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Abstract

Given an efficient algorithm that correctly computes a tiny fraction of the entries of the
matrix multiplication of a small fraction of two matrices, can one design an efficient algorithm
that computes matrix multiplication exactly for all the matrices? In this paper, we present such
“worst-case exact to average-case approximate” reductions that transform any algorithm that
correctly computes a tiny fraction of the entries of the multiplication of two uniformly random
matrices over a finite field into a randomized worst-case algorithm that computes matrix multi-
plication for all the matrices. Under non-uniform reductions, we present an optimal reduction
that error-corrects an algorithm whose output has expected Hamming distance 1 − 1

p − ε to
the multiplication of two random matrices over a finite field of size p for any positive constant
ε > 0. Under uniform reductions, we present efficient reductions that correct a (1− ε)-fraction
of errors over a field of size p for all ε > 0 and for all sufficiently large p. We also present an
optimal uniform reduction for the Online Matrix-Vector Multiplication problem.

The non-uniform reduction is based on a new and simple proof of Yao’s XOR lemma for
multi-output functions, whose complexity overhead is independent of the length of the output.
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1 Introduction

Matrix multiplication is one of the most fundamental algebraic primitives that lies at the center of
scientific computation. The computational complexity of matrix multiplication has been actively
studied from both theoretical and practical perspectives. After a long line of research that started
from the work of Strassen [Str69], the current best algorithm computes the multiplication of two
n × n matrices in time O(nω), where 2 ≤ ω ≤ 2.3716 (see [DWZ23; VXXZ24; ADWXXZ25] and
references therein), which is much faster than the näıve algorithm that runs in time O(n3). The
algorithms developed in this line of research are asymptotically fast, but are not efficient in practice
(where n is reasonably small) because they suffer from a huge leading constant hidden in the big
O notation. Another line of research, started from the “Four-Russians” algorithm, has developed
combinatorial algorithms for Boolean Matrix Multiplication, which tend to be more efficient in
practice (see, e.g., [BW12; AFKLM24] and references therein).

From a practical perspective, we do not have to confine ourselves to the standard computing
hardware. Specialized hardware devices, such as GPUs, enable multiplying large matrices efficiently
in practice [VD08]. There have been proposals for architectures to compute matrix multiplication
based on physical phenomena, such as optical devices [ZDCDHSZGQCRZ22], thermodynamics
[CADMGASCMS23], and divisible materials (e.g., water) [Val24]. Such computational devices
would significantly suffer from a high level of noise and errors. It is therefore natural and important
to ask the following question.

Given a black-box device that approximately computes matrix multiplication, can one
design an efficient algorithm that computes matrix multiplication exactly?

The first result in this direction was recently presented by Gola, Shinkar, and Singh [GSS24].
Assuming that there is a black-box algorithm O that, given as input uniformly random matrices
A,B ∼ Fn×n over a finite field F, outputs a matrix C such that a 8

9 -fraction of the entries of C
agree with A · B in expectation, they designed a randomized algorithm MO that computes the
matrix multiplication of all the matrices. Their reduction is based on a simple modification of
the worst-case to average-case reduction for matrix multiplication developed by Blum, Luby, and
Rubinfeld [BLR93], which cannot tolerate a large fraction of errors. Error-tolerant worst-case to
average-case reductions for matrix multiplication have been recently developed by Asadi, Golovnev,
Gur, and Shinkar [AGGS22] and Hirahara and Shimizu [HS23]. These reductions do not correct the
type of errors such that some entries are incorrectly answered; the reductions assume average-case
algorithms to compute all the n×n entries of A ·B correctly for a small fraction of n×n matrices
A and B. It is an outstanding problem whether one can obtain a worst-case algorithm from an
average-case algorithm that computes a tiny fraction of the n × n entries of A · B correctly for a
small fraction of n× n matrices A and B.

1.1 Our Results

In this paper, we fully resolve this problem for non-uniform algorithms. For two matrices A and
B ∈ Fn×n

p over a finite field of size p, let dist(A,B) denote the fraction of the entries (i, j) ∈
{1, · · ·n}2 such that the (i, j)-th entries of A and B disagree. The trivial algorithm O that outputs
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the all-0 matrix achieves the expected distance1

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− 1

p
,

where the expectation is taken over uniform random matrices A and B over Fn×n
p . Any algorithm

that achieves an expected distance smaller by an additive constant ε > 0 can be transformed into
a worst-case non-uniform algorithm (i.e., an algorithm that takes an advice string for each input
length, or almost equivalently, a Boolean circuit).

Theorem 1.1. Let Fp be a field of prime order p and ε > 0 be a constant. Suppose that there is
an oracle O such that for all sufficiently large n ∈ N,

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− 1

p
− ε,

where A and B are uniformly chosen from Fn×n
p . Then, for all sufficiently large n ∈ N, there exists

a randomized O(log n)-query oracle circuit C of size Õ(n2) such that for every A,B ∈ Fn×n
p ,

Pr
C

[
CO(A,B) = AB

]
≥ 2

3
,

where the probability is over the internal randomness of C. Moreover, there exists a randomized
polynomial-time algorithm that, on input 1n, prints the description of such a circuit C with proba-
bility 1− o(1).

Here, the Õ(·) notation hides a polylog(n) factor. Note that the constant 2
3 can be amplified to

1− o(1) by the standard technique of repetition and a majority vote.
In words, this theorem shows that given a black-box computational device O that “approxi-

mates” matrix multiplication, one can obtain a nearly-linear-time algorithm for matrix multipli-
cation with preprocessing : In the preprocessing phase, one can compute the description of C in
polynomial time. Then, such a description C can be used to compute the matrix multiplication
of every pair of matrices (A,B) in nearly linear time. The hidden polylogarithmic factor in Õ(n2)
and the hidden constant in O(log n) are not very large (see Theorem 3.1 for details), and thus we
expect that Theorem 1.1 could be useful in practice.

As an immediate corollary, we obtain the following equivalence.

Corollary 1.2. Let Fp be a field of prime order p and ε > 0 be a constant. There exists a

randomized circuit C of size Õ(n2) such that

E
A,B∼Fn×n

p

C

[dist(C(A,B), AB)] ≤ 1− 1

p
− ε

if and only if there exists a randomized circuit C of size Õ(n2) such that for every A,B ∈ Fn×n
p ,

Pr
C
[C(A,B) = AB] ≥ 1− o(1).

1We mention in passing that the expected distance 1− 1
n
can also be achieved trivially by computing the first row

of AB in time O(n2).

2



Next, we present uniform reductions. When a field size p is sufficiently large, we obtain a highly
efficient uniform reduction.

Theorem 1.3. Let Fp be a finite field of order p = p(n) and ε = ε(n) > 0 be a parameter such that
p > n/ε2. Suppose there exists an oracle O such that for all sufficiently large n ∈ N,

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− ε.

Then, there exists a randomized poly(1/ε) · O(log n)-query oracle algorithm MO that runs in time
poly(1/ε) · polylog(p) · Õ(n2) and satisfies, for all large n ∈ N and for any A,B ∈ Fn×n

p ,

Pr
MO

[
MO(A,B) = AB

]
≥ 2

3
.

This theorem is superior to Theorem 1.1 in that the reduction is uniform, and that the number
of queries is independent of p, whereas that of Theorem 1.1 (Theorem 3.1) depends on p. The
only deficiency is that the field size p must be large. When p is small, we obtain another uniform
reduction that corrects errors almost optimally up to a factor of 2.

Theorem 1.4. Let Fp be a finite field of prime order p = p(n) and ε = ε(n) > 0 be a parameter.
Suppose that there exists an oracle O such that for all sufficiently large n ∈ N,

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− 2

p
− ε,

where A and B are uniformly chosen from Fn×n
p . Then, there exists a randomized 2poly(p,1/ε) ·

O(log n)-query randomized 2p
poly(p,1/ε) · Õ(n2)-time oracle algorithm M such that for all sufficiently

large n ∈ N, and for every A,B ∈ Fn×n
p ,

Pr
MO

[
MO(A,B) = AB

]
≥ 2

3
.

1.2 Online Matrix-Vector Multiplication

We also present an optimal uniform reduction for the online matrix-vector multiplication (OMv)
problem [HKNS15]. The OMv problem asks to preprocess an n×n matrix A in polynomial time in
the preprocessing phase, and then, in the query phase, to compute A ·v efficiently for n-dimensional
vectors v. We consider an average-case and Fp variant of OMv, where the arithmetic operations are
over a finite field Fp [HLS22; AGGS22]. Any algorithm that achieves an expected distance better
than 1− 1

p can be transformed into a worst-case algorithm.

Theorem 1.5. Let Fp be a field of prime order p and let ε > 0 be a constant. Then, the following
are equivalent.

• There exists a randomized data-structure algorithm M that runs in time Õ(n) in the query
phase such that for all sufficiently large n ∈ N,

E
A∼Fn×n

p

v∼Fn
p

M

[dist(M(A; v), Av)] ≤ 1− 1

p
− ε.
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• There exists a randomized data-structure algorithm M ′ that runs in time Õ(n) in the query
phase such that for all sufficiently large n ∈ N and all A ∈ Fn×n

p and v ∈ Fn
p ,

Pr
M ′

[
M ′(A; v) = Av

]
≥ 2

3
.

2 Techniques

Our reductions are based on two “disjoint” sets of techniques. One is based on the theory of
hardness amplification developed in, e.g., [IJK09; IJKW10; HS22; HS23; HS24]. This yields the
non-uniform reduction of Theorem 1.1, for which we present an overview in Section 2.1. The other is
based on error-correcting codes and error-tolerant worst-case to average-case reductions of [HS23].
This yields uniform reductions, for which we present an overview in Sections 2.2 and 2.3.

Notation. For n ∈ N, let [n] denote {1, . . . , n}. For a matrix A ∈ Fn×n
p , we denote by Ai,j the

(i, j)-th entry of A. For two vectors a = (a1, · · · , an) and b = (b1, · · · , bn) ∈ Fn
p , let dist(a, b) =

Pri∼[n][ai ̸= bi] denote the normalized Hamming distance. We say that a is r-close to b if dist(a, b) ≤
r. For a finite set S, we write x ∼ S to denote that x is chosen uniformly at random from S.

2.1 The Non-Uniform Reduction

The best error-tolerant worst-case to average-case reduction for matrix multiplication of [HS23],
which improves [AGGS22], is based on the techniques from hardness amplification. Prototypical
theorems in hardness amplification are Yao’s XOR lemma and the direct product theorem (see
[GNW11] for a survey). Yao’s XOR lemma states that if a function f : {0, 1}n → {0, 1} is mildly
average-case hard (meaning that every small circuit fails to compute f on a δ-fraction of inputs for a
small δ > 0), then the K-wise XOR function f⊕K : ({0, 1}n)K → {0, 1} is strongly average-case hard
(meaning that every small circuit fails to compute f⊕K on a (1/2− ε)-fraction of inputs for a small
ε > 0), where f⊕K(x1, · · · , xK) := f(x1) ⊕ · · · ⊕ f(xK) for (x1, · · · , xK) ∈ ({0, 1}n)K . Similarly,
the direct product theorem states that for a mildly average-case hard function f : {0, 1}n → {0, 1},
the K-wise direct product fK : ({0, 1}n)K → {0, 1}K is strongly average-case hard (meaning that
every small circuit fails to compute fK on a (1 − ε)-fraction of inputs for a small ε > 0), where
fK(x1, . . . , xK) := (f(x1), . . . , f(xK)) for (x1, · · · , xK) ∈ ({0, 1}n)K . In a recent line of research
[HS22; HS23; HS24], the techniques of hardness amplification have been used to show “hardness
self-amplification” for natural problems, such as matrix multiplication, triangle counting, and the
planted clique problem. Given this line of research, it is natural to apply a similar technique to our
settings, which, however, seemed highly non-trivial as noted in [GSS24].2

Our key insight is that the K-wise XOR structure is hidden in matrix multiplication. Consider
the case of p = 2, and let N = nK. For two matrices Ā and B̄ ∈ FN×N

2 , partition these matrices
so that

Ā =
[
A1 · · · AK

]
∈
(
FN×n
2

)1×K
, B̄ =

B1
...

BK

 ∈
(
Fn×N
2

)K×1
.

2The authors of [GSS24] wrote “we do not see how to apply the Direct-Product theorem to our setting of the
problem.” The key innovation here is that we use Yao’s XOR lemma instead of the direct product theorem used in
[HS23].
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Then, we have

Ā · B̄ =
∑
k∈[K]

Ak ·Bk = (A1 ·B1)⊕ · · · ⊕ (AK ·BK) = f(A1, B1)⊕ · · · ⊕ f(AK , BK),

where, in the last equality, we defined f : FN×n
2 × Fn×N

2 → FN×N
2 to be the function such that

f(A,B) = A ·B. This means that the matrix multiplication of Ā and B̄ coincides with the output
of the K-wise XOR function f⊕K on input ((A1, B1), . . . , (AK , BK)). By Yao’s XOR lemma, we
may expect that the mild average-case hardness of f implies the strong average-case hardness of
f⊕K ; taking its contrapositive, an average-case algorithm that computes f⊕K on a small fraction
of inputs can be transformed into an average-case algorithm that computes f on a large fraction of
inputs.3

Unfortunately, all the known proofs of Yao’s XOR lemma (e.g., [GNW11]) are applicable only to
single-output functions f : {0, 1}n → {0, 1}. Here, we present a new, simple, and generalized proof
of Yao’s XOR lemma for multi-output functions. For a multi-output function f : {0, 1}n → {0, 1}m,
let f⊕k denote the function such that f⊕k(x1, . . . , xk) = f(x1)⊕ · · · ⊕ f(xk), where ⊕ denotes the
bitwise XOR. For a string y ∈ {0, 1}m and ℓ ∈ [m], let yℓ denote the ℓ-th bit of y.

Theorem 2.1 (see also Theorem A.1). Let f : {0, 1}n → {0, 1}m be a function and L be a distri-
bution over [m]. Suppose that there exists a circuit C ′ of size s′ ≥ m such that for all ℓ ∈ [m],

Pr
x̄∼({0,1}n)k

[
C ′(x̄)ℓ = f⊕k(x̄)ℓ

]
≥ 1

2
+ ε,

where k ≥ O
(
log(1/ε)/(εδ)2

)
. Then, there exists a circuit C of size s = s′ · O

(
log(1/δ)/ε2

)
such

that
Pr

x∼{0,1}n
ℓ∼L

[C(x)ℓ = f(x)ℓ] ≥ 1− δ.

It is possible to prove a result analogous to Theorem 2.1 by applying Yao’s XOR lemma to the
ℓ-th bit of f for all ℓ ∈ [m] independently. However, such a proof would incur the O(m) factor of
overhead in circuit size s. This is not tolerable in reductions for matrix multiplication, where m
corresponds to the size of matrices. The significance of Theorem 2.1 is that the circuit size s is
at most O(s′) for constants ε and δ > 0. Moreover, the proof of Theorem 2.1 is fairly simple and
may have pedagogical value in the case of m = 1. At a high level, the circuit C is constructed by
embedding an input x ∈ {0, 1}n into one element of random tuples x̄ ∼ ({0, 1}n)k, evaluating C ′

on input x̄, and taking a majority vote of the outputs of C ′ over independent random choices. The
proof can be found in Section A.

There are two issues to apply Theorem 2.1 to matrix multiplication. The first issue is that we
need to assume that for all entries ℓ = (i, j) ∈ [N ]2, an oracle O computes the (i, j)-th entry of the
multiplication Ā · B̄ of random N × N matrices (Ā, B̄) with probability 1

2 + ε. This issue can be
fixed by using the simple technique of random permutation developed by Gola, Shinkar, and Singh
[GSS24] (see Lemma 3.2). The second issue is how to generalize it to a larger field size p > 2. The

3This reduces the matrix multiplication of rectangular matrices (A,B) ∈ FN×n
2 ×Fn×N

2 to the matrix multiplication
of square matrices (Ā, B̄) ∈ FN×N

2 . By combining this with a trivial worst-case reduction from square matrix
multiplication to rectangular matrix multiplication, we may obtain a worst-case to average-case reduction for the
same input size; see the proof of Theorem 3.1 for details.
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proof of Theorem 2.1 is crucially based on the majority vote, which cannot be generalized to the
case where the error is larger than 1

2 . We overcome this difficulty, by presenting a simple reduction
that “distributes” an error of an oracle O among Fp uniformly at random (see Lemma 3.4). Details
can be found in Section 3.

2.2 Online Matrix-Vector Multiplication

Next, we present the ideas for constructing uniform reductions. For the sake of clarity, we first
explain the ideas for online matrix-vector multiplication (see Section 5 for details), and then explain
how the ideas can be modified to apply to matrix multiplication (see Section 4.2 for details).

2.2.1 Exact-to-Approximate Reduction via List-Decodable Code

We start with a “worst-case exact to worst-case approximate” reduction that transforms an algo-
rithm that computes a vector that is (1− α)-close to the multiplication Av of every matrix A and
every vector v into an algorithm that computes OMv exactly. This reduction can be obtained by a
simple application of a list-decodable error-correcting code. Consider a linear error-correcting code
Enc : Fn

p → FN
p that takes a message of length n and outputs its codeword. Since Enc is a linear map,

it can be written in the form Enc : x 7→ Qx for some matrix Q ∈ FN×n
p . For an efficient reduction,

we need an error-correcting code with N = Oα(n) that is computable and list-decodable within
radius 1 − α in nearly linear time. That is, the function x 7→ Enc(x) can be computed in Õp,α(n)
time, and for a given ỹ ∈ FN

p , the number of vectors x ∈ Fn
p satisfying dist(Enc(x), ỹ) ≤ 1− α is at

most Op,α(1), and all such x can be enumerated in time Õp,α(N).
For a matrix A ∈ Fn×n

p consisting of column vectors a1, . . . , an ∈ Fn
p , the matrix QA ∈ FN×n

p

consists of column vectors Enc(aj) for j = 1, . . . , n and can be computed in time Õ(n2). Using this,
we obtain the following approximate-to-exact reduction for OMv:

1. Let Mpre be the preprocess algorithm that receives a matrix A ∈ Fn×n
p and performs the

preprocessing, and Mquery be the algorithm that receives a vector v ∈ Fn
p and computes a

vector that is (1− α)-close to Av.

2. In the preprocessing of our reduction, for a given matrix A ∈ Fn×n
p compute QA ∈ FN×n

p in

Õ(n2) time, and then run the preprocess Mpre on input QA.

3. For a given query v ∈ Fn
p , compute w̃ = Mquery(v) ∈ FN

p . Since this vector satisfies
dist(w̃, QAv) = dist(w̃,Enc(Av)) ≤ 1−α, using the list-decoding algorithm of Enc, we obtain
a list of Op,α(1) vectors in Fn

p that contains Av in time Õ(N). Using an efficient verification

algorithm for OMv, we can identify Av in this list in time Õ(N).

2.2.2 Worst-Case-to-Average-Case Reduction via Full-Rank Partition

We now upgrade the previous reduction to a “worst-case exact to average-case approximate” re-
duction. In the average-case version of OMv, the input (A, v) to an algorithm is chosen uniformly
at random from Fn×n

p ×Fn
p . Given an approximate average-case solver that outputs a vector w̃ ∈ Fn

p

such that
E
A,v

[dist(w̃, Av)] ≤ 1− α,
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Figure 1: The marginal distribution of each submatrix Q|Pi · A is uniform over Fm×n
p if A ∼ Fn×n

p

is a uniformly random matrix.

our goal is to construct a worst-case and exact algorithm for OMv.
The reason why the reduction of Section 2.2.1 is not a worst-case-to-average-case reduction is

that QA ∈ FN×n
p (which is given to the average-case solver) is not uniformly distributed even if

A is chosen uniformly at random. We thus need a way to ensure that queries to the average-case
solver are uniformly distributed. To this end, we simply divide the set [N ] of the row indices of
QA ∈ FN×n

p into several subsets so that the marginal distribution of the submatrix of QA induced
by each subset is uniformly distributed for a uniformly random matrix A. More precisely, for an
encoding Enc : Fn

p ∋ x 7→ Qx ∈ FN
p and parameters m ≤ n and δ > 0, an (m, δ)-full-rank partition

P = P1 ⊔ · · · ⊔ Pa ⊔ P ′ is a partition of the set [N ] such that

• |Pi| = m for each i ∈ [a],

• |P ′| ≤ δN , and

• for each i ∈ [a], the submatrix Q|Pi ∈ Fm×n
p consisting of all the row vectors of Q whose index

belongs to Pi is full row rank.

The parameters m, δ are chosen so that m = Θ(n) and δ ≪ α. In this overview, we assume δ = 0
(i.e., P ′ = ∅) for simplicity. Suppose that the encoding Enc has an (m, 0)-full-rank partition P =
P1 ⊔ · · · ⊔ Pa. For a uniformly random matrix A ∼ Fn×n

p , when each row of QA ∼ FN×n
p is divided

into submatrices along P, for each i ∈ [a], the submatrix Q|PiA of QA is uniformly distributed
over Fm×n

p (see Fig. 1). This implies that, for each i ∈ [a], the vector w̃i ∈ Fm
p obtained by

running the approximate average-case solver on input (Q|PiA, v) satisfies EA,v[dist(w̃i, Q|PiAv)] ≤
1 − α. By concatenating the vectors w̃i for all i ∈ [a], we can obtain a vector w̃ ∈ FN such that
EA,v[dist(w̃, QAv)] ≤ 1− α.

Fix an approximate average-case solver. We call an input (A, v) good if it satisfies dist(w̃, QAv) ≤
1 − α/2. By Markov’s inequality, the probability that (A, v) ∼ Fn×n

p × Fn
p is good is at least α/2.

For any good (A, v), the vector w̃ ∈ FN
p obtained using the approximate average-case solver is

(1 − α/2)-close to QAv, and thus we can use the exact-to-approximation reduction given in Sec-
tion 2.2.1 to compute Av in time Õ(N). In this way, we obtain an average-case algorithm that
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computes OMv exactly for the (α/2)-fraction of good inputs (A, v). Finally, applying the error-
tolerant worst-case-to-average-case reduction for OMv of Hirahara and Shimizu [HS23], we obtain
a worst-case exact algorithm for OMv.

2.3 Matrix Multiplication

Building on the ideas developed for OMv, we now explain how to construct uniform reductions for
matrix multiplication.

2.3.1 Reduction for Matrix Multiplication via Left-Right Encoding

In the reduction for OMv, for an input A ∈ Fn×n
p , we considered the matrix QA ∈ FN×n

p obtained

by applying a list-decodable error-correcting code Enc : Fn
p ∋ x 7→ Qx ∈ FN

p . The crucial point is
that the vector Enc(Av) = QA · v coincides with the encoding of the answer Av for a given vector
v ∈ Fn

p .

The same idea is applicable to matrix multiplication if some encoding Enc⋆(AB) ∈ FN×N
p of the

answer AB on input A,B ∈ Fn×n
p can be expressed as the product of some pair of two matrices.

We present a natural encoding scheme Enc⋆ with such a property, which we call left-right encoding.
4 For an arbitrary error-correcting code Enc : Fn

p → FN
p that can be written as Enc : x 7→ Qx for a

matrix Q ∈ FN×n
p , we define the left-right encoding Enc⋆ : Fn×n

p → FN×N
p as

Enc⋆ : A 7→ QAQ⊤.

For matrices A and B ∈ Fn×n
p , the left-right encoding of the product AB is given by Enc⋆(AB) =

QABQ⊤ = (QA) · (QB⊤)⊤. Thus, by querying an oracle on input
(
QA, (QB⊤)⊤

)
, we may obtain

an N ×N matrix that is (1 − α)-close to Enc⋆(AB). Assuming that Enc⋆ is list-decodable within
radius 1 − α, we can compute a list of matrices that contains AB. The correct solution can be
identified using Freivalds’ randomized verification algorithm (Lemma 4.26).

This argument is a natural extension of the reduction for OMv described in Section 2.2.1 to
matrix multiplication. Combined with the full-rank partition with a slight modification of the argu-
ments in Section 2.2.2, we obtain a worst-case-to-average-case reduction for matrix multiplication.

2.3.2 List-Decoding of Left-Right Encoding

In Section 2.3.1, we assumed that Enc⋆ is list-decodable within radius 1−α. Gopalan, Guruswami,
and Raghavendra [GGR11, Theorem 4.7] showed that this is indeed the case, assuming that the
original encoding Enc is list-decodable within radius 1−α/2. Here, we provide a simple proof of this
fact in our case of matrix multiplication. Specifically, we consider the problem of reconstructing the
matrix AB ∈ Fn×n

p given as input (A,B) ∈
(
Fn×n
p

)2
and a matrix C̃ ∈ FN×N

p that is (1− α)-close
to Enc⋆(AB).

The reconstruction is outlined in Fig. 2. Let A,B ∈ Fn×n
p , C̃ ∈ FN×N

p be the input such that

dist(C̃,Enc⋆(AB)) ≤ 1−α. Since the matrix C̃ satisfies dist(C̃,Q ·ABQ⊤) ≤ 1−α, from Markov’s
inequality, at least (α/2) ·N column vectors c̃j ∈ FN

p of C̃ satisfy dist(c̃j ,Enc(dj))) ≤ 1−α/2, where

dj ∈ Fn
p is the j-th column vector of ABQ⊤ ∈ Fn×N

p . Let us call such column good. By using the
list-decoding algorithm of Enc, we can compute the set of vectors that contains dj for every good

4In the literature of error-correcting code, the left-right encoding is called a tensor product code [GGR11].
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column
decoding

column vectors are the same as  -close

row
decoding

Figure 2: Outline of the reduction of Lemma 4.21. In the first step, we decode each column vector
of C̃. For the resulting matrix D̃, we decode each of the row vector.

column index j ∈ [N ]. Furthermore, this vector dj can be identified by an efficient randomized
verification algorithm (Lemma 4.20). This allows us to compute (α/2)·N column vectors of ABQ⊤.
Taking the transposition, for all i ∈ [n], we have a vector f̃i ∈ FN

p that is (1−α/2)-close to the i-th

column vector fi ∈ FN
p of Q · (AB)⊤ ∈ FN×n

p . Note that the vector fi is the encoding of the i-th

column vector of (AB)⊤. Thus, by using the list-decoding algorithm on input f̃i combined with an
efficient verification algorithm for all i ∈ [n], we obtain (AB)⊤.

2.3.3 Concrete Codes

In our reduction, we need an encoding that is encodable and list-decodable in nearly linear time
over alphabet Fp.

For the case of large field (field of order Θ(n)), we use the Reed–Solomon code, which can
be encoded in Õ(n) arithmetic operations by using the fast multipoint evaluation [GG13] and is
list-decodable within radius 1−α if α >

√
n/N by Õ(N) arithmetic operations [Ale05]. Moreover,

the list size is at most O(1/α). It is not hard to see that Reed–Solomon codes have a full-rank
partition, which can be constructed in linear time. See Section 4.1 for details.

In the case of small field, we use an encoding based on Ta-Shma’s construction [Ta-17] (at-
tributed to Rozenman and Wigderson), which is the composition of a derandomized direct sum
encoding and a uniquely decodable encoding.

More concretely, we use the encoding Enc : Fn
p → FN

p that is the composition of two encodings

Enc0 : Fn
p → Fn′

p and Enc1 : Fn′
p → FN

p defined as follows: Let n ≤ n′ ≤ N and Enc0 : Fn
p → Fn′

p be any
encoding that is uniquely decodable within radius ρ0 for some constant ρ0 < 1. Let G = ([n′], E)

9



be a d-regular expander graph for some d = O(1) and W ⊆ [n′]k be the set of all walks on G of
length k − 1. Set N = n · dk−1. We order the set W in the lexicographic order. For x ∈ Fn

p and

i ∈ [N ], the i-th symbol of the codeword y = Enc(x) ∈ FN
p is given by

yi =
∑
j∈[k]

xuj ,

where u1, . . . , uk ∈ [n′] are vertices that the i-th walk in W visits.
Recently, Jeronimo, Srivastava, and Tulsiani [JST21] (for p = 2) and Jeronimo [Jer23] presented

a nearly linear time decoding algorithm for general class of encodings including the construction
above, which deals with radius 1− 1/p− ε for any constant ε > 0. Thus, the Enc is encodable and
list-decodable in nearly linear time within radius 1− 1/p− ε.

Moreover, we prove that the encoding Enc has a full-rank partition if the regular graph G used
in the construction has a sufficiently strong expansion property and the girth is more than k. In
our application, a random d-regular graph for sufficiently large d suffice. See Section 4.2 for details.

3 Reductions with Preprocessing

The goal of this section is to prove the following theorem.

Theorem 3.1 (the full version of Theorem 1.1). There exist a randomized polynomial-time algo-
rithm P and a randomized oracle algorithm MO with the following properties. Let p be a prime
number, ε, δ > 0. For every oracle O such that

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− 1

p
− ε,

the preprocessing algorithm P takes (n, p, ε−1, δ−1) written in unary as input and, with probability
1−δ over the internal randomness of P , outputs an advice string α such that for every A,B ∈ Fn×n

p ,

Pr
M

[
MO(A,B;α) = AB

]
≥ 1− 1

n
,

where the probability is over the internal randomness of M . Moreover, MO runs in time O(n2 log n·
poly(p, 1/ε, 1/δ)) and makes at most O(log n) · Õ

(
p2/(δ2ε4)

)
oracle queries in Fn×n

p × Fn×n
p .

We prove this theorem by a sequence of lemmas. Each lemma presents a randomized reduction,
which is formalized as a randomized oracle algorithm which is given black-box access to a random-
ized algorithm. To emphasize that the randomized algorithm is used in a black-box way, we call a
randomized algorithm a randomized oracle.

Throughout this section, p denotes a prime number and Fp denotes the field of order p. We say
that an algorithm runs in nearly linear time if it runs in time O

(
n2 log n · poly(p, 1/ε, 1/δ)

)
. All

the reductions in this section run in nearly linear time.
We may assume without loss of generality that for every (i, j) ∈ [n]2, the (i, j)-th entry of the

output of the oracle O on input (A,B) agrees with (AB)i,j with probability 1
p + ε. This can be

ensured by using random permutations. A permutation matrix Π is a matrix such that there exists
a permutation π : [n] → [n] such that Πi,j = 1 if i = π(j) and Πi,j = 0 otherwise.
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Lemma 3.2 (implicit in Gola, Shinkar, and Singh [GSS24]). There exists a randomized linear-time
one-query oracle algorithm M such that for every randomized oracle O such that

q := E
A,B∼Fn×n

p

O

[1− dist(O(A,B), AB)],

it holds that for every (i, j) ∈ [n]2,

q = Pr
A,B∼Fn×n

p

M

[
MO(A,B)i,j = (AB)i,j

]
,

where the probability is taken over A,B ∼ Fn×n
p and the internal randomness of M .

Proof. The algorithm MO operates as follows on input (A,B). It samples uniformly random
permutation matrices Π,Σ ∈ {0, 1}n×n, makes a query (Π−1A,BΣ−1) to the oracle O, and outputs
Π · O(Π−1A,BΣ−1) · Σ. This algorithm runs in time O(n2).

By assumption, we have
q = Pr

i,j,A,B
[O(A,B)i,j = (AB)i,j ],

where the probability is taken over (i, j) ∼ [n]2 and A,B ∼ Fn×n
p . This is equivalent to saying that

for every fixed (i, j) ∈ [n]2,

q = Pr
π,σ,A,B

[
O(A,B)π(i),σ(j) = (AB)π(i),σ(j)

]
,

for uniformly random permutations π, σ : [n] → [n]. Using uniformly random permutation matrices
Π,Σ, this is also equivalent to

q = Pr
Π,Σ,A,B

[(Π · O(A,B) · Σ)i,j = (Π ·AB · Σ)i,j ].

Define A′ := ΠA and B′ := BΣ. For every fixed Π,Σ, the distribution (A,B) ∼ (Fn×n
p )2 induces

the same distribution (A′, B′) ∼ (Fn×n
p )2. Thus, we obtain

q = Pr
Π,Σ,A′,B′

[
(Π · O(Π−1A′, B′Σ−1) · Σ)i,j = (A′B′)i,j

]
,

which is equivalent to
q = Pr

M,A′,B′

[
MO(A′, B′)i,j = (A′B′)i,j

]
.

By combining Lemma 3.2 with the self-correction algorithm of Blum, Luby, and Rubinfeld
[BLR93], if the approximation error of a matrix multiplication algorithm is sufficiently smaller
than 1

8 , the error can be corrected. For a technical reason, we state it for rectangular matrix
multiplication.

Corollary 3.3 (Gola, Shinkar, and Singh [GSS24]). There exists a randomized nearly-linear-time
O(logN)-query oracle algorithm M such that for every randomized oracle O such that

E
A∼FN×n

p

B∼Fn×N
p

O

[dist(O(A,B), AB)] ≤ 1

9
,
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it holds that for every (A,B) ∈ FN×n
p × Fn×N

p ,

Pr
MO

[
MO(A,B) = AB

]
≥ 1− 1

N2
,

where the probability is taken over the internal randomness of MO.

Proof Sketch. As in the proof of Lemma 3.2, we may assume without loss of generality that an
oracle O satisfies

Pr
A∼FN×n

p

B∼Fn×N
p

O

[O(A,B)i,j = (AB)i,j ] ≥
8

9

for every (i, j) ∈ [N ]2. The algorithm MO repeatedly samples (R,S) ∼ FN×n
p ×Fn×N

p and computes
Q := O(A+R,B + S)−O(A+R,S)−O(R,B + S) +O(R,S), and outputs the majority vote of
O(logN) independent trials.

Corollary 3.3 naturally sets our goal to design an algorithm that approximates matrix multipli-
cation with error at most 1

9 . We construct such an algorithm by using an “embedding reduction,”
which underlies the proof of Yao’s XOR lemma. In order for the embedding reduction to be suc-
cessful, we need to ensure that for each entry, the most frequent output of an algorithm is the
correct value of matrix multiplication. This is achieved by the next lemma.5

Lemma 3.4. There exists a randomized nearly-linear-time one-query oracle algorithm M such that
for every (i, j) ∈ [n]2, every ε > 0, and every randomized oracle O such that

Pr
A,B∼Fn×n

p

O

[O(A,B)i,j = (AB)i,j ] =
1

p
+ ε,

it holds that for every d ∈ Fp,

Pr
A,B∼Fn×n

p

M

[
MO(A,B)i,j = (AB)i,j + d

]
=

{
1
p + ε if d = 0,
1
p − ε

p−1 if d ̸= 0.

where the probability is taken over A,B ∼ Fn×n
p and the internal randomness of M .

Proof. Let MO be an oracle algorithm that takes (A,B) ∈ (Fn×n
p )2 as input, samples c ∼ Fp \ {0}

uniformly and randomly, makes a query (c ·A,B) to the oracle O, and outputs c−1 · O(c ·A,B).
Fix arbitrary (i, j) ∈ [n]2 and d ∈ Fp. Observe that

Pr
A,B∼Fn×n

p

M

[
MO(A,B)i,j = (AB)i,j + d

]
= Pr

A,B∼Fn×n
p

c∼Fp\{0},O

[
c−1 · O(cA,B)i,j = (AB)i,j + d

]
= Pr

A,B∼Fn×n
p

c∼Fp\{0},O

[O(cA,B)i,j = (cAB)i,j + cd]

= Pr
A′,B∼Fn×n

p

c∼Fp\{0},O

[
O(A′, B)i,j = (A′B)i,j + cd

]
. (1)

5If p = 2, the reduction of Lemma 3.4 is not necessary.
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Here, in the last equality, we defined A′ := cA and used the fact that for each c ∈ Fp \ {0}, the
distribution of A ∼ Fn×n

p is identical to that of cA ∼ Fn×n
p . If d = 0, the probability of (1) is

exactly equal to 1
p + ε by assumption. If d ̸= 0, the probability of (1) is equal to

E
A′,B∼Fn×n

p ,O

[
Pr

c∼Fp\{0}

[
c = d−1 ·

(
O(A′, B)i,j − (A′B)i,j

)]]
. (2)

We analyze this by considering two cases: Whether the right-hand side d−1 ·(O(A′, B)i,j − (A′B)i,j)
is 0 or not. The right-hand side is 0 with probability 1

p + ε and is non-zero with probability

1−
(
1
p + ε

)
(over the random choice of (A′, B) and O). In the former case, the equality does not

hold for every c ∈ Fp \{0}. In the latter case, the probability that the equality holds is 1
p−1 because

c is uniformly chosen from Fp \ {0}. Thus, (2) is equal to{
1−

(
1

p
+ ε

)}
· 1

p− 1
=

1

p
− ε

p− 1
.

Now, we are ready to present what can be proved by the embedding reduction. Assuming
that the most frequent output of an oracle O is correct, we construct a randomized average-case
algorithmMO for matrix multiplication with small error that takes Trevisan–Vadhan advice [TV07],
i.e., an advice string that may depend on the internal randomness of M .

Lemma 3.5. There exists a deterministic nearly-linear-time O(log(1/δ))/ε2-query oracle algo-
rithm M with an advice function α such that for every n,N ∈ N, δ, ε > 0 such that N/n ≥
O(log(1/ε))/(δε)2, for every (i, j) ∈ [N ]2 and every randomized oracle O such that for every
d ∈ Fp \ {0},

Pr
Ā,B̄∼FN×N

p

O

[
O(Ā, B̄)i,j = (ĀB̄)i,j

]
− Pr

Ā,B̄∼FN×N
p

O

[
O(Ā, B̄)i,j = (ĀB̄)i,j + d

]
≥ ε,

it holds that
Pr
r

A∼FN×n
p

B∼Fn×N
p

[
MO(A,B; r, α(r))i,j = (AB)i,j

]
≥ 1− 2pδ,

where the probability is taken over the randomness r of M (a uniformly random string) and A ∼
FN×n
p , B ∼ Fn×N

p . Moreover, the advice function α can be computed in polynomial time.

To analyze the embedding reduction, we use the concentration inequality which underlies direct
product theorems.

Lemma 3.6 (Direct product lemma; [IJK09; HS23; HS24]). Let D be a set. For all sufficiently
small ε > 0, for every K ≥ O(log(1/ε))/(δε)2, for every function S : DK → [−1, 1], it holds that

Pr
x∼D

[∣∣∣∣ E
y∼Γ(x)

[S(y)]− E
y∼DK

[S(y)]

∣∣∣∣ ≤ ε

2

]
≥ 1− δ.

Here, Γ(x) is the distribution over y′ ∈ DK defined by the following sampling procedure: Sample
y ∼ DK , k ∼ [K], replace the k-th element of y with x to obtain y′, and output y′.
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Proof Sketch. By Hoeffding’s inequality, for every S′ : D → [0, 1], it holds that for every α ≥ 0,

Pr
y∼DK

[∣∣∣∣ E
k∼[K]

[
S′(yk)

]
− E

x∼D

[
S′(x)

]∣∣∣∣ ≤ α

]
≥ 1− 2 exp(−2α2n),

where y = (y1, · · · , yk). By the exchange lemma ([HS24, Lemma 3.12]), this concentration in-
equality implies the concentration inequality of Lemma 3.6, provided that 2 exp(−2α2n) ≤ ε/2 and
α ≤ δε/8.6 We choose α := δε/8.

Proof of Lemma 3.5. Let K := N/n. We may assume without loss of generality that K ∈ N. Let
D := FN×n

p × Fn×N
p . We may regard DK as FN×N

p × FN×N
p because N = Kn.

The algorithm of MO is described in Algorithm 1. In one iteration of the algorithm, it samples
(Ā, B̄) ∼ Γ(A,B), takes advice α = ĀB̄ − AB ∈ FN×N

p (which can be defined independent of the

input (A,B)), queries the oracle O with (Ā, B̄), and computes O(Ā, B̄)− α ∈ FN×N
p . Finally, the

algorithm outputs the most frequent element in Fp for each entry (i, j) ∈ [N ]2. See Algorithm 1
for a more precise description.

Algorithm 1 The description of the embedding reduction MO

Input: (A,B) ∈ FN×n
p × Fn×N

p , randomness r, advice string α = (α(1), · · · , α(T )), parameter
T := O(log(1/δ))/ε2.

1: Initialize a multiset Ri,j := ∅ over Fp for each (i, j) ∈ [N ]2.
2: for each t ∈ {1, · · · , T} do
3: Using randomness r, sample k ∼ [K] and (Aℓ, Bℓ) ∼ FN×n

p × Fn×N
p for each ℓ ∈ [K] \ {k}.

4: Define Ak := A and Bk := B.
5: Define the matrices:

Ā :=
[
A1 · · · AK

]
∈
(
FN×n
p

)1×K
, B̄ :=

B1
...

BK

 ∈
(
Fn×N
p

)K×1
.

6: Query the oracle O with (Ā, B̄).
7: for each (i, j) ∈ [N ]2 do

8: Insert the element O(Ā, B̄)i,j − α
(t)
i,j ∈ Fp to Ri,j .

▷ We expect α(t) =
∑

ℓ∈[K]\{k}AℓBℓ ∈ FN×N
p .

9: end for
10: end for
11: For each (i, j) ∈ [N ]2, let Qi,j ∈ Fp be the element in Fp that appears most frequently in Ri,j .
Output: Q = (Qi,j)(i,j)∈[N ]2 .

Fix arbitrary (i, j) ∈ [N ]2 and d ∈ Fp \ {0}. Let Sd
i,j : D

K → [−1, 1] be the function defined as

Sd
i,j(Ā, B̄) := Pr

O

[
O(Ā, B̄)i,j = (ĀB̄)i,j

]
− Pr

O

[
O(Ā, B̄)i,j = (ĀB̄)i,j + d

]
6[HS24, Lemma 3.12] deals with a function whose codomain is [0, 1], whereas we consider a function whose

codomain [−1, 1]. This discrepancy can be absorbed into constant factors in ε and δ.
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for every (Ā, B̄) ∈ (FN×n
p )1×K × (Fn×N

p )K×1. By Lemma 3.6, with probability at least 1 − δ over

(A,B) ∼ FN×n
p × Fn×N

p , we obtain

E
(Ā,B̄)∼Γ(A,B)

[
Sd
i,j(Ā, B̄)

]
≥ Ē

A,B̄

[
Sd
i,j(Ā, B̄)

]
− ε

2
≥ ε

2
,

where the last inequality holds by assumption. Define

G :=

{
(A,B) ∈ FN×n

p × Fn×N
p

∣∣∣∣ E
(Ā,B̄)∼Γ(A,B)

[
Sd
i,j(Ā, B̄)

]
≥ ε

2
for every d ∈ Fp \ {0}

}
.

By taking the union bound over all d ∈ Fp \ {0}, we have

Pr
(A,B)∼FN×n

p ×Fn×N
p

[(A,B) ∈ G] ≥ 1− pδ. (3)

We claim that for every (A,B) ∈ G,

Pr
r

[
MO(A,B; r, α(r))i,j = (AB)i,j

]
≥ 1− pδ (4)

for some advice function α(r). The randomness r = (r(1), · · · , r(T )) consists of elements

r(t) =
(
k(t),

(
(A

(t)
ℓ , B

(t)
ℓ )
∣∣∣ ℓ ∈ [K] \

{
k(t)
}))

,

where r(t) denotes the samples drawn in Line 3 of Algorithm 1. We define the advice string

α(t)(r) :=
∑

ℓ∈[K]\{k}A
(t)
ℓ B

(t)
ℓ ∈ FN×N

p for every t ∈ [T ]. Then, letting Ā(t) and B̄(t) denote the

values of Ā and B̄, respectively, in the t-th iteration of MO, we have

Ā(t)B̄(t) =
∑
ℓ∈[K]

A
(t)
ℓ B

(t)
ℓ = AB + α(t).

For every d ∈ Fp, it follows thatO(Ā(t), B̄(t))i,j = (Ā(t)B̄(t))i,j+d if and only if
(
O(Ā(t), B̄(t))− α(t)

)
i,j

=

(AB)i,j + d. Thus, for each d ∈ Fp, the probability that (AB)i,j + d is inserted into Ri,j is equal to

qd := Pr
(Ā,B̄)∼Γ(A,B)

O

[
O(Ā, B̄)i,j = (ĀB̄)i,j + d

]
.

Fix arbitrary (A,B) ∈ G. By the definition of G, for every d ∈ Fp \ {0}, we have

q0 − qd ≥ ε

2
. (5)

Let q̂d ∈ [0, 1] be the fraction of t ∈ [T ] such that (AB)i,j + d is inserted into Ri,j in the t-th
iteration. Since we take T = O(log(1/δ))/ε2 independent samples, Hoeffding’s inequality implies
that q̂d ∈ [qd − ε

8 , qd +
ε
8 ] with probability at least 1− δ over the randomness of MO. By the union

bound over all d ∈ Fp, with probability at least 1− pδ, it holds that q̂d ∈ [qd − ε
8 , qd +

ε
8 ] for every

d ∈ Fp, Under this event, we have Qi,j = (AB)i,j because for every d ∈ Fp \ {0},

q̂0 − q̂d ≥
(
q0 −

ε

8

)
−
(
qd +

ε

8

)
≥ ε

2
− ε

4
=

ε

4
,

where the last inequality follows from (5). This completes the proof of (4).
The lemma readily follows from (3) and (4).
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We are now ready to complete the proof of Theorem 3.1.

Proof of Theorem 3.1. Let O : FN×N
p × FN×N

p → FN×N
p be an oracle such that

E
A,B∼FN×N

p

[dist(O(A,B), AB)] ≤ 1− 1

p
− ε.

Applying Lemma 3.2 to the oracle O, we obtain a randomized algorithm MO
1 such that for every

(i, j) ∈ [N ]2,

Pr
A,B∼FN×N

p

M1

[
MO

1 (A,B)i,j = (AB)i,j
]
≥ 1

p
+ ε.

Applying Lemma 3.4 to the oracle MO
1 , we obtain a randomized algorithm MO

2 such that for every
(i, j) ∈ [N ]2 and every d ∈ Fp \ {0},

Pr
A,B∼FN×N

p

MO
2

[
MO

2 (A,B)i,j = (AB)i,j
]
− Pr

A,B∼FN×N
p

MO
2

[
MO

2 (A,B)i,j = (AB)i,j + d
]

≥
(
1

p
+ ε

)
−
(
1

p
− ε

p− 1

)
≥ ε,

We choose n,K ∈ N so that K := N/n = Θ(log(1/ε))/(δε)2. Applying Lemma 3.5 to the oracle
MO

2 , we obtain a deterministic algorithm MO
3 such that for every (i, j) ∈ [N ]2,

Pr
r

A∼FN×n
p

B∼Fn×N
p

[
MO

3 (A,B; r, α(r))i,j = (AB)i,j
]
≥ 1− 2pδ.

Taking the expectation over all (i, j) ∈ [N ]2, we have

Pr
r

A∼FN×n
p

B∼Fn×N
p

i,j∼[N ]

[
MO

3 (A,B; r, α(r))i,j = (AB)i,j
]
≥ 1− 2pδ.

Let δ′ := 18pδ. By Markov’s inequality, with probability at least 1− δ′ over a random choice of r,
it holds that

Pr
A∼FN×n

p

B∼Fn×N
p

i,j∼[N ]

[
MO

3 (A,B; r, α(r))i,j = (AB)i,j
]
≥ 8

9
. (6)

Define G to be the set of r that satisfies this event; in other words, r ∈ G if and only if

E
A∼FN×n

p

B∼Fn×N
p

[
dist(MO

3 (A,B; r, α(r)), AB)
]
≤ 1

9
.

Fix an arbitrary r ∈ G. Applying Corollary 3.3 to the oracle MO
3 (-, -; r, α(r)), we obtain an

algorithm MO
4 such that for every (A,B) ∈ FN×n

p × Fn×N
p ,

Pr
MO

4

[
MO

4 (A,B; r, α(r)) = AB
]
≥ 1− 1

N2
. (7)
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We define the final algorithm MO as follows. It takes (Ā, B̄) ∈
(
FN×N
p

)2
as input and an advice

string β, partitions A and B so that

Ā :=
[
A1 · · · AK

]
∈
(
FN×n
p

)1×K
, B̄ :=

B1
...

BK

 ∈
(
Fn×N
p

)K×1
,

and outputs
∑

ℓ∈[K]M
O
4 (Aℓ, Bℓ;β).

The preprocessing algorithm P chooses a random r, computes α(r) and outputs β := (r, α(r))
as an advice string. By (6), with probability at least 1− δ′, the algorithm P finds r ∈ G, in which
case (7) holds.

We prove the correctness of MO(Ā, B̄;β), where β = (r, α(r)) for some r ∈ G. By (7) and
the union bound over all ℓ ∈ [K], with probability at least 1−K/N2 ≥ 1− 1/N over the internal
randomness of MO

4 , it holds that MO
4 (Aℓ, Bℓ;β) = AℓBℓ for every ℓ ∈ [K], in which case the output

of MO is equal to ĀB̄ =
∑

k∈[K]AℓBℓ.

The number of the queries of MO is bounded by

K · T ·O(log n) =
Θ(log(1/ε))

(δε)2
· O(log(1/δ))

ε2
·O(log n) = O

(
p2 log n log(1/ε) log(p/δ′)

δ′2ε4

)
,

where T is the parameter of Algorithm 1.

4 Error-Correcting Codes and Full-Rank Partition

Unless otherwise noted, a vector x ∈ Fn
p is treated as a column vector. For an index subset

I = {i1, . . . , iℓ} ⊆ [n] for i1 < · · · < iℓ, we denote by x|I ∈ F|I|
p the subvector defined by x|I =

(xi1 , . . . , xiℓ)
⊤. For a matrix A ∈ Fm×n

p and I ⊆ [m], J ⊆ [n], we denote by A|I,J ∈ F|I|×|J |
p the

submatrix of A that consists of Ai,j for all i ∈ I and j ∈ J . We use the shorthand notation
A|I = A|I,[n]. We often use the following standard variant of Markov’s inequality.

Lemma 4.1. Let X be a [0, 1]-valued random variable with mean µ > 0. Then, for any 0 ≤ r ≤ µ,

Pr[X ≥ µ− r] ≥ r

1− µ+ r
.

Definition 4.2 (codes). Let Fp be a finite field. Let n,N ∈ N be parameters such that n ≤ N .
An encoding is a linear function Enc : Fn

p → FN
p . The image Enc(Fn

p ) ⊆ FN
p is called a code. A

codeword is an element of a code. By default, we assume that Enc is an injection.

In particular, we are interested in encodings that are list-decodable in nearly linear time.

Definition 4.3 (list-decodable codes). An encoding Enc : Fn
p → FN

p is ℓ-list-decodable within radius

r if for any y ∈ FN
p , the number of vectors x ∈ Fn

p such that dist(Enc(x), y) ≤ r is at most
ℓ. A randomized algorithm that outputs all such vectors with probability 2/3 (over the internal
randomness) is called list-decoding algorithm. In particular, if ℓ = 1, then the encoding is said
to be uniquely decodable within radius r and the algorithm outputting the unique vector is called
unique-decoding algorithm.
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We introduce the notion of full-rank partition defined as follows.

Definition 4.4 (Full-Rank Partition). Let Enc : Fn
p → FN

p be an encoding that can be written as

Enc : x 7→ Qx for a matrix Q ∈ FN×n
p . For δ > 0 and m ∈ N such that m ≤ n, an (m, δ)-full-rank

partition is a partition P = P1 ⊔ · · · ⊔ Pa ⊔ P ′ of [N ] such that

• |Pi| = m for every i ∈ [a].

• |P ′| ≤ δN .

• For every i ∈ [a], the submatrix Q|Pi ∈ Fm×n
p is full rank. That is, the row vectors of Q in

Pi ⊆ [N ] are linearly independent.

We are interested in an encoding Enc : Fn
p → FN

p with N = O(n) that has an (m, δ)-full-rank
partition for m = Θ(n) and small δ > 0. We present useful properties of full-rank partitions.

Lemma 4.5. Let Enc : Fn
p → FN

p be an encoding that has an (m, δ)-full-rank partition P = P1⊔· · ·⊔
Pa ⊔ P ′. Then, for uniformly random X ∼ Fn

p , the marginal distribution of Enc(X)|Pi is uniform
over Fm

p for every i ∈ [a].

Proof. Write Enc : x 7→ Qx for a matrixQ ∈ FN×n
p . For any y ∈ Fm

p , the set
{
x ∈ Fn

p : Qx = y
}
⊆ Fn

p

is an affine subspace of dimension n−m, which has cardinality pn−m; thus PrX∼Fn
p
[Enc(X) = y] =

p−m.

Lemma 4.6. Let m ≤ n ≤ n′ ≤ N and δ > 0. Let Enc0 : Fn
p → Fn′

p and Enc1 : Fn′
p → FN

p

be encodings. Suppose Enc0,Enc1 can be written as Enci(x) = Qix for matrices Q0 ∈ Fn′×n
p and

Q1 ∈ FN×n′
p . If Enc1 has an (m, δ)-full-rank partition P, then P is also an (m, δ)-full-rank partition

of Enc := Enc1 ◦ Enc0 : Fn
p → FN

p .

Proof. Let Q = Q1Q0 ∈ FN×n
p Note that Enc(x) = Enc1(Enc0(x)) = Q1Q0x = Qx. Let P =

P1⊔· · ·⊔Pa⊔P ′ be an (m, δ)-full-rank partition of Enc1. To prove that P is also an (m, δ)-full-rank
partition of Enc, it suffices to prove that each submatrix Q|Pi is full rank. Fix i ∈ [a] and consider
the set of row indexes Pi in the partition. The submatrix Q|Pi ∈ Fm×n

p of Q consisting of row

vectors in Pi can be written as the product of Q1|Pi and Q0. Since Q1|Pi ∈ Fm×n′
p is full rank and

Q0 is column full rank the matrix Q|Pi ∈ Fm×n
p is full rank.

4.1 Example: Reed–Solomon Codes

We show that any Reed–Solomon encoding has a full-rank partition.

Definition 4.7. Let n,N ∈ N be parameters and Fp be a finite field of order p ≥ N . Fix a sequence
γ = (γ1, . . . , γN ) of N distinct elements of Fp. The Reed–Solomon encoding RSp,n,γ : Fn

p → FN
p is

defined by, for every i ∈ [N ],

RSp,n,γ(c0, . . . , cn−1)i =
n−1∑
j=0

cjγ
j
i .

Lemma 4.8. Let Fp be a finite field. Let n,N ∈ N be such that n divides N . Then for any
sequence γ = (γ1, . . . , γN ) of N distinct elements of Fp, the Reed–Solomon encoding RSp,n,γ has an
(n, 0)-full-rank partition. Moreover, we can compute an (n, 0)-full-rank partition in O(N) time.
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Proof. We claim that any equipartition P = P1 ⊔ · · · ⊔ Pa (i.e., |P1| = · · · = |Pa| = n = N/a) of
[N ] is indeed a (n, 0)-full-rank partition (here, we set P ′ = ∅). Note that any such partition can be
computed in time O(N). By definition, the encoding RSp,n,γ can be written as RSp,n,γ : x 7→ Qx
for the Vandermonde matrix

Q =


1 γ1 γ21 . . . γn−1

1

1 γ2 γ22 . . . γn−1
2

...

1 γN γ2N . . . γn−1
N

 .

For any size-n subset P ⊆ [N ], the submatrix Q|P obtained by concatenating the q-th row vector
of Q for all q ∈ P is again a Vandermonde matrix, and is nonsingular since (γq)q∈P are distinct.
Therefore, these row vectors are linearly independent.

4.2 Example: Walk-Amplified Codes

In Reed–Solomon codes, the field size p must be p ≥ N . To deal a finite field Fp with small p, we
invoke the framework of derandomized direct sum encoding.

Definition 4.9 (direct sum encoding). Let Fp be a finite field, and k ∈ N. Let W ⊆ [n]k be
a collection of k-tuples and order the elements of W as W = {w1, . . . , wN}. The direct sum
encoding with respect to W is the encoding Enc : Fn

p → FN
p defined by, for each i ∈ [N ] and

wi = (v1, . . . , vk) ∈ W ,

Enc(x)i = xv1 + · · ·+ xvk .

In this paper, we focus on a direct sum encoding with respect to a collection of (k − 1)-step
random walks on an expander graph.

Definition 4.10 (k-walk collection). Let G = ([n], E) be an undirected regular graph. The k-walk
collection on G is the collection of all walks of length k − 1 on G. That is,

W =
{
(w1, . . . , wk) ∈ [n]k : {wi, wi+1} ∈ E for all i ∈ [k − 1]

}
.

By default, we order the elements of W in the lexicographic order.

We consider a k-walk collection on a spectral expander graph with high girth.

Definition 4.11 (Expander Graph and Girth). For a d-regular (multi)graph G = (V,E), let
P ∈ [0, 1]V×V be the normalized adjacency matrix defined by Pu,v = mu,v/d, where mu,v is the
number of edges between u and v. For λ ∈ [0, 1], we say that G is λ-expander if the eigenvalues
1 = λ1 ≥ λ2 ≥ · · · ≥ λ|V | ≥ −1 of P satisfies max{|λ2|, |λ|V ||} ≤ λ. The girth of a simple graph G
is the minimum length of cycles of G.

A canonical example of expander graph is a random regular graph. We use the following useful
properties of random regular graphs.
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Lemma 4.12. For n, d ∈ N such that nd is even, let Gn,d be a random d-regular graph, a graph
chosen uniformly at random from the set of all vertex-labeled simple d-regular n-vertex graphs.
Then, for every fixed d ≥ 3, the following holds:

• If d is even, then there exists an O(n)-time randomized algorithm that, on input 1n, samples
Gn,d with probability 2/3 for all large n [Wor99]. 7

• There exists a constant c > 0 that depends only on d such that Gn,d is

(
2
√
d−1
d + c

(
log logn
logn

)2)
-

expander with probability 1− n−10 [Fri03; Bor15].

• For any constant g ∈ N, with probability exp
(
−
∑g

r=3
(d−1)r

2r + o(1)
)
as n → ∞, the random

graph Gn,d has girth greater than g [MWW04].

Jeronimo [Jer23] and Jeronimo, Srivastava, and Tulsiani [JST21] considered a direct sum encod-
ing with respect to W satisfying a certain expansion property which they called splittability. They
proved that the encoding obtained by composing such direct sum encoding Enc with a uniquely
decodable code with constant distance admits a near-linear-time list-decoding algorithm. In this
paper, we consider the following encoding.

Definition 4.13 (Walk-Amplified Encoding). Let Fp be a finite field. Let k, d, g ∈ N and λ > 0
be parameters. Let n ≤ n′ ≤ N and W ⊆ [n′]k be the k-walk collection on an n′-vertex d-regular
λ-expander graph with girth at least g. Consider the direct sum encoding Enc1 : Fn′

p → FN
p with

respect to W . For an encoding Enc0 : Fn
p → Fn′

p , a (k, d, λ, g)-walk-amplified encoding with base

encoding Enc0 is the encoding Enc : Fn
p → FN

p given by Enc = Enc1 ◦ Enc0 : Fn
p → FN

p .

We prove that the walk-amplified encoding has a full-rank partition for a suitable choice of
parameters.

Lemma 4.14. For any given k ≥ 2, λ > 0, δ > 0 such that (2λ)k ≤ δ2

288 , we can choose parameters
m = Θ(n) and d = O(1) such that the following holds: Let Enc : Fn

p → FN
p be a (k, d, λ, k)-walk-

amplified encoding with base encoding Enc0 : Fn
p → Fn′

p . Then Enc has an (m, δ)-full-rank partition.
Moreover, there exists an O(N)-time randomized algorithm that on input the graph used for the
encoding outputs an (m, δ)-full-rank partition with probability 2/3.

Remark 4.15. We refer to Eq. (9) for a concrete parameter setting.

To prove Lemma 4.14, we begin with showing that the direct sum encoding has a full-rank
partition.

Lemma 4.16. For any given k ≥ 2, λ > 0, δ > 0 such that (2λ)k ≤ δ2

288 , we can choose parameters
m = Θ(n) and d = O(1) such that the following holds: Let Enc : Fn

p → FN
p be a direct sum

encoding with respect to a k-walk collection on a d-regular λ-expander graph G = (V,E) with girth
at least k, where N = dk−1 · n. Then Enc has an (m, δ)-full-rank partition. Moreover, there exists
an O(N)-time randomized algorithm that on input G,m, k, δ, outputs an (m, δ)-full-rank partition
with probability 2/3.

7If the degree d is odd, then we can sample Gn,d for every large even n.
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To prove Lemma 4.16, we invoke a well-known result that states that the probability that a
(k − 1)-step random walk keeps staying in a fixed subset decays exponentially in k.

Lemma 4.17 ([HLW06, Theorem 3.6]). Let G = (V,E) be an n-vertex d-regular λ-expander graph
and B ⊆ V be a vertex subset of density β = |B|/n. Let (X1, . . . , Xk) ∈ V k be the random walk on
G of length k − 1, starting from a uniformly random vertex X1 ∼ V . Then, we have

Pr[{X1, . . . , Xk} ⊆ B] ≤ (λ+ β)k.

Proof of Lemma 4.16. Write Enc : x 7→ Qx for a matrix Q ∈ FN×n
p . Let W ⊆ [n]k be the k-walk

collection on the d-regular λ-expander graph G, where |W | = N = dk−1 · n. Note that the row
vector of Q indexed by the walk w ∈ W is the vector x ∈ Fn

p whose v-th entry is the number of
times the walk w visits v. We identify [N ] as the k-walk collection W . Thus, P ⊆ [N ] is a set of
k-walks.

For a walk w = (v1, . . . , vk) ∈ W , let visit(w) = {v1, . . . , vk} ⊆ V denote the set of vertices
visited by w. For a subset of walks P ′ ⊆ W , let visit(P ′) =

⋃
w∈P ′ visit(w). We say that a walk

w ∈ P ′ explores P ′ if there exists a vertex v ∈ visit(w) \ visit(P ′ \ {w}) such that w visits v exactly
once.

Given k, δ, λ, we first choose an auxiliary parameter m′ = Θ(n) that will be specified later. In
the following, we prove that if P ′ ∼

(
W
m′

)
is a random set of m′ distinct walks, then most walks in

P ′ explore P ′ with probability 1− o(1).

Claim 4.18. For any m′ < |W |, let P ′ ∼
(
W
m′

)
be a uniformly random size-m′ subset of W . Let

X(P ′) be the number of walks in P ′ that explore P ′. Then, for any γ > 0, we have

Pr
P ′

[
X(P ′) ≥

⌈(
1−

(
λ+

m′k

n

)k

− k

d
− γ

)
m′

⌉]
≥ 1− (λ+m′k/n)k + k/d

γ
.

Proof. A walk w = (v1, . . . , vk) is said to be non-backtracking if for every i = 2, . . . , k − 1, we have
vi−1 ̸= vi+1. Since the girth of the underlying graph G is at least k, if w = (v1, . . . , vk) ∈ W is
non-backtracking, then v1, . . . , vk are distinct. By the union bound, the random walk w ∼ W is
non-backtracking with probability at least 1− k/d.

Now, consider the expectation

E
P ′
[X(P ′)] = m′ · Pr

P ′∼(Wm′)
w∈P ′

[
w explores P ′]. (8)
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Since G is λ-expander and has girth at least k, this quantity satisfies

RHS of (8) = E
P ′′∼( W

m−1)

[
Pr

w∼W\P ′′

[
w explores P ′′ ∪ {w}

]]
= E

P ′′∼( W
m−1)

[
Pr

w∼W

[
w explores P ′ ∣∣w ̸∈ P ′′]]

≥ E
P ′′∼( W

m−1)

[
Pr

w∼W

[
w explores P ′′]]

≥ E
P ′′∼( W

m−1)

[
Pr

w∼W

[
visit(w) ̸⊆ visit(P ′′) and w is non-backtracking

]]

≥ 1−
(
λ+

m′k

n

)k

− k

d
. ∵ Lemma 4.17

Therefore, E[X(P ′)] ≥
(
1−

(
λ+ m′k

n

)k
− k

d

)
·m′. By Markov’s inequality (Lemma 4.1) for X(P ′)

m′ ,

it holds for any γ > 0 that

Pr

[
X(P ′)

m′ ≥ 1−
(
λ+

m′k

n

)k

− k

d
− γ

]
≥ γ

(λ+m′k/n)k + k/d+ γ
≥ 1− (λ+m′k/n)k + k/d

γ
.

Since X(P ′) is a nonnegative integer, we obtain the claim.

We continue the proof of Lemma 4.16. For given k, λ, δ such that (2λ)k ≤ δ2

288 , set

m′ =

⌊
λn

k

⌋
, m =

⌈(
1− δ

6

)
m′
⌉
,

a′ =

⌊
N

m′

⌋
, a =

⌈(
1− δ

3

)
a′
⌉
,

d =

⌈
288k

δ2

⌉
.

(9)

Let P ′ = P ′
1 ⊔ · · · ⊔ P ′

a′ ⊔ P ′′ be a partition of [N ] that is chosen uniformly at random from those
that satisfy |P ′

i | = m′ for every i ∈ [a′] and |P ′′| = N mod m′. Specifically, P ′ = P ′
1 ⊔ · · · ⊔P ′

a′ ⊔P ′′

can be obtained by randomly shuffling [N ] and then taking the first m′ elements as P ′
1, the second

m′ elements as P ′
2, and so on and letting P ′′ be the rest. Note that the marginal distribution of

each P ′
i is uniform over

(
W
m′

)
. Let Y be the number of i ∈ [a′] such that X(P ′

i ) ≥ m.
By our parameter choice Eq. (9), we have(

λ+
m′k

n

)k

+
k

d
≤ (2λ)k +

δ2

288
∵ m′ ≤ λn

k
and d ≥ 288k

δ2

≤ δ2

144
∵ (2λ)k ≤ δ2

288

and thus, for γ = δ
12 ,⌈(

1−
(
λ− m′k

n

)k

+
k

d
− γ

)
m′

⌉
≥
⌈(

1− δ2

144
− δ

12

)
m′
⌉
≥
⌈(

1− δ

6

)
m′
⌉
= m.
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From Claim 4.18 for γ = δ
12 , we have

Pr
P ′

[
X(P ′

i ) ≥ m
]
≥ Pr

P ′

[
X(P ′

i ) ≥

⌈(
1−

(
λ+

m′k

n

)k

+
k

d
− γ

)
m′

⌉]

≥ 1−

(
λ+ m′k

n

)k
+ k

d

γ

≥ 1− δ

12
.

In particular, we have EP ′ [Y ] ≥
(
1− δ

12

)
a′. By Markov’s inequality (Lemma 4.1) for Y

a′ , for γ
′ = δ

4 ,
we have

Pr
P ′
[Y ≥ a] ≥ Pr

P ′

[
Y ≥

(
1− δ

12
− γ′

)
a′
]

≥ 1− δ/12

γ′

=
2

3
.

We present a construction of an (m, δ)-full-rank partition P. Suppose Y ≥ a, which occurs
with probability 2/3 over the choice of P ′. Then, there are at least a sets P ′

i such that X(P ′
i ) ≥ m.

For simplicity, suppose P ′
1, . . . , P

′
a be such sets. For every i ∈ [a], we can take m walks that

explore P ′
i . Let Pi ⊆ P ′

i be the set of such m walks. Let P ′ = [N ] \
⋃

i∈[a] Pi. Define a partition

P = P1 ⊔ · · · ⊔ Pa ⊔ P ′.
We consider the construction time of P.

• The random choice of P ′ can be done in time O(N).

• For each P ′
i ∈ P ′ we can enumerate every walk w ∈ P ′

i that explores P ′ in time O(|P ′
i |) by

counting the total number of times all walks visit v for every v ∈ visit(P ′
i ).

Therefore, we can construct P in time O(N) with probability 2/3.
We prove the correctness (conditioned on Y ≥ a). Note that each Pi has cardinality m and∣∣P ′∣∣ = N − am

≤ N −
(
1− δ

6

)(
1− δ

3

)
a′m′

≤ N −
(
1− δ

2

)
(N −m′) ∵ a′ = ⌊N/m′⌋

≤ δN

2
+m′

≤ δN

2
+

λn

k

≤
(
δ

2
+

1

d

)
N ∵ n = d−k+1N and k ≥ 2

≤ δN. ∵ d ≥ 2/δ
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We prove that for every Pi, the row vectors of Q in the row index set Pi are linearly independent.
Every walk w ∈ Pi satisfies visit(w) \ visit(Pi \ {w}) ⊇ visit(w) \ visit(P ′

i \ {w}) ̸= ∅; thus w explores
Pi. Consider the row vector x ∈ Fn

p of Q that corresponds to the walk w ∈ Pi. Since w explores
Pi, the vector x satisfies xv = 1 for some v ∈ visit(w) \ visit(Pi \ {w}) (since w visits some v exactly
once). Moreover, for all w′ ∈ Pi \ {w}, the corresponding row vector x′ satisfies x′v = 0 since w′

does not visit v. Thus, x is linearly independent of any other row vectors corresponding walks in
Pi \{w}. Therefore, the partition P = P1⊔ · · ·⊔Pa⊔P ′ is an (m, δ)-full-rank partition conditioned
on Y ≥ a.

Proof of Lemma 4.14. Let Enc : Fn
p → FN

p be a (k, d, λ, k)-walk-amplified encoding with base en-
coding Enc0. Write Enc = Enc1 ◦Enc0 for the direct sum encoding Enc1. From Lemma 4.16, we can
compute an (m, δ)-full-rank partition of Enc1 by an O(N)-time randomized algorithm. Moreover,
from Lemma 4.6, this full-rank partition is also a full-rank partition of Enc.

sectionUniform Reductions for Matrix Multiplication We present a worst-case-to-average-case
and exact-to-approximation reduction for matrix multiplication. Specifically, we prove Theo-
rems 1.3 and 1.4. Throughout this section, the computational time of an algorithm amounts to the
number of arithmetic operations over Fp, which incurs the polylog(p) overhead in the running time
of the reductions of Theorems 1.3 and 1.4 if p = p(n) = ω(1).

4.3 Left-Right Encoding

A key component of our proof is the left-right encoding.

Definition 4.19. Let Enc : Fn
p → FN

p be an encoding that can be written as Enc : x 7→ Qx for a

matrix Q ∈ FN×n
p . A left-right encoding with respect to Enc is an encoding Enc⋆ : Fn×n

p → FN×N
p

defined by

Enc⋆(A) = QAQ⊤.

In the following, we show how to reconstruct AB given A,B ∈ Fn×n
p and C ∈ FN×N

p that is
(1− α)-close to Enc⋆(AB).

First, we present an efficient data structure algorithm that verifies matrix-vector product. The
proof follows the idea of [HS23, Lemma 6.2 of the full version].

Lemma 4.20. There exists a pair of algorithms (Mpre,Mquery) that satisfies the following:

• In preprocess phase, on input K ∈ FN×n
p and L ∈ Fn×N

p , the randomized algorithm Mpre(K,L)
runs in time O(Nn logN) and output a string π.

• In query phase, given input x, y ∈ FN
p and query access to π = Mpre(K,L), the deterministic

oracle algorithm Mπ
query(x, y) decides whether x = KLy or not correctly with probability 1 −

1/N3 (over the internal randomness of Mpre) in time O(N logN).

Proof. In the preprocess phase, Mpre runs on input K ∈ FN×n
p and L ∈ Fn×N

p as follows:

1. Choose random vectors r1, . . . , rm ∼ {0, 1}N for some m = O(logN).

2. For all j ∈ [m], compute wj := r⊤j KL.
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3. Output the vectors (wj)j∈[m] and (rj)j∈[m] as π.

In the query phase, Mπ
query(x, y) for π = Mpre(K,L) outputs Yes if and only if r⊤j x = wjy for all

j ∈ [m].
Note that the running times of Mpre and Mquery are O(Nn logN) and O(N logN), respectively.
We prove the correctness of the query phase. Note that the criterion r⊤j x = wjy is equivalent

to r⊤j x = r⊤j KLy. If the input (x, y) satisfies x = KLy, then the query algorithm Mquery outputs
Yes with probability 1. Suppose x ̸= KLy. Then, for such (x, y), we have

Pr
r1,...,rm

[
∀j ∈ [m], r⊤j x = r⊤j KLy

]
= Pr

r1,...,rm

[
∀j ∈ [m], r⊤j (x−KLy) = 0

]
≤ 1

2m
.

Therefore, Mquery outputs No with probability at least 1−1/2m ≥ 1−1/N2 for some m = O(logN).

In the following, we show how to reconstruct AB ∈ Fn×n
p given as input A,B ∈ Fn×n

p and

C̃ ∈ FN×N
p such that dist(C̃,Enc⋆(AB)) ≤ 1 − α, provided that the encoding Enc used in Enc⋆ is

list-decodable within radius 1− α/2 in nearly linear time.

Lemma 4.21. Let Enc : Fn
p → FN

p be an encoding that can be computed in time Õ(n) and is ℓ-list
decodable within radius 1− α/2 for ℓ = Oα(1) associated with a list decoding algorithm running in
time ℓ · Õ(N).

Then, there exists a randomized algorithm M that, given A,B ∈ Fn×n
p and C̃ ∈ FN×N

p as input,

runs in time ℓ · Õ(N2) and outputs AB with probability 1− o(1) (over the internal randomness of
M) provided that dist(C̃,Enc⋆(AB)) ≤ 1− α, where Enc⋆ : Fn×n

p → FN×N
p is the left-right encoding

with respect to Enc.

Proof. Write Enc : x 7→ Qx for a matrix Q ∈ FN×n
p and let c̃1, . . . , c̃N be the column vectors of C̃.

Let (Mpre,Mquery) be the verification algorithm of Lemma 4.20. The algorithm M consists of two
phases: column-decoding and row-decoding phases (Fig. 2).

Column-decoding phase. The column-decoding phase runs as follows: On input A,B, C̃,

1. Let D̃ ∈ Fn×N
p be a matrix initialized as the all-zero matrix.

2. Compute BQ⊤ using the encoding algorithm and then run the preprocess Mpre on input
(K,L) for K = A,L = BQ⊤.

3. For each j ∈ [N ], do the following:

(a) For each column vector c̃j ∈ FN
p of C̃, run the list decoding algorithm on input c̃j .

(b) If the list decoding algorithm8 outputs a set Z ⊆ Fn
p of size at most ℓ, for every z ∈ Z,

run Mquery(Enc(z), ej), where ej ∈ {0, 1}n denotes the indicator vector of index j. If the

output is Yes, then replace the j-th column vector of D̃ by z.

4. Output D̃.

8Here, we repeat the list decoding algorithm for O(logN) times and output the majority vote to ensure that it
succeeds with probability 1− 1/N3. We do the same in the row-decoding phase.
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We claim that the matrix D̃ agrees with ABQ⊤ on at least (α/2) ·N columns with high probability.

Claim 4.22. Let d̃1, . . . , d̃N be column vectors of D̃ and d1, . . . , dN be column vectors of D :=
ABQ⊤. Then, with probability at least 1 − ℓ/N2 (over the internal randomness of the column-
decoding phase), there are at least (α/2) ·N indices j ∈ [N ] such that d̃j = dj.

Proof of Claim 4.22. Let C = Enc⋆(AB) = QABQ⊤ and c1, . . . , cN ∈ FN
p be its column vectors.

Note that cj = Qdj = Enc(dj). We say that an index j ∈ [N ] is good if dist(cj , c̃j) ≤ 1−α/2. Since

dist(C, C̃) ≤ 1 − α, by Markov’s inequality (Lemma 4.1), at least (α/2) · N column indices j are
good.

Suppose j is good in the iteration of Step 3. Since dist(cj , c̃j) ≤ 1 − α/2, the output Z of the
list decoding algorithm contains dj . The vector dj in the list can be identified in Step 3(b) with
probability 1− ℓ/N3 since Mquery checks if dj = KLej = Dej and by the union bound over z ∈ Z.

Finally, by the union bound over good j ∈ [N ], with probability 1− ℓ/N2, the output D̃ contains
dj as the j-th column vector for all good j ∈ [N ].

We continue the proof of Lemma 4.21. Consider the running time of column-decoding phase.
Let Tenc(n) = Õ(n) be the time needed for computing Enc and Tdec(N) = ℓ · Õ(N) be the running
time of the list-decoding algorithm.

• From Lemma 4.20, Step 2 can be done in time O(nTenc(n) +Nn logN).

• Each of the iteration of Step 3 can be done in time O(Tdec(N) logN + ℓN logN) (recall that
we repeat the list decoding algorithm for O(logN) times).

Therefore, the running time of the column-decoding phase is at most ℓ · Õ(N2).

Row-decoding phase. For the matrix D̃ obtained by the column-decoding phase, let F̃ :=(
D̃
)⊤

∈ FN×n
p and f̃1, . . . , f̃n ∈ FN

p be the column vectors of F̃ . Let F = D⊤ = QAB and

f1, . . . , fn ∈ FN
p be the column vectors of F . Since F is obtained by encoding AB, running the list

decoding algorithm on f̃j outputs a small list of vectors containing the j-th column vector of AB
for every j ∈ [n]. This vector can be identified by Lemma 4.20.

To state it more formally, consider the pair (Mpre,Mquery) of Lemma 4.20. The row-decoding

phase runs on input A,B and F̃ as follows:

1. Let G̃ ∈ Fn×n
p be a matrix initialized as the all-zero matrix.

2. Run the preprocess Mpre on input (A,B).

3. For each i ∈ [n], do the following:

(a) For the i-th column vector f̃i ∈ FN
p of F̃ , run the list decoding algorithm on input f̃i,

obtaining a set of vectors Z ⊆ Fn
p of size at most ℓ.

(b) For each z ∈ Z, run Mquery(z, ei) (recall that ej is the indicator vector). If the output is

Yes, then replace the i-th column vector of G̃ by z.

4. Output G̃.
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We claim that G = AB with probability at least 1 − ℓ/n2 conditioned on that F̃ agrees with
D⊤ = QAB on at least (α/2)N rows.

From Claim 4.22, for each i ∈ [n], we have dist(fi, f̃i) ≤ 1 − α/2. Therefore, in Step 3(a), the
list decoding algorithm outputs a set Z ⊆ Fn

p of size at most ℓ that contains the i-th column vector
of AB. Such column vector can be identified at Step 3(b) since the verification query algorithm
Mquery(z, ei) checks if z = ABei. During the repetition of Step 3, we run Mquery for ℓn times in
total. By the union bound of them, we have that Mquery outputs the correct answer at every call,
which yields that G = AB with probability at least 1− ℓ/n2.

Finally, consider the running time. Let Tenc(n) = Õ(n) be the time needed for computing Enc
and Tdec(N) = ℓ · Õ(N) be the running time of the list-decoding algorithm.

• From Lemma 4.20 for N = n, Step 2 can be done in time O(nTenc(n) + n2 log n).

• Each of the iterations of Step 3 can be computed in time O(Tdec(N) log n + ℓn log n) (recall
that we repeat the list decoding algorithm for O(log n) times).

Therefore, the row-decoding phase runs in time Õ(ℓN2).

Putting all together. The algorithm M runs first the column-decoding phase and then runs the
row-decoding phase for F̃ = (D̃)⊤. The matrix D̃ obtained by the column-decoding phase agrees
with D := ABQ⊤ in at least (α/2) · N columns with probability 1 − ℓ/N2. Conditioned on this
event, the row-decoding phase outputs AB with probability 1 − ℓ/n2. Therefore, M outputs AB
with probability (1− ℓ/N2)(1− ℓ/n2) = 1− o(1).

The total running time is at most ℓ · Õ(N2).

4.4 Worst-Case-to-Average-Case Reduction

In this section, we present a worst-case-to-average-case reduction for approximate matrix multi-
plication based on a left-right encoding with respect to a list-decodable code having a full-rank
partition. To this end, we need two auxiliary results. The first one is a worst-case-to-average-case
reduction for matrix multiplication.

Lemma 4.23 ([HS23, Theorem 1.6]). Let Fp be an arbitrary finite field. There is a polylog(1/α)/α·
Õ(n2)-time oracle algorithm MO such that for any randomized oracle O such that for every large
n,

Pr
A,B∼Fn×n

p

O

[O(A,B) = AB] ≥ α,

it holds that for all large n and all A,B ∈ Fn×n
p ,

Pr
MO

[
MO(A,B) = AB

]
≥ 2

3
.

Moreover, MO makes at most (polylog(1/α)/α) ·O(log n) queries to the oracle O.

Next, we reduce multiplying random m × n and n × m matrices to multiplying two random
n× n matrices for m ≤ n.
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Lemma 4.24. There exists an O(n2)-time one-query oracle algorithm MO such that for every
randomized oracle O such that for every sufficiently large n,

E
A,B∼Fn×n

p

O

[
dist(O(A,B), AB)

]
≤ 1− α,

then, for every sufficiently large n and ℓ,m ≤ n, it holds that

E
A∼Fℓ×n

p

B∼Fn×m
p

MO

[
dist

(
MO(A,B), AB

)]
≤ 1− α.

Proof. The algorithm MO runs on input (A,B) ∈ Fℓ×n
p × Fn×m

p as follows:

1. Sample A,B ∼ Fn×n
p , I ∼

([n]
ℓ

)
and J ∼

(
[n]
m

)
.

2. Replace A|I,[n] with A. Specifically, if I = {i1, . . . , iℓ} for i1 < · · · < iℓ, then the ia-th row of

A is the a-th row of A for every a ∈ [ℓ]. Similarly, replace B|[n],J with B.

3. Output O(A,B)|I,J .

Note that MO runs in time O(n2). We prove the correctness. By calculation, we have

E
A∼Fℓ×n

p

B∼Fn×m
p

MO

[
dist

(
MO(A,B), AB

)]
= E

A∼Fℓ×n
p

B∼Fn×m
p

A,B∼Fn×n
p

I∼([n]
ℓ ),J∼(

[n]
m)

[
dist

(
O(A,B)|I,J , (AB)|I,J

) ∣∣A|I,[n] = A,B|[n],J = B
]

= E
A,B∼Fn×n

p

I,J

[
dist

(
O(A,B)|I,J , (AB)|I,J

)]
= Pr

A,B∼Fn×n
p

I,J
i∼I,j∼J

[
O(A,B)i,j ̸= (AB)i,j

]

= E
A,B∼Fn×n

p

[
dist(O(A,B), AB)

]
≤ 1− α.

Therefore, MO satisfies the claim.

We prove a worst-case-to-average and exact-to-approximate reduction for matrix multiplication.

Theorem 4.25. Let c, α > 0 be parameters. Let Enc : Fn
p → FN

p be an encoding that can be computed

in time Õ(n) and is ℓ-list decodable within radius 1 − (1−c)α
2 for ℓ = Oc,α(1) associated with a list

decoding algorithm running in time ℓ · Õ(N). Moreover, suppose that Enc has an (m, δ)-full-rank
partition that can be computed in time Õ(Nn) for δ ≤ cα/6.
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Then, there exists a randomized oracle algorithm M such that for every randomized oracle O
such that

E
A,B∼Fn×n

p

O

[dist(O(A,B), AB)] ≤ 1− α, (10)

it holds that for every A,B ∈ Fn×n
p ,

Pr
MO

[
MO(A,B) = AB

]
≥ 2

3
.

Moreover, the algorithm MO makes (N/m)2 ·O
(

1
cα

)
·O(log n) queries to the oracle O and runs in

time poly
(

1
cα

)
· ℓ · Õ(N2).

To prove Theorem 4.25, we invoke the well-known randomized O(n2)-time verification algorithm
for matrix multiplication.

Lemma 4.26 (Freivalds [Fre79]). There exists a randomized O(n2)-time algorithm M that is given
A,B,C ∈ Fn×n

p as input and satisfies the following:

• If AB = C, the algorithm M(A,B,C) outputs Yes with probability 1.

• If AB ̸= C, the algorithm M(A,B,C) outputs No with probability 2/3.

Here, the probability is over the internal randomness of M .

Proof of Theorem 4.25. Let Enc : Fn
p → FN

p be the encoding of Theorem 4.25 associated with an
(m, δ)-full-rank partition P = P1 ⊔ · · · ⊔ Pa ⊔ P ′. For simplicity in explanation, write Pa+1 = P ′.
Write Enc : x 7→ Qx for a matrix Q ∈ FN×n

p . Fix a randomized oracle O that satisfies Eq. (10).

For A,B ∈ Fn×n
p , consider QA ∈ FN×n

p and BQ⊤ ∈ Fn×N
p . For every pair Pi, Pj ∈ P of

subsets in the partition for i, j ∈ [a], consider the submatrices Q|Pi · A ∈ Fm×n
p and B · (Q|Pj )

⊤ ∈
Fn×m
p . Since P is an (m, δ)-full-rank partition, the matrices Q|Pi and Q|Pj are full rank. From

Lemma 4.5, if A,B ∼ Fn×n
p are chosen uniformly at random, then the marginal distribution of the

pair
(
Q|PiA,B(Q|Pj )

⊤) is uniform over Fm×n
p ×Fn×m

p . Thus, from Lemma 4.24 and Eq. (10), there

exists a one-query randomized algorithm MO
0 such that, for every i, j ∈ [a], it holds that

E
A,B∼Fn×n

p

MO
0

[
dist

(
MO

0

(
Q|PiA,B(Q|Pj )

⊤
)
, Q|PiA ·B(Q|Pj )

⊤
)]

≤ 1− α. (11)

Let Enc⋆ : Fn×n
p → FN×N

p be the left-right encoding with respect to Enc. Then, the matrix

Enc⋆(AB) = QABQ⊤ can be obtained by aligning (a+1)2 submatrices Q|Pi ·A ·B ·(Q|Pj )
⊤ ∈ Fm×m

p

for all i, j ∈ [a+1] (see Fig. 3). The number of entries of Enc⋆(AB) corresponding to the rest part
Pa+1 = P ′ is at most 2δN2 ≤ (cα/3)N2.

With this in mind, consider the oracle algorithm MO
1 that on input A,B ∈ Fn×n

p runs as follows:

1. For each i, j ∈ [a], compute C̃i,j := MO
0 (Q|PiA, B(Q|Pj )

⊤).

2. Let C̃a+1,a+1 ∈ F|Pa+1|×|Pa+1|
p be an arbitrary matrix. Similarly, for i ∈ [a], let C̃i,a+1 ∈

Fm×|Pa+1|
p and C̃a+1,j ∈ F|Pa+1|×m

p be arbitrary matrices.
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Figure 3: Each block of Enc⋆(AB) is equal to Q|Pi ·A ·B ·Q|⊤Pj
∈ Fm×m

p . If A,B ∼ Fn×n
p , then each

block is the product of two uniformly random matrices. The number of entries of Enc⋆(AB) whose
index is in P ′ (the gray area in the right matrix) is at most 2δN2 ≤ (cα/3)N2.

3. Output the matrix C̃ ∈ FN×N
p obtained by aligning C̃i,j for all i, j ∈ [a+ 1].

Since δ ≤ cα
6 , from Eq. (11), we have

E
A,B∼Fn×n

p

MO
1

[
dist(MO

1 (A,B),Enc⋆(AB))
]
≤ E

i,j∼[a]

 E
A,B∼Fn×n

p

MO
0

[
dist

(
C̃i,j , Q|Pi ·A ·B · (Q|Pj )

⊤
)]+ 2δ

≤ 1−
(
1− c

3

)
α.

We say that an instance (A,B) ∈ (Fn×n
p )2 is good if

E
MO

1

[
dist(MO

1 (A,B),Enc⋆(AB))
]
≤ 1−

(
1− c

3

)2
α.

By Markov’s inequality (Lemma 4.1), at least c(1−c/3)
3 · α-fraction of (A,B) ∼ (Fn×n

p )2 are good.
Again, by Markov’s inequality, for every good instance (A,B), we have

Pr
MO

1

[
dist(MO

1 (A,B),Enc⋆(AB)) ≤ 1−
(
1− c

3

)3
α

]
≥ c

3
·
(
1− c

3

)2
α = Ω(cα). (12)

Let MO
2 be the algorithm that runs on input (A,B) as follows:

1. Compute C̃ = MO
1 (A,B) and run the algorithm M of Lemma 4.21 on input A,B, C̃.

2. If M outputs AB (this can be checked by Lemma 4.26 in time O(n2)), output it.
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3. Repeat Steps 1 and 2 for O
(

1
cα

)
times. If the algorithm outputs noting during the iteration,

output ⊥.

From Eq. (12), if the input (A,B) is good, then dist(C̃,Enc⋆(AB)) ≤ 1− (1− c/3)3α ≤ 1− (1− c)α
with probability Ω(cα) over the internal randomness of MO

1 . Conditioned on this event, from
Lemma 4.21, the algorithm M outputs AB at Step 2 with probability 2/3 (over the internal
randomness of M) since Enc is ℓ-list decodable within radius 1− (1− c)α/2. Therefore, MO

2 (A,B)
outputs AB with probability 2/3 for any good (A,B); thus

Pr
A,B∼Fn×n

p

MO
2

[
MO

2 (A,B) = AB
]
≥ Ω(cα).

Finally, from Lemma 4.23, we obtain an oracle algorithm that computes AB with probability 2/3
for any input A,B ∈ Fn×n

p . Since M2 runs in time ℓ · Õ(N2), the algorithm M3 runs in time

ℓ ·poly
(

1
cα

)
· Õ(N2). Consider the number of queries. Since MO

2 makes a2 ·O
(

1
cα

)
≤ (N/m)2 ·O

(
1
cα

)
queries, the algorithm M3 makes (N/m)2 ·O

(
1
cα

)
·O(log n) queries.

4.5 Large Field via Reed–Solomon Codes

We present an exact-to-approximate reduction for matrix multiplication over large Fp, proving
Theorem 1.3. This follows from Theorem 4.25 using the Reed–Solomon codes as Enc.

It is known that Reed–Solomon codes are nearly linear time encodable and list-decodable. For
arbitrary field F, let mult(n) be the time needed for multiplying two univariate polynomials over
F of degree n. It is known that mult(n) = O(n log n) for any finite field F = Fp (e.g., [GG13,
Corollary 8.19]).

Lemma 4.27 (Fast Multipoint Evaluation for Univariate Polynomials [Fid72]). There exists an
algorithm that, given N distinct points γ1, . . . , γN ∈ Fp and coefficients of a univariate polynomial
p of degree at most N − 1 over Fp, outputs (p(γ1), . . . , p(γN )) using O(mult(N) logN) arithmetic
operations of Fp.

In particular, for any γ = (γ1, . . . , γN ), we can compute RSp,n,γ in time Õ(N).

Lemma 4.28 (List-Decoding for Reed–Solomon Codes; Alekhnovich [Ale05, Corollary 1.3]). For
n,N ∈ N, a finite field Fp and any α > 0 satisfying α >

√
n/N , for any γ = (γ1, . . . , γN ), the

Reed–Solomon encoding RSp,n,γ : Fn
p → FN

p is ℓ-list decodable within radius 1− α by an (N/n)O(1) ·
mult(N) logN -time list decoding algorithm for ℓ = O(1/α).9

In particular, for any given n ∈ N and α > 0, for N ≥ α−2n and any sequence γ = (γ1, . . . , γN )
of distinct elements of Fp with p ≥ N , we can list-decode RSp,n,γ in time poly(1/α) · Õ(N).

Proof of Theorem 1.3. We apply Theorem 4.25 for c = 1/2 and Enc being a Reed–Solomon encoding
RSp,n,γ , where γ = (γ1, . . . , γN ) are N distinct points of Fp for N = ⌈α−2⌉ ·n and p > N is a prime
power. From Lemmas 4.27 and 4.28, RSp,n,γ can be computed in time Õ(n) and is ℓ-list decodable

in time poly(1/α) · Õ(N) for ℓ = O(1/α). Moreover, from Lemma 4.8, Enc has an (n, 0)-full-rank
partition.

9The bound on the list size directly follows from the Johnson bound [Joh62].
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Let O be any oracle algorithm satisfying the condition of Theorem 1.3. The oracle algorithm
MO of Theorem 4.25 computes AB for any A,B ∈ Fn×n

p with probability 2/3 (over the internal

randomness of MO). The running time of M is poly(1/α) · Õ(n2) and M makes at most (N/m)2 ·
poly(1/α) ·O(log n) = poly(1/α) ·O(log n) queries.

4.6 Small Field via Walk-Amplified Codes

We present an exact-to-approximate reduction for matrix multiplication over small Fp using the
walk-amplified encoding (Definition 4.13), which is list decodable in nearly linear time [Jer23;
JST21].

Lemma 4.29 (Special case of [Jer23, Theorem 7.5 of the full version]). Let Fp be any prime field.
Let Enc = Enc1 ◦ Enc0 be a (k, d, λ, k)-walk-amplified encoding with base encoding Enc0 : Fn

p → Fn′
p

and let β > 0 be any small parameter. Suppose that Enc0 is uniquely decodable within radius ρ0 by
an Õ(n′)-time decoding algorithm and k, λ, ρ0, β satisfy

β ≥ max
{
(220 · λ · k3)1/2, 4(1− (Cpρ0/4)

2)k/2
}
, (13)

where Cp := 1 − cos(π/p). Then, the walk-amplified code Enc is ℓ-list-decodable within radius

(1−1/p)(1−β) and there exists an ℓ-list decoding randomized algorithm that runs in time 2p
O(k3/β2) ·

Õ(N).

As the base encoding Enc0, we use the following explicit family of linear-time encodable and
unique-decodable encoding.

Lemma 4.30 ([Jer23, Theorem 7.16 of the full version]). Let Fp be any finite field. There exists
universal constants c, ρ0 > 0 such that, for every n, there exists n ≤ n′ ≤ cn and an encod-
ing Enc0 : Fn

p → Fn′
p that can be computed in time O(n) and is unique-decodable within radius ρ0

associated with an O(n′)-time unique-decoding algorithm.

Proof of Theorem 1.4. Let O be the oracle that satisfies

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− 2

p
− ε.

We apply Theorem 4.25 for α = 2
p + ε and c = pε

6 . Set β = ε
4 and δ = cα

6 ≤ ε. As the
encoding Enc, we use the (k, d, λ, k)-walk-amplified encoding of Definition 4.13 using the encoding
Enc0 of Lemma 4.30 as the base encoding. The expander graph used by the direct sum encoding
is constructed as follows: Choose k ≥ 2, λ > 0 so that Eq. (13) and the condition (2λ)k ≤ δ2

288

of Lemma 4.16 hold. In particular, we can set k = Cp4 log(1/ε) and λ = ε2

Ck3
for a sufficiently

large constant C > 220. Then, choose m = Θ(n) and d = O(1) according to Lemma 4.16. For
d′ = max{d, 4/λ2}, use a random d′-regular graph as the expander graph in the direct sum encoding.
From Lemma 4.12, the random d-regular graph is a 2/

√
d-expander with probability 1− n−10 and

has girth at least k with probability Ω(1). Moreover, this graph can be constructed in time O(n).
From Lemma 4.29, the (k, d, λ, k)-walk-amplified encoding described above can be computed in

time Op,ε(n) and ℓ-list decodable within radius(
1− 1

p

)
(1− β) ≥ 1− 1

p
− β ≥ 1− 1

p
− (1− c)α

2
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in time Õp,ε(N). Moreover, from Lemma 4.14, this encoding has an (m, δ)-full-rank partition for
m = ⌊λn2k ⌋.

Finally, from Theorem 4.25, there exists a randomized oracle algorithm M that computes AB
for any given A,B with probability 2/3 in time Õp,ε(N

2). The number of queries to the oracle O
made by MO is at most (N/m)2 ·O

(
1
cα

)
·O(log n) ≤ 2poly(p,1/ε) ·O(log n).

5 Online Matrix-Vector Multiplication

In the online matrix-vector multiplication (OMv), we are given an n× n matrix A, which is to be
preprocessed in polynomial time. Then, we are asked to compute Av efficiently (faster than the
trivial O(n2) time) for n-dimensional vectors v given online. We focus on OMv over a finite field
Fp. Throughout this section, the computational time of an algorithm amounts to the number of
arithmetic operation over Fp.

To state it more formally, we borrow the notion of a data-structure algorithm from [HS23,
Section 6 of the full version].

Definition 5.1 (Data Structure Algorithm). A (randomized) data-structure algorithm M consists
of a pair of (randomized) algorithms (Mpre,Mquery).

• The preprocess Mpre is a polynomial-time algorithm that is given an input x and outputs a
string π = Mpre(x) called a data structure.

• The query algorithm Mquery is given an input v as query and oracle access to the data structure
π and then outputs Mπ

query(v).

We call an input to Mpre preprocess input and input to Mquery query input. Let M(A; v) =
Mπ

query(v) for π = Mpre(A) denote the final output of M on query v. The preprocess time and
query time are the running times of Mpre and Mquery, respectively. For a data-structure oracle O =

(Opre,Oquery) and a pair of oracle algorithms M = (Mpre,Mquery), define M
O =

(
M

Opre
pre ,M

Oquery
query

)
.

In the average-case version of OMv, the preprocess input and query input are chosen uniformly
at random. In the following, we reduce the exact version of OMv on a worst-case input to the
approximate version of OMv on a random instance.

Theorem 5.2. Let n ∈ N and α = α(n) > 0 be parameters and Fp be a finite field of order p = p(n)
such that p > n/α2. Suppose there exists a randomized data-structure oracle O = (Opre,Oquery)
such that for all sufficiently large n ∈ N,

E
A∼Fn×n

p

v∼Fn
p

O

[dist(O(A; v), Av)] ≤ 1− α.

Then, there exists a randomized O(1/α3)-query oracle algorithm MO that runs in time poly(1/α) ·
Õ(n2) and satisfies, for all large n ∈ N and all A,B ∈ Fn×n

p ,

Pr
MO

[
MO(A; v) = Av

]
≥ 2

3
.

Here, we assume that the arithmetic operation of Fp can be performed in constant time.
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Theorem 5.3 (full version of Theorem 1.5). Let n ∈ N and ε = ε(n) > 0 be parameters and Fp be
a finite field of prime order p = p(n). Suppose that there exists a randomized data-structure oracle
O = (Opre,Oquery) such that for all sufficiently large n ∈ N,

E
A∼Fn×n

p

v∼Fn
p

O

[dist(O(A; v), Av)] ≤ 1− 1

p
− ε.

Then, there exists a randomized 2poly(p,1/ε) · O(log n)-query 2p
poly(p,1/ε) · Õ(n)-time oracle data-

structure algorithm MO such that for all large n and all A ∈ Fn×n
p , v ∈ Fn

p ,

Pr
MO

[
MO(A; v) = Av

]
≥ 2

3
.

Here, we assume that the arithmetic operation of Fp can be performed in constant time.

To prove Theorems 5.2 and 5.3, we present the following general exact-to-approximate and
worst-case-to-average-case reduction for OMv.

Theorem 5.4 (Worst-Case-to-Average-Case Reduction). Let c, α > 0 be parameters and Fp be a

finite field. Let Enc : Fn
p → FN

p be an encoding that can be computed in time Õ(n) and is ℓ-list-
decodable within radius 1 − (1 − c)α for ℓ = Oc,α(1) by a list-decoding algorithm running in time

ℓ · Õ(N). Suppose that Enc has an (m, δ)-full-rank partition that can be computed in polynomial
time for δ ≤ cα

3 . Then, there exists a one-query randomized oracle data-structure algorithm M =
(Mpre,Mquery) such that, for any randomized data-structure oracle O = (Opre,Oquery) that satisfies

E
A∼Fn×n

p ,v∼Fn
p

O

[dist(O(A; v), Av)] ≤ 1− α,

it holds that for every A ∈ Fn×n
p and v ∈ Fn

p ,

Pr
MO

[
MO(A; v) = Av

]
≥ 2

3
.

Moreover, each Mpre,Mquery makes at most (N/m) ·O
(
logn
cα

)
oracle calls and Mquery runs in time

poly
(

1
cα

)
· ℓ · Õ(N).

To prove Theorem 5.4, we need some auxiliary results. First, we borrow the following efficient
verification data-structure algorithm for OMv.

Lemma 5.5 ([HS23, Lemma 6.2 of the full version]). For any d ∈ N, there exists a randomized
data-structure algorithm M = (Mpre,Mquery) such that, given any matrix A ∈ Fm×n

p as preprocess
input and any vectors v ∈ Fn

p , w ∈ Fm
p as query input, M(A; v, w) decides in query time O(dn)

whether Av = w correctly with probability 1− 2−d (over the internal randomness of M).

Second, by combining a list-decodable code with the data-structure verification algorithm, we
present the following exact-to-approximate reduction.
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Lemma 5.6. Let Fp be a finite field and Enc : Fn
p → FN

p be an encoding represented as Enc : x 7→ Qx

that can be computed in time Õ(n) and is ℓ-list decodable within radius 1 − α by an Õ(N)-time
list decoding algorithm for ℓ = Or,p(1). Then, there exists a randomized data-structure algorithm
M = (Mpre,Mquery) such that, for any A ∈ Fn×n

p , v ∈ Fn
p and w̃ ∈ FN

p such that dist(w̃, QA · v) ≤
1−α, M(A; v, w̃) outputs Av with probability 2/3 (over the internal randomness of M). Moreover,
Mquery runs in time Õ(N).

Proof. In the preprocess phase, run the preprocess algorithm of Lemma 5.5. In the query phase,
given v ∈ Fn

p and w̃ ∈ FN
p as input, run the list-decoding algorithm of Enc on input w̃. If w̃ is

(1− α)-close to Av ∈ Fn
p , then we obtain a list of ℓ vectors that contains Av. We can identify Av

from the list by the data-structure algorithm of Lemma 5.5.

Third, we reduce multiplying a random m× n matrix and an n-dimensional random vector to
multiplying an n× n random matrix and an n-dimensional random vector.

Lemma 5.7. There exists a one-query oracle data-structure algorithm MO such that for every
randomized data-structure oracle O = (Opre,Oquery) such that for every large n,

E
Ā∼Fn×n

p ,
v∼Fn

p ,
O

[
dist

(
O(Ā; v), Āv

)]
≤ 1− α,

then, for all large n and m ≤ n,

E
A∼Fm×n

p ,
v∼Fn

p ,

MO

[
dist

(
MO(A; v), Av

)]
≤ 1− α.

Proof. For the oracle O = (Opre,Oquery), the oracle data-structure algorithm MO runs as follows:

1. In the preprocess phase, on preprocess input A ∈ Fm×n
p ,

(a) Sample Ā ∼ Fn×n
p and I ∼

(
[n]
m

)
.

(b) Replace Ā|I,[n] with A. Formally, if I = {i1, . . . , im} for i1 < · · · < im, then the ia-th
row of Ā is replaced by the a-th row of A for every a ∈ [m].

(c) Run the preprocess oracle Opre on input Ā.

2. In the query phase, on query input v ∈ Fn
p , output O(Ā; v)|I , where I ⊆ [n] is the size-m

subset of Step 1(a).
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We prove the correctness of MO. By calculation, we have

E
A∼Fm×n

p ,
v∼Fn

p ,

MO

[
dist

(
MO(A; v), Av

)]
= E

A∼Fm×n
p

v∼Fn
p

Ā∼Fn×n
p

I∼([n]
m)

O

[
dist

(
O(Ā; v)|I , Āv|I

) ∣∣ Ā|I = A
]

= E
Ā∼Fn×n

p

v∼Fn
p

I∼([n]
m)

O

[
dist

(
O(Ā; v)|I , Āv|I

)]

= Pr
Ā∼Fn×n

p

v∼Fn
p

I∼([n]
m)

i∼I
O

[
O(Ā; v)i ̸= (Āv)i

]

= E
Ā∼Fn×n

p ,
v∼Fn

p ,
O

[
dist

(
O(Ā; v), Āv

)]

≤ 1− α.

This proves the claim.

Finally, we borrow the worst-case-to-average-case reduction for OMv.

Lemma 5.8 ([HS23, Theorem 6.1 of the full version]). Let Fp be a finite field. There exists a

randomized polylog(1/α)/α · Õ(n2)-time10 oracle data-structure algorithm MO such that for any
randomized data-structure oracle O such that for every large n,

Pr
A∼Fn×n

p

v∼Fn
p

O

[O(A; v) = Av] ≥ α,

it holds that for all large n and all A ∈ Fn×n
p and v ∈ Fn

p ,

Pr
MO

[
MO(A; v) = Av

]
≥ 2

3
.

Moreover, MO makes at most polylog(1/α)/α ·O(log n) queries to O.

Proof of Theorem 5.4. Let Enc : Fn
p → FN

p be the encoding of Theorem 5.4 associated with an

(m, δ)-full-rank partition P = P1 ⊔ · · · ⊔ Pa ⊔ P ′. Write Enc : x 7→ Qx for a matrix Q ∈ FN×n
p .

For a random matrix A ∼ Fn×n
p , consider QA ∈ FN×n

p . For each i ∈ [a], the submatrix Q|Pi

that consists of row vectors of Q in Pi is column-full-rank; thus the marginal distribution of the
submatrix QA|Pi = Q|Pi · A is uniform over Fm×n

p from Lemma 4.5. From Lemma 5.7 and by the

10Here, we assume that the arithmetic operation of Fp can be performed in constant time.
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assumption of O, there exists a one-query randomized oracle data-structure algorithm MO
0 such

that, for every i ∈ [a], it holds that

E
A∼Fn×n

p

v∼Fn
p

MO
0

[dist(M0((QA)|Pi ; v), (QA)|Pi · v)] ≤ 1− α. (14)

For simplicity in explanation, write Pa+1 := P ′. Then, note that QA ∈ FN×n
p can be obtained by

aligning (QA)|Pi for all i ∈ [a+ 1]. The number of entries of QAv whose row index is in Pa+1 is at
most |Pa+1| ≤ δN since P is an (m, δ)-full-rank partition.

With this in mind, consider the following randomized oracle data-structure algorithm MO
1 that

runs as follows:

1. In the preprocess phase, on preprocess input A ∈ Fn×n
p , compute QA ∈ FN×n

p and an (m, δ)-
full-rank partition P = P1 ⊔ · · · ⊔ Pa ⊔ P ′. Finally, run the preprocess algorithm Mpre of
Lemma 5.5. These can be done in poly(n) time.

2. In the query phase, on query input v ∈ Fn
p ,

(a) For each i ∈ [a], compute w̃i := MO
0 ((QA)|Pi ; v).

(b) Let w̃a+1 ∈ F|Pa+1|
p be an arbitrary vector.

(c) Output the vector w̃ ∈ FN
p obtained by aligning w̃i for i ∈ [a+ 1].

Since δ ≤ cα
3 and Eq. (14), we have

E
A∼Fn×n

p

v∼Fn
p

MO
1

[
dist

(
MO

1 (A; v), QA · v
)]

≤ Ei∼[a]

EA∼Fn×n
p

v∼Fn
p

MO
1

[dist(w̃i, (QA)|Pi · v)]

+ δ

≤ 1−
(
1− c

3

)
α.

We say that an instance (A, v) ∼ Fn×n
p × Fn

p is good if

EMO
1

[
dist

(
MO

1 (A; v), QA · v
)]

≤ 1−
(
1− c

3

)2
α.

By Markov’s inequality, at least c(1−c/3)
3 · α-fraction of instances are good. Again, by Markov’s

inequality, for every good instance (A, v), we have

Pr
MO

1

[
dist

(
MO

1 (A; v), QA · v
)
≤ 1−

(
1− c

3

)3
α

]
≥ c

3

(
1− c

3

)2
α = Ω(cα). (15)

Let MO
2 be the data-structure algorithm that runs as follows:

1. Compute w̃ = MO
1 (A; v) and compute w := M(A; v, w̃) where M is the data-structure algo-

rithm of Lemma 5.6.
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2. Check if w = Av by the verification algorithm of Lemma 5.5. If w = Av, output w.

3. Repeat Steps 1 and 2 for O
(

1
cα

)
times. If MO

2 does not output Av during the iteration, output
⊥.

We prove the correctness of MO
2 . From Eq. (15), if the instance (A, v) is good, then we have

dist(w̃, QA · v) ≤ 1−(1−c/3)3α ≤ 1−(1−c)α with probability Ω(cα) over the internal randomness
of MO

1 . Conditioned on this event, from Lemma 5.6, the algorithm M outputs Av at Step 2 with
probability 2/3 from Lemma 5.6 (note that Enc is ℓ-list-decodable within radius 1 − (1 − c)α).
Therefore, MO

2 (A; v) outputs Av with probability 2/3 for any good (A, v); thus

Pr
A∼Fn×n

p

v∼FN
p

MO
2

[
MO

2 (A; v) = Av
]
≥ Ω(cα).

Finally, from Lemma 5.8, we obtain a randomized oracle data-structure algorithm M3 that satisfies,
for all large n and all A ∈ Fn×n

p , v ∈ Fn
p ,

Pr
M3

[
MO

3 (A; v) = Av
]
≥ 2

3
.

5.1 Large Field via Reed–Solomon Codes

We present an exact-to-approximate reduction for OMv over large Fp, proving Theorem 5.2. This
can be obtained by using the Reed–Solomon codes in Theorem 5.4. Recall the Reed–Solomon
encoding of Definition 4.7. From Lemmas 4.27 and 4.28, RSp,n,γ : Fn

p → FN
p can be computed in

time Õ(n), and for any α >
√

n/N , the encoding RSp,n,γ is O(1/α)-list-decodable within radius
1− α in time poly(1/α) ·O(n).

Proof of Theorem 5.2. We apply Theorem 5.4 for c = 1/2 and Enc being a Reed–Solomon encoding
RSp,n,γ , where γ = (γ1, . . . , γN ) are N distinct points of Fp for N = ⌈α−2⌉ ·n and p > N is a prime
power. From Lemmas 4.27 and 4.28, RSp,n,γ can be computed in time Õ(n) and is ℓ-list decodable

in time poly(1/α) · Õ(N) for ℓ = O(1/α). Moreover, from Lemma 4.8, Enc has a uniform partition.
Let O be any data-structure oracle that satisfies the condition of Theorem 5.2. The oracle data-

structure algorithm MO of Theorem 5.4 computes Av for any A ∈ Fn×n
p , v ∈ Fn

p with probability

2/3 (over the internal randomness of MO). The running time of MO is poly(1/α) · Õ(n) and M
makes at most (N/m) ·O(log n/α) = poly(1/α) ·O(log n) queries.

5.2 Small Field via Walk-Amplified Codes

We present an exact-to-approximate reduction for matrix multiplication over small Fp using the
walk-amplified encoding (Definition 4.13), proving Theorem 5.3.

Proof of Theorem 5.3. Let O be the data-structure oracle that satisfies

E
A∼Fn×n

p

v∼Fn
p

O

[dist(O(A; v), Av)] ≤ 1− 1

p
− ε.
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We apply Theorem 5.4 for α = 1
p + ε and c = pε

3 . Set β = 2ε
3 and δ = cα

3 ≤ ε.
We use the (k, d, λ, k)-walk-amplified encoding considered in the proof of Theorem 1.4 presented

in Section 4.6. As shown in Section 4.6, this (k, d, λ, k)-walk-amplified encoding can be computed

in time Op,ε(n) and is ℓ-list decodable in time Õp,ε(N) within radius 1− (1− c)α ≤
(
1− 1

p

)
(1−β)

from Lemma 4.29. Moreover, from Lemma 4.14, this encoding has an (m, δ)-full-rank partition for
m = ⌊λn2k ⌋.

Finally, from Theorem 5.4, there exists a randomized oracle data-structure algorithm M that
computes Av for any given A, v with probability 2/3 in time Õp,ε(n). The number of oracle calls

made by M is at most (N/m) ·O
(
logn
cα

)
≤ 2poly(p,1/ε) ·O(log n).

A Yao’s XOR Lemma for Multi-Output Functions

In this appendix, we present a simple proof of Yao’s XOR lemma for multi-output functions.

Theorem A.1 (A restatement of Theorem 2.1). Let L be a distribution over [m]. Let f : {0, 1}n →
{0, 1}m be a function such that for every circuit C of size s,

Pr
x∼{0,1}n

ℓ∼L

[C(x)ℓ = f(x)ℓ] < 1− δ.

Then for every circuit C ′ of size s′, there exists an index ℓ ∈ [m] such that

Pr
x̄∼({0,1}n)k

[
C ′(x̄)ℓ = f⊕k(x̄)ℓ

]
<

1

2
+ ε,

where k = O
(
log(1/ε)/(εδ)2

)
and s = O

(
(s′ +m) ·

(
log(1/δ)/ε2

))
.

Proof of Theorem A.1. We prove the contrapositive by presenting a non-uniform reduction R from
the task of computing f on a (1 − δ)-fraction of inputs to the task of computing f⊕k on

(
1
2 + ε

)
-

fraction of inputs. Let O be an oracle such that for all indices ℓ ∈ [m],

Pr
y∼({0,1}n)k

[
O(y)ℓ = f⊕k(y)ℓ

]
≥ 1

2
+ ε. (16)

Fix an input x ∈ {0, 1}n, and consider the following distribution. Let i ∼ [k] and (y1, · · · , yk) ∼
({0, 1}n)k, and define r := (i, y1, · · · , yk) and Γ(x; r) := (y1, · · · , yi−1, x, yi+1, · · · , yk). Let Ω :=
[k]× ({0, 1}n)k denote the space of r. We also define αf (r) :=

⊕
j∈[k]\{i} f(yj). Let Γ(x; -) denote

the distribution of Γ(x; r) for r ∼ Ω.
We define an oracle algorithm RO(x; r̄, α) as follows. It takes as input x ∈ {0, 1}n, coin flip

sequences r̄ = (r1, · · · , rT ) ∈ ΩT , and an advice string α = (α1, . . . , αT ) ∈ ({0, 1}m)T . It outputs
the bitwise majority of O(y1)⊕ α1, · · · ,O(yT )⊕ αT , where y1 := Γ(x; r1), · · · , yT := Γ(x; rT ).

We claim that there exists a “Trevisan–Vadhan advice [TV07]” function α : ΩT → {0, 1} such
that for all ℓ ∈ [m]

Pr
x∼{0,1}n,
r̄∼ΩT

[
RO(x; r̄, α(r̄))ℓ = f(x)ℓ

]
≥ 1− δ, (17)
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where T is a parameter chosen later. Fix arbitrary ℓ ∈ [m]. Define α(r̄) := (αf (r1), · · · , αf (rT )).
By Lemma 3.6 and (16), with probability at least 1− δ/2 over a choice of x ∼ {0, 1}n, it holds that

Pr
y∼Γ(x;-)

[
O(y)ℓ = f⊕k(y)ℓ

]
≥ 1

2
+

ε

2
. (18)

We call such an input x ∈ {0, 1}n good. We claim that RO(x; r̄, α(r̄))ℓ = f(x)ℓ for every good
x ∈ {0, 1}n. By Hoeffding’s inequality, with probability at least 1−δ/2 over a choice of y1, · · · , yT ∼
Γ(x; -), we have

1

T
·
∣∣∣{i ∈ [T ]

∣∣∣O(yi)ℓ = f⊕k(yi)ℓ

}∣∣∣ ≥ Pr
y∼Γ(x;-)

[
O(y)ℓ = f⊕k(y)ℓ

]
− ε

4
≥ 1

2
+

ε

4
(19)

for a sufficiently large T = O(log(1/δ)/ε2). If O(yi)ℓ = f⊕k(yi)ℓ, then O(yi)ℓ ⊕ (αi)ℓ = f⊕k(yi) ⊕
αf (ri)ℓ = f(x). Thus, under the event of (19), the majority of O(yi)ℓ⊕(αi)ℓ over all i ∈ [T ] is equal
to f(x). It follows from (18), (19) and a union bound that RO(x; r̄, α(r̄)) = f(x) with probability
at least 1− δ over a choice of x and r̄. This completes the proof of (17).

By (17), we have
Pr

x∼{0,1}n
r̄∼ΩT

ℓ∼L

[
RO(x; r̄, α(r̄))ℓ = f(x)ℓ

]
≥ 1− δ.

In particular, there exists r̄ ∈ ΩT such that

Pr
x∼{0,1}n

ℓ∼L

[
RO(x; r̄, α(r̄))ℓ = f(x)ℓ

]
≥ 1− δ.

It follows that there exists an advice string (r̄, α(r̄)) that enables RO to compute f on a (1 − δ)-
fraction of inputs.

B Optimal Reduction for Small Field

Theorem B.1. Let Fp be a finite field of prime order p and ε > 0 be a constant. There exists a

randomized Op,ε(log n)-query oracle algorithm MO that runs in time Õp,ε(n
2) such that, for any

oracle O satisfying

E
A,B∼Fn×n

p

[dist(O(A,B), A ·B)] ≤ 1− 1

p
− ε,

it holds for every sufficiently large n and all A,B ∈ Fn×n
p that

Pr
MO

[
MO(A,B) = A ·B

]
≥ 1− o(1).

Notation. For a vector x ∈ Fn
p and ρ ∈ [0, 1], let Ball(x, ρ) ⊆ Fn

p be the set of vectors y ∈ Fn
p

that satisfies dist(x, y) ≤ ρ. For a matrix A ∈ Fn×n
p , let vec(A) ∈ Fn2

p be the vector representation
of A, that is, for any i, j ∈ [n], the (n · (i − 1) + j)-th entry of vec(A) is given by Ai,j . For a
graph G = ([n], E) and k ≥ 0, let W ⊆ [n]k be the k-walk collection on G. For a walk w =
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(u1, . . . , uk) ∈ W , let visit(w) = {u1, . . . , uk}. A subset P ⊆ W of walks is said to be vertex-disjoint
if visit(w) ∩ visit(w′) = ∅ for any distinct pair of walks w,w′ ∈ W .

For two graphs Gi = ([ni], Ei) (i = 1, 2), the tensor product G1 ⊗ G2 is the graph on vertex
set [n1] × [n2] such that two vertices (u1, u2), (v1, v2) ∈ [n1] × [n2] are adjacent on G1 ⊗G2 if and
only if {ui, vi} ∈ Ei for both i = 1, 2. By definition, if (i1, . . . , ik) and (j1, . . . , jk) form k-walks on
G, then ((i1, j1), . . . , (ik, jk)) forms a k-walk on G⊗G. Conversely, if ((i1, j1), . . . , (ik, jk)) forms a
k-walk on G⊗G, then both (i1, . . . , ik) and (j1, . . . , jk) form k-walks on G. It is well known that,
if G is d-regular and λ-expander, then G⊗G is d2-regular and λ-expander.11

B.1 Approximate List-Decodable Codes

We consider encodings that are approximate list-decoding, which is a relaxed notion of the list-
decoding of Definition 4.3. Recall that, in the list-decoding within radius ρ, given a noisy codeword
ỹ ∈ FN

p , we are asked to output a set of vectors L = {x1, . . . , xℓ} ∈ Fn
p such that for any codeword

y = Enc(x) ∈ Ball(ỹ, ρ), it holds that x ∈ L. In the δ-approximate list-decoding within radius ρ,
given a noisy codeword ỹ ∈ FN

p , our task is to find a set of vectors L = {x1, . . . , xℓ} ∈ Fn
p such

that, for any codeword y = Enc(x) ∈ Ball(ỹ, ρ), it holds that x ∈ Ball(xi, δ) for some xi ∈ L.
Thus, the approximate list-decoding for δ = 0 corresponds to the exact version. The notion of
approximate list-decodabliity was previously considered in [DHKNT21; IJKW10] in the literature
of direct product encoding.

Definition B.2 (approximate list-decoding). An encoding Enc : Fn
p → FN

p is δ-approximate ℓ-list-

decodable within radius ρ if, for any ỹ ∈ FN
p , there exists a set L = {x1, . . . , xℓ} ⊆ Fn

p such that,
for any y = Enc(x) ∈ Ball(ỹ, ρ), we have Ball(x, δ) ∩ L ̸= ∅. An algorithm that computes such set
L given ỹ as input is called an approximate list-decoding algorithm.

Jeronimo, Srivastava, and Tulsiani [JST21] and Jeronimo [Jer23] implicitly presented a ran-
domized approximate list-decoding algorithm for direct sum encoding with respect to a collection
W ⊆ [n]k of k tuples that is splittable, which is a certain kind of expansion property of the set of
k-tuples. Since expander walks satisfy the splittable property, we immediately obtain the following.

Lemma B.3 (Implicit in the proof of [Jer23, Theorem 7.5]). Let p ≥ 2 be a constant prime,
δ, β, λ > 0 and k ∈ N be any constants such that

β ≥ max

{
210

√
λk3, 4

(
1− (1− cos(π/p))2δ2

4

)k/2
}
. (20)

Let Enc : Fn
p → FW

p be the direct sum encoding with respect to the k-walk collection W ⊆ [n]k on
a regular λ-expander graph. Then, for some ℓ = Op,k,β(1), the encoding Enc is δ-approximate

ℓ-list-decodable within radius (1− 1/p)(1− β) by an Õp,k,β(|W |)-time randomized algorithm.

B.2 Exact-to-Approximate Reduction

We show that the k-walk collection on a regular graph can be partitioned into O(1) subsets such
that each subset in the partition is vertex-disjoint.

11More generally, if A has eigenvalues λ1, . . . , λn and B has eigenvalues µ1, . . . , µn, then the eigenvalues of the
tensor product A⊗B is given by λiµj for i, j ∈ [n] [HJ91].
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Lemma B.4. Let G = ([n], E) be a d-regular graph and W ⊆ [n]k be the k-walk collection on G.
Let a = k2dk−1 + 1. Then, there exists a partition P = P1 ⊔ · · · ⊔ Pa of W such that, for every
i ∈ [a], the set Pi is vertex-disjoint. Moreover, we can compute such partition in time O(|W |).

Proof. For the k-walk collection W , define the intersection graph I with respect to W by

• The vertex set is given by V (I) = W , and

• Any pair of distinct walks w,w′ ∈ W forms an edge of I if and only if visit(w)∩ visit(w′) ̸= ∅.

To distinguish vertices of G and vertices of I, we call the former a G-vertex and the latter an
I-vertex. Fix an I-vertex w ∈ V (I). Since |visit(w)| ≤ k and every G-vertex v ∈ V (G) is visited by
at most

∑k−1
i=0 di ·dk−1−1 = k ·dk−1 walks in W , the degree of the I-vertex w on I is at most k ·kdk−1.

Therefore, the maximum degree of I is at most k2dk−1 and there exists a proper vertex-coloring
χ : V (I) → [a], where a = k2dk−1+1. This can be computed by O(|W |) time by the straightforward
greedy algorithm (order the vertices W and then color them one by one using the smallest possible
color).

For each i ∈ [a], let Pi = χ−1(i) ⊆ W . Since χ is a proper coloring, each Pi forms an independent
set in I (that is, there are no edges of I between two vertices in Pi). In other words, each Pi is
vertex-disjoint.

Corollary B.5. Let G = ([n], E) be a d-regular graph with girth at least k and W ⊆ [n]k be the
k-walk collection on G. Let a = k2dk−1 + 1. Then, there exists a partition P = P1 ⊔ · · · ⊔ Pa ⊔ P ′

of W such that

• For every i ∈ [a], the set Pi is vertex-disjoint and every w ∈ Pi satisfies visit(w) = k.

• The set P ′ in the partition satisfies |P ′| ≤ k
d · |W |.

Moreover, we can compute such partition in time O(|W |).

Proof. Let P ′ = P ′
1 ⊔ · · · ⊔ P ′

a be the partition of Lemma B.4. For every i ∈ [a] let Pi ⊆ P ′
i be the

set of walks w ∈ P ′
i such that |visit(w)| = k. Finally, let P ′ = W \ (P1 ∪ · · · ∪ Pa). Clearly, each

Pi satisfies the condition of Corollary B.5. We bound |P ′|. Note that the set P ′ consists of walks
w ∈ W such that |visit(w)| < k. We say that a walk w = (u1, . . . , uk) is backtracking if uj−1 = uj+1

for some j = 2, . . . , k − 1. By the union bound over j = 2, . . . , k − 1, a random walk w ∼ W is
backtracking with probability at most k/d. Since G has girth at least k, if w is not backtracking,
then |visit(w)| = k. Therefore, we have

|P ′|
|W |

= Pr
w∼W

[|visit(w)| < k]

≤ Pr
w∼W

[w is backtracking]

≤ k

d
.

Next, we define the lifting of a matrix.
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Figure 4: The (i, j)-th entry of LiftW (A) · LiftW (B) for i = (i1, . . . , ik) and j = (j1, . . . , jk) is equal
to
∑k

ℓ=1(A ·B)iℓ,jℓ .

Definition B.6 (W -lifting of matrices). Let W ⊆ [n]k be a collection of k-tuples. For a matrix
A ∈ Fn×m

p with row vectors a1, . . . , an ∈ Fm
p , the W -lifting of A is the matrix LiftW (A) ∈ FW×km

p

whose i = (i1, . . . , ik)-th row vector (for i ∈ W ) is the concatenation of ai1 , . . . , aik . That is, for
each i = (i1, . . . , ik) ∈ W , s ∈ [k] and t ∈ [m], the (i, (s− 1)m+ t)-th entry of LiftW (M) is given by
(ais)t.

Note that the matrix A is not necessarily be a square matrix in Definition B.6. See Fig. 4 to
gain some intuition of W -lifting. In the following, we show a useful relation between W -lifting and
direct sum encoding (Definition 4.9).

Lemma B.7. Let G = ([n], E) be a d-regular graph and W ⊆ [n]k be the collection of k-tuples. For
a matrix A ∈ Fn×m

p , let LiftW (A) ∈ FW×km
p be the lifting of A with respect to W . Then, for any

A ∈ Fn×m
p and B ∈ Fm×n

p , we have

vec
(
LiftW (A) · LiftW (B⊤)⊤

)
= Enc(vec(A ·B)),

where Enc : Fn2

p → F|W |2
p is the direct sum encoding with respect to the k-walk collection on the

tensor product G⊗G.

Proof. For two matrices A,B ∈ Fn×n
p , consider LiftW (A) ·LiftW (B)⊤ ∈ FW×W

p . Let a⊤1 , . . . , a
⊤
n ∈ Fn

p

be the row vectors of A and b1, . . . , bn ∈ Fn
p be the column vectors of B. By definition of W -lifting,

the (i, j)-element of LiftW (A) · LiftW (B)⊤ for i = (i1, . . . , ik) and j = (j1, . . . , jk) can be written as(
LiftW (A) · LiftW (B⊤)⊤

)
i,j

=
∑

s∈[k],t∈[n]

(ais)t · (bjs)t

=
∑
s∈[k]

⟨ais , bjs⟩

=
∑
s∈[k]

(A ·B)is,js .
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In other words, the (i, j)-th entry of LiftW (A)·LiftW (B⊤)⊤ is equal to the sum of the (i1, j1), . . . , (ik, jk)-
th entries of A ·B. Since i and j form a k-walk on G, the sequence of pairs (i1, j1), . . . , (ik, jk) forms
a k-walk on the tensor product G⊗G. Therefore, the vectorization of LiftW (A) ·LiftW (B⊤)⊤ is the
direct sum encoding of A ·B with respect to the k-walk collection W ′ on G⊗G.

In the following, we show that an average-case approximation solver can be used to compute
an approximate codeword of the direct sum encoding with respect to the k-walk collection on some
expander graph.

Lemma B.8. Let Fp be the finite field of order p and ε > 0. There exists a randomized oracle
algorithm M such that, for every oracle O such that for every sufficiently large n,

E
A,B∼Fn×n

p

O

[dist(O(A,B), A ·B)] ≤ 1− α,

given two matrices A,B ∼ Fn×n
p , a positive integer k > 0, and a d-regular graph G = ([n], E) whose

girth is at least k, it holds for sufficiently large n that

E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B,G, k), Enc(vec(A ·B))

)]
≤ 1− α+

k2

d2
, (21)

where Enc : Fn2

p → F(ndk−1)2

p is the direct sum encoding with respect to the k-walk collection on
G⊗G. The algorithm M runs in time Ok,d(n

2) and makes Ok,d(1) queries.

Proof. The oracle algorithm MO run in input A,B ∈ Fn×n
p , k > 0, and G = ([n], E) as follows:

1. Let W ⊆ [n]k be the k-walk collection on G and compute LiftW (A), LiftW (B⊤) ∈ FW×kn
p .

2. Compute the partition P = P1 ⊔ · · · ⊔ Pa ⊔ P ′ of Corollary B.5. Suppose that |Pi| ≤ kn for
all i ∈ [a] (otherwise, partition Pi into O(1) subsets each of size at most kn).

3. For every i, j ∈ [a], run the algorithm of Lemma 4.24 on input LiftW (A)|Pi,⋆, LiftW (B)|⋆,Pj

using O as oracle. Let C̃i,j ∈ F|Pi|×|Pj |
p be the input.

4. Output a matrix C̃ ∈ FW×W
p that can be obtained by aligning C̃i,j for all i, j ∈ [a] and filling

the rest entries (i.e., entries whose either row or column index is in P ′) arbitrary.

Note that M runs in time Ok,d(n
2) and makes at most a2 = Ok,d(1) queries. We prove Eq. (21).

Let P = P1 ⊔ · · · ⊔ Pa ⊔ P ′ be the partition computed at Step 2.
For each i ∈ [a], the set Pi consists of vertex-disjoint walks and visit(w) = k; thus the row vectors

of LiftW (A) corresponding to walks in Pi are independent and uniformly distributed over Fkn
p when

A ∼ Fn×n
p is a uniformly random matrix. Therefore, for each i, j ∈ [a], when A,B ∼ Fn×n

p , the

marginal distribution of
(
LiftW (A)|Pi,⋆, LiftW (B)|⋆,Pj

)
is uniform over F|Pi|×kn

p × Fkn×|Pj |
p . Since

|Pi|, |Pj | ≤ kn, from Lemma 4.24, for each i, j ∈ [a], we have

E
[
dist

(
C̃i,j , LiftW (A)|Pi · LiftW (B)|Pj

)]
≤ 1− α,
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where C̃i,j is the matrix computed at Step 3 and the expectation is taken over A,B ∼ Fn×n
p and

the internal randomness of the oracle algorithm of Lemma 4.24.
Therefore, we have

LHS of Eq. (21) = E
A,B∼Fn×n

p

MO

[
dist

(
C̃, LiftW (A) · LiftW (B⊤)⊤

)]
∵ Lemma B.7

≤ E
A,B∼Fn×n

p

MO
i,j∼[a]

[
dist

(
C̃i,j , LiftW (A)|Pi · LiftW (B)|Pj

)]
+

|P ′|2

|W |2

≤ 1− α+
k2

d2
.

We prove that the proximity of A ·B and C can be efficiently checked given A,B,C ∈ Fn×n
p as

input.

Lemma B.9. For any η > 0, there exists an O(n2 log n/η)-time randomized algorithm M that, on
input A,B,C ∈ Fn×n

p , satisfies the following:

• If dist(A ·B,C) ≤ η, then M outputs Yes with probability 1− 1/n3.

• If dist(A ·B,C) ≥ 2η, then M outputs No with probability 1− 1/n3.

Proof. The algorithm M runs on input A,B,C ∈ Fn×n
p , repeat checking if (A · B)i,j = Ci,j for

uniformly random i, j ∼ [n] for T = O
(
logn
η

)
times. If the number of iterations at which (A·B)i,j =

Ci,j holds is at least (1− 1.5η) · T , output Yes. Otherwise, output No.
If dist(A · B,C) ≤ η, then (A · B)i,j = Ci,j with probability at least 1 − η over the choice

of i, j ∼ [n]. Therefore, by the Chernoff bound, the algorithm M outputs Yes with probability
1− exp(−ηT/12) ≥ 1− 1/n3. The case of dist(A ·B,C) ≥ 2η is the same.

Lemma B.10. Let Fp be a finite field of prime order p and δ, ε > 0 be constants. There exists a

randomized O(log n)-query oracle algorithm MO that runs in time Õ(n2) such that, for any oracle
O satisfying

E
A,B∼Fn×n

p

[dist(O(A,B), A ·B)] ≤ 1− 1

p
− ε,

it holds for every sufficiently large n that

Pr
A,B∼Fn×n

p

[
Pr
MO

[
dist

(
MO(A,B), A ·B

)
≤ δ
]
≥ 1− o(1)

]
≥ ε

4
.

Proof. Fix a randomized oracle O. For given p ≥ 2, δ, ε > 0, we set constants k ∈ N and λ > 0 such
that Eq. (20) holds for β = ε/4. Note that we can set k = O(p4 log(1/ε)/δ2) and λ = O(ε2/k3).

For d =
⌈
max

{
4
λ2 ,

2k√
ε

}⌉
, fix a d-regular λ-expander graph G = ([n], E) with girth at least k. From

Lemma 4.12, with probability Ω(1) a random regular graph Gn,d satisfies this property. Thus, we
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can construct such G in time O(n) with probability 1−o(1). From Lemma B.8 for α = 1
p + ε, there

exists a randomized oracle algorithm MO
0 such that

E
A,B∼Fn×n

p

MO
0

[
dist

(
MO

0 (G, k,A,B), Enc(vec(A ·B))
)]

≤ 1− 1

p
− ε+

k2

d2

≤ 1− 1

p
− 3ε

4
. ∵ d2 ≥ 4k/ε

Call an instance (A,B) ∈ Fn×n
p × Fn×n

p good if

E
MO

0

[
dist

(
MO

0 (G, k,A,B), Enc(vec(A ·B))
)]

≤ 1− 1

p
− ε

2
.

By Markov’s inequality (Lemma 4.1), at least ε/4-fraction of instances (A,B) are good.
We present an algorithm that outputs a matrix that is (1 − δ)-close to A · B for every good

(A,B). Let C̃ ∈ FW×W
p be the output of MO

0 on input (A,B), where W ⊆ [n]k is the k-walk
collection on G. By Markov’s inequality, with probability ε/4 over the internal randomness of
MO

0 , we have dist(C̃,Enc(vec(A ·B)))) ≤ 1− 1
p − ε

4 . Note that the encoding Enc is the direct sum

encoding with respect to the k-walk collection on G⊗G, which is a d2-regular λ-expander graph.
By our choice of parameters k and λ, from Lemma B.3, this encoding Enc is δ-approximate ℓ-list

decodable within radius
(
1− 1

p

)
(1−β) ≤ 1− 1

p −
ε
4 by an Õ(n2)-time algorithm. Thus, by running

the list-decoding algorithm on input vec
(
C̃
)
∈ F|W |2

p , we obtain a set of matrices C1, . . . , Cℓ for

some ℓ = O(1) that contains a matrix that is δ-close to A ·B in time Õ(n2). From Lemma B.3, we
can identify such matrices from the set in time Õ(n2).

Lemma B.11. Let Fp be a finite field of prime order p and γ, ε > 0 be constants. There exists a

randomized O(log n)-query Õ(n2)-time oracle algorithm MO such that, for any oracle O satisfying

E
A,B∼Fn×n

p

[dist(O(A,B), A ·B)] ≤ 1− 1

p
− ε,

it holds for every sufficiently large n that

E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B), A ·B

)]
≤ γ.

Proof. Let A,B ∈ Fn×n
p be the input to MO. Let t = c log(1/ε)/(γ2ε2) and m = ⌊n/t⌋ for a

sufficiently large constant c. Let I1 ⊔ · · · ⊔ It ⊔ I ′ be the partition of [n] defined by

I1 = {1, . . . ,m}, I2 = {m+ 1, . . . , 2m}, , . . . , It = {(t− 1)m, . . . , tm}, I ′ = {tm+ 1, . . . , n}.

For i, j ∈ [t], let Ai = A|Ii,[n] and Bj = B|[n],Ij .
From Lemma B.10 for δ = γ

4t2
, there exists an oracle algorithm MO

0 such that

Pr
A,B∼Fn×n

p

[
Pr
MO

0

[dist
(
MO

0 (A,B), A ·B
)
≤ δ] ≥ 1− o(1)

]
≥ ε

4
.

Our reduction MO runs on input A,B as follows:
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1. Let D ∈ Fn×n
p be a matrix that is initialized to be the all-zero matrix.

2. For each i, j ∈ [t], repeat the following for O(log(1/γ)/ε) times:

(a) Sample A,B ∼ Fn×n
p .

(b) Replace A|Ii,[n] by Ai. Similarly, replace B|[n],Ij by Bj .

(c) Run the oracle algorithm MO
0 (A,B). Let C ∈ Fn×n

p be the output.

(d) If C|Ii,Ij is δ-close to Ai · Bj (which can be checked by Lemma B.9), replace D|Ii,Ij by
C|Ii,Ij .

3. Output D.

We prove the correctness of MO
1 . We have

E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B), A ·B

)]
≤ E

A,B∼Fn×n
p

MO
i,j∼[t]

[
dist

(
MO(A,B)|Ii,Ij , (A ·B)|Ii,Ij

)]
+ 2

|I ′|2

n2

≤ E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B)|I1,I1 , A1 ·B1

)]
+

2

t2

≤ E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B)|I1,I1 , A1 ·B1

)]
+

γ

4
. (22)

To bound the right most term, let C ∈ Fn×n
p be the matrix obtained at Step 3(c) at an iteration

where i = j = 1. Call an instance (A,B) ∈
(
Fn×n
p

)2
good if EMO

0
[dist

(
MO

0 (A,B), A ·B
)
] ≤ δ.

Note that at least ε/4-fraction of (A,B) are good. From Lemma 3.6 (for x = (A1, B1), y = (A,B),
and S being the indicator of the set of good instances), for at least (1− γ/4)-fraction of (A1, B1) ∼
Fm×n
p × Fn×m

p , the probability that (A,B) obtained at Step 2(b) is good with probability at least
1
2 · ε

4 = ε
8 . For such (A1, B1), during the O(log(1/γ)/ε) iterations of Step 2 (at i = j = 1), at least

one instance (A,B) is good (and thus the matrix C is δ-close to A · B) with probability 1 − γ/4.
If C is δ-close to A ·B, then the matrix C|I1,J1 agrees with A1 ·B1 on at least n2/t2 − δn2 entries;
thus dist(C|I1,J1 , A1 ·B1) ≤ t2δ2 ≤ γ/4. Therefore, we have

Eq. (22) = E
A1,B1∼Fm×n

p ×Fn×m
p

A,B
MO

0

[dist(C|I1,J1 , A1 ·B1)] +
γ

4

≤ γ

4︸︷︷︸
sampler property

+
γ

4︸︷︷︸
no

(
A,B

)
is good

during repetition

+
γ

4︸︷︷︸
dist(C|I1,J1 , A1·B1)

+
γ

4

≤ γ.
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Proof of Theorem B.1. From Lemma B.11 for γ = 1/9, there exists an oracle algorithm MO
0 such

that

E
A∼Fn×n

p

B∼Fn×n
p

O

[dist(O(A,B), AB)] ≤ 1

9
.

Then, from Corollary 3.3, we obtain the algorithm as desired.
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