ Σn such that d(w′y) ≥ c.d(w′) for some y v w
is less than or equal to 2n/c.

Proof. Define,

E = {x : (∃w ∈ Σn(x v w)) ∧ (d(w′x) ≥ c · d(w′)) ∧ (∀y @ x(d(w′y) < c · d(w′)))}
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Observe that E is a prefix free set such that for every w ∈ Σn satisfying d(w′y) ≥ c.d(w′) for some
y v w, there exists an x ∈ E such that x v y. Since d is a supermartingale, using an induction
argument, it follows that

d(w′) ≥
∑
x∈E

1

2|x|
· d(w′x) =

∑
x∈E

2n−|x|

2n
· d(w′x) ≥ 1

2n

∑
x∈E

2n−|x|d(w′x).

If d(w′) = 0, then the lemma follows trivially. Assume that d(w′) > 0. Let M be the number of
strings w ∈ Σn such that d(w′y) ≥ c.d(w′) for some y v w. It follows that,

d(w′) ≥ 1

2n
·M · c · d(w′).

Therefore, we obtain that M ≤ 2n/c, which is the required conclusion.

We need an upper bound on the number of strings w ∈ Σ2n and r ∈ Σ2sn such that A(w, r) = 1.
This happens when M(w′w) ≥ c · 2(1−s̃)|w| ·M(w′).

For any n ∈ N, take any r ∈ Σs.2n , and let w′ = g(r). Using the Kolmogorov Inequality for
Martingales (Lemma 5.5), the number of strings w ∈ Σ2n such that d̃(w′w) ≥ c2 · 2|w|(1−s̃)d̃(w′) is
less than 2|w|/(c2 · 2|w|(1−s̃)).

For the remaining set of strings, we have that d̃(w′w) < c2 · 2|w|(1−s̃)d̃(w′). If we have that
M(w′w) ≤ d̃(w′w) and M(w′) ≥ c · d̃(w′), it follows that A(w, r) = 0.

We know that, ν{w ∈ Σ2n : M(w) 6∈ [c · d̃(w), d̃(w)]} ≤ 2−nk for some k ∈ N. From this, it
follows that Prr∈Σs.N [M(w′) < c · d̃(w′)] ≤ 2−nk.

Notice that {w ∈ Σj : M(w) 6∈ [c · d̃(w), d̃(w)]} ⊆ supp(νj) for every j. From the block-wise
definition of the mapping g, for any fixed w′ ∈ g(Σ2n), we obtain that there are at most 2s·2

n
strings

in the set {w′w}w∈Σ2n contained in supp(ν2n+1). Therefore, for any fixed w′, the number of strings
w ∈ Σ2n such that M(w′w) 6∈ [c · d̃(w′w), d̃(w′w)] is at most 2s·2

n
.

Therefore, we have that

Prx∼ΣN Prr∈Σs.N [A(x, r) = 1] < c−2 · 2−N(1−s̃) +N−k + 2−(1−s)N .

Therefore, it follows that for any n ∈ N,

Prx∼ΣN [A(x) = 1] <
1

c2 · 2N(1−s̃) +
1

Nk
+

1

2N(1−s) . (9)

5.3 Proof of Lemma 1.1

Now, we conclude the proof of Lemma 1.1.

Proof of Lemma 1.1. If one-way functions exist then there exists PRG Gn : Σsn → Σn running in
time tG(n) ∈ poly(n) [Theorem 2.1]. For all s = 2−m with m ≥ 2, using {Gn}, we construct a
polynomial time samplable distribution ν over Σ∞ such that the number of random bits used by
the sampler for ν on input 1n is at most sn.

We further show that if we assume to the contrary that for some s′ ∈ (s, 1/2) and some
polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) > 0, then there exists a distinguisher
algorithm A that runs in time tA(n) ∈ poly(n), such that for infinitely many N ∈ N, for all k ∈ N,

Prx∈Σs.N [A(GN (x)) = 1]−Prx∈ΣN [A(x) = 1] >

1

(logN + 1)2
− 2

Nk
− 1

c2 · 2N(1−s̃) −
1

2N(1−s) .
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Let c be any constant such that tA(n) ≤ nc and for all large enough N ,

1

(logN + 1)2
− 2

Nk
− 1

c2 · 2N(1−s̃) −
1

2N(1−s) ≥
1

N c

It follows that GN is not a (N c, 1/N c) PRG for infinitely many N . Therefore the family {Gn}n∈N
is not a PRG. Hence we have shown that PRG’s Gn : Σsn → Σn do not exist for s = 2−m where
m ≥ 2, which contradicts the assumption that One-way functions exist. This completes the proof
of the lemma.

6 Infinitely-often one-way functions from dimension gaps

Now, we prove Lemma 1.2.

Lemma 1.2. If there exist an s < 1 and a polynomial time samplable distribution ν over Σ∞ such
that:

1. Kstr
poly(X) ≤ s for almost every X ∼ ν.

2. There exist some ŝ ∈ (s, 1] such that for every s′ ∈ (s, ŝ) and any polynomial-time ν-
approximable s′-supergale d, ν(S∞(d)) = 0.

Then, infinitely-often one-way functions exist.

Assume there exists some s < 1, a polynomial time samplable distribution ν over Σ∞ such
Kstr

poly(X) ≤ s for almost every X ∼ ν and a constant ŝ ∈ (s, 1] such that for every s′ ∈ (s, ŝ) and
polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0.

Fix arbitrary s′, s′′ and s′′′ such that s < s′ < s′′ < s′′′ < ŝ and 2s
′′′ ∈ Q. Consider the function

d : Σ∗ → [0,∞) defined as d(w) = 2s
′′′|w|ν(w). It is easy to verify that d is an s′′′-supergale.

Claim 6.1. ν{X ∈ Σ∞ : ∃∞n such that νn(X � n) ≥ 2−n·s
′′} > 0.

Proof. Assume that the set of X satisfying the property has probability 0. Then, for any ε > 0,
there exist a large enough N such that

ν{X ∈ Σ∞ : ∀n ≥ N, 0 < νn(X � n) < 2−n·s
′′} ≥ 1− ε.

Since Kstr
poly(X) ≤ s for almost every X ∼ µ, there exist a large enough constant c such that for

t(n) = nc,

ν{X ∈ Σ∞ : lim sup
n→∞

Kt(X � n)/n ≤ s} ≥ 1− ε.

Without loss of generality we assume that N is large enough so that

ν{X ∈ Σ∞ : ∀n ≥ N, Kt(X � n) ≤ n · s′} ≥ 1− 2ε.

Using a union bound, for any n ≥ N ,

ν{w ∈ Σn : 0 < νn(w) < 2−n·s
′′

and Kt(X � n) ≤ n · s′} ≥ 1− 3ε.
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Let Sn = {w ∈ Σn : 0 < νn(w) < 2−n·s
′′

and Kt(X � n) ≤ n · s′}. The above inequality gives
ν(Σn ∩ Scn) ≤ 3ε. Since there are at most 2n·s

′
strings with Kt(X � n) ≤ n · s′, we obtain

ν(Sn) ≤ 2n·s
′

2n·s′′
= 2−n·(s

′′−s′).

Recall that s′′ > s′. By choosing n large enough so that 2−n·(s
′′−s′) ≤ ε and summing the probabil-

ities of all w ∈ Σn we get

1 =
∑
w∈Σn

νn(w) =
∑

w∈Σn∩Sn

νn(w) +
∑

w∈Σn∩Scn

νn(w) ≤ 2−n·(s
′′−s′) + 3ε ≤ 4ε.

By choosing ε < 1/4 we arrive at a contradiction. Therefore, the measure of the set of X satisfying
νn(X � n) ≥ 2−n·s

′′
for infinitely many n must be positive.

Notice that if νn(w) ≥ 2−n·s
′′

then d(w) ≥ 2n(s′′′−s′′). Therefore from Claim 6.1 we obtain that

ν

{
X ∈ Σ∞ : lim sup

n→∞
d(X � n) =∞

}
> 0.

We now show that if infinitely-often one-way functions do not exist, there exists an algorithm M
that ν-approximates d. Hence, we obtain a contradiction to our assumption that for every s′ ∈ (s, ŝ)
and any polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0. Therefore, it must be the
case that infinitely-often one-way functions exist. We require the following result by Ilango, Ren
and Santhanam (see Theorem 20 from [IRS22]) which is implicit in [IL89, IL90].

Theorem 6.1 ([IRS22, IL89, IL90]). Assume that no infinitely-often one-way functions exist. Let
D = {Dn} be a polynomial time samplable distribution and q ≥ 1 be an arbitrary constant. Then,
there exists a probabilistic polynomial time algorithm A and constant c < 1 such that for all n,

Prx∼Dn [c · Dn(x) ≤ A(x) ≤ Dn(x)] ≥ 1−O
(

1

nq

)
.

The following claim completes the proof of the Lemma 1.2.

Claim 6.2. d is polynomial time ν-approximable.

Proof. Let S be the machine that samples the distribution ν such that for every n, Prr [S(1n, r) = w] =
νn(w) for every w ∈ Σn. Let c′ be the constant such that M uses nc

′
random bits to sample a

string of length n.
Assume that no infinitely-often one-way functions exist. Then, the function f : Σ∗ → Σ∗ defined

as
f(x) = M(1|x|

1/c′
, x)

is not an infinitely-often weak one-way function. Hence for any q ≥ 1 there exist an algorithm I
such that for all n,

Pr
r∼Σnc′ [f(I(f(r))) = f(r)] = Prw∼νn [f(I(w)) = w] ≥ 1−O

(
1

nq

)
. (10)

From our assumption that infinitely-often one-way functions do not exist and Theorem 6.1, we
obtain that for any q ≥ 1, there exists a probabilistic polynomial time algorithm A and constant
c < 1 such that for all n,

Prw∼νn [c · νn(w) ≤ A(w) ≤ νn(w)] ≥ 1−O
(

1

nq

)
. (11)
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Finally, we give the algorithm M that ν-approximates d. M on input w ∈ Σn runs I on w. If
f(I(w)) 6= w, M outputs 0. Else, M runs A on w and outputs 2s

′′′|w|A(w). Since 2s
′′′ ∈ Q, M

runs in polynomial time. For any w such that ν(w) = 0 (i.e. w 6∈ supp(νn)), I will never succeed
in finding a pre-image r such that f(r) = w and hence M always outputs 0. Therefore for every n,
{w : M(w) 6∈ [c · d(w), d(w)]} ⊆ supp(νn).

Now, from (10) and (11) we obtain that,

Prx∼νn [c · d(x) ≤M(x) ≤ d(x)] ≥ 1−O
(

1

nq

)
−O

(
1

nq

)
≥ 1−O

(
1

nq

)
.

Therefore for every n, ν{w : M(w) 6∈ [c · d(w), d(w)]} ≤ O (n−q). Since A runs in randomized
polynomial time and q is arbitrary, M witness the fact that d is a polynomial time ν-approximable
s′′′-gale.

7 One-way functions and polynomial-time dimension of sets

We prove the following.

Theorem 1.6. If for all F ⊆ Σ∞,

dimP(F) = Kpoly(F),

then one-way functions do not exist.

In fact, we prove the following stronger assertion.

Theorem 7.1. If one-way functions exist, then for every s < 1/2, there exist F ⊆ Σ∞ such that
Kstr

poly(F) ≤ s and dimP(F) ≥ 1/2.

Proof. Assume that one-way functions exist. From Lemma 1.1, for every s < 1/2 there exist a
polynomial time samplable distribution ν over Σ∞ and polynomial t such that:

1. The number of random bits used by the sampler for ν on input 1n is at most sn.

2. For every s′ ∈ (s, 1/2) and any polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0.

Consider the following set,

F ′ =
⋂
n≥1

⋃
w∈supp(νn)

Cw.

Observe that ∪w∈supp(νn)Cw is a finite union of cylinder sets in Σ∞ and hence is a closed set. Since
ν is a polynomial time samplable probability distribution on Σ∞, ∪w∈supp(νn)Cw is a superset of
∪w∈supp(νn+1)Cw for every n. Since F ′ is an intersection of a decreasing sequence of non-empty
closed sets in the compact space Σ∞, F ′ is non-empty (see [S+63]). Since ν(∪w∈supp(νn)Cw) = 1 for
every n, using the continuity of probability measures from above [Bil95], we get ν(F ′) = 1. Since
the number of random bits used by the sampler for ν on input 1n is at most sn, Kstr

poly(F ′) ≤ s. Since

the number of random bits used by the sampler for ν on input 1n is at most sn, Kstr
poly(F) ≤ s. For

the sake of contradiction, assume that dimP(F) < 1/2. Therefore, for some s′ ∈ (dimP(F), 1/2),
there exist a polynomial-time s′-supergale d such that F ⊆ S∞(d). Since d is polynomial-time
computable, d is trivially a polynomial-time ν-approximable s′-supergale. Now, since we know that
ν(S∞(d)) ≥ ν(F) = 1, we obtain a contradiction. Hence, it must be the case dimP(F) ≥ 1/2.
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8 One-way functions and polynomial-time dimension of sequences

Theorem 1.7. If for all X ∈ Σ∞,

dimP(X) = Kpoly(X),

then one-way functions do not exist.

In order to prove the above theorem, it is enough to show the following.

Theorem 8.1. If one-way functions exist, then for every s < 1/2, there exist X ∈ Σ∞ such that
Kstr

poly(X) ≤ s and dimP(X) ≥ 1/2.

We require the following construction.

Lemma 8.1. For any time t(n) ∈ poly(n), and s > 0 with 2s ∈ Q, there exists an exact t(n) · n ·
log(n)-time computable s-gale d̃ such that for all exact t(n)-time computable s-gales d, there exist
a constant c such that for all X ∈ Σ∞ and n ∈ N, d̃(X � n) ≥ c · d(X � n).

Proof. Let {Mi} be a standard computable enumeration of all Turing machines. The idea of the
proof is that we consider the t(n)-time martingales among the first log n machines to place bets on
strings of length n. The remaining martingales are assumed to bet evenly on all strings of length
n.

We will therefore define the martingale, conditioned on the length of the input string x. When
the length of the input string x satisfies 2n ≤ |x| < 2n+1, we consider the machines M1 . . .Mn to
decide d̃(x).

The remaining machines Mi for i ≥ n+ 1 are assumed to bet evenly on x. So, for i ≥ n+ 1, we
force the capital placed by Mi on x to be 2|x|·(s−1).

Therefore, given x ∈ Σ∗, such that 2n ≤ |x| < 2n+1, we define

d̃(x) =

n∑
i=1

2−i ·M ′i(x) +

∞∑
i=n+1

2−i · 2|x|·(s−1)

= 2−n+|x|·(s−1) +
n∑
i=1

2−i ·M ′i(x).

We now define M ′i(x). For n ∈ N , let Dn(x) be the set of machines in {M1, . . .Mn} such that
for each j ≤ |x|, M(x � j) runs in time t(j) and M(λ) = 1 and 2s ·M(x � j) = M((x � j).0)+M((x �
j).1).

Case 1: Mi ∈ Dn(x). The actual bets placed by martingale Mi is taken into consideration for
strings of length more than 2i. In that case, we need to ensure that the capital of Mi at x � 2i is
forced to be 22i·(s−1).

In this case, when Mi(x � 2i) > 0, we define M ′i(x) = 22i·(s−1)(Mi(x)/Mi(x � 2i)). If Mi(x �
2i) = 0, then it holds that Mi(x) = 0, so we just take M ′i(x) = 0.

Case 2: Mi 6∈ Dn(x). In this case, let j < |x| be the least number such that Mi(x � j) takes
more than t(j) time to run, or the s-gale condition gets violated, that is 2s ·Mi(x � j) 6= Mi((x �
j)0) +Mi((x � j)1). In this case, we freeze M ′is capital at index j, and Mi is forced to bet evenly
after that. Note that we have to force Mi to bet evenly up to x � 2i. Therefore if j < 2i, we take
M ′i(x) = 2|x|·(s−1). Otherwise, j ≥ 2i and M ′i(x) = M ′i(x � j) · 2(|x|−j)·(s−1). Note that from the

previous case, we have M ′i(x � j) = 22i·(s−1)(Mi(x � j)/Mi(x � 2i)).
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Consider any exact t-time computable martingale d. Let Mk be any t-time machine such that
d(w) = Mk(w) for every w ∈ Σ∗. Then, it follows from the construction of d̃ that for all w with
|w| > 2k,

d̃(w) ≥ 2−k · 2−2k(1−s)

d(w � 2k)
· d(w).

Let c be the constant on the right hand side. Note that the membership of any machine from
{M1,M2, . . .Mn} in Dn(w) is decidable in time t(|w|) · n · |w|. Since n ≤ log(|w|), and 2s ∈ Q, it
follows that, d is an exact t(n) · n · log(n)-time computable s-gale.

Now, we prove Theorem 8.1.

Proof of Theorem 8.1. Assume that one-way functions exist. From the proof of Lemma 1.1, we
obtain that for every s < 1/2 there exist a polynomial time samplable distribution ν over Σ∞ and
polynomial t such that:

1. The number of random bits used by the sampler for ν on input 1n is at most sn.

2. For every s′ ∈ (s, 1/2) and any polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0.

Consider the following set,

F =
⋂
n≥1

⋃
w∈supp(νn)

Cw.

Observe that ∪w∈supp(νn)Cw is a finite union of cylinder sets in Σ∞ and hence is a closed set. Since
ν is a polynomial time samplable probability distribution on Σ∞, ∪w∈supp(νn)Cw is a superset of
∪w∈supp(νn+1)Cw for every n. Since F is an intersection of a decreasing sequence of non-empty
closed sets in the compact space Σ∞, F is non-empty (see [S+63]). Since ν(∪w∈supp(νn)Cw) = 1 for
every n, using the continuity of probability measures from above [Bil95], we get ν(F) = 1. Since
the number of random bits used by the sampler for ν on input 1n is at most sn, Kstr

poly(X) ≤ s
for every X ∈ F . For the sake of contradiction, assume that there exist s′ ∈ (s, 1/2) such that
dimP(X) < s′ for every X ∈ F . So, every X ∈ F there exists an exact computable s′-gale d′X that
runs in time td′X (n) ∈ poly(n), such that d′X succeeds on X.

We first partition the set F , based on the running time of the s′-gales that succeeds on it.
Define

Ri = {X ∈ F : there exists an ni-time s′-gale d such that X ∈ S∞(d)}

and let Si = Ri \Ri−1. Note that {Si}i∈N is a partition of F into countably many disjoint subsets.
As
∑∞

i=1 ν(Si) = 1, there exists an k ∈ N such that
∑k

i=1 ν(Si) > 0. Define S =
⋃k
i=1 Si. Using

Lemma 8.1, there exists an exact nk+c-time computable s′-gale d′ that succeeds on all sequences
in S. Since d is polynomial-time computable, d is trivially a polynomial-time ν-approximable s′-
supergale. Now, since we know that ν(S∞(d)) ≥ ν(S) > 0, we obtain a contradiction. Hence, it
must be the case that there exist a sequence X ∈ F with dimP(X) > s′. Since s′ was arbitrary, the
theorem follows.

We also note the following lemma which follows using the same ideas in the proof of Theorem
8.1.
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Lemma 8.2. If for some s < 1/2, ν is a polynomial time samplable distribution over Σ∞ such
that:

1. The number of random bits used by the sampler for ν on input 1n is at most sn.

2. For every s′ ∈ (s, 1/2) and any polynomial-time ν-approximable s′-supergale d, ν(S∞(d)) = 0.

Then,
ν{X ∈ Σ∞ : Kstr

poly(X) ≤ s and dimP(X) ≥ 1/2 > s} = 1.

Proof. Consider the set F in the proof of Theorem 8.1. It is enough to show that, ν{X ∈ Σ∞ :
Kstr

poly(X) > s or dimP(X) < 1/2} = 0. It follows directly from the argument in the proof of

Theorem 8.1 that Kstr
poly(X) ≤ s for every X ∈ F . Consider the set H = {X ∈ F : dimP(X) < 1/2}.

If µ(H) > 0 then there exist some ŝ < 1/2 such that µ(Ĥ) > 0 where Ĥ = {X ∈ F : dimP(X) < ŝ}.
By using the partitioning argument along with the gale combination technique in the in the proof
of Theorem 8.1 over the set Ĥ instead of F , we obtain a contradiction to the second statement in
the hypothesis of the lemma. Therefore, it must be the case that µ(H) = 0 which completes the
proof of the lemma.

9 Sets and sequences with maximal gap between Kstr
poly and dimP

In this section we prove that if one-way functions exist, the gap between dimP and Kstr
poly can be

arbitrarily close to 1.

Theorem 9.1. If one-way functions exist, then for every ε > 0 there exist set F and sequence X
such that dimP(F)−Kstr

poly(F) ≥ 1− ε and dimP(X)−Kstr
poly(X) ≥ 1− ε respectively.

We prove the existence of a sequence X such that dimP(X)−Kstr
poly(X) ≥ 1− ε. The assertion

for sets follows trivially from this claim. Let s = 2−m for some m > 1. We have s < 1/2 and

therefore 2s < 1. Consider the set F ′2s = {X ∈ Σ∞ : lim supn→∞
Ktg (X�n)

n ≤ 2s}. For any X ∈ F ′2s,

Kstr
poly(X) = inf

t∈poly
lim sup
n→∞

Kt(X � n)

n
≤ 2s.

We argue that there does exist any s′ < 1 satisfying 2s < s′ < 1 and 2s
′ ∈ Q such that

dimP(X) < s′ for every X ∈ F ′2s. Assume that for some such s′ and every X ∈ F ′2s there exists an
exact computable s′-gale d′X that runs in time td′X (n) ∈ poly(n), such that d′X succeeds on X.

As in the proof of Theorem 1.6, we construct the mapping g : Σ∞ → Σ∞ as in Definition 4.1.
For any X ∈ Σ∞, from Corollary 4.1, it follows that g(X) ∈ F2s′ . Therefore, g(Σ∞) ⊆ F2s′ .

So, every X ∈ Σ∞ there exists an exact computable s′-gale d′X that runs in time td′X (n) ∈
poly(n), such that d′X succeeds on g(X). Similar to the proof of Theorem 1.7, using a gale com-
bination technique, we construct a set S ⊆ Σ∞ such that µ(S) > 0 and a single s-gale d′ that
succeeds on g(X) for all X ∈ S.

We first partition sequences in the input space of g into sets, based on the running time of the
s′-gales that succeeds on it. Define

Ri = {X ∈ Σ∞ : there exists an ni-time s′-gale d such that g(X) ∈ S∞(d)}

and let Si = Ri \ Ri−1. Note that {Si}i∈N is a partition of Σ∞ into countably many disjoint
subsets. As

∑∞
i=1 µ(Si) = 1, there exists an k ∈ N such that

∑k
i=1 µ(Si) > 0. Define S =

⋃k
i=1 Si.
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Now, using Lemma 8.1, there exists an exact t(n)-time computable s′-gale d′ that succeeds on all
sequences in g(S) for some polynomial t(n).

Now, using Lemma 8.1, there exists an exact t(n)-time computable s′-gale d′ that succeeds
on all sequences in g(S) for some polynomial t(n). The major tool we require is the following
generalization of Lemma 5.2 to any s′ < 1.

Lemma 9.1. For s′ < 1, let d′ : Σ∞ → [0,∞) be an exact t(n)-time computable s′-gale. Let s̃ and
s′′ be such that s̃ > s′′ > s′, 2s̃ ∈ Q and 2s

′′ ∈ Q. Then, there exists an exact t(n)poly(n)-time
computable martingale d̃ : Σ∞ → [0,∞) such that for any X ∈ S∞(d′), there exists infinitely many
n ∈ N satisfying at least one of the following:

1. d̃(X � 2n) > 2(1−s̃)2n−1
d̃(X � 2n−1).

2. There exists ` satisfying ((s̃ − s′′)/s′′) · 2n−1 ≤ ` ≤ 2n−1 such that d̃(X � 2n−1 + `) >
2(1−s′′)(2n−1+`).

Proof. Let d̃ be the exact t(n)poly(n)-time computable martingale from Lemma 5.1 such that,

lim sup
n→∞

d̃(X � n)

2(1−s′′)n =∞.

We show that d̃ satisfies the required property. On the contrary, assume that there exists m > 0
such that for every n > m, d̃(X � 2n) ≤ 2(1−s̃)2n−1

d̃(X � 2n−1) and d̃(X � 2n + `) ≤ 2(1−s′′)(2n−1+`)

for every ` such that ((s̃− s′′)/s′′) · 2n−1 ≤ ` ≤ 2n−1. Since, there exist infinitely many k such that
d̃(X � k) ≥ 2(1−s′′)k, we obtain that infinitely many n and ` ≤ ((s̃− s′′)/s′′) · 2n−1 should satisfy,

d̃(X � 2n−1 + `) > 2(1−s′′)(2n−1+`). (12)

But for any large enough n and ` satisfying ` ≤ ((s̃− s′′)/s′′) · 2n−1, we have

d̃(X � 2n−1 + `) ≤ 2`2(1−s̃)
∑n−2

i=m 2i d̃(X � 2m)

= 2`2(1−s̃)(2n−1−2m)d̃(X � 2m).

From 12, we obtain

2`s
′′ ≥ 2(1−s̃)2m

d̃(X � 2m)
22n−1(s̃−s′′).

Since ` ≤ ((s̃− s′′)/s′′) · 2n,

22n−1(s̃−s′′) ≤ d̃(X � 2m)

2(1−s̃)2m . (13)

Since s̃ > s′′, the above cannot be true for large enough n. So, we obtain a contradiction. Therefore,
it must be the case that there exist infinitely many n satisfying conditions 1 or 2.

Definition 9.1. Let f ′ : Σ∞ × N → {0, 1} be defined as follows. f ′(X,n) = 1 if either of the
following are true:

1. d̃(g(X) � 2n) > 2(1−s̃)2n d̃(g(X) � 2n−1).

2. There exists ` satisfying ((s̃ − s′′)/s′′) · 2n−1 ≤ ` ≤ 2n−1 such that d̃(g(X) � 2n−1 + `) >
2(1−s′′)(2n−1+`).
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Otherwise we define f ′(X,n) = 0.

Now, we prove an analogue of Lemma 5.4 for the new function f ′. The proof is identical to
that of Lemma 5.4 and uses the Borel-Cantelli lemma.

Lemma 9.2. Given d̃ : Σ∞ → [0,∞), if for all sequences Y ∈ g(S) where µ(S) > 0, there exists
infinitely many n ∈ N satisfying at least one of the following:

1. d̃(X � 2n) > 2(1−s̃)2n−1
d̃(X � 2n−1).

2. There exists ` satisfying ((s̃ − s′′)/s′′) · 2n−1 ≤ ` ≤ 2n−1 such that d̃(X � 2n−1 + `) >
2(1−s′′)(2n−1+`).

For any n > 0, let Hn be the set of strings in Σs.2n such that d̃(g(x)) > 2(1−s̃)2n d̃(g(x � s.2n−1)) or
there exists ` satisfying ((s̃− s′′)/s′′) · 2n−1 ≤ ` ≤ 2n−1 such that d̃(x � 2n−1 + `) > 2(1−s′′)(2n−1+`).
Then it holds that for infinitely many n,

Prx∈Σs.2n [x ∈ Hn] ≥ 1

n2
.

Let q be a rational number such that

0 <
(s̃− s′′)

2s′′
≤ q ≤ (s̃− s′′)

s′′
.

Now we modify Algorithm A (see Algorithm 2) such that the last step is,

return d̃(w′w) ≥ 2(1−s̃)|w| · d̃(w′) or d̃(w′w) ≥ 2(1−s̃)(2n+`) for some ` such that q · 2n ≤ ` ≤ 2n.

The analysis to prove that for N = 2n,

Pr(x,r)∈Σs·N×Σs·N [A(GN (x)) = 1] ≥ 1

N2
.

is quite similar to the one in the proof of Lemma 1.1. The only difference is that instead of Lemma
5.4, we use Lemma 9.2.

Now, for any n ∈ N, take any r ∈ Σs.2n , and let w′ = g(r). Using Lemma 5.5, for any w′ ∈ Σ2n ,
the number of strings w ∈ Σ2n such that d(w′w) ≥ 22n.(1−s̃)d(w′) is less than 22n/22n(1−s̃). Again,
using Lemma 5.5, the number of strings w′w ∈ Σ2n+1

such that d̃(w′w) ≥ 2(1−s̃)(2n+`) for some `
such that q · 2n ≤ ` ≤ 2n is at most 22n+1

/2(1−s̃)(2n+q2n). Let N = 2n. Now, using the union bound
it follows that,

Pr(x,r)∈ΣN×ΣN [A(x) = 1] <
1

2N(1−s̃) +
1

2(1−s̃)(1+q)N
.

Notice that q is a constant which depends only on s̃ and s′′.
It follows that if one-way functions exist, for every s′ < 1 with 2s

′ ∈ Q there exist X ∈ g(Σ∞)
such that dimP(X) ≥ s′. Since DimP(X) ≥ dimP(X), for every s′ ∈ (2s, 1) with 2s

′ ∈ Q there exist
X ∈ g(S) such that DimP(X) ≥ s′. Now, Theorem 9.1 follows from the observation that by taking
m large enough and choosing an appropriate s′, the quantity s′ − 2s = s′ − 2−m−1 can be made
arbitrarily close to 1.

We obtain the following corollary of Theorem 9.1. These results provide a strong negative
answer to the open question posed by Stull in [Stu20] under the assumption that one-way functions
exist.
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Corollary 9.1. If one-way functions exist then for every ε < 1/2 there exists F ⊆ Σ∞ such that,

Kpoly(F) ≤ Kstr
poly(F) < ε < 1− ε < dimP(F) ≤ DimP(F)

Corollary 9.2. If one-way functions exist then for every ε < 1/2 there exists X ∈ Σ∞ such that,

Kpoly(X) ≤ Kstr
poly(X) < ε < 1− ε < dimP(X) ≤ DimP(X).

10 Remarks on dimension gaps and infinitely-often one-way func-
tions

Our main theorem (Theorem 1.5) shows that one-way functions implies the existence of polynomial
time samplable distributions with respect to which dimension gaps exist on a probability 1 set.
This assertion in turn implies the existence of infinitely-often one-way functions. In this section
we remark on the possibility of proving that either one-way functions or infinitely-often one-way
functions are equivalent to the existence of polynomial time samplable distributions with respect
to which dimension gaps exist on a probability 1 set.

Consider the statement of Lemma 1.1. It is unlikely that the weaker hypothesis of existence
of infinitely-often one-way functions yields the conclusion of Lemma 1.1 using the methods in the
proof of the main theorem. In order to prove the conclusion of the lemma from the existence of
infinitely-often one-way functions we need to break the PRG {Gn} at all but finitely many lengths
n. In our proof method, this requires that the following condition from Lemma 5.4,

Prx∼Σs.2n [d̃(g(x)) > 2(1−s̃)2n d̃(g(x � s.2n−1))] ≥ 1

n2

is true for all but finitely many n. This in turn requires that the following condition from Lemma
5.2,

d̃(X � 2n) > 2(1−s̃)2n−1
d̃(X � 2n−1)

is true for all but finitely many n whenever there exist an s′-gale d′ that wins on X. However,
the existence of an s′-gale d′ that wins on X need not imply that there exists a martingale that
roughly doubles it capital on half of the bits of X from index 2n−1 to 2n for all but finitely many
n. If this happens, then by transforming the martingale d̃ to an s′-gale d′ (using the inverse of the
transformation in Lemma 5.1), we obtain that

d′(X � 2n) >
1

2(s̃−s′)2n−1 · d′(X � 2n−1)

for all but finitely many n. However, an s′-gale d′ winning on X need not respect this bound for all
but finitely many n. d′ may violate this inequality infinitely many times and still manage to gain
sufficient capital infinitely often to win on X.

Now, consider the statement of Lemma 1.2. The main technical hurdle in obtaining a one-way
function in the conclusion of Lemma 1.2 is that assuming the non-existence of one-way functions,
the approximation algorithm A from Theorem 6.1 may only succeed in approximating Dn for
infinitely many values of n. Therefore, the s′-supergale d in the proof of Lemma 1.2 can only be
approximated on infinitely many input string lengths n.

However using the same techniques as in the proof of Lemma 1.2, we can obtain the following
lemma which shows that if dimension gaps exists between dimP defined using gales which are only
approximable on infinitely many lengths and Kstr

poly, then one-way functions exist.
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Lemma 10.1. If for some s < 1 there exist a polynomial time samplable distribution ν over Σ∞

such that:

1. Kstr
poly(X) ≤ s for almost every X ∼ ν.

2. There exist some ŝ ∈ (s, 1] such that for every s′ ∈ (s, ŝ) and any polynomial-time s′-supergale
d that is ν-approximable on infinitely many input lengths, we have ν(S∞(d)) = 0.

Then, one-way functions exist.

The proof is essentially identical to that of Lemma 1.2 except that we use the universal extrap-
olation result Theorem 19 instead of Theorem 20 from [IRS22].

11 Additional Proofs

Below we give an alternative proof of the fact that dimP dominates Kpoly from [HV06, HV04]. We
also prove the analogous inequality for polynomial time strong dimension.

Theorem 11.1 ([HV04, HV06]). For every F ⊆ Σ∞, Kpoly(F) ≤ dimP(F) and Kstr
poly(F) ≤

DimP(F).

We need the following lemma to prove the above theorem.

Lemma 11.1. Let [a, b] be a sub-interval of [0, 1]. Then, there exist m ≤ blog(1/(b − a))c and
j < 2m+2 such that, [

j

2m+2
,
j + 1

2m+2

]
⊆ [a, b].

Proof. Let m = b− log(b− a)c. Among the set of all intervals of the form [k/2m, k + 1/2m], let Im
be the interval which maximizes the length of Im∩ [a, b] (if there are two such intervals, choose any
of them). Consider the following sub-intervals of Im,[

4k

2m+2
,
4k + 1

2m+2

]
,

[
4k + 1

2m+2
,
4k + 2

2m+2

]
,

[
4k + 2

2m+2
,
4k + 3

2m+2

]
and

[
4k + 3

2m+2
,
4k + 4

2m+2

]
.

If none of the above are completely contained in [a, b], then the length of Im ∩ [a, b] is at most
1/2m+2. From the choice of Im, it follows that then length of [a, b] is at most 1/2m+1. Therefore,
m = b− log(b− a)c ≥ m+ 1 which is a contradiction. Therefore, one of the above sub-intervals of
Im satisfies the required condition.

Now, we prove Theorem 1.3.

Proof of Theorem 1.3. Let d : Σ∞ → Q be an exact s-gale that runs in time t such that d succeeds

on all X ∈ F . We show that for all X ∈ F , lim infn→∞
Kt′ (X�n)

n ≤ s, where t′(n) = poly(t(n)).
Given n ∈ N, let Sn = {x ∈ Σn : d(x) > 1}. From the Lemma 5.5, it follows that |Sn| < 2sn.

For x ∈ Sn, we now define an encoding E(x) that takes at most sn+O(1) bits.
Encoding: For any n ∈ N and x ∈ Σn, letting p(x) = d(x).2−sn we obtain a probability

distribution over Σn. For every n, define the cumulative probability cn(x) =
∑

y∈Σn, y<x p(y), where

y < x means that y is less than x in the lexicographic ordering. If d(x) > 1, then p(x) > 2−sn.
Hence cn(x+1)−cn(x) > 2−sn. Here x+1 is the n-length successor of x in the lexicographic order.
Also, we assume that cn(1n + 1) = 1.
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From Lemma 11.1, there exist a dyadic interval [j/2m+2, (j+ 1)/2m+2] that is totally contained
in [cn(x), cn(x + 1)]. Define E(x) to be the binary encoding of this dyadic interval. From Lemma
11.1, we have

|E(x)| ≤ m+ 2 ≤
⌊

log
1

cn(x+ 1)− cn(x)

⌋
+ 2 ≤ blog 2snc+ 2 = sn+O(1).

Hence, it follows that E defines a one to one encoding from Sn → Σ∗ such that |E(x)| < sn+O(1).
for every x ∈ Sn.

Decoding: We will now give a poly(t(n)) procedure that uses d to generate an x ∈ Σn, given
E(x) as input. The idea is that we perform a binary search over Σn using the exact polynomial
time computable s-gale d and the input encoding E(x).

Given E(x) ∈ Σsn, observe that the dyadic interval [j/2m+2, (j + 1)/2m+2] encoded by E(x) is
totally contained in [cn(x), cn(x+ 1)] for some x ∈ Σn.

Algorithm 3 Decoding Algorithm. Input w

1: Set x0 = λ, c0(x0) = 0
2: Compute the dyadic interval I such that w is an encoding of I
3: for i = 0 to n− 1 do
4: if I ⊆ [ci(xi), ci(xi) + p(xi.0)] then
5: Set xi+1 = xi.0
6: Set ci+1(xi+1) = ci+1(xi)
7: else
8: Set xi+1 = xi.1
9: Set ci+1(xi+1) = ci+1(xi) + p(xi.0)

10: end if
11: end for

Running time of the algorithm: Since d is exact computable 2−s is rational and hence
p(y) = d(y)2−s|y| can be computed in time polynomial in t(|w|) for any y with length less than
or equal to that of w. Every other step in the algorithm can be performed in polynomial time.
Therefore on input w, the algorithm terminates in poly(t(n)) steps.

Correctness: At each step in the main loop of the algorithm, we keep track of the cumulative
probability ci(xi) for the current node as a running sum. On input E(x) for some x ∈ Σn, we are
guaranteed that the interval I encoded by E(x) satisfies I ⊆ [cn(x), cn(x + 1)]. At step 0, either
I ⊆ [0, p(0)] or I ⊆ [p(0), p(1)]. A simple inductive argument shows that at every step i, either
I ⊆ [ci(xi), ci(xi) + p(xi.0)] or I ⊆ [ci(xi) + p(xi.0), ci(xi) + p(xi.0) + p(xi.1)].

The above conclusion implies that at the end of step i, I ⊆ [ci+1(y), ci+1(y + 1)] for some
y ∈ Σi+1. therefore, at the end of the loop I ⊆ [cn(y), cn(y + 1)] for some y ∈ Σn. From the
definition of the encoding E , it follows that the algorithm on input E(x) for x ∈ Σn terminates with
xn = x.

Conclusion: Given F ⊆ Σ∞ and s > dimP(F) such that 2s ∈ Q. There exists an s-gale d that
succeeds on all X ∈ F , we have that for every X ∈ F , for infinitely many n ∈ N, d(X � n) ≥ 1.
From the above algorithm it follows that, lim infn→∞Kpoly(t(n))/n ≤ s and so Kpoly(F) ≤ s. Hence
we conclude that for every F ⊆ Σ∞, Kpoly(F) ≤ dimP(F). This proves the first inequality.

Similarly, let s > DimP(F). then there exists an s-gale d such that d strongly succeeds on all
X ∈ F . It follows that for every X ∈ F , for all but finitely many n ∈ N, d(X � n) ≥ 1. Therefore
using the above algorithm we obtain, lim supn→∞Kpoly(t(n))/n ≤ s and so Kstr

poly(F) ≤ s. Hence we

conclude that for every F ⊆ Σ∞, Kstr
poly(F) ≤ DimP(F).
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