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Abstract

The notion of closure of a set of linear forms, first introduced by Efremenko, Garlik, and Itsykson [14],
has proven instrumental in proving lower bounds on the sizes of regular and bounded-depth Res(⊕)
refutations [14, 3]. In this work, we present amortized closure, an enhancement that retains the properties
of original closure [14] but offers tighter control on its growth. Specifically, adding a new linear form
increases the amortized closure by at most one. We explore two applications that highlight the power of
this new concept.

Utilizing our newly defined amortized closure, we extend and provide a succinct and elegant proof of
the recent lifting theorem by Chattopadhyay and Dvorak [10]. Namely we show that for an unsatisfiable
CNF formula φ and a 1-stifling gadget g : {0, 1}ℓ → {0, 1}, if the lifted formula φ ◦ g has a tree-like
Res(⊕) refutation of size 2d and width w, then φ has a resolution refutation of depth d and width w.
The original theorem by Chattopadhyay and Dvorak [10] applies only to the more restrictive class of
strongly stifling gadgets.

We further utilize amortized closure to show improved lower bounds for bounded-depth Res(⊕),
extending the depth beyond that of Alekseev and Itsykson [3]. Our result establishes an exponential
lower bound for depth-Ω(n logn) Res(⊕) refutations of lifted Tseitin formulas, a notable improvement
over the existing depth-Ω(n log logn) Res(⊕) lower bound.

1 Introduction

Propositional proof complexity investigates proof systems for the language of unsatisfiable CNF formulas,
denoted as UNSAT. The fundamental question of whether the complexity classes NP and coNP are distinct
is equivalent to asking whether there exists a proof system that can provide polynomial-size proofs for all
formulas in UNSAT [12]. A central focus in proof complexity is establishing superpolynomial lower bounds
on proof sizes for specific proof systems; a direction often referred to as Cook’s program, which aims to
separate NP and coNP.

While many exponential-size lower bounds are known for weak proof systems, we lack superpolynomial
lower bounds for Frege systems, which include standard propositional proof systems from logic textbooks.
A Frege derivation is a sequence of Boolean formulas; each of them is either an axiom or is obtained from
the previous by a set of sound and implicationally complete inference rules. Proving Frege lower bounds is
often compared to proving Boolean formula/circuit lower bounds for explicit Boolean functions, and both
seem intractable. However, progress has been made in restricted settings. An exponential lower bound for
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constant-depth circuits computing parity was proven in the 1980s [16, 1]. Ajtai later used a similar approach
to prove a superpolynomial lower bound for bounded-depth Frege systems [2]. Razborov and Smolenski
proved lower bounds for constant-depth circuits with ¬, ∨, ∧, and MODp gates in 1987 [23, 21]. The
analogous problem of proving a lower bound for constant-depth Frege systems using ¬, ∨, ∧ and MODp

gates (denoted AC0[p]-Frege) is open for all p > 1.
This paper is devoted to the study of the propositional proof system resolution over parities (Res(⊕)) [19],

which is a subsystem of AC0[2]-Frege. This system extends resolution by incorporating linear algebra over F2.
The proof lines in this proof system are linear clauses, disjunctions of F2-linear equations; or, equivalently,
linear clauses can be treated as negations of F2-linear systems. A refutation of an unsatisfiable CNF formula
φ is a sequence of linear clauses such that the last linear clause in this sequence is an empty clause (i.e.,
constant false), and every other linear clause is obtained from the previous clauses by the resolution rule or
by the weakening rule. The resolution rule allows resolve by a linear form, i.e. allows to derive (A∨B) from
A ∨ f = 0 and B ∨ f = 1. The weakening rule allows the deriving of any linear clause that semantically
follows from the given. Establishing superpolynomial lower bounds on the size of Res(⊕) refutations remains
a significant open challenge, representing a crucial step toward proving lower bounds for the more general
proof system AC0[2]-Frege.

1.1 Lifting

Lifting is a highly effective technique for establishing lower bounds by transferring them from weaker to
stronger computational models. Recent developments in lifting for fragments of Res(⊕) offer promising
avenues toward proving a superpolynomial lower bound for general Res(⊕). The most relevant lifting results
pertaining to Res(⊕) are briefly described below.

Chattopadhyay, Mande, Sanyal, and Sherif [11] developed a universal lifting technique for parity decision
trees via 1-stifling gadgets, which are characterized by the following property: a gadget g : {0, 1}ℓ → {0, 1} is
1-stifling if, for any index i ∈ [ℓ] and any target bit b, there exists an assignment y such that any x agreeing
with y on all but ith position yields g(x) = b. Their result demonstrates that if a function (or relation) f
requires query complexity d, then for any 1-stifling gadget g, the lifted function (or relation) f ◦ g requires
parity decision trees of size at least 2d. In the proof complexity settings, this result implies that if a formula φ
requires resolution depth d, then for any 1-stifling gadget g, the lifted formula φ ◦ g requires tree-like Res(⊕)
size at least 2d [11]. Independently, Beame and Koroth [5] obtained similar results. Recently, Podolskii and
Shekhovostov [20] and Byramji and Impagliazzo [9] extended the results of [11] to randomized parity decision
trees.

Lifting techniques are also instrumental in establishing lower bounds for regular Res(⊕), a natural frag-
ment of the Res(⊕) proof system that is strictly more powerful than its tree-like counterpart. Regular
Res(⊕) is defined in a manner analogous to regular resolution, inheriting its key restrictions. Bhattacharya,
Chattopadhyay, and Dvorak [7] used lifting to prove that regular Res(⊕) does not simulate resolution. Sub-
sequently, Alekseev and Itsykson [3] introduced a more general lifting technique. This method transforms
formulas with large resolution depth into formulas requiring exponential-size regular Res(⊕) refutations.

The depth of any regular Res(⊕) refutation is limited to n, the number of variables, and it’s known
that depth-n Res(⊕) is more powerful than regular Res(⊕). Alekseev and Itsykson [3] employed their lifting
technique to demonstrate an exponential lower bound on the size of Res(⊕) refutations restricted to a depth
of cn log log n, where c is a constant and n is the number of variables.

The lifting techniques of Bhattacharya, Chattopadhyay, and Dvorak [7] and Alekseev and Itsykson [3]
rely heavily on the concept of closure of a set of linear forms in lifted variables, initially defined by Efremenko,
Garlik, and Itsykson [14]. The closure captures the most essential unlifted variables for these linear forms.
Based on this, Alekseev and Itsykson [3] developed a game-based lifting technique, which they demonstrated
by the following simple and elegant example:

Theorem 1.1 ([3]). If a CNF formula φ requires resolution width w, then for every 1-stifling gadget g, the
formula φ ◦ g requires Res(⊕) width w.
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The proof of Theorem 1.1 proceeds by an explicit transformation of strategies, converting winning strate-
gies from Atserias and Dalmau’s [4] resolution-width games into winning strategies for games characterizing
the Res(⊕) width [18].

Chattopadhyay and Dvorak [10] recently established the following lifting theorem.

Theorem 1.2 ([10]). If every resolution refutation of a CNF formula φ of width at most w requires depth
at least d, then for every strongly stifling gadget g, any tree-like Res(⊕) refutation of the formula φ ◦ g of
width at most w has size at least 2d.

Chattopadhyay and Dvorak [10] uncovered a striking application of this theorem: a supercritical tradeoff
for tree-like Res(⊕) refutations. This shows that a slight narrowing of width can force a double exponential
blow-up in refutation size. Specifically, for a sufficiently small width, the tree-like Res(⊕) refutation size
can exceed its worst-case upper bound observed in the unrestricted case. This tradeoff is obtained by a
straightforward application of Theorem 1.2 alongside Razborov’s corresponding tree-like resolution result
[22].

Strongly stifling gadgets constitute a more restricted class compared to 1-stifling gadgets, meaning that
Theorem 1.2 extends Theorem 1.1 and the results of [11] but only for this smaller class of gadgets. Estab-
lishing Theorem 1.2 requires a technically demanding proof, primarily due to the explicit transformation
that directly converts a tree-like Res(⊕) refutation of the lifted formula into a tree-like resolution refutation
of the base formula. The proof of Theorem 1.2 largely mirrors the approach outlined in [11]. However, in
the case of bounded width, Chattopadhyay and Dvorak diverge by utilizing forgetting parity decision trees
instead of standard parity decision trees. These forgetting trees incorporate forgetting nodes that corre-
spond to weakening rules. The most challenging aspect involves handling these forgetting nodes, for which
the authors restrict themselves to strongly stifling gadgets to facilitate the analysis.

1.2 Our contributions

In this work, we contribute to the lifting technique. Namely, we develop the notion of amortized closure of
a set of linear forms. This new concept retains all the desirable properties of plain closure but additionally
guarantees that the amortized closure increases by at most one when a single linear form is added to the
set. The construction of this amortized closure and the proof of its properties (Theorem 1.7) constitute the
main technical contribution of our work. We give two nice applications to demonstrate this new concept’s
power. We believe amortized closure is of independent interest and will find further applications in lifting
theorems in proof complexity and Boolean complexity.

As a first application, we prove the following theorem, which extends Theorem 1.2 to the entire class of
1-stifling gadgets, thereby also generalizing Theorem 1.1 and the mentioned result from [11].

Theorem 1.3 (Theorem 4.3). Let φ be an unsatisfiable CNF formula and g : {0, 1}ℓ → {0, 1} be a 1-stiffling
gadget. Assume that φ ◦ g has a tree-like Res(⊕) refutation of width w and size 2d. Then φ has a resolution
refutation of width w and depth d.

We present a concise and elegant proof of Theorem 1.3, adapting Alekseev and Itsykson’s game approach
[3] from Theorem 1.1 to amortized closure.

As a second application, we improve depth in the lower bound for bounded-depth Res(⊕) refutations
established by Alekseev and Itsykson [3]. Specifically, the following theorem implies an exponential lower
bound for depth-cn log n Res(⊕) refutations of lifted Tseitin formulas, where n is the number of variables
and c is a constant.

Theorem 1.4 (Informal restatement of Corollary 5.6). Let ϕn be an unsatisfiable Tseitin formula based
on a Θ(log n)-regular expander with n vertices lifted by the 5-input majority gadget. Then, ϕn is a CNF
formula with m = Θ(n log n) variables and size poly(m) such that any Res(⊕) refutation of ϕn has either
size at least 2Ω(m/ logm) or depth at least Ω(m logm).
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The presentation of our results in the introduction starts with the first application. Namely, we begin
by detailing the game-based approach of Alekseev and Itsykson [3], and then we explain why its direct
application fails to establish Theorem 1.3, emphasizing the necessity of our amortized closure. Then, we
present our main contribution, the amortized closure construction, and detail its essential properties. We
conclude with the second application: we demonstrate how amortized closure helps to obtain an exponential
lower bound for bounded-depth Res(⊕) refutations for larger depths.

1.2.1 Bounded-width lifting

Here we present the proof idea of Theorem 1.3. We are going to apply the game approach that was used by
Alekseev and Itsykson in the proof of Theorem 1.1. We start with definitions of some basic notions: lifting
and closure.

Let φ(y1, y2, . . . , ym) be an unsatisfiable CNF. We call the set of variables Y = {y1, y2, . . . , ym} unlifted.
Let g : {0, 1}ℓ → {0, 1} be an 1-stifling gadget. The lifted formula φ ◦ g depends of variables X = {xi,j |
i ∈ [m], j ∈ [ℓ]}, called lifted variables. The formula φ ◦ g represents in CNF the result of the substitution
φ(g(x1,1, . . . , x1,ℓ), . . . , g(xm,1, . . . , xm,ℓ)).

Safe sets and closure. Consider the set of F2-linear forms F = {f1, f2, . . . , fk} in lifted variables and
consider their coefficient matrix MF . The columns of MF can be splitted on m blocks, where the ith
block corresponds to variables xi,1, xi,2, . . . , xi,ℓ with first index i. The set of linear forms F is safe [14] if,
among the columns of MF , one can find a basis that includes at most one column for each block. A crucial
observation is that if a set of linear forms F is safe, then any satisfiable linear system formed using the linear
forms in F for any assignment σ of the unlifted variables admits a solution that respects the assignment σ
on the unlifted variables [7, 3]. Indeed, values of variables whose columns are not in the basis can be chosen
arbitrarily. Since the gadget is 1-stifling, we can fix its value regardless of the value of the remaining basis
variables.

However, F is not necessary to be safe. A closure of F is an inclusion-minimal set of blocks such that
if we set zeros to all variables from these blocks, the set F becomes safe. For the coefficient matrix, this
operation corresponds to the removal of columns corresponding to these blocks. We will identify the closure
with the corresponding set of unlifted variables. Bhattacharya, Chattopadhyay, and Dvorak noted that the
closure contains all essential unlifted variables in the following sense: given a solution α of a linear system
Φ in lifted variables, for any unlifted variable y that lies outside a closure of the set of linear forms in Φ,
there exists another solution β of Φ such that the assignments induced by α and β on the unlifted variables
differ precisely in the value assigned to y.

The following properties of closure were proved by Efremeko, Garlik, and Itsykson [14].

• (Uniqueness) Closure of the set of linear forms F is unique, and it is denoted by Cl(F );

• (Monotonicity) If F ⊆ F ′, then Cl(F ) ⊆ Cl(F ′);

• (Span invariance) If ⟨F1⟩ = ⟨F2⟩, then Cl(F1) = Cl(F2);

• (Size bound) |Cl(F )| ≤ dim⟨F ⟩ = rk (MF ).

Using the notion of closure, Alekseev and Itsykson [3] define the correspondence between linear systems
over lifted variables and partial assignments for unlifted variables as follows:

- A system of linear equations Ψ over lifted variables corresponds a partial assignment ρ to unlifted
variables if ρ is defined on Cl(L(Ψ)) and Ψ has a solution τ such that τ induces on the unlifted
variables an assignment that is consistent with ρ, where L(Ψ) denotes the system of linear forms that
occur in Ψ. We also say that τ defines the correspondence between Ψ and ρ.

An important property of this correspondence is that if Ψ corresponds ρ and ρ does not falsify any clause
of φ, then Ψ does not contradict any clause of φ ◦ g.
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This correspondence is in the heart of the proof of Theorem 1.1 since it allows the transformation of a
strategy in the game characterizing resolution width of φ to a strategy in the game characterizing Res(⊕)
width of φ ◦ g.

Let us try to apply this approach directly to the following proposition.

Proposition 1.5. If any resolution refutation of φ of withd w has depth at least d, then for any 1-stifling
gadget g : {0, 1}ℓ → {0, 1}, any Res(⊕) refutation of the formula φ ◦ g of width w has depth at least d.

Proposition 1.5 is weaker than Theorem 1.3 since it says about depth instead of tree-like size. However,
in this example, we highlight the problem, explain why the approach described above can not be applied
directly, and identify the missing property of closure.

We proceed with the definition of games characterizing depth in bounded-width resolution and bounded-
width Res(⊕).

A (φ,w)-game for resolution. Consider the following game based on an unsatisfiable CNF formula φ and
a natural parameter w. The game has two players: Prover and Adversary. Players save a partial assignment
ρ that is initially empty. For every move, Prover can either remove some value from ρ or, if |ρ| < w, Prover
can choose a variable x and ask Adversary for its value. Adversary chooses a ∈ {0, 1} and extends the
current assignment ρ by x := a. For every move, Adversary earns a coin. The game ends when ρ falsifies a
clause of φ. It is known that Adversary has a strategy in the (φ,w + 1)-game that guarantees him to earn
at least d coins if and only if any resolution refutation of φ within width w has depth at least d [6].

A (φ,w)-game for Res(⊕). Consider an extension of the previous game. This game is also based on a
CNF formula φ and a natural parameter w. Now, the players, Prover and Adversary, save a linear system
Ψ in variables of φ that is initially empty (i.e. constant true). On every move, Prover can either replace Ψ
on its semantical implication or, if the rank of Ψ is less than w, Prover can choose a linear form f and ask
Adversary for its value. Adversary chooses a ∈ {0, 1} and adds the equation f = a to Ψ. Adversary earns a
coin for every move. The game ends when Ψ contradicts a clause of φ. Similarly, one can show Adversary
has a strategy in the (φ,w + 1) game that guarantees him to earn at least d coins if and only if any Res(⊕)
refutation of φ within width w has depth at least d.

Let us try to prove Proposition 1.5 using these games. Since any resolution refutation of φ of width at
most w requires depth at least d, there is an Adversary’s strategy in the first (φ,w+1)-game that guarantees
him to earn at least d coins. Using this strategy, we try to construct an Adversary’s strategy in the second
(φ ◦ g, w + 1)-game that will also guarantee the Adversary to earn at least d coins. It will imply that any
Res(⊕) refutation of φ ◦ g within width w requires depth at least d.

We will describe an Adversary’s strategy in the second (φ ◦ g, w+ 1)-game using the known Adversary’s
strategy in the first (φ,w+1)-game. Describing Adversary’s strategy in the second game, we play in parallel
in the first game, making moves instead of Prover and using the Adversary’s strategy in the first game. We
maintain the following invariant: the current system Ψ in the second game corresponds to the current partial
assignment ρ in the first game. While this invariant holds, if ρ does not falsify any clause of φ, then Ψ does
not contradict any clause of φ ◦ g.

If Prover in the second game changes Ψ to its semantical corollary Ψ′, then playing for the Prover in the
first game, we restrict ρ to Cl(L(Ψ′)) in the first game. Notice that since Ψ′ semantically follows from Ψ,
L(Ψ′) ∈ ⟨L(Ψ)⟩, hence Cl(L(Ψ′)) ⊆ Cl(L(Ψ)).

If Prover in the second game asks the value of a linear form f , we consider two cases.

• First case: Cl(L(Ψ) ∪ {f}) = Cl(L(Ψ)). Let σ be the solution of Ψ that defines the correspondence
between Ψ and ρ. Adversary chooses the value a = f |σ and does nothing in the first game. It is easy to
see that σ also defines the correspondence between Ψ ∧ (f = a) and ρ; hence, the invariant still holds.

• Second case: Cl(L(Ψ)∪{f}) ̸= Cl(L(Ψ)). In this case, we, playing by Prover in the first game, prolong
ρ to variables from Cl(L(Ψ)∪{f}) ̸= Cl(L(Ψ)) (recall that we identify elements of closure with unlifted
variables) by asking them one by one. Since we extend ρ to variables out of Cl(L(Ψ)), for the new
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value of ρ, there is a solution τ of Ψ such that τ induces an assignment on unlifted variables consistent
with ρ. Adversary chooses the value a = f |τ . Now τ defines the correspondence between Ψ ∧ (f = a)
and ρ; hence, the invariant still holds.

Unfortunately, this strategy does not allow us to estimate the number of coins that the Adversary earns
in the second game. The problem is that the closure can increase significantly in one step. At this moment,
we have spent many coins in the first game while earning only one coin in the second one. Theoretically, it
is possible, for example, that on each odd step, Prover in the second game decreases |Cl(L(Ψ))| on k and on
each even step increases |Cl(L(Ψ))| by k. Then, the Adversary in the second game will earn 1 coin for each
pair of two consequent steps while spending k coins in the first game.

To solve this issue, we define the amortized closure C̃l(F ) that has all properties of Cl(F ) and also can
be increased by at most one by adding a linear form. Using amortized closure in the strategy above instead
of plain closure, we can guarantee that every time we spend a coin in the first game, we earn a coin in the
second game. Hence, the strategy will guarantee to earn at least d coins, and we will prove Proposition 1.5.

The proof of Theorem 1.3 is very similar to the presented proof idea of Proposition 1.5. To characterize the
size of tree-like Res(⊕) refutations, we use width-bounded Prover-Delayer games instead of Prover-Adversary
games for Res(⊕).

1.2.2 Amortized closure

Before defining amortized closure, consider an example where the closure increases more than by one by
adding just one linear form.

Example 1.6. Let m = 3 and ℓ = 2. Consider linear forms: f1 = x3,2, f2 = x1,2, f3 = x2,2 + x3,1, f4 = x2,1.
The coefficient matrix of F = {f1, f2, f3, f4} is the following:

MF =


00 00 01
01 00 00
00 01 10
00 10 00


• We claim that Cl(f1, f2, f3) = ∅. Indeed, the submatrix of MF formed by the first three rows contains
a basis from the columns x1,2, x2,2, and x3,2. Hence, {f1, f2, f3} is safe and, thus, Cl(f1, f2, f3) = ∅.

• Let us show that Cl(f1, f2, f3, f4) = {2, 3}. Indeed, if we remove both the second and third blocks,
the resulting matrix will have the basis consisting of only column x1,2. The rank of MF is 4, which
is greater than the number of blocks. If we remove only the second or only the third block, the rank
of the obtained matrix will be 3, which is also greater than the number of remaining blocks. Hence,
Cl(f1, f2, f3, f4) = {2, 3}.

Let F be a set of linear forms with coefficient matrix MF . We say that a subset of blocks A ⊆ [m]
is coverable with respect to MF if one can choose |A| linearly independent columns from matrix A such
that every block from A contains one chosen column. Consider the following order ⪯ on the subsets of [m]:
A ⪯ B, if

∑
i∈A 2i ≤

∑
i∈B 2i. An amortized closure of F is the ⪯-maximal coverable with respect to MF

subset of [m]. We denote the amortized closure of F by C̃l(F ).

In Example 1.6, C̃l(f1) = {3}, C̃l(f1, f2) = {1, 3}, C̃l(f1, f2, f3) = {1, 2, 3} and C̃l(f1, f2, f3, f4) = {1, 2, 3}.
The uniqueness of amortized closure trivially follows from the definition. We establish other properties

in the following theorem:

Theorem 1.7. Amortized closure has the following properties.

1. (Size bound) |C̃l(F )| ≤ dim⟨F ⟩ (Lemma 2.10);

2. (Span invariance) If ⟨F ⟩ = ⟨H⟩, then C̃l(F ) = C̃l(H) (Lemma 2.11 );
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3. (Relation between closures)

(a) Cl(F ) ⊆ C̃l(F ) (Lemma 2.15);

(b) If Cl(F ∪ {f}) ̸= Cl(F ), then C̃l(F ∪ {f}) = C̃l(F ) (Lemma 2.17);

4. (Continuity) C̃l(F ) ⊆ C̃l(F ∪ {f}) and |C̃l(F ∪ {f})| ≤ |C̃l(F )|+ 1 (Theorem 2.18);

5. (Monotonicity) If F ⊆ ⟨H⟩, then C̃l(F ) ⊆ C̃l(H) (Corollary 2.19);

Since the amortized closure contains the plain closure, the amortized closure also contains all essential
unlifted variables, i.e. linear systems do not restrict values of unlifted variables out of the amortized closure.
The most technically involved part is the proof of continuity of amortized closure.

1.2.3 Lower bound for depth-cn log n Res(⊕)

Alekseev and Itsykson [3] have recently proved that every Res(⊕) refutation of lifted Tseitin formulas ei-
ther has size at least 2Ω(n/ logn) or depth at least Ω(n log log n), where n is the number of variables. Our
Theorem 1.4 is the improvement of this result, and its proof is basically built on the proof by Alekseev and
Itsykson [3]. To explain our contribution, we start by presenting the idea of the former result. This tradeoff
was proved for the lifted formulas φ ◦ g, where g : {0, 1}ℓ → {0, 1} is a 2-stifling gadget (for example, g can
be the ℓ-input majority for ℓ ≥ 5; see Section 3.2 for definition) and φ satisfies rather strong conditions.
Namely, there exists a set of partial assignments A to variables of φ and integer numbers t and p such that
the following conditions hold.

1. Any assignment from A does not falsify a clause of φ.

2. For any assignment σ ∈ A, for any ρ ⊆ σ, ρ ∈ A.

3. Any Res(⊕) refutation Π of φ ◦ g satisfies the following random-walk property.

• We say that a linear clause C in the lifted variables is A-good if the system ¬C corresponds
to some assignment from A; i.e. there exists a solution σ of ¬C that induces on Cl(L(C)) an
assignment from A, where L(C) denotes the set of linear forms that appear in C.

• Consider arbitrary A-good clause C0 from Π such that |Cl(L(C0))| ≤ t/2. Let ρ0 ∈ A correspond
to ¬C0. Let τ be a random solution of ¬C0 among all solutions inducing the partial assignment
ρ0 on unlifted variables. We make t/2 steps in Π starting in C0, and on each step, we move from
the current linear clause to a premise of the rule falsified by τ (we count only steps corresponding
to resolution rules and do not count weakening rules). Then, with probability at least 2−p, this
walk finishes in an A-good clause.

Fortunately, Tseitin formulas meet these conditions for appropriate A, p, and t [3].
Assume that there is a Res(⊕) refutation Π of φ ◦ g of size less than 2s, where s is some parameter.

The following argument was used in [3] to prove that Π has a large depth. Let C0 be the empty clause
from a Π; C0 is A-good for trivial reasons. By the random-walk property on the distance t/2 from C1,
there is an A-good clause C1. If |Cl(L(C1))| ≤ t/2, then by the random walk property on the distance t/2
from C0, there is an A-good clause C2, and so on. Let we finish this process at A-good clause Ck such
that |Cl(L(Ck))| > t/2. Then we get that the depth of Π is at least kt/2. We have to show that k can be
sufficiently large, for this we have to use that the size of Π is less than 2s.

To bound k from below, Alekseev and Itsykson [3] estimate the rank of ¬Ci+1 in comparison to the rank
¬Ci. Namely, the size upper bound on Π together with the random-walk property imply that one can choose
Ci+1 such that rk(¬Ci+1) ≤ rk(¬Ci)(ℓ+ 1) + p+ s. Since the estimated value of the rank can be increased
in at least (ℓ + 1) times by one step, in this approach k ≤ log(ℓ+1)

t
2(p+s) + 1. The total depth that can be

achieved by this approach is at most O(t log t
p+s ).
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Our improvement. Instead of estimating rank, we suggest estimating the size of the amortized closure

|C̃l(¬Ci)|. We prove the following lemma.

Lemma 1.8 (Lemma 5.1). Let Φ and Ψ be two linear systems in the lifted variables X = {xi,j | i ∈
[m], j ∈ [ℓ]}. Let π be a partial assignment defined on {xi,j | i ∈ [Cl(L(Φ))], j ∈ [ℓ]}. Let Σ consist of
all solutions σ of Φ such that σ extends π. Assume that Σ ̸= ∅. Let τ be a random element of Σ. Then

Pr[τ satisfies Ψ] ≤ 2|C̃l(L(Φ))|−|C̃l(L(Ψ))|.

Lemma 1.8, the upper bound |Π| < 2s and the random-walk property imply that on the distance t/2 from

Ci one can find an A-good Ci+1 such that |C̃l(L(Ci+1)| ≤ |C̃l(L(Ci)|+p+ s. So we can achieve k = ⌈ t
2(p+s)⌉

and depth at least Ω
(

t2

p+s

)
. This is sufficient to establish Theorem 1.4.

Notice that there is a potential way to improve k by improving the upper bound on p in the random-walk
property and taking smaller s.

1.3 Discussion about closures

• The concept of closure proves helpful when addressing problems with an underlying lifted structure. In
such cases, the closure of a set of linear forms effectively captures the most essential unlifted variables.
Furthermore, when the lifting involves a 1-stifling gadget, the set of linear forms imposes no constraints
on variables outside the closure.

• Plain closure is monotone but not necessarily continuous. Amortized closure, containing plain closure,
is both monotone and continuous. For the best results, using both is recommended: plain closure more
accurately identifies essential unlifted variables, while amortized closure allows for more convenient
estimations.

• While (as shown by [11]) closure is not required for parity decision trees (i.e., for tree-like Res(⊕)),
where essential unlifted variables can be captured iteratively along a path, closure (both plain and
amortized) provides a key advantage in dag-like proofs: path-independence. This invariance is why
closure is necessary for lower bounds in regular and bounded-depth Res(⊕). Furthermore, our first
application shows that even for tree-like Res(⊕) in bounded-width settings, amortized closure can give
better results, as in our case, it applies to a broader class of gadgets.

• A limitation of using closure is that variables within the closure are not necessarily indeed constrained
by the linear forms. It seems to be one of the primary obstacles preventing us from applying a bottleneck
argument to unrestricted Res(⊕).

1.4 Further research

We identify the following questions as interesting directions for further investigation.

• Prove a supercritical tradeoff between the size and depth of dag-like Res(⊕) refutations. Specifically,
provide an example of a family of formulas with a polynomial-size Res(⊕) refutation, yet every such
refutation has a depth that exceeds the number of variables. While numerous supercritical tradeoffs
between the size and depth exist for resolution [15, 8, 13, 17], all use the width-size relationship, which
remains unknown for Res(⊕). Thus, the question requires some additional ideas.

• Prove a superpolynomial lower bound for Res(⊕) refutations of depth n1+ϵ for some ϵ > 0. As we
noticed above, improving the success probability in the random-walk theorem from [3] is sufficient for
further depth improvement.

• Prove a lifting theorem that translates lower bounds on resolution width to lower bounds on the size
of Res(⊕) refutations with depth at most n. The lifted Tseitin formula is the only known example of
a lower bound for bounded-depth Res(⊕). Such a lifting theorem will provide a method for generating
many such examples.
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2 Closure and amortized closure

In this section, we give preliminaries about closure, provide a definition of amortized closure, and prove its
main properties.

Throughout the paper, we use the notation ⟨S⟩ to denote the span of the set of vectors S from some
vector space.

2.1 Safe and dangerous sets of linear forms

We consider the set of propositional variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}. The variables from X are divided
into m blocks by the value of the first index. The variables xi,1, xi,2, . . . , xi,ℓ form the ith block, for i ∈ [m].

Consider sets of linear forms using variables from X over the field F2. The support of a linear form
f = xi1,j1 +xi2,j2 + · · ·+xik,jk is the set {i1, i2, . . . , ik} of blocks of variables that appear in f with non-zero
coefficients. We denote the support by supp(f). The support of a set of linear forms F is the union of the
supports of all linear forms in this set. We denote it by supp(F ). We say that a linearly independent set of
linear forms F is dangerous if |F | > |supp(F )|. We say that a set of linear forms F is safe if ⟨F ⟩ does not
contain a dangerous set. If F is linearly dependent but ⟨F ⟩ contains a dangerous set, instead of saying that
F is dangerous, we say it is not safe.

Every linear form corresponds to a vector of its coefficients indexed by the variables from the set X.
Given a list of linear forms f1, f2, . . . , fk, one may consider their coefficient matrix of size k × |X| in which
the i-th row coincides with the coefficient vector of fi.

Theorem 2.1 ([14]). Let f1, f2, . . . , fk be linearly independent linear forms and let M be their coefficient
matrix. Then, the following conditions are equivalent.

(1) The set of linear forms f1, f2, . . . , fk is safe.

(2) One can choose k blocks and one variable from each of these blocks such that the columns of M
corresponding to the k chosen variables are linearly independent. (Since rk(M) = k the chosen set of
columns forms the basis.)

2.2 Closure

Let S ⊆ [m] be a set of blocks; for a linear form f we denote by f [\S] a linear form obtained from f by
substituting 0 for all variables with support in S. For a set of linear forms F we will use the notation
F [\S] = {f [\S] | f ∈ F}.

A closure of a set of linear forms F is any inclusion-wise minimal set S ⊆ [m] such that F [\S] is safe.

Lemma 2.2 (Uniqueness [14]). For any F , its closure is unique.

We denote the closure of F by Cl(F ).

Lemma 2.3 (Monotonicity [14]). If F1 ⊆ F2, then Cl(F1) ⊆ Cl(F2).

Lemma 2.4 (Span invariance [14]). Cl(F ) = Cl(⟨F ⟩).

Lemma 2.5 (Size bound [14]). |Cl(F )|+ dim⟨F [\Cl(F )]⟩ ≤ dim⟨F ⟩, and hence |Cl(F )| ≤ dim⟨F ⟩.

A set of linear forms F is minimally dangerous if it is dangerous, and ⟨F ⟩ does not contain a dangerous
set with strictly smaller support than the support of F . Recall that a dangerous set is necessarily linearly
independent.

Consider the following algorithm:

Algorithm 2.6. Input: a set of linear forms F .

1. S ← ∅;
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2. While ⟨F [\S]⟩ contains dangerous sets:

(a) Find a minimally dangerous set in ⟨F [\S]⟩. Let T be its support.

(b) S ← S ∪ T .

3. Return S.

Lemma 2.7 ([14]). Algorithm 2.6 computes Cl(F ) regardless on choosing T on Step 2a.

Corollary 2.8. If F contains a minimally dangerous set with support T ⊆ [m], then Cl(F ) = T ∪Cl(F [\T ]).

2.3 Amortized closure and its properties

Let V1, V2, . . . , Vm be sets of vectors from some linear space over a field F.
We say that a subset A ⊆ [m] is coverable with respect to V1, V2, . . . , Vm if for every i ∈ A there is vi ∈ Vi

such the set {vi | i ∈ A} is linearly independent.
The following extension of the well-known Hall’s matching theorem was proved by Welsh in 1971.

Theorem 2.9 ([24]). A set A ⊆ [n] is coverable with respect to V1, V2, . . . , Vm if and only if for every B ⊆ A
the dimension of ⟨∪i∈BVi⟩ is at least |B|.

We consider the following order ⪯ on the subsets of [m]: for any A,B ⊆ [m], A ⪯ B, if and only if∑
i∈A 2i ≤

∑
i∈B 2i. We also define the strict order A ≺ B, if and only if A ⪯ B and A ̸= B.

Let X = {xi,j | i ∈ [m], j ∈ [ℓ]} be the set of propositional variables and F = {f1, f2, . . . , fn} be a set
of F2-linear forms with variables from X. Consider a coefficient matrix of F : its columns correspond to X,
and for all i ∈ [n] ith row is the coefficient vector of fi. For every i ∈ [m], let Vi consist of matrix columns
corresponding to variables with support {i}.

An amortized closure of F , denoted by C̃l(F ), is the ⪯-maximal subset of [m] that is coverable with

respect to V1, V2, . . . , Vm. It is easy to see that C̃l(F ) does not depend on the permutation of rows in the
coefficient matrix of F .

Lemma 2.10 (Size bound). |C̃l(F )| ≤ dim⟨F ⟩.

Proof. |C̃l(F )| is at most the rank of a coefficient matrix of F that equals dim⟨F ⟩.

Lemma 2.11 (Span invariance). If ⟨F1⟩ = ⟨F2⟩, then C̃l(F1) = C̃l(F2).

Proof. It is well-known that for every finite set of vectors U from some linear space over F2 and for every
basis of ⟨U⟩ one can obtain this basis from U by a sequence of the following to operations: 1) adding one
vector to another; 2) removing zero.

Since ⟨F1⟩ = ⟨F2⟩, we can choose the common basis in them. Thus, it is sufficient to verify that

C̃l({f1, f2, . . . , fn}) = C̃l({f1 + f2, f1, . . . , fn}) and C̃l(F ∪ {0}) = C̃l(F ). Both these properties straightfor-
wardly follow from the definition of amortized closure.

We call a subset T ⊆ [m] important for a set of linear forms F if there exists a safe linearly independent
set of linear forms {h1, h2, . . . , hk} ⊆ ⟨F ⟩ with support T such that k = |T |.

Proposition 2.12. If ⟨F ⟩ contains a minimal dangerous set with support T , then T is important.

Proof. Let {h1, h2, . . . , hk, hk+1} be a minimal dangerous set with support T . The minimality implies that
the set h1, h2, . . . , hk is safe. The support of {h1, h2, . . . , hk} equals T , since if it is less than T , this set
would be dangerous. Hence, T is important.

Lemma 2.13. Let T be important for F . Then C̃l(F ) = T ∪ C̃l(F [\T ]).
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Proof. Since C̃l(F ) is coverable, C̃l(F ) \ T is also coverable. We know that C̃l(F [\T ]) ∩ T = ∅. Hence,

C̃l(F ) \ T ⪯ C̃l(F [\T ]). Thus, C̃l(F ) ⪯ T ∪ C̃l(F [\T ]).
We will show that for every i ∈ T , one can choose one column corresponding to a variable with support i

such that all chosen columns are linearly independent and each of them does not belong to the linear space of

columns corresponding to variables with support out of T . It will imply that T ∪ C̃l(F [\T ]) is also coverable

and, thus, C̃l(F ) = T ∪ C̃l(F [\T ]).
Since T is important, there exists a linear independent and safe set H = {h1, h2, . . . , hk} ∈ ⟨F ⟩ with

support T of size k. Let us choose a basis F1 in ⟨F ⟩ that continues H. By Lemma 2.11, C̃l(F1) = C̃l(F ).
Consider the coefficient matrix MH of H. Since H is safe and linearly independent, Theorem 2.1 implies
that for every i ∈ T , one can choose a column ui of MH corresponding to a variable with support i such
that all these columns are linearly independent. MH is a submatrix of the coefficient matrix MF1

of F1. Let
for i ∈ T , vi be the collumn in MF1 corresponding to ui. {vi | i ∈ T} are also linearly imndependent since
for all i ∈ T , ui is the prefix of vi. Notice that all columns of MF1 corresponding to variables with support
out of T have zeros in the first k coordinates, hence for all i ∈ T , vi does not belong to the linear span of all
columns of MF1

with columns with support out of T .

Lemma 2.14. If F ⊆ G, then C̃l(G) = Cl(F ) ∪ C̃l(G[\Cl(F )]).

Proof. Consider the execution of Algorithm 2.6 on F . Let T1, T2, . . . , Ts be the minimally dangerous sets
found by the algorithm. Then Cl(F ) = T1 ∪ T2 ∪ . . . Ts.

By Proposition 2.12, T1 is important for F , hence it is important for G. Then, by Lemma 2.13, C̃l(G) =

T1 ∪ C̃l(G[\T1]). By Proposition 2.12, T2 is important for F [\T1], hence it is important for G[\T1]. Then,

by Lemma 2.13, C̃l(G) = T1 ∪ T2 ∪ C̃l(G[\(T1 ∪ T2)]). Continue this reasoning s times we get that C̃l(G) =

T1 ∪ T2 ∪ · · · ∪ Ts ∪ C̃l(G[\(T1 ∪ T2 ∪ · · · ∪ Ts)]) = Cl(F ) ∪ C̃l(G[\Cl(F )]).

Lemma 2.15. Cl(F ) ⊆ C̃l(F )

Proof. Follows from Lemma 2.14 applied to G = F .

Lemma 2.16. If F is safe and for a linear form f , F ∪ {f} is not safe, then C̃l(F ) = C̃l(F ∪ {f}).

Proof. Since F ∪ {f} is not safe, ⟨F ∪ {f}⟩ contains a minimally dangerous set H = {h1, h2, . . . , hk+1} with
support T of size k. Assume that H contains the maximal possible number of elements from ⟨F ⟩. It is easy
to see that the number of such elements should be k. Indeed, this number should be less than k+ 1 since F
is safe; if H contains two elements from f + ⟨F ⟩, we can change one of them to their sums, and this increases
the number of elements from ⟨F ⟩. Let h1, h2, . . . , hk ∈ ⟨F ⟩ and hk+1 ∈ f + ⟨F ⟩. Since F is safe, the support
of h1, h2, . . . , hk is also T . Hence, T is important, thus

C̃l(F ∪ f)
(Lem. 2.11)

= C̃l(F ∪ {hk+1})
(Lem. 2.13)

= T ∪ C̃l((F ∪ {hk+1})[\T ])
(Lem. 2.11)

=

T ∪ C̃l(F [\T ])
(Lem. 2.13)

= C̃l(F ).

The following Lemma extends Lemma 2.16.

Lemma 2.17. If Cl(F ∪ {f}) ⊊ Cl(F ), then C̃l(F ∪ {f}) = C̃l(F ).

Proof. Consider the execution of Algorithm 2.6 on F . Let T1, T2, . . . , Ts be the minimally dangerous sets
found by the algorithm. Then Cl(F ) = T1 ∪ T2 ∪ . . . Ts. Notice that we can construct the closure of F ∪ {f}
using the algorithm starting from the same sets T1, T2, . . . , Ts. By multiple applications of Lemma 2.8,
we get that Cl(F ∪ {f}) = Cl(F ) ∪ Cl(F ∪ {f}[\Cl(F )]). By the definition of closure, F [\Cl(F )]) is
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safe; since Cl(F ∪ {f}) ̸= Cl(F ), the set of linear forms (F ∪ {f})[\Cl(F )]) is not safe. By Lemma 2.16,

C̃l(F ∪ {f})[\Cl(F )] = C̃l(F )[\Cl(F )].

By Lemma 2.14 we get C̃l(F ∪{f}) = C̃l((F ∪{f})[\Cl(F )])∪Cl(F ) and C̃l(F ) = C̃l(F [\Cl(F )])∪Cl(F ).
Finally,

C̃l(F ∪ {f}) = C̃l((F ∪ {f})[\Cl(F )]) ∪ Cl(F ) = C̃l(F [\Cl(F )]) ∪ Cl(F ) = C̃l(F ).

Theorem 2.18 (Continuity). C̃l(F ) ⊆ C̃l(F ∪ {f}) and |C̃l(F ∪ {f}) \ C̃l(F )| ≤ 1.

We will prove Theorem 2.18 in Subsection 2.4.

Corollary 2.19 (Monotonicity). If F1 ⊆ ⟨F ⟩, then C̃l(F1) ⊆ C̃l(F ).

Proof. By Theorem 2.18, C̃l(F1) ⊆ C̃l(F1 ∪ F ) and by Lemma 2.11, C̃l(F1 ∪ F ) = C̃l(F ).

2.4 Amortized closure is continues (proof of Theorem 2.18).

Let L and L′ be vector spaces over a field F let e ∈ L′ be such that e /∈ L and L′ = ⟨L ∪ {e}⟩. Let π denote
the projection from L′ to L.

The following theorem implies Theorem 2.18.

Theorem 2.20. Let V ′
1 , V

′
2 , . . . , V

′
m be sets of vectors from L′. Let for every i ∈ [m], Vi = {π(v) | v ∈ V ′

i }.
Let T ⊆ [m] be ⪯-maximal coverable set with respect to V ′

1 , V
′
2 , . . . , V

′
m. Let S ⊆ [m] be ⪯-maximal

coverable set with respect to V1, V2, . . . , Vm. Then S ⊆ T and |T \ S| ≤ 1.

Proof. For every i ∈ T we choose u′
i ∈ V ′

i such that the set {u′
i | i ∈ T} is linearly independent. For i ∈ T we

denote ui := π(u′
i). For every i ∈ S we choose vi ∈ Vi such that the set {vi | i ∈ S} is linearly independent.

Let for i ∈ S, v′i be an element of V ′
i such that π(v′i) = vi.

Notice that the set {v′i | i ∈ S} is also linearly independent, hence S is coverable with respect to
V ′
1 , V

′
2 , . . . , V

′
m. By maximality of T , S ⪯ T . If S = T , then the theorem holds; hence, assume that S ≺ T

(strictly less). Let us denote t := max(T \ S).
The theorem holds if S ∪ {t} = T . So, we assume that S ∪ {t} ≠ T .

Claim 2.21. S ∪ {t} is coverable with respect to V ′
1 , V

′
2 , . . . , V

′
m.

Proof. We will maintain the set of vectors {w′
i | i ∈ S ∪ {t}} that satisfies the following properties:

1. If i ∈ S and i < t, then w′
i = v′i;

2. w′
t = u′

t;

3. If i ∈ S and i > t, then either w′
i = v′i, or w

′
i = u′

i;

4. The inequality dim⟨{wi | i ∈ S ∪ {t}}⟩ ≥ |S| holds, where for all i ∈ S ∪ {t}, wi = π(w′
i).

Initially assume that for all i ∈ S and i ̸= t, w′
i := v′i and w′

t = u′
t. In other words the set {w′

i | i ∈ S∪{t}}
initially equals {v′i | i ∈ S} ∪ {u′

t}. It is easy to verify that all properties above are satisfied.
While the set of vectors {w′

i | i ∈ S∪{t}} is not linearly independent, we apply to this set some operation
that will guarantee the satisfaction of all properties. We describe this operation below.

Since dim{wi | i ∈ S ∪ {t}} ≥ |S|, we also have that dim{w′
i | i ∈ S ∪ {t}} ≥ |S|. Since {w′

i | i ∈ S ∪ {t}}
is not linearly independent, dim⟨{w′

i | i ∈ S ∪ {t}}⟩ = |S|. Thus, there exists a unique non-empty set
I ⊆ S ∪ {t} and non-zero elements {αi ∈ F}i∈I such that

∑
i∈I αiw

′
i = 0; and, thus,

∑
i∈I αiwi = 0.

We claim that for all j ∈ I, j ≥ t. Indeed, assume that for some j ∈ I, j < t, Then ⟨{wi | i ∈ S∪{t}\{j}⟩
contains ⟨{wi | i ∈ S ∪ {t}}⟩ whose dimension is at least |S|, thus S ∪ {t} \ {j} is coverable with respect to
V1, . . . , Vn, but S ≺ S ∪ {t} \ {j}; contradiction with the maximality of S.
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It is impossible to have w′
i = u′

i for all i ∈ I since all u′
i are linearly independent. Thus, there exists

k ∈ I such that w′
k = v′k ̸= u′

k. Since k ∈ I, {wi | i ∈ S ∪ {t}} ∈ ⟨{wi | i ∈ S ∪ {t} \ {k}⟩, by the dimension
argument we get that the set {wi | i ∈ S ∪ {t} \ {k}} is linearly independent. Let us change values w′

k := u′
k

(and, correspondingly, wk := uk). Note that dim⟨{wi | i ∈ S ∪ {t}}⟩ ≥ dim⟨{wi | i ∈ S ∪ {t} \ {k}}⟩ = |S|,
hence all the properties are satisfied for new values of w′

i.
We can’t apply this operation infinitely since the value |{i ∈ S | i > t, w′

i ̸= u′
i}| is decreased on every

step. Hence, at some moment, we can’t apply the operation, which means that {w′
i | i ∈ S ∪ {t}} is linearly

independent and, thus, S ∪ {t} is coverable with respect to V ′
1 , V

′
2 , . . . , V

′
m.

Consider the set {ui | i ∈ T}. Since {u′
i | i ∈ T} ∈ ⟨{ui | i ∈ T} ∪ {e}⟩, dim⟨{ui | i ∈ T}⟩ ≥ |T | − 1.

If dim⟨{ui | i ∈ T}⟩ = |T |, the set {ui | i ∈ T} is linearly independent, we get a contradiction with
maximality of S since S ≺ T . Thus, dim⟨{ui | i ∈ T}⟩ = |T | − 1. Let us fix some ℓ ∈ T such that uℓ is in
the span of ui for i ∈ T \ {ℓ}. In this case {ui | i ∈ T \ {ℓ}} is linearly independent, thus T \ {ℓ} is coverable
with respect to V1, . . . , Vm.

Claim 2.22. t ≤ ℓ

Proof. The set T \{ℓ} is coverable with respect to V1, . . . , Vm. Since S is the maximal coverable, T \{ℓ} ⪯ S.
It implies that t ≤ ℓ.

Claim 2.23. t ̸= ℓ

Proof. Assume that t = ℓ. By Claim 2.21 the set S ∪ {ℓ} is coverable with respect to V ′
1 , . . . , V

′
n. Then

S ∪{ℓ} ⪯ T . Since S ∪{ℓ} = S ∪{t} ≠ T , S ∪{ℓ} ≺ T . Let h = max(T \ (S ∪{ℓ}). It is straightforward that
h < t = ℓ. By the definition of h we get that S ≺ {i ∈ T | i ≥ h, i ̸= ℓ}, but the set {ui | i ∈ T, i ≥ h, i ̸= ℓ}
is linearly independent since it is a subset of {ui | i ∈ T \ {ℓ}}. This contradicts the maximality of S.

The last two claims imply t < ℓ.
Claim 2.21 implies that S ∪ {t} ⪯ T . If S ∪ {t} ≠ T , then S ∪ {t} ≺ T . Let t′ = max(T \ (S ∪ {t}).
Let J = ({t′ + 1, . . . ,m} \ {t, ℓ}) ∩ T . The set J ∪ {t′, t} is coverable with respect to V1, V2, . . . , Vm since

{uj | j ∈ T \ {ℓ}} is linearly independent. The set J ∪ {ℓ} is coverable with respect to V1, V2, . . . , Vm since
vi for i ∈ S are linearly independent and t < ℓ. The sets J ∪ {ℓ, t} and J ∪ {ℓ, t′} are not coverable with
respect to V1, V2, . . . , Vm since it would contradict maximality of S. The following lemma (Lemma 2.24)
implies that such a situation is impossible. We get a contradiction with our assumption that the theorem
does not hold.

Lemma 2.24. Let J ⊆ [m], t, t′ and ℓ be different elements from [m] \ J . Assume that J ∪ {ℓ} is coverable
with respect to V1, V2, . . . , Vm but J ∪{ℓ, t} and J ∪{ℓ, t′} are not coverable. Then J ∪{t′, t} is not coverable.

Proof. Asume for a sake of contradiction that J ∪ {t′, t} is coverable.
For any set A ⊆ [m] we will use the notation U(A) := ⟨

⋃
i∈A Vi⟩.

By Theorem 2.9 since J ∪ {ℓ, t} is not coverable, there exists A ⊆ J ∪ {ℓ, t} such that dimU(A) < |A|.
Since J ∪ {ℓ} and J ∪ {t′, t} are coverable, both ℓ and t belong A. Let us denote A′ := A \ {ℓ, t}.

Since J∪{t′, t} is coverable, dimU(A′∪{t}) ≥ |A′|+1. Since J∪{ℓ} is coverable, dimU(A′∪{ℓ}) ≥ |A′|+1.
But we know that dimU(A′∪{t, ℓ}) ≤ |A|′+1, hence dimU(A′∪{t}) = dimU(A′∪{ℓ}) = dimU(A′∪{t, ℓ}) =
|A′|+ 1. The last equality implies that Vℓ ⊆ U(A′ ∪ {t}) and Vt ⊆ U(A′ ∪ {ℓ}).

Analogously using that J ∪ {ℓ, t′} is not coverable we get that there exists B′ ⊆ [m] \ {ℓ, t′} such
that dimU(B′ ∪ {t′}) = dimU(B′ ∪ {ℓ}) = dimU(B′ ∪ {t′, ℓ}) = |B′| + 1. This equality implies that
Vℓ ⊆ U(B′ ∪ {t′}) and Vt′ ⊆ U(B′ ∪ {ℓ}).
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By our assumption, the set J ∪ {t′, t} is coverable. So, we may estimate

|A′ ∪B′|+ 2 ≤ dimU(A′ ∪B′ ∪ {t, t′}) ≤ dimU(A′ ∪B′ ∪ {t, t′, ℓ}) =
dimU(A′ ∪B′ ∪ {t′, ℓ}) = dimU(A′ ∪B′ ∪ {ℓ}) =

dimU(A′ ∪ {ℓ}) + dimU(B′ ∪ {ℓ})− dimU((A′ ∩B′) ∪ {ℓ}) ≤
|A′|+ 1 + |B′|+ 1− (|A′ ∩B′|+ 1) = |A′ ∪B′|+ 1,

and get a contradiction. In the first equality, we explore that Vt ⊆ U(A′ ∪ {ℓ}). In the second equality
we explore that Vt′ ⊆ U(B′ ∪ {ℓ}). In the third equality we use that dim⟨X ∪ Y ⟩ = dim⟨X⟩ + dim⟨Y ⟩ −
dim(⟨X⟩ ∩ ⟨Y ⟩). In the last inequality we used the known values of dimU(A′ ∪ {ℓ}) and dimU(B′ ∪ ℓ) and
that J ∪ {ℓ} is coverable.

3 Preliminary knowledge on resolution over parities and lifting

3.1 Resolution and resolution over parities

Here and after, all scalars are from the field F2. Let X be a set of variables that take values in F2. A linear
form in variables from X is a homogeneous linear polynomial over F2 in variables from X or, in other words,
a polynomial

∑n
i xiai, where xi ∈ X is a variable and ai ∈ F2 for all i ∈ [n]. A linear equation is an equality

f = a, where f is a linear form and a ∈ F2.
A linear clause is a disjunction of linear equations:

∨t
i=1(fi = ai). Notice that over F2 a linear clause∨t

i=1(fi = ai) may be represented as the negation of a linear system: ¬
∧t

i=1(fi = ai + 1).

For a linear clause C we denote by L(C) the set of linear forms that appear in C; i.e. L
(∨t

i=1(fi = ai)
)
=

{f1, f2, . . . , ft}. The same notation we use for linear systems: if Ψ is a F2-linear system, L(Ψ) denotes the
set of all linear forms from Ψ.

Let φ be an unsatisfiable CNF formula. A refutation of φ in the proof system Res(⊕) [19] is a sequence
of linear clauses C1, C2, . . . , Cs such that Cs is the empty clause (i.e., identically false) and for every i ∈ [s]
the clause Ci is either a clause of φ or is obtained from previous clauses by one of the following inference
rules:

• Resolution rule allows us to derive from linear clauses C∨ (f = a) and D∨ (f = a+1) the linear clause
C ∨D.

• Weakening rule allows us to derive from a linear clause C an arbitrary linear clause D in the variables
of φ that semantically follows from C (i.e., any assignment satisfying C also satisfies D).

The width (sometimes the term rank is used for the same notion) of a Res(⊕) refutation is the maximal
rank of the negation of a linear clause from the refutation.

A Res(⊕) refutation of φ is a tree-like if it can be arranged as a tree, where leaves correspond clauses of
φ and any clause in the interior node is obtained by a rule from the clauses in its children.

The depth of a Res(⊕) refutation is the maximal number of resolution rules applied on a path between
a clause of the initial formula and the empty clause.

A resolution refutation of a formula φ is a special case of a Res(⊕) refutation, where all linear clauses
are plain (i.e., disjunctions of literals). For resolution refutations, we also use the notions of width and depth
that correspond to the same notions in Res(⊕) refutations.

3.2 Lifting of formulas via gadget

For every CNF formula Φ with variables Y = {y1, y2, . . . , ym} and every Boolean function g : {0, 1}ℓ →
{0, 1} we define a CNF formula Φ ◦ g with variables X = {xi,j | i ∈ [m], j ∈ [ℓ]} representing
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Φ(g(x1,1, x1,2, . . . , x1,ℓ), g(x2,1, x2,2, . . . , x2,ℓ), . . . , g(xm,1, xm,2, . . . , xm,ℓ)) (i.e. we substitute to every vari-
able of Φ the function g applied to ℓ fresh variables). Let Φ =

∧
i∈I

Ci, where Ci is a clause for all i ∈ I. For

every i ∈ [m] we denote by yi ◦ g the cannonical CNF formula representing g(xi,1, xi,2, . . . , xi,ℓ) which has
ℓ variables in every clause and by (¬yi) ◦ g the cannonical CNF formula representing ¬g(xi,1, xi,2, . . . , xi,ℓ)
which has ℓ variables in every clause. Let Ci = li,1 ∨ li,2 ∨ · · · ∨ li,ni

, where li is a literal. Then we denote by
Ci ◦ g a CNF formula that represents li,1 ◦ g ∨ li,2 ◦ g ∨ · · · ∨ li,ni

◦ g as follows: Ci ◦ g consists of all clauses
of the form D1 ∨D2 ∨ · · · ∨Dni

, where Dj is a clause of li,j ◦ g for all j ∈ [mi]. And Φ ◦ g :=
∧
i∈I

Ci ◦ g.

We refer to Φ ◦ g as a formula Φ lifted with a gadget g. We refer to the set Y = {y1, y2, . . . , ym} as a set
of unlifted variables and to the set X = {xi,j | i ∈ [m], j ∈ [ℓ]} as a set of lifted variables.

Sometimes, we will identify subsets of [m] with corresponding subsets of Y . It is especially convenient to
use such correspondence for the notions of support, closure, and amortized closure. So, we will assume that
the support and the (amortized) closure of the set of linear forms over lifted variables is the set of unlifted
variables.

A partial assignment ρ to the set of variables X is called block-respectful if, for every i, ρ either assigns
values to all variables with support i or does not assign values to any of them.

Suppose that ρ is a block-respectful partial assignment. Then we define by ρ̂ the partial assignment on
the set of variables Y such that ρ̂(yi) = g(ρ(xi,1, xi,2, . . . , xi,ℓ)) (here we assume that if the right-hand side
is undefined, then the left-hand side is also undefined).

Let k < ℓ. A gadget (i.e. Boolean function) g : {0, 1}ℓ → {0, 1} is called k-stifling [11] if for every A ⊂ [ℓ]
of size k for every c ∈ {0, 1} there exists a ∈ {0, 1}ℓ such that for every b ∈ {0, 1}ℓ if a and b agree on set of
indices [ℓ] \A, then g(b) = c.

Lemma 3.1 ([7], [3]). Let Ψ be a satisfiable linear system in the lifted variables X. Let g : {0, 1}ℓ → {0, 1}
be a 1-stifling gadget. Suppose

• σ is a full assignment to lifted variables X satisfying Ψ.

• π is a full assignment to unlifted variables Y such that π|Cl(L(Ψ)) = σ̂|Cl(L(Ψ)).

Then there exists a full assignment τ to the lifted variables X such that τ satisfies Ψ and

τ̂ = π.

Lemma 3.2 ([3]). Let Ψ be a satisfiable linear system in the lifted variables X. Let g : {0, 1}ℓ → {0, 1}
be a 1-stifling gadget. Suppose there exists a full assignment σ to lifted variables X satisfying Ψ such that
σ̂|Cl(L(Ψ)) does not falsify any clause of φ. Then, Ψ does not contradict any clause of φ ◦ g.

4 Bounded-width lifting theorem

In this section, we present our first application of amortized closure. Namely, we give an easy proof of
the lifting theorem that extends Theorem 1.2 recently obtained by Chattopadhyay and Dvorak [10]. In
Subsection 4.1, we define bounded-width games characterizing resolution depth and tree-like Res(⊕) size. In
Subsection 4.2, we state and prove our lifting theorem.

4.1 Bounded-width games for resolution and resolution over parities

Consider the following bounded-width Prover-Adversary game [6, 15]. The game is defined for an unsatis-
fiable CNF formula φ and integer parameter w ≥ 1. During the game, players save a partial assignment ρ.
Initially, ρ is empty. Every her move, Prover has several possibilities: 1) Forget: change ρ to ρ′ if ρ′ ⊆ ρ; 2)
Query: if |ρ| < w, Prover can choose a variable x not from domain of ρ and Adversary chooses a ∈ {0, 1}
and changes ρ := ρ∪{x := a}. For every move, Adversary earns a coin. The game ends if ρ falsifies a clause
of φ.
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Lemma 4.1 (Lemma 6 from [6]). An unsatisfiable CNF formula φ has resolution refutation of width w and
depth d if and only if Prover has a strategy in the game for φ with the parameter w+1 that guarantees that
Adversary earns at most d coins for any his behavior.

Now, we introduce a bounded-width Res(⊕)-Prover-Delayer game. This game is also defined on an
unsatisfiable formula φ and a parameter w. The players save a linear system Ψ, which is initially empty.
Prover has several possibilities for every her move: 1) Forget: change the system Ψ to any system Ψ′ such
that Ψ semantically implies Ψ′. 2)Query: if rk(Ψ) < w, Prover can choose a linear form f . Delayer can
either choose a value a ∈ {0, 1} and change Ψ to Ψ ∧ (f = a) or report ∗, in the second case Prover chooses
a ∈ {0, 1} by herself and update Ψ to Ψ ∧ (f = a). Delayer earns a coin for each answer ∗. The game ends
if the system Ψ contradicts a clause of φ.

Lemma 4.2. If Delayer has a strategy in the game defined for an unsatisfiable formula φ with parameter
w + 1 that guarantees him to earn at least d coins, then the size of any tree-like Res(⊕) refutation of φ of
width at most w has size at least 2d.

Proof. Consider a tree-like Res(⊕) refutation Π of φ with width at most w. For a node v of the proof tree,
we denote by Cv a linear clause that labels v. Based on Delayer’s strategy, we define a random path from
the root to a leaf of Π. We start a path in the root of the proof tree that corresponds to an empty clause.
To define a path we will play the bounded-width game on the formula φ. The linear system in the game
always equals the negation of the current clause. At the root, we have the empty linear system.

If a current node u has only one child v (i.e., it corresponds to the weakening rule), we move to this child
v. Since Cv semantically implies Cu, ¬Cu semantically implies ¬Cv. In the game, we change a linear system
¬Cu to its semantical implication ¬Cv. It is easy to see that rk(¬Cv) ≤ rk(¬Cu).

Assume that Cu results from the resolution rule applied to Cu0 and Cu1 , and fu is the resolved linear
form. In this case Cu0 = (fu = 0) ∨D0 and Cu1 = (fu = 1) ∨D1 and Cu = D0 ∨D1. Prover asks for the
value of the linear form fu. It is a legal step since rk(¬Cu) ≤ w. If Delayer answers ∗, we choose a ∈ {0, 1}∗
at random. Otherwise, a ∈ {0, 1} is the value chosen by Delayer. We move to u1−a. In the game, we first
get a linear system (fu = a)∨¬Cu and then change it to its semantical implication ¬C1−a. With probability
1 we finish the path in a leaf ℓ of the proof tree. Cℓ is a clause of φ, and thus ¬Cℓ contradicts a clause of φ.
By the property of Delayer’s strategy, Delayer earns at least d coins at that moment. Thus, for every leaf,
the probability that the path finishes in this leaf is at most 2−d. Hence the number of leaves in the proof
tree is at least 2d.

4.2 Proof of lifting theorem

Theorem 4.3. Let φ be an unsatisfiable CNF formula and g : {0, 1}ℓ → {0, 1} be a 1-stiffling gadget.
Assume that φ◦g has a tree-like Res(⊕) refutation of rank w and size 2d. Then φ has a resolution refutation
of width w and depth d.

Proof. Proof by contradiction. Assume that φ does not have a resolution refutation of width w and depth d.
Then, by Lemma 4.1, there is a strategy of Adversary in the first game for the formula φ and the parameter
w + 1 that guarantees him to earn at least d + 1 coins. Using this strategy, we construct the strategy of
Delayer in the second game for the formula φ ◦ g and the parameter w + 1.

Let Ψ denote the current linear system in the second game; Ψ is a linear system in the lifted variables.
Let ρ denote the current partial assignment in the first game; it assigns values to unlifted variables. We

maintain the following invariant: ρ is defined on C̃l(L(Ψ)) and Ψ has a solution π such that π̂ coincides with

ρ on C̃l(L(Φ)). Initially, Ψ is the empty system, ρ is the empty assignment, and the invariant holds for any
π. Consider Prover’s different types of moves in the second game.

First, assume that Prover makes a query and chooses a linear form f .

1. If C̃l(L(Ψ) ∪ {f}) = C̃l(L(Ψ)). Delayer chooses a equals the value of f on π. The values ρ and π
remain unchanged.
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2. If C̃l(L(Ψ) ∪ {f}) ̸= C̃l(L(Ψ)), then by Theorem 2.18, C̃l(L(Ψ) ∪ {f}) = C̃l(L(Ψ)) ∪ {j} for some

j /∈ C̃l(L(Ψ)). Delayer reports ∗. We ask the value of the variable yj in the first game and let aj be the
answer. We update ρ := ρ ∪ {yj := aj}. Let Prover choose a value a ∈ {0, 1} in the second game. By

Lemma 2.17, Cl(L(Ψ) ∪ {f}) = Cl(L(Ψ)). Since Cl(L(Ψ) ∪ {f}) = Cl(L(Ψ)) ⊆ C̃l(L(Ψ)), Lemma 3.1

implies that there is a solution τ of Ψ ∧ (f = a) such that τ̂ coincide with ρ on C̃l(L(Ψ)). We update
π := τ .

Now assume that Prover forgets, i.e. she changes Ψ to Ψ′, where Ψ semantically implies Ψ′. Then we

restrict ρ on the set of variables C̃l(L(Ψ)). Since L(Ψ′) ⊆ ⟨L(Ψ)⟩, by Corollary 2.19 C̃l(L(Ψ′)) ⊆ C̃l(L(Ψ)).
Assume that the invariant holds and ρ does not falsify any clause of φ. By Lemma 2.15, Cl(L(Ψ)) ⊆

C̃l(L(Ψ)), hence by Lemma 3.2, Ψ does not contradict a clause of φ ◦ g.
In the first game, Adversary can earn at least d+1 coins. By the construction of the strategy, each time

Adversary earns a coin, Delayer also earns a coin. Hence, Delayer, using the described strategy, can earn at
least d+ 1 coins. And by Lemma 4.2, this contradicts the assumption of the theorem.

5 Lower bound for depth-Ω(n log n) Res(⊕)
In this section, we describe how to prove an exponential lower for depth-Ω(n log n) Res(⊕). In Subsection 5.1,
we present the key lemma utilizing the notion of amortized closure that we will use to improve the result
by [3]. In Subsections 5.2 and 5.3, we describe how to modify the proof by [3] to improve it using the key
lemma.

5.1 Key lemma

Lemma 5.1. Let Φ and Ψ be two linear systems in variables X = {xi,j | i ∈ [m], j ∈ [ℓ]}. Let π be a partial
assignment defined on {xi,j | i ∈ [Cl(L(Φ))], j ∈ [ℓ]}. Let Σ consist of all solutions σ of Φ such that σ extends

π. Assume that Σ ̸= ∅. Let τ be a random element of Σ. Then Pr[τ satisfies Ψ] ≤ 2|C̃l(L(Φ))|−|C̃l(L(Ψ))|.

Proof. By the definition of the closure, the set of linear form L(Φ|π) is safe. Hence, by Theorem 2.1, there
exists a basis in the set of columns of the matrix of Φ|π such that for every block, the basis contains at
most one column corresponding to this block. Let Z ⊆ X be the set of variables corresponding to the basis
elements. Since Σ ̸= ∅, the system Φ|π is satisfiable. Hence, the system Φ|π can be equivalently rewritten as
the system of |Z| equations, each of them linearly expresses the corresponding variable from Z from variables
X \ Z \Dom(π). Let us denote this representation by Φ′

π.
A random solution of Φ|π has the following structure: we take at random values of all variables X \ Z \

Dom(π), and, then the values of variables from Z are uniquely determined by the system Φ′
π. Thus, the

following statement holds.

Claim 5.2. Let H be a satisfiable linear system in the variables X \Z \Dom(π). Then Pr[τ satisfies H] =
2−rk(H).

Let Π be the following linear system:
∧

j∈[ℓ],i∈[Cl(L(Φ))] xi,j = π(xi,j).

Notice that the linear system Φ ∧ Π is semantically equivalent to the system Φ|π ∧ Π that is equivalent
to the system Φ′

π ∧Π.
The system Π ∧ Φ′

π sets variables from Dom(π) to constants and expresses the variables from Z from
the variables X \ Z \ Dom(π). Let Ψ′ denote the linear system Ψ where we substitute for all variables
from Dom(π) ∪ Z their expressions given by the system Π ∧ Φ′

π. So Ψ′ is a linear system in the variables
X \ Z \Dom(π).

Let Ψ′′ be the maximal set of linearly independent equations from Ψ′.
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Pr[τ satisfies Ψ] = Pr[τ satisfies Ψ∧Π∧Φ′
π] = Pr[τ satisfies Ψ′ ∧Π∧Φ′

π] = Pr[τ satisfies Ψ′′ ∧Π∧Φ′
π] =

Pr[τ satisfies Ψ′′]
(Claim 5.2)

= 2−rk(Ψ′′)

|C̃l(L(Ψ))|
(Cor. 2.19)
≤ |C̃l(L(Π ∧ Φ′

π ∧Ψ))|
(Lem. 2.11)

= |C̃l(L(Π ∧ Φ′
π ∧Ψ′′))|

(Cor. 2.19)
≤

|C̃l(L(Π∧Φ∧Ψ′′))|
(Lem. 2.14)

= |Cl(L(Φ))|+|C̃l (L(Π[\Cl(L(Φ))]) ∪ L(Φ[\Cl(L(Φ))]) ∪ L(Ψ′′[\Cl(L(Φ))])) | =

|Cl(L(Φ))|+ |C̃l(L(Φ[\Cl(L(Φ))]) ∪ L(Ψ′′))|
(Th. 2.18)
≤

|Cl(L(Φ))|+ |C̃l(L(Φ)[\Cl(L(Φ))]))|+ rk(Ψ′′)
(Lem. 2.14)

= |C̃l(L(Φ))|+ rk(Ψ′′).

So we get, Pr[τ satisfies Ψ] = 2−rk(Ψ′′) ≤ 2|C̃l(L(Φ))|−|C̃l(L(Ψ))|.

5.2 Random-walk theorem

The main technical tool used in [3] in proving the lower bound for bounded-depth Res(⊕) is the random-walk
theorem.

Let φ be a CNF formula and A be a set consisting of partial assignments for variables of φ. We assume
that A has two properties:

• A is closed under restrictions: if for every ρ ∈ A for every σ ⊆ ρ, σ ∈ A.

• For every σ ∈ A, σ does not falsify any clause of φ.

(φ,A)-games of Prover and Delayer with starting position ρ0 ∈ A. In this game, two players,
Prover and Delayer, maintain a partial assignment ρ for variables of φ that initially equals ρ0. On every
move, Prover chooses a variable x, and Delayer has two options:

• Delayer can earn a white coin and reports ∗. Then, Prover chooses a Boolean value a of x.

• Delayer can earn a white coin and pay a black coin to choose a Boolean value a of x by himself.

The current assignment ρ is updated: ρ := ρ ∪ {x := a}. The game ends when ρ /∈ A.
Delayer’s strategy is called linearly described if Delayer can see only the set of requested variables and he

does not know the values of the variables chosen by Prover and even by himself before. When he chooses a
value by himself, he chooses a F2-affine function from the values of previous variables, and the result of this
function is used as a value chosen by Delayer. For a more detailed definition of linearly described strategies,
we refer to [3].

Theorem 5.3 (Theorem 4.3 from [3]). Let φ be an unsatisfiable CNF formula. Let A be a set of partial
assignments for Vars(φ) such that A is closed under restrictions and for any σ ∈ A, σ does not falsify any
clause of φ. Assume that in the (φ,A)-game, Delayer has a linearly described strategy with start position
ρ0 ∈ A that guarantees him to earn w white coins while paying at most c black coins. Let g : {0, 1}ℓ → {0, 1}
be a 2-stifling gadget. Consider a Res(⊕) refutation of φ ◦ g.Let C0 be a linear clause from this refutation.
Assume that Cl(L(C0)) = Dom(ρ0) and there is a solution τ of ¬C0 such that τ̂ extends ρ0. Let Σ be the
set of all full assigmnets π such that π satisfies ¬C0 and π̂ extends ρ0. Let t be integer number such that

t ≤ w−|C̃l(L(C0))|+ |ρ0|. Consider a random full assignment σ ∈ Σ and make t steps in the refutation from
C0 according to σ: each time we go from a linear clause to its premise falsifying by σ, and we count only
applications of resolution rules (if we reach an initial clause earlier than in t steps, we stay there). Assume
that we stop in a node labeled with a linear clause C. Then σ̂|Cl(L(C)) ∈ A with probability at least 2−c(ℓ−1).

18



The only difference between Theorem 5.3 and Theorem 4.3 from [3] is that the inequality t ≤
w − |C̃l(L(C0))| + |ρ0| that was slightly stronger t ≤ w − |rk(¬C0)| + |ρ0| in Theorem 4.3 from [3]. It
is easy to see that the proof from [3] works with the weaker inequality as well. This is because this in-
equality was only used to show that if a linear system F has type ¬C0 ∧H, where H consists of at most t
equations, then |Cl(L(F ))| ≤ w + |ρ0|. Using the weaker inequality |Cl(L(F ))| can be estimated as follows:

|Cl(L(F ))|
(Lem. 2.15)
≤ |C̃l(L(F ))|

(Th. 2.18)
≤ |C̃l(L(C0)|+ t ≤ w + |ρ0|.

5.3 Size vs depth tradeoff

Theorem 5.4. [cf. Theorem 8.1 from [3]] Let φ be an unsatisfiable CNF formula. Let A be a set of partial
assignments for Vars(φ) such that for any σ ∈ A, σ does not falsify any clause of φ and A is closed under
restrictions (i.e., if ρ ∈ A and τ ⊆ ρ, then τ ∈ A). Assume that there are integers t and c such that for
every ρ ∈ A such that |ρ| < t, in the (φ,A)-game with start position ρ there is a linearly described strategy
of Delayer that guarantees him to earn at least t − |ρ| white coins while paying at most c black coins. Let
g : {0, 1}ℓ → {0, 1} be a 2-stifling gadget. Then any Res(⊕) refutation of φ ◦ g has either size at least 2c or

depth at least t2

4cℓ .

Proof. We say that a linear clause C in lifted variables is A-good if there is a solution τ of ¬C such that
τ̂ |Cl(L(C)) ∈ A.

Consider a Res(⊕) refutation of φ ◦ g and denote is by Π.

Claim 5.5. Assume that Π contains an A-good linear clause C0 such that |C̃l(L(C0))| ≤ r, where r < t.
Let St−r(C0) denote the set of all A-good clauses C such that there is a path from C0 to C of length t− r in

the branching program associated with Π. Assume that for every C ∈ St−r(C0), |C̃l(L(C))| ≥ r + cℓ holds.
Then, the size of the refutation Π is at least 2c.

Proof. Since C0 is A-good, there is a solution τ0 of ¬C0 such that τ̂0|Cl(L(C)) ∈ A. Let us denote ρ0 :=

τ̂0|Cl(L(C0)). Then |ρ0| = |Cl(L(C0))| ≤ |C̃l(L(C0))| ≤ r. By the conditions of the theorem, there is a
linearly described strategy of Delayer in the (φ,A)-game with starting position ρ0 that guarantees him to
earn t− |ρ0| white coins while paying at most c black coins.

Let Σ be the set of all assignments π such that π satisfies ¬C0 and π̂|Cl(L(C0)) = ρ0. Since τ0 ∈ Σ, Σ ̸= ∅.
Consider a random assignment σ ∈ Σ and make t − r steps in the linear branching program from C0

according to σ. Notice that t− r ≤ (t− |ρ0|) + |ρ0| − |C̃l(L(C0))|. Let C be the linear clause at the end of
the path. By Theorem 5.3, with probability at least 2−(ℓ−1)c, C is A-good. By Lemma 3.2, C is not a clause

of ϕ ◦ g, hence, C ∈ St−r(C0). Thus, |C̃l(L(C))| ≥ r + cℓ.

If Ψ is a satisfiable linear system such that |C̃l(Ψ)| ≥ r+cℓ, then by Lemma 5.1, Pr[σ satisfies Ψ] ≤ 2−cℓ.

Hence, the refutation contains at least 2c clauses C such that |C̃l(L(C)) ≥ r + cℓ.

Let D0 denote the empty clause from Π. If for every A-good clause C such that there is a path from D0

to C of length t, |C̃l(L(C))| ≥ cℓ, then by Claim 5.5, the size of the refutation Π is at least 2c. Otherwise,

there is an A-good clause D1 such that there is a path from D0 to D1 of length t and |C̃l(L(D1))| ≤ cℓ. Let
k := ⌈ t

2cℓ⌉, then cℓ(k − 1) ≤ t/2. We repeat the same reasoning k − 1 more times for all i from 1 to k − 1

maintaining invariant |C̃l(L(Di))| ≤ cℓi: if for every A-good clause C such that there is a path from Di to C

of length t− cℓi, |C̃l(L(C))| ≥ cℓ(i+1), then by Claim 5.5, the size of Π is at least 2c. Otherwise, there is an

A-good clause Di+1 such that there is a path from Di to Di+1 of length t−cℓi and |C̃l(L(Di+1))| ≤ cℓ(i+1).
So we get that either the size of refutation is at least 2c or depth is at least the length of the path from

D0 to D1, from D1 to D2, etc, from Dk−1 to Dk which is at least kt/2 ≥ t2

4cl .
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Corollary 5.6 (cf. Corollary 8.3 from [3]). Let T(G, c) be an unsatisfiable Tseitin formula based on a
spectral (n, d, α)-expander. Then, any Res(⊕) refutation of T(G, c) ◦Maj5 has either size at least 2n or

depth at least n
20 ·

⌊
d · (1−α)

8

⌋2
.

In particular, if d = Θ(log n) and α < 1 is a constant, then T(G, c) ◦Maj5 is a formula with m = 5dn/2
variables and of size poly(m). And any Res(⊕) refutation of T(G, c)◦Maj5 has either size at least 2

Ω(m/ logm)

or depth at least Ω(m logm).

Proof. The proof repeats the proof of Corollary 8.3 from [3] where the application of Theorem 8.1 from [3]
is substituted by the application of Theorem 5.4.
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