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Abstract

In this work we observe a tight connection between three topics: NC0 cryptography, NC0

range avoidance, and static data structure lower bounds. Using this connection, we leverage tech-
niques from the cryptanalysis of NC0 PRGs to prove state-of-the-art results in the latter two sub-
jects. Our main result is an improvement to the best known static data structure lower bounds,
breaking a barrier which has stood for several decades. Prior to our work, the best known lower
bound for any explicit problem with M inputs and N queries was S ≥ N

1
t (logM)1−

1
t for any

setting of the word length w (where S = space and t = time) [Sie89]. We prove, for the same
class of explicit problems considered in [Sie89], a quadratically stronger space lower bound of

the form S ≥ Ω̃
(
N

2
t · (logM)1−

2
t · 2−O(w)

)
for all even t > 0. Second, for the restricted class of

nonadaptive bit probe data structures, we improve on this lower bound polynomially: for all odd
constants t > 1 we give an explicit problem with N queries and M ≤ NO(1) inputs and prove a
lower bound S ≥ Ω(N

2
t+ϵt) for some constant ϵt > 0. Our results build off of an exciting body

of work on refuting semi-random CSPs (e.g., [AGK21, GKM22, HKM23]).
We then utilize our explicit cell probe lower bounds to obtain the best known unconditional

algorithms for NC0 range avoidance: we can solve any instance with stretch n 7→ m in polynomial
time once m >> n

t
2 when t is even; with the aid of an NP oracle we can solve any instance with

m > n
t
2−ϵt for ϵt > 0 when t is odd. Finally, using our main correspondence we establish some

barrier results for obtaining significant improvements to our cell probe lower bounds: (i) near-
optimal space lower bounds for an explicit problem with t = 4, w = 1 implies EXPNP ̸⊆ NC1;
(ii) under the widely-believed assumption that polynomial-stretch NC0 PRGs exist, there is no
natural proof of a lower bound of the form S ≥ NΩ(1) when t = ω(1), w = 1.
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1 Introduction

We start by briefly introducing the three main subjects of the work: static data structure lower
bounds, NC0 pseudorandom generators, and range avoidance for NC0 circuits.

Static Data Structure Lower Bounds: The cell probe model of data structures introduced
in [EF75, Yao81] is a fundamental computational model in which to study tradeoffs between stor-
age space and access time for information retrieval problems. In the static cell probe model, a data
structure problem F : [N ] × [M ] → {0, 1} is fixed, where [M ] is an abstract set of “datapoints,”
[N ] is an abstract set of “queries” one might wish to make about a data point, and F (x, y) is
the correct answer to the xth query about the datapoint y. The goal is to preprocess any given
datapoint y ∈ [M ] into a data structure E(y) ∈ ΣS consisting of S “cells,” each cell holding a
character from some finite alphabet Σ, so that later we may answer different queries x ∈ [N ] about
y by reading at most t cells from the data structure E(y). S is called the “space complexity,” t the
“time complexity,” and w = log |Σ| the “word-length” (number of bits to store the contents of a
single cell). As a prototypical example (which our main lower bounds will apply to), let d ≤ n be

given, N = 2n, M = 2(
n
≤d). Identifying [N ] with Fn

2 , and [M ] with the set of degree ≤ d multilinear
polynomials over Fn

2 , we can define the polynomial evaluation problem F2-Eval
d
n : [N ]×[M ] → {0, 1}

with F2-Eval
d
n(x, p) = p(x); in this case to solve the data structure problem, we want a method for

preprocessing polynomials p into small space data structures E(p), so that upon any query x ∈ Fn
2

we may evaluate the polynomial p at the point x by querying only a few cells of the data structure.
The basic problem in static data structure lower bounds is to prove, for a particular problem F ,

that any data structure solution for F must use a large amount of either space, time, or word length
(word length is generally of secondary importance). For any explicit problem F : [N ]×[M ] → {0, 1},
the best lower bound provable by techniques known prior to this work, for any t > 1 and any setting
of the word length w, is at best:

S ≥ N
1
t · (logM)1−

1
t (1)

Lower bounds of this kind were first achieved by [Sie89] using a method that was rediscovered in
later work and which is now known as cell sampling. In the special case of nonadaptive bit probe
data structures (queries chosen nonadaptively, word length w = 1), a lower bound exceeding (1)
has been shown in two recent works. First, [Vio19] achieved a near-maximal space lower bound
S ≥ N

2 in the case t = 2 for a problem with M ≤ poly(N) datapoints. Subsequent work of [GGS23]
improved this to S ≥ (1− ϵ)N for arbitrarily small ϵ > 0 (the lower bound is for a different explicit
problem), and for all larger t > 2 proved a bound like 1 with the exponent 1

t replaced with 1
(t−1) .

In Section 1.5 we will discuss these works, as well as the broader history of static data structure
lower bounds, in some more detail.

NC0 Pseudorandom Generators: A prominent line of work initiated in [Gol00, CM01] has stud-
ied the existence of cryptographic PRGs in NC0. An NC0

t -PRG is function G : {0, 1}n → {0, 1}m,
m > n, so that: (1) each output depends on only t inputs, and (2) G is a cryptographic pseudo-
random generator: no polynomial time algorithm can distinguish a random output of G from a
truly random m bit string. We say that G is an NC0 generator if it is NC0

t for some t = O(1). The
existence of such PRGs has been the subject of a great deal of work over the past two decades; we
refer the reader to a comprehensive survey [App16] and the references therein.

An important parameter is the stretch of the generator, which denotes the relation between n,m.
We say that G has nontrivial stretch if m > n, and polynomial stretch if m ≥ n1+Ω(1). NC0 gener-
ators with nontrivial stretch can be shown to exist under standard number theoretic cryptographic
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assumptions [AIK06], however their utility has so far been limited. On the other hand, NC0 genera-
tors with polynomial stretch are not known to exist under any more standard hardness assumptions,
but have been found to have a wide range of advanced cryptographic applications [IKOS08], most
notably in the construction of Indistinguishability Obfuscation [JLS21, JLS22]. For this reason, a
great deal of work has gone into studying the existence of polynomial stretch NC0 PRGs as a foun-
dational assumption in its own right, and various algorithmic methods for distinguishing such PRGs
have been studied. The current state of the art shows that an NC0

t generator G : {0, 1}n → {0, 1}m

can be broken in polynomial time once m >> n
t
2 ([MST03, AOW15, AGK21]).

NC0 Range Avoidance: We finally turn to our third main subject of study, NC0 range avoidance.
The object in question here is the same as above: an NC0

t generator G : {0, 1}n → {0, 1}m with
m > n and t = O(1). However, instead of trying the distinguish the output of G from random,
our goal now is to solve the range avoidance problem for G: output a string y ∈ {0, 1}m such
that y /∈ range(G). The range avoidance problem (for general G : {0, 1}n → {0, 1}m computed
by polynomial size circuits) was introduced in [KKMP21], and shown in [Kor21] to be intimately
connected to derandomization and to the problem of proving circuit lower bounds for exponential
time classes. In all cases, it is already of great interest to develop algorithms for this problem
that use an NP oracle. [RSW22] was the first to investigate the range avoidance problem for NC0

circuits, and showed that a PNP algorithm for this problem would imply the breakthrough circuit
lower bound EXPNP ̸⊆ NC1. The same question of stretch arises here: the aforementioned result of
[RSW22] requires us to solve instances with barely nontrivial stretch. On the other hand uncondi-

tional algorithms have been given once the stretch is sufficiently large, in particular once m >> nt−1

logn

([GLW22, GGNS23]). An important question posed in [RSW22] is whether unconditional PNP al-
gorithms for NC0 range avoidance can be found in the general polynomial stretch regime.

The Main Correspondence: The starting point of our work is the observation that the 3 prob-
lems discussed above are tightly related to one another. The relation between NC0 PRGs and NC0

range avoidance is rather obvious (although still insufficiently explored prior to this work), and so
the key point is the relation we observe between these two topics pertaining to NC0 circuits on the
one hand, and the project of proving cell probe lower bounds on the other. This relationship follows
directly from the definitions of the objects in question, and is more appropriately understood as a
perspective shift rather than a new result.

To state the connection in its simplest form, we focus our attention for now on a special setting
of the cell probe model: the word length is 1 (i.e. Σ = {0, 1}, often called the bit probe model), and
the data structures in question are nonadpative. Here, nonadpative means that the data structure
will decide which cells to probe as a function only of the query, in contrast to a general adaptive
data structure which may decide on the next cell to probe based on the outcomes of previous
probes. In this setting we have:

Observation. Let F : [N ] × [M ] → {0, 1} be a data structure problem, which we interpret as a
matrix F ∈ {0, 1}N×M with N rows and M columns below. The following are equivalent:

1. F has does not have nonadaptive bit probe data structures with space complexity S and time
complexity t.

2. The columns of F are a set of M strings F ⊆ {0, 1}N , |F| = M , such that for any NC0
t

generator G : {0, 1}S → {0, 1}N , there exists a string f ∈ F with f /∈ range(G).

Proof. Say that F has nonadaptive bit probe data structures of space S and time t. Then, to
every y ∈ [M ] we may associate an encoding Ey ∈ {0, 1}S , so that for every x ∈ [N ] we may
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determine F (x, y) by probing (nonadaptively) t bits of Ey. Considering the yth column of F as a
string fy ∈ {0, 1}N , we see that there is a NC0

t function G : {0, 1}S → {0, 1}N so that G(Ey) = fy
for every y ∈ [M ]; in particular, the xth output of G runs the data structure’s nonadaptive query
procedure corresponding to the query x. The same reasoning applies in the reverse direction.

In other words, finding an explicit data structure problem F : [N ]× [M ] → {0, 1} which requires
large space for time t in the nonadaptive bit probe model is exactly equivalent to constructing
explicit list-solutions for NC0

t range avoidance. By a list-solution, we mean a list of candidate
strings, so that for any instance of NC0

t range avoidance G (with appropriate parameters), one of
the strings in this list must be a range avoidance solution for G. We emphasize that an analogous
connection exists for the general cell probe model (adaptive and with arbitrary word length), which
is explained formally in Section 2.2. The problem of finding list-solutions for NC0 range avoidance
was considered already in [GLW22]. Indeed, via the above correspondence the results of [GLW22]
recover a nonadaptive bit-probe lower bound of [GGS23] in a certain range of parameters.

The connection between NC0-PRGs and cell probe lower bounds is more difficult to state for-
mally, but even more central to our main results. In one direction, we will show how to use the
best known methods for distinguishing NC0 PRGs to achieve state of the art lower bounds in the
cell probe model; this is the most significant contribution in this work, and after stating our main
results below we will describe this methodology in more detail in Section 1.3 (“Our Techniques”).
In the other direction we will use the conjectured security of various NC0 PRGs to exhibit a natural
properties barrier for data structure lower bounds, in the spirit of Razborov-Rudich [RR97].

We note that connections of a similar flavor have been utilized in the literature on sampling lower
bounds initiated by Viola [Vio12]. Connections between restricted variants of range avoidance and
data structures were first observed in [GLW22], who used a cell probe data structure from [Pat08]
to develop more efficient reductions to range avoidance; this proof was our original inspiration to
explore more deeply the connections between NC0 range avoidance and the cell probe model.

1.1 Our Results

State of the Art Cell Probe Lower Bounds: Using the perspective shift introduced above,
we are able to break a decades-old barrier in static data structure complexity, and prove cell probe
lower bounds for a explicit problems which are quadratically better for space as a function of time
than all previous methods. Our first lower bound holds any data structure problem supporting
a k-wise independent distribution; this is the class same problems originally considered by [Sie89]
and in various follow up works (including [PTW10, Lar12]), and we are able to obtain tight lower
bounds across essentially the entire range of values k ≤ N , provided the time complexity t is an
even number:

Theorem 1. Let F : [N ]× [M ] → {0, 1} be a data structure problem such that there exists a k-wise
independent distribution supported on its columns. Let S, t, w ∈ N be given with t an even number
and assume k > tw + 1. Then, for any space S, time t, word length w cell probe data structure
solving F we must have:

1. S ≥
( N

logN

) 2
t ·

( k

logN

)1− 2
t · t−12−O(w) for all t logN ≤ k ≤ N2−O(tw)t−

t
2

2. S ≥
( N

logN

) 1

t( 12+ 2
k
) · t−12−O(w) for all tw + 1 ≤ k ≤ t logN

Remember that we often interpret F : [N ] × [M ] → {0, 1} as a boolean matrix with N rows
and M columns, which explains our use of the phrase “the columns of F .” If t is an odd number,
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the above lower bound holds with t + 1 in place of t; hence this lower bound gives a polynomial
improvement (for space as a function of time) over previous methods for all t > 3, gives a near-
quadratic improvement for all even t, and approaches a quadratic improvement for large odd values
of t. Using any of the various explicit examples of k-wise independent distributions with support size
NO(k) (e.g. univariate polynomials over F2n), we obtain explicit problems F : [N ] × [M ] → {0, 1}
satisfying the lower bound

S ≥ Ω̃
(
N

2
t ·

(
logM

)1− 2
t · 2−O(w)

)
across essentially the entire spectrum of nontrivial values M ∈ {1, . . . , 2N}. We thus achieve a near-
quadratic improvement in the state of the art explicit cell probe lower bounds across this entire
spectrum of relations between M,N . We emphasize that, in addition to giving a quadratic space
improvement over the cell sampling bound (the first improvement of any kind), our lower bound is
also the first to achieve any polynomial improvement over the much simpler communication bound
S ≳ N

1
t for a problem with N queries and M ≤ exp(No(1)) datapoints (by setting k = logN in

the above); this is discussed further in the Section 1.5.
By known constructions [Sie89, Sie04] (see also [LPS97]), the lower bound in Theorem 1 is tight

up to logN factors and the factors depending only on w provided t is not too large. Hence, for all
small enough even values of t and small enough w, we essentially completely resolve the cell probe
complexity of representing k-wise independent distributions. The almost-matching upper bounds
are nonconstructive, relying on unbalanced bipartite graphs with very strong unique-expansion
properties; they yield data structures which are nonadaptive and have word length w = 1, so the
tightness of Theorem 1 holds even in this restricted setting of nonadaptive bit probe data structures.

Our lower bound for k-wise independent problems is actually a bit stronger than stated above,
as we are able to establish the same bound for problems which only exhibit γ-almost k-wise in-
dependence, for a nontrivially large value of γ. The stronger form (which is the form which will
appear as Theorem 1 in Section 3.2) is as follows:

Theorem (Theorem 1, Strengthened To Almost Independence). Let F : [N ] × [M ] → {0, 1} be a
data structure problem such that there exists a γ-almost k-wise independent distribution supported
on its columns. Then the same lower bound as in the first presentation of Theorem 1 (above) holds
for F provided γ ≤ N t2−O(ktw).

An important consequence of this improvement is that, using known constructions of almost
independent distributions [NN90], in the case t, w = O(1) we can set k = O(logN), γ = N−O(1)

and obtain an explicit problem F : [N ]× [M ] → {0, 1} with M ≤ poly(N) and satisfying the lower

bound S ≥ Ω̃(N
2
t ). This improvement will be necessary later on for obtaining polynomial time

range avoidance algorithms with minimum possible stretch.
We next establish a lower bound that improves on the previous theorems in the special setting of

nonadaptive bit probe data structures; remember that “bit probe” denotes the word length setting
w = 1. For this lower bound, the hardness property of our data structure problems is small bias
[NN90]: a distribution over {0, 1}N is γ-biased if it fools all parity functions with error ≤ γ

2 .

Theorem 2. Let t > 1, t = O(1) be a fixed odd number. Let F : [N ] × [M ] → {0, 1} be a
data structure problem such that there exists a N−c-biased distribution supported on its columns,
for c = O(1) a sufficiently large constant (depending on t). Then any nonadaptive bit probe data
structure for F with space S and time t must satisfy:

S ≥ Ω̃(N

1
t
2− t−2

2(t+2) ) ≥ N
2
t
+ϵt

where ϵt > 0 is a positive constant depending only on t.
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Using explicit constructions of small bias probability spaces (again [NN90]), we obtain explicit

problems F : [N ] × [poly(N)] → {0, 1} which satisfy the lower bound S ≥ N
2
t
+ϵt for every odd

constant t, where ϵt > 0 depends only on t. Small bias probability spaces were first used as a hard
data structure problem in [Vio19] to obtain near-maximal space lower bounds for nonadaptive bit
probe data structures making t = 2 queries. We emphasize that, because of the optimality of the
bound in Theorem 1 (there is an upper bound almost matching the bound in Theorem 1 even in
the nonadaptive bit probe setting and even for odd values of t), the above Theorem 2 is provably
unattainable using only limited independence. More formally, to construct any data structure prob-
lem F : [N ]× [M ] → {0, 1} satisfying a lower bound S ≥ N

2
t
+ϵ for any constants t > 1, ϵ > 0, and

M ≤ exp(No(1)), we provably cannot use k-wise independence as our only hardness property for
the problem F . This result is therefore of special interest, as it the first example of a cell probe
lower bound that is provably stronger than the best bound provable using limited independence
alone: all of the previous best lower bound methods [Sie89, PTW10, Lar12, Vio19, GGS23]1 can
be carried out using limited independence as the sole hardness condition.

NC0 Range Avoidance Algorithms: In Section 5 we give the best known unconditional al-
gorithms for NC0 range avoidance. Using our primary observation connecting range avoidance to
data structure lower bounds together with known constructions of limited independence and small
bias spaces [NN90], we can immediately obtain state of the art PNP algorithms for NC0 range
avoidance using our new cell probe lower bounds as a black box. In the case of Theorem 2 we get:

Theorem 3. Let t = O(1) be a fixed odd number. There is a polynomial time algorithm which
outputs a list of strings in {0, 1}m, such that for any NC0

t generator G : {0, 1}n → {0, 1}m with

m ≥ Õ(n
t
2
− t−2

2(t+2) )

one of the strings in the list must be a range-avoidance solution for G. In particular, there is a
polynomial time NP-oracle algorithm for range avoidance on instances of the above form.

For our lower bound in Theorem 1, we are able to analyse it more effectively (rather than
applying it as a black box) and remove the use of an NP oracle in the associated range avoidance
algorithm:

Theorem 4. Let t, n be given with t even. There is a mO(t2)-time algorithm which solves range
avoidance given any NC0

t generator G : {0, 1}n → {0, 1}m with

m ≥ n
t
2 log n · t

t
2
+o(t)

More generally, the algorithm works if each output of G is computed by a depth t decision tree.

We emphasize the last point; not only do we decrease the required stretch quadratically for
NC0

t functions compared to previous results [GLW22, GGNS23], but our algorithm also works in
the more general setting that every output of G is a depth t decision tree over the inputs. The
full statement of Theorem 4 is more general in two other ways which we didn’t highlight above.
First, it solves the harder remote point problem for G: for any constant ϵ > 0, our algorithm will
output a string which is (12 − ϵ)-far in relative hamming distance from every string in the range of
G. Second, it works if G is of the form G : Σn → {0, 1}m for some nonboolean alphabet |Σ| > 2,

1Viola’s lower bound for t = 2 nonadaptive bit probe data structures [Vio19] does no use k-wise independence,
but k-wise independence was shown to achieve the same quantitative lower bound in the follow up work of [GGS23].
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and each output is computable by an adaptive decision tree querying at most t input symbols.

Small Bias Generators in NC0: In [MST03] it was shown that, if G : {0, 1}n → {0, 1}m is
an NC0

t generator such that G(x) is poly(n)−1 biased when x is uniformly distributed on {0, 1}n,
then we must have m ≤ O(2tn⌈ t

2
⌉); in other words, once m >> n⌈ t

2
⌉ there is an F2-linear test that

can distinguish G(x) from random. Our Theorem 2 improves this result for all odd values of t; in
particular, as an immediate corollary we obtain:

Corollary 1. For every odd constant t there is ϵt > 0, so that every NC0
t generator G : {0, 1}n →

{0, 1}m is distinguished with poly(n)−1 advantage by an F2-linear test once m ≥ n
t
2
−ϵt.

We note that Theorem 2 in fact implies something much stronger, that G(x) can be distin-
guished from uniform by linear tests for any distribution of x ∈ {0, 1}n. The original result in
[MST03] is specially tailored to the case where the random “seed” x is uniformly distributed on
{0, 1}n, and hence cannot be used to give a lower bound in the bit probe model. An interesting
feature of this is the following: because F2-linear tests can be performed by polynomial-size circuits,
our result implies that every NC0

t PRG can be distinguished efficiently by nonuniform algorithms

in the stretch regime n 7→ n
t
2
−ϵt . However, in the typical approach to NC0 PRG constructions

pioneered by Goldreich [Gol00], the generator G is sampled at random from a distribution of large
(≈ m) entropy; in particular, such a cryptographic primitive does not consist of a single NC0 PRG,
but rather a sampleable ensemble of NC0 PRGs. Since our Corollary 1 gives no indication as to
how to find the linear distinguisher for G given the description of G, we seemingly cannot use it
to attack Goldreich’s generator in the stretch regime n 7→ n

t
2
−ϵt , even if we allow nonuniformity in

our attacker.

Complexity-Theoretic Barriers to Higher Cell Probe Lower Bounds: Next, in Section 6
we use our main correspondence between cell probe lower bounds and local generators to establish
barrier results for improving state of the art cell probe lower bounds. Our focus here is on the
bit probe model (word length w = 1), and on nonadaptive data structures with time complexity
t = O(1). We show the following two barrier-type results:

Theorem 5 (Consequences of Explicit Data Structure Lower Bounds).

1. If there is an explicit data structure problem F : [N ] × [M ] → {0, 1} with M ≤ exp(No(1))
which requires space S ≥ N −No(1) for data structures making 4 nonadaptive bit probes, then
EXPNP ̸⊆ NC1.

2. If there is a universal constant ϵ > 0 and an explicit data structure problem F : [N ]× [M ] →
{0, 1} with M = poly(N) requiring space S ≥ N ϵ for nonadaptive data structures making
O(1) bit probes, then there is a polynomial time NP oracle algorithm for NC0 range avoidance
with polynomial stretch.

The conclusion in (1) above would be a monumental breakthrough in complexity theory and
is considered extremely hard. The conclusion in (2) above was directly posed in [RSW22] as an
important direction in unconditional range avoidance algorithms. We note that (1) of Theorem 5
has a strong similarity to results in [Vio19] and [DGW19]. [Vio19] shows that improved data static
data structure lower bounds imply breakthrough circuit lower bounds for multi-output functions.
The implied circuit lower bounds are of two kinds: lower bounds against low-depth circuits over
a complete basis of large fan-in gates, and lower bounds against linear size log-depth circuits with
bounded fan-in gates. On the other hand, [DGW19] shows that improved data structure lower
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bounds (of a different kind) imply breakthrough constructions of rigid matrices; these results are
specific to linear data structures rather than general data structures as considered in this work and
in [Vio19].

Next, we turn toward a different and more novel kind of barrier in the realm of data structure
lower bounds, based on the natural proofs paradigm of Razborov and Rudich [RR97]. Following
Razborov-Rudich, we define a natural data structure lower bound to be some efficiently testable
property of functions F : [N ] × [M ] → {0, 1}, so that random functions have the property, and
any function with the property satisfies a corresponding cell probe lower bound (see Section 6.2
for a formal definition). We argue in Section 6.2 that the strongest lower bound methods in the
cell probe model known prior to this work can be made natural in this sense. This continues to
hold for our new lower bound in Theorem 1. On the other hand, we show that under two widely
believed cryptographic assumptions, certain lower bounds in the bit probe model are unachievable
using proofs of this nature:

Theorem 6 (Natural Proofs Barriers for Data Structure Lower Bounds).

1. Assume the existence of NC1 PRGs. Then there is no natural proof of a space lower bound
S ≥ N − N0.99 for data structures making 4 nonadaptive bit probes solving a problem F :
[N ]× [poly(N)] → {0, 1}.

2. Assume existence of polynomial stretch NC0 PRGs. Then for every ϵ > 0 there is t ∈ N
so that no natural proof can establish a lower bound S ≥ N ϵ for data structures making t
nonadaptive bit probes solving a problem F : [N ]× [poly(N)] → {0, 1}.

As mentioned above our lower bound in Theorem 1 can be made natural, as well as all lower
bounds proven prior using the cell sampling method or communication arguments. However, in-
terestingly, we do not know if the lower bound for small bias distributions in Theorem 2 can. It
is therefore unclear at the moment whether or not the “natural properties barrier” for data struc-
tures, according to the definitions used above, has already been broken by the new results in this
paper. Regardless, we argue in Section 6.2 that the lower bound in Theorem 2 is still “natural” in
a weaker and less formal sense, and that significantly stronger lower bounds will probably have to
differ from it in this regard assuming the nonuniform security of NC0 PRGs. We discuss further
the question of the “naturalness” of Theorem 2 in Section 5.

Approaches to Stronger Lower Bounds via Communication Complexity: Finally, in
Section 6.3 we discuss possible approaches to proving lower bounds in the nonadaptive bit probe
model of the form S ≥ N ϵ for time t = O(1), where ϵ > 0 is a fixed universal constant not de-
pending on t; this corresponds precisely to the regime in which the existence of cryptographically
secure polynomial-stretch NC0 PRGs yields a natural proofs barrier. We formulate cell probe lower
bounds in this regime in terms of an equivalent communication model, reminiscent of PIR schemes,
in which a single party Alice holding an input x ∈ X communicates with a council of t Bobs hold-
ing a shared input y ∈ Y . We discuss an approach to analyzing this model based on “lifting” a
query complexity measure investigated by [HR15, LRT22], and relate this model to other high end
communication complexity classes such as PHcc.

1.2 Subsequent Developments:

After the posting of an initial preprint of this work, two improvements to Theorem 2 were commu-
nicated to us by Weiqiang Yuan [Yua]:
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1. Our lower bound S ≥ Ω̃(N

1
t
2− t−2

2(t+2) ) for small bias problems can be extended to hold for
adaptive bit probe data structures.

2. In the case of nonadaptive bit probe data structures, the lower bound for small bias problems

can be strengthened quantitatively to S ≥ Ω̃(N
2

t−1 ).

In both cases, it is required as in Theorem 2 that t = O(1) is an odd constant.

1.3 Our Techniques: Derandomizing Semirandom CSP Refutations

We now discuss at a high level our approach to proving our main cell probe lower bound for k-wise
independent problems (Theorem 1). We will narrow down our discussion in three respects: (1)
we focus on the case t = O(1) and ignore multiplicative factors depending on t in our space lower
bound, (2) we restrict attention to nonadaptive bit probe data structures, and (3) we focus on

achieving a lower bound of the form S ≥ Ω̃(N
2
t ) for k-wise independent problems in the special

case k = O(logN).
In this setting, using our main observation connecting NC0 generators and data structures,

we need to show that any O(logN)-wise independent random variable fpseud ∈ {0, 1}N has the

following property: for any NC0
t generator G : {0, 1}S → {0, 1}N with S = õ(N

2
t ), with nonzero

probability fpseud /∈ range(G). Say for a moment that we view a candidate generator G with
the above parameters as a cryptographic PRG. In this case, a body of work dedicated to the
cryptanalysis of NC0 PRGs has shown that any such G can be distinguished by polynomial time
algorithms; more strongly, there is a polynomial time algorithm which can generate certificates of
the fact funif /∈ range(G) with very high probability when funif ∈ {0, 1}N is a uniformly random
vector2. Our goal is to look at the certificates generated by these algorithms, and argue that they
will still be produced with high probability when we replace the truly random vector funif with
the pseudorandom vector fpseud.

The task of certifying funif /∈ range(G) for a worst case NC0
t generator G is a special case of

semirandom CSP refutation. In particular, given an NC0
t generator G : {0, 1}S → {0, 1}N and any

f ∈ {0, 1}N , we may define a t-CSP instance with S variables and N constraints, which is satisfiable
if and only if f ∈ range(G): for each x ∈ [N ] with Gx depending on input cells i1x, . . . , i

t
x ∈ [S], we

add the constraint
Gx(E(i1x), . . . , E(itx)) = fx

where E(1), . . . , E(S) are boolean-valued variables. If G is fixed and funif is uniformly random, we
end up with a random distribution of t-CSP instances, where the left hand side of each constraint
is fixed (worst-case), while the right hand side is sampled uniformly at random (average case). If
we can give an efficient refutation algorithm which, with high probability over this distribution,
outputs a certificate that the given CSP is unsatisfiable, then we can use it to distinguish the
generator G: for a uniformly random right hand side the refutation algorithm will typically output
“UNSAT,” while for f ∈ range(G) the algorithm can never output “UNSAT.”

This hybrid worst-case/average-case model is known as the semirandom CSP model3. This
model was first introduced in [Fei07] and has been the subject of many followups including [Fei07,
AOW15, AGK21, GKM22] (see the theses of Witmer and Manohar [Wit17, Man19] for a more in

2Some NC0 cryptanalysis techniques, e.g. Theorem 6 in [MST03], do not yield certificates f /∈ range(G), and
only give statistical distinguishers which rely crucially on the fact that the seed of G is generated uniformly; such
techniques seem to have little relavance to cell probe lower bounds.

3The semirandom CSP model is more general than the “random right hand side” variant introduced here, see e.g.
[AGK21] for a general definition and comparison to the special case presented here.
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depth literature review). State of the art semirandom refutation algorithms ([AGK21, GKM22,
HKM23]) can certify funif /∈ range(G) for an NC0

t generator G : {0, 1}n → {0, 1}m whenever

m ≥ ω̃(nt/2). Taking m = N , n = S this is precisely the parameter regime S ≤ õ(N
2
t ) we aim to

investigate in our cell probe lower bound for O(logN)-wise independent problems. It is considerably
easier to carry out the arguments in [AGK21, GKM22, HKM23] in the case t is even; we will only
prove lower bounds for even values of t in this work and hence avoid the technical difficulties that
arise for odd t.

In the case t is even, the refutation procedures in [AGK21, GKM22, HKM23] can be divided
into roughly three steps:

1. Generate from G a second NC0
t generator G′ : {0, 1}O(S) → {0, 1}N which is F2-linear (each

output of G′ XORs together t inputs); reduce the task of certifying f /∈ range(G) for an
arbitrary NC0

t PRG G, to certifying that f is (12−ϵ) far in Hamming distance from range(G′)4

for some small constant ϵ > 0. This is referred to as strong XOR refutation.

2. Generate from G′ a sequence of real matrices A1, . . . , AN ∈ Rm×m for some m = poly(N);
reduce the the task of certifying that f is far from range(G′) (strong XOR refutation) to
certifying that the ∞ → 1 norm of the matrix

A[f ] =
∑
x∈[N ]

(2fx − 1)Ax

is small. The reader unfamiliar with the ∞ → 1 norm should think of it for now as close rela-
tive of the spectral norm which can be approximated in polynomial time (a formal definition
is in Section 2.1).

3. Show that the ∞ → 1 norm of A[funif ] is small with high probability where funif is uniformly
distributed on {0, 1}N .

To carry out our lower bound, we need to modify the final point, and prove that it continues
to hold with high probability when we replace the truly random funif with our pseudorandom
fpseud. This is argued in Section 3.3 and consists of two steps. The first is a reweighting trick
from [GKM22], which replaces the A1, . . . , AN with a second sequence B1, . . . , BN so that for any
f ∈ {0, 1}N , whenever A[f ] has a large ∞ → 1 norm, B[f ] has a large spectral norm (B[f ] is
defined analogously to A[f ]). We then need to prove that B[fpseud] has small spectral norm with
high probability. For this we use the fact that, for any matrix D in m dimensions and any even
number k, ∥D∥ is approximated by the trace-moment polynomial tr((D⊤D)k/2)1/k within a factor
m1/k. Since in our case B[f ] lies in Rm×m with m ≤ poly(N) and k = O(logN), we have that
tr((B[f ]⊤B[f ])k/2)1/k approximates the spectral norm of B[f ] to within a constant factor. Since
tr((B[·]⊤B[·])k/2)1/k is (the kth root of) a degree k polynomial, we can argue that its distribution
with respect to fpseud and funif will be similar which will complete the proof.

There are several technical difficulties that we are leaving out of our discussion. First, to make
our lower bound work in the setting of a general locally computable generator G (with larger word
length and adaptive decision trees at its outputs) we need a more involved argument in place of (1)
above. Second, we need to exercise a bit more care in our analysis of the value of the trace moment
polynomial tr((B[f ]⊤B[f ])k/2)1/k to achieve the same bounds in the case that our distribution on f
is only N−O(1)-wise O(logN)-wise independent, rather than perfectly O(logN)-wise independent.
Finally, to deal with the case k >> logN we need to generalize (2) above, using another construction
from semirandom CSP refutation called the “Kikuchi Matrix” [WEAM19, GKM22].

4We actually need both f and ¬f to be far in Hamming distance from the range.
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We will not sketch in any detail our proof of Theorem 2 which gives a lower bound N
t
2
+Ω(1)

for odd constants t in the nonadaptive bit probe model, however we note that it follows the same
overall form: we take a semirandom refutation procedure (in this case, the refutations in Section
9 of [GKM22] based on earlier work of [FKO06]), and show that we can still find the associated
certificates in the pseudorandom case, for some appropriate notion of pseudorandomness. In this
case we rely instead on small bias (fooling parity functions) as our pseudorandom property in place
of k-wise independence. As mentioned earlier in the introduction, it is provably necessary to move
beyond k-wise independence to achieve a lower bound of this form.

1.4 Open Problems

We present here three potentially tractable open problems we believe are of particular interest. We
start with the (seemingly) most accessible problem:

Problem 1. Extend the bound in Theorem 1 to hold for odd values of t, and the bound in Theorem 2
to hold for even values of t.

The natural approach here is to utilize the CSP refutation procedures for odd order CSPs
developed in [AGK21, GKM22] and analyze them in the “pseudorandom case” as we have done for
even order CSPs. It seems likely that a solution to the first part of Problem 1 would automatically
solve the second part (see the discussion at the end of Section 4).

Our second problem relates to Theorem 2. While our lower bounds for k-wise independent data
structure problems are known to be optimal up to lower order terms (for even t), our nonadaptive
bit probe lower bounds for ϵ-biased distributions have no matching upper bound. We highlight
closing this gap as an important open problem:

Problem 2. For t ∈ N, determine the largest constant δt > 0 so that, in the nonadaptive bit probe
model, we have the lower bound S ≥ N δt−o(1) for any data structure problem F : [N ]× [M ] → {0, 1}
which supports an exp(−No(1))-biased distribution on its columns.

Our Theorem 2 yields the lower bound δt ≥
(

t
2 −

t−2
2(t+2)

)−1
, in particular δt >

2
t , for every odd

value t ≥ 3. Theorem 1 (the second form described above) also implies δt ≥ 2
t for even values of t

since ϵ-almost k-wise independence is a special case of ϵ-biasedness; this latter lower bound holds
in the more general adaptive setting and with larger word lengths. Both of these lower bounds hold
even if we only aim to achieve bias poly(N)−1 (rather than exp(−No(1)) as stated above). On the

other hand a construction of [MST03] implies that lim
t→∞

δt = 0, in particular δt ≤ O(
√

1
t ). Closing

this gap in either direction remains an intriguing open problem.
Finally, we highlight two closely related problems: removing the NP oracle in Theorem 3 and

removing the nonuniformity in Corollary 1:

Problem 3. For NC0
t generators G : {0, 1}n → {0, 1}m:

(a) for any t ≥ 3, ϵ > 0, give a subexponential time deterministic algorithm that solves range

avoidance for G whenever m ≥ n
t
2
−ϵ

(b) for any t ≥ 5, ϵ > 0, give a subexponential time uniform algorithm that distinguishes G with

subexponential advantage whenever m ≥ n
t
2
−ϵ

One approach to this problem is to prove an algorithmically constructive variant of the hyper-
graph Moore bound of [GKM22, HKM23]. Such an algorithm would also improve the best known

11



polynomial time refutation algorithm for random t-CSPs, and has been an open problem (in the
case t = 3) since the original work of [FKO06]; there appears to be some significant possibility that
no such algorithm exists. A different approach, tailored specifically to (b), is to show that the lower
bound in Theorem 2 can be made natural in the sense of Razborov-Rudich. More specifically, it
would actually be sufficient to develop an efficient algorithm with the following behavior: for some
absolute constant c ∈ N, the algorithm takes as input a uniformly random set A ⊆ Fn

2 , |A| = nc,
and with nonnegligble probability must output a certificate that A is a 1

4 -biased probability space.
See Section 5 for more details.

1.5 Prior Work on Data Structure Lower Bounds

We give here a slightly more involved historical account of lower bound techniques that can prove
the strongest lower bounds in the static cell probe model for some explicit problem5. As mentioned
earlier, the best known lower bound for general static data structures (for any t > 1 and any

w) prior to our work was S ≥ N
1
t (logM)1−

1
t , first achieved by [Sie89] for k-wise independent

problems (M ≈ Nk). Lower bounds of the form S ≳ N
1
t can be established by a direct reduction

to deterministic two party communication complexity. A more precise communication complexity
analysis (keeping track of the number of rounds and the number of bits sent by each party in each
round) developed in [Mil94, MNSW98] gives a similar but more precise lower bound in various
settings. To achieve a lower bound which includes the extra factor ≈ logM requires techniques
more specially adapted to the cell probe model. This can be achieved either by expansion-based
arguments known as cell sampling ([Sie89, Sie04, PTW10, Lar12]), or in some cases by a more
involved communication complexity argument using direct sum theorems [PT06].

In the special setting of nonadaptive bit probe data structures (the setting in which our Theo-
rem 2 applies), two works have achieved lower bounds improving on the cell sampling bound. In
[Vio19], when the time is t = 2 a near-maximal space lower bound S ≥ N

2 is shown for a problem

with M ≤ NO(1) datapoints. The lower bound applies to any F : [N ] × [M ] → {0, 1} whose
columns support a γ-biased distribution for γ a sufficiently small constant. In subsequent work

of [GGS23], a lower bound of the form S ≳ N
1

t−1 (logM)1−
1

t−1 is obtained for k-wise independent
problems (M ≈ Nk). Their method is a deterministic variant of cell sampling, and they prove
that the given lower bound is essentially the best that cell-sampling type methods can achieve.
[GGS23] also improves quantitatively Viola’s bound for t = 2, showing a lower bound S ≥ (1− ϵ)N
for any N−O(1)-almost O(logN)-wise independent problem where ϵ > 0 is any constant (and the
O(·) terms hide linear dependencies on ϵ). The results in [GGS23] can be applied to larger word
lengths w > 1 provided we transition to data structure problems with nonboolean output, of the
form F : [N ]× [M ] → {0, 1}w.

Observe that, in the setting where M is not much larger than N , e.g. M ≤ exp(poly logN),

the factor (logM)1−
1
t has negligible effect on the cell sampling bound S ≥ N

1
t (logM)1−

1
t . In this

setting, no previously known method (even cell sampling) gives a lower bound significantly stronger

than the direct communication reduction, which yields S ≳ N
1
t . We explain this reduction here

since it is so simple. Say F has a time t space S data structure with word length w. Consider
a protocol in which Alice holds x, Bob holds y; Bob constructs the data structure encoding E(y),
Alice simulates the query procedure on x, requesting cells of E(y) from Bob who responds with
their contents. Alice sends logS bits in each round to request a cell, Bob sends w bits to reveal the
cell’s contents, and communication lasts t rounds, so the overall communication is t logS+ tw. For

5A great deal of work in the field is dedicated to adapting these techniques to prove the best possible lower bounds
for particular natural problems of interest, which we will not cover here.
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any problem F with maximal two party communication complexity, e.g. F : [N ] × [N ] → {0, 1}
given by F (x, y) = 1{x = y}, we then have t logS + tw ≥ logN , i.e. S ≥ N

1
t · 2−w.

Finally it is important to keep in mind that for non-explicit problems, counting arguments show
that most functions F : [N ] × [N ] → {0, 1} require space very close to N or time very close to
logN [Mil93]. The situation here is similar to many other areas in complexity; a nonconstructive
counting argument implies that random functions exhibit an extremely high lower bound, and the
heart of the subject is to prove similar bounds for explicit (and ideally natural) problems.

2 Preliminaries

We introduce some basic notation and definitions which will be used throughout. We strongly
encourage the reader not to skip Section 2.2 which defines our notation for locally computable
generators and cell probe data structures, and establishes the connection between them which will
be used in the rest of the paper.

2.1 Basics

For a natural number N use [N ] = {1, . . . , N}. For a finite set V and integer k we use
(
V
k

)
to denote

the set of subsets of V of size k. If X is a finite set, ϕ : X → R we write Ex∈X ϕ(x) as shorthand for
|X|−1

∑
x∈X ϕ(x). We will use boldface variables e.g. v exclusively for random variables. When v

is a random variable and A is a set, we write v ∈ A to indicate that the support of v is contained
in A. When an expression references only a single random variable v we will use Eϕ(v) for some
ϕ : supp(v) → R to mean that the expectation is taken with respect to v; this is in contrast to the
notation Ex∼X ϕ(x) above, where we always include the subscript. At one point we will use the set
theoretic operator ∆ denoting symmetric difference a∆b = (a \ b) ∪ (b \ a). For a collection of sets
(aj)j∈J we define ∆

j∈J
aj in the natural way using the commutativity/associativity of ∆ as a binary

operation.
In Section 3.2 we will deal with various vector and matrix norms, whose (standard) definitions

we review here:

Definition 1 (Vector and Matrix Norms). For a vector u ∈ Rm we use ∥u∥ to denote the euclidean
(L2) norm of u, and ∥u∥∞ to denote its L∞ norm. For a matrix A ∈ Rn×n, we will use ∥A∥ to
denote the spectral norm given by

∥A∥ = max
∥u∥,∥v∥≤1

|u⊤Av|

and use ∥A∥∞→1 to denote the ∞ → 1 operator norm given by

∥A∥∞→1 = max
∥u∥∞,∥v∥∞≤1

|u⊤Av| = max
u,v∈{±1}m

|u⊤Av|

We now define the notions of limited independence and small-bias probability spaces which we
will use extensively. In our main lower bounds we will work over the signed hypercube {±1}N ,
and we present the following definitions in this setting; each definition has an equivalent form over
{0, 1}N via the natural correspondence {0, 1} ↔ {±1}.

Definition 2. Let f ∈ {±1}N be a random variable, γ ∈ (0, 1), k ≤ N . We say that f is γ-almost
k-wise independent if, for all X ⊆ [N ], |X| = k and all g ∈ {±1}X we have

Pr[f |X = g] ∈ [2−k − γ, 2−k + γ]

We say that f is k-wise independent if it is 0-almost k-wise independent.
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In other words, a distribution over {±1}N is γ-almost k-wise independent if its projection to
any k coordinates is γ-close to the uniform distribution on {±1}k in L∞ distance; the statement
applies without change in the {0, 1}N basis. Turning our attention to small bias distributions:

Definition 3 ([NN90]). Let f ∈ {±1}N be a random variable, γ ∈ (0, 1), k ≤ N . We say that f
(γ, k)-biased if, for all X ⊆ [N ], |X| ≤ k we have

E
∏
x∈X

fx ∈ [−γ, γ]

We say that f is γ-biased if it is (γ,N)-biased.

In the {0, 1} basis, the property of being γ-biased has the following interpretation: for any
parity function

⊕
X : {0, 1}N → {0, 1} given by

⊕
X(f) =

∑
x∈X fx mod 2 for some ∅ ≠ X ⊆ [N ],

we have |Pr[
⊕

X(f) = b] − 1
2 | ≤

γ
2 for each b ∈ {0, 1}. In other words a γ-biased distribution

over {0, 1}N fools all parity functions to within error γ
2 . We will use the following well-known

relationship:

Lemma 1 ([NN90]). If f is (γ, k)-biased than it is γ-almost k-wise independent.

Finally, we rely on the following construction of explicit small-bias probability spaces:

Theorem ([NN90]). For every γ, k,N there exists an explicit distribution on {±1}N with support
size (k logN

γ )O(1).

We elaborate on our notion of explicit: for the purposes of our range avoidance algorithms in
Section 5, we can take explicit to mean, there is a uniform algorithm which, given k,N, ϵ will run in
time poly(N, k, 1ϵ ) and output a list of strings in {±1}N , such that the uniform distribution on these
strings is (γ, k)-biased. The distributions in [NN90] are also explicit in the more standard/informal
sense, being supplied by a direct construction.

2.2 Generators and Data Structures

We now define the two main objects of study in our work: the cell probe model of static data
structures on the one hand, and locally-computable generators on the other. We then state the
tight connection between them, giving some more detail than was supplied in the introduction.
Broader implications of this connection will be explored in more depth in Section 6.

Definition 4 (Cell Probe Model). Let F : [N ] × [M ] → {0, 1}, which we refer to as a “data
structure problem.” Elements x ∈ [N ] are referred to as “queries,” y ∈ [M ] as “datapoints.” We
say that F has cell probe data structures with space complexity S, time complexity t, and word
length w if there exist procedures of the following form:

1. (Encoding:) A computationally-unbounded encoding procedure which, given y ∈ [M ], prepro-
cesses it into a data structure E(y) ∈ ΣS, |Σ| ≤ 2w

2. (Query Procedure:) A computationally-unbounded t-query algorithm Q which, given x ∈ [N ]
and some encoding E ∈ ΣS, queries t indices (“cells”) of E and outputs a bit Q(x,E) ∈ {0, 1}

The data structure correctly solves the problem F if, for all (x, y) ∈ [N ]×[M ], Q(x, E(y)) = F (x, y).
We say the data structure is nonadaptive if the query procedure decides ahead of time, as a function
only of x, on the set of t cells which it will query.
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As mentioned in the introduction, for a problem F : [N ]× [M ] → {0, 1}, we will interchangeably
view it as a matrix F ∈ {0, 1}N×M and refer to its set of columns; the columns of F consist of the
vectors of the form Fy = (F (x, y))x∈[N ] ∈ {0, 1}N for each y ∈ [M ].

Next we turn to the formal definition of locally-computable generators:

Definition 5 (Locally-Computable Generators). We say that G : ΣS → {0, 1}N is a locally-
computable generator with time complexity t and space complexity S, provided that each output
(Gx)x∈[N ] is computed by a depth t decision tree Tx over the alphabet Σ. The word length of the

generator is ⌈log |Σ|⌉. We will refer to strings E ∈ ΣS as “encodings” which are decoded to G(E) by
the generator G. Each index i ∈ [S] is referred to as a “cell,” and for an encoding E the contents of
the ith cell is E(i). If the decision trees (Tx)x∈X are nonadaptive, we refer to G as a non-adaptive
generator. In the case Σ = {0, 1} and G is nonadaptive, we also refer to G as an NC0

t generator.

We emphasize that in the literature on cryptographic NC0 generators, the word “local generator”
typically refers to the special case of nonadaptive generators. We use the term “locally-computable”
to refer to the more general notion based on decision tree depth, and always use the qualifier “non-
adaptive” to refer to the special case of nonadaptive decision trees, or else NC0

t in the nonadaptive
case when Σ = {0, 1}.

We now arrive at the observation at the heart of our investigations, whose proof is a matter of
definitional manipulation:

Observation 1. Let F : [N ] × [M ] → {0, 1} be a data structure problem, interpreted also as a
matrix F ∈ {0, 1}N×M below. The following are equivalent:

1. F has time t, space S, word length w cell probe data structures (resp. nonadaptive)

2. There is a (resp. nonadaptive) locally-computable generator G : ΣS → {0, 1}N with |Σ| ≤ 2w

and time complexity t, such that every column of F lies in range(G)

The proof is essentially identical to that of the special case discussed in the introduction.

Proof. Say that F has nonadaptive bit probe data structures of space S and time t. Then, to every
y ∈ [M ] we may associate an encoding Ey ∈ {0, 1}S , so that for every x ∈ [N ] we may determine
F (x, y) by probing (resp. nonadaptively probing) t bits of Ey. Considering the yth column of F
as a string fy ∈ {0, 1}N , we see that there is a (resp. nonadaptive) locally-computable function
G : {0, 1}S → {0, 1}N with time complexity t, so that G(Ey) = fy for every y ∈ [M ]. In particular,
the xth output of G runs the data structure’s query procedure corresponding to the query x. Every
step in this argument in fact utilized a direct equivalence between premise and conclusion; reading
it in reverse yields a proof for the other direction.

3 Cell Probe Lower Bounds via CSP-Pseudorandomness

Using our main observation from the previous section (Observation 1), proving cell probe lower
bounds for a data structure problem F : [N ] × [M ] → {0, 1} is equivalent to showing that, for
the set cols(F ) = {(F (x, y))x∈[N ] | y ∈ [M ]} ⊆ {0, 1}N consisting of the columns of F , there

does not exist a locally-computable generator G : ΣS → {0, 1}N whose range contains every
vector f ∈ cols(F ). If we instead interpret a given locally-computable generator G : ΣS →
{0, 1}N as a candidate pseudorandom generator, a series of works on semirandom CSP refuta-
tion [Fei07, AOW15, AGK21, GKM22, HKM23] have developed techniques which can efficiently
generate certificates f /∈ range(G) for randomly chosen f ∼ {0, 1}N . In this section, we show how
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to apply these techniques to pseudorandom vectors f ∼ F ⊆ {0, 1}N with F being a distribu-
tion with suitable limited independence properties. This will imply that if cols(F ) supports such
a pseudorandom distribution, then we can argue cols(F ) ̸⊆ range(G) for any generator G with
appropriate parameters, which will yield a cell probe lower bound.

For the remainder of the section it will be more convenient to work over {±1} rather than {0, 1};
hence our data structure problems will be of the form F : [N ]× [M ] → {±1} and our generators of
the form G : ΣS → {±1}N .

3.1 From Locally-Computable Generators to XOR Schemes

The first step in the semirandom refutation procedures of [Fei07, AGK21, GKM22] is a reduction
from refuting arbitrary t-CSPs to refuting max-t-XOR CSPs. We prove a kind of analogue of this
argument for locally-computable generators. For any time t, space S locally-computable generator
G and any f ∈ {±1}N , we will associate a system of N different t-XOR equations over ≈ S
variables. This system of equations will have one part with depends only on G, and another which
depends only on f . We will argue that, in the case f ∈ range(G), the system of equations will
be “moderately satisfiable,” in the sense that there is some assignment which satisfies signficantly
more than half of the equations, or else falsifies significantly more than half. In subsequent sections,
we will show that if f is sampled from a distribution with suitable limited independence properties,
any such CSP arising from G, f will not be moderately satisfiable in this sense, which will give us
our lower bound.

The above discussion leaves out some complications of the argument; for a given G, f we will
actually construct a small collection of t-XOR CSPs, and can only guarantee that one of them
has a large value in the case f ∈ range(G). To obtain good parameters in our main reduction
(Theorem 7) we also need some additional arguments more specially tailored to the cell probe
model which do not seem to have a direct analogue in the CSP-refutation literature.

Definition 6. We define a “t-XOR scheme” C = (X,V, c) to consist of the following components:

1. A finite “index set” X and a finite “variable set” V

2. c : X →
(
V
t

)
identifies each x ∈ X with a set of variables (“constraint”) cx ⊆ V , |cx| = t.

We say that C = (X,V, c) is “indexed by X.” For a sign-pattern f : X → {±1} and assignment
R ∈ {±1}V to the underlying variables, we define

Val(C, f, R) :=
∣∣ E
x∈X

fx
∏
i∈cx

R(i)
∣∣

In some cases, we will have a ground set [N ], and a subset X ⊆ [N ] with an XOR scheme C
indexed by X; in this case, for f ∈ {±1}N and an assignment R, we define Val(C, f, R) to equal
Val(C, f ′, R), where f ′ is the restriction of f to the coordinates in X.

Finally, for an XOR scheme C and sign pattern f , we define

OPT(C, f) := max
R∈{±1}V

Val(C, f, R)

As foreshadowed in the discussion preceding this definition, the name “XOR scheme” stems from
an interpretation in terms MAX-t-XOR CSPs. For a scheme C = ([N ], V, c) and some f ∈ {±1}N ,
we may think of the pair (C, f) as representing a t-XOR CSP in the following way. Under the
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natural identification ({±1},×) ↔ (F2,+), consider the system of N linear equations over F2-
valued variables {vi | i ∈ V }, given by

(
∑
i∈cx

vi = fx mod 2) for each x ∈ [N ]

We then see that OPT(C, f) is the maximum, over all assignments of the variables to values in F2,
of the difference between the fraction of satisfied and unsatisfied equations. In particular, if some
assignment can satisfy (resp. falsify) every equation the value is 1; if the value is small, then every
assignment will have close to the same number of equations being satisfied/unsatisfied. If we fix
C, then we are fixing the left-hand sides of the above system of equations, and as we range over f ,
we range over different possible right hand sides which may cause the system to be more or less
satisfiable. This is the source of the word scheme: a single scheme C defines a family of 2N different
t-XOR CSP instances as we range over the 2N possible values of the “right hand side” f ∈ {±1}N .

Returning to the {±1} viewpoint, observe that we may extend the definition of Val(C, f, R) to
any R ∈ RV . In this view, Val(C, f) defines a multilinear polynomial in |V | many real variables,
such that the absolute value of the polynomial on any assignment R ∈ RV is equal to Val(C, f, R).
This leads to the following;

Observation 2. For any C, f ,

max
R∈{−1,1}V

Val(C, f, R) = max
R∈[−1,1]V

Val(C, f, R) ≥ max
R∈{0,1}V

Val(C, f, R)

Proof. The second inequality is trivial ({0, 1} ⊆ [−1, 1]). The first is a standard consequence of
multilinearity. To confirm it, we may start with any assignment R ∈ [−1, 1]V achieving a value
δ ∈ [0, 1], and replace it by an assignment in {±1}V achieving value ≥ δ by iterating over i ∈ V
and greedily replacing each R(i) by an element in {±1} which does not decrease the value. At a
given step, we have

Val(C, f, R) =
∣∣∣R(i) · P ((R(j))j ̸=i) +Q((R(j))j ̸=i)

∣∣∣
for some polynomials P,Q depending only on (R(j))j ̸=i. This is the absolute value of a linear
function in R(i) whose maximum is achieved at the boundary of [−1, 1].

The right-hand side in Observation 2 may be seen as a kind of hypergraph discrepancy param-
eter. Viewing (cx)x∈X as a t-uniform (multi-)hypergraph over vertex set V with hyperedges indexed
byX, we may think of f ∈ {±1}X as assigning a sign to each hyperedge. Then maxR∈{0,1}V Val(C, f, R)
is the maximum, over all subsets of vertices U ⊆ V , of the sum of the values fx with x ranging
over hyperedges in the sub-hypergraph induced by U . The smallness of maxR∈{0,1}V Val(C, f, R)
indicates that every large induced subhypergraph has its edges colored by f in an approximately
balanced way.

We now show that, for any locally-computable generator over output space {±1}N , we can
associate a small collection of XOR schemes indexed by [N ] (or by large subsets X ⊆ [N ]), so that
for any f ∈ range(G), we have that OPT(C, f) is large for one of the schemes C in our collection.

Theorem 7. Let G : ΣS → {±1}N be a locally-computable generator with time complexity t, word
length w = log |Σ|. There exists a collection of sets (Xj ⊆ [N ])j≤2tw+1, |Xj | ≥ 2−tw−1N , and a
collection of t-XOR schemes (Cj)j≤2tw+1, with Cj a t-XOR scheme indexed by Xj and having ≤ tS
variables, so that for every f ∈ range(G) there exists j ≤ 2tw+1 with Val(Cj , f) ≥ 2−tw−1. In
particular, if f ∈ {±1}N is a random variable supported on range(G), then there exists an XOR
scheme C over some X ⊆ [N ], |X| ≥ 2−tw−1N , so that Pr[OPT(C,f) ≥ 2−tw−1] ≥ 2−tw−1.
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Proof. By definition, for every x ∈ [N ], Gx : ΣS → {±1} is computed by a decision tree Tx of
depth t over the alphabet Σ. We develop here some more detailed notation to describe the trees
(Tx)x∈[N ]. Let L(Tx) denote the leaves of Tx and I(Tx) denote the internal nodes. Each internal
node v ∈ I(Tx) is associated with a cell pvx ∈ [S] which it probes, i.e. if Tx reaches the internal
node v at some point in its computation on the input E ∈ ΣS , then it will query E(pvx) next and
then take a corresponding step down the tree Tx. Each leaf ℓ ∈ L(Tx) corresponds uniquely to an
element π ∈ Σt, where π is the label of the unique path from the root to ℓ: the first cell queried
by Tx on input E ∈ ΣS has value π1, the second has value π2, and so on. Thus overall, Tx(E) will
follow the unique path π that is consistent with E to the leaf ℓ. Finally, each π ∈ Σt is labeled
by a value ϕx(π) ∈ {±1}, so that if Tx reaches the leaf ℓ ∈ L(Tx) associated with π on input

E ∈ ΣS , then Gx(E) = ϕx(π). For a given value π ∈ Σt, define the sequence q
(π,1)
x , . . . , q

(π,t)
x ∈ [S]

as follows: let v1, . . . , vt ∈ I(Tx) be the internal nodes found on the root to leaf path in Tx with

leaf corresponding to π, and set q
(π,j)
x = p

vj
x .

Using the structure of the generator G we now define the collection of XOR schemes guaranteed
in the Theorem statement. Let V 1, . . . , V t be sets of size S, each associated canonically with [S],

and V = V 1 ∪ · · · ∪ V t. For each x ∈ [N ], π ∈ Σt, let cπx = {q(π,1), . . . , q(π,t)x }, where q
(π,j)
x is

considered to live inside V j . For each π ∈ Σt and each b ∈ {±1} let X(π,b) = {x | ϕx(π) = b}.
For each π, b, we define the XOR scheme C(π,b) = (X(π,b), V, cπ); we will ignore any C(π,b) with
|X(π,b)| < 2−tw−1|X|. We emphasize that the variables V in our XOR schemes are {±1}-valued
(as per the definition of XOR schemes) rather than Σ-valued, despite being derived from some
correspondence to the domain of G, whose cells are Σ-valued.

Now, let f ∈ range(G), and choose some canonical preimage Ef with G(Ef ) = f . Then there

exists πf ∈ Σt so that, for the set X̃(πf ,f) consisting of all x ∈ [N ] such that Tx(Ef ) reaches the

leaf corresponding to πf , we have |X̃(πf ,f)| ≥ 2−twN . There must then exist a value bf ∈ {±1}
such that |X̃(πf ,f) ∩X(πf ,bf )| ≥ 2−tw−1N ; clearly |X(πf ,bf )| ≥ 2−tw−1N as well.

At this point, we have∑
x∈X(πf ,bf )

∏
j≤t

1{Ef (q
(π,j)
x ) = πf

j } = |X̃(πf ,f) ∩X(πf ,bf )| ≥ 2−tw−1N ≥ 2−tw−1|X(πf ,bf )|

Now define the boolean assignment Rf ∈ {0, 1}V , where for i ∈ V j ⊆ V , we set Rf (i) = 1{Ef (i) =

πj}. In this new notation we have
∏

i∈c(π
f )

x

Rf (i) =
∏

j≤t 1{Ef (q
(π,j)
x ) = πj} for every x. Recall

also that Gx(Ef ) = bf , and hence fx = bf , whenever
∏

j≤t 1{Ef (q
(π,j)
x ) = πj} = 1, x ∈ X(πf ,bf ).

So overall we conclude

Val(C(πf ,bf ), f, Rf ) =|X(πf ,bf )|−1 ·
∣∣∣ ∑
x∈X(πf ,bf )

fx
∏

i∈c(π
f )

x

Rf (i)
∣∣∣

=|X(πf ,bf )|−1 ·
∣∣∣bf ∑

x∈X(πf ,bf )

∏
j≤t

1{Ef (q
(π,j)
x ) = πf

j }
∣∣∣ ≥ 2−tw−1

Using Observation 2, we may replace the boolean assignment Rf ∈ {0, 1}V by a {±1}-assignment

R̃f ∈ {±1}V achieving a value at least as large, so overall we conclude that OPT(C(πf ,bf ), f) ≥
2−tw−1. This concludes the proof of the initial claim in the theorem. The last sentence of the
Theorem (“in particular...”) follows from the first part by taking a union bound over j ≤ 2tw+1.

We focus our attention on the “in particular” clause at the end of the statement of Theorem 7.
For a data structure problem F : [N ]× [M ] → {±1}, we have reduced the problem of proving cell
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probe lower bounds for F to the following: find a random vector f ∈ {±1}N supported on the
columns of F , so that for any t-XOR scheme C defined over a large subset of [N ], we have that
OPT(C,f) is very small with very high probability. This may be seen as a specialized notion of
pseudorandomness; in particular we may define:

Definition 7 (CSP-Pseudorandomness). Let f ∈ {±1}N be a random variable. We say that f is
“(N,K, δ, ϵ)-CSP-Pseudorandom” if, for any XOR scheme C indexed by [N ] with K variables, we
have

Pr[OPT(C,f) ≥ δ] < ϵ

We will not use this extra notation in our formal arguments later on, and will instead refer
directly to Theorem 7, but we isolate the definition here for the purpose of discussion. We may
think of each C indexed by [N ] with K variables and each δ as defining a “statistical test” T :
{±1}N → {0, 1}, with T (f) = 1{OPT(C, f) < δ}. Provided K << N and δ is not too small, we
can easily argue that a truly random f will pass the test with overwhelming probability (chernoff
bound + union bound over {±1}K); our goal is then to define a pseudorandom distribution which
is similar to the uniform distribution with respect to passing this class of tests. This is a standard
way to define a notion of pseudorandomness in terms of a class of statistical tests which it “fools.”
Many examples of such distributions have been constructed in the case that the family of tests in
question are of very low computational complexity. However, in this case the statistical test defining
T is NP hard to compute in general: it references the optimal value of a CSP defined by f . For this
reason, analyzing this class of tests directly and constructing a suitable pseudorandom distribution
appears extremely difficult. This is precisely where efficient CSP refutation algorithms come in to
play: if we can come up with a more tractable test T ′, so that T ′(f) → T (f) and still T ′ happens
with high probability for a random f , we may reduce the task at hand to fooling the simpler test T ′.
Technically speaking the notions of “tractability” needed here vs. in the setting CSP refutation are
quite different. For us, it is neither necessary nor sufficient that T ′ be computable in polynomial
time; rather we would like the proof of the statement “a random f satisfies T ′(f) = 1” to hold over
some pseudorandom distribution with significantly smaller entropy.

We make a final note on the discrepancy between Definition 7 and Theorem 7: in Theorem 7 we
may have to pass to some large subsetX ⊆ [N ] and define an XOR scheme indexed only byX, while
in Definition 7 we refer only to XOR schemes over the original set of indices [N ]. This distinction
will be essentially irrelevant to us, since we will deal with notions of pseudorandomness for vectors
f ∈ {±1}N which are preserved under passing to subsets of indices X ⊆ [N ]. Hence, for most of
the following we will state results in terms of XOR schemes indexed by [N ] and random vectors in
{±1}N , with the understanding that we may have started with some original [N ′], f ′ ∈ {±1}N ′

,
passed to X ⊆ [N ′] of size N , and then identified X with [N ] in some canonical way. We will then
remember that this “passing to a subset” operation has occured only when we get to our ultimate
proof of the lower bound in Theorem 1, where the density of the subset we passed to will have some
mild effect on the parameters.

3.2 CSP-Pseudorandomness via Limited Independence

In this section we prove that if f ∈ {±1}N satisfies suitable limited independence properties, then
for any t-XOR scheme C with suitable parameters, OPT(C,f) will be very small with very high
probability. In the terminology of Definition 7, we aim to prove that limited independence implies
CSP-pseudorandomness (within a certain regime of parameters).

We accomplish this in the following way: starting with any t-XOR scheme C indexed by [N ],
we construct a certain ensemble of matrices indexed by [N ], which has the property that whenever
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we take a signed sum of these matrices using f as a signing, we have that the ∞ → 1 norm of the
resulting matrix is lower bounded by OPT(C, f). We then prove that, when f is chosen from a
pseudorandom distribution with suitable limited-independence properties, the operator norm of a
random matrix sum signed by f will be small with high probability. The proof of this latter claim
is delayed to the next subsection (Section 3.3). We start with the definition of a matrix ensemble:

Definition 8. A matrix ensemble A = (Ax ∈ Rm×m)x∈[N ] is a collection of matrices of the same

dimension; we say that A lives in dimension m and is indexed by the set [N ]. For f ∈ {±1}N , we
define the matrix

A[f ] =
∑
x∈[N ]

fxAx

If each matrix Ax is a subpermutation matrix (boolean with at most one nonzero entry per row and
column), we say that A is a permutation ensemble, and we define d(A) = m−1

∑
x,i,j Ax(i, j) to be

the “average degree” of the ensemble.

We will construct matrix ensembles from XOR schemes via the “Kikuchi-Matrix Method” pi-
oneered by [WEAM19] and developed further in [GKM22]. We describe first a special case of the
construction, which will suffice for our lower bound on k-wise independent problems in the impor-
tant case k ≈ logN . The idea is simple: we create a new “meta variable” for each t/2-tuple of
original variables, and each original t-ary constraint cx = {i1, . . . , it} becomes a 2-ary constraint
c′x = {(i1, . . . , it/2), (it/2+1 . . . , it)} over the new variables. This reduces things to the case of a
2-XOR scheme, while blowing up the number of variables by an exponent of t/2. For 2-ary XOR
schemes, the optimization problem associated with OPT(C, f) can be interpreted as maximizing
the quadratic form of some matrix over the signed hypercube; this optimization problem is precisely
captured by the ∞ → 1 norm. In the proof below we will cut out the intermediate step of defining
a 2-CSP, and construct the relevant matrices directly from the original t-CSP.

Lemma 2. Let C = ([N ], V, c) be a t-XOR scheme with |V | = K and t even. There exists a matrix
ensemble A = (Ax)x∈[N ] so that:

1. Each Ax lives in Rm×m for m =
(
K
t/2

)
, and has exactly 1 nonzero entry with value 1

2. d(A) ≥ K− t
2 ·N

3. For any f ∈ {±1}N , we have ∥A[f ]∥∞→1 ≥ d(A)m ·OPT(C, f)

Proof. Associate [m] with
(
V
t/2

)
, so m ≤ K

t
2 . For x ∈ [N ], write its associated constraint in C

as cx = {i1x, . . . , itx} ⊆ V with its variables ordered in some canonical way. We define our matrix
ensemble by

Ax(a, b) = 1{a = {i1x, . . . , it/2x } and b = {it/2+1
x , . . . , itx}}

Observe that each Ax has exactly one nonzero entry with value one, and hence d(A) = m−1N ≥
K− t

2 ·N . Now, let f ∈ {±1}N be given, and let R ∈ {±1}V be such that OPT(C, f) = Val(C, f, R).
Consider the vectors R̃ ∈ {±1}m, given by R̃(a) =

∏
i∈aR(i). Then

∥A[f ]∥∞→1 ≥ R̃⊤A[f ]R̃ =
∑

a,b∈( V
t/2)

R̃(a)R̃(b)A[f ](a, b) =
∑
x∈[N ]

fx
∑
a,b

Ax(a, b)
∏
i∈a

R(i)
∏
j∈b

R(j)

=
∑
x∈[N ]

fx
∏
i∈cx

R(i) = N ·Val(C, f, R) = N ·OPT(C, f)

In other words ∥A[f ]∥∞→1 ≥ d(A)m ·OPT(C, f).
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Now, say that we started with a time-t generator G : ΣS → {0, 1}N with t = O(1), S =

o( N
logN )

2
t , and had some random vector f ∈ {±1}N supported on the range of G which is O(logN)-

wise independent. Applying Theorem 7 followed by Lemma 2 above, we would obtain a matrix
ensemble A indexed by some large subset X ⊆ [N ], |X| ≥ Ω(N) with the following properties: the
ensemble lives in Rm×m for m = NO(1), has average degree ω(logN) = ω(logm), and with high
probability ∥A[f ]∥∞→1 ≥ Ω(N). In the following we will argue that for any f which is O(logN)-
wise independent, we will have ∥A[f ]∥ = o(N) for any A in dimension m = NO(1) and with

d(A) = ω(logN); we would then reach a contradiction with our initial assumption S ≤ o( N
logN )

2
t ,

which would give us the desired cell probe lower bound S ≥ Ω̃(N
2
t ) for O(logN)-wise independent

problems.
In the case k >> logN we need a generalization of the construction in Lemma 2 from [WEAM19,

GKM22]. We will reproduce the proof (in the appendix) since our notation is somewhat different.
The parameter “L” occurring in this Theorem is called the “Kikuchi level” of the construction,
and we will set it to be ≈ k in our subsequent arguments when proving lower bounds for k-wise
independent problems for larger values of k:

Theorem 8 ([WEAM19, GKM22]). Let C = ([N ], V, c) be a t-XOR scheme, |V | = K, and t even.
For any t ≤ L ≤ K

8 , we may associate with C a permutation ensemble A indexed by [N ] with the
following properties:

1. A lives in Rm×m for m =
(
K
L

)
2. d(A) ≥

(
L
K

)t/2
N

3. For any f ∈ {±1}N , we have ∥A[f ]∥∞→1 ≥ d(A)m ·OPT(C, f)

The construction is a straightforward generalization of that in Lemma 2: identifying [m] with(
V
L

)
, we set Ax(a, b) = 1{cx = a∆b} where ∆ denotes symmetric difference. The proof is also

essentially identical to that of the special case Lemma 2 and so we relegate it to the appendix
(Section A). From now on we will refer only to the more general Theorem 8 and leave behind the
special case Lemma 2.

It remains to show that if A is a permutation ensemble with sufficiently small dimension and
large average degree, then for any random vector f exhibiting suitable limited independence proper-
ties, we will have ∥A[f ]∥∞→1 small with high probability. We defer the proof to the next subsection
(Section 3.3), but state the bounds here:

Theorem 9. Let A be a permutation ensemble in Rm×m indexed by [N ], let f ∈ {±1}N be a
random vector which is γ-almost k-wise independent for k even, and let δ > 0 be sufficiently small.
Assume the following relations are satisfied:

1. d(A) ≥ C 1
δ2

log(1δ )m
2/k(k + logm) for a sufficiently large universal constant C

2. γ ≤ 2−2k−1δkm−1

Then we have the tail bound:
Pr[∥A[f ]∥∞→1 ≥ δmd] ≤ 2−k

Using Theorem 8 we may directly translate this to a statement about XOR schemes:
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Theorem 10. Let C = ([N ], V, c) be a t-XOR scheme, |V | = K, t even, L ∈ N with t ≤ L ≤ K
8 , and

say that f ∈ {±1}N is γ-almost k-wise independent, k ≤ L logN . Then for any δ > 0 sufficiently
small we have

Pr[OPT(C,f) ≥ δ] ≤ 2−k

provided that N
logN ≥ C 1

δ2
log 1

δK
t
2
+ 2L

k ·L1− t
2 where C is a universal constant, and γ ≤ 2−2k−1δkm−1.

Finally applying the above Theorem together with Theorem 7, we obtain our main cell probe
lower bound:

Theorem (Theorem 1 restated). Let F : [N ]× [M ] → {±1} be a data structure problem such that
there exists a γ-almost k-wise independent random vector f ∈ {±1}N supported on the columns of
F . Let S, t, w ∈ N be given with t an even number and assume k > tw+ 1. Then, for any space S,
time t, word length w cell probe data structure solving F , we must have:

1. S ≥
( N

logN

) 2
t ·

( k

logN

)1− 2
t · t−12−(6−o(1))w for all t logN ≤ k ≤ N2−(3−o(1))twt−

t
2

2. S ≥
( N

logN

) 1

t( 12+ 2
k
) · t−12−(6−o(1))w for all t ≤ k ≤ t logN ,

provided γ ≤ N−t2−O(ktw) in each case.

Proof. Set δ = 2−tw−1. Say that F has a time t, space S data structure with t even. Fix some L ∈ N
satisfying t ≤ L ≤ tS

8 and k ≤ L logN to be specified later, and assume that γ ≤ (tS)−L2−2k−1δ−k.
Applying Theorem 7 we may find X ⊆ [N ] of size |X| ≥ δN and an XOR scheme C = (X,V, c),
|V | = K := tS indexed by X so that, with probability at least δ over f , OPT(C,f) ≥ δ. Applying
Theorem 10 and using the fact that 2−k < δ (since k > tw + 1), this is only possible provided

δ
N

logN
≤ |X|

log |X|
< C

1

δ2
log

1

δ
K

t
2
+ 2L

k · L1− t
2

We have C 1
δ3

log 1
δ ≤ 23tw+o(tw). We also may safely assume S ≤ N

t and logK ≤ logN . Plugging
in these estimates and tS in place of K we obtain the bound:

S >
( N

logN

) 1
t
2+2L

k · L
t
2−1

t
2+2L

k · t−12−(6−o(1))w (2)

To finish the proof, we set L = k
logN in case (1) and L = t in case (2); in both cases the condition

t ≤ L ≤ tS
8 will be satisfied, and γ ≤ (tS)−L2−2k−1δ−k will hold provided γ ≤ N−t2−Cktw for a

sufficiently large constant C.

3.3 Proof of Theorem 9

We now prove Theorem 9 which is reproduced below for convenience:

Theorem (Theorem 9, restated). Let A be a permutation ensemble in Rm×m indexed by [N ], let
f ∈ {±1}N be a random vector which is γ-almost k-wise independent for k even, and let δ > 0 be
sufficiently small. Assume the following relations are satisfied:
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1. d(A) ≥ C 1
δ2

log(1δ )m
2/k(k + logm) for a sufficiently large universal constant C

2. γ ≤ 2−2k−1δkm−1

Then we have the tail bound:
Pr[∥A[f ]∥∞→1 ≥ δmd] ≤ 2−k

The first half of our proof will follow a strategy of [HKM23]: we will pass from A to a second
matrix ensemble B over the same index set [N ] so that whenever ∥A[f ]∥∞→1 is large, ∥B[f ]∥ is
large, where ∥ · ∥ denotes the spectral norm. We then prove that limited independence fools the
spectral norm. For this we use a standard technique, which approximates the spectral norm of a
matrix by the trace of a suitable matrix power; the trace of this power will be low degree polynomial
in the underlying variables {fx | x ∈ [N ]}, and hence takes on a similar value when f is chosen
truly uniformly, or chosen from distribution with limited independence. We remark that a similar
argument is made in passing in the introduction of [dT22] in the context of refuting fully-random
CSPs. Finally, it remains to prove that the spectral norm of B[f ] is low when f is truly uniform; for
this we rely on matrix concentration inequalities as in various prior works on semirandom refutation
[AGK21, GKM22].

We start with some additional definitions and inequalities necessary for the proof:

Definition 9. For a matrix A and even integer k, define A▷◁k := (A⊤A)k/2. For a matrix ensemble
B = (Bx)x∈[N ], let

νrow(B) = ∥
∑
x

B⊤
x Bx∥, νcol(B) = ∥

∑
x

BxB
⊤
x ∥, ν(B) = max{σrow(B), σcol(B)}

and let χ(B) = max
x∈[N ]

∥Bx∥.

We need the following well-known fact:

Lemma 3 (Trace/Norm Inequality). For A ∈ Rm×m and any even k,

m−1/k · tr(A▷◁k)1/k ≤ ∥A∥ ≤ tr(A▷◁k)1/k

Proof. For the PSDmatrixA▷◁2, we have
√
λmax(A▷◁2) = ∥A∥, and λmax((A

▷◁2)k/2) = (λmax(A
▷◁2))k/2,

hence overall we have ∥A∥ = λmax((A
▷◁2)k/2)1/k = λmax(A

▷◁k)1/k. On the other hand for any PSD
matrix D ∈ Rm×m we have m−1tr(D) ≤ λmax(D) ≤ tr(D); apply this to D = A▷◁k and take kth

roots.

As described above, the first step in our proof is to pass from a permutation ensemble A to
another ensemble B, so that the spectral norm of B[f ] controls the ∞ → 1 norm of A[f ]. For this
we use a strategy laid out in the introduction of [HKM23], which multiplies each Ax(i, j) by some
global scaling factors wi ·wj so as to normalize the total entry weight lying in each row and column.

Lemma 4. Let A = (Ax)x∈[N ] be a permutation ensemble in Rm×m. Then there exists an ensemble
B = (Bx)x∈[N ] of the same dimensions, so that

1. For every f ∈ {±1}N , we have 1
2md(A)∥A[f ]∥∞→1 ≤ ∥B[f ]∥

2. ν(B), χ(B) ≤ d(A)−1

3. tr(B▷◁k) ≤ m for all even integers k, where B =
∑

x∈[N ]Bx
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4. ∥B[f ]∥ ≤ 1 for all f ∈ {±1}N

Proof. Let d = d(A). For each i ∈ [m] let drow(i) =
∑

x,j Ax(i, j) and let Γi = d+drow(i); we define
dcol(j), Λj symmetrically w.r.t. rows and columns. Define the ensemble B = (Bx)x∈[N ] by

Bx(i, j) = Γ
−1/2
i Λ

−1/2
j Ax(i, j)

Let u, v ∈ [−1, 1]m be such that ∥A[f ]∥∞→1 = |u⊤A[f ]v|. Define

û = (u(i) · Γ1/2
i )i∈[m], v̂ = (v(j) · Λ1/2

j )j∈[m]

Then we have |û⊤B[f ]v̂| = |u⊤A[f ]v| = ∥A[f ]∥∞→1, and hence

∥B[f ]∥ ≥ |ũ⊤B[f ]ṽ|
∥û∥ · ∥v̂∥

≥ ∥A[f ]∥∞→1 ·
(∑
i≤m

(drow(i) + d)
)−1/2(∑

j≤m

(dcol(j) + d)
)−1/2

=
∥A[f ]∥∞→1

2md

which gives (1). For (2), we have χ(B) ≤ maxi,j |Γ−1/2
i Λ

−1/2
j | ≤ d−1 since the spectral norm of each

Bx, being a reweighted subpermutation matrix, is bounded above by the magnitude of its largest
entry. For ν(B), note that B⊤

x Bx is a diagonal matrix with (i, i)th entry equal to
∑

j Bx(i, j)
2.

Hence
∑

xB
⊤
x Bx is diagonal as well, with spectral norm equal to the magnitude of its largest entry,

in particular:

νrow(B) = max
i

∑
x,j

Bx(i, j)
2 = max

i

∑
x,j

ΓiΛjAx(i, j) (3)

≤ max
i

Γ−1
i

∑
x,j

Ax(i, j)

d
=

1

d
max

i

drow(i)

Γi
≤ 1

d
(4)

The same argument applies to columns, and we conclude ν(B) ≤ d−1. Next we verify (3). Let 2k
be an even integer and let B =

∑
xBx, A =

∑
xAx. We argue here exactly as in the introduction

of [HKM23]. Expanding the definition of tr(B▷◁2k):

tr(B▷◁2k) =
∑
i1

∑
j1

B(i1, j1)
∑
i2

B(i2, j1) · · ·
∑
jk

B(ik, jk)
∑
ik+1

B(ik+1, jk)1{ik+1 = i1}

=
∑
i1

∑
j1

A(i1, j1)Γ
−1/2
i1

Λ
−1/2
j1

∑
i2

A(i2, j1)Γ
−1/2
i2

Λ
−1/2
j1

· · ·
∑
ik+1

A(ik+1, jk)Γ
−1/2
i1

Λ
−1/2
jk

1{ik+1 = i1}

=
∑
i1

Γ−1
i1

∑
j1

A(i1, j1)Λ
−1
j1

∑
i2

A(i2, j1)Γ
−1
i2

· · ·Λ−1
jk

∑
ik+1

A(ik+1, jk)1{ik+1 = i1}

≤
∑
i1

1 ≤ m

where the domain of each summand i, j is [m], and in the second to last inequality we are using
the fact that for any i we have Γ−1

i

∑
j A(i, j) ≤ 1 (and symmetrically for columns, Λj). Finally for

(4), observe that since tr(B[f ]▷◁2k) is a polynomial in the variables {fx | x ∈ [N ]} with nonnegative
coefficients, (3) implies that tr(B[f ]▷◁2k) ≤ m for all f and all k. Applying the Trace/Norm
inequality (Lemma 3) we have that ∥B[f ]∥2k ≤ m for arbitrarily large k, hence ∥B[f ]∥ ≤ 1.

We now wish to argue that, for the kind of matrix ensemble B obtained in the last lemma, the
upper tail of ∥B[f̂ ]∥ is controlled by that of ∥B[f ]∥, where f̂ and f are k-wise independent and

24



truly uniform vectors respectively. This follows directly from the trace norm inequality and the fact
that tr(B[·]▷◁k) is a degree k polynomial. If we assume only that f̂ is γ-almost k-wise independent,
for γ > 0, some error term involving γ and the total monomial weight of the associated polynomial
will be introduced. In the end we get:

Lemma 5. Let B = (Bx)x∈[N ] be a matrix ensemble in Rm×m such that ∥B[f ]∥ ≤ 1 for all f ∈
{±1}N and let k > 3 be an even integer. Say that f , f̂ ∈ {±1}N are random variables, with f
uniform on {±1}N and f̂ sampled from a γ-almost k-wise independent distribution. Then for any
δ > 0 with γ · tr((

∑
xBx)

▷◁k) ≤ 2−2k−1δk we have:

Pr[∥B[f̂ ]∥ ≥ δ] ≥ 2−k −→ Pr[∥B[f ]∥ ≥ δ(8m)−1/k] ≥ 2−k−2δkm−1

Proof. Set ϵ := 2−k, r := tr((
∑

xBx)
▷◁k). Say that Pr[∥B[f̂ ]∥ ≥ δ] ≥ ϵ, hence Pr[∥B[f̂ ]∥k ≥ δk] ≥ ϵ

and therefore E ∥B[f̂ ]∥k ≥ ϵδk. By the trace/norm inequality, we know that for all f , tr(B[f ]▷◁k) ≥
∥B[f ]∥k, hence we have E tr(B[f̂ ]▷◁k) ≥ ϵδk. Since tr(B[·]▷◁k) is a degree k polynomial with total
monomial weight ≤ r, we have that |E tr(B[f̂ ]▷◁k) − E tr(B[f ]▷◁k)| ≤ γr2k, hence E tr(B[f ]▷◁k) ≥
ϵδk − γr2k ≥ 1

2ϵδ
k and therefore, applying the other side of the trace/norm inequality, E∥B[f ]∥k ≥

ϵδk

2m . Thus Pr[∥B[f ]∥k ≥ ϵδk

4m ] ≥ ϵδk

4m (we use here that ∥B[f ]∥ ≤ 1 probability 1), and so Pr[∥B[f ]∥ >

δ( ϵ
4m)1/k] ≥ ϵδk

4m . Recall that ϵ = 2−k, so δ( ϵ
4m)1/k = δ(8m)1/k.

It then remains only to argue that, for the ensemble B arising in our argument, ∥B[f ]∥ has a
suitably decaying upper tail when f is a uniformly random signing. For this we rely on the Matrix
Bernstein inequality.

Theorem 11 (Matrix Bernstein [Tro12]). Let B = (Bx)x∈X be an ensemble in Rm×m and f ∈
{±1}X a uniformly random sign vector. For any α > 0 we have

Pr[∥B[f ]∥ ≥ α] ≤ 2m exp(−1

6
· α2

ν(B) + αχ(B)
)

We are now ready to prove Theorem 9:

Proof of Theorem 9. Let A = (Ax)x∈[N ] be a permutation ensemble in Rm×m with average degree

d = d(A), let δ > 0 be sufficiently small. Let f , f̂ ∈ {±1}X be random vectors, with f uniform
and f̂ γ-almost k-wise independent for some even k, and assume γ ≤ 2−2k−1δkm−1. Assume
that Pr[∥A[f̂ ]∥∞→1 ≥ δmd] > 2−k; we then wish to establish that d ≤ C 1

δ2
log(1δ )m

2/k logm for
a suitably large constant C. Applying Lemma 4, we construct from A an ensemble B, so that
ν(B), χ(B) ≤ d−1, tr((

∑
xBx)

▷◁k) ≤ m, ∥B[f ]∥ ≤ 1 for all f , and ∥B[f ]∥ ≥ (2md)−1∥A[f ]∥∞→1 for
all f . In particular this implies

Pr[∥B[f̂ ]∥ ≥ δ

2
] ≥ Pr[∥A[f̂ ]∥∞→1 ≥ δmd] > 2−k

We then apply Lemma 5 and conclude that:

Pr[∥B[f ]∥ ≥ δ

2
(8m)−1/k] ≥ 2−2k−2δkm−1

Now setting α := δ
2(8m)−1/k, from the Bernstein inequality we know that

Pr[∥B[f ]∥ ≥ α] ≤ 2m exp(−1

6
· α2

1
d + α

d

) ≤ 2m exp(−α2d

12
) ≤ 2logm−α2d

12

We then have 2logm−α2d
12 ≥ 2−2k−1δkm−1, which implies d ≤ C 1

δ2
log 1

δm
2/k(k + logm) for C a

suitable absolute constant and δ sufficiently small.
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3.4 Lower Bounds for Concrete Problems

We may apply the lower bound in Theorem 1 to any problem F : [N ] × [M ] → {0, 1} exhibiting
suitable limited independence properties. If our goal is simply to minimize M as a function of N ,
subject to proving the best quantitative bound and subject to F being explicit, our best course
of action is to use any explicit construction of γ-almost k-wise independent distributions with
minimum possible support size (i.e. minimum seed length), for example [NN90] or any of its
subsequent improvements. However, it is also of interest to prove lower bounds for natural problems
which have some more concrete interpretation as an information retrieval task. We highlight here
two such natural problems to which we can apply the lower bound in Theorem 1. Both pertain to
evaluating low degree polynomials of some kind over a finite field.

3.4.1 Evaluating Univariate Polynomials over a large field F

The first problem we discuss is standard in data structure complexity (e.g. [Lar12, GGS23]): the
evaluation of low degree univariate polynomials over a large finite field. The k-wise independence
properties of this problem are well known and this lower bound does not require much elaboration.
We define the polynomial evaluation problem formally below.

Definition 10. For any finite field F and d ∈ N we define the data structure problem F-Evald.
Datapoints are univariate polynomials p of degree ≤ d over F; queries are elements x ∈ F; the correct
answer is the evaluation of p on x, i.e. F-Evald(x, p) = p(x). For any function χ : F → {0, 1},
define the restricted problem χ-F-Evald, which has the same datapoints and queries, but the required
answer is only the bit χ(p(x)).

Note that the problem F-Evald does not have a boolean output, however it is clearly at least
has hard as the boolean-valued problem χ-F-Evald for any χ. A typical choice of χ is as follows:
say that F = F2n is identified with {0, 1}n under some natural encoding (e.g. x ∈ F is interpreted
as a degree ≤ n − 1 univariate polynomial over F2 modulo some fixed irreducible and is coded by
its vector of coefficients), and set χ(x) to be the first bit of x’s encoding. We then have, as an
immediate consequence of Theorem 1 and the well known d-wise independent properties of degree
d polynomials:

Theorem 12. Let F be a finite field of characteristic 2 and let χ : F → {0, 1} be any function
which is balanced, i.e. |χ−1(0)| = |χ−1(1)|. Let d, S, t, w ∈ N be given with t an even number and
assume d > tw + 1. Then, for any space S, time t, word length w cell probe data structure solving
χ-F-Evald we must have:

1. S ≥
( |F|
log |F|

) 2
t ·

( d

log |F|

)1− 2
t · t−12−(6−o(1))w for all t log |F| ≤ d ≤ |F|2−(3−o(1))twt−

t
2

2. S ≥
( |F|
log |F|

) 1

t( 12+ 2
k
) · t−12−(6−o(1))w for all t ≤ d ≤ t log |F|,

3.4.2 Evaluating Multivariate Polynomials over F2

The second and perhaps less known problem we highlight pertains to evaluating low degree multi-
variate polynomials p : Fn

2 → F2, defined formally below:

Definition 11. For any d ≤ n we define the data structure problem F2-Eval
d
n. Datapoints are

multilinear polynomials p : Fn
2 → F2 of degree ≤ d; queries are elements x ∈ Fn

2 ; the correct answer
is the evaluation of p on x, i.e. F2-Eval

d
n(x, p) = p(x).
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We use the following result of [Raz88], improved quantitatively by [Sav95]:

Lemma 6 ([Raz88, Sav95]). Let k ≤ n. There exists a random function variable f : {0, 1}n →
{0, 1} which is k-wise independent, so that with probability 1 f is computed by a degree ≤ log k+1
polynomial p : Fn

2 → F2 (under the natural correspondence F2 ↔ {0, 1}).

The above statement does not occur explicitly in [Raz88, Sav95]; rather, [Sav95] shows that
for every k, γ > 0, there exists a random function f : {0, 1}n → {0, 1} which is γ-almost k-wise
independent and computed (with probability 1) by a formula of the form:

ϕ(x) =
⊕
i≤m

∧
j≤log k+1

⊕
u≤2n+2

ℓi,j,u (5)

for m = 2 log( 1γ ) log k, where each ℓi,j,u is a literal in {x1, . . . , xn,¬x1, . . . ,¬xn, 0, 1}. Clearly such
a formula is representable by a polynomial of degree at most log k + 1 regardless of the value of
γ; taking γ suitably small (below the granularity of the implied distribution, which is bounded
away from zero by a function of only n, k) we obtain the desired result. Combining Lemma 6 and
Theorem 1 we arrive at the following cell probe lower bound for F2-Eval

d
n:

Theorem 13. Let n, d, t, w be given, and assume that d lies in the range:

log n+ log t+ logw +O(1) ≤ d ≤ n−O(wt log t)

Then the problem F2-Eval
d
n satisfies the space/time/word length tradeoff

S ≥
(
2n−logn

) 2
t ·

(
2d−logn

)1− 2
t · t−12−(6−o(1))w

We make some observations about this lower bound. Consider the setting w, t = O(1) and
d = log n + O(1) and let F be the data structure problem F = F2-Eval

d
n. Then F is of the form

F : [N ] × [M ] → {0, 1} for N = 2n, M = 2n
logn+O(1)

, i.e. M = 22
O(log logN)2

which is close to
polynomial in N (we may say that it is quasi-quasi-polynomial). This problem F satisfies the (new
as of this paper) strongest known cell probe lower bound for any problem with this relation between

M,N : we require space S ≥ Ω̃(N
2
t ) for time t, word length w data structures. On the other hand,

we can observe that F has rank at most 2O(log logN)2 over F2, which is very close to logarithmic in
the number of queries N ; this is because the columns of F are spanned by the nlogn+O(1) monomials
of degree ≤ d. In the language of communication complexity, this places F in the communication
class ⊕Pcc. This is of some interest in relation to our later discussions in Section 6.3, where we
relate cell probe complexity to other “high-end” communication complexity classes such as PHcc

and (PH[⊕p])
cc

Second, we note that we could have defined directly an “evaluation problem” for depth 3 AC0[⊕]
formula of the form occuring in (5) above. For an appropriate setting of γ and using our bounds
for almost k-wise independence we would obtain a problem F : {0, 1}n × {0, 1}poly(n) → {0, 1}
satisfying the new state of the art time space tradeoff, which in addition has the property that
F (x, y) is computable by a poly(n)-size AC0[⊕] formula.

4 Beating the Limited Independence Bound

As discussed in the introduction, the lower bounds in the previous section are essentially tight for
k-wise independent data structure problems, even in the special case of nonadaptive bit probe data
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structures and even when t is odd6. In particular for any constant t > 1, if we wish to obtain a
data structure problem F : [N ] × [M ] → {±1} with M ≤ exp(No(1)) and satisfying a space/time

tradeoff S > N
2
t
+ϵ for some absolute constant ϵ > 0 (again, even for nonadaptive bit probe data

structures), we provable cannot rely solely on k-wise independence as our hardness property for
the problem F . In this section we achieve lower bounds of this kind for every t ∈ N which is an
odd number using a method from t-CSP refutation developed by [FKO06] in the case t = 3 and
generalized to all t by [GKM22]. To establish the lower bounds here, we will have to pass from
k-wise independent distributions to small-bias probability spaces.

For starters, we will need a variant of Theorem 7 which is specialized to nonadaptive generators
with word length 1; remember from Section 2.2 that such generators, with time complexity t, are
referred to as NC0

t generators. The proof of this theorem more or less follows arguments in Section
9 of [GKM22], adapted to the setting of NC0

t generators (in fact the argument becomes simpler in
this setting):

Theorem 14. Let G : {±1}S → {±1}N be an NC0
t generator. Then there is X ⊆ [N ], |X| ≥ 2−2tN ,

and a collection of 2t different XOR schemes indexed by X, (Cu)u⊆[t] so that:

1. Each XOR scheme has ≤ tS variables, and Cu is a |u|-XOR scheme.

2. For every f ∈ range(G) we have max
u⊆[t],|u|<t

Val(Cu, f) ≥ (1−Val(C[t], f))2−t

Proof. For each x ∈ [N ], Gx : {±1}S → {±1} depends on t input cells which we list in some fixed
order p1x, . . . , p

t
x. For each x there is a predicate hx : {±1}t → {±1} so that if, on input E ∈ {±1}S ,

Gx(E) sees the query outcomes ξ1 = E(p1x), . . . , ξt = E(ptx), then Gx(E) = hx(ξ). Hence there
exists h : {±1}t → {±1} so that, for the set X = {x ∈ [N ] | hx = h} we have |X| ≥ 22

−t
N . Fix

this choice X,h for the remainder of the proof.
Let V 1, . . . , V t be copies of [S]. For each u ⊆ [t], we define the XOR scheme Cu = (X,V u, cu)

indexed by X with variable set V u = ∪j∈uV
j and constraints cux = {pjx | j ∈ u} where pjx is

considered to live inside V j ; note that this is well-defined even for u = ∅, in which case we get a
0-XOR scheme C∅ over 0 variables with OPT(C∅, f) = Ex∈X fx. The function h may be expressed
uniquely as h(ξ) =

∑
u⊆[t] ĥ(u) ·

∏
j∈u ξj , where (ĥ(u))u⊆[t] are its Fourier coefficients. Now let

f ∈ range(G) with encoding Ef , we have:

1 = E
x∈X

fx · h(Ef (p1(x)), . . . , Ef (pt(x))) = E
x∈X

fx
∑
u⊆[t]

ĥ(u)
∏
j∈u

Ef (pj(x))

≤
∑
u⊆[t]

|ĥ(u)| · | E
x∈X

fx
∏
j∈u

Ef (pj(x))| =
∑
u⊆[t]

|ĥ(u)| · | E
x∈X

fx
∏
i∈cux

Eu
f (i)|

≤
∑
u⊆[t]

|ĥ(u)| ·Val(Cu, f) ≤
∑
u⊆[t]

Val(Cu, f)

where, in the second to last line, we use Eu
f to denote the vector in {0, 1}Vu obtained from Ef by

setting Eu
f (i) = Ef (i) for every i ∈ V j ⊆ Vu (E∅

f is the empty vector ∅ 7→ {0, 1}).

Using Theorem 14, we obtain from any NC0
t generator a sequence of r-XOR schemes with various

orders r ≤ t. We will deal with the schemes (Cu)|u|<t of order < t using limited independence as
in Section 3.2; for these we can hope to obtain upper bounds on Val(Cu,f) which approach 0 at

6We cannot really say “tight” in the case t is odd since we have not proven the lower bound in this case; what we
mean is that there is an upper bound matching the form of Theorem 1 even for odd values of t.
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a reasonably fast rate, provided S << N
2

(t−1) . For the highest order scheme C[t], we will only be
able to obtain an upper bound on Val(C[t],f) that is somewhat bounded away from one; however,
if these two upper bounds match up correctly, we still have room to complete the lower bound
according to Theorem 14.

The highest order term is dealt with using a technique developed in [FKO06, GKM22]. The
main technical ingredient is the following theorem:

Theorem 15 ([GKM22]). Let t > 1, t = O(1) be fixed. Let e : [N ] →
(
[K]
t

)
be a t-uniform

multi-hypergraph with N edges and K vertices, and let L ∈ {t, . . . , K8 }, such that N ≥ C ·

K
(
K
L

) t
2
−1

log4t+1K for some constant C (depending on t). Then there exist a collection of dis-

joint nonempty sets E1, . . . , Er ⊆ [N ], r ≥ Ω(L−1
(
K
L

) t
2
log4tK), so that for every j ≤ r we have

∆
x∈Ej

ex = ∅, where ∆ denotes the symmetric difference operator.

In [FKO06] a somewhat similar bound is obtained in the special case t = 3. We now use
Theorem 15 to give a nontrivial upper bound on OPT(C,f) when f has small bias:

Theorem 16. Fix t > 1, t = O(1). Let C = ([N ], V, c) be a t-XOR scheme, |V | = K, and L be

any integer with t ≤ L ≤ K
8 . Assume that N ≥ C ·K(KL )

t
2
−1 log4t+1K for a constant C and that

K is sufficiently large. Let f ∈ {±1}N be a random vector which is 1
4 -biased. Then

Pr[OPT(C,f) ≤ 1− Ω(
K

t
2 log4tK

NL
t
2
+1

)] ≥ 1

5

Proof. For R ∈ {±1}V , let Sat(C, f, R) = Pr
x∼[N ]

[fx =
∏

i∈c(x)R(i)], Sat(C, f) = max
R

Sat(C, f, R).

Then we have Val(C, f, R) = |Sat(C, f, R)−Sat(C,−f,R)| for everyR. We will show that Pr[Sat(C,f) >
1 − δ] ≤ 2

5 for δ = ϵ · K
t
2 log4t K

10NL
t
2+1

for a sufficiently small constant ϵ > 0 depending on t. Since the

property of being γ-biased is invariant under negation, the same bound will hold for −f and so the
theorem will follow by a union bound. By Theorem 15, there exists a collection of disjoint nonempty
sets E1, . . . , Er ⊆ [N ], r ≥ ϵ ·L−1(KL )

t
2 log4tK, such that for each j ≤ r we have ∆

x∈Ej

cx = ∅ where

∆ denotes the symmetric difference operator. We now observe, as in [FKO06, GKM22], the fol-
lowing: for any f , if

∏
x∈Ej

fx = −1, then for every R ∈ {±1}V , there exists x ∈ Ex so that

fx ̸=
∏

i∈cx R(i). This follows since∏
x∈Ej

∏
i∈cx

R(i) =
∏

i∈( ∆
x∈Ej

cx)

R(i) =
∏
i∈∅

R(i) = 1

Hence, if we define v(f) =
∑

j≤r 1{
∏

x∈Ej
fx = −1}, then for every f we have Sat(C, f) ≤ 1− v(f)

N .

We will show that with probability at least 2
5 , we have v(f) ≥

r
10 , in which case we have Sat(C, f) ≤

1 − r
10N and the theorem is proven. Now let γ = 1

4 and define the random vector g ∈ {±1}r,
gj =

∏
x∈Ej

fx. Observe that g is γ-biased inside {±1}r: for any ∅ ≠ u ⊆ [r] we have

E
∏
j∈u

gj = E
∏
j∈u

∏
x∈Ej

fx = E
∏

x∈∪j∈uEj

fx ∈ [−γ, γ]
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using in the last step that f is γ-biased. So it suffices to show that, for γ-biased g ∈ {±1}r, we
have |

∑
j∈r gj | ≤

8r
10 with high probability. This is standard and can be verified by inspecting the

second moment:

Pr[|
∑
j

gj | >
8r

10
] ≤ (

8r

10
)−2 E(

∑
j

gj)
2 = (

8r

10
)−2

∑
j,j′

E gjgj′ ≤
100

64r2
(γr2 + r) =

100

256
+ 9r−1 ≤ 2

5

Where the final inequality follows provided r is sufficiently large, which in turn follows provided K
is sufficiently large.

We also need the following easy fact:

Observation 3. Let C = ([N ], V, c) be a t-XOR scheme. Then for any t′ ≥ t there is a t′-XOR
scheme C′ = ([N ], V ′, c′) with |V ′| ≤ |V | + (t′ − t) so that OPT(C, f) ≤ OPT(C′, f) for every
f ∈ {±1}X .

Proof. Let r = t′ − t and set V ′ = V ∪ {1, . . . , r}, c′x = cx ∪ {1, . . . , r}.

Observe that the above argument is valid even in the degenerate case t = 0. Finally we obtain:

Theorem (Theorem 2, restated). Let t > 2, t = O(1) be a fixed odd number. Let F : [N ]× [M ] →
{±1}, be a data structure problem whose columns support a distribution which is γ-almost logN -
wise independent and 1

4 -biased, for
1
γ ≥ NO(1). Then any nonadaptive bit probe data structure for

F with space S and time t must satisfy:

S ≥ Ω̃(N

1
t
2− t−2

2(t+2) )

Observe that for every t > 2, t−2
2(t+2) > 0, hence we obtain lower bounds of the form S ≥ N

t
2
+Ω(1)

for every odd t. Recall also Lemma 1 from Section 2.1 in the preliminaries, which says that
if a distribution is γ-biased then it is also γ-almost k-wise independent for any k. So we may
strengthen our assumption on F to the simpler statement that its columns support an N−O(1)-
biased distribution. Our proof here will follow very closely the arguments in Section 9 of [GKM22].

Proof. Assume F has a data structure of space S and time t = O(1), and let f be the random
vector supported on the columns of F which is 1

4 -biased and N−c-almost logN -wise independence

for c a suitably large constant. By Theorem 14 we may find X ⊆ [N ], |X| ≥ 2−2tN , and XOR
schemes (Cu)u⊆[t] all indexed by X, each having O(S) variables, so that Cu is a |u|-XOR scheme,
and max

u⊆[t],|u|<t
Val(Cu, f) ≥ (1 − Val(C[t], f))2−t for every column f of F . Using Observation 3 we

may assume, up to increasing the number of variables of each XOR scheme by at most t, that Cu is

a (t− 1)-XOR scheme for every |u| < t. Set L = S
1

t+2 , and assume that N = Õ(1) ·
(
S
L

) t
2
L where

Õ(1) is some sufficiently large poly logN term. Applying Theorem 16, with probability at least 1
5 ,

we have

1−OPT(C[t],f) ≥ Õ(1) · St/2(
S
L

) t
2
L

= Õ(1) · L−1

On the other hand, using the fact that f is γ-almost logN -wise independent and supported on the
columns of F , with γ ≤ 2−O(tk) = N−O(1), we conclude using Theorem 10 (and the fact that t− 1
is even) that for every |u| < t we have:

Pr[OPT(Cu,f) ≥ δ] ≤ N−1 << 2O(t), provided N ≥ ω(
1

δ2
log

1

δ
S

t−1
2 logN)
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Plugging in δ = Õ(1) · 2−t · L−1, and using the fact N = ω(L2S
t−1
2 logN) as per our setting of L,

there is a positive probability that

1−OPT(C,f) ≥ Õ(1) · L−1 > 2−t · max
0<|u|<t

Val(Cu,f)

and we reach a contradiction. Hence we cannot have N ≥ Õ(1) ·
(
S
L

) t
2
L, which by our setting of

L yeilds the lower bound

S ≥ Ω̃(N

1
t
2− t−2

2(t+2) )

The only reason we needed to assume t is odd is in our application of Theorem 10; if this
theorem could be generalized to odd-arity XOR schemes (which seems attainable using methods
for odd-arity CSPs, e.g. [GKM22]), the results here would be valid for all t > 2.

5 Algorithmic Implications of Our Lower Bounds

5.1 Range Avoidance

As referenced in the introduction, our main correspondence (Observation 1) immediately implies
that explicit cell probe lower bounds yield NP oracle algorithms for range avoidance. We give a
more formal version of this statement here:

Lemma 7. Let G : ΣS → {0, 1}N be a locally computable generator (resp. nonadaptive) with word
length w = ⌈log |Σ|⌉ and time complexity t. There is a polynomial time NP oracle algorithm which,
given G and a data structure problem F ∈ {0, 1}N×M which does not have space S, time t, word
length w (resp. nonadaptive) data structures, solves the range avoidance problem for G.

Proof. By Observation 1, the data structure lower bound for F implies that one of its columns
must lie outside the range of G. We may use a NP oracle to test each column in order and find the
lexicographically first which lies outside the range of G.

Hence, our new explicit cell probe lower bounds immediately imply new polynomial time NP-
oracle algorithms for range avoidance in a completely black box sense. For one of our lower bounds
(Theorem 1), we will be able to analyze the argument in a non black box way and remove the NP
oracle. For Theorem 2 we are unable to make such an improvement. We start with this latter
result, where using known constructions of small bias probability spaces ([NN90]) we get:

Theorem (Theorem 3, restated). Let t = O(1) be a fixed odd number. There is a polynomial time
algorithm which outputs a list of strings in {0, 1}m, such that for any NC0

t generator G : {0, 1}n →
{0, 1}m with

m ≥ Õ(n
t
2
− t−2

2(t+2) )

one of the strings in the list must be a range-avoidance solution for G. In particular, there is a
polynomial time NP-oracle algorithm for range avoidance on instances of the above form.

We now move on to our first lower bound from Theorem 1, which applies to more general
adaptive generators with larger word lengths. Compared to Theorem 3, we will be able to remove
the use of an NP oracle, and we will also be able to solve even the remote point problem for G,
finding a string which is (12 − ϵ)-far in relative hamming distance from every string in the range of
G for an arbitrarily small constant ϵ.
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Theorem (Theorem 4, restated). Let t, w, n be given with log n > tw + 1 and t even, and let
ϵ ∈ (0, 12 ] be given. There is a mO(t2w)-time algorithm which, given any time-t locally-computable
generator G : [2w]n → {0, 1}m with

m ≥ n
t
2 log n · t

t
2 2(3+o(1))tw · poly(1

ϵ
)

outputs a string in {0, 1}m which is ≥ (12 − ϵ)-far in relative hamming distance from every string
in the range of G.

We will set N = m, S = n in the following, where m,n are as above. To obtain the hamming
distance bound we require a strengthening of Theorem 7. Recall that Theorem 7 showed how to
construct from a generator G : ΣS → {0, 1}N a small collection of XOR schemes indexed by large
subsets of [N ], so that whenever f ∈ range(G), f will induce a large value in one of the CSPs.
The following strengthening will give us a similar conclusion under the weaker assumption that
f is close in hamming distance to range(G). In the following, for two strings f, g ∈ {±1}N and
X ⊆ [N ], we use CorX(f, g) = |Ex∼X fxgx|; by default Cor(·, ·) = Cor[N ](·, ·).

Theorem 17 (Correlation Variant of Theorem 7). Let G : ΣS → {±1}N be a locally-computable
generator with time complexity t, word length w = log |Σ|. There exists a collection of sets (Xj ⊆
[N ])j≤2tw+1, |Xj | ≥ ϵ2−tw−1N , and a collection of t-XOR schemes (Cj)j≤2tw+1, with Cj a t-XOR
scheme indexed by Xj and having ≤ tS variables, so that for every f, g ∈ {±1}N with g ∈ range(G),
Cor(f, g) ≥ ϵ, there exists j ≤ 2tw+1 with Val(Cj , f) ≥ ϵ2−tw−1.

Proof of Theorem 17. We follow the proof of Theorem 7 and indicate only those parts which need
to change. The definitions of C(π,b), X(π,b) remain as before; in this case we discard any such pair
with |X(π,b)| < ϵ2−tw−1N . Let f, g be as in the statement of the theorem, and let Eg be a canonical
preimage of g under G. For each π let X̃(π,g) ⊆ [N ] consist of those x such that Tx(Eg) reaches the
leaf corresponding to π. These sets (ranging over π ∈ Σt) partition [N ] and so we have

ϵ ≤ Cor(f, g) = |
∑
π∈Σt

|X̃(π,g)|
N

E
x∼X̃(π,g)

fxgx| ≤
∑
π∈Σt

|X̃(π,g)|
N

CorX̃(π,g)(f, g)

There must then exist πf,g so that |X̃(πf,g,g)|
N Cor

X̃(πf,g,g)(f, g) ≥ ϵ2−tw, in particular |X̃(πf,g ,g)| ≥
ϵ2−twN and Cor

X̃(πf,g,g)(f, g) ≥ ϵ2−tw. We take πf,g in place of “πf” from the previous proof and

X̃(πf,g ,g) in place of “X̃(πf ,f),” and and otherwise carry out essentially the same argument.

Using this in conjunction with the main ideas in Section 3.2 we can now prove Theorem 4.

Proof of Theorem 4. Given the generator G, we may apply Theorem 17 to compute a list of 2tw+1

XOR schemes, so that whenever a string in {0, 1}m ↔ {±1}m makes the value of all XOR schemes
< ϵ2−tw−1, it must be (12−ϵ)-far in relative hamming distance from range(G). We will use [NN90] to
construct a polynomial size list of candidate strings, such that one of them must make all such values
small simultaneously which will guarantee that it is far form range(G). To make our algorithm
run in polynomial time, we need to certify that one of these strings from the list accomplishes
this goal. To perform this certification, we transform the XOR schemes into matrix ensembles
using Theorem 8 followed by Lemma 4, and then compute the associated spectral norms. We can
observe easily that each of the transformations prescribed in Theorems 7 and 8 and in Lemma 4
can be performed efficiently. Using [NN90] as indicated above, we can construct in time 2O(ktw) a
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list of ≤ mO(tw) strings which support a 2−O(ktw)-almost k-wise distribution for k = t logN . By
Theorem 10, one of the strings in this list will pass all of the 2tw+1 spectral tests define above; our
algorithm outputs the first such string.

5.2 Linear Attacks on Local PRGs

Here we state formally our improvement to an old result of [MST03] on ϵ-biased generators in NC0

referenced in the introduction:

Corollary (Corollary 1, restated). Let t = O(1) be a fixed odd number. If m ≥ Õ(n
t
2
− t−2

2(t+2) ), then
for any NC0

t generator G : {0, 1}n → {0, 1}m and any random variable x ∈ {0, 1}n, G(x) fails to
be γ-biased for some γ ≥ n−O(1).

This is simply a reparameterization of Theorem 2 and does not require any further argument.
Corollary 1 implies that for any odd t = O(1) and any candidate NC0

t PRG G : {0, 1}n →
{0, 1}n

t
2−ϵt

, there exists a nonuniform distinguisher for G, computable by a single parity gate,
where ϵt > 0 is a positive constant depending only on t. However, as noted in the introduction,
our proof does not indicate how to find such a linear distinguisher, and hence has no bearing on
the security of Goldreich’s PRG in the stretch regime n 7→ n

t
2
−ϵt (even against nonuniform adver-

saries). It is therefore of interest to determine whether we can use our methods to find a uniform
distinguisher for NC0

t PRGs in this stretch regime.
One approach is to use the natural proofs paradigm suggested in Section 6.2. In particular, if

we can define a uniformly computable natural property which proves nonadaptive bit probe lower
bounds of the form S ≥ N

t
2
−ϵt , we could use this in conjunction with a hybrid argument as in

Lemma 9 to uniformly distinguish such generators7. In particular, we showed that for any odd
t = O(1), if F supports a distribution which is N−O(1)-almost O(logN)-wise independent and 1

4

biased, than it must satisfy a lower bound of the form S ≥ N
t
2
−ϵt . For M = poly(N) sufficiently

large, we can easily certify the property of NO(1)-almost O(logN)-wise independence with all but
negligable probability for a random F : [N ] × [M ] → {0, 1} in quasipolynomial time (iterate over
every subset of O(logN) variables). Hence a natural proof (computable uniformly in poly(N) time)
that a matrix F : [N ]× [NO(1)] → {0, 1} is 1

4 biased would yield a distinguisher. If we are a bit more
careful in our argument, computing spectral norms of matrices depending on the given generator
G as in the proof of Theorem 4 instead of naively certifying limited independence by brute force,
we arrive at:

Lemma 8. Say that there is a constant c and a polynomial time algorithm which can certify with
nonnegligble probability that a random F : [N ] × [N c] → {0, 1} supports a 1

4 -biased distribution.
Then there is a uniform polynomial time distinguisher for NC0

t generators G : {0, 1}n → {0, 1}m

whenever t is odd and m ≥ n
t
2
−ϵt for some ϵt > 0 depending only on t. In particular, Goldreich’s

generator is insecure in this parameter regime.

6 Towards Stronger Lower Bounds

In this section we discuss some of the broader implications of Observation 1 connecting locally-
computable generators to cell probe lower bounds. Our focus here will be on the setting of nonadap-
tive bit probe data structures with time complexity t = O(1), which correspond via Observation 1

7We proved Lemma 9 for nonuniform distinguishers, however the hybrid argument is also valid in the uniform
setting (with randomized distinguishers).
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to the class of NC0 generators. More specifically, we are interested in the problem of obtaining lower
bounds of two kinds, which we refer to as strong and super-strong respectively. In each setting, our
goal is to construct lower bounds for a problem F with N queries; N will be the main complexity
parameter. We seek lower bounds on the space as a function of N and the time t; subject to
obtaining such a lower bound and the problem being explicit, we’d like to minimize the number of
datapoints M of our problem as a function of N . We will parameterize each goal by a growth rate
M(N), where the goal gets more difficult the slower M grows:

Goal 1 (Strong Lower Bounds with M(N) Datapoints). Exhibit an explicit data structure problem
F : [N ]× [M(N)] → {0, 1}, and some universal constant ϵ > 0, so that for any t = O(1), F requires
space S ≥ N ϵ for time-t nonadaptive bit probe data structures.

Goal 2 (Super-Strong Bit Lower Bounds withM(N) Datapoints). Exhibit an explicit data structure
problem F : [N ] × [M(N)] → {0, 1} so that F requires space S ≥ N − No(1) for data structures
making 4 nonadaptive bit probes.

In the most ambitious case we aim for M(N) = poly(N), and in the most general case we
aim for M(N) = exp(No(1)). We observe that nonconstructive counting arguments imply that
Goal 1 is achievable by a nonexplicit problem once M ≥ O(t logN), while Goal 2 is achievable by a
nonexplicit problem once M ≥ O(tN logN), so even in the ambitious regime M = poly(N) neither
goal is vacuous in an information-theoretic sense. Note that our main lower bounds in Sections 3
and 4 are of the form S ≥ N δt where lim

t→∞
δt = 0 and hence they do not achieve either of these

goals. In this section we discuss some barriers and approaches to achieving lower bounds of these
kinds, and connect these problems to other topics in complexity theory. More specifically we will
discuss barriers for both problems, while our “approaches” will only apply to the first (Goal 1); we
will see shortly that super-strong lower bounds (Goal 2) are likely to be completely out of reach of
current mathematical methods.

Before proceeding, we make a note of our use of the word explicit ; for the rest of this section,
we will use this word in the following formal sense:

Definition 12. We say that a sequence of strings (xn)n∈N is explicit if there is a uniform al-
gorithm which, given 1n as input, will print xn in time poly(n, |xn|). In particular, if (FN :
[N ] × [M(N)] → {0, 1})N∈N is a family of data structure problems, we say that FN is explicit if
there is a poly(N,M(N)) time algorithm which, given 1N , produces the truth table of FN , i.e. the
N ×M(N) matrix consisting of all values F (x, y).

In this more formal terminology, our statement of Goal 1 should be interpreted as follows: define
an explicit family of problems FN : [N ]× [M(N)] → {0, 1} for each N , so that M(N) ≤ exp(No(1)),
and FN requires space Ω(N ϵ) for time t data structures, where ϵ, t are as in the statement of Goal 1,
and N goes to infinity after these are fixed. In all of our main results here, we may replace the
assumption that F is defined for all N by the assumption it is defined only for N of some special
forms, e.g. prime numbers, powers of 2, etc., provided this class of allowable values is efficiently
recognizable, and not too sparse as a subset of N. We stick to the above definition which requires
the lower bound to hold for all N only for the purpose of simplicity.

As has been observed repeatedly in complexity theory, this formal notion of explicitness is
perhaps overly broad compared to the typical informal use of the word; indeed, in many places
it is preferred to use the more stringent notion of explicitness, requiring F (x, y) to be computable
uniformly in poly(logN, logM) time, which still captures apparently every data structure problem
in the literature for which an interesting cell probe lower bound is currently known.
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6.1 Consequences of Explicit Bit Probe Lower Bounds

Recall Lemma 7 from the previous section, which was a direct corollary of our main correspondence
(Observation 1): every explicit data structure lower bound yields a NP oracle range avoidance
algorithm for locally computable generators with corresponding parameters. We apply this as
follows:

Theorem (Theorem 5, restated).

1. If explicit super-strong bit probe lower bounds with subexponentially many datapoints (Goal 2,
M = exp(No(1))) are achievable, then EXPNP ̸⊆ NC1.

2. If explicit strong bit probe lower bounds with polynomially many datapoints (Goal 1, M =
poly(N)) are achievable, then there is a polynomial time NP oracle algorithm for NC0 range
avoidance with polynomial stretch.

Proof. (1) If Goal 2 with M(N) = exp(No(1)) is achievable than we can solve NC0
t range avoidance

in the stretch regime n 7→ n+ no(1) in subexponential time with an NP oracle using Lemma 7. By
[RSW22], this implies the separation EXPNP ̸⊆ NC1.

(2) By well known composition reductions (see [Kor21]), we may reduce any NC0 range avoidance

G : {0, 1}n → {0, 1}n1+Ω(1)
to a second NC0 instance G′ : {0, 1}n → {0, 1}nc

where c = O(1) is an
arbitrarily large constant in polynomial time with an NP oracle. If Goal 1 is achievable than by
Lemma 7 we can solve range avoidance in this regime using an NP oracle in polynomial time.

In (2) above, if we instead achieved Goal 1 with M = exp(poly logN) we would obtain a
quasipolynomial time algorithm; if we achieved it with M = exp(No(1)) we would obtain a subex-
ponential time algorithm. Obtaining PNP algorithms for NC0 range avoidance in the polynomial
stretch regime was explicitly posed as an open problem in [RSW22].

6.2 Natural Bit Probe Lower Bounds Break NC0 PRGs

We present here a natural proofs barrier to both “strong” and “super-strong” bit probe lower
bounds. The natural proofs paradigm, introduced in the seminal work of Razborov and Rudich
[RR97], identified the following pattern in all preceeding known lower bounds in complexity theory.
For a lower bound problem, we have in mind in some resource-bounded computational model
C for computing boolean valued functions f : U → {0, 1}, where U is a finite set with some
structure (e.g. U = {0, 1}n or U = [N ] × [N ]). We would like to present an explicit function
fexplicit : U → {0, 1} which we can unconditionally prove requires a large amount of resources for
computations in the class C. Razborov and Rudich observed that, in those cases where we can prove
such an explicit lower bound, the proof can be extended (with only minimal-to-moderate additional
work) to have the following features: (1) the proof defines an efficiently decidable “property of
functions f : U → {0, 1}” so that fexplicit has the property, and whenever f has this property it is
hard for the class C, and (2) not only does fexplicit have this property, but so does a uniformly random
function f : U → {0, 1} (with high probability). The “property of functions” referenced above is
called a natural property in [RR97], and by “efficiently” we mean time polynomial/subexponential
in the description size of f , which in this case is |U |. Razborov and Rudich then went on to show:

1. All previously known lower bounds are natural.

2. Assuming widely believed cryptographic assumptions, no natural proof can give superpoly-
nomial lower bounds on circuit size.
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Together these results give a strong indication that, to prove f /∈ P/poly for some explicit function
f : {0, 1}n → {0, 1}, we must develop methods of a fundamentally different nature than all results
known up to the point of [RR97]. The situation has not changed much since the publication of
[RR97], and this barrier is still considered to be of great significance in complexity theory. We now
define formally the corresponding notion of natural proofs for the bit probe complexity measure:

Definition 13 (Natural Bit Probe Lower Bounds). A (N,M,S, t) natural property is an algorithm
A which takes as input the description of a data structure problem F : [N ] × [M ] → {0, 1}, and
outputs a value in {Hard, ?}, such that:

1. If A(F ) = Hard, then F requires space ≥ S or time > t for nonadaptive bit probe data
structures.

2. If F is chosen uniformly at random amongst all functions [N ] × [M ] → {0, 1}, then with
probability at least (NM)−O(1), A(F ) = Hard.

We are interested in the existence of natural properties A which are computable by circuits of
size << 2N , i.e. poly(N) or exp(No(1)). In our discussion we will have N as our main asymptotic
complexity parameter, t fixed, and S = S(N), M = M(N) growing as a function of N . We will
then refer to a (N,M(N), S(N), t)-natural property in plain english as a “natural proof of a space
lower bound ≥ S(N) against time t data structures for a problem with M(N) datapoints.” If the
natural property is computable by size k circuits, we say that it is a “k size computable” natural
proof.

In the following, we will say that a cryptographic PRG G : {0, 1}n → {0, 1}m has “hardness λ”
if circuits of size ≤ λ fail to distinguish G with advantage better than λ−1.

Lemma 9. Say that G : {0, 1}S → {0, 1}N is a cryptographic NC0
t PRG with hardness λ. Then

there does not exist an (N,M,S, t) natural property computable by circuits of size k unless λ ≤
k · poly(NM).

Proof. Let G be a cryptographic NC0
t PRG with hardness λ. Consider the generator G⊗M :

{0, 1}S·M → {0, 1}N ·M given by G(E1, . . . , EM ) = (G(E1), · · · , G(EM )). A standard application
of the hybrid argument implies that G⊗M is also a cryptographic PRG with hardness M−1λ. On
the other hand, consider any string in the range of G⊗M . Interpreted as data structure problem
F : [N ] × [M ] → {0, 1}, this problem has time t nonadaptive bit probe data structures of space
≤ S: if G⊗M (E1, . . . , EM ) = F , then E1, . . . , EM exhibit preimages under G for each column of F .

Say there existed a (N,M,S, t) natural property A computed by circuits of size k. Then A out-
puts Hard on a randomN ·M bit string with probability≥ (NM)−O(1) over the uniform distribution,
and with probability zero over the range of our generator G⊗M . Hence k−1(NM)−O(1)λ ≤ O(1),
i.e. λ ≤ k(NM)O(1).

To establish our natural properties barriers we need two results from NC0 cryptography. The
first is folklore and follows from standard PRG composition:

Lemma 10. If there exists an NC0 PRG G : {0, 1}n → {0, 1}m with arbitrary polynomial stretch
(m ≥ n1+Ω(1)) and hardness λ, then for every c ∈ N there exists an NC0 PRG G′ : {0, 1}n → {0, 1}nc

with hardness ≥ n−O(1)λ.

Hence, from the existence of polynomial stretch NC0 PRGs with superpolynomial hardness we
obtain NC0 PRGs with superpolynomial hardness of the form G : {0, 1}Nϵ → {0, 1}N for arbitrarily
small constants ϵ > 0. We also need the following from [AIK06]:
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Lemma 11. If there exists an NC1 PRG with hardness λ then there exists an NC0
4 PRG G :

{0, 1}m → {0, 1}m+m0.99
for some m ≤ poly(n) with hardness ≥ n−O(1)λ.

Combining these two lemmas with our Lemma 9 we arrive at:

Theorem (Theorem 6, restated: Natural Proofs Barriers for Bit Probe Lower Bounds).

1. If NC1 PRGs with superpolynomial hardness exist, then there is no polynomial-size computable
natural proof of a lower bound S ≥ N − N0.99 against bit probe data structures making 4
nonadaptive bit probes for a problem with M ≤ poly(N) datapoints.

2. If NC0 generators with superpolynomial hardness exist, then for every ϵ there exists t so that
there is no polynomial-size computable natural proof of a lower bound S ≥ N ϵ for against
time t bit probe data structures for a problem with M ≤ poly(N) datapoints.

As in the last section, if we increase the hardness parameter in our cryptographic assumptions
we obtain stronger conclusions in terms of the runtime of our natural proofs and the allowable
number of datapoints M . In both cases it is plausible that the stated PRGs exists with hardness
λ = exp(NΩ(1)), in which case we conclude that natural proofs computable by circuits of size
exp(No(1)) cease to exist already in the regime M = exp(No(1)).

As in [RR97], to give a convincing argument that this “barrier” ought to be taken seriously we
need some indication that the known lower bound techniques have not already broken it. To this
end we consider known techniques that can prove the strongest lower bounds for explicit problems
F : [N ]× [M ] → {0, 1} with M ≤ exp(No(1)) in the regime t = O(1).

First we consider the communication bound, which can prove a space lower bound S ≥ Ω(N
1
t )

already in the regime M ≤ poly(N). This lower bound holds provided F has maximal (logN)
deterministic communication complexity, so it suffices to give a natural proof of strong communi-
cation lower bounds. For this we can use as our natural property “F has full rank” where the rank
is measure either over R or F2. This property is computable in polynomial time, equals N for a
random F with nonnegligable (actually very high) probability, and yields a maximal lower bound
logN on the communication complexity of F . We make a note that lower bounds for stronger
complexity measures for two party communication, including randomized and nondeterministic
communication, can be made natural as well using the discrepency bound and related techniques.
The original work of [RR97] proves this for the standard discrepancy bound which lower bounds
both randomized and nondeterministic complexity. In the case of randomized communication one
can use the more precise γ∞2 -norm instead to obtain natural lower bounds with stronger parameters,
see [LS07].

Next we turn to the cell sampling method used in [Sie89, Sie04, PTW10, Lar12] and our new

lower bounds of the form S ≥ N
2
t from Section 3. Note that in the regime M ≤ exp(No(1)) the cell

sampling bound does not give a significant improvement over the communication bound so it does
not really require a separate treatment. Nonetheless, for both the cell sampling bound and our
Theorem 1, the property we may use for the problem F is the following: the uniform distribution
on columns of F is N−c-almost c logN -wise independent for some constant c depending on t.
Setting M = NO(c), we can certify this property for a random F with high probability in time
NO(logN) by iterating over every subset of c logN rows of F . Note that this natural property
runs in quasipolynomial time (rather than polynomial), however this is still interesting as the
cryptographic assumptions in question are widely believed to have quasipolynomial (and much
higher) hardness8.

8Actually, we only need to assume that our cryptographic PRGs require super-quasipolynomial size circuits to be
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Finally we get to the nonadaptive bit probe lower bounds in Section 4 of the form S ≥ N
1
2
+ϵt ;

here we actually do not know whether the lower bound in question can be made natural in the strict
sense of Definition 13; this question is discussed further in Section 5. Nonetheless the lower bound
in Theorem 2 still has the following form: for any random f which is fools F2 linear tests, we have
f /∈ range(G) with nonzero probability, for any NC0

t generator G with large enough stretch. Stated

contrapositively, we conclude that for any candidate NC0
t generator G : {0, 1}n → {0, 1}nt/2−ϵt ,

there exists a F2-linear test distinguishing its output from random, so in particular G cannot be
secure as a PRG (this was Observed in Corollary 1 of the previous section). In other words, our
lower bound still yields as a byproduct a method for distinguishing the associated PRGs, although
in this case the existence of a distinguisher is shown nonconstructively. For this reason it seems that
the lower bounds in Section 4 still have a degree of algorithmic content which cannot be present
in any lower bound achieving Goals 1 and 2 (assuming the corresponding cryptographic generators
exist).

6.3 Approaches to Strong Lower Bounds via Communication Complexity

Here we discuss some possible approaches to Goal 1: proving space lower bounds for time t = O(1)
nonadaptive bit probe data structures of the form S ≥ N ϵ, where ϵ is a universal constant not
depending on t. The reader may observe that we would have arrived at an equivalent problem if we
had used adaptive in place of nonadaptive bit probe data structures: any adaptive bit probe data
structure with time complexity t can be converted into a nonadaptive data structure with time
complexity 2t by unrolling each query decision tree. We will make another simplifying assumption
on our data structures, having no effect on Goal 1, which will streamline some of our arguments:

Definition 14. We say that an NC0
t generator is homogeneous if there is a single predicate

h : {0, 1}t → {0, 1}, so that each output Gx : {0, 1}S → {0, 1}N is of the form Gx(E) =
h(E(p1x), . . . , E(ptx)) for some nonadaptive probe sequence p1x, . . . , p

t
x ∈ [S]. We say that F has

homogeneous data structures with time t and space S if there exists a homogeneous NC0
t generator

whose range contains every column of F .

Just as the distinction between adaptive and nonadaptive data structures is irrelevant with
respect to lower bounds achieving Goal 1, so too is the distinction between general and homogeneous
data structures:

Lemma 12. Let F be any data structure problem, t ∈ N. There exist constants t′, c depending only
on t, so that if F has space S time t bit probe data structures, then F has space c · S and time t′

homogeneous data structures.

We will therefore focus specifically on homogeneous data structures with time t = O(1). Homo-
geneous data structures have a rather appealing formulation in terms of communication complexity:

Definition 15 (Parallel Channel Model). Let F : X × Y → {0, 1} be a two-party communication
problem. We say that F has a (t, k)-parallel protocol if it can be computed in the following way:

1. Alice receives x ∈ X; a council of t Bobs B1, . . . , Bt receive (the same input) y ∈ Y ; a referee
Charlie receives no input.

2. (Round 1:) Alice sends a different k-bit message privately to each Bob

distinguished with polynomial advantage for a natural proof with these parameters to contradict their security, since
M = poly(N).
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3. (Round 2:) Each Bob sends 1 bit to Charlie

4. (Round 3:) Charlie outputs the answer F (x, y).

The equivalence of this model (up to minor quantitative losses) to the homogeneous data struc-
ture model is a matter of definitional translation; the relation closely mirrors that between locally
decodable codes and private information retrieval schemes:

Observation 4. If F has homogeneous bit probe data structures with space S and time t, then
F has a (t, logS)-parallel protocol. Conversely, if F has a (t, k)-parallel protocol then it has a
homogeneous data structure with time t and space t · 2k.

We refer to this as equivalence, since w.r.t. Goal 1 the difference between a space lower bound
S and tS is irrelevant.

Proof. We prove only the first direction. LetG : {0, 1}S → {0, 1}N be a homogeneous NC0
t generator

whose range covers the columns of F . Prior to communication, all of the Bobs prepare the data
structure encoding Ey for y. Alice sends to Bj the message pjx ∈ [S] which costs logS bits. After
receiving this value, Bj sends Charlie the bit Ey(Bj). Charlie, upon receiving bits b1, . . . , bt from
the t Bobs, outputs h(b1, . . . , bt).

We can then restate Goal 1 as follows:

Goal 3 (Strong Parallel Communication Lower Bounds for a problem with M Columns). Exhibit
an explicit F : {0, 1}n × [M ] → {0, 1} and some universal constant ϵ > 0, so that F does not have
(O(1), ϵn)-parallel protocols.

In this setting we will set M = 2m for some m, and identify [M ] with {0, 1}m. In this case,
achieving m ≤ O(n) for Goal 3 is equivalent to our most ambitious goal of achieving M ≤ poly(N)
for Goal 1; we would also be happy with m ≤ 2o(n) in Goal 3, which corresponds to our most
general acceptable form of Goal 1 with M ≤ exp(No(1)).

While our primary intention in investigating the parallel channel model is as an avenue through
which to derive new cell probe lower bounds, using Observation 4 we can use our lower bounds
from Sections 3 and 4 to derive new lower bounds in this communication model, for example:

Lemma 13. Let t = O(1) be an even number. Consider the following communication problem:
Alice recieves x ∈ Fn

2 , and t Bobs receive a polynomial p : Fn
2 → F2 of degree log n + log log n;

their goal is to compute p(x). In the parallel channel model, Alice must send some Bob at least
2n
t −O(log n) bits to solve this problem.

We now discuss two avenues for approaching strong lower bound in the parallel channel model
with O(1) channels.

6.3.1 A Lifting-Based Approach To the Parallel Channel Model

For starters, we consider a restricted form of (t, k)-parallel protocol for a problem F : {0, 1}n ×
{0, 1}m → {0, 1}, which we call a projection protocol. A (t, k) projection protocol is a special kind
of (t, k)-parallel protocol, in which Alice is restricted to chose in advance sets I1, . . . , It ⊆ [n] with
|Ij | ≤ k, and upon input x, she will always send the jth Bob the values x|Ij = (xi)i∈Ij . In other

words, instead of sending the jth Bob an arbitrary k-bit message depending on x, she is restricted
to sending him some fixed set of k coordinates of x. For protocols of this form, we may observe the
following:
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Claim 1. If F has (t, k) projection protocols then every column of f : {0, 1}n → {0, 1} of F is
expressible in the form f(x) = h(g1(x), . . . , gt(x)) where h : {0, 1}t → {0, 1} and gj depends on at
most k variables amongst {x1, . . . , xn}.

Boolean functions expressible in this way have been studied in [HR15, LRT22]. In particular,
the minimum value t such that f can be expressed as f = h(g1, . . . , gt) for gj depending on ≤ k
variables is referred to as C2

k(f) in [HR15]. The “2” in the superscript refers to the interpretation
of C2

k(f) as the smallest top-fanin of a depth 2 circuit with arbitrary gates and bottom fanin k
computing f . Intriguingly, strong lower bounds on C2

k(f) for explicit functions f were proved
unconditionally in [HR15]. For example, as a direct corollary of a classical result in [CFL83] on the
number-on-forehead complexity of threshold functions, they observe:

Lemma ([CFL83, HR15]). For any constant γ, C2
(1−γ)n(MAJn) = ω(1).

We are using MAJn to denote the n bit majority function. Quantitatively stronger lower
bounds on C2

k(·) in the same regime k = (1−γ)n are derived in [HR15] for other more complicated
explicit functions. In addition, an optimal lower bound on C2

k(MAJn) is derived in [LRT22] in
a quite different parameter regime k ≤ n1−ϵ. The above result implies that even the problem
F : {0, 1}n × {0, 1}0 → {0, 1}, given by F (x, ∅) = Majn(x) is hard for (O(1), 0.99n) projection
protocols. This lower bound quantitatively matches (and in fact exceeds) the kind sought in
Goal 3. Obviously in the general parallel channel model we cannot hope to obtain a lower bound
for a problem F with a single column (Alice could precompute f(x) in this case); nonetheless we
believe this toy model presents a promising avenue towards lower bounds for general protocols, via
the machinery of query-to-communication-lifting.

Lifting is a powerful method used to obtain lower bounds in communication complexity (see
[GPW20] for a prototypical example). The central idea is to start with an arbitrary base function,
and “lift it” via function composition to get a new composed function whose communication com-
plexity is essentially the same as the query complexity of the original base function. Proofs of lifting
theorems typically involve a simulation theorem, showing from any protocol for the composed func-
tion, how to extract a simple protocol for the base function. Thus lifting simulation theorems give
a constructive proof that the most efficient communication for the composed problem is essentially
the protocol that simply mimics the optimal simple protocol, implying that separating the sim-
pler query classes is not only necessary but also sufficient for proving the stronger communication
separation.

We define here a standard lifting setup where the inner “gadget” function is the index function.

Definition 16 (Lifting with Index). Let f : {0, 1}n → {0, 1} and ℓ be given. Let X = [ℓ]n,
Y = ({0, 1}ℓ)n. We define the lifted function f ◦ Indℓn : X × Y → {0, 1} by f ◦ Indℓn(x, y) =
f(y1(x1), . . . , yn(xn)).

With this definition, it is natural to view the parallel-channel model as the “communication
analogue” of the complexity measure C2

k(·). In particular, we can observe that F is computed by
a (t, k) parallel protocol if and only if we can express it in the form:

F (x, y) = h(g1(x, y), . . . , gt(x, y))

where h : {0, 1}t → {0, 1} and g1, . . . , gt : X ×Y → {0, 1} have one way communication complexity
(rows speaking to columns) ≤ k. Compare this to the definition of C2

k(f) ≤ t, which means f can
be expressed as:

f(x) = h(g1(x), . . . , gt(x))
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with gj : {0, 1}n → {0, 1} depending on at most k variables, i.e. gj having nonadaptive decision
tree depth at most k. Prior work has established that one-way communication complexity can be
naturally viewed as a communication complexity analogue of “nonadaptive decision tree depth,”
and in particular very strong lifting theorems have been established (by quite simple arguments)
which transfer nonadaptive decision tree lower bounds to one way communication lower bounds
[MSS21]. This intuition leads us to make the following conjecture:

Conjecture 1 (Lifting C2
k To Parallel Channel Complexity). There is a fixed constant ϵ > 0 and

some ℓ = poly(n) so that the following holds. For any f : {0, 1}n → {0, 1}, if C2
(1−o(1))n(f) = ω(1),

then f ◦ Indnm requires communication ≥ ϵn log ℓ in the parallel model with O(1) Bobs.

The above conjecture would imply a lower bound achieving Goals 1/3 for the specific explicit
problem MAJn ◦ Indnℓ , ℓ ≤ poly(n). In this parameter setting, we would have a problem with
N = ℓn = 2O(n logn) rows and M = 2poly(n) columns, i.e. M is at most quasipolynomial in N . It
would be reasonable to strengthen the conjecture, so that under the same assumption we conclude
stronger lower bound (1− o(1))n logm on communication; we state it in the weaker form above so
as not to be too greedy.

6.3.2 Communication with Alternation and Modular Counting

Here we discuss two more standard complexity measures arising in two party communication com-
plexity which provably capture the parallel-channel model; in principle, good enough lower bounds
on either of these measures would be sufficient to achieve Goal 1. Via the natural properties con-
nection in Section 6.2, this also implies that there is a natural proofs barrier to obtaining strong
lower bounds for either of these complexity measures. The first measure we examine is a subclass
of the communication polynomial hierarchy PHcc defined in [BFS86], which captures alternating
protocols with two levels of alternation:

Definition 17. For F : {0, 1}n × {0, 1}m → {0, 1}, we define Σcc
2 (F ) as the minimal value k1 + k2

such that
F (x, y) =

∨
i≤2k1

∧
j≤2k2

Li,j(x) ∨Ri,j(y)

for some Li,j : {0, 1}n → {0, 1}, Ri,j : {0, 1}m → {0, 1}

Lemma 14. If F : {0, 1}n × {0, 1}m has (t, k)-parallel protocols then Σcc
2 (F ) ≤ k + t+ log t

Proof. Say that F (x, y) = h(g1(x, y), . . . , gt(x, y)) with gj having one way communication complex-
ity at most k. So gj(x, y) = Rj(Πj(x), y) for some Πj : {0, 1}n → {0, 1}k, Rj : {0, 1}k × {0, 1}n →
{0, 1}. Hence

F (x, y) =
∨

ξ∈h−1(1)

∧
j≤t,

z∈{0,1}k

1{Πj(x) ̸= z} ∨ 1{R(z, y) = ξj}

This means that any explicit problem F satisfying Σcc
2 (F ) ≥ Ω(n) would automatically achieve

Goal 1. This also yields, via Lemma 9, a natural properties barrier for the measure Σcc
2 (·):

Lemma 15. Assuming the existence of polynomial stretch NC0 generators, there is no natural proof
of a lower bound Σcc

2 (F ) ≥ Ω(n) for F : {0, 1}n × {0, 1}n → {0, 1}.
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We note that it is a notorious open problem to prove even a lower bound Σcc
2 (F ) ≥ ω(log n) for

an explicit problem F : {0, 1}n×{0, 1}n → {0, 1}. It is also an open problem to prove lower bounds
of the form 2Ω(n) for depth 3 AC0 circuits computing n variable functions, which lower bounds of
the above form would also imply. These facts gives some indication that proving Ω(n) lower bounds
on Σcc

2 complexity may far overshoot Goal 1 in terms of difficulty. We make an additional note
that, using basically the same proof as above, it is also possible to strengthen Lemma 14 to general
adaptive data structures with arbitrary word length:

Lemma 16 (Strengthening of Lemma 14). If F has general data structures with time t, wordsize
w, and space S, then Σcc

2 (F ) ≤ logS + tw + log t

With this strengthening, it follows that any lower bound Σcc
2 (F ) ≥ (3+Ω(1))

√
n for a problem

F : {0, 1}n × {0, 1}m → {0, 1} with m ≤ 2o(
√
n) would yield a new state of the art bit probe lower

bound for general adaptive data structures in the setting w = 1, t =
√
n; this is a very different

setting then Goal 1 and we do not know of a natural properties barrier which applies in such a
regime. Nonetheless the cell probe lower bound would still be of interest in its own right.

Next we discuss a complexity measure associated to a subclass of (AC0[⊕p])
cc:

Definition 18. Let p be a prime number and F ∈ {0, 1}N×M a boolean matrix. Define r-rankp(F ),
the “replacement-rank of F over Fp,” to be the least rank of a matrix F̃ ∈ FN×M

p such that

F (x, y) = ϕ(F̃ (x, y))

for some ϕ : Fp → {0, 1}.

In other words, r-rankp(F ) ≤ r if and only if there is a rank ≤ r matrix F̃ ∈ FN×M
p such that

the value of F (x, y) is completely determined by the value F̃ (x, y).

Lemma 17. Say that F ∈ {0, 1}N×M has (O(1), logS) parallel protocols. Then there exists a prime
p ≤ 2t+2 so that r-rankp(F ) ≤ tS.

Proof. Say that F (x, y) = h(g1(x, y), . . . , gt(x, y)) with gj ∈ {0, 1}N×M having one way communi-
cation complexity ≤ logS. Choose p > 2t+1 prime and consider each gj to live in FN×M

p . Then gj

has at most S distinct rows, and hence its rank is at most S. Define F̃ ∈ FN×M
p by F̃ =

∑
j≤t 2

j ·gj .
Then rankFp(F̃ ) ≤

∑
j rankFp(gj) ≤ tS. On the other hand for any ξ ∈ {0, 1}t,

∑
j 2

jξj completely

determines ξ (here we use that p > 2t+1).

Hence, exhibiting an explicit matrix F ∈ {0, 1}N×M satisfying r-rankp(F ) ≥ N ϵ for some fixed
ϵ > 0 and all primes p = O(1) would solve Goal 1. Currently the best lower bound we know of
for r-rankp(·) is via the inequality r-rankp(A) ≤ p · rank(A)(p−1) which follows by expressing the
predicate ϕ : Fp → {0, 1} as a degree p − 1 polynomial over Fp using Fermat’s little theorem; this

never gives a bound better than N
1

p−1 which is clearly insufficient for our purposes. As in the case
of Σcc

2 complexity, combining Lemma 17 with Lemma 9 yields a natural properties barrier for lower
bounding r-rankp(F ).
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A Kikuchi Method

We prove here Theorem 8 from Section 3. This argument occurs in [WEAM19, GKM22] and we
only need to adapt things to our notation:

Theorem 18 (Theorem 8). Let C = ([N ], V, c) be a t-XOR scheme, |V | = K, and t even. For any
t ≤ L ≤ K

8 , we may associate with C a permutation ensemble A indexed by [N ] with the following
properties:

1. A lives in Rm×m for m =
(
K
L

)
2. d(A) ≥

(
L
K

)t/2
N

3. For any f ∈ {±1}N , we have ∥A[f ]∥∞→1 ≥ d(A)m ·OPT(C, f)

Proof. Let C = ([N ], V, c) be t-XOR scheme, |V | = K, t even. Let m =
(
K
L

)
, and identify [m] with(

V
L

)
canonically. We define a permutation ensemble in Rm×m, given by Ax(a, b) = 1{a∆b = cx}

where a∆b denotes the symmetric difference of a, b as elements of
(
X
L

)
. Observe that by symmetry,∑

a,bAx(a, b) is the same value for all x; call this value r. Indeed we have r = 2
(

t
t/2

)(
K−t
L−t/2

)
. To see

this, note that if if |a| = |b| = L, a∆b = c, |c| = t then we must have a = (w ∪ u), b = (w ∪ v) for
some |w| = L− t, |u| = |v| = t

2 , u, v ⊆ c. There are
(

t
t/2

)
ways to choose disjoint subsets u, v ⊆ cx,

|u| = |v| = t
2 , and

(K−t
L− t

2

)
ways to choose w ∈

(V \{u∪v}
L−t/2

)
. Since we will count (a, b), (b, a) separately

we must add in a factor of 2.
Now, let f ∈ {±1}N and let R : V → {±1} be such that OPT(C, f) = Val(C, f, R). Define

45



R̃ ∈ {±1}m = {±1}(
V
L), with R̃(a) =

∏
i∈aR(i). Then

R̃⊤A[f ]R̃ =
∑

a,b∈(VL)

R̃(a)R̃(b)A[f ](a, b) =
∑
x

fx
∑
a,b

Ax(a, b)
∏
i∈a

R(i)
∏
j∈b

R(j)

=
∑
x∈X

(∑
a,b

Ax(a, b)
)
f(x)

∏
i∈cx

R(i) = r
∑
x

f(x)
∏
i∈cx

R(i) = rN ·OPT(C, f)

Now, observe that d(A) = Nm−1r, in other words r = d(A)N−1m, so we have the bound
∥A[f ]∥∞→1 ≥ d(A)m ·OPT(C, f). It remains to lower bound d(A), for which we observe

d(A) = Nm−1r ≥
2
(

t
t/2

)(
K−t
L−t/2

)(
K
L

) N ≥
( L

K

)t/2
N

provided t ≤ L ≤ K
8 , where the final inequality follows from standard manipulations of binomial

coefficients (see [HKM23]).
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