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Abstract

We prove that polynomial calculus (and hence also Nullstellensatz) over any field requires

linear degree to refute that sparse random regular graphs, as well as sparse Erdős-Rényi random

graphs, are 3-colourable. Using the known relation between size and degree for polynomial

calculus proofs, this implies strongly exponential lower bounds on proof size.

1 Introduction

Determining the chromatic number of a graph 𝐺, i.e., how many colours are needed for the vertices

of 𝐺 if no two vertices connected by an edge should have the same colour, is one of the classic

21 problems shown NP-complete in the seminal work of Karp [Kar72]. This graph colouring problem,

as it is also referred to, has been extensively studied since then, but there are still major gaps in our

understanding.

The currently best known approximation algorithm computes a graph colouring within at

most a factor O

(
𝑛(log log 𝑛)2/(log 𝑛)3

)
of the chromatic number [Hal93], and it is known that

approximating this number to within a factor 𝑛1−𝜀
is NP-hard [Zuc07]. Even under the promise that

the graph is 3-colourable, the most parsimonious algorithm with guaranteed polynomial running

time needs O

(
𝑛0.19996

)
colours [KT17]. This is very far from the lower bounds that are known—it is

NP-hard to (2𝑘 − 1)-colour a 𝑘-colourable graph [BBKO21], but the question of whether colouring a

3-colourable graph with 6 colours is NP-hard remains open [KO22]. It is widely believed that any

algorithm that colours graphs optimally has to run in exponential time in the worst case, and the

currently fastest algorithm for 3-colouring has time complexity O

(
1.3289

𝑛
)

[BE05]. A survey on

various algorithms and techniques for so-called exact algorithms for graph colouring can be found

in [Hus15].

Graph colouring instances of practical interest might not exhibit such exponential-time behaviour,

however, and in such a context it is relevant to study algorithms without worst-case guarantees
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and examine how they perform in practice. To understand such algorithms from a computational

complexity viewpoint, it is natural to investigate bounded models of computation that are strong

enough to describe the reasoning performed by the algorithms and to prove unconditional lower

bounds that hold in these models.

1.1 Previous Work

Focusing on random graphs, McDiarmid [McD84] developed a method for determining 𝑘-coloura-

bility that captures a range of algorithmic approaches. Beame et al. [BCMM05] showed that this

method could in turn be simulated by the resolution proof system [Bla37, DP60, DLL62, Rob65],

and established average-case exponential lower bounds for resolution proofs of non-𝑘-colourability

for random graph instances sampled so as not to be 𝑘-colourable with exceedingly high probability.

Different algebraic approaches for 𝑘-colourability have been considered in [AT92, Lov94, Mat74,

Mat04]. Bayer [Bay82] seems to have been the first to use Hilbert’s Nullstellensatz to attack

graph colouring. Informally, the idea is to write the problem as a set of polynomial equations

{𝑝𝑖(𝑥1 , . . . , 𝑥𝑛) = 0 | 𝑖 ∈ [𝑚]} in such a way that legal 𝑘-colourings correspond to common roots

of these polynomials. Finding polynomials 𝑞1 , . . . , 𝑞𝑚 such that

∑𝑚
𝑖=1

𝑞𝑖𝑝𝑖 = 1 then proves that

the graph is not 𝑘-colourable. This latter equality is referred to as a Nullstellensatz certificate of

non-colourability, and the degree of this certificate is the largest degree of any polynomial 𝑞𝑖𝑝𝑖 in

the sum. Later papers based on Nullstellensatz and Gröbner bases, such as [DL95, Mnu01, HW08],

culminated in an award-winning sequence of works [DLMM08, DLMO09, DLMM11, DMP
+
15]

presenting algorithms with surprisingly good practical performance.

For quite some time, no strong lower bounds were known for these algebraic methods or the

corresponding proof systems Nullstellensatz [BIK
+
94] and polynomial calculus [CEI96, ABRW02]. On

the contrary, the authors of [DLMO09] reported that essentially all benchmarks they studied turned

out to have Nullstellensatz certificates of small constant degree. The degree lower bound 𝑘 + 1

for 𝑘 colours in [DMP
+
15] remained the best known until optimal, linear, degree lower bounds

for polynomial calculus were established in [LN17] using a reduction from so-called functional

pigeonhole principle formulas [MN15]. A more general reduction framework was devised in [AO19]

to obtain optimal degree lower bounds also for the proof systems Sherali-Adams [SA90] and sums-of-
squares [Las01, Par00], as well as weakly exponential size lower bounds for Frege proofs [CR79, Rec75]

of bounded depth.

The lower bounds discussed in the previous paragraph are not quite satisfactory, in that it is

not clear how much they actually tell us about the graph colouring problem, as opposed to the

hardness of the problems being reduced from. In order to improve our understanding for a wider

range of graph instances, it seems both natural and desirable to establish average-case lower bounds

for random graphs, just as for resolution in [BCMM05]. However, this goal has remained elusive

for almost two decades, as pointed out, e.g., in [MN15, LN17, Lau18, BN21]. For sparse random

graphs, where the number of edges is linear in the number of vertices, no superconstant degree

lower bounds at all have been established for algebraic or semialgebraic proof systems. On the

contrary, it was shown in [BKM19], improving on [Coj05], that degree-2 sums-of-squares refutes

𝑘-colourability on random 𝑑-regular graphs asymptotically almost surely whenever 𝑑 ≥ 4𝑘2
. For

dense random graphs, the strongest lower bound seems to be the recent logarithmic degree bound

in the sums-of-squares proof system for Erdős-Rényi random graphs with edge probability 1/2 and

𝑘 = 𝑛1/2+𝜀
colours [KM21]. Since this result is for a problem encoding using inequalities, however,

it is not clear whether this has any implications for Nullstellensatz or polynomial calculus over the

reals (which are known to be polynomially simulated by sums-of-squares). And for other fields

nothing has been known for the latter two proof systems—not even logarithmic lower bounds.
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1 Introduction

1.2 Our Contribution

In this work, we establish optimal, linear, degree lower bounds and exponential size lower bounds

for polynomial calculus proofs of non-colourability of random graphs.

Theorem 1.1 (informal). For any 𝑑 ≥ 6, polynomial calculus (and hence also Nullstellensatz) requires
asymptotically almost surely linear degree to refute that random 𝑑-regular graphs, as well as Erdős-Rényi
random graphs, are 3-colourable. These degree lower bounds hold over any field, and also imply exponential
lower bounds on proof size.

We prove our lower bound for the standard encoding in proof complexity, where binary

variables 𝑥𝑣,𝑖 indicate whether vertex 𝑣 is coloured with colour 𝑖 or not. It should be pointed

out that, just as the results in [LN17], our degree lower bounds also apply to the 𝑘-colourability

encoding introduced in [Bay82] and used in computational algebra papers such as [DLMM08,

DLMO09, DLMM11, DMP
+
15], where a primitive 𝑘th root of unity is adjoined to the field and

different colours of a vertex 𝑣 are encoded by a variable 𝑥𝑣 taking different powers of this root of

unity.

Our lower bound proofs crucially use a new idea for proving degree lower bounds for colouring

graphs with large girth [RT22]. After adapting this approach from the root-of-unity encoding to the

Boolean indicator variable encoding, and replacing the proof in terms of girth with a strengthened

argument using carefully chosen properties of random graphs, we obtain a remarkably clean and

simple solution to the long-standing open problem of showing average-case polynomial calculus

degree lower bounds for graph colouring. We elaborate on our techniques in more detail next.

1.3 Discussion of Proof Techniques

In most works on algebraic and semialgebraic proof systems such as Nullstellensatz, polynomial

calculus, Sherali-Adams, and sums-of-squares, the focus has been on proving upper and lower

bounds on the degree of proofs. Even when proof size is the measure of interest, almost all size

lower bounds have been established via degree lower bounds combined with general results saying

that for all of the above proof systems except Nullstellensatz strong enough lower bounds on degree

imply lower bounds on size [IPS99, AH19].

At a high level, the techniques for proving degree lower bounds for the different proof systems

have a fairly similar flavour. For the static proof systems, i.e., Nullstellensatz, Sherali-Adams,

and sums-of-squares, it is enough to show that the dual problem is feasible and thus rule out

low-degree proofs. In more detail, for Nullstellensatz, one constructs a design [Bus98], which

is a linear functional mapping low-degree monomials to elements in the underlying field. This

functional should map low-degree monomials multiplied by any input polynomial 𝑝𝑖 to 0, but

should map 1 to a non-zero field element. If such a functional can be found, it is clear that there

cannot exist any low-degree Nullstellensatz certificate

∑𝑚
𝑖=1

𝑞𝑖𝑝𝑖 = 1 of unsatisfiability, as the design

would map the left-hand side of the equation to zero but the right-hand side to non-zero. For

Sherali-Adams, the analogous functional furthermore has to map any low-degree monomials to

non-negative numbers, and for sums-of-squares this should also hold for squares of low-degree

polynomials. Such a pseudo-expectation can be viewed as an expectation over a fake probability

distribution supported on satisfying assignments to the problem, which is indistinguishable from a

true distribution for an adversary using only low-degree polynomials.

Polynomial calculus is different from these proof systems in that it does not present the certificate

of unsatisfiability as a static object, but instead, given a set of polynomials 𝒫, dynamically derives

new polynomials in the ideal generated by 𝒫. The derivation ends when it reaches the polynomial 1,
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i.e., the multiplicative identity in the field, showing that there is no solution. The most common

way to prove degree lower bounds is to design a pseudo-reduction operator [Raz98], which maps

all low-degree polynomials derived from 𝒫 to 0 but sends 1 to 1, and which is indistinguishable

from a true ideal reduction operator if one is limited to reasoning with low-degree polynomials.

This means that for bounded-degree polynomial calculus derivations it seems like the set of input

polynomials are consistent.

Following the method in [AR03], a pseudo-reduction operator �̃� can be constructed by defining

it on low-degree monomials and extending it to polynomials by linearity. For every monomial 𝑚,

we identify a set of related input polynomials 𝑆(𝑚), let ⟨𝑆(𝑚)⟩ be the ideal generated by these

polynomials, and define �̃�(𝑚) = 𝑅⟨𝑆(𝑚)⟩(𝑚) to be the reduction of 𝑚 modulo the ideal ⟨𝑆(𝑚)⟩.
Intuitively, we think of 𝑆(𝑚) as the (satisfiable) subset of polynomials that might possibly have been

used in a low-degree derivation of 𝑚, but since the constant monomial 1 is not derivable in low

degree it gets an empty associated set of polynomials, meaning that �̃�(1) = 𝑅⟨𝑆(1)⟩(1) = 1. In order

for �̃� to look like a real reduction operator, we need to show that for polynomials 𝑝 and 𝑝′ of not

too high degree it holds that �̃�(𝑝 + 𝑝′) = �̃�(𝑝) + �̃�(𝑝′) and �̃�(𝑝 · �̃�(𝑝′)) = �̃�(𝑝 · 𝑝′). The first equality

is immediate, since �̃� is defined to be a linear operator, but the second equality is more problematic.

Since the polynomials 𝑝 and 𝑝′ will be reduced modulo different ideals—in fact, this will be the

case even for different monomials within the same polynomial—a priori there is no reason why

�̃� should commute with multiplication.

Proving that a pseudo-reduction operator �̃� behaves like an actual reduction operator for

low-degree polynomials is typically the most challenging technical step in the lower bound

proof. Very roughly, the proof method in [AR03] goes as follows. Suppose that 𝑚 and 𝑚′

are monomials with associated polynomial sets 𝑆(𝑚) and 𝑆(𝑚′), respectively. Using expansion

properties of the constraint-variable incidence graph for the input polynomials, we argue that the

true reduction operator will not change if we reduce both monomials modulo the larger ideal

⟨𝑆(𝑚) ∪ 𝑆(𝑚′)⟩ generated by the union of their associated sets of polynomials. This implies that we

have �̃�(𝑚′) = 𝑅⟨𝑆(𝑚′)⟩(𝑚′) = 𝑅⟨𝑆(𝑚)∪𝑆(𝑚′)⟩(𝑚′) and �̃�(𝑚 · 𝑚′) = 𝑅⟨𝑆(𝑚)∪𝑆(𝑚′)⟩(𝑚 · 𝑚′), from which it

follows that �̃�(𝑚 · �̃�(𝑚′)) = �̃�(𝑚 ·𝑚′) holds, just like for reduction modulo an actual ideal. To prove

that expanding the ideals does not change the reduction operator is a delicate balancing act, though,

since the ideals will need to be large enough to guarantee non-trivial reduction, but at the same

time small enough so that different ideals can be “patched together” with only local adjustments.

All previous attempts to apply this lower bound strategy to the graph colouring problem have

failed. For other polynomial calculus lower bounds it has been possible to limit the interaction

between different polynomials in the input. For graph colouring, however, applying the reduction

operator intuitively corresponds to partial colourings of subsets of vertices, and it has not been

known how to avoid that locally assigned colours propagate new colouring constraints through

the rest of the graph. In technical language, what is needed is a way to order the vertices in the

graph so that there will be no long ordered paths of vertices along which colouring constraints can

spread. It has seemed far from obvious how to construct such an ordering, or even whether such an

ordering should exist, and due to this technical problem it has not been possible to join local ideal

reduction operators into a globally consistent pseudo-reduction operator.

This technical problem was addressed in a recent paper [RT22] by an ingenious, and in hindsight

surprisingly simple, idea. The main insight is to consider a proper colouring of the graph 𝐺

with 𝜒(𝐺) colours, and then order the vertices in each colour class consecutively. In this way,

order-decreasing paths are of length at most 𝜒(𝐺), and one can guarantee some form of locality.

Once this order is in place, the final challenge is to ensure that small cycles do not interfere when

“patching together” reductions. In [RT22], such conflicts are avoided by ensuring that the graph
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should have high girth, which results in a degree lower bound linear in the girth of the graph.

In terms of graph size, this cannot give better than logarithmic lower bounds, however, since the

girth is at most logarithmic in the number of vertices for any graph with chromatic number larger

than 3 [Bol78].

In our work, we employ the same ordering as in [RT22], but instead of girth use the fact that

random graphs are locally very sparse. Once the necessary technical concepts are in place, the

proof becomes quite simple and elegant, which we view as an additional strength of our result.

1.4 Outline of This Paper

The rest of this paper is organized as follows. In Section 2 we present some preliminaries and then,

as a warm-up, reprove the resolution width lower bound for the colourability formula in Section 3.

After this, we proceed to revisit the general framework to obtain polynomial calculus lower bounds

in Section 4. In Section 5 we introduce the important notion of a closure and in Section 6 prove our

main theorem. We conclude with some final remarks and open problems in Section 7.

2 Preliminaries

Let us start by briefly reviewing the necessary preliminaries from proof complexity, graph theory,

and algebra. We use standard asymptotic notation. In this paper log denotes the logarithm base 2,

while ln denotes the natural logarithm.

For a field F we let F[𝑥1 , . . . , 𝑥𝑛] denote the polynomial ring over F in 𝑛 variables and let a

monomial denote a product of variables. We denote by Vars(𝑚) the variables of a monomial 𝑚, that

is, if 𝑚 =
∏

𝑖∈𝐼 𝑥𝑖 , then Vars(𝑚) = ∪𝑖∈𝐼𝑥𝑖 and extend this notation to polynomials 𝑝 =
∑

𝑚 𝑎𝑚𝑚 by

Vars(𝑝) = ∪𝑚Vars(𝑚). For polynomials 𝑝1 , . . . , 𝑝𝑚 ∈ F[𝑥1 , . . . , 𝑥𝑛] we let ⟨𝑝1 , . . . , 𝑝𝑚⟩ denote the

ideal generated by these polynomials: ⟨𝑝1 , . . . , 𝑝𝑚⟩ contains all polynomials of the form

∑𝑚
𝑖=1

𝑞𝑖𝑝𝑖 ,

for 𝑞𝑖 ∈ F[𝑥1 , . . . , 𝑥𝑛]. For a polynomial 𝑞 and a partial function 𝜌 mapping variables to polynomials

we let 𝑞↾𝜌 denote the polynomial obtained from 𝑞 by substituting every occurrence of a variable 𝑥𝑖
in the domain of 𝜌 by 𝜌(𝑥𝑖).

2.1 Proof Complexity

Polynomial calculus (PC) [CEI96] is a proof system that uses algebraic reasoning to deduce that a

system 𝒫 of polynomials over a field F involving the variables 𝑥1 , . . . , 𝑥𝑛 is infeasible, i.e., that the

polynomials in 𝒫 have no common root. Polynomial calculus interprets 𝒫 as a set of generators of

an ideal and derives new polynomials in this ideal through two derivation rules:

Linear combination:
𝑝 𝑞

𝑎𝑝 + 𝑏𝑞
, 𝑎, 𝑏 ∈ F ; (2.1a)

Multiplication:
𝑝

𝑥𝑖𝑝
, 𝑥𝑖 any variable. (2.1b)

A polynomial calculus derivation 𝜋 of a polynomial 𝑝 starting from the set 𝒫 is a sequence of

polynomials (𝑝1 , . . . , 𝑝𝜏), where 𝑝𝜏 = 𝑝 and each polynomial 𝑝𝑖 either is in 𝒫 or is obtained by

applying one of the derivation rules (2.1a)-(2.1b) to polynomials 𝑝 𝑗 with 𝑗 < 𝑖. A polynomial calculus
refutation of 𝒫 is a derivation of the constant polynomial 1 from 𝒫. It is well-known that polynomial

calculus is sound and complete when the system𝒫 contains all Boolean axioms {𝑥2

1
−𝑥1 , . . . , 𝑥

2

𝑛−𝑥𝑛}.
We often refer to 𝒫 as the set of axioms, and we say that a subset of axioms 𝒬 ⊆ 𝒫 is satisfiable if the

polynomials in 𝒬 have a common root.
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The most common complexity measures of polynomial calculus refutations are size and degree.
The size of a polynomial 𝑝 is its number of monomials when expanded into a linear combination

of distinct monomials, and the degree of 𝑝 is the maximum degree among all of its monomials.

The size of a polynomial calculus refutation 𝜋 is the sum of the sizes of the polynomials in 𝜋, and

the degree of 𝜋 is the maximum degree among all polynomials in 𝜋. We follow the convention

of not counting applications of the Boolean axioms toward degree or size by tacitly working over

F[𝑥1 , . . . , 𝑥𝑛]/⟨𝑥2

1
− 𝑥1 , . . . , 𝑥

2

𝑛 − 𝑥𝑛⟩, which only strengthens a lower bound on either measure.

Polynomial calculus size and degree are connected through the size-degree relation [IPS99]: if 𝒫
consists of polynomials with initial degree 𝑑 and contains all Boolean axioms, and if 𝐷 is the

minimal degree among all polynomial calculus refutations of 𝒫, then every refutation of 𝒫 must

have size exp

(
Ω

(
(𝐷 − 𝑑)2/𝑛

) )
.

The size-degree relation also applies to the stronger proof system polynomial calculus resolution
(PCR) [ABRW02], which is polynomial calculus where additionally each variable 𝑥𝑖 appearing in 𝒫
has a formal negation 𝑥 𝑖 , enforced by adding polynomials 𝑥𝑖 + 𝑥 𝑖 − 1 to 𝒫. Polynomial calculus

and PCR are equivalent with respect to degree, since the map 𝑥 𝑖 ↦→ 1 − 𝑥𝑖 sends any PCR proof

to a valid polynomial calculus proof of the same degree. Therefore, to prove a lower bound on

PCR size it suffices to prove a lower bound on polynomial calculus degree, and in particular all size

lower bounds in this paper also apply to PCR. Finally, we remark that lower bounds on polynomial

calculus degree or size also apply to the weaker Nullstellensatz proof system mentioned in Section 1.1

and Section 1.2.

2.2 Graph Colouring and Pseudo-Reductions

Given a graph 𝐺, we study the polynomial calculus degree required to refute the system Col(𝐺, 𝑘)
of polynomials

𝑘∑
𝑖=1

𝑥𝑣,𝑖 − 1 𝑣 ∈ 𝑉(𝐺) [every vertex is assigned a colour] (2.2a)

𝑥𝑣,𝑖𝑥𝑣,𝑖′ 𝑣 ∈ 𝑉(𝐺), 𝑖 ≠ 𝑖′ ∈ [𝑘] [no vertex gets more than one colour] (2.2b)

𝑥𝑢,𝑖𝑥𝑣,𝑖 (𝑢, 𝑣) ∈ 𝐸(𝐺), 𝑖 ∈ [𝑘] [no two adjacent vertices get the same colour] (2.2c)

𝑥2

𝑣,𝑖 − 𝑥𝑣,𝑖 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ [𝑘] [Boolean axioms] (2.2d)

whose common roots correspond precisely to proper 𝑘-colourings of 𝐺. We refer to axioms in (2.2a)

and (2.2b) as vertex axioms and to (2.2c) as edge axioms. Note that the system Col(𝐺, 𝑘) of polynomials

is not the standard polynomial translation of the usual CNF formula (defined in Section 3.1) as

(2.2a) does not correspond to a single clause. We work with the above formulation for the sake of

exposition and our lower bound also applies to the standard translation of the CNF formula.

If the field F we are working over contains, or can be extended to contain, a primitive 𝑘th

root of unity, then it is known [LN17, Proposition 2.2] that a polynomial calculus degree lower

bound for Col(𝐺, 𝑘) also applies to Bayer’s formulation [Bay82] of 𝑘-colourability, where each

colour corresponds to a 𝑘th root of unity. This encoding has received considerable attention in

computational algebra [DLMM08, DLMO09, DLMM11, DMP
+
15, RT22].

Our proof of Theorem 1.1 is based on the notion of a pseudo-reduction operator or 𝑅-operator.
The following lemma is due to Razborov [Raz98].

Definition 2.1 (Pseudo-reduction). Let 𝐷 ∈ N+ and 𝒫 be a set of polynomials over F[𝑥1 , . . . , 𝑥𝑛].
An F-linear operator �̃� : F[𝑥1 , . . . , 𝑥𝑛] → F[𝑥1 , . . . , 𝑥𝑛] is a degree-𝐷 pseudo-reduction for 𝒫 if

6
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1. �̃�(1) = 1,

2. �̃�(𝑝) = 0 for every polynomial 𝑝 ∈ 𝒫, and

3. �̃�(𝑥𝑖𝑚) = �̃�
(
𝑥𝑖 �̃�(𝑚)

)
for any monomial 𝑚 of degree at most 𝐷 − 1 and any variable 𝑥𝑖 .

Lemma 2.2 ([Raz98]). Let 𝐷 ∈ N+ and 𝒫 be a set of polynomials over F[𝑥1 , . . . , 𝑥𝑛]. If there is a degree-𝐷
pseudo-reduction for 𝒫, then any polynomial calculus refutation of 𝒫 over F requires degree strictly greater
than 𝐷.

The proof of Lemma 2.2 is straightforward: apply �̃� to all polynomials in a purported polynomial

calculus refutation of 𝒫 and conclude by induction that it is impossible to reach contradiction in

degree at most 𝐷.

2.3 Algebra Background

The definition of our pseudo-reduction operator requires some standard notions from algebra. A

total well-order ≺ on the monomials in F[𝑥1 , . . . , 𝑥𝑛] is admissible if the following properties hold:

1. For any monomial 𝑚 it holds that 1 ≺ 𝑚.

2. For any monomials 𝑚1 , 𝑚2 and 𝑚 such that 𝑚1 ≺ 𝑚2, it holds that 𝑚𝑚1 ≺ 𝑚𝑚2.

Note that this definition is the more standard definition of admissible order (also known as

monomial order) used in algebra, and differs from that introduced in [Raz98], and used subsequently

in [AR01, MN15], since it is defined over any monomial in F[𝑥1 , . . . , 𝑥𝑛] and not only multilinear

monomials, and it does not necessarily have to respect the total degree of monomials. We use

the above definition due to its simplicity. Recall that we only concern ourselves with multilinear

polynomials in this article by tacitly working over F[𝑥1 , . . . , 𝑥𝑛]/⟨𝑥2

1
− 𝑥1 , . . . , 𝑥

2

𝑛 − 𝑥𝑛⟩.
We write 𝑚1 ⪯ 𝑚2 to denote that 𝑚1 ≺ 𝑚2 or 𝑚1 = 𝑚2. The leading monomial of a polynomial 𝑝

is the largest monomial according to ≺ appearing in 𝑝 with a non-zero coefficient. For an ideal 𝐼

over F[𝑥1 , . . . , 𝑥𝑛], a monomial 𝑚 is reducible modulo 𝐼 if 𝑚 is the leading monomial of some

polynomial 𝑞 ∈ 𝐼; otherwise 𝑚 is irreducible modulo 𝐼. Under a total monomial order it is well-known

that for any ideal 𝐼 and any polynomial 𝑝 there exists a unique representation 𝑝 = 𝑞 + 𝑟 such that

𝑞 ∈ 𝐼 and 𝑟 is a linear combination of irreducible monomials modulo 𝐼. We call 𝑟 the reduction of 𝑝
modulo 𝐼, and denote by 𝑅𝐼 the reduction operator which maps polynomials 𝑝 to the reduction of 𝑝

modulo 𝐼. It is straightforward to verify that the reduction operator is linear over the vector space

of polynomials.

We will use the following standard fact.

Observation 2.3. If 𝐼1 and 𝐼2 are ideals over F[𝑥1 , . . . , 𝑥𝑛] and 𝐼1 ⊆ 𝐼2, then for any monomials 𝑚 and 𝑚′

it holds that 𝑅𝐼2

(
𝑚′𝑅𝐼1(𝑚)

)
= 𝑅𝐼2(𝑚′𝑚).

Proof. Write 𝑚 = 𝑞1 + 𝑟1 where 𝑟1 is the reduction of 𝑚 modulo 𝐼1 and hence 𝑞1 ∈ 𝐼1. Similarly, let

𝑚′ · 𝑅𝐼1(𝑚) = 𝑚′ · 𝑟1 = 𝑞2 + 𝑟2 for 𝑞2 ∈ 𝐼2 and 𝑟2 the reduction of 𝑚′ · 𝑟1 modulo 𝐼2. We have that

𝑅𝐼2

(
𝑚′𝑅𝐼1(𝑚)

)
= 𝑟2 and we now argue that 𝑅𝐼2(𝑚′𝑚) = 𝑟2. Note that 𝑚′(𝑚 − 𝑞1) = 𝑟2 + 𝑞2 and hence

𝑚′ · 𝑚 = 𝑟2 + 𝑞2 + 𝑚′ · 𝑞1. Since 𝐼1 ⊆ 𝐼2 and ideals are closed under multiplication and addition it

holds that 𝑞2 + 𝑚2𝑞1 ∈ 𝐼2. Moreover, since 𝑟2 is irreducible modulo 𝐼2, it follows that 𝑅𝐼2(𝑚′𝑚) = 𝑟2

by uniqueness of a reduction modulo an ideal. □

Finally, let us record the following form of Hilbert’s Nullstellensatz on the Boolean cube.
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Lemma 2.4. Let 𝑔 be a polynomial and 𝑄 be a set of polynomials in F[𝑥1 , . . . , 𝑥𝑛], and suppose that 𝑄
contains all the Boolean axioms. Then it holds that 𝑔 vanishes on all common roots of 𝑄 if and only if
𝑔 ∈ ⟨𝑄⟩.

Note that the interesting direction of Lemma 2.4 immediately follows from the implicational

completeness of the Nullstellensatz proof system. For the convenience of the reader we provide a

self-contained proof in Appendix A.

2.4 Graph Theory

We consider graphs 𝐺 = (𝑉, 𝐸) that are finite and undirected, and contain no self-loops or multi-

edges. Given a vertex set𝑈 ⊆ 𝑉 , the neighbourhood of𝑈 in 𝐺 is 𝑁(𝑈) = {𝑣 ∈ 𝑉 | ∃𝑢 ∈ 𝑈 : (𝑢, 𝑣) ∈ 𝐸},
and for a second set 𝑊 ⊆ 𝑉 we let the neighbourhood of 𝑈 in 𝑊 be denoted by 𝑁𝑊 (𝑈) = 𝑁(𝑈) ∩𝑊 .

The set of edges between vertices in 𝑈 is denoted by 𝐸(𝑈) and we let 𝐺[𝑈] denote the subgraph

induced by 𝑈 in 𝐺, that is, 𝐺[𝑈] = (𝑈, 𝐸(𝑈)). A graph is said to be 𝑑-regular if all vertices are of

degree 𝑑. Note that a graph on 𝑛 vertices can be 𝑑-regular only if 𝑑 < 𝑛 and 𝑑𝑛 is even.

For an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸 the contraction of 𝐺 with respect to 𝑒 is the graph obtained from 𝐺 by

identifying the vertices 𝑢 and 𝑣 as a single, new, vertex 𝑣𝑒 and adding an edge between a vertex

𝑤 ∈ 𝑉 \ {𝑢, 𝑣} and 𝑣𝑒 if and only if there is an edge between 𝑤 and at least one of 𝑢 or 𝑣 in 𝐺. For

a set of edges 𝑆 ⊆ 𝐸 we let the contraction of 𝐺 with respect to 𝑆 be the graph obtained from 𝐺 by

contracting the edges in 𝑆 one at a time, in any order.

A graph is said to be 𝑘-colourable if there is a mapping 𝜒 : 𝑉 → [𝑘] satisfying 𝜒(𝑢) ≠ 𝜒(𝑣) for all

edges (𝑢, 𝑣) ∈ 𝐸, in which case we refer to 𝜒 as a proper 𝑘-colouring of 𝐺. The chromatic number of 𝐺,

denoted by 𝜒(𝐺), is the smallest integer 𝑘 such that 𝐺 is 𝑘-colourable.

Definition 2.5 (Sparsity). A graph 𝐺 = (𝑉, 𝐸) is (ℓ , 𝜀)-sparse if every vertex set 𝑈 ⊆ 𝑉 of size at

most ℓ satisfies |𝐸(𝑈)| ≤ (1 + 𝜀)|𝑈 |.

The essential property of sparse graphs we use to obtain our main result is that large subsets of

vertices in such graphs are 3-colourable.

Lemma 2.6. If a graph 𝐺 = (𝑉, 𝐸) is (ℓ , 𝜀)-sparse for some 𝜀 < 1/2, then it holds for every subset 𝑈 ⊆ 𝑉 of
size at most ℓ that 𝐺[𝑈] is 3-colourable.

Proof. By induction on |𝑈 |. The base case |𝑈 | = 1 is immediate. For the inductive step we may

assume that the claim holds for sets of size at most 𝑠 − 1. Consider a set 𝑈 ⊆ 𝑉 of size 𝑠 ≤ ℓ . The

average degree of a vertex in 𝐺[𝑈] is 2|𝐸(𝑈)|/𝑠, which is at most 2(1 + 𝜀) < 3 by the assumption on

sparsity. Hence, since graph degrees are integers, there exists a vertex 𝑣 ∈ 𝑈 with degree at most 2

in 𝐺[𝑈]. The graph 𝐺[𝑈 \ {𝑣}] is 3-colourable by the inductive hypothesis, and every 3-colouring

witnessing this will leave at least one colour available to properly colour 𝑣. Hence every 3-colouring

of 𝐺[𝑈 \ {𝑣}] can be extended to 𝐺[𝑈], which concludes the proof. □

We consider two models of random graphs. One is the Erdős-Rényi random graph model G(𝑛, 𝑝),
which is the distribution over graphs on 𝑛 vertices where each edge is included independently with

probability 𝑝. The other is the random 𝑑-regular graph model G𝑛,𝑑, which is the uniform distribution

over 𝑑-regular graphs on 𝑛 vertices. A graph property 𝑃 holds asymptotically almost surely for a

random graph model G = {G𝑛}∞𝑛=1
if lim𝑛→∞ Pr𝐺∼G𝑛 [𝐺 has property 𝑃] = 1.

Random graphs are sparse with excellent parameters, as stated in the following lemma, which

is essentially due to [Raz17]. (See Appendix B for a proof.)
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Lemma 2.7 (Sparsity lemma). For 𝑛, 𝑑 ∈ N+ and 𝜀, 𝛿 ∈ R+ such that 𝜀𝛿 = 𝜔(1/log 𝑛), the following
holds asymptotically almost surely.

1. If 𝐺 is a graph sampled from G(𝑛, 𝑑/𝑛), then it is ((4𝑑)−(1+𝛿)(1+𝜀)/𝜀𝑛, 𝜀)-sparse.

2. For 𝑑2 ≤ 𝜀𝛿 log 𝑛, if 𝐺 is a graph sampled from G𝑛,𝑑, then it is ((8𝑑)−(1+𝛿)(1+𝜀)/𝜀𝑛, 𝜀)-sparse.

Finally, we need some bounds on the chromatic number of graphs sampled from G(𝑛, 𝑑/𝑛) or

G𝑛,𝑑, where, in particular, the lower bounds ensure that Col(𝐺, 𝑘) is unsatisfiable for large enough 𝑑.

Lemma 2.8 ([KPGW10, CFRR02, AN05, Łuc91]). For 𝑛 ∈ N, 𝑑 ≤ 𝑛0.1 and a graph 𝐺 sampled from
either G(𝑛, 𝑑/𝑛) or G𝑛,𝑑 it holds asymptotically almost surely that the chromatic number 𝜒(𝐺) is at most
2𝑑/log 𝑑 and, if 𝑑 ≥ 6, then 𝜒(𝐺) ≥ 4.

3 A Simple Resolution Lower Bound for 4-Colourability on Sparse Graphs

In this section we reprove the main result of Beame et al. [BCMM05], namely that resolution requires

large width to refute the claim that random graphs have small chromatic number. We hope that the

exposition below may serve as a gentle introduction to the polynomial calculus lower bounds that

will follow later, which build on similar albeit slightly more complicated concepts. Readers only

interested in the polynomial calculus lower bounds may safely skip this section.

For expert readers let us remark that while Beame et al. [BCMM05] build on the width lower

bound methodology introduced by Ben-Sasson and Wigderson [BW01], we rely on the game

characterization due to Pudlák [Pud00]. We recover the bounds of Beame et al. precisely for 𝑘 ≥ 4,

but for 𝑘 = 3 we incur a slight loss in parameters.

In the following we recollect some standard notions to then prove the resolution width lower

bound in Section 3.2.

3.1 Graph Colouring in CNF and the Resolution Proof System

A clause is a disjunction over a set of literals
∨

𝑖∈𝑆 ℓ𝑖 , where every literal ℓ𝑖 is either a Boolean variable

𝑥 or the negation 𝑥 thereof. The width of a clause is the number of literals in it. A CNF formula
𝐹 = 𝐶1 ∧ · · · ∧𝐶𝑚 is a conjunction of clauses, and the width of 𝐹 is the maximum width of any clause

𝐶𝑖 in 𝐹.

A resolution refutation of a CNF formula 𝐹 is as an ordered sequence of clauses 𝜋 = (𝐷1 , . . . , 𝐷𝜏)
such that 𝐷𝜏 = ⊥ is the empty clause and each 𝐷𝑖 either occurs in 𝐹 or is derived from clauses 𝐷𝑗1

and 𝐷𝑗2 , with 𝑗1 < 𝑖 and 𝑗2 < 𝑖, by the resolution rule

𝐵 ∨ 𝑥 𝐶 ∨ 𝑥
𝐵 ∨ 𝐶

. (3.1)

The width of a resolution refutation 𝜋 = (𝐷1 , . . . , 𝐷𝜏) is the maximum width of any clause 𝐷𝑖 in

𝜋 and the length of 𝜋 is 𝜏. The size-width relation [BW01] relates the minimum width 𝑊 required

to refute a CNF formula 𝐹 to the minimum length of any resolution refutation of 𝐹: if 𝐹 is of

initial width 𝑤 and defined over 𝑛 variables, then any resolution refutation of 𝐹 requires size

exp

(
Ω

(
(𝑊 − 𝑤)2/𝑛

) )
.

As resolution operates over clauses, in contrast to polynomial calculus that operates over

polynomials, we need to define the colourability formula as a CNF formula. In this section, for a

9
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graph 𝐺 and integer 𝑘, we let Col(𝐺, 𝑘) denote the CNF formula consisting of the clauses

𝑘∨
𝑖=1

𝑥𝑣,𝑖 , 𝑣 ∈ 𝑉(𝐺) [every vertex is assigned a colour] (3.2a)

𝑥𝑣,𝑖 ∨ 𝑥𝑣,𝑖′ , 𝑣 ∈ 𝑉(𝐺), 𝑖 ≠ 𝑖′ [no vertex gets more than one colour] (3.2b)

𝑥𝑢,𝑖 ∨ 𝑥𝑣,𝑖 , (𝑢, 𝑣) ∈ 𝐸(𝐺), 𝑖 ∈ [𝑘]. [no two adjacent vertices get the same colour] (3.2c)

Clearly, the CNF formula Col(𝐺, 𝑘) is satisfiable if and only if 𝐺 is 𝑘-colourable.

3.2 Resolution Lower Bounds

For the sake of simplicity we prove the theorem below for the 4-colourability formula only. The

theorem can be extended to 3-colourability using concepts from Section 5.

Theorem 3.1. Let 𝐺 be a graph, and suppose that ℓ ∈ N+ and 𝜀 > 0 are such that 𝐺 is (ℓ , 1/2 − 𝜀)-sparse.
Then every resolution refutation of Col(𝐺, 4) requires width at least ℓ/4.

Combining Lemma 2.7 with the above theorem we obtain the following corollaries for random

graphs.

Corollary 3.2 ([BCMM05]). For any 𝜀 > 0, if 𝐺 is a graph sampled from G(𝑛, 𝑑/𝑛), then asymptotically
almost surely every resolution refutation of Col(𝐺, 4) requires width 𝑛/4(4𝑑)3+𝜀.

While Beame et al. [BCMM05] do not consider random regular graphs, it is not hard to see that

their techniques can be used to prove the following statement.

Corollary 3.3. For any 𝜀 > 0, if 𝐺 is a graph sampled from G𝑛,𝑑 and 𝑑2 = o(log 𝑛), then asymptotically
almost surely every resolution refutation of Col(𝐺, 4) requires width 𝑛/4(8𝑑)3+𝜀.

We prove Theorem 3.1 using the prover-adversary game as introduced by Pudlák [Pud00],

which we describe here adapted to the colouring formula. The width-𝑤 prover-adversary game for

colouring proceeds in rounds. In each round the prover either queries or forgets the colouring of a

vertex. In response to the former, the adversary has to respond with a colouring of the queried

vertex. The prover has limited memory and may only remember the partial colouring of up to 𝑤

vertices. The prover wins whenever the remembered partial colouring is improper. This game

characterises resolution refutation width while in our setting a more precise statement is that the

prover has a winning strategy in the width-𝑤 prover-adversary game for colouring if and only if

there is a resolution refutation of the colourability formula where every clause in the refutation

mentions at most 𝑤 vertices.

Ultimately we want to design a strategy for the adversary so that the prover cannot win with

limited memory. In order not to reach a partial colouring that is impossible to extend to the newly

queried vertex, whenever the prover remembers a partial colouring defined on a subset 𝑈 of the

vertices, the adversary maintains a consistent partial colouring defined on a closure of 𝑈 , as defined

below. Intuitively, a closure of 𝑈 should be a slightly larger set that contains 𝑈 and other vertices

that, if not taken into account when colouring 𝑈 , might not be possible to properly colour later on.

Definition 3.4 (Closure). Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑈 ⊆ 𝑉 . We say that 𝑈 is closed if all

vertices 𝑣 ∈ 𝑉 \𝑈 satisfy |𝑁𝑈 (𝑣)| ≤ 1. A closure of 𝑈 is any minimal closed set that contains 𝑈 .

Proposition 3.5. Every set of vertices has a unique closure.
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Proof. Suppose there are two distinct closures 𝑊1 and 𝑊2 of a set 𝑈 . As both 𝑊1 and 𝑊2 contain 𝑈

it holds that 𝑈 ⊆ 𝑊∩ = 𝑊1 ∩𝑊2. By minimality of a closure, the set 𝑊∩ is not a closure of 𝑈 and

hence there is a vertex 𝑣 not in 𝑊∩ such that |𝑁𝑊∩(𝑣)| ≥ 2. But this implies that the set 𝑊𝑖 satisfying

𝑣 ∉ 𝑊𝑖 is not closed, which contradicts the initial assumption. □

In light of Proposition 3.5, for a set 𝑈 we write Cl(𝑈) to denote the unique closure of 𝑈 . We

now show that if the underlying graph 𝐺 is sparse, then the closure of a set 𝑈 is not much larger

than 𝑈 itself.

Lemma 3.6. Let 𝐺 be an (ℓ , 1/2 − 𝜀)-sparse graph for ℓ ∈ N+ and 𝜀 > 0. Then any set 𝑈 ⊆ 𝑉 of size at
most ℓ/4 satisfies |Cl(𝑈)| ≤ 4|𝑈 | ≤ ℓ .

Proof. Let us consider the following process: set𝑈0 = 𝑈 and 𝑖 = 0. While there is a vertex 𝑣 ∈ 𝑉 \𝑈𝑖

satisfying |𝑁𝑈𝑖
(𝑣)| ≥ 2, set 𝑈𝑖+1 = 𝑈𝑖 ∪ {𝑣} and increment 𝑖.

Suppose this process terminates after 𝑡 iterations. Clearly the final set 𝑈𝑡 contains 𝑈 and is

closed. Furthermore it is a minimal set with these properties and is hence the closure of 𝑈 . As we

add at least 2 edges to 𝐸(𝑈𝑖) in every iteration it holds that |𝐸(𝑈𝑖)| ≥ 2𝑖 and, as we add a single

vertex in each iteration, we have |𝑈𝑖 | = |𝑈 | + 𝑖. Suppose 𝑡 ≥ 3|𝑈 |. In iteration 𝑖 = 3|𝑈 | it holds that

|𝐸(𝑈𝑖)| ≥ 6|𝑈 |, while |𝑈𝑖 | = 4|𝑈 | ≤ ℓ . Hence |𝐸(𝑈𝑖)| ≥ 3|𝑈𝑖 |/2, which contradicts the assumption

on sparsity. We may thus conclude that the closure of a set 𝑈 is of size at most 4|𝑈 |, as claimed. □

In order to design a strategy for the adversary, we prove that it is always possible to extend a

colouring on a small closed set of vertices to a slightly larger set.

Lemma 3.7. Let 𝐺 = (𝑉, 𝐸) be an (ℓ , 1/2 − 𝜀)-sparse graph, let 𝑈 ⊆ 𝑉 be a closed set of size at most ℓ and
suppose 𝜒 is a proper 4-colouring of 𝐺[𝑈]. Then 𝜒 can be extended to 𝐺[𝑊] for any set 𝑊 ⊇ 𝑈 of size at
most |𝑊 | ≤ ℓ .

Proof. By induction on 𝑠 = |𝑊 \𝑈 |. The statement clearly holds for 𝑠 = 0. For the inductive step, let

𝑣 ∈𝑊 \𝑈 be such that |𝑁𝑊\𝑈 (𝑣)| ≤ 2, as guaranteed to exist by the assumption on sparsity since it

holds that |𝐸(𝑊 \𝑈)| ≤ (3/2 − 𝜀)|𝑊 \𝑈 |. By the inductive hypothesis there is an extension of 𝜒 to

the set 𝑊 \ {𝑣}.
As 𝑈 is closed, the vertex 𝑣 has at most one neighbour in 𝑈 . Hence it holds that |𝑁𝑊 (𝑣)| ≤ 3

and we may thus extend the colouring to 𝑣. □

With Lemmas 3.6 and 3.7 at hand we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let us describe a strategy for the adversary. At any point in the game the

adversary maintains a partial 4-colouring 𝜒 to the closure of the vertices 𝑈 the prover remembers.

Whenever the prover queries a vertex in the closure the adversary responds accordingly. If a vertex

𝑣 outside the closure of 𝑈 is queried, then the adversary extends 𝜒 to Cl(𝑈 ∪ {𝑣}) by virtue of

Lemma 3.7 and responds accordingly. Finally, if the prover forgets the colouring of a vertex 𝑢 ∈ 𝑈 ,

then we shrink our closure to the closure of 𝑈 \ {𝑢}. Here we use the fact that by minimality of the

closure it holds that Cl(𝑈) ⊇ Cl(𝑈 \ {𝑢}).
As, by Lemma 3.6, the closure of a set 𝑈 is at most a factor 4 larger than 𝑈 and, by Lemma 3.7,

we may maintain a valid 4-colouring to the closure as long as the size of the closure is bounded

by ℓ , the prover cannot win the game if 𝑤 ≤ ℓ/4. Therefore, every resolution refutation of the

4-colourability formula defined over an (ℓ , 1/2 − 𝜀)-sparse graph contains a clause that mentions at

least ℓ/4 vertices and hence has width at least ℓ/4. □

Combining Theorems 3.2 and 3.3 with the mentioned size-width relation we obtain optimal

exp(Ω(𝑛)) resolution size lower bounds for constant 𝑑.
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4 Polynomial Calculus Lower Bounds: The General Framework

In this section we provide a proof overview of Theorem 1.1 and then revisit the general framework,

as introduced by Alekhnovich and Razborov [AR03], for obtaining polynomial calculus lower

bounds.

4.1 Proof Overview

As outlined in the introduction, the construction of our pseudo-reduction �̃� for the colouring

formula follows the general paradigm introduced by [AR03] which has been used in several

subsequent papers [GL10a, GL10b, MN15]. The idea is that given an initial set of polynomials 𝒫,

for every monomial 𝑚 we identify a subset 𝑆(𝑚) of polynomials in 𝒫 that are in some sense relevant

to 𝑚. Then we define �̃� on the monomial 𝑚 as the reduction modulo the ideal ⟨𝑆(𝑚)⟩ generated by

the polynomials, and extend �̃� linearly to arbitrary polynomials. The goal is to show that �̃� satisfies

properties 1-3 in Lemma 2.2, which typically requires showing that 𝑆 satisfies two main technical

properties. The first property is captured by what we call a satisfiability lemma, which states that if

the degree of 𝑚 is at most some parameter 𝐷, then the associated set 𝑆(𝑚) is satisfiable and is in

some sense well-structured. The second property is described by the reducibility lemma, which states

that for every ideal 𝐼 that is generated by a well-structured set of polynomials that contains 𝑆(𝑚)
and is satisfiable, it holds that 𝑅𝐼(𝑚) = 𝑅⟨𝑆(𝑚)⟩(𝑚). Once these lemmas are in place, and as long

as 𝑆 satisfies some other simple conditions, a degree lower bound of 𝐷 follows by an argument

presented in [AR03].

We formalise these arguments in Lemma 4.6 by extracting the essential parts of the Alekhnovich–

Razborov [AR03] framework and making explicit the properties the map 𝑆 must satisfy in order for

the proof of the lower bound to go through. Apart from the properties in Definition 4.1 capturing

some type of multilinearity, monotonicity and closedness of 𝑆 and ensuring that axioms with

leading monomial 𝑚 are in 𝑆(𝑚), we introduce in Lemma 4.6 two sufficient conditions for the lower

bound to follow: the first corresponds to the satisfiability lemma and the second to the reducibility

lemma. With this in hand, the ensuing sections can focus on defining the map 𝑆 and proving that it

satisfies the conditions, without having to refer to reduction operators.

4.2 Revisiting the Alekhnovich–Razborov Framework

We now revisit the general framework introduced by Alekhnovich and Razborov [AR03] for proving

polynomial calculus lower bounds. We extract from their proofs a formal statement that if the

function 𝑆, mapping monomials to relevant subsets of axioms, satisfies two conditions, namely the

satisfiability and the reducibility conditions, along with some natural conditions as discussed in the

following, then this implies polynomial calculus degree lower bounds.

Before discussing the additional conditions that the mapping 𝑆 needs to satisfy, we need to

fix an admissible order ≺ on the monomials in F[𝑥1 , . . . , 𝑥𝑛] as defined in Section 2.3. Recall that

an admissible order is a total order that respects multiplication, that is, if 𝑚1 ≺ 𝑚2 then it holds

that 𝑚𝑚1 ≺ 𝑚𝑚2. The leading monomial of a polynomial 𝑝 is the largest monomial according to ≺ that

appears in 𝑝. For the remainder of this section we implicitly assume that monomials in F[𝑥1 , . . . , 𝑥𝑛]
are ordered according to an admissible order ≺. Let us further adopt the convention that whenever

we write a polynomial 𝑝 as a sum of monomials 𝑝 =
∑

𝑖 𝑎𝑖𝑚𝑖 , then 𝑎𝑖 ∈ F are field elements and the

𝑚𝑖 ∈ F[𝑥1 , . . . , 𝑥𝑛] are monomials ordered such that 𝑚𝑖 ≺ 𝑚 𝑗 for all 𝑗 < 𝑖. In particular, 𝑚1 is the

leading monomial of 𝑝.
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Our first additional requirement on 𝑆 is that it maps monomials according to the variables in

the monomial, so that if two monomials 𝑚 and 𝑚′ both contain the same set of variables, then

𝑆(𝑚) = 𝑆(𝑚′). We further require that 𝑆 is in some sense monotone, namely, for any variable 𝑥,

we require that if 𝑆(𝑚′) ⊆ 𝑆(𝑚) for monomials 𝑚′ ≺ 𝑚, then it also holds that 𝑆(𝑥𝑚′) ⊆ 𝑆(𝑥𝑚).
Moreover, the image of 𝑆 should consist of sets that are “closed” in the sense that for any 𝑚, the set

of axioms 𝑆(𝑚) contains the union of all 𝑆(𝑚′) where 𝑚′ ≺ 𝑚 and Vars(𝑚′) ⊆ Vars(𝑆(𝑚)). Finally,

we require that if 𝑚 is the leading monomial of an axiom 𝑝, then 𝑝 ∈ 𝑆(𝑚). These properties are

formalised in the following definition.

Definition 4.1 (Support). Let 𝒫 be a set of polynomials over F[𝑥1 , . . . , 𝑥𝑛], let ≺ be an admissible

order on the monomials in F[𝑥1 , . . . , 𝑥𝑛], and let 𝑆 : 2
{𝑥1 ,...,𝑥𝑛} → 2

𝒫
be a function that maps

subsets 𝑌 ⊆ {𝑥1 , . . . , 𝑥𝑛} of variables to subsets 𝑆(𝑌) ⊆ 𝒫 of polynomials. For a monomial 𝑚 we

write 𝑆(𝑚) for 𝑆
(
Vars(𝑚)

)
and we say that 𝑆 is a 𝒫-support if the following holds.

1. For every variable 𝑥 and for all monomials 𝑚 and 𝑚′ such that 𝑚′ ≺ 𝑚, it holds that if

𝑆(𝑚′) ⊆ 𝑆(𝑚), then 𝑆(𝑥𝑚′) ⊆ 𝑆(𝑥𝑚).

2. For all monomials 𝑚 and 𝑚′ such that 𝑚′ ≺ 𝑚, it holds that if Vars(𝑚′) ⊆ Vars
(
𝑆(𝑚)

)
, then

𝑆(𝑚′) ⊆ 𝑆(𝑚).

3. For all 𝑝 ∈ 𝒫, it holds that 𝑝 ∈ 𝑆(𝑚), where 𝑚 is the leading monomial in 𝑝.

If the set of polynomials 𝒫 is not essential we call a 𝒫-support simply a support. Let us record

four technical claims that follow from the above properties of a support and that we will later use

to prove that an appropriate map 𝑆 implies a polynomial calculus degree lower bound.

The first claim is that if 𝑚1 is the leading monomial of an axiom 𝑝, not only does 𝑆(𝑚1) contain 𝑝

but it also contains 𝑆(𝑚𝑖) for all monomials 𝑚𝑖 that appear in 𝑝.

Claim 4.2. If 𝑆 is a 𝒫-support, then for all 𝑝 ∈ 𝒫, if 𝑝 =
∑

𝑖 𝑎𝑖𝑚𝑖 , then {𝑝} ∪⋃
𝑖

(
𝑆(𝑚𝑖)

)
⊆ 𝑆(𝑚1).

Proof. By property 3 of Definition 4.1 it holds that 𝑝 ∈ 𝑆(𝑚1). This implies that Vars(𝑚𝑖) ⊆ Vars(𝑝)
is contained in Vars

(
𝑆(𝑚1)

)
and thus for 𝑖 ≠ 1 since 𝑚𝑖 ≺ 𝑚1, property 2 of Definition 4.1 implies

that 𝑆(𝑚𝑖) ⊆ 𝑆(𝑚1). □

The next claim states that if the variables of 𝑚′ is a subset of the variables of 𝑚, then 𝑆(𝑚′) ⊆ 𝑆(𝑚).

Claim 4.3. If 𝑆 is a support, then for all monomials 𝑚 and 𝑚′ such that Vars(𝑚′) ⊆ Vars(𝑚) it holds

that 𝑆(𝑚′) ⊆ 𝑆(𝑚).

Proof. Note that 𝑆(1) ⊆ 𝑆(𝑚) by property 2 of Definition 4.1, where we use that 1 ≺ 𝑚. Thus, by

inductively applying property 1 of Definition 4.1 and using the fact that ≺ respects multiplication, we

obtain that 𝑆(𝑚′) ⊆ 𝑆(𝑚′ ·𝑚). Finally, since Vars(𝑚′) ⊆ Vars(𝑚), it holds that Vars(𝑚′) = Vars(𝑚′ · 𝑚)
and hence 𝑆(𝑚) = 𝑆(𝑚′ · 𝑚) ⊇ 𝑆(𝑚′). □

We also prove that monomials 𝑚′ that appear when 𝑚 is reduced modulo 𝑆(𝑚)must be such

that 𝑆(𝑚′) ⊆ 𝑆(𝑚) and that 𝑆(𝑥𝑚′) ⊆ 𝑆(𝑥𝑚).

Claim 4.4. If 𝑆 is a support, then for all monomials 𝑚 and 𝑚′ such that 𝑚′ appears in 𝑅⟨𝑆(𝑚)⟩(𝑚) it
holds that 𝑆(𝑚′) ⊆ 𝑆(𝑚) and 𝑆(𝑥𝑚′) ⊆ 𝑆(𝑥𝑚) for any variable 𝑥.
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Proof. We assume 𝑚′ ≠ 𝑚, and thus 𝑚′ ≺ 𝑚, otherwise the claim follows trivially. Moreover, we

observe that it suffices to show that 𝑆(𝑚′) ⊆ 𝑆(𝑚), since we can then use property 1 of Definition 4.1

to conclude that 𝑆(𝑥𝑚′) ⊆ 𝑆(𝑥𝑚).
We now argue that Vars(𝑚′) ⊆ Vars(𝑚) ∪Vars

(
𝑆(𝑚)

)
. Towards contradiction, suppose this is not

the case. Let 𝜌 denote the assignment that assigns all variables in 𝑚′ that are not in Vars
(
𝑆(𝑚)

)
∪

Vars(𝑚) to 0. Recall that 𝑅⟨𝑆(𝑚)⟩(𝑚) denotes the reduction of 𝑚 modulo ⟨𝑆(𝑚)⟩ and that there is

a unique representation 𝑚 = 𝑞 + 𝑅⟨𝑆(𝑚)⟩(𝑚) with 𝑞 ∈ ⟨𝑆(𝑚)⟩. No variable in 𝑚 nor in any of the

generators of ⟨𝑆(𝑚)⟩ is assigned by 𝜌, so 𝑚↾𝜌 = 𝑚 and 𝑞↾𝜌 ∈ ⟨𝑆(𝑚)⟩. Moreover, we have 𝑚′↾𝜌 = 0

so 𝑅⟨𝑆(𝑚)⟩(𝑚)↾𝜌 ≠ 𝑅⟨𝑆(𝑚)⟩(𝑚). But this contradicts that the representation 𝑚 = 𝑞 + 𝑅⟨𝑆(𝑚)⟩(𝑚) is

unique, and thus Vars(𝑚′) ⊆ Vars(𝑚) ∪ Vars
(
𝑆(𝑚)

)
.

Write 𝑚′ = 𝑚′
1
·𝑚′

2
such that Vars(𝑚′

1
) ⊆ Vars(𝑚) and Vars(𝑚′

2
) ⊆ Vars

(
𝑆(𝑚)

)
. Observe that 𝑚′

2
≺

𝑚 since 1 ≺ 𝑚′ ≺ 𝑚 and the order ≺ respects multiplication as it is admissible. Hence by property 2

of Definition 4.1 applied to 𝑚′
2

and 𝑚 it follows that 𝑆(𝑚′
2
) ⊆ 𝑆(𝑚). By iteratively applying property 1

of Definition 4.1 for each 𝑥 ∈ Vars(𝑚′
1
), and again using that the order ≺ respects multiplication,

we can conclude that 𝑆(𝑚′) = 𝑆(𝑚′
1
· 𝑚′

2
) ⊆ 𝑆(𝑚′

1
· 𝑚). Finally, since Vars(𝑚′

1
) ⊆ Vars(𝑚), we have

that 𝑆(𝑚′
1
· 𝑚) = 𝑆(𝑚), and therefore 𝑆(𝑚′) ⊆ 𝑆(𝑚). □

From this claim we can deduce that if irreducibility is preserved modulo some larger ideal, then

the reduced polynomials are the same as done in the following.

Claim 4.5. Let 𝑆 be a 𝒫-support and let 𝒬 ⊆ 𝒫. Suppose that every monomial 𝑚 irreducible

modulo ⟨𝑆(𝑚)⟩ that satisfies 𝑆(𝑚) ⊆ 𝒬 is also irreducible modulo ⟨𝒬⟩. Then for all monomials 𝑚′

such that 𝑆(𝑚′) ⊆ 𝒬 it holds that 𝑅⟨𝒬⟩(𝑚′) = 𝑅⟨𝑆(𝑚′)⟩(𝑚′).

Proof. Let 𝑚′ be an arbitrary monomial satisfying 𝑆(𝑚′) ⊆ 𝒬 and suppose that any irreducible

monomial 𝑚 modulo ⟨𝑆(𝑚)⟩ such that 𝑆(𝑚) ⊆ 𝒬 is also irreducible modulo ⟨𝒬⟩. We want to prove

that 𝑅⟨𝒬⟩(𝑚′) = 𝑅⟨𝑆(𝑚′)⟩(𝑚′).
Let us write 𝑅⟨𝑆(𝑚′)⟩(𝑚′) =

∑
𝑖 𝑎𝑖𝑚𝑖 . Note that by definition each such 𝑚𝑖 is irreducible

modulo ⟨𝑆(𝑚′)⟩. As by Claim 4.4 it holds that 𝑆(𝑚𝑖) ⊆ 𝑆(𝑚′) we may conclude that each 𝑚𝑖 is

irreducible modulo ⟨𝑆(𝑚𝑖)⟩. Thus, by assumption along with the inclusions 𝑆(𝑚𝑖) ⊆ 𝑆(𝑚′) ⊆ 𝒬,

each 𝑚𝑖 is irreducible modulo ⟨𝒬⟩. This implies that 𝑅⟨𝑆(𝑚′)⟩(𝑚′) = 𝑅⟨𝒬⟩
(
𝑅⟨𝑆(𝑚′)⟩(𝑚′)

)
= 𝑅⟨𝒬⟩(𝑚′),

using once more that 𝑆(𝑚′) ⊆ 𝒬. □

We can now make the formal claim that polynomial calculus degree lower bounds follow from

the existence of a support 𝑆 satisfying the two conditions corresponding to the satisfiability lemma

and the reducibility lemma. This fact is implicit in [AR03] and we make it explicit below. It is worth

remarking that Filmus [Fil19] establishes a lemma of similar flavour. However, in contrast to Filmus,

we do not introduce another layer of abstraction but rather state the lemma directly in terms of 𝑆.

Lemma 4.6. Let 𝐷 ∈ N+, let 𝒫 be a set of polynomials over F[𝑥1 , . . . , 𝑥𝑛] of degree at most 𝐷, and denote
by 𝑆 a 𝒫-support. If all monomials 𝑚 of degree at most 𝐷 satisfy that

1. Satisfiability condition: the set of axioms 𝑆(𝑚) is satisfiable; and

2. Reducibility condition: for all monomials 𝑚′, if 𝑆(𝑚′) ⊆ 𝑆(𝑚), then 𝑚′ is reducible modulo ⟨𝑆(𝑚′)⟩
if and only if 𝑚′ is reducible modulo ⟨𝑆(𝑚)⟩;

then any polynomial calculus refutation of 𝒫 over F requires degree strictly greater than 𝐷.

Proof. Let �̃� be the operator defined on monomials 𝑚 by �̃�(𝑚) = 𝑅⟨𝑆(𝑚)⟩(𝑚) and extended by

linearity to polynomials. Our goal is to show that �̃� is a degree-𝐷 pseudo-reduction for 𝒫. That
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is, according to Definition 2.1, we need to show that �̃�(1) = 1, that �̃� maps all polynomials in

𝒫 to 0, and that for every monomial 𝑚 of degree at most 𝐷 − 1 and every variable 𝑥, it holds

that �̃�(𝑥𝑚) = �̃�(𝑥�̃�(𝑚)). If we manage to show these properties, then we can appeal to Lemma 2.2

to reach the desired conclusion.

By the satisfiability condition we have that 𝑆(1) is satisfiable, that is, the set of polynomials 𝑆(1)
has a common root. This implies that the entire ideal ⟨𝑆(1)⟩ has a common root and, therefore, 1 is

not in ⟨𝑆(1)⟩ and hence is not reducible to 0 modulo ⟨𝑆(1)⟩. As 1 is the smallest monomial in the

order we conclude that �̃�(1) = 𝑅⟨𝑆(1)⟩(1) = 1.

To see that �̃� maps each polynomial 𝑝 ∈ 𝒫 to 0, let 𝑝 =
∑

𝑗 𝑎 𝑗𝑚 𝑗 . By Claim 4.2 it follows that

𝑝 ∈ 𝑆(𝑚1) and that 𝑆(𝑚 𝑗) ⊆ 𝑆(𝑚1) for all 𝑗. It therefore holds that

�̃�(𝑝) =
∑
𝑗

𝑎 𝑗𝑅⟨𝑆(𝑚𝑗)⟩(𝑚 𝑗) [by definition of �̃� and 𝑝] (4.1a)

=
∑
𝑗

𝑎 𝑗𝑅⟨𝑆(𝑚1)⟩(𝑚 𝑗) [by Claim 4.5 and the reducibility condition] (4.1b)

= 𝑅⟨𝑆(𝑚1)⟩
(∑

𝑗

𝑎 𝑗𝑚 𝑗

)
[by linearity of 𝑅⟨𝑆(𝑚1)⟩] (4.1c)

= 𝑅⟨𝑆(𝑚1)⟩(𝑝) [by definition of 𝑝] (4.1d)

= 0 , [since 𝑝 ∈ 𝑆(𝑚1)] (4.1e)

where we note that in order to apply the reducibility condition we use the assumption that 𝑝 has

degree at most 𝐷.

Finally, we need to show that for every monomial 𝑚 of degree at most 𝐷−1 and every variable 𝑥,

it holds that �̃�(𝑥𝑚) = �̃�(𝑥�̃�(𝑚)). Let �̃�(𝑚) = 𝑅⟨𝑆(𝑚)⟩(𝑚) =
∑

𝑗 𝑎 𝑗𝑚 𝑗 . By definition of �̃� we have that

�̃�(𝑥�̃�(𝑚)) =
∑
𝑗

𝑎 𝑗 �̃�(𝑥𝑚 𝑗) =
∑
𝑗

𝑎 𝑗𝑅⟨𝑆(𝑥𝑚𝑗)⟩(𝑥𝑚 𝑗) . (4.2)

We now argue that since 𝑚 is a monomial of degree at most 𝐷 − 1, reducing modulo ⟨𝑆(𝑥𝑚 𝑗)⟩ or

⟨𝑆(𝑥𝑚)⟩ results in the same polynomial. More formally, we claim that

𝑅⟨𝑆(𝑥𝑚𝑗)⟩(𝑥𝑚 𝑗) = 𝑅⟨𝑆(𝑥𝑚)⟩(𝑥𝑚 𝑗) (4.3)

follows from Claim 4.5 with 𝒬 = 𝑆(𝑥𝑚) and 𝑚′ = 𝑥𝑚 𝑗 . Let us check that the conditions of Claim 4.5

are satisfied. We need to check that

1. any monomial �̃� irreducible modulo ⟨𝑆(�̃�)⟩ satisfying that 𝑆(�̃�) ⊆ 𝑆(𝑥𝑚) is also irreducible

modulo ⟨𝑆(𝑥𝑚)⟩, and

2. 𝑆(𝑥𝑚 𝑗) ⊆ 𝑆(𝑥𝑚).

The latter follows immediately from Claim 4.4 and item 1 follows from the reducibility condition:

since the monomial 𝑥𝑚 has degree at most 𝐷, it holds for all monomials �̃�, if 𝑆(�̃�) ⊆ 𝑆(𝑥𝑚), then �̃�

is irreducible modulo ⟨𝑆(�̃�)⟩ if and only if �̃� is irreducible modulo ⟨𝑆(𝑥𝑚)⟩. We may thus conclude

(4.3) from Claim 4.5 applied with 𝒬 = 𝑆(𝑥𝑚) and 𝑚′ = 𝑥𝑚 𝑗 .

15



GRAPH COLOURING IS HARD ON AVERAGE FOR POLYNOMIAL CALCULUS

𝑈

Figure 1: A set 𝑈 with a 3-hop to the left, a 2-hop on top and a lasso to the right.

We finish the proof of Lemma 4.6 by noting that

�̃�
(
𝑥�̃�(𝑚)

)
=

∑
𝑗

𝑎 𝑗𝑅⟨𝑆(𝑥𝑚)⟩(𝑥𝑚 𝑗) [by (4.2) and (4.3)] (4.4a)

= 𝑅⟨𝑆(𝑥𝑚)⟩
(∑

𝑗

𝑎 𝑗𝑥𝑚 𝑗

)
[by linearity of 𝑅⟨𝑆(𝑥𝑚)⟩] (4.4b)

= 𝑅⟨𝑆(𝑥𝑚)⟩
(
𝑥𝑅⟨𝑆(𝑚)⟩(𝑚)

)
[as 𝑅⟨𝑆(𝑚)⟩(𝑚) =

∑
𝑗 𝑎 𝑗𝑚 𝑗] (4.4c)

= 𝑅⟨𝑆(𝑥𝑚)⟩(𝑥𝑚) [by Observation 2.3, using Claim 4.3] (4.4d)

= �̃�(𝑥𝑚) . (4.4e)

This establishes that �̃� is a degree-𝐷 pseudo-reduction for 𝒫 as defined in Definition 2.1. We may

thus appeal to Lemma 2.2 to obtain the desired polynomial calculus refutation degree lower bound

for 𝒫. This completes the proof. □

5 Closure for Graph Colouring

While the previous section was fairly generic and we made few assumptions on the polynomial

system 𝒫 to be refuted, we now turn our attention to the colouring formula and make the first steps

towards defining a support 𝑆 for it. The goal of this section is to introduce the closure of a vertex set,

a crucial notion in the definition of a support 𝑆 for the colouring formula.

In order to state the definition of our closure we need to introduce some terminology. Let

𝐺 = (𝑉, 𝐸) be a graph. A walk of length 𝜏 in 𝐺 is a tuple of vertices (𝑣1 , . . . , 𝑣𝜏+1) satisfying

(𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐸 for all 𝑖 ∈ [𝜏]. A simple path is a walk where all vertices are distinct and a simple cycle is

a walk (𝑣1 , . . . , 𝑣𝜏+1) of length 𝜏 ≥ 3 where 𝑣1 = 𝑣𝜏+1 and all other vertices are distinct.

Suppose the set of vertices 𝑉 has a linear order ≺ on 𝑉 . An increasing (decreasing) path in 𝐺 is

a simple path (𝑣1 , . . . , 𝑣𝜏) where 𝑣𝑖 ≺ 𝑣𝑖+1 (𝑣𝑖 ≻ 𝑣𝑖+1) for all 𝑖 ∈ [𝜏 − 1]. For vertices 𝑢, 𝑣 ∈ 𝑉 we

say that 𝑣 is a descendant of 𝑢 if there exists a decreasing path from 𝑢 to 𝑣, and for a set of vertices

𝑈 ⊆ 𝑉 we say that 𝑣 is a descendant of 𝑈 if it is a descendant of some vertex in 𝑈 . We write Desc(𝑈)
to denote the set of all descendants of 𝑈 . We define every vertex to be a descendant of itself so that

𝑈 ⊆ Desc(𝑈).
The definition of our closure, besides the notion of descendants, also requires the notions of

a hop and a lasso: a 𝜏-hop with respect to a set 𝑈 ⊆ 𝑉 is a simple path or a simple cycle of length 𝜏
with the property that the two endpoints are both contained in 𝑈 (in the case of cycles, the two

endpoints coincide), while all other vertices are not in 𝑈 . Similarly a lasso with respect to 𝑈 is a paw

graph, that is, a walk (𝑣1 , 𝑣2 , 𝑣3 , 𝑣4 , 𝑣5)with 𝑣2 = 𝑣5 and all other vertices being distinct, such that

only 𝑣1 is in 𝑈 . See Figure 1 for an example of a set with some hops and a lasso.
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Algorithm 1 A procedure to obtain the closure of a given set 𝑈 .

1: procedure Closure(𝑈)

2: 𝑊0 ← Desc(𝑈)
3: 𝑖 ← 0

4: while exists 2-, 3-, 4-hop or lasso 𝑄𝑖+1 with respect to 𝑊𝑖 do
5: 𝑊𝑖+1 ← Desc(𝑊𝑖 ∪𝑉(𝑄𝑖+1))
6: 𝑖 ← 𝑖 + 1

7: 𝑊end ←𝑊𝑖

8: return 𝑊end

With these notions in place we can now define a closure of a set 𝑈 ⊆ 𝑉 . After showing the

closure is unique, we define a process that given 𝑈 constructs its closure and then prove that in

sparse graphs the closure of 𝑈 satisfies two important properties:

1. it is the set of descendants of a set that is not much larger than 𝑈 , as long as 𝑈 itself is not too

large, and,

2. if we remove the closure from the graph, then any small enough vertex set has a specially

structured proper 3-colouring.

These two properties will then be used to prove that the satisfiability condition and the reducibility

condition which will allow us to apply Lemma 4.6.

Definition 5.1 (Closure). Let 𝐺 = (𝑉, 𝐸) be a graph and let 𝑈 ⊆ 𝑉 . We say that 𝑈 is closed if

𝑈 = Desc(𝑈) and there are no 2-, 3-, 4-hops or lassos with respect to 𝑈 . A closure of 𝑈 is any

minimal closed set that contains 𝑈 .

Proposition 5.2. Every set of vertices has a unique closure.

Proof. Suppose there are two distinct closures 𝑊1 and 𝑊2 of 𝑈 . As 𝑊1 as well as 𝑊2 contains 𝑈 it

holds that 𝑈 ⊆ 𝑊∩ = 𝑊1 ∩𝑊2. However, by minimality, 𝑊∩ is not a closure of 𝑈 and hence either

there is a 2-, 3-, 4-hop or lasso 𝑄 with respect to 𝑊∩ or there is a vertex 𝑣 in Desc(𝑊∩) that is not

in 𝑊∩.

In the first case this implies that some subgraph of 𝑄 is either a 2-, 3-, 4-hop or a lasso with

respect to 𝑊1 or 𝑊2 since a subgraph of a hop or lasso is again hop or a lasso. In the second case

this implies that 𝑊1 ⊉ Desc(𝑊1) or 𝑊2 ⊉ Desc(𝑊2), since 𝑣 ∈ Desc(𝑊1) ∩ Desc(𝑊2). Either way,

this contradicts the assumption that both 𝑊1 and 𝑊2 are closed. □

In light of Proposition 5.2, for a set 𝑈 we write Cl(𝑈) to denote the unique closure of 𝑈 . In order

to establish a bound on the size of the closure the algorithmic, but otherwise equivalent, description

in Algorithm 1 will be useful.

Clearly the set of vertices 𝑊end returned by Algorithm 1 is closed and minimal by construction:

only adding part of a hop or a lasso results in a smaller hop. Hence Cl(𝑈) = 𝑊end by Proposition 5.2.

The main property we use of our notion of closure is that the neighbourhood of a closed set 𝑊 is

very structured: since there are no 2-hops with respect to 𝑊 , every vertex in 𝑁(𝑊) \𝑊 has a single

neighbour in 𝑊 , and since there are no 3-hops with respect to 𝑊 the neighbourhood of 𝑊 is an

independent set. The absence of longer 4-hops and lassos imply similar, more technical properties

for sets of vertices that are connected to 𝑊 via short paths. We leverage this structure to argue that

after removing a closed set 𝑊 from a sparse graph, all small vertex sets have a proper 3-colouring
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𝑊

𝑈

𝑁𝑈\𝑊 (𝑊)
𝐵𝑢

Figure 2: A depiction of the graphs 𝐵𝑢 as defined in the proof of Lemma 5.3.

with the additional property that the neighbours of each vertex at distance 1 from 𝑊 are coloured

with a single colour.

Lemma 5.3. Suppose that 𝐺 = (𝑉, 𝐸) is (ℓ , 1/3Δ)-sparse. Let 𝑈,𝑊 ⊆ 𝑉 be vertex sets such that |𝑈 | ≤ ℓ ,
𝑊 is closed, and every vertex in 𝑁𝑈\𝑊 (𝑊) has degree at most Δ in 𝐺[𝑈 \𝑊]. Then there exists a proper
3-colouring of the subgraph 𝐺[𝑈 \ (𝑊 ∪ 𝑁𝑈 (𝑊))] such that for every 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊), the set 𝑁𝑈\𝑊 (𝑢) is
monochromatic.

Proof. We start the proof by establishing the following two properties.

1. First, since there are no lassos in 𝑈 with respect to 𝑊 , for every vertex 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊), it holds

that the neighbours𝑁𝑈\𝑊 (𝑢)of𝑢 are an independent set. Hence the graph𝐵𝑢 = 𝐺[{𝑢} ∪ 𝑁𝑈\𝑊 (𝑢)]
is a star with center 𝑢 and leaves 𝑁𝑈\𝑊 (𝑢).

2. Second, as there are no 3-, 4-hops in 𝑈 with respect to 𝑊 , the graphs {𝐵𝑢 | 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊)} as

just defined are pairwise vertex disjoint.

See Figure 2 for an illustration.

Let 𝐺′ be the graph obtained from 𝐺[𝑈 \𝑊] by contracting each star 𝐵𝑢 to a vertex �̃�. Note that

from a 3-colouring �̃� of 𝐺′ we can define a 3-colouring 𝜒 of 𝐺[𝑈 \ (𝑊 ∪ 𝑁𝑈 (𝑊))] with the desired

property: we claim that the 3-colouring 𝜒 : 𝑈 \ (𝑊 ∪ 𝑁𝑈 (𝑊)) → {1, 2, 3} defined by

𝜒(𝑤) =
{
�̃�(�̃�) if 𝑤 is a leaf of a star 𝐵𝑢 ,

�̃�(𝑤) otherwise

(5.1)

is a proper 3-colouring of 𝐺[𝑈 \ (𝑊 ∪ 𝑁𝑈 (𝑊))]. Note that since the graphs {𝐵𝑢 | 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊)}
are pairwise disjoint, the colouring 𝜒 assigns precisely one colour per vertex and, as each of the

induced graphs 𝐵𝑢 is a star, the colouring is proper. Finally, for all vertices 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊) the set

𝑁𝑈\𝑊 (𝑢) is monochromatic by construction.

It remains to argue that 𝐺′ is 3-colourable. Here we want to use the extreme sparsity of 𝐺: we

enforce such extreme sparsity on 𝐺 that even though 𝐺′ is obtained from 𝐺 by contractions and

hence has higher edge density than 𝐺, the graph 𝐺′ is still (|𝑉(𝐺′)|, 1/3)-sparse. Thus by Lemma 2.6

it follows that 𝐺′ is 3-colourable.

Let us verify that 𝐺′ is indeed (|𝑉(𝐺′)|, 1/3)-sparse, that is, we need to argue that every subset

𝑇′ ⊆ 𝑉(𝐺′) satisfies |𝐸(𝑇′)| ≤ (1 + 1/3)|𝑇′ |. Fix such a subset 𝑇′ ⊆ 𝑉(𝐺′) and let 𝑇 be the preimage

of 𝑇′ in the contraction. We estimate |𝐸(𝑇′)| in terms of |𝐸(𝑇)|. Let {𝑢1 , . . . , 𝑢𝑡} = 𝑇 ∩ 𝑁𝑈\𝑊 (𝑊).
Observe that in 𝑇′ each star 𝐵𝑢𝑖 is contracted to a vertex �̃�𝑖 . Let 𝑠 =

∑𝑡
𝑖=1
(|𝑉(𝐵𝑢𝑖 )| − 1). It holds that

𝑠 ≤ (Δ − 1)𝑡 ≤ (Δ − 1)|𝑇′ | , (5.2)
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where we use the assumption that the degree of every vertex 𝑢𝑖 in 𝐺[𝑈 \𝑊] is bounded by Δ.

Furthermore, it holds that |𝑇 | = |𝑇′ | + 𝑠 and, because all the edges in the stars 𝐵𝑢𝑖 are contracted,

that |𝐸(𝑇)| ≥ |𝐸(𝑇′)| + 𝑠.

By assumption, 𝐺 is (ℓ , 1/3Δ)-sparse and |𝑇 | ≤ |𝑈 | ≤ ℓ . This implies that |𝐸(𝑇)| ≤ (1 + 1/3Δ)|𝑇 |
which, if combined with the above, gives |𝐸(𝑇′)| + 𝑠 ≤ (1 + 1/3Δ)(|𝑇′ | + 𝑠). Using (5.2) we may

conclude that

|𝐸(𝑇′)| ≤
(
1 + 1

3Δ

)
|𝑇′ | + 𝑠

3Δ
≤

(
1 + 1

3Δ

)
|𝑇′ | + (Δ − 1)|𝑇′ |

3Δ
=

(
1 + 1

3

)
|𝑇′ | . (5.3)

Therefore, 𝐺′ is (|𝐺′ |, 1/3)-sparse and thus, by Lemma 2.6, it follows that 𝐺′ is 3-colourable. □

The second property of the closure that we need is that we have some control on how large it is,

which is necessary to show that the satisfiability condition of Lemma 4.6 holds. We establish an

upper bound on the size of the closure by proving that for sparse graphs the closure of a not too

large set 𝑈 is the set of descendants of a set 𝑍 that is not much larger than 𝑈 , as stated in the lemma

below. Combining this with Lemma 2.6, it follows that in order to establish that the set Cl(𝑈) is
3-colourable—and thus Col(𝐺[Cl(𝑈)], 3) is satisfiable—it is sufficient to prove an upper bound on

the size of the set of descendants of 𝑍. Jumping ahead a bit, we will be able to establish such an

upper bound in the next section by choosing an appropriate ordering of the vertices.

Lemma 5.4. Suppose that 𝐺 = (𝑉, 𝐸) has a linear order on 𝑉 and is (ℓ , 1/3𝑎)-sparse for 𝑎 ≥ 2. Let 𝑈 ⊆ 𝑉

be a set of size |𝑈 | ≤ ℓ/25𝑎 such that any decreasing path in 𝐺[𝑉 \𝑈] has at most 𝑎 vertices. Then there
exists a set 𝑍 ⊆ 𝑉 such that 𝑍 ⊇ 𝑈 , |𝑍 | ≤ 25|𝑈 | and Cl(𝑈) = Desc(𝑍).

Proof. Recall from Algorithm 1 that the closure of a set 𝑈 ⊆ 𝑉 can be defined to be the final set in a

sequence (𝑊0 ,𝑊1 , . . . ,𝑊end), where 𝑊0 = Desc(𝑈) and 𝑊𝑖+1 is obtained from 𝑊𝑖 by appending a

2-, 3-, 4-hop or a lasso with respect to 𝑊𝑖 and then taking the descendants of the resulting set of

vertices. A key observation is that adding such hops or lassos to 𝑊𝑖 adds more edges to the induced

graph 𝐺[𝑊𝑖] than vertices, thus increasing the edge density. As the graph 𝐺 is locally sparse we can

conclude that the sequence (𝑊0 ,𝑊1 , . . . ,𝑊end) needs to be rather short, which allows us to argue

the size upper bound on 𝑍.

In the following, for each 𝑊𝑖 we identify a vertex set 𝑈𝑖 such that the edge density of the

graph 𝐺[𝑈𝑖] increases with 𝑖. The idea is as follows. Since the sets 𝑈𝑖 grow very slowly and thus

the local sparsity always applies, we will be able to conclude that the number of iterations in the

construction of Cl(𝑈) is bounded. As the vertices in 𝑊𝑖 are the descendants of the set 𝑈𝑖 , it holds

that the vertices in 𝑊end are the descendants of a set which is not much larger than the initial set 𝑈 ,

whereby the lemma follows.

Let us now implement this plan. We define 𝑈𝑖 inductively as follows. Let 𝑈0 = 𝑈 and let 𝑄𝑖

be the hop or lasso added to 𝑊𝑖−1 at iteration 𝑖 ≥ 1. If we denote by 𝑢 and 𝑣 the endpoints of 𝑄𝑖

(where we could have 𝑢 = 𝑣) and let 𝑃𝑢 and 𝑃𝑣 be two shortest decreasing paths from 𝑈𝑖−1 to 𝑢

and 𝑣, respectively, then it holds that 𝑈𝑖 = 𝑈𝑖−1 ∪𝑉(𝑃𝑢 ∪ 𝑃𝑣 ∪𝑄𝑖). See Figure 3 for an illustration.

For our definition of 𝑈𝑖 to be meaningful, we need to establish that the paths 𝑃𝑢 and 𝑃𝑣 always

exist.

Claim 5.5. For every vertex 𝑣 in 𝑊𝑖 , there exists a decreasing path in 𝑊𝑖 from some vertex in 𝑈𝑖 to 𝑣.

Proof. The proof is by induction on 𝑖. The base case 𝑖 = 0 holds because 𝑊0 = Desc(𝑈0). For the

induction step, suppose that the claim holds for 𝑖 − 1. By definition, the vertices in 𝑊𝑖 \𝑊𝑖−1 are

descendants of a vertex in 𝑄𝑖 , and all vertices in 𝑄𝑖 are contained in 𝑈𝑖 . The claim follows. □
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𝑊𝑖−1 = Desc(𝑈𝑖−1) 𝑊𝑖 = Desc(𝑈𝑖)
𝑈𝑖−1

𝑢

𝑣

𝑄𝑖

𝑃𝑣

𝑈𝑖

Figure 3: A depiction of the construction of 𝑈𝑖 as defined in the proof of Lemma 5.4.

Next, we show that |𝑈𝑖 | grows slowly with 𝑖 and that the edge density |𝐸(𝑈𝑖)|/|𝑈𝑖 | exceeds the

sparsity threshold (1 + 1/3𝑎) after a small number of iterations.

Claim 5.6. For 𝑈𝑖 as commented above it holds that |𝑈𝑖 \𝑈𝑖−1 | ≤ 2𝑎 + |𝑉(𝑄𝑖)| − 4 and |𝐸(𝑈𝑖)| ≥
|𝐸(𝑈𝑖−1)| + |𝑈𝑖 \𝑈𝑖−1 | + 1.

Proof. Let 𝐹 be the graph defined by the union of the edges in 𝑃𝑢 , 𝑃𝑣 and 𝑄𝑖 . Since the paths 𝑃𝑢 and

𝑃𝑣 are decreasing paths, according to the statement of Lemma 5.4, they contain at most 𝑎 vertices

each, so 3 ≤ |𝑉(𝐹)| ≤ 2𝑎 + |𝑉(𝑄𝑖)| − 2. Moreover, the endpoints of 𝐹 are contained in 𝑈𝑖−1 and all

other vertices in 𝐹 are outside of 𝑈𝑖−1. By our choice of 𝑃𝑢 and 𝑃𝑣 there are two cases, depending

on whether 𝐹 contains a cycle or not.

Case 1: If there is no cycle in 𝐹, then |𝑉(𝐹) ∩𝑈𝑖−1 | = 2 so |𝑈𝑖 \𝑈𝑖−1 | = |𝑉(𝐹)| − 2. Moreover

|𝐸(𝐹)| ≥ |𝑉(𝐹)| − 1 since 𝐹 is connected.

Case 2: If 𝐹 contains a cycle, then |𝑉(𝐹) ∩ 𝑈𝑖−1 | = 1, hence |𝑈𝑖 \ 𝑈𝑖−1 | = |𝑉(𝐹)| − 1. In

addition, |𝐸(𝐹)| ≥ |𝑉(𝐹)| since 𝐹 is connected and contains a cycle. Moreover, it holds that

|𝑉(𝐹)| ≤ 2𝑎 + |𝑉(𝑄𝑖)| − 3.

Since in both cases the number of added vertices is bounded |𝑈𝑖 \𝑈𝑖−1 | ≤ 2𝑎 + |𝑉(𝑄𝑖)| − 4

and the number of edges in the subgraph induced by 𝑈𝑖 can be lower bounded |𝐸(𝑈𝑖)| ≥
|𝐸(𝑈𝑖−1)| + |𝑈𝑖 \𝑈𝑖−1 | + 1 the statement follows. □

Recall that we want to show that the edge density of the induced subgraph 𝐺[𝑈𝑖] increases

with 𝑖. Since 𝐺 is sparse it thus follows that the number of iterations in the construction of Cl(𝑈) is
bounded.

Let 𝑠 = |𝑈 |. Towards contradiction, suppose that 𝑖 ≥ 5𝑠 + 1. Note that |𝑉(𝑄𝑖)| ≤ 5, so by

Claim 5.6 we have |𝑈𝑖 \𝑈𝑖−1 | ≤ 2𝑎 + 1. This implies that

|𝑈5𝑠+1 | = 𝑠 +
5𝑠+1∑
𝑖=1

|𝑈𝑖 \𝑈𝑖−1 | ≤ 𝑠 + (5𝑠 + 1)(2𝑎 + 1) < 16𝑎 |𝑈 | < ℓ , (5.4)

and therefore, since 𝐺 is (ℓ , 1/3𝑎)-sparse, it holds that |𝐸(𝑈5𝑠+1)|/|𝑈5𝑠+1 | ≤ 1 + 1/3𝑎. However, by
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Claim 5.6, we have that

|𝐸(𝑈5𝑠+1)|
|𝑈5𝑠+1 |

=
|𝐸(𝑈)| +∑

5𝑠+1

𝑖=1
|𝐸(𝑈𝑖) \ 𝐸(𝑈𝑖−1)|

𝑠 +∑
5𝑠+1

𝑖=1
|𝑈𝑖 \𝑈𝑖−1 |

(5.5a)

≥
|𝐸(𝑈)| +∑

5𝑠+1

𝑖=1
(|𝑈𝑖 \𝑈𝑖−1 | + 1)

𝑠 +∑
5𝑠+1

𝑖=1
|𝑈𝑖 \𝑈𝑖−1 |

(5.5b)

≥
0 +∑

5𝑠+1

𝑖=1
(2𝑎 + 2)

𝑠 +∑
5𝑠+1

𝑖=1
(2𝑎 + 1)

(5.5c)

> 1 + 1

3𝑎
, (5.5d)

where for (5.5b) we use that |𝐸(𝑈𝑖)| ≥ |𝐸(𝑈𝑖−1)| + |𝑈𝑖 \𝑈𝑖−1 | + 1, and then for (5.5c), we observe that

the fraction decreases as

∑
5|𝑈 |+1

𝑖=1
|𝑈𝑖\𝑈𝑖−1 | increases and thus, along with the bound |𝑈𝑖\𝑈𝑖−1 | ≤ 2𝑎+1,

we obtain the claimed inequality. For the final inequality (5.5d) we use 𝑎 ≥ 2. This contradicts the

assumption that 𝐺 is (ℓ , 1/3𝑎)-sparse and it hence follows that 𝑖 ≤ 5|𝑈 |.
Let 𝑖end be the last iteration and let 𝑍 = 𝑈 ∪⋃

𝑗≤𝑖
end

𝑉(𝑄 𝑗). We claim that Desc(𝑍) = Cl(𝑈) and

|𝑍 | ≤ 25|𝑈 |. Indeed, at iteration 𝑖 in the construction, 𝑊𝑖 is the set of descendants of 𝑈 ∪⋃
𝑗≤𝑖 𝑉(𝑄 𝑗),

and the hop or lasso 𝑄𝑖 added to 𝑊𝑖−1 contains at most 4 vertices not already in 𝑊𝑖 . Therefore,

Desc(𝑍) = Cl(𝑈) and since 𝑖end ≤ 5|𝑈 | it follows that |𝑍 | ≤ |𝑈 | + 4 · 5|𝑈 | ≤ 25|𝑈 |. □

6 A Lower Bound for 3-Colourability on Sparse Random Graphs

We are now ready to prove a linear degree lower bound for polynomial calculus refutations of the

claim that sparse random graphs are 3-colourable. In fact, we prove something slightly stronger:

we show that if a graph is locally very sparse and has only few vertices of high degree, then it is

hard for polynomial calculus to refute the claim that the graph is 3-colourable.

Theorem 6.1 (Main theorem). Let 𝑐,Δ, 𝑘 and ℓ be integers such that 𝑐 > 𝑘 ≥ 3 and let 𝐺 = (𝑉, 𝐸) be a
𝑐-colourable, (ℓ , 1/3Δ)-sparse graph. For any set 𝑇Δ such that 𝐺[𝑉 \ 𝑇Δ] has maximum degree at most Δ,
any polynomial calculus refutation of Col(𝐺, 𝑘) over any field requires degree ℓ/50Δ𝑐−1 − |𝑇Δ |.

We defer the proof of Theorem 6.1 to Section 6.1, and first show how our results follow from

this theorem. Intuitively, the above theorem holds because sparse graphs are locally 3-colourable

(see Lemma 2.6) and hence the colouring formula defined over sparse graphs is locally satisfiable.

Before diving into the proof of Theorem 6.1, let us see how we can use Lemma 2.7 to obtain degree

lower bounds for random graphs. Note that the condition on the graph 𝐺 in Theorem 6.1 is not

inherently random. However, to the best of our knowledge, there are no explicit constructions

of graphs that are this sparse. In fact, it is stated as an open problem in the survey by Hoory et

al. [HLW06, Open problem 10.8] to explicitly construct such graphs.

Recall from Lemma 2.8 that if 𝑑 ≥ 6, then graphs sampled from the Erdős-Rényi random graph

distribution G(𝑛, 𝑑/𝑛) or the random 𝑑-regular graph distribution G𝑛,𝑑 are asymptotically almost

surely not 3-colourable. In light of this, the below statements are interesting in the parameter

regime 𝑑 ≥ 6.

Corollary 6.2 (Colouring lower bound for random regular graphs). There exists an absolute constant
𝐶 such that for positive integers 𝑛 and 𝑑 ≥ 2 satisfying 6𝑑3 ≤ log 𝑛 the following holds. If 𝐺 is a graph
sampled from G𝑛,𝑑 and 𝑘 ≥ 3 is an integer, then asymptotically almost surely every polynomial calculus
refutation of Col(𝐺, 𝑘) over any field requires degree 𝑑−𝐶𝑑 · 𝑛.
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Proof. Let Δ = 𝑑 and 𝑇Δ = ∅. By Lemma 2.8 we have that asymptotically almost surely 𝐺

is 𝑐-colourable for 𝑐 ≤ 2𝑑/log 𝑑, and by Lemma 2.7 that asymptotically almost surely 𝐺 is

(ℓ , 1/3𝑑)-sparse for ℓ = (8𝑑)−6𝑑𝑛. Note that to apply Lemma 2.7, we use 𝜀 = 1/3𝑑 and 𝛿 = 1/2. We

can now apply Theorem 6.1 and conclude that any polynomial calculus refutation of Col(𝐺, 𝑘), over

any field, requires degree ℓ/50Δ𝑐−1 − |𝑇Δ | = (8𝑑)−6𝑑𝑛/50𝑑2𝑑/log 𝑑−1 ≥ 𝑑−𝐶𝑑 · 𝑛, using that 𝐶 is a large

enough constant. □

To prove the result for Erdős-Rényi random graphs we need the additional property that

asymptotically almost surely there exists a small set 𝑇Δ of vertices such that 𝐺[𝑉 \𝑇Δ] has maximum

degree at most Δ.

Lemma 6.3. Let 𝐺 = (𝑉, 𝐸) be a graph sampled from G(𝑛, 𝑑/𝑛) where 𝑑 = O(log 𝑛). If Δ ≥ 𝑑 is such that
(Δ/𝑒𝑑)Δ = o(𝑛), then asymptotically almost surely there exists a set 𝑇Δ of size at most (𝑒𝑑/Δ)Δ · 2𝑒𝑛 such
that the maximum degree in 𝐺[𝑉 \ 𝑇Δ] is at most Δ − 1.

The proof of Lemma 6.3 is mostly a standard calculation and we present it in Appendix C for

completeness. We are now ready to prove our lower bound for Erdős-Rényi random graphs.

Corollary 6.4 (Colouring lower bound for Erdős-Rényi random graphs). There exists an absolute
constant 𝐶 such that for 𝑛 ∈ N+ and 𝑑 ∈ R+ satisfying that 𝑑 > 1 and 𝑑5 = o(log 𝑛) the following holds.
If 𝐺 is a graph sampled from G(𝑛, 𝑑/𝑛) and 𝑘 ≥ 3 is an integer, then asymptotically almost surely every
polynomial calculus refutation of Col(𝐺, 𝑘) over any field requires degree 𝑑−𝐶𝑑5 · 𝑛.

Proof. Fix Δ = (5𝑑)5. By Lemma 2.8 we have that asymptotically almost surely 𝐺 is 𝑐-colourable

for 𝑐 ≤ 2𝑑/log 𝑑, and by Lemma 2.7 it holds asymptotically almost surely that 𝐺 is (ℓ , 𝜀)-sparse

for ℓ = (4𝑑)−4(5𝑑)5𝑛 and 𝜀 = 1/3Δ. Note that to apply Lemma 2.7, we can use 𝛿 = 1/4, so that

(1 + 𝜀)(1 + 𝛿)/𝜀 ≤ 4Δ.

Let 𝑇Δ ⊆ 𝑉 be a minimum size set such that 𝐺[𝑉 \ 𝑇Δ] has maximum degree at most Δ. By

Lemma 6.3, we have that

|𝑇Δ | ≤ (𝑒𝑑/Δ)Δ · 2𝑒𝑛 =
2𝑒𝑛

(55𝑑4/𝑒)(5𝑑)5
<

𝑛

2 · (5𝑑)4(5𝑑)5
, (6.1)

where the last inequality follows since (5/𝑒)(5𝑑)5 ≥ (5/𝑒)55

> 4𝑒.

We can now apply Theorem 6.1 and conclude that any polynomial calculus refutation of

Col(𝐺, 𝑘), over any field, requires degree

ℓ

50Δ𝑐−1

− |𝑇Δ | ≥
𝑛

50 · (5𝑑)10𝑑/log 𝑑 · (4𝑑)4(5𝑑)5
− 𝑛

2 · (5𝑑)4(5𝑑)5
(6.2a)

≥ 𝑛

(5𝑑)4(5𝑑)5
− 𝑛

2 · (5𝑑)4(5𝑑)5
(6.2b)

≥ 𝑑−𝐶𝑑5 · 𝑛 , (6.2c)

where for the second inequality we use that 50 · (5𝑑)10𝑑/log 𝑑 < 2
10 · (10)10𝑑 ≤ 2

(5𝑑)5
and for the last

inequality we use that 𝐶 is a large enough constant. □

6.1 Proof of Main Theorem

Fix 𝑇Δ such that 𝐺[𝑉 \ 𝑇Δ] has maximum degree at most Δ and let 𝑋 =
{
𝑥𝑣,𝑖 | 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ [𝑘]

}
.
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6 A Lower Bound for 3-Colourability on Sparse Random Graphs

To prove Theorem 6.1, our goal is to define a Col(𝐺, 𝑘)-support 𝑆 that maps monomials in the

polynomial ring F[𝑋] to subsets of Col(𝐺, 𝑘) such that Lemma 4.6 holds. For brevity, given a set

𝑈 ⊆ 𝑉 we denote the ideal ⟨Col(𝐺[𝑈], 𝑘)⟩ by ⟨𝑈⟩ and refer to the polynomials in Col(𝐺[𝑈], 𝑘) as

the generators of ⟨𝑈⟩.
Given a monomial 𝑚, we let 𝑉(𝑚) denote the set of vertices mentioned by the variables in 𝑚.

Moreover, given a linear order ≺v on the vertices, we say an admissible order ≺ of the monomials

over the variables 𝑋 of Col(𝐺, 𝑘) respects ≺v if for any colours 𝑖 , 𝑗 ∈ [𝑘] it holds that 𝑥𝑢,𝑖 ≺ 𝑥𝑣,𝑗
whenever 𝑢 ≺v 𝑣.

The main technical lemma we need in order to prove Theorem 6.1 is the reducibility lemma

below, from which the reducibility condition of Lemma 4.6 will follow. The reducibility lemma

implies, in particular, that reducing a monomial 𝑚 modulo ⟨𝑊⟩ for any closed set 𝑊 ⊇ 𝑉(𝑚) ∪ 𝑇Δ
is the same as reducing modulo ⟨𝑈⟩ for any superset 𝑈 ⊇ 𝑊 that is not too large.

Lemma 6.5 (Reducibility lemma). Let 𝐺 = (𝑉, 𝐸) be a (ℓ , 1/3Δ)-sparse graph with a linear order ≺v
on 𝑉 and consider an admissible order that respects ≺v. If the vertex sets 𝑊 ⊆ 𝑈 satisfy hat 𝑊 is closed,
that the size of 𝑈 is |𝑈 | ≤ ℓ , and that every vertex in 𝑁𝑈\𝑊 (𝑊) has degree at most Δ in 𝐺[𝑈 \𝑊], then for
every monomial 𝑚 such that 𝑉(𝑚) ⊆ 𝑊 , it holds that 𝑚 is reducible modulo ⟨𝑈⟩ if and only if 𝑚 is reducible
modulo ⟨𝑊⟩.

We postpone the proof of this lemma to the end of this section. In order to ensure that we are

always reducing a monomial 𝑚 by ⟨𝑊⟩ for some closed set 𝑊 that contains 𝑉(𝑚) and is such that

every vertex in 𝑁𝑈\𝑊 (𝑊) has degree at most Δ in 𝐺[𝑈 \𝑊] for all 𝑈 ⊇ 𝑊 , we define the closure of

a monomial to include the set 𝑇Δ.

Definition 6.6 (Monomial closure). The monomial closure of a monomial 𝑚, denoted by ClΔ(𝑚), is

the vertex set Cl(𝑉(𝑚) ∪ 𝑇Δ).

Looking ahead, we will prove Theorem 6.1 by showing that the map 𝑆 defined by mapping

monomials 𝑚 to Col(𝐺[ClΔ(𝑚)], 𝑘) ⊆ Col(𝐺, 𝑘) is a Col(𝐺, 𝑘)-support and appealing to Lemma 4.6.

To establish the satisfiability condition in Lemma 4.6, we must prove that Col(𝐺[ClΔ(𝑚)], 𝑘) is

satisfiable whenever 𝑚 is of low degree. Since 𝐺 is sparse, by Lemma 2.6, it suffices to show that the

monomial closure of 𝑚 is not too large. This, in turn, will follow from the next lemma. Lemma 6.7

is an almost direct consequence of Lemma 5.4 and states that under suitable technical assumptions,

the size of the monomial closure of 𝑚 is closely related to the degree of 𝑚 and the size of 𝑇Δ.

Lemma 6.7 (Satisfiability lemma). Let 𝑎,Δ, ℓ ∈ N+ such that 𝑎 ≥ 2 and let 𝐺 = (𝑉, 𝐸) be a
(ℓ , 1/3𝑎)-sparse graph with a linear order on 𝑉 . Let 𝑇Δ ⊆ 𝑉 be such that 𝐺[𝑉 \ 𝑇Δ] has maximum degree at
most Δ, Desc(𝑇Δ) ⊆ 𝑇Δ, and that any decreasing path in 𝐺[𝑉 \ 𝑇Δ] has at most 𝑎 vertices. Then it holds for
any monomial 𝑚 that if Deg(𝑚) + |𝑇Δ | ≤ ℓ/25𝑎, then |ClΔ(𝑚)| ≤ 50Δ𝑎−1 · (Deg(𝑚) + |𝑇Δ |).

Proof. Let 𝑈 = 𝑉(𝑚) ∪ 𝑇Δ and note that ClΔ(𝑚) = Cl(𝑈). Note that |𝑈 | = |𝑉(𝑚) ∪ 𝑇Δ | ≤ Deg(𝑚) +
|𝑇Δ | ≤ ℓ/25𝑎 and that any decreasing path in 𝐺[𝑉 \𝑈] has at most 𝑎 vertices. We can therefore

apply Lemma 5.4 to deduce that there exists a set 𝑍 ⊆ 𝑉 such that 𝑈 ⊆ 𝑍, Cl(𝑈) = Desc(𝑍) and

|𝑍 | ≤ 25|𝑈 |.
Note that since 𝑍 ⊇ 𝑇Δ and all the descendants of vertices in 𝑇Δ are in 𝑇Δ, we have that

Desc(𝑍) = (Desc(𝑍 \ 𝑇Δ) \ 𝑇Δ) ∪ 𝑇Δ. Moreover, since any vertex 𝑣 ∈ 𝑍 \ 𝑇Δ has degree at most Δ in

𝐺[𝑉\𝑇Δ], and since any decreasing path in𝐺[𝑉\𝑇Δ]has at most 𝑎 vertices, it follows that 𝑣 has at most

2Δ𝑎−1
descendants in 𝑉 \ 𝑇Δ. We thus have the upper bound |(Desc(𝑍 \ 𝑇Δ) \ 𝑇Δ)| ≤ 2Δ𝑎−1 · |𝑍 \ 𝑇Δ |

from which we conclude that

|Desc(𝑍)| ≤ 2Δ𝑎−1 · |𝑍 \ 𝑇Δ | + |𝑇Δ | ≤ 2Δ𝑎−1 · |𝑍 | ≤ 50Δ𝑎−1 · (Deg(𝑚) + |𝑇Δ |) ,
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as claimed in the lemma. □

We are now ready to prove our main theorem, which we restate here for convenience.

Theorem 6.1 (Main theorem, restated). Let 𝑐,Δ, 𝑘 and ℓ be integers such that 𝑐 > 𝑘 ≥ 3 and let
𝐺 = (𝑉, 𝐸) be a 𝑐-colourable, (ℓ , 1/3Δ)-sparse graph. For any set set 𝑇Δ such that 𝐺[𝑉 \ 𝑇Δ] has maximum
degree at most Δ, then any polynomial calculus refutation of Col(𝐺, 𝑘) over any field requires degree
ℓ/50Δ𝑐−1 − |𝑇Δ |.

Proof of Theorem 6.1. We start by defining a linear order on 𝑉 . Let 𝜒𝑐 : 𝑉 \ 𝑇Δ → [𝑐] be a proper

𝑐-colouring of 𝐺[𝑉 \𝑇Δ]. We let the order ≺v on 𝑉 be any linear order that satisfies 𝑢 ≺v 𝑣 whenever

𝑢 ∈ 𝑇Δ and 𝑣 ∈ 𝑉 \ 𝑇Δ and whenever 𝑢, 𝑣 ∈ 𝑉 \ 𝑇Δ and 𝜒𝑐(𝑢) < 𝜒𝑐(𝑣). Observe that any decreasing

path in 𝐺[𝑉 \ 𝑇Δ] has at most 𝑐 vertices and that Desc(𝑇Δ) ⊆ 𝑇Δ.

We can define an admissible ordering ≺ of the monomials over the variables {𝑥𝑣,𝑖}𝑣∈𝑉,𝑖∈[𝑘] of

Col(𝐺, 𝑘) that respects ≺v as follows: for distinct vertices 𝑢, 𝑣 let 𝑥𝑢,𝑖 ≺ 𝑥𝑣,𝑗 whenever 𝑢 ≺v 𝑣 and

for variables associated with the same vertex 𝑢 let 𝑥𝑢,𝑖 ≺ 𝑥𝑢,𝑗 whenever 𝑖 < 𝑗. With this order fixed

we then obtain the admissible ordering on monomials by first ordering the monomials by degree

and then lexicographically according to the ordering on the variables.

To prove Theorem 6.1 we use Lemma 4.6. For this, we show that the map𝑆 : 𝑚 ↦→ Col(𝐺[ClΔ(𝑚)], 𝑘)
is a Col(𝐺, 𝑘)-support in the sense of Definition 4.1 and that it satisfies the satisfiability condition

and the reducibility condition in Lemma 4.6 for 𝐷 = ℓ/(50Δ𝑐−1) − |𝑇Δ |.
We start by proving, via the properties of the closure, that the map 𝑆 is a Col(𝐺, 𝑘)-support. We

actually show something slightly stronger, namely that 𝑆 satisfies the following four properties,

which are the same as those in Definition 4.1 except that we do not require that 𝑚′ ≺ 𝑚 in item 2

and item 3.

1. For all monomials 𝑚 and 𝑚′ such that Vars(𝑚) = Vars(𝑚′), it holds that 𝑆(𝑚) = 𝑆(𝑚′).

2. For every variable 𝑥 and for all monomials 𝑚 and 𝑚′, if 𝑆(𝑚′) ⊆ 𝑆(𝑚), then 𝑆(𝑥𝑚′) ⊆ 𝑆(𝑥𝑚).

3. For all monomials 𝑚 and 𝑚′, if Vars(𝑚′) ⊆ Vars
(
𝑆(𝑚)

)
, then 𝑆(𝑚′) ⊆ 𝑆(𝑚).

4. For all 𝑝 ∈ 𝒫, it holds that 𝑝 ∈ 𝑆(𝑚), where 𝑚 is the leading monomial in 𝑝.

Item 1 follows immediately from the definition of 𝑆, since the closure of a monomial 𝑚 only

depends on 𝑉(𝑚). Note that since 𝑆(𝑚) = Col(𝐺[ClΔ(𝑚)], 𝑘) it holds that 𝑆(𝑚′) ⊆ 𝑆(𝑚) if and only

if ClΔ(𝑚′) ⊆ ClΔ(𝑚) and, therefore, item 2 is equivalent to showing that if ClΔ(𝑚′) ⊆ ClΔ(𝑚), then

ClΔ(𝑥𝑚′) ⊆ ClΔ(𝑥𝑚). Recall that ClΔ(𝑚) = Cl(𝑉(𝑚) ∪ 𝑇Δ) and hence, by minimality of closure, we

obtain that

𝑉(𝑥) ∪𝑉(𝑚′) ∪ 𝑇Δ ⊆ Cl(𝑉(𝑥)) ∪ Cl(𝑉(𝑚′) ∪ 𝑇Δ) [since 𝑈 ⊆ Cl(𝑈)] (6.3a)

⊆ Cl(𝑉(𝑥)) ∪ Cl(𝑉(𝑚) ∪ 𝑇Δ) [as ClΔ(𝑚′) ⊆ ClΔ(𝑚) by assumption] (6.3b)

⊆ Cl(𝑉(𝑥𝑚) ∪ 𝑇Δ) , (6.3c)

where the final equation relies on the fact that Cl(𝐴)∪Cl(𝐵) ⊆ Cl(𝐴∪𝐵)which follows by minimality

of the sets Cl(𝐴) and Cl(𝐵). This allows us to derive that

ClΔ(𝑥𝑚′) = Cl(𝑉(𝑥) ∪𝑉(𝑚′) ∪ 𝑇Δ) [by definition of monomial closure] (6.4a)

⊆ Cl(Cl(𝑉(𝑥𝑚) ∪ 𝑇Δ)) [by (6.3)] (6.4b)

= Cl(𝑉(𝑥𝑚) ∪ 𝑇Δ) [since closure is idempotent by minimality] (6.4c)

= ClΔ(𝑥𝑚) , [by definition of monomial closure] (6.4d)

24



6 A Lower Bound for 3-Colourability on Sparse Random Graphs

and thus item 2 holds. Observe furthermore that if Vars(𝑚′) ⊆ Vars(𝑆(𝑚)) then 𝑉(𝑚′) ⊆ ClΔ(𝑚)
by the definition of monomial closure and since 𝑆(𝑚) = Col(𝐺[ClΔ(𝑚)], 𝑘). Thus, using again the

observation that 𝑆(𝑚′) ⊆ 𝑆(𝑚) if and only if ClΔ(𝑚′) ⊆ ClΔ(𝑚), in order to conclude that item 3 holds

it suffices to show that if 𝑉(𝑚′) ⊆ ClΔ(𝑚), then ClΔ(𝑚′) ⊆ ClΔ(𝑚). By again using the minimality of

closure and the fact that 𝑈 ⊆ Cl(𝑈), we can conclude that

ClΔ(𝑚′) = Cl(𝑉(𝑚′) ∪ 𝑇Δ) ⊆ Cl(ClΔ(𝑚) ∪ 𝑇Δ) = ClΔ(𝑚) . (6.5)

Finally, item 4 follows easily from the definition of 𝑆. Indeed, if 𝑝 ∈ Col(𝐺, 𝑘) is an edge axiom,

say 𝑥𝑢,𝑖𝑥𝑣,𝑖 , then it holds that 𝑆(𝑥𝑢,𝑖𝑥𝑣,𝑖) = Col(𝐺[Cl({𝑢, 𝑣} ∪ 𝑇Δ)], 𝑘) ∋ 𝑝; and if 𝑝 ∈ Col(𝐺, 𝑘) is a

vertex axiom (

∑𝑘
𝑖=1

𝑥𝑣,𝑖 − 1 or 𝑥𝑣,𝑖𝑥𝑣,𝑖′) or a Boolean axiom (𝑥2

𝑣,𝑖
− 𝑥𝑣,𝑖) mentioning a vertex 𝑣 and 𝑚

is the leading monomial in 𝑝 it holds that 𝑆(𝑚) = Col(𝐺[Cl({𝑣} ∪ 𝑇Δ)], 𝑘) ∋ 𝑝. Thus, the map 𝑆 is a

Col(𝐺, 𝑘)-support.

We now show that the satisfiability condition and the reducibility condition in Lemma 4.6 hold

for the map 𝑆 and for 𝐷 = ℓ/(50Δ𝑐−1) − |𝑇Δ |. We can assume 𝐷 ≥ 2, since otherwise the theorem is

trivially true. Observe that the polynomials in Col(𝐺, 𝑘) have degree at most 𝐷.

To see that the satisfiability condition holds, note that by Lemma 6.7 every monomial 𝑚 of

degree at most 𝐷 satisfies |ClΔ(𝑚)| ≤ 50Δ𝑐−1(𝐷 + |𝑇Δ |) = ℓ , where we use that any decreasing path

in 𝐺[𝑉 \ 𝑇Δ] has at most 𝑐 vertices, that Desc(𝑇Δ) ⊆ 𝑇Δ holds, and that 𝐺[𝑉 \ 𝑇Δ] has maximum

degree at most Δ. Since 𝐺 is (ℓ , 1/3Δ)-sparse and |ClΔ(𝑚)| ≤ ℓ , it follows from Lemma 2.6 that the

graph 𝐺[ClΔ(𝑚)] is 3-colourable and so Col(𝐺[ClΔ(𝑚)], 𝑘) is satisfiable.

To establish the reducibility condition, let 𝑚 and 𝑚′ be monomials of degree at most 𝐷 such

that 𝑆(𝑚′) ⊆ 𝑆(𝑚), i.e., such that ClΔ(𝑚′) ⊆ ClΔ(𝑚). Note that as argued above, it holds that

|ClΔ(𝑚)| ≤ ℓ since 𝑚 has degree at most 𝐷. Therefore, we can apply Lemma 6.5 with 𝑊 = ClΔ(𝑚′)
and 𝑈 = ClΔ(𝑚) to conclude that if 𝑚′ is reducible modulo ⟨𝑊⟩ = ⟨𝑆(𝑚′)⟩ if and only if it is also

reducible modulo ⟨𝑈⟩ = ⟨𝑆(𝑚)⟩. Note that we use the fact that all vertices in 𝐺[𝑉 \ 𝑇Δ]—and hence

also all vertices in 𝐺[𝑈 \𝑊]—have degree at most Δ.

With the satisfiability and reducibility conditions of Lemma 4.6 in hand, we conclude that every

polynomial calculus refutation of Col(𝐺, 𝑘) requires degree strictly greater than 𝐷, as desired. □

6.2 The Reducibility Lemma

It remains to prove the reducibility lemma which we restate here for convenience.

Lemma 6.5 (Reducibility Lemma, restated). Let 𝐺 = (𝑉, 𝐸) be a (ℓ , 1/3Δ)-sparse graph with a linear
order ≺v on 𝑉 and consider an admissible order that respects ≺v. If the vertex sets 𝑊 ⊆ 𝑈 satisfy hat 𝑊 is
closed, that the size of 𝑈 is |𝑈 | ≤ ℓ , and that every vertex in 𝑁𝑈\𝑊 (𝑊) has degree at most Δ in 𝐺[𝑈 \𝑊],
then for every monomial 𝑚 such that 𝑉(𝑚) ⊆ 𝑊 , it holds that 𝑚 is reducible modulo ⟨𝑈⟩ if and only if 𝑚 is
reducible modulo ⟨𝑊⟩.

The proof idea is to construct a function 𝜌 mapping variables associated with vertices in 𝑈 \𝑊
to either constants or polynomials of smaller order such that all axioms in ⟨𝑈⟩ \ ⟨𝑊⟩ are either

satisfied or mapped to a polynomial in ⟨𝑊⟩. It is not hard to show that such a mapping turns

any polynomial in ⟨𝑈⟩ with leading monomial 𝑚 into a smaller polynomial in ⟨𝑊⟩ whose leading

monomial is also 𝑚. It then follows that a monomial 𝑚 is reducible modulo ⟨𝑈⟩ if 𝑚 is reducible

modulo ⟨𝑊⟩. The other direction is immediate, so this suffices to prove the lemma.

Let us first outline the construction of 𝜌. Using the definition of closure, we show in Lemma 5.3

that there exists a proper 3-colouring 𝜒 of the subgraph 𝐺[𝑈 \ (𝑊 ∪ 𝑁𝑈 (𝑊))] that uses a single
colour for each set 𝑁𝑈\𝑊 (𝑢), where 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊). Variables far from 𝑊 , which here means
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variables associated with a vertex in 𝑈 \ (𝑊 ∪ 𝑁𝑈 (𝑊)), are mapped according to the 3-colouring 𝜒.

It remains to define 𝜌 on variables associated with each vertex 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊). Since 𝑢 has precisely

one adjacent vertex 𝑣 in 𝑊 , and since furthermore the set 𝑁𝑈\𝑊 (𝑢) is coloured with a single colour,

no matter how the vertex 𝑣 is coloured there is always a colour 𝑐𝑢 available to properly colour 𝑢. We

may think of 𝑐𝑢 as a function that, given 𝜒 and the colour of 𝑣, assigns a colour to 𝑢 that is consistent

with the colouring of 𝑁𝑈 (𝑢). Variables associated with the vertex 𝑢 are mapped according to 𝑐𝑢
by 𝜌.

Proof of Lemma 6.5. Since 𝑊 is a subset of 𝑈 , it follows that if 𝑚 is reducible modulo ⟨𝑊⟩, then 𝑚

is also reducible modulo ⟨𝑈⟩. For the reverse direction, we define a mapping 𝜌 on variables as

outlined above.

To this end, let 𝜒 be a proper 3-colouring of the subgraph 𝐺[𝑈 \ (𝑊 ∪ 𝑁𝑈 (𝑊))] that uses a

single colour for each set 𝑁𝑈\𝑊 (𝑢), where 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊). Such a colouring exists by Lemma 5.3.

Variables associated with a vertex 𝑢 ∈ 𝑈 \
(
𝑊 ∪ 𝑁𝑈 (𝑊)

)
are mapped according to 𝜒: if 𝜒(𝑢) = 𝑖,

then 𝜌(𝑥𝑢,𝑖) = 1 and 𝜌(𝑥𝑢,𝑖′) = 0 for all 𝑖′ ≠ 𝑖.

Next, for each vertex 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊), we define 𝜌 on the variables associated with 𝑢. Since 𝜒
assigns, for each 𝑢 ∈ 𝑁𝑈\𝑊 (𝑊), a single colour to each set 𝑁𝑈\𝑊 (𝑢) there are at least two distinct

colours 𝑐1 , 𝑐2 ∈ [𝑘] that are not assigned to any vertex in 𝑁𝑈\𝑊 (𝑢). Since there are no 2-hops in 𝑈

with respect to 𝑊 the vertex 𝑢 has a single neighbour 𝑣 ∈𝑊 . Furthermore, as there are no 3-hops

in 𝑈 with respect to 𝑊 , it holds that 𝑁𝑈\𝑊 (𝑢) ∩ 𝑁𝑈\𝑊 (𝑊) = ∅, which implies that the vertex 𝑣 is

the only neighbour of 𝑢 that is not coloured by 𝜒. Hence no matter how 𝑣 is coloured by 𝜒, either

𝑐1 or 𝑐2 can be used to properly colour 𝑢. Let us make this choice explicit by defining 𝜌 on 𝑢 by

𝜌(𝑥𝑢,𝑐) =


𝑥𝑣,𝑐2

if 𝑐 = 𝑐1 ,∑
𝑖∈[𝑘],𝑖≠𝑐2

𝑥𝑣,𝑖 if 𝑐 = 𝑐2, and

0 otherwise, that is, if 𝑐 ∉ {𝑐1 , 𝑐2}.
(6.6)

This completes the definition of 𝜌. Note that the mapping 𝜌 extends any proper 𝑘-colouring of 𝑊

to a proper 𝑘-colouring of 𝑈 .

Let 𝑞 be a polynomial in ⟨𝑈⟩ with leading monomial 𝑚. We claim that

1. 𝑞↾𝜌 ∈ ⟨𝑊⟩,

2. that all monomials 𝑚′ satisfy 𝑚′↾𝜌 ⪯ 𝑚′, and

3. that 𝑚 = 𝑚↾𝜌.

If we can show this, then we are done, since 𝑚 is then the leading monomial of the polyno-

mial 𝑞↾𝜌 ∈ ⟨𝑊⟩ and we may thus conclude that if 𝑚 is reducible modulo ⟨𝑈⟩, then 𝑚 is also

reducible modulo ⟨𝑊⟩.
We now argue that the three properties hold. The latter two are almost immediate: since 𝜌 does

not map variables associated with 𝑊 (of which 𝑉(𝑚) is a subset) we have 𝑚 = 𝑚↾𝜌. Furthermore,

since Desc(𝑊) = 𝑊 and since ≺ is admissible, it holds for every variable 𝑥 that 𝑥↾𝜌 ⪯ 𝑥, and hence

every monomial 𝑚′ satisfies 𝑚′↾𝜌 ⪯ 𝑚′.
It remains to prove that 𝑞↾𝜌 ∈ ⟨𝑊⟩. Since 𝑞 ∈ ⟨𝑈⟩ we may write 𝑞 =

∑
𝑖 𝑞𝑖𝑝𝑖 for polynomials 𝑞𝑖 ∈

F[𝑋] and axioms 𝑝𝑖 ∈ Col(𝐺[𝑈], 𝑘). Note that the mapping 𝜌 extends any proper 𝑘-colouring of 𝑊

to a proper 𝑘-colouring of 𝑈 , and thus it follows by Lemma 2.4 that every axiom 𝑝𝑖 ∈ Col(𝐺[𝑈], 𝑘)
satisfies 𝑝𝑖↾𝜌 ∈ ⟨𝑊⟩. We can therefore conclude that the polynomial 𝑞↾𝜌 =

∑
𝑖 𝑞𝑖↾𝜌 · 𝑝𝑖↾𝜌 is in ⟨𝑊⟩

as claimed. □
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7 Concluding Remarks

With the proof of Lemma 6.5 completed we have shown the last missing piece of the proof of

Theorem 6.1. This thus establishes our polynomial calculus degree lower bounds for the colouring

formula over sparse graphs.

7 Concluding Remarks

In this work, we show that polynomial calculus over any field requires linear degree to refute

that a sparse random regular graph or Erdős-Rényi random graph is 3-colourable. Our lower

bound is optimal up to constant factors, and implies strongly exponential size lower bounds by the

well-known size-degree relation for polynomial calculus [IPS99].

Our overall proof technique is the same as that of earlier papers such as [AR03, GL10a, GL10b,

MN15], but our proofs have a different flavour. A central technical concept in [AR03, MN15] is

(variations of) the so-called constraint-variable incidence graph: this graph consists of a vertex per

constraint and variable, and has an edge between a constraint 𝐶 and a variable 𝑥 if and only if 𝐶

depends on 𝑥. This graph is commonly used to argue that by expansion small sets of constraints

are satisfiable, even after the removal of a closed set of vertices. By contrast, we never need to make

any (explicit) use of this graph. This raises the question of whether it is possible to rephrase our

proofs in language closer to that of [AR03, MN15], or are the two approaches inherently different?

The lower bound techniques in this paper, as well as those in [MN15], work over any field. For

NP-hard problems such as 𝑘-colourability, we expect a polynomial calculus lower bound to hold

regardless of which field is used for the derivations. However, other formulas such as the Tseitin

contradictions are easy for polynomial calculus over a field of characteristic 2 and hard in other

characteristics. The techniques in, for instance, [BI99, BGIP01, AR03] capture this fact, while those

in [MN15] and this paper cannot. Another interesting question is therefore whether the techniques

in these papers can be unified into a general approach that works both for field-dependent and

field-independent lower bounds.

Our degree lower bounds for 3-colourability are of the form 𝑛/ 𝑓 (𝑑), where 𝑑 is either degree

or average degree of the graph depending on the random graph model. In our work, 𝑓 is at least

exponential in 𝑑, but in previous results [BCMM05, LN17], 𝑓 is at most polynomial in 𝑑. While

the precise dependence on 𝑑 is immaterial for sparse random graphs, it would be interesting to

see if the parameters in our result can be improved. We remark that it is far from clear what

the correct dependence on 𝑑 should be. For the sums-of-squares proof system, which simulates

polynomial calculus over the reals [Ber18], there exist strong upper bounds for 𝑘-colourability on

random graphs and random regular graphs in some parameter regimes: the paper [BKM19] showed

that asymptotically almost surely, degree-2 sums-of-squares refutes 𝑘-colourability on 𝑑-regular

random graphs if 𝑑 ≥ 4𝑘2
. These results rule out a polynomial dependence on 𝑑 in any linear

sums-of-squares degree lower bound for 𝑘-colourability whenever 𝑘 is fixed. However, similar

upper bounds are not known to hold for polynomial calculus, and it should be pointed out that

the latter proof system is incomparable to sum-of-squares when considered over fields of finite

characteristic.

More broadly it would be interesting to investigate whether the ideas and concepts underlying

this work could be extended to prove lower bounds for colouring principles in other proof systems,

the most obvious candidates being Sherali-Adams and sums-of-squares. Regarding polynomial

calculus, it is worth noting that the closure operation defined in [RT22] and generalized in this work

is not, per se, restricted to graph colouring. It is natural to ask whether similar techniques could be

useful for proving degree lower bounds for other graph problems. One open problem is to improve

the degree lower bound for matching on random graphs in [AR22] to linear in the graph size, and
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to make it hold for graphs of small constant degree. Another problem is to establish polynomial

calculus size lower bounds for independent set and vertex cover, analogously to what was done for

the resolution proof system in [BIS07]. Finally, an intriguing technical challenge is to prove degree

lower bounds for variants of the dense linear ordering principle [AD08] for graphs of bounded

degree.
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A On Boolean Implication and Ideal Membership

In this appendix, we provide a proof of the folklore result that being implied by a set of polynomials

and being in the ideal generated by these polynomials is the same in the Boolean setting.

Lemma 2.4 (restated). Let 𝑔 be a polynomial and 𝑄 be a set of polynomials in F[𝑥1 , . . . , 𝑥𝑛], and suppose
that 𝑄 contains all the Boolean axioms. Then it holds that 𝑔 vanishes on all common roots of 𝑄 if and only if
𝑔 ∈ ⟨𝑄⟩.

Proof. If 𝑔 ∈ ⟨𝑄⟩, then we can write 𝑔 =
∑

𝑖 𝑓𝑖𝑞𝑖 for 𝑓𝑖 ∈ F[𝑥1 , . . . , 𝑥𝑛] and 𝑞𝑖 ∈ 𝑄. Observe that∑
𝑖 𝑓𝑖𝑞𝑖↾𝜉 = 0 for any common root 𝜉 ∈ {0, 1}𝑛 of 𝑄. Hence 𝑔 vanishes on all common roots of 𝑄.

For the other direction, let 𝜉 = (𝜉1 , 𝜉2 , . . . , 𝜉𝑛) be an element of {0, 1}𝑛 and write 1𝜉 for the

multilinear polynomial that evaluates to 1 on 𝜉 and to 0 on all other elements of {0, 1}𝑛 , that is,

1𝜉(𝑥) =
∏
𝑖:𝜉𝑖=1

𝑥𝑖

∏
𝑗:𝜉𝑗=0

(1 − 𝑥 𝑗) . (A.1)

Clearly, every function 𝑓 : {0, 1}𝑛 → F can be expressed as a multilinear polynomial through the

identity

𝑓 =
∑

𝜉∈{0,1}𝑛
𝑓 (𝜉) · 1𝜉 , (A.2)
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and as the polynomials {1𝜉 | 𝜉 ∈ {0, 1}𝑛} form a basis of the vector space of multilinear polynomials

over F[𝑥1 , . . . , 𝑥𝑛], this representation is unique. Let 𝑆 ⊆ {0, 1}𝑛 be the set of common roots of the

polynomials in 𝑄. Since 𝑔 vanishes on 𝑆, we may write

𝑔 =
∑

𝜉∈{0,1}𝑛\𝑆
𝑔(𝜉) · 1𝜉 . (A.3)

We now show that if 𝜉 ∈ {0, 1}𝑛 \ 𝑆, then it holds that 1𝜉 ∈ ⟨𝑄⟩. This suffices to prove the desired

result, as 𝑔 is then a linear combination of polynomials in ⟨𝑄⟩ and hence is also in ⟨𝑄⟩.
Let 𝜉 be an element in {0, 1}𝑛 \ 𝑆. Because 𝑆 is the set of common roots of the polynomials

in 𝑄, there exists a polynomial 𝑞 ∈ 𝑄 such that 𝑞(𝜉) ≠ 0. The polynomial 1𝜉 · (𝑞(𝜉))−1𝑞 coincides

with 1𝜉 on all of {0, 1}𝑛 , so 1𝜉 · (𝑞(𝜉))−1𝑞 = 1𝜉 modulo the Boolean axioms. Since ⟨𝑄⟩ contains

both 1𝜉 · (𝑞(𝜉))−1𝑞 and the Boolean axioms, it follows that 1𝜉 ∈ ⟨𝑄⟩. □

B Random Graphs Are Sparse

In this appendix we prove Lemma 2.7, which is a quantitative version of Lemma 4.15 in [Raz17].

We make no claim of originality, but present this result here to make the paper self-contained.

We start by proving the sparsity lemma for graphs sampled from the Erdős-Rényi random graph

distribution G(𝑛, 𝑑/𝑛) in Lemma B.1 and then establish the analogous result for random regular

graphs sampled according to G𝑛,𝑑 in Lemma B.4.

Lemma B.1 (Sparsity lemma for Erdős-Rényi random graphs). Let 𝑛, 𝑑 ∈ N+ and 𝜀, 𝛿 ∈ R+ be such
that 𝜀𝛿 = 𝜔(1/log 𝑛). If 𝐺 is a graph sampled from G(𝑛, 𝑑/𝑛), then asymptotically almost surely it is
((4𝑑)−(1+𝛿)(1+𝜀)/𝜀𝑛, 𝜀)-sparse.
Proof. Let 𝛼 = (4𝑑)−(1+𝛿)(1+𝜀)/𝜀 and denote by 𝒜 the event “𝐺 is (𝛼𝑛, 𝜀)-sparse”. For a set 𝑈 ⊆ 𝑉

of size 𝑠, the random variable |𝐸(𝐺[𝑈])| is a sum of 𝑠(𝑠 − 1)/2 random indicator variables for the

edges that are 1 with probability 𝑑/𝑛 and 0 otherwise. We apply a union bound over sets of size

𝑠 ≤ 𝛼𝑛 to conclude that

Pr[¬𝒜] ≤
∑
𝑈⊆𝑉
|𝑈 |≤𝛼𝑛

Pr[|𝐸(𝐺[𝑈])| ≥ (1 + 𝜀)|𝑈 |] (B.1a)

≤
𝛼𝑛∑
𝑠=1

(
𝑛

𝑠

) ( 𝑠(𝑠−1)
2

(1 + 𝜀)𝑠

)
·
(
𝑑

𝑛

) (1+𝜀)𝑠
(B.1b)

≤
𝛼𝑛∑
𝑠=1

( 𝑒𝑛
𝑠

) 𝑠 (
𝑒(𝑠 − 1)
2(1 + 𝜀)

) (1+𝜀)𝑠
·
(
𝑑

𝑛

) (1+𝜀)𝑠
(B.1c)

≤
𝛼𝑛∑
𝑠=1

exp

(
−𝜀𝑠 ln

(𝑛
𝑠

)
+ (1 + 𝜀)𝑠

(
ln

(
𝑒2𝑑

2(1 + 𝜀)

)))
(B.1d)

≤
𝛼𝑛∑
𝑠=1

exp (−𝛿𝜀𝑠 ln(𝑛/𝑠)) (B.1e)

≤ 𝑜(1) , (B.1f)

where for (B.1e) we use that 𝑛/𝑠 ≥ 1/𝛼 = (4𝑑)(1+𝛿)(1+𝜀)/𝜀 to estimate that

(1 + 𝜀)
(
ln

(
𝑒2𝑑

2(1 + 𝜀)

))
≤ (1 + 𝜀) ln (4𝑑) = 𝜀 ln(1/𝛼)

1 + 𝛿
≤ 𝜀 ln(𝑛/𝑠)

1 + 𝛿
, (B.2)
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and for (B.1f) we use that 𝜀𝛿 = 𝜔(1/log 𝑛) and that 𝑠 ln(𝑛/𝑠) ≥ ln 𝑛 + 𝑠 − 1 (for 1 ≤ 𝑠 ≤ 𝑛/𝑒2
). □

We next prove the sparsity lemma for random regular graphs. In order to sample 𝐺 from G𝑛,𝑑

we use the configuration model, which is defined as follows. Given 𝑛 and 𝑑 such that 𝑑𝑛 is even,

we have a vertex set 𝑉 of size 𝑛 and for each vertex 𝑣 ∈ 𝑉 there is a cell 𝐶𝑣 with 𝑑 elements. We

sample a perfect matching 𝑀 uniformly from the setℳ𝑑𝑛 of all possible perfect matchings of the

𝑑𝑛 elements and consider the corresponding multi-graph 𝐺𝑀 = (𝑉, 𝐸), possibly with parallel edges

and loops, where (𝑢, 𝑣) ∈ 𝐸 if and only if there exists (𝑥, 𝑦) ∈ 𝑀 such that 𝑥 ∈ 𝐶𝑢 and 𝑦 ∈ 𝐶𝑣 . Since

all simple graphs (without parallel edges or loops) are sampled with the same probability, we can

sample 𝐺 from G𝑛,𝑑 by sampling according to the configuration model repeatedly until we sample

a simple graph.

Theorem B.2 ([MW91, Wor99]). For 𝑑 = 𝑜(𝑛1/2), the probability that 𝐺𝑀 is simple when 𝑀 is sampled
uniformly fromℳ𝑑𝑛 is equal to

exp

(
−𝑑

2 − 1

4

− 𝑑3

12𝑛
+ 𝑂(𝑑2/𝑛)

)
.

Let 𝑆ℓ ,𝑞 denote the sum of ℓ random variables that are 1 with probability 𝑞 and 0 otherwise. We

argue that we can bound the probability that a set of vertices 𝑈 ⊆ 𝑉 witnesses that the graph is not

sparse by bounding the probability that 𝑆ℓ ,𝑞 is too large.

Claim B.3. For any 𝑠 ≤ 𝑛/2 and 𝐵 ∈ R+, if 𝑈 ⊆ 𝑉 is of size 𝑠 and 𝑞 = 𝑠/(𝑛 − 𝑠), it holds that

Pr

𝑀∼ℳ𝑑𝑛

[|𝐸(𝐺𝑀[𝑈])| ≥ 𝐵] ≤ Pr[𝑆𝑑𝑠,𝑞 ≥ 𝐵] .

Proof. To see why this is true, consider the random process in the configuration model that matches

one by one the elements in the cells 𝐶𝑣 for all 𝑣 ∈ 𝑈 . At each step, there are at most 𝑑𝑠 elements

in cells 𝐶𝑣 where 𝑣 ∈ 𝑈 that are not yet matched, and at least 𝑑(𝑛 − 𝑠) elements in cells 𝐶𝑣 where

𝑣 ∉ 𝑈 that are not yet matched. This implies that at each step the probability that we obtain an edge

between cells in 𝑈 is at most 𝑑𝑠/𝑑(𝑛 − 𝑠) = 𝑞. Since at least one element in a cell of 𝑈 is matched at

every step, there are at most 𝑑𝑠 steps in total. Hence the claim follows. □

Lemma B.4 (Sparsity lemma for random regular graphs). Let 𝑛, 𝑑 ∈ N+ and 𝜀, 𝛿 ∈ R+ be such that
𝜀𝛿 = 𝜔(1/log 𝑛) and 𝑑2 ≤ 𝜀𝛿 log 𝑛. If 𝐺 is a graph sampled from G𝑛,𝑑, then asymptotically almost surely it
is ((8𝑑)−(1+𝛿)(1+𝜀)/𝜀𝑛, 𝜀)-sparse.

Proof. Fix 𝜀 > 0, let 𝛼 = (8𝑑)−2(1+1/𝜀)
, and denote by 𝒜 the event “𝐺 is (𝛼𝑛, 𝜀)-sparse”. We want

to prove that 𝐺 ∼ G𝑛,𝑑 is (𝛼𝑛, 𝜀)-sparse with probability that goes to 1 as 𝑛 goes to infinity. To

this end, we prove that if we sample 𝐺 from the configuration model, the probability that it is

not (𝛼𝑛, 𝜀)-sparse is much smaller than the probability that 𝐺 is a random regular graph. More

formally, our goal is to prove that

Pr[¬𝒜] · exp

(
𝑑2 − 1

4

)
≤ 𝑜(1) , (B.3)

where we recall that the probability here and in what follows is taken over sampling 𝐺 in the
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configuration model. By union bound and using Claim B.3 we have that

Pr[¬𝒜] · exp

(
𝑑2 − 1

4

)
≤

∑
𝑈⊆𝑉
|𝑈 |≤𝛼𝑛

Pr[|𝐸(𝐺[𝑈])| ≥ (1 + 𝜀)|𝑈 |] · exp

(
𝑑2

4

)
(B.4a)

≤
𝛼𝑛∑
𝑠=1

(
𝑛

𝑠

)
Pr[𝑆𝑑𝑠,𝑞 ≥ (1 + 𝜀)𝑠] · exp

(
𝑑2

4

)
. (B.4b)

Our goal is to show that 𝑃𝑟[𝑆𝑑𝑠,𝑞 ≥ (1 + 𝜀)𝑠] is so small that it compensates for the other factors.

More concretely, we wish to show that for 𝑠 ≤ 𝛼𝑛 it holds that(
𝑛

𝑠

)
Pr[𝑆𝑑𝑠,𝑞 ≥ (1 + 𝜀)𝑠] ≤ exp (−𝜀𝛿𝑠 ln(𝑛/𝑠)) , (B.5)

from which it follows, since 𝑑2 ≤ 𝜀𝛿 log 𝑛 ≤ 2𝜀𝛿 ln 𝑛, that

Pr[¬𝒜] · exp

(
𝑑2 − 1

4

)
≤

𝛼𝑛∑
𝑠=1

exp

(
−𝜀𝛿𝑠 ln(𝑛/𝑠) + 𝑑2

4

)
(B.6a)

≤
𝛼𝑛∑
𝑠=1

exp

(
−𝜀𝛿𝑠 ln(𝑛/𝑠)

2

)
(B.6b)

= 𝑜(1) , (B.6c)

where we use the fact that 𝜀𝛿 = 𝜔(1/log 𝑛) and that 𝑠 ln(𝑛/𝑠) ≥ ln 𝑛 + 𝑠 − 1 (for 1 ≤ 𝑠 ≤ 𝑛/𝑒2
).

It remains to show that (B.5) holds. This follows from the sequence of calculations(
𝑛

𝑠

)
Pr[𝑆𝑑𝑠,𝑞 ≥ (1 + 𝜀)𝑠] ≤

(
𝑛

𝑠

) (
𝑑𝑠

(1 + 𝜀)𝑠

)
·
( 𝑠

𝑛 − 𝑠

) (1+𝜀)𝑠
(B.7a)

≤
( 𝑒𝑛
𝑠

) 𝑠 (
𝑒𝑑𝑠

(1 + 𝜀)𝑠

) (1+𝜀)𝑠
·
( 𝑠

𝑛 − 𝑠

) (1+𝜀)𝑠
(B.7b)

≤ exp

(
−𝜀𝑠 ln

(𝑛 − 𝑠

𝑠

)
+ 𝑠 + (1 + 𝜀)𝑠 ln

(
𝑒𝑑

(1 + 𝜀)

))
(B.7c)

≤ exp

(
−𝜀𝑠 ln

(𝑛
𝑠

)
+ (1 + 𝜀)𝑠 ln

(
𝑒2𝑑

(1 + 𝜀)

))
(B.7d)

≤ exp (−𝜀𝛿𝑠 ln (𝑛/𝑠)) , (B.7e)

where for (B.7d) we use that ln(𝑛/𝑠 − 1) ≥ ln(𝑛/𝑠) − 1 (for 𝑠 ≤ 𝑛/2), and for (B.7e) we use that

𝑛/𝑠 ≥ 1/𝛼 = (8𝑑)−(1+𝛿)(1+𝜀)/𝜀 to bound

(1 + 𝜀)
(
ln

(
𝑒2𝑑

(1 + 𝜀)

))
≤ (1 + 𝜀) ln (8𝑑) = 𝜀 ln(1/𝛼)

1 + 𝛿
≤ 𝜀 ln(𝑛/𝑠)

1 + 𝛿
. (B.8)

This concludes the proof of Lemma 2.7. □

C Erdős-Rényi Graphs Almost Have Small Maximum Degree

In this section we provide a proof of Lemma 6.3 stating that Erdős-Rényi random graphs have small

degree except for a small set of vertices.
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Lemma 6.3 (restated). Let 𝐺 = (𝑉, 𝐸) be a graph sampled fromG(𝑛, 𝑑/𝑛)where 𝑑 = O(log 𝑛). If Δ ≥ 𝑑 is
such that (Δ/𝑒𝑑)Δ = o(𝑛), then asymptotically almost surely there exists a set 𝑇Δ of size at most (𝑒𝑑/Δ)Δ ·2𝑒𝑛
such that the maximum degree in 𝐺[𝑉 \ 𝑇Δ] is at most Δ − 1.

Proof. Let𝒜 denote the event that there exists a set 𝑇Δ ⊆ 𝑉 of size ℓ = (𝑒𝑑/Δ)Δ · 2𝑒𝑛 such that the

maximum degree in 𝐺[𝑉 \ 𝑇Δ] is at most Δ − 1. We prove that Pr[¬𝒜] = o(1).
Note that if 𝒜 does not hold, then, in particular, if we go over the vertices of 𝐺 in any given

fixed order, and remove from 𝐺 any vertex of degree at least Δ that we encounter, we will end up

removing at least ℓ vertices. Observe further that after the removal of 𝑖 vertices, the probability that

a vertex has degree at least Δ is at most

(𝑛−𝑖
Δ

)
(𝑑/𝑛)Δ and is independent of the fact that the removed

vertices had degree at least Δ. Therefore, by taking a union bound over all sets of size ℓ , we can

bound the probability of the event𝒜 not holding by

Pr[¬𝒜] ≤
(
𝑛

ℓ

) ℓ∏
𝑖=1

(
𝑛 − 𝑖

Δ

) (
𝑑

𝑛

)Δ
(C.1a)

≤
(
𝑛

ℓ

) ((
𝑛

Δ

) (
𝑑

𝑛

)Δ)ℓ
(C.1b)

≤
( 𝑒𝑛
ℓ

)ℓ (
𝑒𝑑

Δ

)Δℓ
(C.1c)

= o(1) , (C.1d)

where for (C.1d) we use that ℓ = 2𝑒𝑛 (𝑒𝑑/Δ)Δ to derive that (𝑒𝑛/ℓ )ℓ (𝑒𝑑/Δ)Δℓ = 2
−ℓ

, and then use

that ℓ = 𝜔(1), which holds since (Δ/𝑒𝑑)Δ = o(𝑛), to conclude 2
−ℓ = o(1). The lemma follows. □
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