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Abstract
Proving complexity lower bounds remains a challenging task: currently, we only know how

to prove conditional uniform (algorithm) lower bounds and nonuniform (circuit) lower bounds
in restricted circuit models. About a decade ago, Williams (STOC 2010) showed how to derive
nonuniform lower bounds from uniform upper bounds: roughly, by designing a fast algorithm
for checking satisfiability of circuits, one gets a lower bound for this circuit class. Since then,
a number of results of this kind have been proved. For example, Jahanjou et al. (ICALP 2015)
and Carmosino et al. (ITCS 2016) proved that if NSETH fails, then ENP has series-parallel circuit
size ω(n).

One can also derive nonuniform lower bounds from nondeterministic uniform lower bounds.
Perhaps the most well-known example is the Karp–Lipton theorem (STOC 1980): if Σ2 ̸= Π2,
then NP ̸⊂ P/poly. Some recent examples include the following. Nederlof (STOC 2020) proved
a lower bound on the the matrix multiplication tensor rank under an assumption that TSP
cannot be solved faster than in 2n time. Belova et al. (SODA 2024) proved that there exists
an explicit polynomial family of arithmetic circuit size Ω(nδ), for any δ > 0, assuming that
MAX-3-SAT cannot be solved faster that in 2n nondeterministic time. Williams (FOCS 2024)
proved an exponential lower bound for ETHR ◦ ETHR circuits under the Orthogonal Vectors
conjecture. Under an assumption that Set Cover problem cannot be solved faster than in 2n,
Björklund and Kaski (STOC 2024) and Pratt (STOC 2024) constructed an explicit tensor with
superlinear rank. Whereas all of the lower bounds above are proved under strong assumptions
that might eventually be refuted, the revealed connections are of great interest and may still give
further insights: one may be able to weaken the used assumptions or to construct generators
from other fine-grained reductions.

In this paper, we continue developing this line of research and show how uniform nondeter-
ministic lower bounds can be used to construct generators of various types of combinatorial
objects that are notoriously hard to analyze: Boolean functions of high circuit size, matrices
of high rigidity, and tensors of high rank. Specifically, we prove the following.

• If, for some ε and k, k-SAT cannot be solved in input-oblivious co-nondeterministic time
O(2(1/2+ε)n), then there exists a monotone Boolean function family in coNP of monotone
circuit size 2Ω(n/ logn). Combining this with the result above, we get win-win circuit lower
bounds: either ENP requires series-parallel circuits of size omega(n) or coNP requires
monotone circuits of size 2Ω(n/ logn).

• If, for all ε > 0,MAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n), then
there exist small families of matrices with rigidity exceeding the best known constructions
as well as small families of three-dimensional tensors of rank n1+∆, for some ∆ > 0.
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1 Complexity Lower Bounds

Finding the minimum time required to solve a given computational problem is a central question
in computational complexity. Answering such a question for a particular problem involves proving
a complexity lower bound, that is, showing that no fast algorithm can solve this problem. While
the Time Hierarchy Theorem [HS65, HS66] guarantees that there are problems in P that cannot
be solved in time O(nk), for any k > 1, we have no superlinear lower bounds for specific problems.
For example, for SAT, one of the most important NP-complete problems, we have no algorithms
working significantly faster than a brute force approach and at the same time have no methods
of excluding a possibility that it can be solved in linear time.

Conditional Lower Bounds

As unconditional complexity lower bounds remain elusive, the classical complexity theory allows
one to prove conditional lower bounds of the following form: if a problem A cannot be solved
in polynomial time, then B cannot be solved in polynomial time too. Such results are proved via
reductions that are essentially algorithms: one shows how to transform an instance of A into
an instance of B. Nowadays, hundreds of such reductions between various NP-hard problems are
known. For instance, if SAT cannot be solved in polynomial time, then the Hamiltonian Cycle
problem also cannot be solved in polynomial time.

In a recently emerged area of fine-grained complexity, one aims to construct tighter reductions
between problems showing that even a tiny improvement of an algorithm for one of them automat-
ically leads to improved algorithms for the other one. For example, as proved by Williams [Wil05],
if SAT cannot be solved in time O(2(1−ε)n), for any ε > 0, then the Orthogonal Vectors problem
cannot be solved in time O(n2−ε), for any ε > 0. Again, many reductions of this form have been
developed in recent years. We refer the reader to a recent survey by Vassilevska Williams [Vas18].

Circuit Lower Bounds

One of the reasons why proving complexity lower bounds is challenging is that an algorithm (viewed
as a Turing machine or a RAM machine) is a relatively complex object: it has a memory, may contain
loops, function calls (that may in turn be recursive). A related computational model of Boolean
circuits has a much simpler structure (a straight-line program) and the same time is powerful
enough to model algorithms: if a problem can be solved by algorithms in time T(n), then it can
also be solved by circuits in time O(T(n) log T(n)) [PF79]. It turns out that proving circuit lower
bounds is also challenging: while it is not difficult to show that almost all Boolean functions can
be computed by circuits of exponential size only (this was proved by Shannon [Sha49] back in 1949),
for no function from NP, we can currently exclude a possibility that it can be computed by circuits
of linear size [LY22, FGHK16]. Strong lower bounds are only known for restricted models such
as monotone circuits, constant-depth circuits, and formulas. Various such unconditional lower
bounds can be found in the book by Jukna [Juk12].

An important difference between algorithms and circuits is that algorithms is a uniform model
of computation (an algorithm is a program that needs to process instances of all possible lengths),
whereas circuits are nonuniform: when saying that a problem can be solved by circuits, one usually
means that there is an infinite collection of circuits, one circuit for every possible input length, and
different circuits in this collection can, in principle, implement different programs. This makes
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the circuit model strictly more powerful than algorithms: on the one hand, every problem solved
by algorithms can be solved by circuits of roughly the same size; on the other hand, it is not difficult
to come up with a problem of small circuit size that cannot be solved by algorithms.

Connections Between Lower and Upper Bounds

Intuitively, it seems that proving complexity upper bounds should be easier than proving lower
bounds. This intuition is well supported by a much higher number of results on algorithms compared
to the number of results on lower bounds. Indeed, to prove an upper bound on the complexity of
a problem, one designs an algorithm for the problem and analyzes it. Whereas to prove a complexity
lower bound, one needs to reason about a wide range of fast algorithms (or small circuits) and
to argue that none of them is able to solve the problem at hand. Perhaps surprisingly, the tasks
of proving lower and upper complexity bounds are connected to each other. A classical example
is Karp–Lipton theorem [KL80] stating that if P = NP, then EXP requires circuits of size Ω(2n/n).
More recently, Williams [Wil13] established a deep connection between upper bound for Circuit
Sat and circuit lower bounds. Extending his results, Jahanjou, Miles and Viola [JMV18] proved that
if NSETH is false (meaning that UNSAT can be solved fast with nondeterminism), then ENP requires
series-parallel Boolean circuits of size ω(n). Such results show how to derive nonuniform lower
bounds (that is, circuit lower bounds) from uniform upper bounds (algorithm upper bounds).

Even though one can simulate an algorithm using circuits with slight overhead, the converse
is not true as there are undecidable languages of low circuit complexity. Recently, [BKM+24] showed
results analogous to those presented herein, particularly on deriving a nonuniform lower bound
from a non-randomized uniform lower bound. Specifically, they proved that if MAX-k-SAT cannot
be solved in co-nondeterministic time O(2(1−ε)n), for any ε > 0, then, for any δ > 0, there exists
an explicit polynomial family that cannot be computed by arithmetic circuits of size O(nδ). Also,
Williams [Wil24] proved that if the Orthogonal Vectors conjecture (OVC) holds, then Boolean Inner
Product on n-bit vectors cannot be computed by ETHR ◦ ETHR circuits of size 2εn, for some ε > 0.
Combined with the result above (since OVC is weaker than NSETH), it immediately leads to win-win
circuit lower bounds: if NSETH fails, we have a lower bound for series-parallel circuits, otherwise
we have a strong lower bound for ETHR ◦ ETHR circuits.

1.1 Our Contribution

In this paper, we derive a number of nonuniform lower bounds from uniform nondeterministic
lower bounds. Our lower bounds apply for various objects that are notoriously hard to analyze:
Boolean functions of high monotone circuit size, high rigidity matrices, and high rank tensors. For
circuits, we get a win-win situation similar to the one by Williams.

Our first result shows how to get 2Ω(n/ logn) monotone circuit lower bounds (improving best
known bounds of the form 2Ω(

√
n)) under an assumption that SAT requires co-nondeterministic

time O(2(1/2+ε)n) if the verifier is given a proof that depends on the length of the input only.

Theorem 1. If, for some ε > 0 and k ∈ Z⩾3, k-SAT cannot be solved in input-oblivious co-
nondeterministic time O(2(1/2+ε)n), then there exists a monotone Boolean function family in coNP
of monotone circuit size 2Ω(n/ logn).

We then extend this result further to get a monotone circuit lower bound 2Ω(n) for a monotone
function from P/poly that can be computed in linear time (and hence has almost linear circuit size).
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Theorem 2. If, for some ε > 0 and k ∈ Z⩾3, k-SAT cannot be solved in co-nondeterministic time
O(2(1/2+ε)n), then there exists a monotone Boolean function family in P/poly that requires monotone
circuits of size 2Ω(n) and can be computed in linear time.

As both previous theorems use weaker assumptions than NSETH, we get the following corollary.

Corollary 1. If NSETH holds, there exists a monotone Boolean function family in coNP of monotone
circuit size 2Ω(n/ logn) and a monotone Boolean function family in P/poly that requires monotone
circuits of size 2Ω(n) and can be computed in linear time.

Combining this with circuit lower bounds from the negation of NSETH due to [JMV18, CGI+16],
leads to win-win circuit lower bounds. It should be noted that proving any of these two circuit
lower bounds is a challenging long-standing open problem.

Corollary 2. At least one of the following two circuit lower bounds holds:

1. ENP requires series-parallel circuits of size ω(n);

2. There exists a monotone Boolean function family in coNP of monotone circuit size 2Ω(n/ logn)

and a monotone Boolean function family in P/poly that requires monotone circuits of size 2Ω(n)

and can be computed in linear time.

Another result in this direction demonstrates how to derive circuit lower bounds from NETH
(which asserts that 3-SAT cannot be solved in co-nondeterministic time 2o(n)). Specifically, we
establish lower bounds for the classes Qn

t .

Definition 1. Let Qn
t denote the set of all Boolean functions f over n variables such that for any

x1, . . . , xt ∈ f−1(0), there exists an i ∈ [n] for which x1
i = . . . = xti = 0.

These sets have been studied in secure multiparty computation; see [HM97, FM98, HM00] for
references. They have also been viewed from the complexity-theoretic perspective [CDI+13, KP22].
We denote by THRba : {0, 1}b → {0, 1} the function that evaluates to one if and only if the input
contains at least a ones. It turns out the class Qn

t is exactly the class of functions computable
by THRlt+1

l+1 gates for arbitrary l ⩾ 1 where the negations are not permitted (even at the leaves). The
following lemma is a combination of Lemmas 5.2 and 5.3 from [CDI+13] and Theorem 3 from [KP22].
In the statement, by C ⩽ f we mean that C(x) ⩽ f(x), for all x.

Lemma 1. The set Qn
t is equal to the set of functions f for which there exists a circuit C, composed only

of THRlt+1
l+1 gates for arbitrary l ⩾ 1, such that C ⩽ f.

Our result indicates that Qn
t contains functions that are exponentially hard to compute using

THRlt+1
l+1 gates only while being easy to compute by regular circuits.

Theorem 3. If NETH holds, then for any t = ω(1) and infinitely many n = ω(t), there exists a function
f ∈ Qn

t such that any circuit C ⩽ f, composed of THRlt+1
l+1 gates, satisfies size(C) = 2Ω(n). Moreover,

f ∈ P/poly and can be computed in linear time.

Thus, although the class Qn
t may appear relatively simple, it contains functions that are ex-

ceedingly difficult to compute using only THRlt+1
l+1 gates but which can be computed by almost

linear circuits. Theorem 3 consequently yields another win-win lower bound: if NETH fails, then
ENP cannot be computed by linear-size circuits [CRTY23].
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Corollary 3. At least one of the following two circuit lower bounds must hold:

1. ENP requires circuits of size ω(n);

2. For any t = ω(1), there exists a function f ∈ Qn
t ∩ P/poly such that any circuit C, composed only

of THRlt+1
l+1 gates for arbitrary l ⩾ 1 over variables, has size 2Ω(n). Moreover, f can be computed

in linear time.

Our second result shows how to construct small families of matrices with rigidity exceeding
the best known constructions under an assumption that MAX-3-SAT requires co-nondeterministic
time 2n.

Theorem 4. If, for every ε > 0,MAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n),
then, for all δ > 0, there is a generator g : {0, 1}logO(1) k → Fk×k computable in time polynomial in k

such that, for infinitely many k, there exist a seed s for which g(s) has k
1
2−δ-rigidity k2−δ.

Our third result extends the second result by including high-rank tensors.

Theorem 5. If, for any ε > 0 MAX-3-SAT, cannot be solved in co-nondeterministic time O(2(1−ε)n),
then, for all δ > 0 and some ∆ > 0, there are two generators g1 : {0, 1}logO(1) k → Fk×k and
g2 : {0, 1}logO(1) k → Fk×k×k computable in time polynomial in k such that, for infinitely many k,
at least one of the following is satisfied:

• g1(s) has k1−δ-rigidity k2−δ, for some s;

• rank(g2(s)) is at least k1+∆, for some s.

It is worth noting that [BKM+24] showed circuit lower bounds under the same assumption:
if MAX-k-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n) for any ε > 0, then for
any δ > 0, there exists an explicit polynomial family that cannot be computed by arithmetic circuits
of size O(nδ).

The best known lower bounds for the size of depth-three circuits computing an explicit Boolean
function is 2Ω(

√
n) [Hås89, PPSZ05]. Proving a 2ω(

√
n) lower bound for this restricted circuit model

remains a challenging open problem and it is known that a lower bound as strong as 2ω(n/ log logn)

would give an w(n) lower bound for unrestricted circuits via Valiant’s reduction [Val77]. One way
of proving better depth-three circuit lower bounds is via canonical circuits introduced by Goldreich
and Wigderson [GW20]. They are closely related to rigid matrices: if T is an n × n matrix of r-
rigidity r3, then the corresponding bilinear function requires canonical circuits of size 2Ω(r) [GW20].
Goldreich and Tal [GT18] showed that a random Toeplitz matrix has r-rigidity n3

r2 logn
, which implies

a 2Ω(n3/5) lower bound on canonical depth-three circuits for an explicit function. By substituting
n2/3−δ-rigidity for some δ > 0 in Theorem 5, one gets the following result.

Corollary 4. If, for every ε > 0,MAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n),
then, for any δ > 0, one can construct an explicit family of 2logO(1) n functions such that, for infinitely
manyn, at least one of them is either bilinear and requires canonical circuits of size 2Ω(n2/3−δ) or trilinear
and requires arithmetic circuits of size Ω(n1.25).

This conditionally improves the recent result of Goldreich [Gol22], who presented anO(1)-linear
function that requires canonical depth-two circuits of size 2Ω(n1−ε), for every ε > 0. Moreover,
every bilinear function can be computed by canonical circuits of size 2O(n2/3), so the lower bound
is almost optimal and conditionally addresses Open Problem 6.5 from [GT18].
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1.2 Known Explicit Constructions

In this section, we review known constructions of combinatorial objects (functions of high monotone
circuit size, matrices of high rigidity, and tensors of high rank).

Monotone Functions

For monotone NP-problems (like Clique,Matching,Hamiltonian Cycle), it is natural to ask what
is their monotone circuit size. A celebrated result by Razborov [Raz85] is a lower bound of nΩ(logn)

on monotone circuit size obtained by the approximation method. Subsequently, Andreev [And85]
proved a 2n1/8−o(1) lower bound for another explicit monotone function. Following the work of [AB87,
And87, Juk99, HR00], in 2020, Cavalar, Kumar, and Rossman [CKR22] achieved the best-known lower
bound of 2n1/2−o(1) . Recently, another approach for proving monotone circuit lower bounds was
developed using lower bounds from Resolution proofs and lifting theorem [GGKS20]. Specifically,
if an unsatisfiable formula F is hard to refute in the resolution proof system, then a monotone
function associated with F has large monotone circuit complexity. In this manner, following
the work of [GGKS20, GKRS19, LMM+22], the lower bound of 2Ω(

√
n) was also achieved.

Proving a 2ω(n1/2) lower bound remains a challenging open problem (whereas a lower bound
2Ω(n) was recently proved by Pitassi and Robere [PR17] for monotone formulas). Our Corollary 1
establishes a stronger lower bound under an assumption that NSETH holds.

Matrix Rigidity

A matrix M over a field F has r-rigidity s if for any matrices R,S over a field F such that M =
R + S and rank(R) ⩽ r, S has at least s nonzero entries. That is, one needs to change at least
s elements in M to change its rank down to at most r. The concept of rigidity was introduced
by Valiant [Val77] and Grigoriev [Gri80]. It has striking connections to areas such as computational
complexity [Lok09, AW17, AC19, GKW21], communication complexity [Wun12], data structure
lower bounds [DGW19, RR20], and error-correcting codes [Dvi11].

Valiant [Val77] proved that if a matrix M has εn-rigidity n1+δ for some ε, δ > 0, then the
bilinear form of M cannot be computed by arithmetic circuits of size O(n) and depth O(logn).
Following Razborov [Raz89], Wunderlich [Wun12] proved that the existence of strongly-explicit
matrices with 2(log logn)ω(1)-rigidity δn2, for some δ > 0, implies the existence of a language that
does not belong to the communication complexity analog of PH. Although it is known [Val77]
that for any r almost every n× n matrix has r-rigidity Ω(

(n−r)2

logn ) over algebraically closed fields,
obtaining an explicit constructions of rigid matrices remains a long-standing open question. Many
works have aimed at finding explicit or semi-explicit rigid matrices [Fri93, PV91, SSS97, AW17,
DE19, AC19, DL20, VK22, BGKM23, BHPT24]. Also, a recent line of works establishes a connection
between the Range Avoidance problem and the construction of matrices with high rigidity [Kor21,
GLW22, GGNS23, CHR24, Li24].

Small explicit1 families of rigid matrices can be rused to prove arithmetic circuits lower
bounds [Val77]. The best known polynomial-time constructible matrices have r-rigidity n2

r log(n/r)
for any r, which was proved by Shokrollahi, Spielman and Stemann [SSS97]. Goldreich and Tal [GT18]

1Matrix or family of matrices is called explicit if it is polynomial time constructible.
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proved that a random n× n Toeplitz matrix over F2 (i.e., a matrix of the form Ai,j = ai−j for ran-
dom bits a−(n−1), . . . ,an−1) has r-rigidity n3

r2 logn
for r ⩾

√
n. However, the size of that family

is exponential in n. Our Theorem 4 demonstrates that, under the assumption that MAX-3-SAT
is hard, for any δ > 0, for infinitely many n one can construct a 2logO(1) n-sized family of n × n

matrices with at least one having n1/2−δ-rigidity n2−δ.
This result is still far from the regime where circuit lower bounds can be derived via Valiant’s re-

sult, but it strictly improves the polynomial-time construction [SSS97] for any r <
√
n and improves

the result of Goldreich and Tal [GT18] by substantially reducing the family size while maintaining
the same rigidity for r ≈

√
n. An open question remains as to whether explicit constructions of rigid

matrices exist in the class PNP [Ram20]. The construction provided by Goldreich and Tal [GT18]
lies in ENP. Following the work of Alman and Chen [AC19], [BHPT24] established that there exists a
constant δ > 0 such that one can construct n×n matrices with 2logn/Ω(log logn)-rigidity δn2 in FNP.
Subsequently, Chen and Lyu [CL21] demonstrated a method for constructing highly rigid matrices,
proving that there exists a constant δ > 0 such that one can construct n×n matrices with 2log1−δ n-
rigidity (1/2−exp(− log2/3·δ n)) ·n2 in PNP. More recently, Alman and Liang [AL25] showed that the
Walsh-Hadamard matrix Hn has c1 logn-rigidity n2 (1

2 − nc2
)

for some constants c1, c2 > 0. Our
construction, in the class DTIME[2logO(1) n]NP, produces matrices with n

1
2−δ-rigidity n2−δ for any

δ > 0, under the condition that MAX-3-SAT is hard.

Tensor Rank and Arithmetic Circuits

Proving arithmetic circuit lower bounds is another important challenge in complexity theory.
An arithmetic circuit over a field F uses as inputs formal variables and field elements and
computes in every gate either a sum or a product. As proved by Strassen [Str73, Str75] and
Baur and Strassen [BS83], computing

∑n
i=1 x

n
i requires arithmetic circuits of size Ω(n logn), pro-

vided n does not divide the characteristic of F. Raz [Raz03] further established that arithmetic
circuits with bounded coefficients require Ω(n2 logn) gates to perform matrix multiplication over
R or C, following the work in [RS03]. However, no superlinear lower bounds are known for poly-
nomials of constant degree. For constant-depth arithmetic circuits over fields of characteristic 2,
exponential lower bounds are known [Raz87, Smo87]. For other finite characteristics, exponential
lower bounds are known only for depth 3 [GK98, GR98]. For characteristic 0, the best lower bound
for depth 3 is Ω(n2−ε) [SW99].

Matrix multiplication is one of the fundamental problems whose arithmetic circuit size is of great
interest. While many highly nontrivial algorithms for it are known (starting from Strassen [Str69]),
we still do not have superlinear lower bounds on its arithmetic circuit complexity. Proving such
lower bounds is closely related to the problem of determining the rank of tensors. A d-dimensional
tensor is said to have rank q if it can be expressed as a sum of q rank-one tensors. Here, a rank-one
d-dimensional tensor is a tensor of the form u1 ⊗ · · · ⊗ ud, where ⊗ stands for a tensor product. By
a multiplication tensor, we mean a tensor of size n2 × n2 × n2 (formally defined in Section 2.4).
Establishing an upper bound for the rank of the multiplication tensor provides a means of proving
upper bounds for matrix multiplication via the laser method [Str86]. Moreover, proving a lower
bound for the tensor rank would yield superlinear lower bounds for arithmetic circuits computing
the polynomial defined by that tensor.

Therefore, proving lower bounds on the tensor rank provides a path to proving lower bounds
for arithmetic circuits. For the rank of the matrix multiplication tensor, Bshouty [Bsh89] and
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Bläser [Blä99] proved a lower bound 2.5n2 − Θ(n). Subsequently, Shpilka [Shp03] improved the
bound to 3n2 − o(n2) over F2. The bound 3n2 − o(n) was later achieved by Landsberg [Lan14] over
arbitrary fields and further slightly improved by Massarenti and Raviolo [MR13, MR14]. Alexeev,
Forbes and Tsimerman [AFT11] constructed explicit d-dimensional tensors with rank 2n⌊

d
2 ⌋ +

n − Θ(d logn), thus improving the lower bounds on high-dimensional tensors. Nevertheless,
superlinear size lower bounds for constant-degree polynomials remain unknown. Additionally,
Håstad [Hås90] established that determining the rank of a d-dimensional tensor is NP-hard for any
d ⩾ 3. Consequently, a major open problem is to construct an explicit family of d-dimensional
tensors with rank at least n⌊

d
2 ⌋+ε for some ε > 0 and d ⩾ 3.

Our Theorem 5 shows that, under an assumption that MAX-3-SAT cannot be solved fast co-
nondeterministically, one gets an explicit 2logO(1) n-size family of n× n-matrices and n× n× n-
tensors, such that, for any δ > 0 and some ∆ > 0, at least one of the matrices has n1−δ-rigidity n2−δ

or one of the tensors has rank n1+∆. Furthermore, we establish a trade-off between matrix rigidity
and tensor rank, see Theorem 11. Other results for proving lower bounds on tensor rank under
certain assumptions are known. Nederlof [Ned20] proved that, if for any ε > 0, the bipartite
Traveling Salesman problem cannot be solved in time 2(1−ε)n, then the matrix multiplication
tensor has superlinear rank. Additionally, Björklund and Kaski [BK24] recently proved that if, for any
ε > 0, there exists a k such that the k-Set Cover problem cannot be solved in time O(2(1−ε)n|F|),
then there is an explicit tensor with superlinear rank, where F is a family of subsets of [n], each
of size at most k. Pratt [Pra24] improved this result, showing that under the same conjecture
there exists an explicit tensor of shape n× n× n and rank at least n1.08. [BCH+24] showed that if
for every ε > 0 Chromatic Number problem cannot be solved in time 2(1−ε)n, then there exists
an explicit tensor of superlinear rank.

1.3 Discussion and Open Problems

Many of the lower bounds mentioned above are proved under various strong assumptions (on the
complexity of SAT,MAX-SAT, Set Cover, Chromatic Number, Traveling Salesman). They seem much
stronger than merely P ̸= NP and might eventually be refuted. Still, the revealed reductions between
problems are of great interest and may still yield further insights: one may be able to weaken
the used assumptions or to construct generators from other fine-grained reductions. Moreover,
as with the case of NSETH assumption, one may be able to derive interesting consequences from
both an assumption and its negation leading to a win-win situation. Below, we state a few open
problems in this direction.

If one were to partition 3-SAT in Theorem 8 into t parts, where t = ω(1), then creating an ex-
plicit function equivalent to t-OV would imply lower bounds for that function under NETH. This
approach would yield a more advantageous win-win situation, as the assumption that NETH is false
gives stronger lower bounds [CRTY23].

Open Problem 1. Prove that if NETH is true, then there exists an explicit function of monotone
complexity 2ω(

√
n).

Moreover, the existence of small monotone circuits not only refutes NSETH but also establishes
that UNSAT has input-oblivious proof size 2o(n) that can be verified in time 2

n
2 +o(n). Therefore, we

believe that it may be possible to derive even stronger implications beyond merely refuting NSETH.
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Another question arises regarding tensor rank. Is it possible to construct a small family of tensors
with superlinear rank, assuming thatMAX-3-SAT cannot be solved efficiently in co-nondeterministic
time (this way, eliminating the dependence on rigidity from our results)?

Open Problem 2. Prove that, if, for any ε > 0,MAX-3-SAT cannot be solved in co-nondeterministic
time O(2(1−ε)n), then, for all δ > 0 there exists a small family of tensors of size k× k× k such that, for
infinitely many k, at least one of them has rank at least k1+δ.

However, we do not know of any consequences of solving MAX-3-SAT faster in the co-
nondeterministic setting. This makes our assumption weak and raises the question of whether
it can be refuted.

Open Problem 3. Prove that, for some ε > 0, MAX-3-SAT can be solved in co-nondeterministic
time O(2(1−ε)n).

On the other hand, to get a win-win situation, it would be interesting to find nontrivial conse-
quences of the existence of such an algorithm.

Open Problem 4. Derive new circuit lower bounds from the existence of an algorithm solving MAX-3-
SAT in co-nondeterministic time O(2(1−ε)n), for some ε > 0.

Structure of the Paper

The paper is organized as follows. In Section 2, we introduce the notation used throughout the paper
and provide the necessary background. In Section 3, we give an overview of the main proof ideas.
In Section 4, we establish the win-win circuit lower bound. In Section 5, we construct rigid matrices
under an assumption that MAX-3-SAT cannot be solved fast co-nondeterministically. In Section 6,
we construct either three-dimensional tensors with high rank or matrices with high rigidity under
the same assumption.

2 Preliminaries

For a positive integer k, [k] = {1, 2, . . . ,k}, whereas for a predicate P, [P] = 1 if P is true and [P] = 0
otherwise (the Iverson bracket). For a set S and an integer k, by

(
S
k

)
we denote the set of all subsets

of S of size k.

2.1 Boolean Circuits

For a binary vector v ∈ {0, 1}n, by v ∈ {0, 1}n, we denote the vector resulting from v by flipping
all its coordinates (thus, v ⊕ v = 1n). This extends naturally to sets of vectors: for V ⊆ {0, 1}n,
V = {v : v ∈ V}. By w(v) =

∑
i∈[n] vi, we denote the weight of v. For two vectors u, v ∈ {0, 1}n, we say

that u dominates v and write u ⩾ v, if ui ⩾ vi for all i ∈ [t]. A Boolean function f : {0, 1}n → {0, 1}
is called monotone if f(u) ⩾ f(v), for all u ⩾ v. For disjoint sets A,B ⊆ {0, 1}n, we say that a function
f : {0, 1}n → {0, 1} separates (A,B) if A ⊆ f−1(1) and B ⊆ f−1(0).

A Boolean circuit C over variables x1, . . . , xn is a directed acyclic graph with nodes of in-degree
zero and two. The in-degree zero nodes are labeled by variables xi and constants 0 or 1, whereas
the in-degree two nodes are labeled by binary Boolean functions. The only gate of out-degree
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zero is the output of the circuit. A circuit is called series-parallel if there exists a labeling ℓ of
its nodes such that for every wire (u, v), ℓ(u) < ℓ(v), and no pair of wires (u, v), (u ′, v ′) satisfies
ℓ(u) < ℓ(u ′) < ℓ(v) < ℓ(v ′).

A Boolean circuit C with variables x1, . . . , xn computes a Boolean function f : {0, 1}n → {0, 1} in
a natural way. We define the size of C, size(C), as the number of gates in it, and the Boolean circuit
complexity of a function f, size(f), as the minimum size of a circuit computing it. A circuit is called
monotone if all its gates compute disjunctions and conjunctions. It is not difficult to see that the
class of Boolean functions computed by monotone circuits coincides with the class of monotone
Boolean functions. For a monotone function f, sizem(f) is the minimum size of a monotone circuit
computing f.

A sequence (fn)
∞
n=1, where fn : {0, 1}n → {0, 1}, is called a function family. Such a family defines

a language ∪∞
n=1f

−1
i (1) and we say that the family is explicit if this language is in NP. When saying

that a language L ⊆ {0, 1}∗ can be solved by circuits of size T(n), we mean that it can be represented
by a function family (fn)

∞
n=1 where size(fn) ⩽ T(n), for all n.

2.2 Arithmetic Circuits

An arithmetic circuit C over a ring R and variables x1, . . . , xn is a directed acyclic graph with nodes
of in-degree zero or two. The in-degree zero nodes are labeled either by variables xi or elements
of R, whereas the in-degree two nodes are labeled by either + or ×. Every gate of out-degree zero is
called an output gate. We will typically take R to be Z or Zp for a prime number p. A single-output
arithmetic circuit C over R computes a polynomial over R in a natural way. We say that C computes a
polynomial P(x1, . . . , xn) if the two polynomials are identical (as opposed to saying that C computes
P if the two polynomials agree on every assignments of (x1, . . . , xn) ∈ Rn). We define the size of C
as the number of edges in it, and the arithmetic circuit complexity of a polynomial as the minimum
size of a circuit computing it.

2.3 SAT, MAX-SAT, OV, and Clique

For a CNF formula F, by n(F) and m(F) we denote the number of variables and clauses of F, respec-
tively. We write just n and m, if the corresponding CNF formula is clear from the context. In SAT
(UNSAT), one is given a CNF formula and the goal is to check whether it is satisfiable (unsatisfiable,
respectively). In k-SAT, the given formula is in k-CNF (that is, all clauses have at most k literals).
In MAX-k-SAT, one is given a k-CNF and an integer t and is asked to check whether it is possible
to satisfy exactly t clauses.

When designing an algorithm for SAT, one can assume that the input formula has a linear (in the
number of variables) number of clauses. This is ensured by the following Sparsification Lemma.
By (β,k)-SAT, we denote a special case of k-SAT where the input k-CNF formula has at most βn
clauses.

Theorem 6 (Sparsification Lemma, [IPZ01]). For any k ∈ Z⩾3 and ε > 0, there exists α = α(k, ε) and
an algorithm that, given a k-CNF formula F over n variables, outputs t ⩽ 2εn formulas F1, . . . , Ft in
k-CNF such that n(Fi) ⩽ n and m(Fi) ⩽ αn, for all i ∈ [t], and F ∈ SAT if and only if ∨i∈[t]Fi ∈ SAT.
The running time of the algorithm is O(nO(1)2εn).
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Corollary 5. There exists a function β : Z⩾3 × R>0 → Z>0 such that, if there exists ε > 0 for which
(β(k, ε),k)-SAT can be solved in time O(2n/2+εn) for any k ∈ Z⩾3, then k-SAT can be solved in time
O(2n/2+2εn).

Proof. Let β(k, ε) = α(k, ε) (see Theorem 6 for a definition of α). Given an instance of k-SAT,
we apply the Sparsification Lemma with parameter ε to get a sequence of t ⩽ 2εn formulas
F1, . . . , Ft, each of which is a (β(k, ε),k)-SAT instance. By the assumption, the satisfiability of each
Fi can be checked in time O(2n/2+εn). Thus, one can check the satisfiability of ∨i∈[t]Fi in time
O(t · 2n/2+εn) = O(2n/2+2εn).

The Strong Exponential Time Hypothesis (SETH), introduced in [IPZ01, IP01], asserts that, for
any ε > 0, there is k such that k-SAT cannot be solved in time O(2(1−ε)n). The Nondeterministic
SETH (NSETH), introduced in [CGI+16], extends SETH by asserting that SAT is difficult even for
co-nondeterministic algorithms: for any ε > 0, there is k such that k-SAT cannot be solved in
co-nondeterministic time O(2(1−ε)n). Though both these statements are stronger than P ̸= NP, they
are known to be hard to refute: as proved by Jahanjou, Miles and Viola [JMV18], if SETH is false,
then there exists a Boolean function family in ENP of series-parallel circuit size ω(n). [CGI+16]
noted that it suffices to refute NSETH to get the same circuit lower bound.

Theorem 7 ([JMV18, CGI+16]). If NSETH is false, then there exists a Boolean function family in ENP

of series-parallel circuit size w(n).

SETH-based conditional lower bounds are known for a wide range of problems and input pa-
rameters. One of such problems is Orthogonal Vectors (OV): given two sets A,B ⊆ {0, 1}d of size n,
check whether there exists a ∈ A and b ∈ B such that a · b =

∑
i∈[d] aibi = 0. It is straightforward

to see that OV can be solved in time O(n2d). Williams [Wil05] proved that under SETH, there
is no algorithm solving OV in time O(n2−εdO(1)), for any ε > 0. This follows from the following
reduction.

Theorem 8 ([Wil05]). There exists an algorithm that, given a CNF formula F with n variables and
m clauses, outputs two sets AF,BF ⊆ {0, 1}m such that |AF| = |BF| = 2n/2 and F ∈ SAT if and only if
(AF,BF) ∈ OV. The running time of the algorithm is O(mn · 2n/2).

In a similar manner, one can reduce a CNF formula to the t-OV problem involving a greater
number of sets. Consider the t-OV problem, where one is given t sets A1, . . . ,At ⊆ {0, 1}d, each of
size n, and the objective is to determine whether there exist elements a1 ∈ A1, . . . ,at ∈ At such
that ∑

i∈[d]

a1
i · . . . · at

i = 0.

Lemma 2. There exists an algorithm which, given a CNF formula F with n variables and m clauses,
along with an integer t, constructs t sets A1

F, . . . ,At
F ⊆ {0, 1}m such that |A1| = . . . = |At| = 2n/t and

F ∈ SAT if and only if (A1
F, . . . ,At

F) ∈ t-OV. The running time of the algorithm is O(mn · 2n/t).

The proof follows the approach presented in [Wil05]. An instance (A1, . . . ,At) ̸∈ t-OV if and
only if for all vectors a1 ∈ A1, . . . ,at ∈ At, the vectors share a common coordinate with value one.
This can equivalently be formulated by stating that the union Q = A1 ∪ . . . ∪ At possesses the
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property that for every a1, . . . ,at ∈ Q, the vectors share a common one. Consequently, Lemma 1
states that the instance (A1, . . . ,At) ̸∈ t-OV if and only if there exists a circuit C, composed of
THRlt+1

l+1 gates and variables, such that C(x) = 0 for every x ∈ A1 ∪ . . . ∪At.
A similar reduction allows to solve MAX-3-SAT by finding a 4-clique in a 3-uniform hypergraph.

A subset of l nodes in a k-hypergraph is called an l-clique, if any k of them form an edge in the
graph.

Theorem 9 ([Wil07, LVW18]). There exists an algorithm that, given a 3-CNF formula F with n variables
and an integer t, outputs a 4-partite 3-uniform hypergraph G with parts of size k = nO(1)2n/4 such
that G has a 4-clique if and only if it is possible to satisfy exactly t clauses of F.

Proof. To construct the graph G, partition the variables of F into four groups A0,A1,A2,A3 of size
n/4. Then, label each clause of F by some i ∈ {0, 1, 2, 3} such that the clause does not contain
variables from Ai. Then, for any i ∈ {0, 1, 2, 3}, assigning variables from all parts except from Ai,

determines how many clauses labeled i are satisfied. Define tensors T0,T1,T2,T3 ∈ Z2
n
4 ×2

n
4 ×2

n
4

⩾0
as follows: for U1,U2,U3 ∈ {0, 1}

n
4 , let Ti[U1,U2,U3] be equal to the number of clauses with label i

when the variables from groups A(i+1) mod 4,A(i+2) mod 4, and A(i+3) mod 4 are assigned as in U1,U2,
and U3. Then, it is possible to satisfy t clauses in F if and only if there exist U0,U1,U2,U2 ∈ {0, 1}

n
4

such that
T0[U1,U2,U3] + T1[U2,U3,U0] + T2[U3,U0,U1] + T3[U0,U1,U2] = t.

As F contains at most O(n3) clauses, t = O(n3). This makes it possible to enumerate in polynomial
time all values of the four terms above. For an integer q and i ∈ {0, 1, 2, 3}, define a tensor
Ai,q ∈ {0, 1}2

n
4 ×2

n
4 ×2

n
4 as

Ai,q[U1,U2,U3] = [Ti[U1,U2,U3] = q].

Then, one can satisfy t clauses in F if and only if∑
U0,U1,U2,U3∈{0,1}

n
4

t0+t1+t2+t3=t

A0,t0 [U1,U2,U3] ·A1,t1 [U2,U3,U0] ·A2,t2 [U3,U0,U1] ·A3,t3 [U0,U1,U2] > 0.

For fixed t0, t1, t2, t3, such that t0 + t1 + t2 + t3 = t, the tensors A0,t0 ,A1,t1 ,A2,t2 ,A3,t3 may
be viewed as a description of edges of a 4-partite 3-uniform hypergraph Gt0,t1,t2,t3 . There is a 4-
clique in Gt0,t1,t2,t3 if and only if one can satisfy t0 clauses with label 0, t1 clauses with label 1, and
so on. Let G be a superimposition of all such graphs. Then, G contains a 4-clique if and only if one
can satisfy exactly t clauses of F.

2.4 Rigidity and Tensor Rank

For a field F, by Fa×b we denote the set of all matrices of size a×b over F. Similarly, by Fa×b×c we
denote the set of all three-dimensional tensors of shape a× b× c over F. For two tensors A and B

(of arbitrary shape), by A⊗ B we denote a tensor product of A and B. For a matrix M ∈ Fa×b, by
|M| we denote the number of nonzero entries of M.

For a matrix M ∈ Fa×b, we say that it has r-rigidity s if it is necessary to change at least s entries
of M to reduce its rank to r. That is, for each decomposition M = R + S such that rank(R) ⩽ r,
it holds that |S| ⩾ s.
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The rank of a three-dimensional tensor is a natural extension of the matrix rank. For a tensor
A ∈ Fn×n×n, we define its rank, rank(A), as the smallest integer r such that there exist r tuples of
vectors al,bl, cl ∈ Fn for which

A =
∑
l∈[r]

al ⊗ bl ⊗ cl,

or equivalently,
A[i, j,k] =

∑
l∈[r]

al[i]bl[j]cl[k],

for all i, j,k ∈ [n].
We denote by ω the smallest real number such that any two n× n matrices can be multiplied

in time O(nω+ε) for any ε > 0 using only field operations2.
Consider the three-dimensional tensor An ∈ Fn2×n2×n2:

An[(i, j), (i,k), (k, j)] = 1,

for all i, j,k ∈ [n], with all other entries being zero. Using an approach based on the work
of Strassen [Str69], for any positive integer k, if rank(Ak) = q, then one can construct an arithmetic
circuit of size O(nlogk(q)) to perform multiplication of two n× n matrices. Thus, ω satisfies the
following equation:

ω = inf
k∈Z>0

logk rank(Ak).

In other words, for sufficiently large k, we have that rank(Ak) ⩾ kω. Specifically, if n = k2, then
Ak ∈ Mn×n×n, and rank(Ak) ⩾ nω/2. Therefore, if ω > 2, this yields superlinear lower bounds
on arithmetic circuits and on the rank of the multiplication tensor.

The best known upper bound on ω is 2.371552 [VXXZ24]. Further details on the matrix multi-
plication tensor can be found in [AV24, Blä13].

3 Proof Ideas

In this section, we give high level ideas of the main results.

3.1 Monotone Circuit Lower Bound

To prove a lower bound 2Ω(n/ logn) for monotone circuit size of coNP under NSETH, we assume that
all monotone functions from coNP have monotone circuit size 2o(n/ logn) and show how this can
be used to solve UNSAT nondeterministically in less than 2n steps.

Given a k-CNF F, we construct an instance (AF,BF) ofOV of size 2n/2 using Theorem 8. We show
(see Lemma 3) that (AF,BF) is a yes-instance if and only if there exists a monotone Boolean function
separating (AF,BF). Hence, one can guess a small monotone circuit separating (AF,BF) and verify
that it is correct. Overall, the resulting nondeterministic algorithm proceeds as follows.

1. In time O(n22n/2), generate the sets AF and BF.

2. Guess a monotone circuit C of size O(2(1−ε)n/2).
2The value of ω may depend on the field over which the calculations are performed [Sch81].
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3. Verify that C separates (AF,BF). To do this, check that CF(a) = 1, for every a ∈ AF.
Then, check that CF(b) = 0, for every b ∈ BF. The running time of this step is

O(2(1−ε)n/2 · |AF|+ 2(1−ε)n/2 · |BF|) = O(2(1−ε)n/2 · 2n/2) = O(2(1−ε/2)n).

4. If C separates (AF,BF), then F ∈ UNSAT.

This already shows how small monotone circuits could help to break NSETH, though it does not
provide a single explicit function with this property. In the full proof in Section 4, we introduce
such a function. We also use a weaker assumption (than NSETH).

3.2 Rigid Matrices and High Rank Tensors

To construct matrices of high rigidity under the assumption that MAX-3-SAT cannot be solved
fast co-nondeterministically, we proceed as follows. Take a 3-CNF formula over n variables and
an integer t and transform it, using Theorem 9, into a 4-partite 3-uniform hypergraph G with
each part of size k = nO(1)2

n
4 . The graph G contains a 4-clique if and only if one can satisfy

t clauses of F. We show that checking whether G has a 4-clique is equivalent to evaluating a certain
expression over three-dimensional tensors. We then show that if all slices of these tensors have
low rigidity, then one can solve 4-Clique on G in co-nondeterministic time O(k4−ε): to achieve
this, one guesses a decomposition of a matrix into a sum of a low rank matrix and a matrix with
few nonzero entries. The idea is that a low rank matrix can be guessed quickly as a decomposition
into a rank-one matrices (which are just products of two vectors), whereas the second matrix can
be guesses quickly as one needs to guess the nonzero entries only. In turn, this allows one to solve
MAX-3-SAT faster than 2n co-nondeterministically. Thus, this reduction is a generator of rigid
matrices: it takes a 3-CNF formula and outputs a matrix. The same idea can be used to generate
either tensors with high rank or matrices with high rigidity.

4 Circuit Lower Bounds

4.1 Boolean Functions of High Monotone Circuit Size

In this section, we prove Theorem 1.

Theorem 1. If, for some ε > 0 and k ∈ Z⩾3, k-SAT cannot be solved in input-oblivious co-
nondeterministic time O(2(1/2+ε)n), then there exists a monotone Boolean function family in coNP
of monotone circuit size 2Ω(n/ logn).

Combining this with Corollary 1 and Theorem 7, we get win-win circuit lower bounds. Proving
any of these two circuit lower bounds is a challenging open problem.

Corollary 2. At least one of the following two circuit lower bounds holds:

1. ENP requires series-parallel circuits of size ω(n);

2. There exists a monotone Boolean function family in coNP of monotone circuit size 2Ω(n/ logn)

and a monotone Boolean function family in P/poly that requires monotone circuits of size 2Ω(n)

and can be computed in linear time.
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For the proof of Theorem 1, we need two technical lemmas. Recall that the reduction from
SAT to OV (see Theorem 8), given a formula F, produces two sets AF,BF ⊆ {0, 1}m(F) such that
|AF| = |BF| = 2n(F)/2 and F ∈ SAT if and only if (AF,BF) ∈ OV.

Lemma 3. Let F be a CNF formula. Then, F ̸∈ SAT if and only if (AF,BF) can be separated by a monotone
function.

For a CNF formula F, let fF : {0, 1}m(F) → {0, 1} be defined as follows:

fF(x) = [∀b ∈ BF : b ̸⩾ x]. (1)

It is immediate that f is monotone and that BF ⊆ f−1
F (0).

Proof of Lemma 3. Assume that F ̸∈ SAT. We show that the function fF separates (AF,BF). To do
this, it suffices to show that AF ⊆ f−1

F (1). If this is not the case, then there is a ∈ AF such that
fF(a) = 0, that is, there exists b ∈ BF such that b ⩾ a. Hence, there is no i ∈ [m] such that bi = 0
and ai = 1. In turn, this means that, for b ∈ BF, there is no i ∈ [m] such that bi = 1 and ai = 1,
meaning that (AF,BF) ∈ OV, contradicting F ̸∈ SAT.

For the reverse direction, assume that for some monotone function h : {0, 1}m → {0, 1}, it holds
that AF ⊆ h−1(1) and BF ⊆ h−1(0). By the monotonicity of h, for every a ∈ AF and every b ∈ BF,
b ̸⩾ a. Hence, for every a ∈ AF and every b ∈ BF, there exists i ∈ [m] such that bi = 0 and ai = 1.
Switching from BF to BF, we get that, for every a ∈ AF and every b ∈ BF, there exists i ∈ [m] such
that bi = 1 and ai = 1, meaning that (AF,BF) ̸∈ OV and F ̸∈ SAT.

By Fn,k,β denote the set of k-CNF formulas with n variables and at most βn clauses. Any
formula F ∈ Fn,k,β can be encoded in binary using at most γn logn bits (for some γ = γ(k,β)):
each variable is encoded using logn bits, all other symbols (parentheses as well as negations,
disjunctions, and conjunctions require a constant number of bits). Hence,

|Fn,k,β| ⩽ 2γn logn.

Let us call Wn,k the set of all binary strings of length n and weight k:

Wn,k = {x ∈ {0, 1}n : w(x) = k}.

Lemma 4. There exists an injective encoding e : {0, 1}⩽n → W4n,2n such that computing and inverting e
takes time linear in n.

Proof. For x ∈ {0, 1}⩽n, let e(x) as follows be any balanced string of length 4n that starts with 1|x|0
followed by x. This encoding is injective, as the initial segment 1|x|0 allows us to uniquely identify x

within e(x). Both computing and inverting e can be accomplished in linear time with respect to n.
Indeed, computing e(x) is straightforward. Conversely, given e(x), one can first extract the size of x
and then decode x.

As a simple corollary, applying Lemma 4 to Boolean formulas, one can obtain the following
result.
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Lemma 5. There exists a parameter l = O(n logn) and an injective encoding

e : Fn,k,β → Wl,l/2

such that computing and inverting e takes time polynomial in n.

Proof. Given a formula F ∈ Fn,k,β, we can encode it in binary using at most γn logn bits (as stated
above). Then, applying Lemma 4, we obtain the desired result.

Proof of Theorem 1. Assuming that coNP has small monotone circuits, we design a fast co-
nondeterministic algorithm for SAT. Assume that all monotone functions over N variables in coNP
can be computed by monotone circuits of size 2o(N/ logN).

Let F be a k-CNF over n variables. Thanks to Corollary 5, we may assume that m(F) ⩽ βn,
where β = β(k, ε

2 ). Then, solving Fn,k,β in co-nondeterministic time O(2n/2+ε ′n) for ε ′ = ε
2

will be sufficient for a contradiction.
Below, we define a universal function f containing fF, for all F ∈ Fn,k,β, as subfunctions (recall

the definition (1) of fF). Let N = l+m, where l = O(n logn) and e is the function from Lemma 5
and m = βn (hence, N = O(n logn)). We define f : {0, 1}N → {0, 1} as follows. Let (c, x), where
c ∈ {0, 1}l and x ∈ {0, 1}m, be an input of f. Then,

f(c, x) =



1, if w(c) > l/2,
0, if w(c) < l/2,
1, if w(c) = l/2 and e−1(c) = ∅,
0, if w(c) = l/2 and e−1(c) ∈ SAT,
fF(x), if w(c) = l/2 and F = e−1(c) ̸∈ SAT.

We now ensure three important properties of f.

1. The function f is monotone. For the sake of contradiction, assume that (c, x) ⩾ (c ′, x ′), but
0 = f(c, x) < f(c ′, x ′) = 1. Since f(c ′, x ′) = 1, w(c ′) ⩾ l/2. If w(c ′) > l/2, then f(c, x) = 1,
since w(c) ⩾ w(c ′) > l/2. Hence, assume that w(c ′) = w(c) = l/2. Since c ⩾ c ′, we conclude
that c = c ′ (implying that e−1(c) ̸= ∅). If e−1(c) ∈ SAT, then f(c ′, x ′) = 0. Hence e−1(c) ̸∈ SAT,
thus f(c, x) = fF(x) and f(c ′, x ′) = fF(x

′), where F = e−1(c) = e−1(c ′), and fF is clearly
monotone.

2. The function f is explicit: f ∈ coNP. Assume that f(c, x) = 0. This can happen for one of the
three following reasons.

• w(c) < l/2. This is easily verifiable.

• w(c) = l/2 and e−1(c) ∈ SAT. To verify this, one computes F = e−1(c) (in time
O(poly(n)), due to Lemma 5), guesses its satisfying assignment and verifies it.

• w(c) = l/2, F = e−1(c) ̸∈ SAT, and fF(x) = 0. Recall that if F ∈ SAT, then we can
guess and verify its satisfying assignment, so in this case there is no need to verify the
unsatisfiability of F. Since fF(x) = 0, there exists b ∈ BF such that b ⩾ x. To verify this,
one computes F = e−1(c), guesses the corresponding assignment to the second half
of the variables of F, ensures that it produces the vector b, and verifies that b ⩾ x.
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3. Assume that f can be computed by a monotone circuitC of size 2o(N/ logN). We show that, then,
for anyk ∈ Z⩾3,k-SAT can be solved in input-oblivious co-nondeterministic timeO(2n/2+ε ′n).
Since N = O(n logn), then size(C) = O(2ε ′n).

Let F ∈ Fn,k,β be an unsatisfiable formula with n variables and no more than βn clauses.
The following algorithm verifies its unsatisfiability in input-oblivious nondeterministic time
O(2n/2+ε ′n).

(a) In time O(n22n/2), generate the sets AF and BF.
(b) Guess a monotone circuit C. This can be done in time O(size(C)) = O(2ε ′n).
(c) Compute c = e(F) and substitute the first l variable of C by c. Call the resulting

circuit CF.
(d) Verify that CF separates (AF,BF). To do this, check that CF(a) = 1, for every

a ∈ AF. Then, check that CF(b) = 0, for every b ∈ BF. The running time of this
step is

O((|AF|+ |BF|) · size(CF)) = O(2n/2 · 2ε ′n = O(2n/2+ε ′n).

(e) If CF is monotone and separates (AF,BF), then we are certain that F ̸∈ SAT,
thanks to Lemma 3.

Now, we show how to improve the bound for the P/poly class by making a slight adjustment
to the proof of Theorem 1.

Theorem 2. If, for some ε > 0 and k ∈ Z⩾3, k-SAT cannot be solved in co-nondeterministic time
O(2(1/2+ε)n), then there exists a monotone Boolean function family in P/poly that requires monotone
circuits of size 2Ω(n) and can be computed in linear time.

Combining this with Theorem 7, we obtain another win-win circuit lower bound.

Corollary 6. At least one of the following two circuit lower bounds holds:

• ENP requires series-parallel circuits of size ω(n);

• There is an explicit monotone function f ∈ P/poly that requires monotone circuits of size 2Ω(n).

Proof of Theorem 2. Assuming that all monotone functions from P/poly have monotone circuits
of size 2o(n), we construct a fast co-nondeterministic algorithm similar to Theorem 1. Thanks
to Corollary 5, we may assume that m(F) ⩽ βn, where β = β(k, ε ′), setting ε ′ = ε

2 . Thus, if for any
unsatisfiable F ∈ Fn,k,β, there exists a small monotone circuit separating AF and BF, then one can
solve k-SAT in co-nondeterministic time 2

n
2 +ε ′n (recall the proof of Theorem 1).

Now, we construct a family of monotone functions, each belonging to P/poly, such that if all of
them have monotone circuit size 2o(n), then this ensures that any UNSAT formula from Fn,k,β has
a small monotone circuit separating AF and BF.

For a set AF ⊆ {0, 1}m(F) of size 2n(F)/2, denote by A ′
F ⊆ {0, 1}m(F)+l the set defined as

A ′
F = {e(ind(x)) ◦ x : x ∈ AF},
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where ind(x) is a satisfying assignment for the first half of the elements of F that produces x in the
reduction (i.e., the index of the row that contains x), and e is the encoding from Lemma 4. Also,
define B ′

F = {0l ◦ x | x ∈ BF}. Recall that m(F) + l = O(n). It is easy to see that (AF,BF) ∈ OV if and
only if (A ′

F,B ′
F) ∈ OV. Thus, applying Lemma 3, we need to determine whether A ′

F and B ′
F can be

separated by a monotone function.
For fixed sets A ′

F and B ′
F, if they can be separated by a monotone function, then there exists a

linear-time algorithm that computes some monotone function separating A ′
F and B ′

F. The algorithm
takes as input c ◦ x, where c ∈ {0, 1}l and x ∈ {0, 1}m(F), and proceeds as follows:

• If w(c) < l
2 , it outputs 0.

• If w(c) > l
2 , it outputs 1.

• If e−1(c) = ∅, then it outputs 0.

• Otherwise, it assigns e−1(c) to the first half of the variables. Let y ∈ {0, 1}m(F) be the vector
of clauses satisfied by this assignment. Then, the algorithm returns [y ⩽ x].

It is clear that this algorithm separates A ′
F and B ′

F whenever such separation is possible and
that the resulting function is indeed monotone.

Now, assuming that k-SAT cannot be solved in co-nondeterministic timeO(2
n
2 +εn), for infinitely

many instances of SAT, there exists a pair of sets (A,B) which cannot be separated by a monotone
function of size 2o(n). Hence, infinitely often, the function produced by the algorithm above has
monotone circuit size 2Ω(n), despite being computable in linear time. Thus, there exists a sequence
of formulas

{Fi : m(Fi) = i∧ Fi ∈ UNSAT}∞i=2

such that the family of monotone functions from P/poly

{gFi
}∞i=2,

where gFi
: {0, 1}i → {0, 1} is the function described by the algorithm above, cannot be computed in

co-nondeterministic time 2
n
2 +εn.

4.2 Functions of High Threshold Size

In this section, we aim to derive circuit lower bounds under the assumption of NETH. It is important
to observe that the preceding reduction is insufficient for solving 3-SAT in time 2o(n), as the
reduction to the OV problem operates in time O(2n/2). However, by reducing 3-SAT to t-OV for
some t = ω(1), the reduction can be executed in time 2o(n).

Theorem 3. If NETH holds, then for any t = ω(1) and infinitely many n = ω(t), there exists a function
f ∈ Qn

t such that any circuit C ⩽ f, composed of THRlt+1
l+1 gates, satisfies size(C) = 2Ω(n). Moreover,

f ∈ P/poly and can be computed in linear time.

Proof. Recall the proof of Theorem 2. Given an arbitrary ε > 0 and a 3-SAT instance F, apply Corol-
lary 5 to ensure that the number of clauses m(F) satisfies m(F) = βn, where β = β(3, ε). Then, add
artificial variables to make n a multiple of t. Next, apply Lemma 2 to construct the sets A1, . . . ,At

such that (A1, . . . ,At) ̸∈ t-OV if and only if F ∈ UNSAT. Subsequently, nondeterministically guess
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a circuit C of size 2o(n), composed only of THRlt+1
l+1 gates for arbitrary l ⩾ 1. Then verify that

C(x) = 0 for every x ∈ A1 ∪ . . . ∪ At. The total verification time is O(t · size(C) · 2n/t) = 2o(n).
Lemma 1 guarantees that if F ∈ UNSAT, then such a circuit C must exist. Therefore, if no such
circuit C of size 2o(n) is found, it must be the case that its size is 2Ω(n) or F ∈ SAT.

5 Matrices of High Rigidity

In this section, we show that low rigidity matrices can be utilized to solveMAX-3-SATmore efficiently.
Thus, by assuming that MAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n),
for any ε > 0, we get a generator of high rigidity matrices. Throughout this section, rigidity
decompositions are considered over a finite field F.

Theorem 4. If, for every ε > 0,MAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n),
then, for all δ > 0, there is a generator g : {0, 1}logO(1) k → Fk×k computable in time polynomial in k

such that, for infinitely many k, there exist a seed s for which g(s) has k
1
2−δ-rigidity k2−δ.

Proof. Take a 3-CNF formula over n variables and an integer t and transform it, using Theorem 9,
into a 4-partite 3-uniform hypergraph with parts H0,H1,H2,H3 of size k = nO(1)2

n
4 . Recall that

G contains a 4-clique if and only if one can satisfy t clauses of F.
Let A0,A1,A2,A3 ∈ {0, 1}k×k×k be three-dimensional tensors encoding the edges of G. Ai

is responsible for storing edges spanning nodes from all parts except for Hi: for example, G has
an edge (u1,u2,u3), where u1 ∈ H1, u2 ∈ H2, and u3 ∈ H3, if and only if A0[u1,u2,u3] = 1. Let

R =
∑

j0,j1,j2,j3∈[k]

A0[j1, j2, j3] ·A1[j2, j3, j0] ·A2[j3, j0, j1] ·A3[j0, j1, j2].

Then, G has a 4-clique if and only if R > 0. Also, for j0, j1 ∈ [k], let

Rj0,j1 =
∑

j2,j3∈[k]

A0[j1, j2, j3] ·A1[j2, j3, j0] ·A2[j3, j0, j1] ·A3[j0, j1, j2].

Thus,
R =

∑
j0,j1∈[k]

Rj0,j1 .

Now, for fixed j0, j1 ∈ [k], define vectors v,u ∈ {0, 1}k as follows: v[i] = A3[j0, j1, i] and u[l] =
A2[l, j0, j1]. Also, define two matrices M,L ∈ {0, 1}k×k: M[i, l] = A0[j1, i, l] and L[i, l] = A1[i, l, j0].
Hence,

Rj0,j1 =
∑

j2,j3∈[k]

M[j2, j3] · L[j2, j3] · u[j3] · v[j2].

Now, assume that M and L have r-rigidity s, that is,

M = RM + S,
L = RL + T ,

where RM,RL,S, T ∈ Fk×k, rank(RM), rank(RL) ⩽ r and |S|, |T | ⩽ s.
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Since rank(RM) ⩽ r, rank(RL) ⩽ r, it follows that there exist vectors: ai,M,ai,L ∈ Fk

and bi,M,bi,L ∈ Fk such that

M =

∑
i∈[r]

ai,M · bT
i,M

+ S,

L =

∑
i∈[r]

ai,L · bT
i,L

+ T .

We guess these vectors for the matrices M and L. Additionally, we guess only nonzero entries of S
and T , since they are sparse.

For fixed j0, the time complexity to guess and verify the decomposition of L is O(rk2 + s+ k2),
which includes the time to multiply the vectors, sum them, add S, and verify that the result equals L.
The same applies when fixing j1. Thus, the overall time complexity is O(rk3+ks+k3) = O(rk3+ks),
for all j0, j1.

Hence,

Rj0,j1 =
∑

j2∈[k]

∑
j3∈[k]

S+
∑
i∈[r]

ai,M · bT
i,M

 [j2, j3] ·

T +
∑
l∈[r]

al,L · bT
l,L

 [j2, j3] · u[j3] · v[j2] =

=
∑

j2∈[k]

∑
j3∈[k]

∑
i∈[r]

ai,M · bT
i,M

 [j2, j3] ·

∑
l∈[r]

al,L · bT
l,L

 [j2, j3] · u[j3] · v[j2]+

+
∑

j2∈[k]

∑
j3∈[k]

u[j3] · v[j2] · (S[j2, j3] · T [j2, j3] + S[j2, j3] · RL[j2, j3] + RM[j2, j3] · T [j2, j3])︸ ︷︷ ︸
R ′
j0,j1

.

Since S and T are sparse, we can compute the R ′
j0,j1

in time O(s), for fixed j0, j1. Now, it remains
to evaluate

Rj0,j1 − R ′
j0,j1

=
∑

j2∈[k]

∑
j3∈[k]

∑
i∈[r]

ai,M · bT
i,M

 [j2, j3] ·

∑
l∈[r]

al,L · bT
l,L

 [j2, j3] · u[j3] · v[j2] =

∑
j2∈[k]

∑
j3∈[k]

∑
i∈[r]

ai,M[j2] · bi,M[j3]

 ·

∑
l∈[r]

al,L[j2] · bl,L[j3]

 · u[j3] · v[j2] =∑
i∈[r]

∑
l∈[r]

∑
j2∈[k]

∑
j3∈[k]

ai,M[j2] · bi,M[j3] · al,L[j2] · bl,L[j3] · u[j3] · v[j2] =

∑
i∈[r]

∑
l∈[r]

 ∑
j2∈[k]

ai,M[j2] · al,L[j2] · v[j2]

 ∑
j3∈[k]

bi,M[j3] · bl,L[j3] · u[j3]

 .

This sum can be computed in time O(r2k). Thus, the total running time (for all j0, j1) is O(rk3 +

ks + k2s + r2k3) = O(k2s + r2k3). If r = k
1
2−δ and s = k2−δ for some δ > 0, the running time

becomes O(k4−δ).
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We can construct a generator g that takes the following inputs: the encoding of a 3-CNF
formula, an integer t, j0, j1, and a 0/1 bit. If this bit is 0, we output M; otherwise, we output L.
If the input to the generator is not valid, it outputs an empty family. Therefore, if MAX-3-SAT
cannot be solved in co-nondeterministic time O(2(1−ε)n) for any ε > 0, then for infinitely many n,
the generator outputs at least one matrix with k

1
2−δ-rigidity k2−δ, for any δ > 0, and k = nO(1)2

n
4 .

The generator takes nO(1) = logO(1)(k) input bits, works in time polynomial in k, and outputs
a matrix of dimensions k× k.

As a simple corollary, one might weaken the assumption and obtain weaker matrix rigidity,
while still improving the known explicit construction by [SSS97]. Recall that [SSS97] constructed
matrices with r-rigidity n2

r log(n/r).

Corollary 7. If MAX-3-SAT cannot be solved in co-nondeterministic time O(20.92n), then there exists
a generator g : {0, 1}logO(1) k → Fk×k computable in time polynomial in k such that, for infinitely many k,
there exists a seed s for which g(s) has k0.34-rigidity k1.68.

Proof. The generator is the one constructed in the proof of Theorem 4. Substituting r = k0.34 and
s = k1.68 into the running time O(k2s+ r2k3) yields the running time O(k3.68) = O(20.92n), thereby
completing the proof. Note that r · s = k2.02, so further weakening the assumption will result in
worse rigidity than that achieved in [SSS97].

6 Tensors of High Rank

In this section, we show how to generate high rank tensors under an assumption that MAX-3-SAT
is hard. Throughout this section, we assume that F is a finite field over which rigidity and tensor
decompositions are considered. We start by proving two auxiliary lemmas. The first one shows how
rectangular matrix multiplication can be reduced to square matrix multiplication.

Lemma 6. For a,b ⩾ n, the product of two matrices A ∈ Fa×n and B ∈ Fn×b can be computed
in time O(abnω−2).

Proof. Partition A and B into n × n-matrices A1, . . . ,Aa/n and B1, . . . ,Bb/n. Then, to compute
A · B, it suffices to compute Ai · Bj, for all i ∈ [a/n] and j ∈ [b/n]. The resulting running time is

O

(
a

n
· b
n
· nω

)
= O(abnω−2).

The next lemma shows how one can compute the value of a specific function for all inputs using
fast matrix multiplication algorithms.

Lemma 7. Let q ⩾ k and A,B,C ∈ Fq×k. Let also f : [k]3 → F be defined as follows:

f(i, j,m) =
∑
l∈[q]

A[l, i]B[l, j]C[l,m].

One can compute f(i, j,m), for all (i, j,m) ∈ [k]3 simultaneously, in time O(q2kω−1).
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Proof. Fix i ∈ [k] and let D ∈ Fq×k be defined by D[l, j] = B[l, j] ·A[l, i]. Then,

f(i, j,m) =
∑
l∈[q]

D[l, j]C[l,m] = (DT · C)[j,m].

The product DT · C can be computed in time O(q2kω−2) using Lemma 6. Summing over all i ∈ [k],
gives the desired upper bound.

Now, we are ready to prove the main result of this section.

Theorem 10. Let r ⩾
√
n, q ⩾ n, and k = nO(1)2n/4. There exist functions g1 : {0, 1}logO(1) k → Fk×k

and g2 : {0, 1}logO(1) k → Fk×k×k computable in time kO(1) such that, if, for any e, g1(e) has r-rigidity s
and g2(e) has rank at most q, then, MAX-3-SAT for formulas with n variables can be solved in co-
nondeterministic time

O(k3r+ q2kω−1 + k2s+ qr2kω−1).

Proof. Take a 3-CNF formula over n variables and an integer t and transform it, using Theorem 9,
into a 4-partite 3-uniform hypergraph with parts H0,H1,H2,H3 of size k = nO(1)2

n
4 . Recall that

G contains a 4-clique if and only if one can satisfy t clauses of F. Let A0,A1,A2,A3 ∈ {0, 1}k×k×k

be three-dimensional tensors encoding the edges of G. Ai is responsible for storing edges spanning
nodes from all parts except for Hi: for example, G has an edge (u1,u2,u3), where u1 ∈ H1, u2 ∈ H2,
and u3 ∈ H3, if and only if A0[u1,u2,u3] = 1. Let

R =
∑

j0,j1,j2,j3∈[k]

A0[j1, j2, j3] ·A1[j2, j3, j0] ·A2[j3, j0, j1] ·A3[j0, j1, j2].

Then, G has a 4-clique if and only if R > 0. Further, let

Rj0 =
∑

j1,j2,j3∈[k]

A0[j1, j2, j3] ·A1[j2, j3, j0] ·A2[j3, j0, j1] ·A3[j0, j1, j2].

Then, R = R1 + · · ·+ Rk. For fixed j0, let M,L, T ∈ {0, 1}k×k be defined by

M[j2, j3] = A1[j2, j3, j0],
L[j3, j1] = A2[j3, j0, j1],
T [j1, j2] = A3[j0, j1, j2].

Thus,
Rj0 =

∑
j1,j2,j3∈[k]

A0[j1, j2, j3]M[j2, j3]L[j3, j1]T [j1, j2].

Note that A0 is a three-dimensional tensor, whereas M, L, and T are matrices. Assume that
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rank(A0) ⩽ q and that each of M, L, and T has r-rigidity s, that is,

A0[j1, j2, j3] =
∑
i∈[q]

ai,0[j1]bi,0[j2]ci,0[j3],

M = RM + SM =

 ∑
m∈[r]

am,M · bT
m,M

+ SM,

L = RL + SL =

∑
l∈[r]

al,L · bT
l,L

+ SL,

T = RT + ST =

∑
t∈[r]

at,T · bT
t,T

+ ST ,

where RM,SM,RL,SL,RT ,ST ∈ Fk×k, |SM| ⩽ s, |SL| ⩽ s, |ST | ⩽ s, and rank(RM) ⩽ r, rank(RL) ⩽ r,
rank(RT ) ⩽ r.

We guess such a representation of A0, M, L, and T (guessing only nonzero entries in SM, SL,
and ST ). For fixed j0, one can verify the representations of M, L, and T in time O(k2r). For all j0,
this gives O(k3r). Since A0 does not depend on j0, it suffices to guess and verify its decomposition
just once. Verifying the decomposition of A0 can be dome in time O(q2kω−1) using Lemma 7.

Therefore,

Rj0 =
∑

j1,j2,j3∈[k]

A0[j1, j2, j3] · RM[j2, j3] · RL[j3, j1] · RT [j1, j2]+

+
∑

j1,j2,j3∈[k]

SM[j2, j3] · fM(j1, j2, j3) + SL[j3, j1] · fL(j1, j2, j3) + ST [j1, j2] · fT (j1, j2, j3)︸ ︷︷ ︸
R ′
j0

,

for some functions fM, fL, and fT , which are linear combinations of elements of A0[j1, j2, j3],
RM[j2, j3], SM[j2, j3], RL[j3, j1], SL[j3, j1], RT [j1, j2], and ST [j1, j2], and each of which can be computed
in O(1) time at any specific point. Since |SM|, |SL|, |ST | ⩽ s, we can compute R ′

j0
in time O(ks), for

each j0, and in time O(k2s) overall, as each of SM, SL, and ST has at most s nonzero elements.

24



To compute Rj0 − R ′
j0

, it suffices to compute∑
j1,j2,j3∈[k]

A0[j1, j2, j3] · RM[j2, j3] · RL[j3, j1] · RT [j1, j2] =

∑
j1,j2,j3∈[k]

 ∑
i∈[q]

ai,0[j1] · bi,0[j2] · ci,0[j3]

 ·

 ∑
m∈[r]

am,M[j2] · bm,M[j3]

 ·

·

∑
l∈[r]

al,L[j3] · bl,L[j1]

 ·

∑
t∈[r]

at,T [j1] · bt,T [j2]

 =

∑
m,l,t∈[r]

∑
i∈[q]

 ∑
j1∈[k]

ai,0[j1] · bl,L[j1] · at,T [j1]


︸ ︷︷ ︸

h1(i,l,t)

·

 ∑
j2∈[k]

bi,0[j2] · am,M[j2] · bt,T [j2]


︸ ︷︷ ︸

h2(i,t,m)

·

·

 ∑
j3∈[k]

ci,0[j3] · bm,M[j3] · al,L[j3]


︸ ︷︷ ︸

h3(i,m,l)

=

∑
m,l,t∈[r]

∑
i∈[q]

h1(i, l, t) · h2(i, t,m) · h3(i,m, l),

where h1,h2,h3 : [q]× [r]× [r] → F are defined as follows:

h1(i, l, t) =
∑

j1∈[k]

ai,0[j1] · bl,L[j1] · at,T [j1],

h2(i, t,m) =
∑

j2∈[k]

bi,0[j2] · am,M[j2] · bt,T [j2],

h3(i,m, l) =
∑

j3∈[k]

ci,0[j3] · bm,M[j3] · al,L[j3].

We compute h1, h2, and h3 for all inputs simultaneously, then evaluate the sum using these
precomputed values. Assuming the values of h1, h2, and h3 are computed already, the sum can be
computed as follows. ∑

i∈[r]

∑
m,l,t∈[r]

h1(i, l, t) · h2(i, t,m) · h3(i,m, l) =

∑
i∈[r]

∑
l,m∈[r]

h3(i,m, l) ·

∑
t∈[r]

h1(i, l, t) · h2(i, t,m)

 .

Let Vi,Zi ∈ Fr×r be two matrices, such that Vi[l, t] = h1(l, t) and Zi[t,m] = h2(i, t,m), hence we
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need to evaluate:

∑
i∈[r]

∑
l,m∈[r]

h3(i,m, l) ·

∑
t∈[r]

Vi[l, t] · Zi[t,m]

 =

∑
i∈[r]

∑
l,m∈[r]

h3(i,m, l) · (Vi · Zi)[l,m].

Hence, we can calculate Vi · Zi in time O(rωq) for all i ∈ [q] and then evaluate the sum in time
O(r2q) for fixed j0 and O(krωq) time overall.

Below, we show how to compute h1 for all inputs. For h2 and h3, this can be done in the
same fashion. Let P ∈ Fq×k and W ∈ F(r×r)×k be defined by P[i, j1] = ai,0[j1] and W[(l, t), j1] =
bl,L[j1] · at,T [j1]. Then,

h1(i, l, t) =
∑

j1∈[k]

P[i, j1] ·W[(l, t), j1] = (P ·WT )[i, (l, t)].

Lemma 6 guarantees that this can be computed in time O(qr2kω−2), for each j0, and in overall time
O(qr2kω−1). Thus, the overall running time of the described algorithm is

O(k3r+ q2kω−1 + k2s+ krωq+ qr2kω−1) = O(k3r+ q2kω−1 + k2s+ qr2kω−1).

The following theorem provides a trade-off between matrix rigidity and tensor rank.

Theorem 11. Let α ∈ [0.5, 1] and β ∈ [1, 1.5] be constants satisfying β ⩽ 5−ω
2 and α ⩽ 5−β−ω

2 . If
MAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n), for any ε > 0, then, for all δ > 0,
there exist functions g1 : {0, 1}logO(1) k → Fk×k and g2 : {0, 1}logO(1) k → Fk×k×k computable in time
kO(1), such that, for infinitely many k, at least one of the following is satisfied, for at least one e:

• g1(e) has kα−δ-rigidity k2−δ;

• rank(g2(e)) is at least kβ−δ.

Proof. Using Theorem 4, one can construct a generator g1 that outputs k× k matrices with k
1
2−δ-

rigidity k2−δ for k = nO(1)2n/4. Hence, from now on, we are interested in rigidity at least k0.5.
Let g1 be the function that outputs matrices M, L, and T from Theorem 10. Thus, g1 takes a 3-

CNF formula, t, j0, and a number from {0, 1, 2} as input. The function g2 outputs a three-dimensional
tensor A0, where the input to g2 is a 3-CNF formula and t. If the input to the generators is not valid,
they output empty families. Both these generators have a seed of size nO(1), which corresponds
to logO(1) k and work in time polynomial in k. Assuming that all matrices g1(s) have r-rigidity s

and all tensors g2(s) have rank at most q, implies, using Theorem 10, thatMAX-3-SAT can be solved
in co-nondeterministic time

O(k3r+ q2kω−1 + k2s+ qr2kω−1).
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Let s = k2−δ, r = kα−δ, and q = kβ−δ. Then, the inequalities β ⩽ 5−ω
2 and α ⩽ 1 − β

3 imply that
the resulting algorithm solves MAX-3-SAT in co-nondeterministic time O(k4−ε) = O(2(1−ε)n):

O(k3kα−δ + k(5−ω)+ω−1−2δ) + k4−δ + kβ+(5−β−ω)+ω−3δ) = O(k4−δ).

One way to balance matrix rigidity and tensor rank is to ensure that a tensor has superlinear
rank while maximizing matrix rigidity, as demonstrated in the next corollary.

Corollary 8. IfMAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n) for any ε > 0, then
for all δ > 0 there are two polynomial time generators g1 : {0, 1}logO(1) k → Fk×k and g2 : {0, 1}logO(1) k →
Fk×k×k such that for infinitely many k at least one of the following is satisfied:

• g1(s) has k2−ω
2 −δ-rigidity k2−δ , for some s.

• rank(g2(s)) is at least k1+δ, for some s.

One can also improve matrix rigidity in our trade-off by conditioning on the value of ω.

Theorem 5. If, for any ε > 0 MAX-3-SAT, cannot be solved in co-nondeterministic time O(2(1−ε)n),
then, for all δ > 0 and some ∆ > 0, there are two generators g1 : {0, 1}logO(1) k → Fk×k and
g2 : {0, 1}logO(1) k → Fk×k×k computable in time polynomial in k such that, for infinitely many k,
at least one of the following is satisfied:

• g1(s) has k1−δ-rigidity k2−δ, for some s;

• rank(g2(s)) is at least k1+∆, for some s.

Proof. We modify the second generator in Corollary 8 by adding a new input on which the generator
will output a tensor of matrix multiplication A√

k of size k× k× k. If ω = 2, then the statement
follows from Corollary 8. If ω ⩾ 2 + 2∆ for some ∆ > 0, then for infinitely many k, we have
rank(A√

k) ⩾ k1+δ.

If one wants to obtain improved matrix rigidity under weaker assumptions, then the following
corollary holds, similar to Corollary 7.

Corollary 9. IfMAX-3-SAT cannot be solved in co-nondeterministic time O(20.85n), then, for some ∆ >

0, there exist two generators g1 : {0, 1}logO(1) k → Fk×k and g2 : {0, 1}logO(1) k → Fk×k×k, computable
in time polynomial in k, such that, for infinitely many k, at least one of the following conditions holds:

• g1(s) has k0.7-rigidity k1.4, for some s;

• rank(g2(s)) is at least k1+∆, for some s.

We are now ready to prove our conditional answer to the open problem from [GT18].

Corollary 4. If, for every ε > 0,MAX-3-SAT cannot be solved in co-nondeterministic time O(2(1−ε)n),
then, for any δ > 0, one can construct an explicit family of 2logO(1) n functions such that, for infinitely
manyn, at least one of them is either bilinear and requires canonical circuits of size 2Ω(n2/3−δ) or trilinear
and requires arithmetic circuits of size Ω(n1.25).

Proof. It suffices to verify that α = 2
3 and β = 1.25 satisfy the inequalities in the statement

of Theorem 11 for any possible value of ω < 2.38.
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2n

2-lower bound for the rank of n × n matrix multiplication over
arbitrary fields. In FOCS, pages 45–50. IEEE Computer Society, 1999.
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