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Abstract

We prove a sensitivity-to-communication lifting theorem for arbitrary gadgets. Given func-
tions f : {0, 1}n → {0, 1} and g : X×Y → {0, 1}, denote f ◦g(x, y) := f(g(x1, y1), . . . , g(xn, yn)).
We show that for any f with sensitivity s and any g,

D(f ◦ g) ≥ s ·
(
Ω(D(g))

log rk(g)
− log rk(g)

)
,

where D(·) denotes the deterministic communication complexity and rk(g) is the rank of the
matrix associated with g. As a corollary, we get that if D(g) is a sufficiently large constant,
D(f ◦ g) = Ω(min{s, d} ·

√
D(g)), where s and d denote the sensitivity and degree of f . In

particular, computing the OR of n copies of g requires Ω(n ·
√

D(g)) bits.

1 Introduction

Given two functions f and g, how much harder is it to compute their composition than it is to
compute each of the functions? In this work, we study this question in the model of deterministic
communication complexity (see [RY20, KN96] for a detailed reference on this topic). For a function
g : X × Y → {0, 1}, let D(g) denote the deterministic communication complexity of g. Given a
function g(x, y) and a function f : {0, 1}n → {0, 1} we will be interested in the deterministic
communication complexity of

f ◦ g(x, y) := f(g(x1, y1), . . . , g(xn, yn)).

Besides being a natural problem to study, understanding function compositions especially in
the context of deterministic communication, has connections to circuit lower bounds [KRW95]. We
begin by recalling some prior work on related questions.

Connections to Direct Sums and XOR Lemmas. Feder, Kushilevitz, Naor and Nisan
[FKNN95] were the first to consider the direct sum problem for deterministic communication,
which asks for lower bounds on the communication required to compute n copies of g, denoted
gn(x, y) := g(x1, y1), . . . , g(xn, yn). Before we state their result, we define the cover number, C(g),
to be the smallest number of rectangles needed to cover X ×Y such that each rectangle is constant
for g. Feder et al. showed the following.
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Theorem 1 ([FKNN95]). D(gn) ≥ logC(gn) ≥ n · (
√

D(g)− log log(|X | · |Y|)− 1).

This was the best known bound for the deterministic communication complexity of gn until our
recent work with Rao [IR24a], where we gave an XOR lemma: a lower bound for the deterministic
communication complexity of ⊕ ◦ g := g(x1, y1)⊕ . . .⊕ g(xn, yn). To state that result, we need the
concept of rank in the context of communication complexity. For a function g(x, y), let Mg denote
the matrix with a row for each x ∈ X , a column for each y ∈ Y, and whose (x, y)-th entry is simply
g(x, y). We use the notation rk(g) to denote the rank of the matrix Mg.

One might be tempted to guess that D(⊕ ◦ g) = Ω(n ·D(g)), i.e. one cannot do much better
than computing g in each coordinate followed by taking the parity of all the bits. However, this is
false in general; when g is itself the parity function on two bits, it is possible to compute ⊕ ◦ g by
simply exchanging 2 bits: x1 ⊕ . . .⊕ xn and y1 ⊕ . . .⊕ yn. In [IR24a], we showed that if g requires
sufficiently large communication, then computing ⊕ ◦ g requires much larger communication.

Theorem 2 ([IR24a]). There exists c0 ≥ 1 such that for any function g with D(g) ≥ c0, D(⊕◦g) ≥
logC(⊕ ◦ g) ≥ n ·

(
Ω(D(g))
log rk(g) − log rk(g)

)
.

Rank and communication are believed to be closely related. For any function g, we know
that D(g) ≥ log rk(g) and the log-rank conjecture, due to Lovász and Saks [LS88] asserts that
D(g) ≤ (log rk(g))O(1). Sudakov and Tomon [ST24] (see also [Lov14] who gave a slightly weaker
bound) recently showed that D(g) ≤ O(

√
rk(g)). When D(g) = Ω(log2 rk(g)), Theorem 2 implies

D(⊕ ◦ g) ≥ Ω(n ·
√

D(g)). Yang [Yan24] observed that rk(⊕ ◦ g) ≥ (rk(g) − 1)n − 1 since rank
tensorizes. He then concluded that if D(g) ≪ log2 rk(g),

D(⊕ ◦ g) ≥ log rk(⊕ ◦ g) ≥ Ω(n · log rk(g)) ≥ Ω(n ·
√
D(g)).

Therefore, for all g with sufficiently large communication complexity, D(⊕ ◦ g) = Ω(n ·
√

D(g)).
In this work, we generalize Theorem 2 to all functions f with large sensitivity, which is defined

as follows. The sensitivity of f at z ∈ {0, 1}n is

sz(f) := |{i : f(z) ̸= f(z1, . . . , zi−1, 1− zi, zi+1, . . . , zn)}|,

and the sensitivity of f , is given by s(f) := maxz sz(f). Our main result is the following.

Theorem 3 (Main Theorem). There exists c0 ≥ 1 such that for any function g with D(g) ≥ c0
and any function f : {0, 1}n → {0, 1},

D(f ◦ g) ≥ logC(f ◦ g) ≥ s(f) ·
(
Ω(D(g))

log rk(g)
− log rk(g)

)
.

Several basic functions, such as parity, the AND function, the OR function etc. all have sen-
sitivity n, and the above result gives a statement analogous to Theorem 2 for such functions.
Understanding the complexity of computing f ◦ g has also received significant attention in the area
of query-to-communication lifting. Here, one typically fixes an inner function g, and asks for the
communication complexity of computing f ◦ g for all f . We discuss the connection between our
work and lifting theorems in more detail.

Connections to Lifting Theorems. We begin by noting that when f only depends on a
small number of coordinates, f ◦ g can easily be computed by computing g in the appropriate
coordinates. More generally, if one has a short decision tree (see Section 2 for a definition) for
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f , then D(f ◦ g) can be computed by tracing out a root-to-leaf path in the decision tree and
communicating to only compute g in the coordinates corresponding to the path. Let the decision
tree complexity of f , denoted DT(f), be the least depth decision tree computing f . Using the best
decision tree for f , we get D(f ◦ g) ≤ DT(f) ·D(g).

A natural question is whether or not the above bound is optimal. There is a large body of
literature showing that the above bound is indeed optimal for several gadgets g. The earliest
such result is due to Raz and McKenzie [RM99] who considered the index function gadget, Indm :
[m] × {0, 1}m → {0, 1} given by Indm(x, y) = yx. They showed that for m = nO(1), and any
function f : {0, 1}n → {0, 1}, D(f ◦ Indm) = Θ(DT(f) · D(Indm)). Their proof was simplified by
Göös, Pitassi, and Watson [GPW18], who also used the lifting paradigm to exhibit functions with
rank r and communication complexity Ω̃(log2 r). The result of [RM99] was recently improved by
[LMM+22], they showed the same result as that of [RM99] for m = O(n log n). Chattopadhyay,
Koucký, Loff, and Mukhopadhyay [CKLM19] showed a similar result for the inner product gadget
(as well as for any gadget with a certain pseudorandom property) IPm : {0, 1}m ×{0, 1}m → {0, 1}
given by IPm(x, y) = x1y1 ⊕ . . .⊕ xmym. They showed that for m = Ω(log n) and any function f ,
D(f ◦ IPm) = Θ(DT(f) ·D(IPm)). Manor and Meir [MM22] proved that D(f ◦g) = Ω(DT(f) ·D(g))
for all functions g with discrepancy at most n−O(1). Lifting theorems have also been studied for
various other complexity measures, such as decision tree complexity to randomized communication
[GPW20, CFK+21, MM22], resolution width to DAG-like communication [GGKS20, LMM+22],
approximate degree to approximate rank [She11, PR18] etc.

In light of the preceding discussion, Theorem 3 can be seen as a statement that lifts sensitivity
to deterministic communication complexity for any gadget g whose communication complexity is
a large enough constant. We also note that ours is not the first work to lift a Boolean function
complexity measure other than decision tree complexity to communication. The work of Sherstov
[She11] yields randomized communication lower bounds for compositions with the index gadget
using approximate degree as the complexity measure for the outer function.

Related Boolean Function Complexity Measures. Sensitivity and decision tree com-
plexity are two among a few well-studied Boolean function complexity measures, such as certificate
complexity, block-sensitivity, and degree; we refer the reader to the survey of Buhrman and de
Wolf [BdW02] for a detailed reference on this topic. We use the connections between one of these
complexity measures, namely the degree, to derive a lower bound on D(f ◦ g) solely in terms of
D(g) and DT(f). The degree of f , denoted deg(f) is the degree of the unique real, multilinear
polynomial computing f . The above complexity measures are known to be related to each other
up to polynomial factors. In particular, we know that for any f ,

deg(f), s(f) ≤ DT(f), (1)√
deg(f) ≤ s(f) ≤ 2 · deg(f)2, and (2)

DT(f) ≤ 2 · deg(f)3. (3)

In the preceding facts, Equation (1) is due to Nisan and Szegedy [NS92] (see also [Nis89]). The
lower bound in Equation (2) is due to Huang [Hua19], and the upper bound is again due to Nisan
and Szegedy [NS92]. Lastly, Equation (3) was shown by Midrijānis [Mid04]. Next, we discuss our
results and use the connections between the above complexity measure to derive lower bounds on
the communication complexity of computing f ◦ g.

Theorem 3 together with Yang’s observation yields the following lower bound on D(f ◦ g) in
terms of the sensitivity and degree.
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Corollary 4. There exists c0 ≥ 1 such that for any function g with D(g) ≥ c0 and any function
f : {0, 1}n → {0, 1},

D(f ◦ g) ≥ s(f) · deg(f)
2s(f) + deg(f)

· Ω
(

D(g)

log rk(g)
+ log rk(g)

)
.

Using the fact that 2s(f) + deg(f) ≤ 3max{s(f), deg(f)} and the AM-GM inequality, we get
the following bound on D(f ◦ g) from Corollary 4

D(f ◦ g) ≥ Ω
(
min{s(f), deg(f)} ·

√
D(g)

)
. (4)

Combining Equation (4) with Equations (2) and (3) we get that for any g with sufficiently large
communication complexity and any f ,

D(f ◦ g) ≥ Ω(DT(f)1/6 ·
√
D(g)).

Other Related Work. Several works have studied the complexity of repeated computation.
In communication complexity, this began with the influential proof of the randomized communi-
cation lower bound for the disjointness function [SK87, Raz92], which is the composition of the
OR function on n bits with the AND gadget. Their techniques were modified to prove direct sum
type statements [CSWY01, JRS03, HJMR10] and streaming lower bounds [BJKS02]. Around the
same time Raz [Raz95] proved the parallel repetition theorem, which was simplified by Holenstein
[Hol07] and Rao [Rao11]. Barak, Braverman, Chen and Rao [BBCR10] adapted the techniques
developed for the parallel repetition theorem to prove general direct sum statements for random-
ized communication complexity. Several aspects of this were improved over the last decade, for
example [BRWY13] gave a direct product theorem and [Kol16, She18] gave near-optimal distribu-
tional direct-sum statements for product distributions. Recently, Yu [Yu22] gave an XOR lemma
for bounded-round randomized communication, which we improved in our work with Rao [IR24b]
to obtain an XOR lemma for general randomized communication.

Techniques. The following lemma is key to the proof of Theorem 3.

Lemma 5. If f ◦ g can be covered with 2T monochromatic rectangles, then g contains a monochro-
matic rectangle of density 2−2T/s(f) · (4 · rk(g))−2.

A similar statement was also derived in [IR24a], where f was assumed to be the parity function
on n bits. We explain the high-level idea of the proof in a few lines and how it differs from the
proof in [IR24a]. Let u(x, y) denote the uniform distribution on X n × Yn. A key observation
made in [IR24a] is that there exists a rectangle R that is constant for ⊕ ◦ g, a coordinate i, inputs
x1, . . . , xi−1 and yi+1, . . . , yn such that

1. |supp(u(xi, yi|x1, . . . , xi−1, yi+1, . . . , yn, R))| ≥ Ω(|X | · |Y| · 2−T/n), where supp denotes the
support of a distribution, and

2. there exists a bit b ∈ {0, 1} so that for every (x′, y′) ∈ R consistent with x1, . . . , xi−1 and
yi+1, . . . , yn we have ⊕j ̸=ig(x

′
j , y

′
j) = b.

Since R is constant for ⊕◦g, Items 1 and 2 together imply that g(xi, yi) is fixed for every (xi, yi)
in the support of u(xi, yi|x1, . . . , xi−1, yi+1, . . . , yn, R). Moreover, since x, y are independent in u,
the support is a rectangle.
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To prove lower bounds for general function composition, we need an appropriate generalization
of the parity constraint in Item 2. We enforce such a constraint by switching from the uniform
distribution to a correlated distribution.

For simplicity, assume s(f) = n and that g is balanced. By definition, there exists z ∈ {0, 1}n
with f(z) ̸= f(z1, . . . , zi−1, 1−zi, zi+1, . . . , zn), for all i. Consider the distribution p(x, y) on X n×Yn

obtained by sampling each (xi, yi) uniformly conditioned on g(xi, yi) = zi. Now, we obtain a weaker
statement than Item 1, which suffices for our purposes. We show that there exists a rectangle R
that is constant for f ◦ g, a coordinate i and inputs x1, . . . , xi−1, yi+1, . . . , yn such that the sets

A := supp(p(xi|x1, . . . , xi−1, yi+1, . . . , yn, R)) and

B := supp(p(yi|x1, . . . , xi−1, yi+1, . . . , yn, R)),

satisfy |A| ≥ Ω(|X | · 2−T/n) and |B| ≥ Ω(|Y| · 2−T/n).
Similar to the proof of Item 1, this uses the sub-additivity of entropy, we refer the reader to

Claim 13 for more details. Next, we show that A×B is a monochromatic rectangle for g. We note
that

supp(p(xi, yi|x1, . . . , xi−1, yi+1, . . . , yn, R)) ⊆ A×B,

and although g is constant on the former set (by the definition of p), it is not obvious that the same
holds for the A×B. Nevertheless, we show that this is indeed the case.

The intuition for this is as follows. For any (xi, yi) ∈ A×B, one can use the definitions of A,B
and p(x, y), to show that there exist (x′, y′) ∈ R satisfying x′i = xi, y

′
i = yi and g(x′j , y

′
j) = zj , for

all j ̸= i. Therefore, if g(xi, yi) ̸= zi, then f ◦ g(x′, y′) ̸= f(z), by the sensitivity of f . This is a
contradiction because for every (x, y) ∈ R ⊇ supp(p(x, y|R)), f ◦ g evaluates to f(z).

The main difference between the above high-level description and the proof of Theorem 3 is that
g need not be balanced. To address this, we consider two cases. First, we assume that g is extremely
biased, say Pr[g(x, y) = 1] > 1 − 1/(4 · rk(g)). In this case, we obtain a monochromatic rectangle
for g using an observation of Gavinsky and Lovett [GL14], ignoring the cover for f ◦ g. Otherwise,
g is not too biased and we can apply the above discussion, albeit with a loss of 1/(4 · rk(g)) in the
final bound.

Organization. We recall relevant definitions in Section 2 and prove Lemma 5 in Section 3.
Theorem 3 and Corollary 4 are proved in Section 4.

2 Preliminaries

For shorthand, we denote by [n] the set {1, . . . , n}. For an element x ∈ X n, we will refer to
x1, . . . , xi−1 by x<i and similarly, we will refer to xi, . . . , xn by x≥i. Similarly, for a random variable
X taking values in X n, we use X<i to denote X1, . . . , Xi−1. All logarithms will be taken base 2.
Given a distribution p(x) we use supp(p(x)) to denote the set of points in the support of p(x). We
recall some relevant mathematical facts, which we will use later.

Definition 6 (Entropy). Given a random variable A distributed according p(a) the entropy of X
is given by

H(A) := E
p(a)

[
log

1

p(a)

]
.

Fact 7. If A has finite support, then H(A) ≤ log |supp(p(a))|, with equality if p(a) is the uniform
distribution.
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Given two jointly distributed random variables A and B distributed according to p(ab), the
conditional entropy of B given A is defined as

H(B|A) := E
p(ab)

[
log

1

p(b|a)

]
.

It is well-known that H(B|A) ≤ H(B). We also recall the chain rule for entropy

H(AB) = H(A) +H(B|A). (5)

Next, we recall the notion of KL-divergence.

Definition 8 (KL-divergence). Given two probability distributions p(a) and q(a), the KL-divergence
between p and q is defined as

D(p||q) := E
p(a)

[
log

p(a)

q(a)

]
.

Fact 9. For any two distributions p(a) and q(a), it holds that D(p||q) ≥ 0.

Next, we recall two complexity measures associated with Boolean functions: decision tree com-
plexity and degree. A decision tree of depth d is an adaptive (deterministic) query algorithm,
making at most d queries to compute a given function. The algorithm queries variables xi1 , . . . , xid
adaptively and outputs a bit based on the values of the variables. We say that a decision tree com-
putes a function f , if on every input x, the algorithm outputs f(x). The decision tree complexity of
f , denoted DT(f) is the least depth of a decision tree among those that compute f . We also recall
that for every function f : {0, 1}n → {0, 1}, there exists a unique real, multilinear polynomial

q(x) =
∑
S⊆[n]

cS ·
∏
i∈S

xi,

such that q(x) = f(x) for all x ∈ {0, 1}n. The degree of f , denoted deg(f), is the degree of q.
We conclude this section with some facts regarding communication complexity and its connec-

tions to the rank of matrices, whose proofs can be found in [RY20]. First, we recall that rank is
sub-additive.

Fact 10. For two matrices A1 and A2, we have rk(A1 +A2) ≤ rk(A1) + rk(A2).

Next, we note that the communication complexity of a function is at least the logarithm of rank
of the corresponding matrix.

Fact 11. For any function g : X × Y → {0, 1}, we have D(g) ≥ ⌈log rk(g)⌉.

Lastly, we need the fact that a protocol with a small number of leaves can be simulated by a
short protocol (see [RY20] Theorem 1.7).

Fact 12. Given a protocol π with ℓ leaves, there exists a protocol with communication at most
⌈2 log3/2 ℓ⌉ that outputs π(x, y) on inputs x and y.
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3 Proof of Lemma 5

First, assume that |Ex,y[g(x, y)]− 1/2| > 1/2 − 1/(4 · rk(f)). In this case, we claim g contains
a monochromatic rectangle of constant density. Indeed,∣∣∣∣Ex,y[g(x, y)]− 1

2

∣∣∣∣ = max

{
Pr
x,y

[g(x, y) = 1]− 1

2
,Pr
x,y

[g(x, y) = 0]− 1

2

}
,

and we can assume without loss of generality that

Pr
x,y

[g(x, y) = 1] > 1− 1

4 · rk(g)
.

Let E be the set of all x such that Pry[g(x, y) = 1] ≤ 1− 1/(2 · rk(g)). We have,

Pr
x,y

[g(x, y) = 1] ≤ Pr
x
[x ∈ E] ·

(
1− 1

2 · rk(g)

)
+Pr

x
[x /∈ E]

= 1− Prx[x ∈ E]

2 · rk(g)
,

which implies that Prx[x ∈ E] ≤ 1/2. Let x1, . . . , xr ∈ Ec be such that the corresponding rows are
maximally linearly independent in Mg. Moreover, let G = {y : f(xi, y) = 1, ∀i ∈ [r]}. By a union
bound, we have

Pr
y
[y /∈ G] ≤ r · 1

2rk(g)
≤ 1

2
.

We observe that Ec × G is a monochromatic rectangle of density at least 1/4. Since 2−2T/s · (4 ·
rk(g))−2 ≤ 1/16 < 1/4 we have found a monochromatic rectangle of the desired density.

Next, suppose that |Ex,y[g(x, y)]− 1/2| < 1/2− 1/(4 · rk(f)). We have

1

4 · rk(g)
≤ Pr

x,y
[g(x, y) = 0],Pr

x,y
[g(x, y) = 1] < 1− 1

4 · rk(g)
. (6)

For shorthand let s be the sensitivity of g. By definition, there exists an input z ∈ {0, 1}n and
a set S ⊆ [n] such that

f(z) ̸= f(z<i, 1− zi, z>i).

We may assume without loss of generality that S ⊇ [s], for otherwise, this can be ensured by renam-
ing the coordinates. Let u(x, y) denote the uniform distribution over all inputs (x, y) ∈ X n×Yn, and
let p(x, y) be a distribution obtained by sampling each (xi, yi) randomly and independently subject
to g(xi, yi) = zi. By Equation (6) we have the following inequality relating the two distributions:

max
x,y

p(x≤s, y≤s)

u(x≤s, y≤s)
= max

xy

∏
i≤s

u(xi, yi|g(xi, yi) = zi)

u(xi, yi)

=
∏
i≤s

1

Pru(xi,yi)[g(xi, yi) = zi]
≤ (4 · rk(g))s. (7)

Recall that f ◦ g can be covered with at most 2T monochromatic rectangles, say R1, . . . , R2T .
Thus, there exists a rectangle R in the cover with p(R) ≥ 2−T . Let X and Y be random variables
denoting rows and columns of X n and Yn respectively, where XY is distributed according to
p(x, y|R).
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Claim 13. ∑
i∈[s]

H(Xi|X<i, X>s, Y>i) +H(Yi|X<i, X>s, Y>i) ≥ s log
|X | · |Y|

(4 · rk(g))2
− 2T.

Proof. Applying the chain rule for entropy we get∑
i∈[s]

H(Xi|X<i, X>s, Y>i) +H(Yi|X<i, X>s, Y>i)

≥
∑
i∈[s]

H(Xi|X<i, X>s, Y ) +H(Yi|X,Y>i) = H(X|X>s, Y ) +H(Y |X,Y>s).

Let p′(x, y) be the distribution obtained by sampling (xj , yj) uniformly at random, for each j ∈ [s],
and according to p(xj , yj) for each j /∈ S. Using this notation, we bound the term H(X|X>s, Y )
above as follows

H(X|Y,X>s)

= E
p(x,y|R)

[
log

1

p(x|y, x>s, R)

]
= E

p(x,y|R)

[
log

p(R) · p(x>s, y|R)

p(x, y)

]
≥ E

p(x,y|R)

[
log

p(x>s, y|R)

(4 · rk(g))s · u(x≤s, y≤s) · p(x>s, y>s)

]
− T (Equation (7) and p(R) ≥ 2−T )

= E
p(x,y|R)

[
log

|X |s · p(x>s, y|R)

p′(x>s, y)

]
− T − s log(4 · rk(g))

= s log
|X |

4 · rk(g)
+D(p(x>s, y|R)||p′(x>s, y))− T ≥ s log

|X |
4 · rk(g)

− T,

which follows by Fact 9. A similar calculation shows that H(Y |X,Y>s) ≥ s log |Y|
4·rk(g) − T , yielding

the desired bound.

By an averaging argument, we obtain an index i ∈ [s] and x<i, x>s, y>i such that

H(Xi|x<i, x>s, y>i) +H(Yi|x<i, x>s, y>i) ≥ log
|X | · |Y|

(4 · rk(g))2
− 2T

s
.

For shorthand, let

A := supp(p(xi|x<i, x>s, y>i, R)) and B := supp(p(yi|x<i, x>s, y>i, R)).

Using Fact 7 we conclude that the rectangle given by A×B has size at least

|X | · |Y|
16 · rk(g)2 · 22T/s

.

Moreover, we claim that A × B is monochromatic for g. Indeed, for any xi ∈ A, there exists
a row x′ ∈ supp(p(x|x<i, x>s, y>i, R)) such that x′i = xi. Similarly, for any yi ∈ B, there exists a
column y′ ∈ supp(p(y|x<i, x>s, y>i, R)) such that y′i = yi. In particular, (x′, y′) ∈ R and in addition,
x′j = xj for all j < i and y′j = yj for all j > i.

Since y′ ∈ supp(p(y|x<i, x>s, y>i, R)), we get g(x′t, y
′
t) = g(xt, y

′
t) = zt for all t < i. Similarly,

we have g(x′t, y
′
t) = g(x′t, yt) = zt for all t > i. Since i ∈ [s], if g(x′i, y

′
i) ̸= zi, then f ◦ g(x′, y′) =

f(z<i, 1 − zi, z>i) ̸= f(z). However, this contradicts the fact that R is monochromatic for f ◦ g
because for every x, y ∈ supp(p(x, y|R)), we know that f ◦ g(x, y) = f(z).
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4 Proof of Theorem 3

At a high level, we apply Lemma 5 repeatedly to find dense monochromatic rectangles and
combine this with the arguments of [NW95] to obtain a protocol for g.

Fix some two functions f and g and consider any cover of f ◦ g with some 2T monochromatic
rectangles. For shorthand, let s denote the sensitivity of f . Applying Lemma 5, we obtain a
monochromatic rectangle R in Mg with density 2−2T/s · (4 · rk(g))−2.

By renaming the rows and columns of Mg appropriately, we can rewrite it asR A

B Z

 ,

for some matrices A,B and Z. Now, we observe that

min

{
rk

([
R A

])
, rk

(R
B

)} ≤ rk(g) + 3

2
. (8)

Since R has rank one we get

rk

([
R A

])
+ rk

(R
B

) ≤ rk(A) + rk(B) + 2 (by Fact 10)

≤ rk

( 0 A

B Z

)+ 2 (Gaussian Elimination)

≤ rk

(R A

B Z

)+ 3 (by Fact 10)

= rk(g) + 3,

and Equation (8) follows.

If rk
( [

R A
] )

≤ (rk(g) + 3)/2, Alice sends a bit to Bob indicating whether or not her input

is consistent with the rows of R. Otherwise, Bob sends a bit to Alice indicating whether or not
his input is consistent with the columns of R. We can assume without loss of generality that

rk
( [

R A
] )

≤ (rk(g) + 3)/2 as the proof is symmetric.

Let g′ and g′′ denote the functions encoded by the matrices
[
R A

]
and

[
B Z

]
respectively.

We note that a cover of Mf◦g also gives a cover of both Mf◦g′ and Mf◦g′′ . If Alice’s input is
consistent with the rows of R, the players repeat the above argument using the rectangle cover for
Mf◦g′ . Otherwise, they repeat the argument using the rectangle cover for Mf◦g′′ . In the former
case, we have rk(g′) ≤ (rk(g) + 3)/2 and in the latter case, the size of X ×Y shrinks by a factor of
1− 2−2T/s · (4 · rk(g))−2.

We claim that after (4 ·rk(g))3 ·22T/s+O(log rk(g)) recursive steps either the rank is at most 5 or
the size of the matrix is at most 1. Indeed, as long as the rk(g) ≥ 5, we have rk(g′) ≤ (rk(g)+3)/2 ≤
4 · rk(g)/5. Hence, there can only be after log5/4 rk(g) many steps where the rank reduces by a

factor of 4/5. Similarly, there can be only k = (4 · rk(g))3 · 22T/s many steps where the size of the

9



matrix reduces, since(
1− 1

22T/s(4 · rk(g))2

)k

≤ exp
(
− k

22T/s(4 · rk(g))2
)
= e−4·rk(g) ≤ 1

|X | · |Y|
,

where we used the fact that |X | and |Y| are both at most 2rk(g) in the last step.
Every leaf of this protocol either corresponds to a size 1 matrix or a matrix of rank at most

5. Thus, with constantly more bits of communication, we get a protocol for g with the following
upper bound on the number of leaves:(

(4 · rk(g))3 · 22T/s +O(log rk(g))

O(log rk(g))

)
·O(1) ≤ O(rk(g)3 · 22T/s)O(log rk(g))

≤ 2O((T/s+log rk(g))·log rk(g)),

where all the inequalities hold for c0 large enough.
By Fact 12 the above protocol can be rebalanced to have communication at most

O

((
T

s
+ log rk(g)

)
· log rk(g)

)
.

Since g requires communication at least D(g),we have(
T

s
+ log rk(g)

)
· log rk(g) ≥ Ω(D(g)),

and the theorem follows by rearranging.

4.1 Proof of Corollary 4

We start with the following claim relating rk(g) and rk(f ◦ g).

Lemma 14. For any two functions f : {0, 1}n → {0, 1} and g : X × Y → {0, 1}, it holds that
rk(f ◦ g) ≥ (rk(g)− 1)deg(f).

Proof. For shorthand, denote by d, the degree of f . By definition, there exists a subset of size
d whose corresponding coefficient in the polynomial expansion of f is non-zero. We can assume
without loss of generality that this set is [d], otherwise, we can rename the variables to ensure
this. Let u1, . . . , ur be a maximal set of linearly independent rows of Mg, and let x1, . . . , xr be the
corresponding inputs. Further, define the vectors ũ1, . . . , ũr, where ũi is the projection of ui onto
the space orthogonal to the all-ones vector, 1. We note that the dimension of span(ũ1, . . . , ũr) is at
least r − 1.

In what follows, we adopt the following notation for the tensor product of 2 (or more vectors).
Given two vectors u ∈ Rm and v ∈ Rk, we denote the tensor product of u with v by u ⊗ v ∈ Rmk

where u⊗ v[i, j] = u(i) · v(j).
The key observation is that the projection of the rows of Mf◦g to the space

V := span({v1 ⊗ . . .⊗ vd ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
n−d times

: vi ∈ {ũ1, . . . , ũr}})
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has full rank. Indeed, consider any function h : [n] → [r] and let uh be the row corresponding to
the inputs xh(1), . . . , xh(n). For any y1, . . . , yn, using the multilinear polynomial for f we can write

uh(y1, . . . , yn) = f(g(x1, y1), . . . , f(xn, yn))

=
∑
S⊆[n]

αS ·
∏
i∈S

g(xi, yi)

=
∑
S⊆[n]

αS ·
∏
i∈S

uh(i)(yi).

For any set S, the last quantity above can be written as tensor product. For example, if we let
S = [t] then ∏

i∈[t]

uh(i)(yi) = uh(1) ⊗ . . . uh(t)[y1, . . . , yt]

= uh(1) ⊗ . . . uh(t) ⊗ 1⊗ . . .⊗ 1︸ ︷︷ ︸
n−t times

[y1, . . . , yn].

Applying this to a general set S, we can write∏
i∈S

uh(i)(yi) = ⊗i∈Suh(i) ⊗i/∈S 1[y1, . . . , yn],

where the subscript is used to denote the vector in the i-th coordinate of the tensor product
depending on whether or not i ∈ S.

For any set S ̸= [d] of size at most d, the projection of ⊗i∈Suh(i) ⊗i/∈S 1 onto V is zero, since
there exists i ∈ [d] \ S such that the vector in the i-th coordinate of the tensor product is 1.
Moreover, by the definition of degree, αS = 0 for sets S of size larger than d. Lastly, the projection
of α[d] · ⊗i∈[d]uh(i) ⊗n

i=d+1 1 is exactly α[d] · ⊗i∈[d]ũh(i) ⊗n
i=d+1 1.

This establishes that the projection of the rows of Mf◦g to V has full rank. It follows the rank
of Mf◦g is at least the dimension of V, which is at least (r − 1)d = (rk(g)− 1)deg(f).

Proof of Corollary 4. Recalling Fact 11, we have D(f ◦ g) ≥ ⌈log rk(f ◦ g)⌉. Therefore, we can put
together Theorem 3 and Lemma 14 to conclude

D(f ◦ g) ≥ max

{
s(f) ·

(
Ω(D(g))

log rk(g)
− log rk(g)

)
, deg(f) · log(rk(g)− 1)

}
.

Using the fact that max{a, b} ≥ λ · a+(1−λ) · b, for any λ ∈ [0, 1], we can set λ = deg(f)/(2s(f)+
deg(f)) to get

D(f ◦ g) ≥ s(f) · deg(f)
2s(f) + deg(f)

·
(
Ω(D(g))

log rk(g)
− log rk(g) + 2 log(rk(g)− 1)

)
≥ s(f) · deg(f)

2s(f) + deg(f)
· Ω
(

D(g)

log rk(g)
+ log rk(g)

)
,

where we used the fact that for c0 large enough, (rk(g)− 1)2 ≥ rk(g)3/2.
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5 Concluding Remarks

At a high level, we try to understand the communication complexity of computing f ◦ g for
arbitrary f and g. We expect that this is Ω(DT(f) · D(g)), for any sufficiently complex gadget
g. Corollary 4 gives the lower bound Ω(min{s(f), deg(f)} ·

√
D(g)) ≥ Ω(DT(f)1/6 ·

√
D(g)) which

can be seen as progress towards this. Below, we show that for some gadgets this can be further
improved.

1. For certain gadgets g, we can obtain D(f ◦g) ≥ Ω(DT(f)1/3 ·
√
D(g)) using the notion of block-

sensitivity, a well-studied [NS92] Boolean function complexity measure. The block-sensitivity
of f at z ∈ {0, 1}n is the maximum number of disjoint sets S1, . . . , St such that for all i ∈ [t],

f(z) ̸= f(z⊕Si), where z⊕Si
j =

{
1− zj , if j ∈ Si and

zj , otherwise.

The block-sensitivity of f , denoted bs(f), is the maximum across all z, of the block-sensitivity
of f at z. By definition, s(f) ≤ bs(f). Moreover, the block-sensitivity is known to give a better
upper bound for the decision-tree complexity than the sensitivity. In particular, Midrijānis
[Mid04] showed that DT(f) ≤ bs(f) · deg(f). By the lower bound in Equation (2) we know
that deg(f) ≤ s(f)2 ≤ bs(f)2. Hence, DT(f) ≤ bs(f)3.

For any function g with the following symmetry property, one can replace s(f) in Theorem 3
with bs(f), which together with Corollary 4 implies that D(f ◦ g) ≥ Ω(DT(f)1/3 ·

√
D(g)).

The symmetry property in question is that for any x, there exists x ̸= x such that g(x, y) =
1 − g(x, y), for every y. An example of such a function is the index function, Indm. We
give a sketch of this claim. Suppose f has block-sensitivity b, achieved at a point z̃ by sets
S1, . . . , Sb. Consider the function f ′ : {0, 1}b → {0, 1} given by

f ′(z) = f(z′), where z′j =

{
|z̃j − zj | , if j ∈ S1 ∪ . . . ∪ Sb and

z̃j , otherwise.

We note that f ′ has sensitivity b, since f ′(0) = f(z̃), and f ′(0⊕{i}) = f(z̃⊕Si). Moreover, any
protocol that computes f ◦g can also be used to compute f ′ ◦g in the following way. Suppose
Alice and Bob gets inputs x1, . . . , xb and y1, . . . , yb. For each set Si and coordinate j ∈ Si,
Alice sets xj = xi if z̃j = 0, and otherwise, sets xj = xi (from the symmetry property). Bob
sets yj = yi for each j ∈ Si. For every coordinate j /∈ S1 ∪ . . . ∪ Sb, the players arbitrarily fix
inputs such that g(xj , yj) = z̃j . They can now run the protocol for f ◦ g to compute f ′ ◦ g
and it follows that D(f ′ ◦ g) ≤ D(f ◦ g). However, Theorem 3 shows that

D(f ′ ◦ g) ≥ s(f ′) ·
(
Ω(D(g))

log rk(g)
− log rk(g)

)
= bs(f) ·

(
Ω(D(g))

log rk(g)
− log rk(g)

)
.

2. Anup Rao observed that for certain other gadgets g, such as the inner product gadget IPm,
one can improve Theorem 3 to obtain D(f ◦g) = Ω(s(f) ·D(g)/ log rk2(g)), where rk2(g) is the
rank of Mg over F2. This can be seen by modifying the proof of Theorem 3 to keep track of
rk2(g) instead of rk(g). Each time we find a monochromatic rectangle R for g using Lemma 5,
we can recurse on a sub-matrix where either rk2(g) goes down by a factor of 4/5 or the size of
the matrix shrinks by the appropriate amount. If the rank over F2 is at most 5, one can just
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use 6 bits of communication to compute the function since D(g) ≤ rk2(g)+1. This calcuation
yields

D(f ◦ g) = s(f) ·
(

Ω(D(g))

log rk2(g)
− log rk2(g)

)
.

Furthermore, for any gadget satisfying D(g) = Ω(log2 rk(g)), we get that D(f ◦ g) = Ω(s(f) ·
D(g)/ log rk2(g)). In particular, for the innner product gadget, we know that rk2(IPm) ≤ m
and D(IPm) = Ω(m).
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