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Abstract

We give simple deterministic reductions demonstrating the NP-hardness of approximating
the nearest codeword problem and minimum distance problem within arbitrary constant factors
(and almost-polynomial factors assuming NP cannot be solved in quasipolynomial time). The
starting point is a simple NP-hardness result without a gap, and is thus “PCP-free.” Our
approach is inspired by that of Bhattiprolu and Lee [BL24] who give a PCP-free randomized
reduction for similar problems over the integers and the reals. We leverage the existence of
ε-balanced codes to derandomize and further simplify their reduction for the case of finite fields.

1 Introduction

Error-correcting codes are fundamental mathematical objects with many applications across
computing. A long line of work has been studying the complexity of basic computational problems
on codes, especially the Nearest Codeword Problem (NCP) and the Minimum Distance Problem
(MDP) [BMvT78,ABSS97,Var97,DMS03,CW12,AK14,Mic14] defined below.

Definition 1 (Nearest Codeword Problem (NCP)1).
An instance of NCP over a finite field Fq consists of an affine subspace V ⊆ Fn

q , where V is encoded
using any basis. The goal is to find the minimum Hamming weight of any vector x ∈ V .

MDP is a homogeneous variant of NCP:

Definition 2 (Minimum Distance Problem (MDP)).
An instance of MDP over a finite field Fq consists of a subspace V ⊆ Fn

q . The goal is to find the
minimum Hamming weight of any nonzero vector x ∈ V .

Our Results. We give a new elementary proof of the inapproximability of these problems, avoiding
the PCP theorem. It has traditionally been much easier to show hardness for the non-homogeneous
variant NCP compared to the homogeneous version MDP. Previous approaches first establish inap-
proximability of NCP as a quick corollary of the PCP theorem, and then employ non-trivial coding
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1NCP is sometimes referred to as the Maximum Likelihood Decoding (MLD) problem in the literature.
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gadgets to give a gap-preserving reduction from NCP to MDP. However, in this work, we proceed
in reverse. We first give a deterministic gap-producing reduction from homogeneous quadratic
equations to MDP (using an appropriately chosen tensor product of a concatenated code) and then
amplify the gap by simple tensoring. We then give an elementary gap-preserving reduction from
MDP to NCP, utilizing a special “distinguished-coordinate” property in our hard MDP instance.
As a result, we have the following two theorems:

Theorem 3. For any finite field Fq, it is NP-Hard to approximate MDP within any constant factor,

and for any fixed ε > 0, it is Quasi-NP-Hard to approximate MDP within 2log
1−ε n.

A problem is said to be Quasi-NP-Hard if it does not admit a polynomial time algorithm assuming
NP cannot be solved in quasipolynomial time.

Theorem 4. For any finite field Fq, it is NP-Hard to approximate NCP within any constant factor,

and for any fixed ε > 0, it is Quasi-NP-Hard to approximate NCP within 2log
1−ε n.

Related Work. Proving NP-Hardness of exactly computing MDP was a question posed in
[BMvT78], and was resolved in the affirmative by Vardy [Var97], using as a gadget a Reed-
Solomon code concatenated with the Hadamard code. The analog for MDP for point lattices,
the Shortest Vector Problem (SVP), was shown to be NP-hard under randomized reductions by
Ajtai [Ajt98].2 Micciancio [Mic01] then established hardness of approximating SVP within a con-
stant factor bounded away from 1 via a reduction from the affine version, the Closest Vector Prob-
lem (CVP), using “locally dense” lattices as key gadgets. Dumer, Micciancio and Sudan [DMS03]
adapted the locally dense gadgets framework to the setting of linear codes and established constant-
factor inapproximability of MDP over any finite field, under randomized reductions (the inapprox-
imability factor can be amplified to any desired constant via tensoring). A locally dense code is
a code of minimum distance d, that admits a Hamming ball of smaller radius ((1 − ε)d for some
constant ε > 0) containing exponentially many codewords.

Cheng and Wan [CW12] derandomized the proof of [DMS03] by giving a deterministic con-
struction of a locally dense gadget over any finite field. In particular they give an explicit Hamming
ball of radius 0.67d that contains exponentially many codewords of an explicit code of distance d.
The proof of Cheng and Wan’s result is fairly deep, making use of Weil’s character sum estimate.

Austrin and Khot [AK14] gave a simpler proof of deterministic hardness of MDP by mak-
ing use of tensor codes. Building on this, Micciancio [Mic14] proved that for the special case of
F2, the tensoring of any base code with large distance yields a significantly simpler deterministic
construction of a locally dense gadget than the proof of [CW12].

More recently, Bhattiprolu and Lee [BL24] observed that if the base code C being tensored has
a weak version of the local density property (i.e. there is a Hamming ball of radius (1+ε)d containing
exponentially many codewords in C) and an additional property that linearly independent minimal
weight codewords do not overlap much in support (which always holds over finite fields), then
the reduction in [AK14] can be simplified (in particular bypassing the PCP theorem) as well as
generalized to larger fields (including the reals). However, [BL24] uses a random base code, and
therefore the reduction is randomized.

In this work, we derandomize (and further simplify) the reduction in [BL24] for the special
case of finite fields. We show that the tensoring of any ε-balanced code (all of whose nonzero
codewords have Hamming weights within a (1 ± ε) factor of each other) can be used to give a

2The NP-hardness of SVP under deterministic reductions still remains open.
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gap-producing reduction for MDP from satisfiability of homogeneous quadratic equations. We
choose the base code to be a low rate Reed-Solomon code concatenated with a Hadamard code
(which is ε-balanced). This gives a new deterministic proof of the hardness of MDP, that is simpler
than [AK14] in two ways; first the PCP theorem is not used, and secondly, the proof of the code
construction is elementary whereas in [AK14] the proof (for fields of size ≥ 3) uses Viola’s [Vio09]
construction of a pseudorandom generator for low degree polynomials.

A recent work [BHI+24] also achieves constant inapproximability of NCP without using the
PCP theorem (using multiplication codes). They even manage at most constant factor blow-up on
the parameters when reducing from 3SAT, which leads to an exponential runtime lower bound for
NCP (under the Exponential Time Hypothesis). Our reduction is nevertheless interesting due to
its simplicity and also since it works essentially verbatim for MDP.

2 Preliminaries

2.1 Homogeneous Quadratic Equations

Any homogeneous quadratic polynomial p : Fn
q → Fq may be written in the form p(x) =∑

i,j∈[n]Q[i, j]xixj for some coefficient matrix Q = [Q[i, j]]i,j∈[n] ∈ Fn×n
q . For X ∈ Fn×n

q , let

Q(X) :=
∑

i,j∈[n]Q[i, j]X[i, j], so that p(x) = Q(xxT ) for all x ∈ Fn
q . It will be convenient for us

to encode homogeneous quadratics by their coefficient matrix Q.

To prove APX-hardness of MDP, we start with the NP-hardness of determining whether a
system of homogeneous quadratic equations is satisfiable:

Proposition 5 (Homogeneous Quadratic Equations Hardness).
Fix any finite field Fq. Given n variables x1, . . . , xn and m quadratic equations
Q1(xx

T ) = 0, . . . , Qm(xxT ) = 0, it is NP-hard to distinguish between the following two cases:

• (YES) There exists a non-zero vector x ∈ {0, 1}n satisfying all m equations.

• (NO) There is no non-zero x ∈ Fn
q satisfying all m equations.

Furthermore, the hardness holds with the distinguished-coordinate property, i.e., in the YES case,
there is a non-zero vector x satisfying all equations as well as xn = 1.

Note that above the completeness guarantees a solution x ∈ {0, 1}n whereas the soundness
rules out x ∈ Fn

q—the above is thus a promise problem. Proposition 5 is proved via reduction
from the circuit satisfiability (Circuit-SAT) problem. The proof follows the standard template
for exact NP-Hardness results, and we defer it to Appendix A.

2.2 Tensor Codes and Distance Amplification

We show hardness of MDP by first generating a constant factor gap and then using the standard
observation that the minimum distance of a code is multiplicative under the usual tensor product
operation, which we prove below for completeness.

The tensor product of two subspaces U ⊆ Fn
q and V ⊆ Fm

q , denoted by U ⊗ V may be defined
as the space of matrices M ∈ Fn×m

q such that every row of M lies in V and every column of M lies
in U .

Let ∥U∥0 denote the minimum distance, i.e., ∥U∥0 := minu∈U\{0} ∥u∥0. Then we have
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Observation 6. For any subspaces U ⊆ Fn
q and V ⊆ Fm

q , ∥U ⊗ V ∥0 = ∥U∥0 · ∥V ∥0.

Proof. The LHS is at most the RHS since we may consider the element uvT ∈ U ⊗ V , where we
choose u ∈ U that has sparsity ∥U∥0 and v ∈ V that has sparsity ∥V ∥0.

For the other direction, consider any nonzero M ∈ U ⊗V . There must be some non-zero entry
in M , and so there is at least one nonzero column. Since this column lies in U , it must have at
least ∥U∥0 nonzero entries, and therefore at least ∥U∥0 rows of M are nonzero. Each such row lies
in V and hence has ∥V ∥0 nonzero entries. We conclude that M has at least ∥U∥0 · ∥V ∥0 nonzero
entries.

Applying the above observation inductively, we have:

Observation 7. For any subspaces U ⊂ Fn
q and any t ∈ N, ∥U⊗t∥0 = ∥U∥t0.

3 Rank testing via tensor codes

The gap-producing randomized reduction in [BL24] proceeds by first observing that testing
(nonzero) satisfiability of a system of quadratic equations Q1(xx

T ) = 0, . . . , Qm(xxT ) = 0 is equiv-
alent to testing whether or not the subspace of matrices given by {X : X = XT , Q1(X) =
0, . . . , Qm(X) = 0} contains a rank-1 matrix. Then [BL24] shows how tensoring of a base code
with appropriate structure can be used to test via Hamming weight if a matrix subspace contains a
rank-1 matrix. We follow the same template, but our approach is even simpler as over finite fields,
we are able to embed the above subspace directly inside a tensor code. We begin by discussing the
simple but crucial properties of the Hamming weight of matrices of rank > 1 in a tensor code.

Hamming Weight of Rank ≥ 2 Elements of a Tensor Code. Recall that in Observation 6,
the upper bound ∥U∥20 on ∥U ⊗ U∥0 (taking V = U) is attained by a rank-1 matrix. Implicit
in [AK14] is the insightful observation that codewords of rank ≥ 2 in U ⊗U have Hamming weight
at least (1+ 1

q )∥U∥20 (over a finite field Fq), which is significantly larger than the minimum distance.
We include the proof here for completeness.

Lemma 8. For any subspace U ⊂ Fn
q and any M ∈ U ⊗ U of rank at least 2, we have ∥M∥0 ≥

(1 + 1
q ) · ∥U∥20.

Proof. Since M is of rank at least two, there are two linearly independent columns, that by Fact 9
(proved below), have joint support of size at least (1 + 1

q )d. Thus at least (1 + 1
q )d rows of M are

non-zero, and since they lie inside U , each of these rows has at least ∥U∥0 non-zero entries. Thus
∥M∥0 ≥ (1 + 1

q )∥U∥20.

Fact 9 (Fact 2.7 in [AK14]). Let U ⊆ Fn
q be a subspace. Then for any two linearly independent

vectors x, y ∈ Fn
q , we have |supp(x) ∪ supp(y)| ≥ (1 + 1

q )∥U∥0.

Proof. Let m be the number of coordinates such that xi ̸= 0 or yi ̸= 0 but not both, and let m′ be
the number of coordinates such that xi ̸= 0 and yi ̸= 0. Clearly,

m+ 2m′ ≥ 2d.

4



Since there are only q− 1 choices of values for xi/yi (for xi, yi ̸= 0), there must exist λ ̸= 0 so that
the vector x− λy has at most m+m′ − m′

q−1 non-zero entries. This implies

m+m′ − m′

q − 1
≥ d.

Multiplying the first inequality by 1
q , the second by q−1

q , and adding, gives m +m′ ≥ (1 + 1
q )d as

desired.

ε-Balanced Codes. At the heart of our reduction that generates constant factor hardness for
MDP is the observation that the above connection between rank and Hamming weight can be made
two-sided, assuming the base code being tensored is ε-balanced. More specifically, we observe that
any codeword in C ⊗ C for an ε-balanced code C has near-minimum Hamming weight if and only
if it is rank-1.

Definition 10. For any constant ε > 0, we say a linear error-correcting code with encoding map
C : Fn

q → FN
q with distance d is ε-balanced3 if the Hamming weight of every nonzero codeword lies

in the range [d, (1 + ε)d].

We remark that ε-balanced codes of not-too-small dimension satisfy a weak version of lo-
cal density, namely a Hamming ball of radius (1 + ε)d contains exponentially many (in fact all)
codewords.

It turns out that ε-balanced codes can be easily constructed by concatenating a Reed-Solomon
code with the Hadamard code [AGHP92]. Specifically, we have the following lemma:

Lemma 11. For any constant ε > 0, any finite field Fq, and any n ∈ N, there exists N ≤ (qn/ε)2

and a linear code C : Fn
q → FN

q with minimum distance at least d = (1− ε)(1− 1
q )N , satisfying

∥C(x)∥0 ∈
[
(1− ε)

(
1− 1

q

)
N,

(
1− 1

q

)
N

]
,∀x ∈ Fn

q \ {0}.

Note that when ε < 1
2 , we have

[
(1− ε)

(
1− 1

q

)
N,

(
1− 1

q

)
N
]
⊆ [d, (1 + 2ε)d], which means

the code is (2ε)-balanced.

Proof of Lemma 11. Pick m to be the smallest integer so that n ≤ εqm. Let Q = qm. Note
that Q ≤ qn/ε. Let RS : Fn

q → FQ
Q be a Reed-Solomon encoding map that maps polynomials of

degree < n over Fq to their evaluations at all points in the extension field FQ. Now concatenate this
encoding with the Hadamard encoding that maps FQ, viewed as vectors in Fm

q under some canonical

basis, to Fqm
q . The resulting concatenated code has block length N = Q · qm = Q2 ≤ (qn/ε)2.

The distance of the concatenated code is at least (1 − ε)(1 − 1
q )N , since the Reed-Solomon

code has distance greater than Q − n ≥ (1 − ε)Q and the Hadamard code has distance (1 − 1
q )Q.

The lower bound on the weight of every nonzero codeword follows from distance, while the upper
bound comes from the fact that each of the Q symbols in Reed-Solomon code contributes at most
(1− 1

q )Q Hamming weight after encoding by the Hadamard code.

3The usual definition of ε-balanced is for binary linear codes and has the additional requirement that the minimum
distance is N/2(1 − Θ(ε)). For our purposes, the minimum distance is unconstrained. We abuse terminology and
continue to use the term ε-balanced. We also use this terminology for larger fields.
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Rank-1 Testing via Hamming Weight. Equipped with such a code, we obtain the key obser-
vation regarding rank-1 testing that underlies our MDP reduction:

Lemma 12 (Rank-1 Testing via Hamming Weight of a Linear Transformation).
Let C ∈ FN×n

q be a generator matrix of an ε-balanced code of minimum distance d ≥ 1. Let
X ∈ Fn×n

q . Then

- if X is rank one, ∥CXCT ∥0 ≤ (1 + ε)2 · d2

- if X has rank at least two, ∥CXCT ∥0 ≥ (1 + 1
q ) · d

2.

Proof. The first claim follows since if X is rank one, CXCT = (Cu)(Cv)T for some u, v ∈ Fn
q .

Then by the definition of ε-balanced, ∥CXCT ∥0 = ∥Cu∥0 · ∥Cv∥0 ≤ (1 + ε)2 · d2.
For the second claim, note that if X has rank at least 2, then CXCT has rank at least 2 since

C, being the generator matrix of a code of positive distance, has full column rank. Furthermore
the rows and columns of CXCT all lie in the code whose generator matrix is C. The second claim
then follows from Lemma 8.

4 Inapproximability of MDP

We now prove Theorem 3 by presenting a gap-producing reduction from homogeneous quadratic
equations to MDP.

4.1 Reduction

Input: A parameter ε > 0 and a system of homogeneous quadratic equations of the form

Q1(xx
T ) = 0, . . . , Qm(xxT ) = 0 (1)

Output Subspace: Let ε = 1
9q , and let C ∈ FN×n

q be the generator matrix of an ε-balanced code
of minimum distance d. Our output subspace is defined as

V := {CXCT : Q1(X) = 0, . . . , Qm(X) = 0, XT = X, X ∈ Fn×n
q } (2)

Using the construction of an ε-balanced code from Lemma 11, we reduce an instance of homo-
geneous quadratic equations with n variables to an MDP instance with N2 = poly(n, 1ε ) variables.
A basis of V can be computed in polynomial time by considering the basis {CXCT : X ∈ B},
where B is a basis of {X : Q1(X) = 0, . . . , Qm(X) = 0, XT = X}.

4.2 Analysis

Completeness. Let x ∈ {0, 1}n be a non-zero solution to the system (1). Then (Cx)(Cx)T ∈
V \ {0} and satisfies ∥(Cx)(Cx)T ∥0 ≤ (1 + ε)2d2 ≤ (1 + 1

3q )d
2.
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Soundness. Suppose there is no non-zero solution to system (1), we argue that ∥V ∥0 ≥ (1+ 1
q )d

2.

Consider any non-zero Y ∈ V , and let X be such that Y = CXCT .

If X has rank at least 2, by Lemma 12, ∥Y ∥0 ≥ (1 + 1
q )d

2. So it remains to consider the case

where X has rank 1. Since X is symmetric, we conclude X = xxT for some non-zero x ∈ Fn
q ,

which implies that for every ℓ ∈ [m], Qℓ(xx
T ) = 0, and thus x is a solution to the system (1),

contradicting our assumption.

This yields NP-Hardness of approximating MDP within a factor of (1+ 1
q )/(1+

1
3q ) = 1+ 2

3q+1 .
By simple tensoring, one can increase the gap to any constant, with only a polynomial blow-up on
the instance size, and to almost-polynomial gap with a quasi polynomial blow-up in instance size.
This completes the proof of Theorem 3.

5 Inapproximability of NCP

In this section we will prove Theorem 4 using a straightforward gap-preserving reduction from
MDP. Towards this end, we fist note that the MDP reduction shown above can be easily modified
to have the distinguished-coordinate property. We defer the proof to the appendix.

Proposition 13 (MDP Hardness with a Distinguished Coordinate).
For any finite field Fq and any constant c > 1 (resp. for any constant ε > 0), it is NP-hard (resp.
Quasi-NP-Hard) given an input subspace V ⊆ FN

q to distinguish between the following cases:

• (YES) There exists x ∈ V \ {0} satisfying ∥x∥0 ≤ k, xN = 1;

• (NO) For all x ∈ V \ {0}, ∥x∥0 > c · k (resp. ∥x∥0 > 2log
1−ε N · k).

Proof of Theorem 4. Consider the reduction from MDP (with a distinguished coordinate) to NCP,
given by mapping a subspace V ⊆ Fn

q to the affine subspace V ′ := {x ∈ V : xn = 1}. The claim
then follows from Proposition 13.

Completeness follows from the distinguished-coordinate property of MDP.

For soundness, note that any x ∈ V ′ is a non-zero vector in V , with the same sparsity.

Remark 14. A gap-preserving Cook-reduction from MDP to NCP was known in the literature (see
e.g., [GMSS99] and Exercise 23.13 in [GRS18]). However, we have a Karp-reduction here thanks
to the distinguished-coordinate property.

We also remark that there are non-trivial ways to amplify gap for NCP (see e.g., Theorem
22 of [LLL24] and Section 4.2 of [BGKM18]). Thus one can start with the NP-hardness of non-
homogeneous quadratic equations, perform the reduction in Section 4 to get a mild constant gap for
NCP, and then amplify the gap. This is another way to prove Theorem 4.

Remark 15. The relatively near codeword problem parameterized by ρ ∈ (0,∞) (denoted by
RNC (ρ)) is a promise problem defined as follows. Given a subspace V ⊆ Fn

q of an (unknown)
minimum distance d, a vector b ∈ Fn

q and an integer t with the promise that t < ρ · d, the task is to
find a codeword in V of hamming distance at most t from b.

Our reduction for NCP yields NP-Hardness of RNC (1+ε) for any fixed ε > 0 (it also yields
hardness for the gap version of RNC for an appropriately small constant gap). [DMS03] show
hardness of RNC (ρ) for any ρ > 1/2, albeit under randomized reductions.
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A Proof of Proposition 5

We reduce circuit satisfiability (Circuit-SAT) problem to the homogeneous quadratic equa-
tions problem. Circuit-SAT asks whether a Boolean circuit, which consists of input gates as well
as AND, OR, NOT gates with fan-in (at most) two and fan-out unbounded, has an assignment of
its input that makes output true. It is a prototypical NP-complete problem, since the Cook-Levin
theorem is sometimes proved on Circuit-SAT instead of 3SAT (see e.g., Lemma 6.10 in [AB09]).

Proof of Proposition 5. Given a Circuit-SAT instance C with n gates y1, . . . , yn (including input
gates and logic gates), we build n+ 1 variables {x1, . . . , xn, z}, and add the following equations:

• xi(xi − z) = 0, ∀i ∈ [n];

• for each AND gate yk = yi ∧ yj in C, an equation x2k = xixj ;

• for each OR gate yk = yi ∨ yj in C, an equation z2 − x2k = (z − xi)(z − xj);

• for each NOT gate yk = ¬yi in C, an equation z2 − x2k = x2i ;

• for yk being the output gate, an equation z2 = x2k.

Completeness. Let y1, . . . , yn ∈ {0, 1} be an assignment to the gates of C that makes the output
true. It’s easy to verify {

z = 1,

xi = yi, ∀i ∈ [n]

is a solution to the system of quadratic equations.
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Soundness. If z = 0, then by the first set of equations, each xi has to be 0 and this is an all-zero
solution. Otherwise, setting each yi = xiz

−1 is a satisfying assignment of C since it satisfies every
gate in C and ensures that the output gate is true.

The distinguished-coordinate property follows by setting z to be the last variable.

B MDP Hardness with a Distinguished Coordinate

Proof of Proposition 13. We proceed very similarly to Theorem 3. We reduce from homogeneous
quadratic equations with a distinguished coordinate (Proposition 5), and append a distinguished
coordinate to the reduction in Theorem 3:

V := {(CXCT , Xn,n) : Q1(X) = 0, . . . , Qm(X) = 0, XT = X, X ∈ Fn×n
q } (3)

For completeness, let x ∈ {0, 1}n be a non-zero solution to the system (1) that satisfies xn = 1.
Then ((Cx)(Cx)T , 1) ∈ V and has Hamming weight at most (1 + 1

3q )d
2 + 1.

For soundness, note that if (CXCT , Xn,n) is non-zero, thenX must be non-zero. The remainder
of the analysis proceeds identically to the soundness analysis in Theorem 3, and we conclude
∥V ∥0 ≥ (1 + 1

q ) · d
2.

Finally we amplify the gap using tensoring (Observation 7), and we note that the distinguished
coordinate property of the YES case is preserved under tensoring.
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