
Uniform Bounds on Product Sylvester-Gallai Configurations

Abstract

In this work, we explore a non-linear extension of the classical Sylvester-Gallai configura-
tion. Let K be an algebraically closed field of characteristic zero, and let F = {F1, . . . , Fm} ⊂
K[x1, . . . , xN] denote a collection of irreducible homogeneous polynomials of degree at most
d, where each Fi is not a scalar multiple of any other Fj for i ̸= j. We define F to be a prod-
uct Sylvester-Gallai configuration if, for any two distinct polynomials Fi, Fj ∈ F, the following
condition is satisfied: ∏

k∈[m],
k̸=i,j

Fk ∈ rad (Fi, Fj) .

We prove that product Sylvester-Gallai configurations are inherently low dimensional. Specif-
ically, we show that there exists a function λ : N → N, independent of K, N, and m, such that
any product Sylvester-Gallai configuration must satisfy:

dim(spanK(F)) ⩽ λ(d).

This result generalizes the main theorems from [Shp20, PS20, OS24], and gets us one step
closer to a full derandomization of the polynomial identity testing problem for the class of
depth 4 circuits with bounded top and bottom fan-in.
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1 Introduction

In 1893, Sylvester posed the following basic problem in extremal combinatorial geometry.

Problem 1.1 ([Syl93]). Suppose a finite set of real points are arranged such that any line through two
points of the set contains a third point in the set. Prove that the set of points lies on a straight line.

The first complete affirmative answer to Problem 1.1 was given by Melchior [Mel40]. The
same problem was independently posed in 1943 by Erdős [EBW+43], and was answered by Gallai
[Gal44]. The above statement is now known as the Sylvester-Gallai theorem.

It is important to note that the answer to Sylvester’s problem depends on the base field.
For instance, it was known (quite possibly even to Sylvester) that the answer to Problem 1.1 is
negative when the base field is C, as the nine inflection points of any non-singular planar cu-
bic form a 2-dimensional complex configuration satisfying Sylvester’s conditions. In 1966, Serre
asked in [Ser66] whether any complex configurations satisfying Sylvester’s conditions must be
2-dimensional – that is, whether the configurations arising from non-singular planar cubics are
extremal. An affirmative answer to Serre’s question was given in 1983 by Hirzebruch [Hir83],
using highly non-elementary algebro-geometric tools.1

Ever since the solution of Sylvester’s problem, several generalizations and variations have
been studied in combinatorial geometry, theoretical computer science (TCS) and coding theory
[EK66, Han65, PS09, EPS06, BDYW11, DSW14, PS20, PS21] – see [BM90, Dvi12] for brief surveys
on these generalizations. The usual setup of such generalizations is as follows: given a finite
collection of geometric objects (points, in the case of Sylvester’s problem) satisfying enough local
conditions (collinearity of certain triples of points, in the case of Problem 1.1), one wants to know if
such collection of geometric objects must be “low dimensional” (all points must be in one line, in the
case of Problem 1.1). As is usual in the literature, any configuration satisfying the proposed local
conditions are called Sylvester-Gallai configurations, and the result stating that such configurations
are low dimensional is referred to as a Sylvester-Gallai type theorem.

One line of generalizations of Problem 1.1 arises from projective duality, which we now dis-
cuss. By projective duality, any point P = (p1, . . . ,pN) gives rise to a dual hyperplane, defined by
the zero set of the linear form ℓP := p1x1 + · · · + pNxN, which we denote by V(ℓP).2 Given three
points P,Q,R, the condition that R is in the line defined by P,Q is equivalent to V(ℓP, ℓQ) ⊂ V(ℓR)
in the dual space. Lastly, given points P1, . . . ,Pm, the condition that they are collinear is equivalent
to dim spanR {ℓP1 , . . . , ℓPm

} = 2. Thus, we can recast Sylvester’s problem as follows: given a finite
set of distinct hyperplanes defined by the set of linear forms L := {ℓ1, · · · , ℓm} ⊂ R[x1, . . . , xN] such
that for any i ̸= j ∈ [m], there is k ̸= i, j such that V(ℓi, ℓj) ⊂ V(ℓk), then it must be the case that
dim spanR {L} = 2. For simplicity, if one applies projective duality in two dimensions, the forego-
ing statement becomes quite natural: given a finite set of distinct lines (the set L) such that for any
two lines ℓi, ℓj ∈ L, there must be a third line in L which passes through the intersection of ℓ1, ℓ2
(i.e., V(ℓ1, ℓ2)), then it must be the case that the set of lines forms a pencil (i.e., all lines intersect at
a common point). In fact, this dual formulation was precisely the setting treated in [Hir83].

Motivated by questions in algebraic complexity theory, Gupta [Gup14] proposed non-linear,
algebro-geometric generalizations to the above (dual) formulation of Sylvester’s problem (and
their set variants, such as [EK66]). In this work, we make progress on Gupta’s program and fully
resolve one such generalization of Sylvester’s problem. Before we describe our main result, in the
following subsection we describe the connection between the Sylvester-Gallai configurations that

1By the Lefschetz principle (alternatively by [BDYW11, Theorem 8.3]), one can extend the same result to any alge-
braically closed field of characteristic zero.

2More generally, for any set of polynomials I, we denote the set of common zeroes of all polynomials in I by V(I).
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we study and the Polynomial Identity Testing (PIT) problem, a fundamental problem in algebraic
complexity theory.

1.1 Polynomial Identity Testing (PIT) and Sylvester-Gallai configurations

The Polynomial Identity Testing (PIT) problem is the task of determining whether a given alge-
braic circuit computes the zero polynomial. While there are simple and efficient randomized al-
gorithms for the PIT problem, developing an efficient deterministic solution remains a significant
open problem in theoretical computer science. The PIT problem is closely tied to fundamental
topics such as lower bounds for algebraic circuits [HS80, Agr05, KI04] and derandomizing key
problems in mathematics and computer science [AKS04, FS13, KSS15, Mul17, GT17, FGT19]. For
a deeper exploration of PIT and its applications, see [Sax09, SY10, Sax14].

The recent works [AV08, GKKS16, Tav15] have shown that the PIT problem for general circuits
can be reduced to solving it for low-depth circuits, such as unrestricted depth-3 or homogeneous
depth-4 circuits, which has made these circuit classes a focus of recent study. Notably, progress
has been made towards deterministic, polynomial-time PIT for depth-3 circuits of constant top
fanin via the connection between this problem and linear Sylvester-Gallai configurations arising
from depth-3 identities [DS07, KS09, SS13].

Let us now explain how Sylvester-Gallai configurations arise in the context of depth-3 and
depth-4 PIT. Let x := (x1, . . . , xN) be a tuple of N variables and S := C [x] be the polynomial ring
in N variables. Suppose we are given a depth three circuit with top fan-in three (denoted Σ3ΠΣ)
that computes a polynomial P. Such a polynomial has the form

P =

m∏
i=1

ℓi(x) +

m∏
j=1

gj(x) +

m∏
k=1

hk(x), (1.1)

where ℓi,gj,hk are linear forms.3 When P ≡ 0, that is, when we have an identity, and moreover
this representation of the identity is ”efficient,”4 we may wonder whether the linear forms in the
identity must be ”low dimensional” (i.e., all such linear forms must ”depend on few variables”).
To capture the dimensionality of the circuit given by Eq. (1.1), [DS07] defined the rank of the circuit
as being the linear span of the forms that appear in the circuit. In case of Eq. (1.1), we have that
the rank is dim spanC

{
ℓi,gj,hk

}
i,j,k∈[m]

.
Consider a linear form ℓi from the first gate and a second linear form gj from the second gate.

Since P ≡ 0, we have that for any a ∈ CN such that ℓi(a) = gj(a) = 0, it must be the case
that

∏
hk(a) = 0. In other words, we have that V(ℓi,gj) ⊂ V (

∏
hk) =

⋃
k V (hk). Since the

algebraic set V
(
ℓi,gj

)
is irreducible, we must have V

(
ℓi,gj

)
⊂ V (ha) for some a ∈ [m]. Note that

this last condition (combined with the symmetry among the gates) is exactly the local constraint
arising from the dual formulation of Sylvester’s problem. In [DS07], the authors asked whether
sets {ℓi}i∈[m] ,

{
gj
}
j∈[m]

, {hk}k∈[m] arising from Eq. (1.1) which satisfy the above conditions must
be low-dimensional – more precisely, whether dim spanC

{
ℓi,gj,hk

}
i,j,k = O(1).

As it turns out, the Sylvester-Gallai like condition in the previous paragraph can be seen as
a set-version of Sylvester’s problem, which was studied by [EK66]. This work showed that such
configurations must have constant rank. Thus, we deduce that spanC

{
ℓi,gj,hk

}
= O(1). This

3Note that, since we are only given the circuit computing P, we do not ”know” the polynomial P in the usual way –
that is, we do not know its coefficients and monomials.

4We mean ”efficient” in the sense that no subset of the three summands are themselves 0, and all three summands do
not have a common factor. Formally, we want the circuit to be simple and minimal. Definitions of simple and minimal
can be found in [KS09].

4



shows that any Σ3ΠΣ identity essentially depends on constantly many variables. Combined with
the results of [KS08], this gives a black box deterministic PIT algorithm for such circuits. While
significantly extra complexity and subtleties arise when one works with ΣkΠΣ circuits for k > 3,
the linear forms in ”efficient” identities arising from such circuits satisfy enough local relation-
ships to deduce that they have low rank. This approach was carried out by [KS09, SS13], who
generalized the above approach and showed an intrinsic and elegant connection between ΣkΠΣ

identities and Sylvester-Gallai configurations (see [SS13, Theorem 1.4]). As a result of this con-
nection, Sylvester-Gallai theorems imply deterministic, polynomial-time PIT algorithms for ΣkΠΣ

circuits, when k = O(1).
Motivated by these results, Gupta [Gup14] studied depth four circuits with constant top and

bottom fan-ins. This circuit family is denoted ΣkΠΣΠd, and it computes polynomials which can
be written as a sum of k products of polynomials of degree at most d.

Consider a polynomial Q computed by a Σ3ΠΣΠd circuit. It has the form

Q =

m1∏
i=1

Ai(x) +

m2∏
j=1

Bj(x) +

m3∏
k=1

Ck(x),

where Ai,Bj,Ck are polynomials of degree at most d. If Q ≡ 0 and the representation is ef-
ficient, as in the previous case, we have V(Ai,Bj) ⊆ V (

∏
Ck).5 However, as the forms are

not necessarily linear, we have that V
(
Ai,Bj

)
is not necessarily irreducible, and thus we no

longer have the same Sylvester-Gallai type configuration, as we cannot guarantee the existence
of k ∈ [m] such that V

(
Ai,Bj

)
⊂ V (Ck). Nevertheless, as there are many constraints of the form

V(Ai,Bj) ⊆ V (
∏

Ck), [Gup14] asked whether such Sylvester-Gallai type conditions would be
enough to prove that dim spanC

{
Ai,Bj,Ck

}
i,j,k is small enough.

Given any ”efficient” Σ3ΠΣΠd circuit (not necessarily computing the zero polynomial), [Gup14]
called it a Sylvester-Gallai circuit if the above constraints on the zerosets (i.e. V(Ai,Bj) ⊆ V (

∏
Ck))

hold. The above discussion shows that all such circuits that compute 0 are Sylvester-Gallai cir-
cuits, but the converse is not true: for instance, multiplying a single form by a constant can change
whether or not the circuit computes 0 without changing the above condition.

Non Sylvester-Gallai circuits are relatively simple compared to Sylvester-Gallai circuits. Non
Sylvester-Gallai circuits do not have too many cancellations (the above discussion shows that
they can never compute 0), and the circuit structure can be preserved by certain linear variable
reduction maps, which is the main tool used in the works [Gup14, Guo21] to handle these circuits.
This allows these works to certify the non-zeroness of non-Sylvester-Gallai circuits.

The cancellations in Sylvester-Gallai circuits on the other hand are a lot more subtle, and it
is not clear if they are preserved by the linear maps of [Gup14, Guo21]. Similar to how linear
Sylvester-Gallai configurations have constant rank, Gupta conjectured that sets of higher degree
forms satisfying the local condition V(Ai,Bj) ⊂ V (

∏
kCk) must ”depend on constantly many

variables.” If this is true, then we can efficiently test if Sylvester-Gallai circuits are nonzero using
the methods of [BMS13]. A simpler form of Gupta’s main conjecture is the following generaliza-
tion of the configurations studied in [EK66]:

Conjecture 1.2 (Gupta’s main conjecture - simple form). Let {Ai}i∈[m1]
∪
{
Bj

}
j∈[m2]

∪{Ck}k∈[m3]
be a

set of irreducible polynomials of degree ⩽ d such that for any i ∈ [m1], j ∈ [m2], we have that V
(
Ai,Bj

)
⊆

V (
∏

kCk) (and the same relations hold when exchanging the roles of the polynomials A,B,C). Then there
exists a function λ : N→ N such that

dim spanC
{
Ai,Bj,Ck

}
i,j,k ⩽ λ(d).

5By symmetry among the gates, we also have V(Ai,Ck) ⊆ V (
∏

Bj) and V(Bj,Ck) ⊆ V (
∏

Ai).
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A first step towards establishing the above conjecture is to establish the Sylvester-Gallai ver-
sion of the above conjecture. This motivates us to consider the Sylvester-Gallai configurations we
study in this article, which we now define.6 By way of the algebraic-geometric dictionary, we will
henceforth replace the geometric condition V (A,B) ⊂ V (C) by the equivalent algebraic condition
rad (C) ⊂ rad (A,B).7

Definition 1.3 (Product Sylvester–Gallai configurations). A finite set F ⊂ C [x1, . . . , xN] of irre-
ducible forms of degree at most d is a d-product-SG-configuration if the following hold.

• Fi ̸∈
(
Fj
)

for any Fi, Fj ∈ F . (each form encodes a different hypersurface)

• For each Fi, Fj ∈ F , we have (Sylvester-Gallai condition)∏
F∈F\{Fi,Fj}

F ∈ rad
(
Fi, Fj

)
.

As stated above, the reader may find it strange that the product constraint no longer seems
local, since the condition for each Fi, Fj involves every other form in the configuration. However,
by a standard Bézout type argument it follows that the condition

∏
F∈F\{Fi,Fj}

F ∈ rad
(
Fi, Fj

)
is

equivalent to the (local) condition that there are indices k1, . . . ,kd2 different from i, j such that

d2∏
a=1

Fka
∈ rad

(
Fi, Fj

)
.

Since d is a constant, each (local) condition now only depends on constantly many forms in the
configuration as expected. As this equivalent condition is more cumbersome to state, we prefer to
work with the above definition.

In a similar fashion to [Gup14], we can also conjecture that such ”product” configurations are
”low dimensional.” This is the content of the following conjecture:

Conjecture 1.4 (Product Sylvester-Gallai Conjecture). There is a function λ : N→ N such that if F is
a d-product-SG-configuration then dim spanC {F } = λ(d).

The above conjecture was first considered by [PS20], where the authors proved Conjecture 1.4
for d = 2. Our main theorem, which we now state, generalizes their main result to forms of every
degree, thus fully settling Conjecture 1.4.

Theorem 1.5 (Product Sylvester-Gallai Theorem). There is a function λ : N → N such that if F is a
d-product-SG-configuration then dim spanC {F } = λ(d).

Our proof techniques build upon the techniques introduced in [Shp20, OS24] to study radical
Sylvester-Gallai configurations, which we define in Section 1.3. In Section 1.3 we also discuss
related and previous works on non-linear Sylvester-Gallai configurations and the PIT problem for
depth-4 circuits. In Section 1.4, we give a high level outline of our proof, highlighting the technical
difficulties that need to be overcome, as well as the new conceptual contributions of this work. We
will now discuss the main contributions of this work, where we state our main technical result,
which is of independent interest.

6We will later see that our proof strategy will require us to further generalise the definition given above, and we do
this in Definition 3.3.

7Here we recall that the radical ideal generated by a set of polynomials I , denoted by rad (I), is the set of polyno-
mials H such that some power of H is in the ideal generated by I .
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1.2 Contributions of this paper

This paper has two main contributions. The first is the proof of Theorem 1.5, which states that
product Sylvester-Gallai configurations of degree bounded by d have dimension uniformly upper
bounded by a function which depends only on d. This result simultaneously generalizes [Shp20,
PS20, OS24], putting us one step closer towards a proof of Conjecture 1.2, and also to the main
conjecture of Gupta [Gup14]. To achieve this, we adapt the inductive approach from [OS24] to
work with product configurations. This adaptation, as we discuss in Section 1.4, requires us to deal
with several subtleties, one of them being to establish a useful property of the general quotients
of [Shp20, OS24]: we prove that such general quotients behave well with respect to (a generalized
notion of) absolute irreducibility. More precisely, we prove that that these quotients send absolutely
reducible forms to reducible elements, and that forms which are absolutely irreducible over the vector
space being quotiented out will remain absolutely irreducible after a general quotient.

The second contribution is our main technical result, Theorem 4.16, which relates absolute
irreducibility of a polynomial P with an effective and uniform bound on the non-primality of certain
ideals containing P. In a simplified form, it can be stated as:

Theorem 1.6 (Prime bound - informal). Let S := C [x1, . . . , xN,y1, . . . ,yn] and P ∈ S \ (x1, . . . , xN)

be a form of degree d that is irreducible over C(x1, . . . , xN)[y1, . . . ,yn]. The number of non-associate
irreducible forms Q ∈ C[x1, . . . , xN] such that (P,Q) is not prime is bounded above by a function of d.

We believe that the above theorem, and its more general version (Theorem 4.16), together with
its proof, are of independent interest. We now briefly discuss the ingredients needed in the proof of
the above theorem. If one only combines results from Gröbner basis theory and elimination theory
with techniques from algebraic geometry, one can obtain an effective bound for the above theorem
which depends on N,n and d. Since the goal of a Sylvester-Gallai theorem is to obtain bounds
independent of the number of variables, such a bound will not be good enough for our purposes.
By combining the Stillman’s uniformity bounds of [AH20a] with results from elimination theory
and algebraic geometry, we are able to obtain an effective bound (depending only on n,d) on the
number of non-associate irreducible forms Q such that (P,Q) is not prime.

Once the dependence on N has been removed and a finite bound on the number of (non-
associate) bad forms Q has been established, we can then use Bertini’s theorem and the Ananyan-
Hochster principle to further drop the dependency on n, finally obtaining a bound which simply
depends on the degree d. To achieve this, we give very effective bounds on the degrees of genera-
tors of Gröbner bases for ideals generated by a small number of variables of low degree, and also
for certain elimination ideals of such ideals. These bounds could be of independent interest.

An important point to note is that [OS24] builds on the Ananyan-Hochster principle to show
their transfer theorems, which we also use. However, to prove the above theorem, we also need to
apply the Ananyan-Hochster principle in a different manner: combined with results from Gröbner
basis theory, we use it to find low degree polynomials in elimination ideals of ideals generated by a
small number of low degree forms. The details of the above discussion can be found in Section 4.

1.3 Related Work

1.3.1 Sylvester-Gallai configurations

In [Gup14], as a first step of his plan, Gupta proposed the study of a direct generalization of the
linear Sylvester-Gallai configurations, which are captured by the following definition.
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Definition 1.7 (Radical Sylvester–Gallai configuration). Let F ⊂ C [x1, . . . , xN] be a finite set of
irreducible forms of degree at most d. We say that F is a d-radical Sylvester-Gallai configuration
if the following hold.

• Fi ̸∈
(
Fj
)

for any Fi, Fj ∈ F .

• For every Fi, Fj ∈ F , we have Fk ∈ rad
(
Fi, Fj

)
for some Fk ∈ F \

{
Fi, Fj

}
.

The following conjecture is a strengthening of [Gup14, Conjecture 2].

Conjecture 1.8 (Radical Sylvester-Gallai conjecture). There is a function λ : N→ N such that if F is a
d-radical Sylvester-Gallai configuration then dim spanC {F } = λ(d).

Conjecture 1.8 was proved by [Shp20] in the special case when d = 2. Subsequently, [OS22]
proved Conjecture 1.8 for d = 3, and [OS24] fully resolved the above conjecture in the affirmative.
Note that the condition Fk ∈ rad

(
Fi, Fj

)
for forms of degree d is a natural generalization of the

condition ℓk ∈
(
ℓi, ℓj

)
: by the Nullstellensatz, these conditions are equivalent to V(Fk) ⊃ V(Fi, Fj)

and V(ℓk) ⊃ V(ℓi, ℓj) respectively. Therefore Conjecture 1.8 is a direct generalisation of the usual
Sylvester-Gallai theorem for forms of higher degrees.

The first work to consider product Sylvester-Gallai configurations was the work of [PS20],
where the authors settled Conjecture 1.4 for quadratic forms. In follow up work [PS21], the same
authors settled Conjecture 1.2 for the case when d = 2, therefore proving that Gupta’s PIT algo-
rithm runs in deterministic, poly-time for Σ3ΠΣΠ2 circuits. Note that the above path in the proofs
of Sylvester-Gallai type results is a natural path towards resolving the PIT problem for Σ3ΠΣΠd

circuits, since Conjecture 1.8 follows from Conjecture 1.4, and it can be shown that Conjecture 1.2
would follow from a robust version of Conjecture 1.4.

Robust and higher dimensional generalizations of the radical Sylvester-Gallai theorems have
also been studied by the works [PS22, GOS22, GOPS23]. Aside from settling such interesting ques-
tions in extremal combinatorial geometry, such variations are also motivated by the PIT problem
for depth-4 circuits, in the hope that these more general versions may be useful towards obtaining
a (potentially simpler) proof of Gupta’s conjectures.

1.3.2 PIT for depth four circuits

Depth-4 circuits with bounded top fan-in are among the ”easiest” classes for which we do not have
deterministic, poly-time PIT algorithms. There has thus been some work on deterministic PIT for
these circuits using methods other than the Sylvester-Gallai based methods discussed above.

In [DDS21], the authors give a quasipolynomial time PIT algorithm for depth 4 circuits of
bounded top and bottom fanins, via the Jacobian method of [ASSS16]. By using the logarithmic
derivative and its power series, they are able to modify the top sum gate in the circuit to a pow-
ering gate. Even though this breaks the bounded top fan-in assumption, models of circuits with
powering gates are well understood, and efficient PIT algorithms for them exist. This allowed
them to harness the known algorithms for such models and obtain their result.

The breakthrough work of [LST22] on lower bounds for bounded depth circuits gives another
approach to PIT for this model. Hardness-randomness tradeoffs have been well studied in alge-
braic complexity [Agr05, KI04], and the work of [CKS19] showed that these tradeoffs also hold in
the bounded depth setting. Combining these results gives a subexponential time PIT algorithm
for depth four circuits. Based on the lower bounds of [LST22], a hitting set generator for bounded
depth circuits was constructed by [AF22], which gives another subexponential time PIT algorithm
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for depth four circuits, with improved parameters. This generator relies on the fact that low depth
circuits cannot detect low rank matrices since determinant is hard for them.

It is important to note that neither of the above methods seem to be able to give a truly polyno-
mial time algorithm for the PIT problem for ΣkΠΣΠd circuits. The only currently known method
that might do so is the approach of [Gup14].

1.4 High-level proof overview

In this subsection we provide an overview of the proof of our main result, Theorem 1.5. We begin
by outlining the high-level approach used in previous works to bound the dimension of the span
of radical Sylvester-Gallai configurations and discuss the challenges of applying this method in
our context. Next, we describe the tools that we employ to address these challenges. Finally, we
provide a concise summary of how these components are combined to establish our main theorem.

To illustrate the ideas in this overview, we use a special case of product Sylvester-Gallai con-
figurations with a simplifying assumption as an example. In the final part of this subsection, we
explain how this assumption can be eliminated to extend the argument to the general case.

1.4.1 High-level approach

At a high level, our proof uses a similar approach as the previous works on higher degree Sylvester-
Gallai configurations [Shp20, PS20, PS21, PS22, GOPS23, OS24], which we now summarize.

Let R := C [x1, . . . , xN], and S := R [y1, . . . ,yn] be two polynomial rings and F ⊂ S be a radical
(or product) Sylvester-Gallai configuration, where the forms in F have degree at most d. Thus,
we can write F = F1 ∪ · · · ∪ Fd, where Fe are the forms in F of degree e. We start with the
assumption that each form only depends on constantly many variables in S.8 A number of key
ideas can already be highlighted in this easier setting.

We want to control the highest degree forms Fd in our configuration, with the goal of reducing
to the case when the highest degree is d− 1, where we can proceed inductively.

If many ideals of the form (Fi, Fj), where Fi, Fj ∈ Fd, are radical (or prime), then the set Fd is
essentially a (robust) linear Sylvester-Gallai configuration. In this case, the linear Sylvester-Gallai
theorems imply that constantly many forms F1, . . . , Fa are a basis for spanC {Fd}, and if x1, . . . , xr
is the union of the set of variables of F1, . . . , Fa, then Fd ⊂ C [x1, . . . , xr]. This is sufficient to control
the forms of Fd and apply our inductive step. The interesting case is thus when there are many
ideals generated by forms in Fd that are not radical (or prime). In this case, the goal is to show
that the forms in Fd must share many variables in common. The steps listed below show how
previous works have dealt with this case.

1. First, one devises a structure theorem on ideals that are not radical (or prime). In principle,
such structure theorems show that if an ideal generated by two polynomials is not radical
(or not prime), then the variables appearing in the polynomials must have some special
“dependencies”.

2. Next, combine the structure theorem with the local conditions to show the existence of con-
stantly many ”good variables” x1, . . . , xb such that Fd ⊂ (x1, . . . , xb).

In this step, our approach differs from previous works, as in a product configuration, it may
not be possible to directly achieve this high level of control on the forms in Fd. We discuss
this in more detail in Step 2 below.

8The set of variables may be different across the forms, otherwise the main theorem is trivially true. Also, note that
the variables of S are both the x and y variables.

9



3. Finally, we ”randomly project” (i.e., apply a general quotient) the special variables x1, . . . , xb
to a new variable z in order to reduce the degree of the forms in Fd.

Also, in this step our approach will differ from previous works. Instead of reducing degree
directly, we will make the forms in F ”factor more.”

We now elaborate on this approach, pointing out the new difficulties we face in this work, and
sketch how we deal with these issues.

Step 1 - Structure theorems: Earlier works ([Shp20, OS22]) gave fairly strong classification of
ideals that are not radical in the first step. In particular, they consider the possible minimal primes
that a non-radical ideal of the form (P,Q) can have, and possible multiplicities that these minimal
primes can have, giving a structural result for each of these cases. However this strategy is hard
to generalise beyond the case of ideals generated by two cubics, since these ideals have very high
degree and their primary decomposition becomes much more complex as the degree grows.

Subsequent work by [OS24] used a significantly weaker (albeit more general) structure theo-
rem, and showed that this suffices to carry out the strategy above. The structure theorem in [OS24]
is the following. If P ∈ S is an irreducible form of degree d that is not in the ideal (x1, . . . , xN),
then there are at most 3d3 square-free forms Qi ∈ R such that (P,Qi) is not radical. Informally,
this statement says that if a form P depends non-trivially on some variable(s) yi, then (P,Q) must
be radical for almost every polynomial Q that only depends on x1, . . . , xN.

For product Sylvester-Gallai configurations, the ideals of interest are those that are not prime.
One could hope to generalize the structural result from [OS24] to this setting. However, a state-
ment of the above form is no longer true here. Take the form P = y4

1 − x1x2y
2
2. This form depends

on the variables y1,y2. However, for every irreducible linear form Q ∈ R, the ideal
(
P, x1x2 −Q2

)
is not prime, even though P and x1x2 −Q2 are irreducible. This is our first technical difficulty.

We overcome this by showing that the above only happens because P is reducible as a form
in C (x1, . . . , xN) [y1,y2], since it factors as P =

(
y2

1 −
√
x1x2y2

) (
y2

1 +
√
x1x2y2

)
. This is where our

first key conceptual and technical contribution comes in. We show that for any degree d form
in R[y1, . . . ,ym] that is irreducible in C (x1, . . . , xN) [y1, . . . ,yn] (such forms are called absolutely
irreducible over R[y1, . . . ,ym]), there are only finitely many Qi ∈ R such that (P,Qi) is not prime.

A fairly subtle issue remains in the above statement. In order to solve the product Sylvester-
Gallai problem, we need quantitative bounds on the number of ”bad forms” Qi. Moreover, we
need a bound which is solely a function of deg(P). If we use standard techniques from commuta-
tive algebra and algebraic geometry, we obtain bounds which depend on the number of variables
(that is: N,n) and on deg(P). This is not sufficient for us, as we want to show that dim spanC {F }
does not depend on the number of variables in the polynomial ring. To prove that the number
of bad forms is in fact independent of N and n, we need to work a bit harder, and we need to
make use of two additional tools: Bertini-type theorems (to remove the dependence on n), and
the Ananyan-Hochster construction of small strong subalgebras (this will remove the dependence
on N). This yields, in its basic form, Theorem 1.6, which we discussed in Section 1.2.

Step 2 - Finding a small set of ”good common variables”: Suppose F is a radical Sylvester-
Gallai configuration. By the above, we can assume that Fd is not a robust linear Sylvester-Gallai
configuration. Our assumption implies that for many pairs Fi, Fj, the ideal

(
Fi, Fj

)
is not radical. In

particular, for a small 0 < ε < 1, we can find 3d3 forms F1, . . . , F3d3 ∈ Fd such that
(
Fi,Fj

)
is not

radical for i ⩽ 3d3 and j ⩽ (1 − ε) |Fd|. The radical bound mentioned in Step 1 shows that there is
a ∈ O(1) and an ideal generated by linear forms (ℓ1, . . . , ℓa) that contains every such Fj. Repeating
this argument, we can find an ideal (ℓ1, . . . , ℓb) with b constant such that Fd ⊂ (ℓ1, . . . , ℓb).
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WhenF is a product Sylvester-Gallai configuration a number of issues arise: first, our structure
theorem deals with prime ideals (instead of radical) and our assumptions are that the forms are
absolutely irreducible. Hence, we will only be able to draw the following weaker conclusion:
there are constantly many variables x1, . . . , xb such that every F ∈ Fd is either in (x1, . . . , xb),
or absolutely reducible in the ring S ′ := C (x1, . . . , xb) [xb+1, . . . , xN,y1, . . . ,yn]. Therefore, when
we apply the general quotient (i.e. a random projection), we can no longer guarantee that the
degree of our forms reduce. We deal with this issue by changing the way we ”decompose” the
configuration F = F1 ∪ · · · ∪ Fd. This is a key difference between our approach and previous
approaches, since this issue does not arise when studying radical Sylvester-Gallai configurations.
This new decomposition also allows us to solve an issue that arises when we apply the general
quotient. We will now state this issue, and then discuss the solution.

Step 3 - General quotients & degree reduction/lowering degree: The image of an irreducible
form under a projection map can be reducible. In order to apply induction, the definition of prod-
uct Sylvester-Gallai configurations has to be generalised to allow the forms in F to be reducible.
Hence, we update our definition of product Sylvester-Gallai configurations to the following.

Definition 1.9 (Product Sylvester–Gallai configurations). A finite set F ⊂ C [x1, . . . , xN] of forms
of degree at most d is a d-product-SG-configuration if the following hold.

• gcd
(
Fi, Fj

)
= 1 for all i ̸= j.

• For every Fi, Fj ∈ F , we have
∏

F∈F\{Fi,Fj}

F ∈ rad
(
Fi, Fj

)
.

This generalisation already appears in [OS24], where reducibility is not an issue when dealing
with radical ideals, since the radical bound also applies to reducible forms. The prime bound
however can no longer apply, irrespective of any assumption: if P is reducible then (P,Q) can
never be prime. In particular, if every form in Fd is reducible, then we can draw no conclusion
about Fd using the above ideas.

We tackle both these issues by turning this reducibility into an advantage: instead of trying to
reduce the degree as in the inductive approaches of [Shp20, OS24, PS20], we will try and make the
forms in our configuration ”factor more”.

In order to formalise what we mean by ”factor more”, we introduce the notion of factor sets
of a product configuration. Given a (generalized) product Sylvester-Gallai configuration F , we
define the factor set I of F to be the set of irreducible factors of all forms in F . As before, we write
I = I1 ∪ · · · ∪ Ic, where Ij ⊂ Sj.

If every form in F factors a lot, then all the forms in I will have low degree. We will induct on
the highest integer c such that Ic is nonzero. Now, the set of ”common variables” we look for will
not be variables common to Fd, but variables common to Ic. The absolute irreducibility condition
remains, and we end up with variables x1, . . . , xb such that every form in Ic is either in the ideal
(x1, . . . , xb) or absolutely reducible. We postpone the discussion of how we do this step to the next
subsection. We now show how these common variables are used in the rest of the induction step.

Step 2 lets us find the ”common variables” x1, . . . , xb. Define a projection map φ that maps
each xi for 1 ⩽ i ⩽ b to a random multiple of a new variable z, and acts as identity on the other
variables. If F ∈ (x1, . . . , xb) then φ(F) = zF ′, where deg(F ′) < deg(F). We define φ(F) to be
the image of F under φ, after factoring out powers of z. As we show in Sections 6 and 8 such a
projection map preserves radical and product Sylvester-Gallai structure, and also allows bounds
on the dimension of φ(F) to be lifted back to bounds on the dimension of F .
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If we have Fd ⊂ (x1, . . . , xb) (as in the case of radical Sylvester-Gallai configurations) then
φ(F) is a Sylvester-Gallai configuration with forms of degree at most d − 1, and induction can
be applied. If on the other hand F is a product Sylvester-Gallai configuration, then we have the
weaker condition that every F ∈ Ic is either in (x1, . . . , xb) or absolutely reducible in S ′. We show
that the image of any F that is absolutely reducible in S ′ under the map φ is reducible. Thus, in
either case we conclude that I ′

c = ∅, where I ′ is a factor set of φ(F), and we can apply induction.
In the next subsection we show how we find these ”common variables” in our setting. Note

that we are still under the assumption that every form in F (and thus in I) depends on only
constantly many variables. We will also show how this assumption is removed.

1.4.2 Putting everything together

Let F be a product Sylvester-Gallai configuration of forms of degree at most d. We now allow
forms in F to be reducible, but still require that they are square-free and are pairwise relatively
prime. Let I := I1 ∪ · · · ∪ Id be the set of irreducible factors of forms in F . We will induct on the
largest integer c such that Ic ̸= ∅. We first go over the base case in our induction.

Our base case is when every form Fi ∈ F is a product of linear forms, say Fi =
∏

a ℓia. In this
case, I = I1 = {ℓia}i,a. Now suppose we pick ℓia and ℓjb with i ̸= j. The ideal

(
ℓia, ℓjb

)
is a mini-

mal prime of
(
Fi, Fj

)
. Therefore, the product Sylvester-Gallai condition implies that Fk ∈

(
ℓia, ℓjb

)
for some k, which in turn implies that ℓke ∈

(
ℓia, ℓjb

)
for some choice of index e. This is a linear

Sylvester-Gallai relationship among the elements of I1. The choice of ℓia, ℓjb was arbitrary, except
the condition that i ̸= j. Therefore, the set I1 is a robust linear Sylvester-Gallai configuration, and
therefore has bounded rank. This in turn implies that the forms in F have bounded rank, since
they are spanned by monomials of degree at most d in a basis for I = I1.

We now sketch the induction step. Suppose c is the largest integer such that Ic ̸= ∅. Our
induction step is further split into two steps, as discussed in the previous subsection.

1. First we show that there are variables x1, . . . , xb such that every form in Ic is either in the
ideal (x1, . . . , xb) or absolutely reducible in S ′ := C (x1, . . . , xb) [xb+1, . . . , xN,y1, . . . ,yn]. This
is a relaxed version of step 2 in the previous approach, applied to Ic instead of Fd.

2. We then show that projecting x1, . . . , xb to a new variable z results in a product Sylvester-
Gallai configuration with Ie = ∅ for any e ⩾ c.

We elaborate on these in the special case when c = 2, since this already captures all the main
ideas. As before, if I2 is a robust linear Sylvester-Gallai configuration, then step 2 follows easily
by picking a basis for I2. Consider A,B ∈ I2, and suppose A|Fi and B|Fj for some Fi, Fj ∈ F .
Suppose (A,B) is prime. Then (A,B) is a minimal prime of

(
Fi, Fj

)
. The product Sylvester-Gallai

configuration implies Fk ∈ (A,B) for some k, and therefore C ∈ (A,B) for some C|Fk. Further,
by homogeneity, it must be that C ∈ I2. This gives us a linear Sylvester-Gallai relationship be-
tween the elements A,B,C ∈ I2. The assumption that I2 is not a robust linear Sylvester-Gallai
configuration will therefore imply that (A,B) is not prime for many pairs A,B. Since the forms in
I2 are irreducible (even though the forms in F might not be), by a combinatorial argument and
Theorem 1.6, we deduce the existence of variables x1, . . . , xb, completing step 1 above.

We now move on to second step. Suppose φ is a projection map that sends x1, . . . , xb to random
multiples of a new variable z. The map φ sends elements in (x1, . . . , xb) to multiples of z. We also
prove (Proposition 4.5) that φ sends elements of I2 \ (x1, . . . , xb) that are absolutely reducible in
S ′ to reducible forms. Since c = 2, the degree of each of these forms has to be 1. Therefore,
if we apply φ to some F ∈ F , every factor of F will be linear, even though it is possible that
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deg(F) = deg(φ(F)). This reduces the problem to the base case, and the properties of φ allow us
to lift the resulting bound on the dimension of φ(F) back to a bound on the dimension of I .

Removing the initial assumption: We started with the assumption that every form in F de-
pended only on constantly many variables. In general, it is of course possible that the forms
depend on many or even all the variables. This issue was overcome in [OS24], building on the
seminal work of [AH20a]. They show that forms H1, . . . ,Ha of high enough strength (a notion we
define in Section 5) behave essentially like variables, in the sense that C [H1, . . . ,Ha] is isomorphic
to a polynomial ring. Further, the extension C [H1, . . . ,Ha] ⊂ S has many of the properties that
the extension C [x1, . . . , xa] ⊂ S has, the most useful of them being that this extension preserves
arbitrary intersection of ideals.

Motivated by this, [OS24] define the notion of strong vector spaces and algebras, which are
vector spaces of small dimension spanned by forms of high rank, and the algebras they generate.
They show that in the general case of the radical Sylvester-Gallai problem (when the forms depend
on more than constantly many variables), while there might not be variables x1, . . . , xb such that
Fd ⊂ (x1, . . . , xb), we can find a strong vector space V such that Fd ⊂ (V).

The above change complicates the projection step, since random restriction of higher degree
forms is no longer well defined. To fix this, [OS24] defined generalised projection maps, and again
proved that such maps have all the properties that the linear projection maps have. In particular,
they preserve the radical Sylvester-Gallai structure, and they allow bounds on the dimension of
the image of F to be lifted back to bounds on F . With these tools, they set up an inductive
framework to show radical Sylvester-Gallai configurations have bounded dimension, with linear
Sylvester-Gallai configurations acting as the base case.

Extending our results to the setting of strong algebras in order to apply this framework requires
two technical results. First we define the notion of absolute reducibility with respect to strong
vector spaces (Section 5.5). This allows us to extend the prime bound to strong algebras. We then
show that general projection maps send forms that are absolutely reducible with respect to strong
vector spaces to reducible forms. These two extensions to the above framework allow us to prove
our main theorem in the general case.

1.5 Organisation

In Section 2, we give some notation that we will use in the rest of the paper. In Section 3, we
formally define the notions of linear Sylvester-Gallai configurations that we need, and we formally
define product Sylvester-Gallai configurations and the related notion of factor sets. In Section 4,
we gather and establish the necessary results from commutative algebra and algebraic geometry
that we need, and we establish our primality structure theorem. In Section 5 and Section 6, we
collect the necessary facts about strong algebras and general quotients that will be required. Most
proofs for the statements in these sections can be found in [OS24], and we only prove the new
statements that we need. In Section 7, we use the results from previous sections to establish the
structure of factor sets of product Sylvester-Gallai configurations. Finally, in Section 8, we combine
all the above ingredients to prove our main theorem, Theorem 1.5.
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2 Preliminaries

Throughout this paper, K will denote an algebraically closed field of characteristic zero, and
S = K [x1, . . . , xN] will denote the polynomial ring, graded by degree S =

⊕
i⩾0 Si, where S0 = K.

Given a ring R and elements F1, · · · , Fn ∈ R we denote the ideal generated by F1, · · · , Fn as
(F1, · · · , Fn). Given an ideal I ⊂ R we denotes its radical as rad (I), which is the ideal consist-
ing of all elements F such that Fr ∈ I for some positive integer r.

We use form to refer to a homogeneous polynomial. Given a graded vector space V ⊂ S

spanned by forms of S, we use Vi to denote the degree i piece, that is, Vi = V ∩ Si. Note that
we have V =

⊕
i⩾0 Vi. Given two forms A,B we say that A,B are associate if there exists a non-

zero scalar c ∈ K such that A = cB. Otherwise, we say that A,B are non-associate forms. For any
integral domain A, we let K(A) denote the fraction field of A, and K(A) its algebraic closure.

3 Sylvester-Gallai Configurations

We now define linear Sylvester-Gallai configurations and state known bounds on their dimen-
sions. We then formally define our main object of study: product Sylvester-Gallai configurations.

Definition 3.1 (Robust linear Sylvester-Gallai configurations). Let c ∈ N , 0 < δ ⩽ 1 and V be a
K-vector space. Let F := {v1, . . . , vm} ⊂ V be a finite set of pairwise linearly independent vectors. We
say that F is a (r, δ)-linear-SG configuration over K if there exists a K-vector subspace U ⊂ V of
dimension at most r such that the following condition holds:

• for any vi ∈ F \U, there exist at least δ(m− 1) indices j ∈ [m] \ {i} such that vj ̸∈ U and

|spanK
{
vi, vj

}
∩ F | ⩾ 3 or spanK

{
vi, vj

}
∩U ̸= (0).

We will say that F is a (r, δ)-linear-SG configuration over the vector space U.

The following bound on such configurations is proved in [OS24, Proposition 3.5], which is a
generalization of the result [Shp20, Corollary 16], using the sharper bounds from [DGOS18].

Proposition 3.2. If F is a (r, δ)-linear-SG then dim spanK {F } ⩽ r+ 1 + 8/δ.

We now formally define product Sylvester-Gallai configurations.

Definition 3.3 (Product Sylvester-Gallai configurations). Let U ⊂ S be a graded finitely generated
vector space such that R := S/ (U) is a UFD, and let z ∈ R1. Let F := {z, F1, . . . , Fm} ⊂ R be a finite
set of square-free forms of degree at most d. We say that F is a (d, c, z,R)-product Sylvester-Gallai
configuration if the following conditions hold:

1. gcd
(
Fi, Fj

)
= 1 for all i ̸= j, and gcd (z, Fi) = 1 for all i ∈ [m] (non-associate forms)

2. every Fi is a product of irreducible forms of degree at most c. (factor bound)

3. for every i ̸= j (Sylvester-Gallai condition)

z ·
∏
k̸=i,j

Fk ∈ rad
(
Fi, Fj

)
.
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The above definition generalises Definition 1.3 in a number of ways. The underlying ring is
allowed to be any finitely generated UFD over K as opposed to just a polynomial ring. The forms
are allowed to be reducible as long as they are square free and relatively prime. Further, the
definition keeps track of the highest degree of any factor of any form in the configuration.

Each of these requirements are needed to allow our inductive framework to apply, following
the same approach as was done in [OS24]. As we mentioned in Section 1, the change between our
inductive approach and the one in [OS24] is that we will induct on the maximum degree of any
irreducible factor of the forms Fi. Since these irreducible factors are our main object of focus in
our inductive approach, we are naturally brought to the following definition.

Definition 3.4 (Factor set). Let F be a (d, c, z,R)-product Sylvester-Gallai configuration. A set
I ⊂ R consisting of every irreducible factor of every form F ∈ F is called a factor set of F . 9

We write I(F) if the underlying configuration F is not clear from context. Since factors of
forms are forms, we can write I = I1 ∪ · · · ∪ Ic, where Ij ⊂ Rj. The degree of I is the largest e
such that Ie ̸= ∅. If F is a (d, c, z,R)-configuration then the factor set I has degree at most c.

The following lemma captures a Sylvester-Gallai like structural result that I satisfies.

Lemma 3.5. Suppose U ⊂ S is a graded finitely generated vector space such that R := S/ (U) is a UFD.
Suppose F is a (d, c, z,R)-product Sylvester-Gallai configuration, and suppose I is a factor set of F . For
every G1,G2 ∈ I \ (z), at least one of the following is true.

• There is some F ∈ F such that G1|F and G2|F.

• (G1,G2) is not prime.

• |(G1,G2) ∩ I | ⩾ 3.

Proof. Let G1,G2 ∈ I \ (z). Suppose (G1,G2) is prime, and suppose there is no F ∈ F such that
G1|F and G2|F. We must show that the third item holds. If z ∈ (G1,G2) then we are done, since
z ∈ I . We are therefore left with the case when z ̸∈ (G1,G2).

We have rad (F1, F2) ⊂ (G1,G2). By the Sylvester-Gallai condition on F , and the fact that
(G1,G2) is prime, we have F3 ∈ (G1,G2) for some form F3 ∈ F such that F3 ̸= F1, F2. This im-
plies that G3 ∈ (G1,G2) for some irreducible factor G3 of F3. Since F1, F3 are relatively prime and
similarly F2, F3 are relatively prime we have G3 ̸∈ (G1) , (G2).

The following result shows that in order to bound the dimension of a product SG-configuration
F , it is enough to bound the dimension of a factor set I .

Proposition 3.6. Suppose U ⊂ S is a graded finitely generated vector space such that R := S/ (U) is a
UFD. Suppose F is a (d, c, z,R)-product Sylvester-Gallai configuration, and suppose I is a factor set of F .
If dim spanK {I} = s then dim spanK {F } ⩽

(
s+d
d

)
.

Proof. Let P1, . . . ,Ps ∈ I be such that every form in I is a linear combination of forms P1, . . . ,Ps.
Consider the subalgebra K[I ] ⊂ R generated by I . We know that F ⊂ K[I ]⩽d. Now, K[I ] =
K[P1, · · · ,Ps]. Thus, every form in F is a linear combination of monomials in P1, . . . ,Ps of degree
at most d. Hence dim spanK {F } ⩽

(
s+d
d

)
.

9The factor set is only defined up to units in R, which are just the nonzero scalars. The properties we are interested in,
such as the dimension of the span of the factor set, and ideals generated by pairs of polynomials in I are independent
of such scaling, therefore this ambiguity in the definition does not matter to us.
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4 Algebraic-Geometric Toolkit

4.1 Commutative Algebraic preliminaries

Suppose that A is an integral domain and M a finitely generated A-algebra. If M⊗AK(A) = 0, then
there exists a non-zero f ∈ A such that the localization Mf = 0. We will be interested in a special
case of this situation when A is a polynomial subalgebra of a polynomial ring S. More precisely,
let S = K[x1, · · · , xn, z1, · · · , zℓ], A = K[x1, · · · , xn] and M = S/(g1, · · · ,gs), where g1, · · · ,gs ∈ S.
Suppose that M ⊗ K(A) = 0. In the following results, we will show that there exists a f ∈ A

with Mf = 0 such that deg(f) is uniformly bounded. We refer to [Eis95, CLO07] for commutative
algebraic definitions and the background on Gröbner basis.

Lemma 4.1. Let e ⩾ 1. Let S = K[x1, · · · , xn, z1, · · · , zℓ] and A = K[x1, · · · , xn]. Let g1, · · · ,gs ∈ S

with deg(gi) ⩽ e, and B = S/(g1, · · · ,gs). If B ⊗A K(A) = 0, then there exists a non-zero polynomial
f ∈ A ∩ (g1, · · · ,gs) · S with

deg(f) ⩽ 2(
e2

2
+ e)2ℓ+n−1

.

In particular, Bf = 0.

Proof. Note that A is an integral domain and (0) is a prime ideal in A. Since S = A[z1, · · · , zℓ],
we have that B = A[z1, · · · , zℓ]/(g1, · · · ,gs) is a finitely generated A-algebra. Let B(0) be the local-
ization of B at (0). Then we have B(0) ≃ B ⊗A K(A) = 0 as A-modules. Therefore there exists a
non-zero polynomial g ∈ A such that g · 1 = 0 in B and hence g ∈ (g1, · · · ,gs) in S. In particular
Bg = 0 and (g1, · · · ,gs)·S∩A ̸= (0) in S. Although we do not have control over the degree of an ar-
bitrary g above, it is enough to show that there exists a non-zero polynomial f ∈ (g1, · · · ,gs) ·S∩A
such that deg(f) ⩽ 2(e

2

2 + e)2ℓ+n−1
.

Consider the lex monomial ordering on S where zℓ > · · · > z1 > xn > · · · > x1. Let I =
(g1, · · · ,gs) · S. Recall that deg(gi) ⩽ e for all i. Therefore, by applying [Dub90] to S, there exists
a Gröbner basis f1, · · · , fk of I such that deg(fj) ⩽ 2(e

2

2 + e)2ℓ+n−1
for j ∈ [k]. Now, by [CLO07,

Section 3.1, Theorem 2], we know that {f1, · · · , fk} ∩A is a Gröbner basis for the elimination ideal
I ∩A. In particular, there exists a non-zero element fj ∈ I ∩A for some j ∈ [k]. Therefore, we may
take f = fj.

Lemma 4.2. Fix d, e ⩾ 1. Let S = K[x1, · · · , xn, z1, · · · , zℓ] and A = K[x1, · · · , xn]. Suppose that
t1, · · · , tr ∈ A is a regular sequence in S where degS(ti) ⩽ d. Let A ′ := K[t1, · · · , tr] ⊂ S and
S ′ := A ′[z1, · · · , zℓ]. Let g1, · · · ,gs ∈ S ′ with degS(gi) ⩽ e. Let B := S/(g1, · · · ,gs) and B ′ :=
S ′/(g1, · · · ,gs).

If B ′ ⊗A ′ K(A ′) = 0, then there exists a non-zero polynomial f ∈ A ′ ⊂ A with

degS(f) ⩽ 2d(
e2

2
+ e)2ℓ+r−1

such that the localization Bf = 0.

Proof. Since t1, · · · , tr is a regular sequence in S, they are algebraically independent. Moreover,
as t1, · · · , tr ∈ A, we note that t1, · · · , tr, z1, · · · , zℓ are algebraically independent. Therefore S ′ =
K[t1, · · · , tr, z1, · · · , zm] is isomorphic to a polynomial ring and the elements t1, · · · , tr, z1, · · · , zℓ
can be treated as the variables of the polynomial ring.

Note that degS ′(gi) ⩽ degS(gi) ⩽ e. By applying Lemma 4.1 to S ′, there exists f ∈ A ′ ∩
(g1, · · · ,gs) · S ′ such that degS ′(f) ⩽ 2(e

2

2 + e)2ℓ+r−1
. Since degS(ti) ⩽ d, we have that degS(f) ⩽
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d · degS ′(f). Therefore we have degS(f) ⩽ 2d(e
2

2 + e)2ℓ+r−1
. Furthermore, since f ∈ (g1, · · · ,gs) · S,

we have that Bf = 0.

4.2 Absolute irreducibility

In this subsection, we recall the notions of Cohen-Macaulay rings, absolute and geometric irre-
ducibility.

Regular sequences, Cohen-Macaulay rings and homogeneous system of parameters. Let R be ring
and M an R-module. A sequence of elements F1, F2, · · · Fn ∈ R is called an M-regular sequence
if (F1, F2, · · · , Fn)M ̸= M, and for i = 1, · · · ,n, Fi is a non-zerodivisor on M/(F1, · · · , Fi−1)M. If
M = R, then we simply call it a regular sequence. A local ring (R,m) with dim(R) = n, is Cohen-
Macaulay (CM) if there exists a regular sequence F1, · · · , Fn ∈ m of length n. A Noetherian ring R

is Cohen-Macaulay if Rp is Cohen-Macaulay for all maximal (equivalently prime) ideals p in R.
Let R = ⊕i∈NRi be a finitely generated N-graded K-algebra such that R0 = K. A sequence of

homogeneous elements F1, · · · , Fn ∈ R is a homogeneous system of parameters, abbreviated as
h.s.o.p., if we have n = dim(R) and dim(R/(F1, · · · , Fn)) = 0.

Definition 4.3. A polynomial P ∈ F[x1, · · · , xN] is called absolutely irreducible if P is irreducible in
the polynomial ring F[x1, · · · , xn], over an algebraic closure F of F.

A scheme X over a field F is called geometrically irreducible if the base change XF ′ is irreducible
for any field extension F ′ over F. A scheme X over a field F is called geometrically reduced if the
base change XF is reduced for an algebraic closure F of F.

Proposition 4.4. 1. A scheme X over a field F is geometrically irreducible iff the base change XF is
irreducible for an algebraic closure F of F.

2. A polynomial P ∈ S = F[x1, · · · , xN] is absolutely irreducible iff the scheme X = Spec(S/(P)) is
geometrically irreducible and geometrically reduced.

Proof. The first part follows from [Sta18, Tag 038I]. For the second part, we note that P is irreducible
over F iff (P) is prime in F[x1, · · · , xN]. Now we are done since primality of (P) over F is equivalent
to the scheme X = Spec(S/(P)) being irreducible and reduced over F.

Proposition 4.5. Let K [z,y1, . . . ,ym] be a graded polynomial ring with deg(z) = 1. Suppose P ∈
K [z,y1, . . . ,ym] is a homogeneous polynomial. Then the following holds.

1. If gcd(P, z) = 1 and P is reducible in K[z,y1, · · · ,ym], then P is reducible in K (z) [y1, . . . ,ym].

2. If P is reducible in K (z) [y1, . . . ,ym], then P is reducible in K [z,y1, . . . ,ym].

Proof. (2) We can assume that gcd(P, z) = 1, otherwise P is clearly reducible in K[z,y1, . . . ,ym].
Since P is homogeneous and gcd(z,P) = 1, [Ful89, Section 2.6, Corollary 5] shows that P reducible
in K [z,y1, . . . ,ym] iff P ′ := P(1,y1, . . . ,ym) is reducible in K [y1, . . . ,ym]. Suppose P factors in
K (z) [y1, . . . ,ym] as P = AB. Let A =

∑
α pα(z)y

α and B =
∑

β pβ(z)y
β, where yα,yβ are

monomials, and pα(z),pβ(z) ∈ K (z) ̸= 0. Consider the universal polynomials C =
∑

α cαy
α and

D =
∑

β dβy
β where cα,dβ are formal variables. We can write the product CD =

∑
γ qγ(c,d)yγ

where qγ are polynomials with coefficients in K. That P = AB is equivalent to the fact that when
we set cα = pα,dβ = pβ, each qγ is equal to the corresponding coefficient of P. Suppose P has
degree d as a polynomial in K (z) [y1, . . . ,ym], and suppose the space of monomials of degree d in
y1, . . . ,ym has dimension N.
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The coefficients of CD define a map to the space PN−1
K[z]

, whose image is closed, since projec-

tive maps are closed. The image of this map is exactly those polynomials in K (z) [y1, . . . ,ym] that
factor into two polynomials of the same multidegree as C,D respectively. We construct the defin-
ing equations of this image F1, . . . , Fr. Each Fi has coefficients in K, since the coefficients of CD
themselves are in K. That P is reducible implies that each Fi vanishes on the coefficients of P. In
particular, each Fi vanishes when the coefficients of P are specialised to z = 1.

Similar to this construction, we can construct the defining equations for the space of polynomi-
als in K [y1, . . . ,ym] of degree d that factor into two polynomials of the same multidegree as C,D.
These defining equations are also exactly F1, . . . , Fr, since the only coefficients that occur in the
construction in both cases are those from K. By the above, the coefficients of P ′, which are exactly
the coefficients of P specialised to z = 1, satisfy these equations. This shows that P ′ is reducible,
whence P is reducible.

We also remark that both the assumption that P is homogeneous and that deg(z) = 1 are
necessary conditions: for example consider P = y2

1 −x1y
2
2. This form is not homogeneous with the

standard grading, but is homogeneous if we set deg(z) = deg(y2) = 2 and deg(y1) = 3. Further,
φ(P) is irreducible in C [z,y1,y2] but P factors as P =

(
y1 −

√
zy2

) (
y1 +

√
zy2

)
.

The following two results deal with polynomial rings with possibly non-standard grading.

Lemma 4.6. Let B = K[z, x1, · · · , xn], where deg(z) = 1 and deg(xi) = di for some di ⩾ 1. For
α ∈ Kn, let pα be the prime ideal (x1 −α1z

d1 , · · · , xn−α1z
dn) ⊆ K[z, x1, · · · , xn]. If T ⊆ Kn is a dense

subset, then the set S := {pα | α ∈ T } is dense in Spec(B).

Proof. Suppose that S is not dense in Spec(B). Then S is contained in a proper closed subset
V(I) of Spec(B), where I ⊆ B is a non-zero ideal. Let V(I) = ∪jV(qj) be the decomposition into
irreducible components where q1, · · · , qr ⊆ B are non-zero prime ideals. Since S ⊆ ∪jV(qj), each
prime pα ∈ S contains at least one of the prime ideals q1, · · · , qr. Let Tj := {α ∈ T | qj ⊆ pα}. Since
∪rj=1Tj = T , at least one of the sets Tj must be dense in Kn. Suppose Tk is dense. Then we may
replace T with Tk. Let q = qk. Then we have that q ⊆ pα for all α ∈ T . We will see that this leads
to a contradiction.

Let f ∈ q ⊆ K[z, x1, · · · , xn] be a non-zero polynomial. Let deg(f) = e and f = f0 + · · · + fe
be the decomposition of f into its homogeneous parts with the grading of B. We may write fe =
g0 + g1z + · · · + gdz

d where g1, · · · ,gd ∈ K[x1, · · · , xn] are homogeneous with deg(gi) = e − i.
Consider the map φα : B → B/pα = K[z]. Then φα(fe) = (

∑d
i=0 gi(α))z

e. As pα ⊆ B is a
homogeneous ideal and f ∈ pα, we must have fe ∈ pα. Hence φα(fe) = 0 in K[z]. Therefore,
(
∑

i gi)(α) = 0 for all α ∈ U . Hence
∑

i gi = 0 in K[x1, · · · , xn], as U ⊆ Kn is a non-empty open
subset. Now gi ∈ K[x1, · · · , xn] is homogeneous with deg(gi) = e− i. Hence we must have gi = 0
for all i. Thus fe = 0, which is a contradiction.

Proposition 4.7. Let S := K [x1, . . . , xn,y1, . . . ,ym] be a graded polynomial ring with deg(xi) = di ⩾ 1
and deg(yj) = ej ⩾ 1. Let A = K[x1, · · · , xn] and K(A) the fraction field of A. Let d ⩾ 1 and
P ∈ Sd \ (x1, . . . , xn). Suppose φα : S → K [z,y1, . . . ,ym] is a map defined by φα(xi) = αiz

di with
α ∈ Kn and φα(yj) = yj.

1. If P is absolutely irreducible over K(A), then φα(P) is absolutely irreducible over K (z) for a general
choice of α.

2. Suppose that φα(P) is absolutely irreducible over K (z) for all α ∈ T , where T ⊆ Kn is a dense
subset. Then P is absolutely irreducible over K(A).
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Proof. (1) Suppose that P is absolutely irreducible over K(A). Then, by [Sta18, Tag 0557], there
exists f ∈ A such that φ(P) is irreducible over K(z)[y1, · · · ,ym] for any ring homomorphism
φ : Af → K(z). Let φα : A → K[z] ↪→ K(z) ↪→ K(z) be defined by xi 7→ αiz

di . Note that
φα(f) ∈ K[z]. Let deg(f) = e and f = f0 + · · ·+ fe be the decomposition of f into its homogeneous
parts. Then φα(f) =

∑e
i=0 fi(α)z

i. Let U := Kn \ V(fe). Then U ⊆ Kn is a non-empty open
subset as fe is non-zero. Moreover, φα(f) ̸= 0 for all α ∈ U . Therefore, for all α ∈ U , the map φα

descends to a ring homomorphism Af → K(z) by the universal property of localization. Hence
φα(P) is irreducible in K(z)[y1, · · · ,ym]for a general choice of α, i.e. for all α ∈ U .

(2) Let T ⊆ Kn be a dense subset such that φα(P) is irreducible for all α ∈ T . Suppose that P
is reducible in K(A)[y1, · · · ,ym]. Then it is also reducible in K(B)[y1, · · · ,ym], where B := A[z] =
K[z, x1, · · · , xn]. We will show that this leads to a contradiction.

Consider the affine schemes X := Spec(B[y1, · · · ,ym]/(P)) and Y := Spec(B). The ring homo-
morphism B → B[y1, · · · ,ym]/(P) gives rise to a morphism of finite type f : X → Y. Let η ∈ Y be
the generic point of Y, i.e. η is the prime ideal (0). By applying [Sta18, Tag 055A], we know that
there exists a non-empty open subset V ⊆ Y such that the number of irreducible components of
the geometric fiber Xp is constant for all p ∈ V .

Note that by definition Xp = Spec(B[y1,··· ,ym]
(P) ⊗B k(p)), where k(p) = Bp/pBp is the residue

field at p. Since k(p) = K(B/p), we know that Xp = Spec(K(B/p)[y1, · · · ,ym]/(P)). Therefore
the number of irreducible components of Xp is the number of irreducible factors of the image
of P in K(B/p)[y1, · · · ,ym]. Note that the geometric generic fiber Xη has at least two irreducible
components as P is reducible in K(B)[y1, · · · ,ym] and η = (0). Therefore, Xp is reducible for all
p ∈ V . Hence the image of P is reducible in K(B/p)[y1, · · · ,ym] for all p ∈ V .

For α ∈ Kn, let pα be the prime ideal (x1 − α1z
d1 , · · · , xn − α1z

dn) ⊆ B = K[z, x1, · · · , xn].
Note that B/pα = K[z] and K(B/pα) = K(z). By assumption we know that the image of P, namely
φα(P), is irreducible in K(z)[y1, · · · ,ym] for all α ∈ T . By Lemma 4.6, the set of primes S := {pα |

α ∈ T } is dense in Y. Hence S ∩ V ̸= ∅. This is a contradiction.

4.3 Bertini-type results

The classical Bertini theorem says that if a projective variety X is non-singular, then a general
hyperplane section is also non-singular and it is irreducible if dim(X) ⩾ 2. Furthermore, several
useful properties of algebraic schemes such as reducedness, Cohen-Macaulayness and normality
are preserved under general hyperplane sections [FOV99, Section 3.4]. In this section, we prove
versions of the Bertini theorems relevant to our applications.

General points. Let F be any field. We say that a property P holds for a general α ∈ Fm (or Am
F ),

if there exists a non-empty open subset U ⊂ Fm such that the property P holds for all α ∈ U . Here
U ⊂ Fm is open with respect to the Zariski topology. Hence U is the complement of the zero set
of finitely many polynomial functions on Fm. Note that, equivalently a property P holds for a
general α ∈ Fm, if there is a closed subset Z ⊂ Fm such that the P holds for all α ̸∈ Z .

Hyperplane sections. We fix n,m ∈ N such that m ⩾ 4. Let S = K[x1, · · · , xn,y1, · · · ,ym] and
A = K[x1, · · · , xn]. For α ∈ Km, let φα be the quotient homomorphism

φα : S→ Rα := S/(α1y1 + · · ·+ αmym)

Note that Rα is also a polynomial ring. In fact, if α1 ̸= 0, then Rα ≃ K[x1, · · · , xn,y2, · · · ,ym].
Furthermore, φα(xi) = xi for all i ∈ [n] and hence φα is an A-algebra homomorphism. Therefore
φα extends to a K(A)-algebra homomorphism

K(A)[y1, · · · ,ym]→ K(A)[y1, · · · ,ym]/(α1y1 + · · ·+ αmym),
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which we continue to denote by φα. For the remainder of this section we fix the notations φα and
Rα defined as above.

Affine schemes. Recall that an ideal ideal I in the polynomial ring S is prime iff the quotient
ring S/I is an integral domain. Given such an ideal I, the corresponding geometric object is the
affine scheme Spec(A/I). In order to study primality of such ideals I we will study the geometric
properties the affine scheme Spec(A/I). In particular, I is prime iff the affine scheme Spec(A/I)
is irreducible and reduced. Affine schemes are a generalization of the classically studied affine
varieties defined by ideals in polynomial rings. Working in this generalized setting is essential
for us since the classical setting of varieties is not well-equipped to study nilpotents in the ring
S/I, which are an obstruction to primality of I. In our arguments we will use basic definitions and
properties of affine schemes, and we refer to [Har77] for the necessary background.

The following result is a version of the Bertini theorem. It shows that absolute irreducibility
over K(A) is preserved under suitable hyperplane sections defined over K.

Lemma 4.8. Let n,m ∈ N such that m ⩾ 4. Let S = K[x1, · · · , xn,y1, · · · ,ym] and A = K[x1, · · · , xn].
Suppose that P ∈ S is absolutely irreducible over K(A). Then there exists an open dense subset T ⊂ Km

such that φα(P) ∈ Rα is absolutely irreducible over K(A) for all α ∈ T .

Proof. Let F := K(A) and S ′ = F[y1, · · · ,ym]. For β ∈ Fm, we let R ′
β = S ′/(β1y1 + · · · +

βmym) and φβ be the quotient homomorphism S ′ → R ′
β. Consider the affine hypersurface

X = Spec(S ′/(P)) ⊂ Am
F . Since P is an irreducible polynomial over F, we know that X is an

irreducible and reduced scheme over F. Note that dim(X) ⩾ 3 as m ⩾ 4. For any β ∈ Fm, let
Xβ denote the hyperplane section X ∩ V(β1y1 + · · ·+ βmym). We will apply the Bertini theorems
[FOV99, Corollary 3.4.9, Theorem 3.4.10] to show that a general hyperplane section Xβ is also
irreducible and reduced.

We consider the linear system on X spanned by y1, · · · ,ym. Then reducedness of Xβ follows
from [FOV99, 3.4.8, Corollary 3.4.9]. For irreducibility, we verify that the conditions in [FOV99,
Theorem 3.4.10] hold in our setting. We note that the base locus of the linear system y1, · · · ,ym is,
by definition, the common zero set of P,y1, · · · ,ym in Fm. Therefore the base locus is contained
in {(0, · · · , 0)}, and hence at most 0-dimensional. Since dim(X) ⩾ 3, we have that the codimension
of the base locus of is at least 3. Moreover, consider the rational map ϕ : X 99K Pm−1

F defined
by x → [y1(x) : · · · : ym(x)]. Since ϕ factors through the natural map Am

F 99K Pm−1
F , we have

that dim(ϕ−1(p)) ⩽ 1 for any p ∈ Pm−1
F . Since dim(X) ⩾ 3, we conclude that dim(ϕ(X)) ⩾ 2.

Hence the linear system is not composed with a pencil. Therefore, by [FOV99, Theorem 3.4.10],
we conclude that Xβ is irreducible for a general β ∈ Fm.

Since Xβ = Spec(R ′
β/(φβ(P)), we conclude that φβ(P) is irreducible over F for a general β ∈

Fm. Therefore there exists an open subset U ⊂ Fm such that for all β ∈ U we have that φβ(P) is
irreducible over F. By [Ras99, Proposition 3.3], we know that U ∩ Km is an open dense subset of
Km, and we conclude by defining T := U ∩Km.

The following lemma is a modification of [OS24, Lemma 4.21], which provides a criterion to
deduce irreducibility and reducedness of schemes using properties of the fibers of a morphism.

Lemma 4.9. Let ϕ : A → B be a homomorphism of finitely generated K-algebras. Let Y = Spec(B), X =
Spec(A) and π : Y → X be the corresponding morphism of affine schemes. Suppose that X is irreducible
and reduced, i.e. A is an integral domain. Furthermore, suppose that every irreducible component of Y
dominates X.

1. If π−1(x) is irreducible for a general closed point x ∈ X, then Y is irreducible.
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2. Suppose Y satisfies Serre’s property S1, i.e. Y does not have embedded primes. If for every irreducible
component W of X, we have that π−1(x) is reduced for a dense set of closed points x ∈ W, then Y is
reduced.

Proof. We note that (1) follows directly from [OS24, Lemma 4.21]. Furthermore, in [OS24, Lemma
4.21], statement (2) was proved under the assumption that π−1(x) is reduced for a general closed
point x ∈ W. However, the same argument works if we have that a dense set of fibers π−1(x) is
reduced.

We prove the following Bertini-type result which shows that non-primality is preserved by
general hyperplane sections of codimension 2 complete intersections.

Lemma 4.10. Let n,m ∈ N such that m ⩾ 5 and S = K[x1, · · · , xn,y1, · · · ,ym]. Let P,Q ∈ S be a
regular sequence. Suppose that (P,Q) is not prime. Then the ideal (φα(P),φα(Q)) is not prime in Rα for
a general α ∈ Km.

Proof. Let X = Spec(S/(P,Q)) be the affine scheme defined by P,Q. Since (P,Q) is not prime, we
have that X is not irreducible or not reduced. Since P,Q is a regular sequence, we know that X is
Cohen-Macaulay. In particular, X does not have any embedded components and all the irreducible
components of X have the same dimension. Let X = X1 ∪ · · ·Xk be the irreducible decomposition
of X. For α ∈ Km, let Hα ⊂ An+m be the hyperplane defined by ℓα := α1y1 + · · ·+ αmym. We let
Xα and Xi,α denote the corresponding hyperplane sections X∩Hα and Xi∩Hα respectively. Note
that Xα = Spec(S/(P,Q, ℓα)) = Spec(Rα/(φα(P),φα(Q))).

Case 1. Non-irreducible X. We will show that if X is not irreducible, then a general hyperplane
section Xα is not irreducible. Suppose that X is not irreducible, i.e. k > 1.

First, we will apply the Bertini theorem [FOV99, Theorem 3.4.10] to the schemes Xi and show
that Xi,α is irreducible for general α. Fix i ∈ [k]. Consider the linear system on Xi spanned by
y1, · · · ,ym. Let ϕ : Xi 99K Pm−1

K be the rational map defined as x→ [y1(x) : · · · : ym(x)]. Note that
dim(Xi) = dim(X) = n+m−2 ⩾ n+3. Since dim(ϕ−1(p)) ⩽ n+1 for all p ∈ Pm−1

K , we conclude
that dim(ϕ(Xi)) > 1. Therefore the linear system spanned by y1, · · · ,ym is not composed of a
pencil. We note that the base locus or the common zero set of y1, · · · ,ym on Xi is contained in the
affine subspace V(y1, · · · ,ym) ⊂ An+m. Hence the dimension of the base locus is at most n. Since
dim(Xi) ⩾ n + 3, we see that the codimension of the base locus is at least 3. By [FOV99, Theorem
3.4.10], we conclude that Xi,α is irreducible for a general α. Note that there are finitely many Xi.
Hence, for a general α, we have that Xi,α are irreducible for all i ∈ [k].

Now, we have that Xα = X1,α ∪ · · · ∪ Xk,α. We will show that Xi,α ̸⊂ Xj,α for i ̸= j. Then Xα =
X1,α ∪ · · · ∪ Xk,α will be the irreducible decomposition of Xα. Hence Xα will be non-irreducible,
since k > 1.

We have Xi ̸= Xj for i ̸= j and we know that dim(Xi) = dim(Xj). Therefore U := Xi \ Xj is a
non-empty open subset of Xi. Let Z = Xi ∩ Xj. Note that dim(Z) ⩽ dim(Xi) − 1 ⩽ n + m − 3.
We will show that for a general α, we must have Xi,α ∩ U ̸= ∅. Otherwise, we have Xi,α ⊂ Z for
a dense set of α in Km. Now dim(Xi,α) = dim(Xi ∩ Hα) ⩾ n +m − 3 by [Har77, Propsition 7.1].
Therefore, we must have dim(Z) = n + m − 3 and Xi,α is an irreducible component of Z for a
dense set of α in Km. For any irreducible component W of Z, the set of hyperplanes containing
W is a vector subspace of spanK(y1, · · · ,ym). In particular, the set of α ∈ Km such that W ⊂ Hα

is an linear subspace of Km. Since there are only finitely many possibilities for W, we must have
that there is an irreducible component W of Z such that Hα ⊃ W for a dense set of α ∈ Km. This
is a contradiction since dim(V(y1, · · · ,ym)) ⩽ n. Therefore, Xi,α ∩ U ̸= ∅, and hence Xi,α ̸⊂ Xj,α
for a general α, if i ̸= j.
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Case 2. Non-reduced X. By the previous case, we may assume that X is irreducible. We will
show that if X is not reduced, then a general hyperplane section Xα is also non-reduced.

Since P,Q is a regular is sequence, the ideal (P,Q) does not have any embedded primes. Since
X = Spec(S/(P,Q)) is irreducible, we know that (P,Q) has a unique minimal prime p. In particu-
lar, rad (P,Q) = p. Since X is Cohen-Macaulay, it is reduced iff it is generically reduced. Therefore
any non-empty open subset U ⊂ X is a non-reduced scheme. Suppose that there is a dense set of
α ∈ Km, such that Xα is reduced. We let U := X\V(y1, · · · ,ym) and in the following we will show
that U is a reduced scheme, and obtain a contradiction.

Let t1 · · · , tm be new variables and let Am be the corresponding affine space. We define S ′ =
K[x1, · · · , xn,y1, · · · ,ym, t1, · · · , tm]. We consider the following affine scheme X ⊂ X × Am ⊂
A2m+n defined by the ideal (P,Q,

∑
tiyi) ⊂ S ′. Let q : X → Am and p : X → X denote the

projection morphisms. For any α ∈ Km, we know that the fiber q−1(α) is the hyperplane section
Xα. By [FOV99, Lemma 3.4.4], we know that the morphism p : p−1(U) → U is a locally trivial
fibration with fibers Am−1. Therefore, it is enough to show that p−1(U) is reduced.

We note that P,Q,
∑

tiyi is a regular sequence in S ′. Otherwise,
∑

tiyi ∈ p · S ′, as p · S ′ is the
minimal prime of (P,Q) in S ′. This is a contradiction, since we may substitute ti = 1 and tj = 0 for
j ̸= i, to obtain that yi ∈ p for all i. This is a contradiction since ht(p) = 2 and m ⩾ 5. Therefore X
is Cohen-Macaulay. Let X ′ ⊂ X be the union of the irreducible components of X which dominate
Am under the morphism q : X ′ → Am. Note that X ′ does not have any embedded primes,
as X is Cohen-Macaulay. Since X is irreducible, we know that Xα is irreducible for a general α
(by the Bertini theorem as proved in Case 1.). Thus a general fiber q−1(α) = Xα is irreducible,
and we conclude that X ′ is irreducible by Lemma 4.9. Moreover, we know that the fibers Xα are
non-reduced for a dense set of α, by assumption. Therefore, X ′ is reduced by Lemma 4.9.

Now p−1(U) is an irreducible open subset of X , as U is irreducible. Therefore p−1(U) is con-
tained in a unique irreducible component of X . Now p−1(U) dominates Am under the morphism
q, since a general point of X is contained in a general hyperplane Hα parametrized by α ∈ Am.
Therefore, p−1(U) must be contained inX ′. SinceX ′ is reduced, we obtain that p−1(U) is reduced,
as desired.

4.4 Irreducibility of specializations

Let S = K[x1, · · · , xn,y1, · · · ,ym] be a polynomial ring and A = K[x1, · · · , xn]. Let K(A) de-
note the fraction field of A. For any polynomial P ∈ S and α ∈ Kn, we let Pα(y1, · · · ,ym) =
P(α1, · · · ,αn,y1, · · · ,ym) ∈ K[y1, · · · ,ym]. Suppose that P ̸∈ A, and P is absolutely irreducible
over K(A), then it follows from [Sta18, Tag 0559], that Pα is irreducible in K[y1, · · · ,ym] for a gen-
eral α ∈ Kn. Following [Sta18, Tag 0557], we show that we can find a polynomial equation for the
locus of α for which the specialization Pα is reducible. Furthermore, we show that we can also
control the degree of the polynomial defining the equation.

For any d,m, r ⩾ 1 we let

C(m, r,d) = md4(d2 + 2d)2(2(d+1)md+r−1)
.

Lemma 4.11. Suppose that t1, · · · , tr ∈ A is a regular sequence in S where deg(ti) ⩽ d and A ′ :=
K[t1, · · · , tr] ⊂ S. Let P ∈ S be a polynomial of degree d. Suppose that

1. P is absolutely irreducible over K(A).

2. P ∈ A ′[y1, · · · ,ym].
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Then there exists a polynomial H ∈ A of degree deg(H) ⩽ C(m, r,d) such that Pα ∈ K[y1, · · · ,ym] is
irreducible for any α ∈ Kn with H(α) ̸= 0.

Proof. We let di be the degree of P in yi for i ∈ [m]. We may write P as a polynomial in ym as
follows:

P = (
∑

hLy
L)ydm

m + P1

where hL ∈ A and L varies over tuples L = (ℓ1, · · · , ℓm−1) with 0 ⩽ ℓj ⩽ dj, and P1 ∈ S consists
of monomials of P with degree of ym strictly less than dm. By assumption (2), we know that
hL ∈ A ′ for all L. We will show that there exists a non-zero polynomial fm ∈ A such that, if for
some α ∈ Kn \ V({hL}), the specialization Pα factors into a product of two polynomials of strictly
smaller degree in ym , then we must have fm(α) = 0.

For any two integers e1, e2 > 0 with e1 + e2 = dm, we define the universal polynomials Q1,Q2
as follows.

Q1 =
∑

0⩽ℓ⩽e1

(
∑
L

a1,ℓ,Ly
L)yℓ

m

and
Q2 =

∑
0⩽ℓ⩽e2

(
∑
L

a2,ℓ,Ly
L)yℓ

m

where the coefficients a1,ℓ,L,a2,ℓ,L are indeterminates and L varies over the set of multi-indices
L = (ℓ1, · · · , ℓm−1) with ℓi ⩽ di. Note that the total number of indeterminates ai,ℓ,L appearing as
coefficients in Q1,Q2 is at most 2(d+ 1)md.

Let T := A[{a1,ℓ,L}, {a2,ℓ,L}] and T ′ := A ′[{a1,ℓ,L}, {a2,ℓ,L}]. Let Ie1,e2 ⊂ T be the ideal generated by
the coefficients of P −Q1Q2 in T [y1, · · · ,ym]. Since P −Q1Q2 ∈ T ′[y1, · · · ,ym], these coefficients
belong to T ′ and we similarly let I ′e1,e2

⊂ T ′ be the ideal generated by these coefficients. Let B ′
e1,e2

be the finitely generated A ′-algebra T ′/I ′e1,e2
and similarly B = T/Ie1,e2 .

Note that P = Q1Q2 in B ′
e1,e2

[y1, · · · ,ym]. Since P is also irreducible over K(A ′), we conclude
that there does not exist any non-trivial A ′-algebra homomorphism B ′

e1,e2
→ K(A ′). By Hilbert’s

Nullstellensatz, we conclude that B ′
e1,e2
⊗K(A ′) = 0. Therefore, by Lemma 4.2, we know that there

exists a non-zero polynomial fe1,e2 ∈ A with

deg(fe1,e2) ⩽ d(d2 + 2d)2(2(d+1)md+r−1)

such that (Be1,e2)fe1,e2
= 0. Let α ∈ Kn \ V(hLfe1e2) for some L. Then Pα is a non-zero polynomial

of degree dm in ym. If Pα factors into a product of two polynomials of smaller degree e1, e2, then
there exist specializations (Q1)β, (Q2)γ of the polynomials Q1,Q2 given by a1,ℓ,L = β1,ℓ,L ∈ K and
a2,ℓ,L = γ2,ℓ,L ∈ K such that Pα = (Q1)β(Q2)γ. Therefore the evaluation xi 7→ αi, a1,ℓ,L 7→ β1,ℓ,L
and a2,ℓ,L 7→ γ2,ℓ,L gives a non-zero homomorphism Be1,e2 → K. Now, by the universal property of
localization, this homomorphism must factor through Be1,e2 → (Be1,e2)fe1,e2

, as fe1,e2(α) ̸= 0. This
is a contradiction as (Be1,e2)fe1,e2

= 0. Hence Pα does not have a factorization into polynomials of
degree e1, e2 if hLfe1,e2(α) ̸= 0.

We let fm =
∏

e1,e2>0,e1+e2=dm
fe1,e2 and Hm = hLf for some L. Similarly, we may define the

polynomials Hj corresponding to the variables yj for j ∈ [m]. Therefore, we have that if Hj(α) ̸= 0,
then Pα is an irreducible polynomial of degree dj in yj. Therefore we are done by taking H = ΠjHj.
Since deg(hL) ⩽ d, dj ⩽ d and the number of pairs e1, e2 > 0, e1 + e2 ⩽ d is at most d2, the bound
on deg(fe1,e2) above implies that deg(H) ⩽ C(m,n,d).
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Corollary 4.12 (Locus of reducible specializations). Let S = K[x1, · · · , xn,y1, · · · ,ym] be a polyno-
mial ring and A = K[x1, · · · , xn]. Let P ∈ S be a polynomial of degree d. Suppose that P is absolutely
irreducible over K(A). Then there exists a polynomial H ∈ A of degree deg(H) ⩽ C(m,n,d) such that
Pα ∈ K[y1, · · · ,ym] is irreducible for any α ∈ Kn with H(α) ̸= 0.

Proof. Since x1, · · · , xn is a regular sequence in S, we apply Lemma 4.11 with A ′ = A to obtain the
desired conclusion.

Now we show that we can actually get rid of the dependence on n in the bound for the degree
of H in Corollary 4.12.

Proposition 4.13 (Improved Locus of reducible specializations). There exists a function C̃ : N ×
N → N such that the following holds. Let S = K[x1, · · · , xn,y1, · · · ,ym] be a polynomial ring and
A = K[x1, · · · , xn]. Let P ∈ S be a polynomial of degree d. Suppose that P is absolutely irreducible over
K(A). Then there exists a polynomial H ∈ A of degree deg(H) ⩽ C̃(m,d) such that Pα ∈ K[y1, · · · ,ym]
is irreducible for any α ∈ Kn with H(α) ̸= 0.

Proof. Let us consider P as an element of A[y1, · · · ,ym] and write P =
∑

e aey
e, where e =

(e1, · · · , em) ∈ Nm with e1 + · · ·+ em ⩽ d and ye denotes the monomial ye1
1 · · ·y

em
m . Note that the

number of such coefficients is
(
m+d
d

)
and moreover degS(ae) ⩽ d for all e. Consider the graded

vector space V = ⊕d
i=1Vi ⊂ S, spanned by all the coefficient polynomials ae. Now we have

dim(Vi) ⩽
(
m+d
d

)
and dim(V) ⩽ d

(
m+d
d

)
. By [AH20a, Corollary B], there exists a regular sequence

t1, · · · , tr in S such that all the coefficients ae are contained in the algebra A ′ := K[t1, · · · , tr] and
we also have r ⩽ R(m,d) := 3B(d

(
m+d
d

)
,d), where ηB : N × N → N is the function defined in

[AH20a]. In particular, r is upper bounded by a function of m,d only, independent of n. Since P ∈
A ′[y1, · · · ,ym], we apply Lemma 4.11 to conclude that there exists H with the desired properties
and we also have deg(H) ⩽ C(m,R(m,d),d). Hence, we define C̃(m,d) = C(m,R(m,d),d).

4.5 Primality criterion and Effective bounds

In this section we prove effective bounds on the number of non-prime ideals of the form (P,Q).
The following lemma proves a primality criterion for certain ideals of the form (P,Q).

Lemma 4.14. Let S := K[x1, . . . , xn,y1, . . . ,ym] be a graded polynomial ring with deg(xi) = di ⩾ 1
and deg(yj) = ej ⩾ 1. Let A = K[x1, · · · , xn] and K(A) the fraction field of A. Let d ⩾ 1 and
P ∈ Sd \ (x1, . . . , xn) such that P is absolutely irreducible over K(A). Then there exists a polynomial H ∈
K[x1, · · · , xn] with deg(H) ⩽ C̃(m,d) such that the following holds. For any irreducible homogeneous
Q ∈ K[x1, · · · , xn] such that H ̸∈ (Q), we have that (P,Q) is prime.

Proof. Let H be the polynomial given by Proposition 4.13. Recall that deg(H) ⩽ C̃(m,d). Let
Q ∈ K[x1, · · · , xn] be an irreducible homogeneous element such that H ̸∈ (Q). We will show that
(P,Q) is prime.

By [OS24, Proposition 4.22], we have that P is a non-zero divisor in S/(Q). In particular
S/(P,Q) is Cohen-Macaulay. Furthermore, we also have that for any minimal prime p over (P,Q)
in S, the ideal p ∩ A is a minimal prime of (Q) in A. In particular, p ∩ A = (Q), since Q

is irreducible. Let π : Am+n → An be the morphism corresponding to A ⊂ S. Note that
π(x1, · · · , zn,y1, · · · , xm) = (x1, · · · , xn) for closed points. Consider the affine schemes given by
Y = Spec(S/(P,Q)) and X = Spec(A/(Q)). Note that we have a homomorphism of finitely gener-
ated K-algebras A/(Q) → S/(P,Q), as (Q) ⊂ (P,Q) ∩ A. The corresponding morphism of affine
schemes is given by π|Y : Y → X and we have commutative diagram.
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Y Am+n

X An

π|Y π

Since Q is irreducible, we have that the scheme X is irreducible and reduced. Since p∩A = (Q)
for any minimal prime p over (P,Q) in S, we have that any irreducible component of Y dominates
X. Therefore, by Lemma 4.9, it is enough to show that π|−1

Y (x) is irreducible and reduced for a
general closed point x ∈ X. Let x = (c1, · · · , cn) ∈ X be a closed point. Let Px ∈ K[y1 · · · ,ym]
denote the polynomial P(c1, · · · , cn,y1, · · · ,ym). Note that π|−1

Y (x) = Spec(K[y1, · · · ,ym]/(Px)),
as x ∈ X. Since H ̸∈ (Q), we have that H(x) ̸= 0 for a general closed point x ∈ X. Therefore,
by Proposition 4.13, we conclude that Px is irreducible in K[y1, · · · ,ym] for a general closed point
x ∈ X. Therefore, π|−1

Y (x) = Spec(K[y1, · · · ,ym]/(Px)) is irreducible and reduced for a general
closed point x ∈ X. Hence (P,Q) is prime.

Proposition 4.15. Let S = K[x1, . . . , xn,y1, . . . ,ym] be a graded polynomial ring with deg(xi) = di ⩾ 1
and deg(yj) = ej ⩾ 1. Let A = K[x1, · · · , xn] and K(A) the fraction field of A. Let d ⩾ 1 and
P ∈ Sd \ (x1, . . . , xn) such that P is absolutely irreducible over K(A). Then there are at most C̃(m,d)
pairwise non-associate irreducible homogeneous elements Qi ∈ A such that (P,Qi) is not prime.

Proof. Let H ∈ K[x1, · · · , xn] be the polynomial given by Lemma 4.14 . Therefore for any Qi ∈ A

such that (P,Qi) is not prime, we must have that H ∈ (Qi), by Lemma 4.14 . Since, deg(H) ⩽
C̃(m,d), we conclude that there exist at most C̃(m,d) pairwise non-associate irreducible homoge-
neous elements Qi ∈ K [x1, . . . , xn] such that (P,Qi) is not prime.

By applying our Bertini-type results we can improve the bound in Proposition 4.15. In fact, we
show that the number of non-prime pairs (P,Qi) can be effectively bounded independent of m.

Theorem 4.16. There exists a function C : N→ N such that the following holds.
Let S = K[x1, . . . , xn,y1, . . . ,ym] be a graded polynomial ring with deg(xi) = di ⩾ 1 and deg(yj) =

ej ⩾ 1. Let A = K[x1, · · · , xn] and K(A) the fraction field of A. Let d ⩾ 1 and P ∈ Sd \ (x1, . . . , xn) such
that P is absolutely irreducible over K(A). Then there are at most C(d) pairwise non-associate irreducible
homogeneous elements Qi ∈ A such that (P,Qi) is not prime.

Proof. By Proposition 4.15, we know that there exist at most C̃(m,d) pairwise non-associate ir-
reducible homogeneous elements Qi ∈ A such that (P,Qi) is not prime. Since there are finitely
many such Qi, we may apply Lemma 4.10 to each pair (P,Qi) to assume that (φα(P),φα(Qi))
is not prime for a general α ∈ Km. Note that φα(Qi) = Qi. We may apply (m − 5) number
of successive hyperplane sections corresponding to α(1), · · · ,α(m−5) ∈ Km to obtain a quotient
ring S→ Rα. Note that Rα is isomorphic to A[y1, · · · ,y5]. Let P̃ be the image of P in Rα under the
successive quotient morphism. By choosing α = (α(1), · · · ,α(m−5)) generally, we may assume
that P̃ is absolutely irreducible over K(A) by Lemma 4.8. Since α(1), · · · ,α(m−5) ∈ Km are chosen
generally and there are finitely many Qi, we conclude that (P̃,Qi) is not prime in Rα for all i. Then
by applying Proposition 4.15 to Rα, we know that there are at most C̃(5,d) number of Qi ∈ A such
that (P̃,Qi) is not prime in Rα. Therefore we are done by defining C(d) = C̃(5,d).
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5 Strong Algebras

In this section we recall the definitions and results that we will need about strong algebras. Most
of the definitions and results from this section are taken from [OS24, Section 5], and we refer the
reader to this paper for motivation and further discussions about these definitions.

5.1 Strength

Let R = ⊕d⩾0Rd be a finitely generated graded K-algebra, generated by R1. In [AH20a] the notions
of collapse and strength were defined for a polynomial ring. We will extend those definitions to
finitely generated graded K-algebras and prove the necessary properties below. Henceforth, we
refer to a homogeneous element of R as a form, adopting the same notation for polynomial rings.

Definition 5.1 (Collapse). Given a non-zero form F ∈ Rd, we say that F has a k-collapse if there
exist k forms G1, . . . ,Gk such that 1 ⩽ deg(Gi) < d and F ∈ (G1, . . . ,Gk).

Definition 5.2 (Strength). Given a non-zero form F ∈ Rd, the strength of F, denoted by s(F), is the
least positive integer such that F has a (s(F) + 1)-collapse but it has no s(F)-collapse. We say that
s(F) ⩾ t whenever F does not have a t-collapse.

Remark 5.3. By the definitions above, a form x ∈ R1 does not have a k-collapse for any k ∈ N. Thus,
we say that for any x ∈ R1, s(x) = ∞. In particular, linear forms in the polynomial ring S have
infinite strength. We will make the convention that s(0) = −1.

Definition 5.4 (Minimum collapse). Given a non-zero form F ∈ Rd and s ∈ N∗ such that s(F) =
s − 1, a minimum collapse of F is any identity of the form F = G1H1 + · · · +GsHs, where Gi,Hi are
forms of degree in [d− 1].

It is useful to define the min and max strength of a linear system of forms of the same degree.

Definition 5.5 (Min and max strength). Given a set of forms F1, . . . , Fr ∈ Rd, define smin(F1, . . . , Fr)
as the minimum strength of a non-zero form in spanK {F1, . . . , Fr} and smax(F1, . . . , Fr) as the maximum
strength of a form in spanK {F1, . . . , Fr}.

In particular, given any non-zero finite dimensional vector space V ⊂ Rd, define smin(V)
(smax(V)) as the minimum (maximum) strength of any non-zero form in V . If V = (0), then there
are no non-zero forms in V . In this case, by convention we define smin((0)) = smax((0)) = ∞. We
will say that a vector space V is k-strong if smin(V) ⩾ k. Note that the zero vector space is infinitely
strong.

5.2 Strong Ananyan-Hochster Vector Spaces

Let R = ⊕d⩾0Rd be a finitely generated graded K-algebra, generated by R1. Given a graded
K-vector space V =

⊕d
i=1 Vi ⊂ R, where δi := dimVi, we denote its dimension sequence by

δ := (δ1, . . . , δd).

Definition 5.6 (Strong Ananyan-Hochster vector spaces). Let R = ⊕d⩾0Rd be a finitely generated
graded K-algebra, generated by R1. For any function B = (B1, · · · ,Bd) : Nd → Nd, we say that a
non-zero graded vector subspace V = ⊕d

i=1Vi ⊂ R, with dimension sequence δ, is a B-strong AH
vector space if Vi is Bi(δ)-strong for all i, i.e. smin(Vi) ⩾ Bi(δ). The subalgebra K[V] ⊂ R generated
by a B-strong AH vector space V is called a B-strong AH algebra.
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Note that if V = (0), then V is B-strong for any function B, since smin((0)) = ∞. The following
result is a corollary of [AH20b, Theorem A], and a proof can be found in [OS24, Corollary 5.9].
In the following lemma and the rest of this article, the function A(η,d) : N2 → N is the function
defined in [AH20b, Theorem A].

Corollary 5.7. Let V = ⊕d
i=1Vi ⊂ S be a B-strong AH vector space for some B : Nd → Nd. Suppose

Bi(δ) ⩾ A(η, i) + 3(
∑

i δi − 1) for some η ∈ N. Then any sequence of K-linearly independent forms in V

is an Rη-sequence. If η ⩾ 3, then S/(V) is a Cohen-Macaulay, unique factorization domain.

5.3 Lifted strength

Definition 5.8 (Lifted strength). Let U ⊂ S be a graded vector space and R = S/(U). Let F ∈ Rd be
a non-zero form. We define the lifted strength of F with respect to U as

s̃min(U, F) := min{smin(Ud + spanK

{
F̃
}
)}

where F̃ varies over all forms in Sd such that the image of F̃ in R is F. Given a set of forms
F1, · · · , Fm ∈ Rd, we define

s̃min(U, F1, · · · , Fm) = min{smin(Ud + spanK

{
F̃1, · · · , F̃m

}
)},

where F̃i varies over all forms in Sd such that the image of F̃i in R is Fi. Given a non-zero vector
space V ⊂ Rd, we define

s̃min(U,V) = min{s̃min(Ud, F1, · · · , Fm)},

where F1, · · · , Fm vary over all possible bases of V . We say that V ⊂ Rd is k-lifted strong with
respect to U if s̃min(U,V) ⩾ k. For simplicity, we omit U from the notation and write s̃min(V) when
U is clear from the context.

Let V = ⊕d
i=1Vi ⊂ R be a graded vector space. For any function, B : Nd → Nd we will

say that V is B-lifted strong with respect to U, if Vi is Bi(dim(Ui) + dim(Vi))-lifted strong, i.e.
s̃min(U,Vi) ⩾ Bi(dim(Ui) + dim(Vi)) for all i ∈ [d]. In other words, V is B-lifted strong with
respect to U, if the vector space U + spanK

{
F̃1, · · · , F̃m

}
is B-strong in S, for any homogeneous

basis F1, · · · , Fm ∈ R of V and any set of homogeneous lifts F̃1, · · · , F̃m ∈ S.

5.4 Strengthening and Robustness

For any µ ∈ Nd, we define the translation function tµ : Nd → Nd as tµ = (tµ,1, · · · , tµ,d) where
the i-th component is defined by tµ,i(δ) = δi + µi. In other words, for all i ∈ [d] we add µi to the
i-th component of δ. For any n ∈ N, we let tn := t(n,··· ,n).

The following lemma is proved in [OS24, Lemma 5.15].

Lemma 5.9 (Strengthening of Algebras). For any d ∈ N and a function B : Nd → Nd, there exist
functions CB : Nd → Nd and hB : Nd → Nd, depending on B, such that the following holds:

Given a graded vector space U = ⊕d
i=1Ui ⊂ S with dimension sequence δ ∈ Nd, there exists a B-strong

AH vector space V = ⊕d
i=1Vi such that

1. K[U] ⊂ K[V],
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2. for all i ∈ [d], we have dim(Vi) ⩽ CB,i(δ), where CB,i denotes the i-th component of CB =
(CB,1, · · · ,CB,d) : Nd → Nd.

Furthermore, suppose H = ⊕d
i=1Hi ⊂ U is a graded subspace such that smin(Hi) ⩾ hB,i(δ) for all

i ∈ [d]. Then there exists a B-strong AH vector space V satisfying (1) and (2) above such that H ⊂ V .

The following corollary is from [OS24, Corollary 5.16].

Corollary 5.10 (Robustness of strong algebras). Let B,G : Nd → Nd and µ ∈ Nd. Suppose that
Bi(δ) ⩾ hG,i(δ + µ) for all δ ∈ Nd and i ∈ [d], where hG : Nd → Nd is the function defined in
Lemma 5.9. Let U ⊂ S be a B-strong AH vector space and W ⊂ S is a graded vector space with dimension
sequences δ and µ respectively. Then there exists a G-strong AH vector space V such that

1. K[U+W] ⊂ K[V],

2. U ⊂ V ,

3. for all i ∈ [d], dim(Vi) ⩽ CG,i(δ+ µ), where CG : Nd → Nd is the function defined in Lemma 5.9.

The following corollary corresponds to [OS24, Corollary 5.17].

Corollary 5.11. Let B : Nd → Nd. Let U ⊂ S be a graded vector space with dimension sequence δU ∈ Nd

and let R = S/(U). Let V ⊂ R is a graded vector space with dimension sequence δV ∈ Nd. Suppose V is
h2B ◦ tk-lifted strong with respect to U. Let P1, · · · ,Pk ∈ R⩽d be homogeneous elements. Then there exists
a graded vector space V ′ ⊂ R⩽d such that:

1. V ′ is B-lifted strong with respect to U.

2. P1, · · · ,Pk ∈ K[V ′].

3. V ⊂ V ′.

4. for all i ∈ [d], we have dim(V ′
i) ⩽ C2B,i(tk(δU + δV)) − δU,i.

5.5 Absolute irreducibility with respect to strong vector spaces

Definition 5.12. Let B : Nd → Nd. Suppose Bi(δ) ⩾ A(η, i)+3(
∑

i δi−1) for some η ∈ N. Suppose
R = S/ (U). Suppose V ⊂ R is a graded vector space that is h2B ◦ t1-lifted strong with respect to
U. Suppose P ∈ R is a form. Let V ′ be the vector space obtained by applying Corollary 5.11 to
V and P. Let y1, . . . ,ya be a basis of homogeneous forms of V , and ya+1, . . . ,yb extend this to a
basis of V ′. We say P is absolutely reducible over V if P is absolutely reducible as a polynomial in
K (y1, . . . ,ya) [ya+1, . . . ,yb].

Remark 5.13. Corollary 5.11 guarantees the existence of the vector space V ′ with the stated prop-
erties by constructing such a vector space iteratively, however the vector space V ′ with the stated
properties is not unique. Our definition of absolute reducibility depends on the choice of vector
space V ′. We say that P is absolutely reducible if the property in Definition 5.12 is satisfied for
some choice of V ′, and we say that P is absolutely irreducible if P is not absolutely reducible.

Absolute reducibility and irreducibility with respect to vector spaces allows us to apply Theo-
rem 4.16 in more general settings. The function C : N → N referred to in the following lemma is
the same function whose existence is guaranteed by Theorem 4.16.
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Corollary 5.14 (Corollary of Theorem 4.16). Let B : Nd → Nd. Suppose Bi(δ) ⩾ A(η, i)+3(
∑

i δi−1)
for some η ∈ N. Suppose R = S/ (U). Suppose V ⊂ R is a graded vector space that is h2B ◦ t1-lifted strong
with respect to U. Suppose P ∈ Rd is absolutely irreducible with respect to V . There are at most C(d)
irreducible non-associate forms Qi ∈ K [V] such that (Qi,P) is not prime.

Proof. Let V ′ be the vector space obtained by applying Corollary 5.11 to V and P. Let y1, . . . ,ya be
a basis of homogeneous forms of V , and ya+1, . . . ,yb extend this to a basis of V ′. The ring K [V ′]

is isomorphic to a polynomial ring in the variables yi. Further, P is irreducible as a form in K [V ′]

by definition of absolute irreducibility with respect to V . Therefore we can apply Theorem 4.16
to deduce that there are at most C(d) forms Qi ∈ K [V] such that (P,Qi) is not prime as an ideal
of K [V ′]. Further, since y1, . . . ,yb form a prime sequence, prime ideals of K [V ′] extend to prime
ideals in R. This completes the proof.

6 General Quotients

In the introduction, we outlined our inductive approach for proving Theorem 1.5, which involves
reducing the degree of the factor set in a product SG-configuration through a series of quotient
homomorphisms R→ R[z]/(W), where W is a sufficiently strong vector space. This section defines
such general quotients and the essential properties needed for this degree reduction. Most of the
definitions and results in this section are taken from [OS24, Section 6], which we restate here to
make the paper self-contained. We also provide proofs of the new facts that we will need which
did not appear in [OS24].

Throughout this section, we fix positive integers d,η ∈ N with η ⩾ 3, and B : Nd → Nd denotes
an ascending function such that Bi(δ) ⩾ A(η, i) + 3(

∑
i δi − 1) for all i ∈ [d].

The following definition corresponds to [OS24, Definition 6.1].

Definition 6.1 (Graded Quotients). Let U = ⊕d
i=1Ui ⊂ S be a graded vector space of dimension

sequence δ in S and R := S/(U) be the quotient ring. Let V = ⊕d
i=1Vi ⊂ R be a graded subspace of

dimension sequence µ.
Let F1, . . . , Fn be a homogeneous basis for V and z be a new variable. For α ∈ Kn, let Vα :=

spanK
{
F1 − α1z

deg(F1), . . . , Fn − αnz
deg(Fn)

}
and Iα ⊂ R[z] be the homogeneous ideal Iα = (Vα).

We define the graded quotient map φV ,α as the quotient homomorphism of finitely generated
graded K-algebras given by

φV ,α : R[z]→ R[z]/Iα.

For simplicity we will often drop the subscripts V or α, and write φα or φ for our quotient
map when there is no ambiguity about the vector space V or the vector α.

Remark 6.2. In the above definition we abuse notation and define Vα with a fixed basis in mind.
This abuse of notation is only to simplify our definition of the quotients we will use, and the choice
of basis is not very important, since [AH20a] shows that any basis of Vα forms anRη sequence.

The next proposition and lemma correspond to [OS24, Proposition 6.3] and [OS24, Lemma 6.4].

Proposition 6.3. Suppose V ⊂ R is B-lifted strong with respect to U. Then R[z] and R[z]/Iα are quotients
of S[z] byRη-sequences, for any choice of α ∈ Kn. In particular, they are Cohen-Macaulay UFDs.

Lemma 6.4. Let S = K[x1, · · · , xN] and z be a new variable. Fix positive integers d1, · · · ,dn ∈ N.
For α ∈ Kn, let Iα = (x1 − α1z

d1 , · · · , xn − αnz
dn). Let φα : S[z] → S[z]/Iα be the quotient ring

homomorphism.
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1. The ideal Iα is prime in S[z], and the composition morphism K[z] ↪→ S[z]→ S[z]/Iα is injective.

2. If F ∈ K[x1, · · · , xn] is a non-zero polynomial, then φα(F) ̸= 0 in S[z]/Iα for a general α ∈ Kn.

3. Let F ∈ S \K[x1, · · · , xn], then φα(F) ̸∈ K[z] in S[z]/Iα, for a general α ∈ Kn.

4. If F ∈ S is a non-zero polynomial, then φα(F) ̸= 0 in S[z]/Iα for a general α ∈ Kn.

5. If F,G ∈ S have no common factor, then gcd(φα(F),φα(G)) ∈ K[z] for a general α ∈ Kn.

6. If F ∈ S is square-free. Then, for a general α ∈ Kn, the multiple factors of φα(F) must be in K[z].

Proposition 6.5. Let V ⊂ R be a B-lifted strong vector space and φα : R[z] → R[z]/Iα be a graded
quotient as defined in Definition 6.1.

1. The ideal Iα is a prime ideal in R[z] and the composition K[z] ↪→ R[z]→ R[z]/Iα is injective.

2. If F ∈ R \ {0}, then φα(F) ̸= 0 for a general α ∈ Kn.

3. If F ̸∈ K[V] ⊂ R, then φα(F) ̸∈ K[z] for a general α ∈ Kn.

4. If F is absolutely reducible with respect to V then φα(F) is a product of forms of positive degree.

Proof. The proof of items (1)-(3) can be found in [OS24, Proposition 6.5]. So we are only left with
item (4), which we now prove.

Let V ′ be the vector space from the definition of F being absolutely reducible with respect to
V : in particular, V ′ is obtained by applying Corollary 5.11 to V , F. Suppose x1, . . . , xa is a basis for
V , and y1, . . . ,yb extends this basis to a basis of V ′. By definition, F is absolutely reducible in the
ring A := K (x1, . . . , xa) [y1, . . . ,yb].

Let Jα := Iα ∩ A[z]. The proof of [OS24, Proposition 6.5] shows the following facts: The ideal
Jα is generated by xi − αiz

degxi , and that A[z]/Jα → R[z]/Iα is an injective map. Further, A[z]/Jα
is identified by a subalgebra of R[z]/Iα that is generated by a prime sequence.

Since Jα =
(
xi − αiz

degxi
)
, we can apply Proposition 4.7 to deduce that F is absolutely re-

ducible in A (z) /Jα ∼= A (z) [y1, . . . ,yb]. Therefore, we can apply Proposition 4.5 to deduce that
F is reducible in A[z]/Jα. Since this a subalgebra of R[z]/Iα generated by a prime sequence, the
image of F under this inclusion, which is the same as φα(F), is also reducible in R[z]/Iα.

The next proposition corresponds to [OS24, Proposition 6.6].

Proposition 6.6. Let G : Nd → Nd be a function such that Gi(δ) ⩾ hB,i ◦ t2(δ) for all δ ∈ Nd. Let
V ⊂ R⩽d be a G-lifted strong vector space and φα : R[z] → R[z]/Iα be a general quotient as defined in
Definition 6.1. Let F,G ∈ R⩽d be such that they have no common factor. Then,

1. gcd(φα(F),φα(G)) ∈ K[z]

2. If F,G are homogeneous, then gcd(φα(F),φα(G)) = zk for some k ∈ N. In particular, we have
gcd(φα(zF),φα(zG)) = zk+1 for some k ∈ N. Furthermore, if F,G ̸∈ K[V] ⊂ R then φα(F),
φα(G) are linearly independent.

3. If F ∈ R is a square-free form, then φα(F) does not have multiple factors other than zk for some
k ∈ N.
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The next proposition, corresponding to [OS24, Proposition 6.9], tells us that if the product SG-
configuration resulting from a general quotient has small vector space dimension, then it must be
the case that the original configuration must have small vector space dimension. We refer to this
result as ”lifting from general quotients,” as we are lifting our upper bounds for the quotiented
configurations to the original configurations. One important aspect to point out is that the lemma
below works for any finite set F (not necessarily coming from any Sylvester-Gallai configuration).

Proposition 6.7 (Lifting from general quotients). Let d, e ∈ N such that 1 ⩽ d ⩽ e. Let U ⊂ S⩽e

be a graded vector space generated by forms H1, · · · ,Ht. Let R = S/(U). Let V ⊂ R⩽e be a B-lifted
strong vector space with basis F1, · · · , Fn ∈ R. Let φα : R[z] → R[z]/Iα be a graded quotient as defined
in Definition 6.1. Let F ⊂ R⩽d be a finite set of homogeneous elements. Suppose that there exists D ∈ N
such that dim spanK {φα(F)} ⩽ D for a general α ∈ Kn. Then

dim spanK {F } ⩽ d2(1 + d)2n+2D · Πt
i=1 deg(Hi) · Πn

j=1 deg(Fj).

We are now ready to show that product Sylvester-Gallai configurations are preserved under
general quotients. But before we can prove this, we have to properly define the new configuration
that will arise from such quotients.

Definition 6.8. Suppose U ⊂ S is a graded finitely generated vector space such that R := S/ (U) is a
Cohen-Macaulay UFD. Let F be a (d, c, z,R)-product Sylvester-Gallai configuration. Let V ⊂ R⩽d

be a hB ◦ t2-lifted strong vector space such that z ∈ V , and φα : R [y] → R [y] /Iα be a graded
quotient, where Iα := (Vα).

We define a configuration φα(F) as

φα(F) :=
{
F ′ | F ∈ F ,φα(F) = yrF ′, F ′ ̸= 1, (F ′,y) = 1

}
∪ {y} .

Informally, we apply the map φα to every element of F , and then factor out all powers of y
from the images, and add the result to our set as long as it is different from 1. Further, we also add
y to the set.

The next proposition shows that this new set is also a product Sylvester-Gallai configuration.

Proposition 6.9. Suppose U ⊂ S is a graded finitely generated vector space such that R := S/ (U) is CM
and a UFD. Suppose F is a (d, c, z,R)-product Sylvester-Gallai configuration. Suppose V ⊂ R⩽d is a
hB ◦ t2-lifted strong vector space such that z ∈ V , and φα : R [y] → R [y] /Iα is a graded quotient. Then
φα(F) is a (d, c,y,R[y]/Iα)-product Sylvester-Gallai configuration.

Proof. We have y ∈ φα(F) by construction. By item 3 of Proposition 6.6, for any F and F ′ such
that φα(F) = yrF ′, we have that F ′ is squarefree.

Suppose F ′,G ′ ∈ φα(F) \ {y}. Suppose further that F,G ∈ F are such that φα(F) = yrF ′ and
φα(G) = ysG ′. By item 2 of Proposition 6.6 we have (φα(F),φα(G)) = yt for some t. Since
(F ′,G ′)|(φα(F),φα(G)), and since (y, F ′) = (y,G ′) = 1, we deduce that (F ′,G ′) = 1. Finally,
since the map φα is degree preserving, the set φα(F) is a collection of squarefree and pairwise
relatively prime forms of degree at most d, each of which factor into forms of degree at most c.

By the definition of F , for any F,G ∈ F different from z we have

z ·
∏

H∈F\{F,G,z}

H ∈ rad (F,G) .

Applying the map φα, we obtain

y ·
∏

H∈F\{F,G,z}

ytHφα(H) ∈ rad
(
yrF ′,ysG ′) ⊂ rad

(
F ′,G ′) .
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For each such H, we either have φα(H) = ytH for some tH, or φα(H) = ytHH ′ for some H ′ ∈
φα(F). Therefore we have

y ·
∏

H ′∈φα(F)\{F ′,G ′,y}

H ′ ∈ rad
(
F ′,G ′) .

This completes the proof.

7 Controlling Factor Sets

In this section, we state key lemmas describing the structure of factor sets in product Sylvester-
Gallai configurations. The function C used in this section is the same function whose existence is
guaranteed by Theorem 4.16.

The first lemma states that forms of maximum degree in a factor set cannot generate a prime
ideal with many forms of lower degree in the factor set.

Lemma 7.1. Let U be a graded finitely generated vector space such that R := S/ (U) is a CM UFD. Let
1 < c ⩽ d be integers and F be a (d, c, z,R)-product Sylvester-Gallai configuration with factor set I of
degree c. For any G ∈ Ic, there are at most d+ c2 · |Ic| forms H ∈ I<c such that (G,H) is prime.

Proof. Suppose H1, . . . ,Ht ∈ I<c are such that (G,Hi) is prime for all i, and t > d+c2 · |Ic|. Among
these forms, there are at most d forms Hi such that G|F and Hi|F for some F ∈ F . For any other
Hi, the product SG-condition implies |I ∩ (G,Hi)| ⩾ 3, and since G ∈ Ic and Hi ∈ I<c we have
|Ic ∩ (G,Hi)| ⩾ 3.

If we assume t > d + c2 · |Ic|, by the pigeonhole principle, we have w.l.o.g. that there is some
G ′ ∈ Ic \ {G} such that G ′ ∈ (G,Hi) for 1 ⩽ i ⩽ c2 + 1. We have codim ((G,G ′)) = 2, and
deg (G,G ′) ⩽ c2. Since (G,G ′) ⊂ (G,Hi) for each 1 ⩽ i ⩽ c2 + 1, each such (G,Hi) is a minimal
prime of (G,G ′). By the associativity formula, (G,G ′) has at most c2 distinct minimal primes,
therefore without loss of generality we have (G,H1) = (G,H2). Since degH1, degH2 < c, this
implies that H1 ∈ (H2), which contradicts the definition of I . This shows that t ⩽ d+ c2 · |Ic|.

The next lemma states that if we can find a vector space W such that K [W] contains a large fraction
of a factor set, then a general projection simplifies the product Sylvester-Gallai configuration.

Lemma 7.2. Let U be a graded finitely generated vector space such that R := S/ (U) is a CM UFD. Let F
be a (d, c, z,R)-product Sylvester-Gallai configuration with factor set I where |Ic| ⩾ 12(c + 1)C(c) + d.
Suppose W ⊂ S⩽d is a h2B ◦ t1-lifted strong vector space with respect to U with z ∈ W, such that W
satisfies one of the following conditions:

|Ic ∩K [W]| ⩾ 3 |Ic| /4 > 0 or |I ∩K [W]| ⩾ 2(c+ 1) |Ic|

If G ∈ Ic is absolutely irreducible with respect to W, then G ∈ (W).

Proof. Let {z,H1, . . . ,Ht} = I ∩K [W]. Let G ∈ Ic be absolutely irreducible with respect to W such
that G ̸∈ (W). We will show that the existence of such a G results in a contradiction.

Let V be the B-lifted strong vector space obtained from W and G by applying Corollary 5.11.
By Corollary 5.14 there are at most C(c) many Hi such that (G,Hi) is not prime. There are at
most d forms Hi such that G,Hi divide the same form in F . By Lemma 3.5 there are at least
s := t− C(c)−d forms Hi such that (G,Hi) is prime. W.l.o.g. we assume that these are H1, . . . ,Hs.
We now consider the two cases, and derive a contradiction from each of them.
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Suppose |Ic ∩K [W]| ⩾ 3 |Ic| /4. By the assumption on the size of |Ic| we have |Ic ∩K [W]| ⩾
2 |Ic| /3 + C(c) + d. We can assume H1, . . . ,Hr ∈ Ic for r = 2 |Ic| /3 and r ⩽ s. For each 1 ⩽ i ⩽ r

we have (G,Hi) is prime, therefore by Lemma 3.5 we have Gi ∈ (G,Hi)∩Ic. If Gi ∈ (W) for any i,
then G ∈ (W), which is contrary to assumption. Therefore Gi ̸∈ (W) for all i, and in particular we
have Gi ̸= Hj for any i, j. Since r = 2 |Ic| /3, by the pigeonhole principle we must have Gj = Gj ′

for some j, j ′, which in turn implies G ∈
(
Hj,Hj ′

)
⊂ (W), contradicting our assumption.

Suppose now that the second condition holds, that is |I ∩K [W]| ⩾ 2(c + 1) |Ic|. By the as-
sumption on the size of Ic we have |I ∩K [W]| ⩾ (c + 1) |Ic| + C(c) + d. Let r = (c+ 1) |Ic| so
r ⩽ s. Since (G,Hi) is prime, by Lemma 3.5 we have Gi ∈ (G,Hi) for each 1 ⩽ i ⩽ r. Further, we
must have Gi ∈ Ic, as (G,Hi) ∩ R<c = (Hi) ∩ R<c. By the pigeonhole principle, we can assume
w.l.o.g. that G1 = · · · = Gc+1. Therefore for each Hj with 1 ⩽ j ⩽ c+1 we have G1 = αjG+RjHj. If
αj ̸= αj ′ for some 1 ⩽ j, j ′ ⩽ c+ 1 then G ∈

(
Hj,Hj ′

)
⊂ (W), contradicting assumption. Therefore

we can assume that αj = α1 for all j, and G1 − α1G = RjHj. Since the forms Hi are non associate,
we have c+ 1 distinct factors of G−G1, which contradicts the fact that this form has degree c.

Finally, the next lemma gives us a way of constructing vector spaces W for which K[W] inter-
sects a large fraction of the factor set.

Lemma 7.3. Let µ ∈ (0, 1), c ⩽ d ∈ N, r := 2 · C(c) + d and k ⩾ 20 · dr/µ. Let U be a finitely generated
graded vector space with dimension sequence δU such that R := S/ (U) is a CM UFD. Moreover, suppose
B̃ ⩾ h2B ◦ t1 and U is h2B̃ ◦ tk strong in S. Let F be a (d, c, z,R)-product Sylvester-Gallai configuration,
with factor set I satisfying |Ic| ⩾ r. Then there exists a B̃-lifted strong vector space W such that

1. dimW ⩽ C2B̃,i(tk(δU)) − δU.

2. z ∈W.

3. |Ic ∩K [W]| ⩾ 2 · C(c) + d.

4. There are at most µ |Ic| forms G ∈ Ic s.t. G ̸∈ (W) and G is absolutely irreducible relative to W.

5. If further |Ic| < ε|I | for some 0 < ε <
(
4 · r · c2

)−1 then there are at most |I | /2 forms G ′ ∈ I<c

such that G ′ ̸∈ (W) and G ′ is absolutely irreducible with respect to W.

Proof. Set ν := µ/2r. For any H ∈ Ic, define

Fspan (H) := {G |G ∈ Ic, |(G,H) ∩ Ic| ⩾ 3} .

If Ic is a (r,ν)-linear SG configuration, then Ic has a basis of size at most r + 1 + 8/ν < k by
Proposition 3.2. Let W be the vector space obtained by applying Corollary 5.11 to (0), and the set
consisting of z and a basis for Ic. This W has the first four required properties.

Suppose Ic is not a (r,ν)-linear SG configuration. Let H1, . . . ,Hr+1 be a set of witnesses to this
fact, that is, each Hi is such that

∣∣Fspan (Hi)
∣∣ < 2ν |Ic|. For each i ∈ [r + 1], let

{
Hij

}
j

be the set
of forms such that Hi|F and Hij|F for some F ∈ F . For each i, there are at most d such forms Hij.
Let W be the vector space obtained by applying Corollary 5.11 to (0), and the set consisting of
z,Hij,Hi for all i ∈ [r+ 1], j ∈ [d]. This set has size at most k, therefore W is B̃-lifted strong. So far
we have shown that W satisfies the first three properties.

Let B := Ic \
⋃

i⩽r+1 Fspan (Hi). We have |B| ⩾ (1 − r · 2ν) |Ic| = (1 − µ) |Ic|. Let G ∈ B be
such that G is absolutely irreducible with respect to W, we will show that G ∈ (W). If G = Hij

for some i, j then G ∈ K [W] by construction, therefore we can assume that this does not hold. If
(G,Hi) is prime for some i, then |I ∩ (G,Hi)| ⩾ 3. Since Hi,G both have degree c, it must be that
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|Ic ∩ (G,Hi)| ⩾ 3, contradicting the definition of B. Therefore we deduce that (G,Hi) is not prime
for every 1 ⩽ i ⩽ r. Let V be the B-lifted strong vector space obtained by applying Corollary 5.11
to (W), and G. If G ̸∈ (W) then there at most C(c) forms H ∈ K [W] such that (G,H) is not prime.
Since r > C(c), and since (G,Hi) is not prime for all i, we reach a contradiction to Corollary 5.14.
Therefore G ∈ (W). This shows that W has the first four properties.

We now show the fifth property for both constructions of W above. We have |Ic ∩K [W]| ⩾ r.
Let H1, . . . ,Hr ∈ Ic ∩ K [W]. Let B ⊂ I<c be the set of forms G such that (G,Hi) is prime for
some 1 ⩽ i ⩽ r. By Lemma 7.1 we have |B| ⩽ r ·

(
c2 · |Ic|+ d

)
⩽ 2 · r · c2 |Ic| ⩽ 2 · r · c2 · ε · |I |.

Suppose G ′ ̸∈ B is such that G ′ is absolutely irreducible with respect to W. Let V be the B-lifted
strong vector space obtained by applying Corollary 5.11 to (W), and G ′. If G ′ ̸∈ (W) then there at
most C(c) forms H ∈ K [W] such that (G ′,H) is not prime. Since r > C(c), and since (G ′,Hi) is not
prime for all 1 ⩽ i ⩽ r, we reach a contradiction. Therefore G ′ ∈ (W). The desired bound now
holds by the assumption on ε.

8 Product Sylvester-Gallai Theorem

We are now ready to prove our main result, Theorem 1.5.
At a high level, as we mentioned in the introduction, the proof proceeds in 3 steps. In the first

step, we repeatedly apply Lemma 7.3 to construct a strong algebra K[V] which intersects a large
fraction of the factor set, and apply the general projection to our configuration. After constantly
many such steps, the space we obtain will satisfy the conditions of Lemma 7.2, and the general
projection will result in a configuration with factor sets of smaller degree.

Parameter setting: let d ∈ N be a fixed constant. We define a number of functions and constants
based on d. Let B : Nd → Nd be the ascending function given by Bi(δ) := A(η, i) + 3(

∑
i δi − 1)

for all i ∈ [d], where A(η, i) is the function provided by [AH20b, Theorem A].
Let c ∈ N be such that 1 ⩽ c ⩽ d. Define the following parameters:

rc := 12(c+ 1)(C(c) + d), εc :=
(
12 · rc · c2)−1

, µc := εc/3, kc := (40 · rc · d)/µc, gc = 9c2.

We inductively define functions Λi,j for each 1 ⩽ i ⩽ d and 0 ⩽ j ⩽ gi. Let Λ1,0 := 2B ◦ t2.
Given Λi,j with j < gi, define Λi,j+1 = h2Λi,j ◦ tki

. Given Λi,gi
, define Λi+1,0 = h2Λi,gi

◦ tki+1 .
For each 1 ⩽ i ⩽ d and 0 ⩽ j ⩽ gi, let Γi,j : N→ N, be the following function:

Γi,j(n) := max
δ∈Nd,∥δ∥1⩽n

d∑
ℓ=1

C2Λi,j,ℓ(tki
(δ)),

where ∥δ∥1 is the ℓ1-norm of the integer vector δ.
Define ηc : N→ N as

ηc(n) = (d+ 3)4g2
c+4n+

∑gc
i=0 4Γc,i(n).

Finally, define ξc : N→ N as ξ1(n) = (51d)d, and ξc(n) = ηc(n) · ξc−1(Γc,0(n)).

Lemma 8.1. Let U ⊂ S⩽d be a Λc,gc-strong vector space and R := S/ (U) (thus R is a CM UFD). Let F
be a (d, c, z,R)-product Sylvester-Gallai configuration.

For each 0 ⩽ i < gc, there exist vector spaces V(i) ⊂ S [z1, . . . , zi] and graded quotient maps

φ
(i)
αi

: (S [z1, . . . , zi] /V(i))[zi+1]→ S [z1, . . . , zi+1] /V
(i+1)

such that the following hold.
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1. Each V(i) is Λc,gc−i-strong.

2. dimV(i) ⩽ Γc,gc−i(dimU).

3. φ
(gc)
αgc
◦· · ·◦φ(0)

α0 (F) is a (d, c−1, zgc ,S [z1, . . . , zgc
] /V(gc))-product Sylvester-Gallai configuration.

4. dim spanK {F } ⩽ ηc(dimU) · dim spanK

{
φ

(gc)
αgc
◦ · · · ◦φ(0)

α0 (F)
}

.

Proof. We construct V(i) via the following iterative process.

Set R(0) ← R, z0 = z, V(0) ← U, F (0) ← F , and let I(0) be the factor set of F (0)

for 0 ⩽ i ⩽ gc − 1 do
if
∣∣∣I(i)c

∣∣∣ ⩾ rc then

Apply Lemma 7.3 to F (i) with µ = µc, and k = 20 · d · rc/µc to obtain W(i)

else
Let W(i) be the vector space obtained by applying Corollary 5.11 to Ic

end if
Let zi+1 be a new variable, and let φ(i)

αi
: R(i) → R(i) [z] /W

(i)
αi

be a general quotient, where
αi ∈ KdimW(i)

is chosen to be general with respect to all the conditions in Section 6.
Set R(i+1) ← R(i) [zi+1] /W

(i)
αi

, V(i+1) ← ker
(
S [z1, . . . , zi+1]→ R(i+1)

)
.

Set F (i+1) ← φ
(i)
αi

(F (i)) according to Definition 6.8, and I(i+1) to be the factor set of F (i+1).
end for

For i ∈ [gc], let mi :=
∣∣∣I(i)c

∣∣∣ and Mi :=
∣∣I(i)∣∣. We establish the following facts by induction on i.

Fact 1: The space V(i) is Λc,gc−i-strong for every i, and satisfies dimV(i) ⩽ Γc,gc−i(dimU).

Proof of fact 1. The base case holds by assumption for V(0) = U. Now, if V(i) is Λc,gc−i-strong, then
W(i) is Λc,gc−i−1-lifted strong in both cases of the construction: by Lemma 7.3 in the if branch,
and by Corollary 5.11 in the else branch. Therefore V(i+1) is also Λc,gc−i−1-lifted strong. Fur-
ther, by induction and Lemma 7.3, Corollary 5.11 the vector space W(i) has dimension sequence
bounded by C2Λc,gc−i−1(tk(δV(i−1))) − δV(i−1) . Since V(i) = V(i−1) + W(i), we deduce that V(i)

has dimension sequence bounded by C2Λc,gc−i−1(tk(δV(i−1))). By definition of Γc,gc−i, we have
dimV(i) ⩽ Γc,gc−i(dimU).

Fact 2: Suppose mi ̸= 0 for every 1 ⩽ i ⩽ gc. Then mi ⩽ µi
cm0 and

Mi ⩾ M1 − 2µc(c+ 1)m0/(1 − µc) ⩾ (1/4 − µc)m0 − 2µc(c+ 1)m0/(1 − µc).

Proof of fact 2. Consider the space W(i−1) for i ⩾ 1. If W(i−1) is constructed by following the
else branch above, then I(i)c ⊂ C

[
W(i−1)

]
. If W(i−1) satisfies either one of the conditions in

Lemma 7.2, then every form in I(i)c is either in the ideal
(
W(i−1)

)
, or absolutely reducible with

respect to W(i−1), and hence the images of every such under the map φ
(i−1)
αi−1 has degree less than

c by item 4 of Proposition 6.5. In all of these cases, we get mi = 0. Therefore, we can assume that
W(i−1) is constructed by applying Lemma 7.3.

Every form in I(i)c that is either in the ideal
(
W(i−1)

)
, or absolutely reducible with respect

to W(i−1) is mapped to a form of degree less than c by the map φ
(i−1)
αi−1 . By Lemma 7.3 there
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are at most µc · mi−1 forms that do not satisfy either of these properties, therefore we get that
mi ⩽ µcmi−1 ⩽ µi

cm0 by induction. We further have
∣∣I(i−1) ∩ C

[
W(i−1)

]∣∣ < 2(c + 1)mi−1. By
item 2 of Proposition 6.5, every element in I(i−1) \ C

[
W(i−1)

]
is mapped to a unique element in

F (i) by the map φ
(i−1)
αi−1 , therefore we have Mi ⩾ Mi−1 − 2(c+ 1)mi−1.

By Lemma 7.3, we have
∣∣∣I(0)

c ∩ C
[
W(0)

]∣∣∣ < 3m0/4. Further, there are at most µcm0 forms in

I(0)
c \

(
W(0)

)
which are absolutely irreducible with respect to W(0). Thus, at least (1/4 − µc)m0

forms are either absolutely reducible with respect to
(
W(0)

)
, or in

(
W(0)

)
\ C

[
W(0)

]
. By item 2 of

Proposition 6.5, each of these forms is mapped to a unique element in F (1) under φ(0)
α0 , therefore

M1 ⩾ (1/4 − µc)m0. Combined with the above derived equation Mi ⩾ Mi−1 − 2(c+ 1)mi−1, and
the fact that mi ⩽ µi

cm0 we get the claimed bound on Mi.

Note that Fact 1 establishes items 1 and 2 of our lemma.

Establishing item 3: Note that, if mi = 0 for some 1 ⩽ i ⩽ gc, then V(i),φ(i)
αi

satisfies item 3.
Thus, all we need to show is that the iterative process above will reach mi = 0 for some i ⩽ gc.

Assume, for the sake of contradiction, that mi ̸= 0 for 1 ⩽ i ⩽ gc. Facts 1 and 2, combined
with µc ⩽ (12(c+ 1))−1, and the fact that mi ̸= 0 for 1 ⩽ i ⩽ gc imply the following inequalities:

• mi/Mi ⩽ εc for every i ⩾ 2.

• Mi ⩾ M1/2 for every 1 ⩽ i ⩽ gc.

Now, define potentials Φi for each 1 ⩽ i ⩽ gc by

Φi :=
∑

G∈I(i)
(degG)2 .

We have Φ1 ⩽ c2M1 by definition. Consider a form G ∈ I(i) such that degG = e. This form
contributes e2 to Φi. We now consider the contribution of the image of φ(i)

αi
(G) in F (i+1). There

are 3 cases to analyze:
Case 1: G ∈

(
W(i)

)
and G is absolutely irreducible with respect to W(i).

In this case, φ(i)
αi

(G) = zβ · G ′, for some β ∈ N∗ and G ′ irreducible. Therefore, φ(i)
αi

(G) only
contributes G ′ to the factor set I(i+1). Since deg(G ′) ⩽ e − 1, its contribution to Φi+1 is at most
(e− 1)2, and we have (e− 1)2 < e2. So the potential decreases in this case.

Case 2: G is absolutely reducible with respect to W(i).
In this case, φ(i)

αi
(G) = ze

′
i+1

∏
Gj, with

∑
degGj ⩽ e. Therefore t factors Gi of G contribute∑ (

degGj

)2 to Φi+1. Since
∑ (

degGj

)
< e we have

∑ (
degGj

)2
< e2. So the potential also

decreases in this case.
Case 3: G ̸∈ (W(i)) and it remains absolutely irreducible with respect to W(i).
In this case, φ(i)

αi
(G) ∈ I(i+1) and deg(φ(i)

αi
(G)) = e, so the contribution of G to the potential

doesn’t change.

By Lemma 7.3, and the fact that mi/Mi ⩽ εc for i ⩾ 2 proved above, at least (Mi − mi)/2
forms in I(i) fall under cases 1 and 2. The bounds on Mi,mi imply that (Mi − mi)/2 ⩾ Mi/4.
Therefore, combined with the above case analysis, we have Φi+1 ⩽ Φi − Mi/4 ⩽ Φi − M1/8.
After 8c2 steps, we have Φi = 0, which implies that the factor set is empty. Therefore, in iteration
8c2 + 1 < 9c2, we must have mi = 0, which contradicts our assumption.
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Proving item 4 (dimension bounds): Since dimV(i) ⩽ Γc,gc−i(dimU), and since V(i) is gen-
erated in degree at most d, we can bound the product of the degrees of a basis of V(i) by ei :=
(d + 3)Γc,g(c)−i(dimU). Let e0 := (d + 3)dimU be a bound on the product of the degrees of a basis of
U. By Proposition 6.7 we have

spanK

{
φ

(gi)
αgi
◦ · · · ◦φ(0)

α0 (F)
}
⩽ (d+ 3)4+dimV(i−1)

eiei−1spanK

{
φ

(gi−1)
αgi−1

◦ · · · ◦φ(0)
α0 (F)

}
.

By induction, we can deduce that that

dim spanK {F } ⩽ (d+ 3)4g2
c+4(dimU)+

∑gc
i=0 4Γc,i(dimU) · dim spanK

{
φ

(gc)
αgc
◦ · · · ◦φ(0)

α0 (F)
}

.

Substituting the definition of ηc(n) proves item 4.

We can now prove our main theorem, with Lemma 8.1 acting as our inductive step.

Theorem 8.2. Let U ⊂ S⩽d be a Λd,gd
-strong vector space and R = S/U (hence R is a CM UFD). If F

is a (d, c, z,R)-product Sylvester-Gallai configuration then dim spanC {F } ⩽ ξc(dimU). In particular, if
F is a (d, c, z,S[z])-product Sylvester-Gallai configuration then dim spanC {F } ⩽ ξc(0).

Proof. The second statement follows from the first since the zero vector space is Λd,gd
-strong. We

prove the theorem by induction on c. Let I be the factor set of F .
Base case: c = 1. That is, when every G ∈ I is a linear form.
By Lemma 3.5, for every G1,G2 ∈ I \ {z}, either G1|F and G2|F for some form F ∈ F , or

|(G1,G2) ∩ I | ⩾ 3. Consequently, as long as |I | ⩾ 3d, the set I is a (1, 1/2)-linear SG configuration,
and dim spanC {I} ⩽ 51 ⩽ 51d. If |I | ⩽ 3d then we trivially have |I | ⩽ 51d, and Proposition 3.6
implies dim spanC {F } ⩽ (51d)d = ξ1(dimU).

Inductive step: suppose now that c > 1.
In this case, U satisfies the hypothesis of Lemma 8.1. Thus, there is a vector space V and a

sequence of graded quotient maps φ(i)
αi

such that φ(F) is a (d, c−1, zgc ,S [z1, . . . , zgc
] /V)-product

Sylvester-Gallai configuration, where φ(F) is the composition of the graded quotients φ
(i)
αi

. The
lemma also guarantees that dimV ⩽ Γc,0(dimU), and that V is Λc,0-strong, and hence Λc−1,gc−1-
strong. Therefore we can apply the inductive hypothesis, and we have dim spanC {φ(F)} ⩽
ξc−1(dimV) ⩽ ξc−1(Γc,0(dimU)). By item 4 of Lemma 8.1 we have

dim spanC {F } ⩽ ηc(dimU) · ξc−1(Γc,0(dimU)) ⩽ ξc(dimU).

9 Conclusion

In this work, we prove that product Sylvester-Gallai configurations of forms have bounded di-
mension, generalising the result of [OS24], and getting one step closer towards a PIT algorithm
for ΣkΠΣΠd circuits.

To achieve this, we give a novel, and very effective, sufficient condition for the primality of
ideals of the form (P,Q), where P ”depends on more variables” than Q, a notion that we make
explicit in Section 4 and Section 5, via the transfer principle from [OS24]. This turns out to be far
more subtle, and to require more tools from algebraic geometry, than giving a sufficient condition
for the ideal to be radical.

Our work leaves two important questions, in order to bridge the gap between our results and
a complete analysis for a polynomial-time, deterministic PIT algorithm for ΣkΠΣΠd circuits. The
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first question is to extend this work and prove a higher codimension product Sylvester-Gallai the-
orem for all degrees, simultaneously generalising the main theorems of [GOPS23] and this work.
The second question is to provide a tight connection between such Sylvester-Gallai problems and
rank bounds for identities in ΣkΠΣΠd, thereby generalizing the beautiful result in [SS13, Theorem
1.4] to circuits of depth four.

Bibliography

[AF22] Robert Andrews and Michael A. Forbes. Ideals, determinants, and straightening:
proving and using lower bounds for polynomial ideals. In 54th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2022, page 389–402, 2022. 8

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In FSTTCS
2005: Foundations of Software Technology and Theoretical Computer Science: 25th Interna-
tional Conference, Hyderabad, India, December 15-18, 2005. Proceedings 25, pages 92–105.
Springer, 2005. 4, 8

[AH20a] Tigran Ananyan and Melvin Hochster. Small subalgebras of polynomial rings and
stillman’s conjecture. Journal of the American Mathematical Society, 33(1):291–309, 2020.
7, 13, 24, 26, 29

[AH20b] Tigran Ananyan and Melvin Hochster. Strength conditions, small subalgebras, and
stillman bounds in degree ⩽ 4. Transactions of the American Mathematical Society,
373(7):4757–4806, 2020. 27, 34

[AKS04] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in p. Annals of mathe-
matics, pages 781–793, 2004. 4

[ASSS16] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. Jaco-
bian hits circuits: Hitting sets, lower bounds for depth-d occur-k formulas and depth-3
transcendence degree-k circuits. SIAM Journal on Computing, 45(4):1533–1562, 2016. 8

[AV08] M. Agrawal and Manindra. Vinay. Arithmetic circuits: A chasm at depth four. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008. 4

[BDYW11] Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design
matrices with applications to combinatorial geometry and locally correctable codes.
In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC
’11, page 519–528, 2011. 3

[BM90] Peter Borwein and William OJ Moser. A survey of sylvester’s problem and its gener-
alizations. Aequationes Mathematicae, 40(1):111–135, 1990. 3

[BMS13] M. Beecken, J. Mittmann, and N. Saxena. Algebraic independence and blackbox iden-
tity testing. Information and Computation, 222:2–19, 2013. 38th International Colloquium
on Automata, Languages and Programming (ICALP 2011). 5

[CKS19] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure results for polynomial
factorization. Theory of Computing, 15(1):1–34, 2019. 8

38



[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra, volume 3rd
edition. Springer, 2007. 16

[DDS21] Pranjal Dutta, Prateek Dwivedi, and Nitin Saxena. Deterministic identity testing
paradigms for bounded top-fanin depth-4 circuits. In Proceedings of the 36th Compu-
tational Complexity Conference, CCC ’21, 2021. 8

[DGOS18] Zeev Dvir, Ankit Garg, Rafael Oliveira, and József Solymosi. Rank bounds for design
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