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Abstract

Consider graphs of n nodes, and use a Bloom filter of length 2 log3 n bits. An
edge between nodes i and j, with i < j, turns on a certain bit of the Bloom
filter according to a hash function on i and j. Pick a set of log n nodes
and turn on all the bits of the Bloom filter required for these log n nodes to
form a clique. As a result, the Bloom filter implies the existence of certain
other edges, those edges (x, y), with x < y, such that all the bits selected by
applying the hash functions to x and y happen to have been turned on due
to hashing the clique edges into the Bloom filter.

Constructing the graph consisting of the clique-selected edges and those
edges mapped to the turned-on bits of the Bloom filter can be performed in
polynomial time in n.

Choosing a large enough polylogarithmic in n Bloom filter yields that the
graph has only one clique of size log n, the planted clique.

When the hash function is black-boxed, finding that clique is intractable
and, therefore, inverting the function that maps log n nodes to a graph is not
(likely to be) possible in polynomial time.

Keywords: One Way Function, Cryptography, Random Graph, Succinct
Representation.

1. Introduction

The assumption that one-way functions exist is the foundation of compu-
tational security. A random input is used to construct an instance of a one-
way function, such that it should be hard to reconstruct the random input
given the constructed instance. The construction should be done in poly-
nomial time. Therefore, the reconstruction can be done in nondeterministic
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polynomial time, considering the correct random input in a nondeterministic
fashion and computing an identical instance in a polynomial time.

One may wish to design one-way functions for which no deterministic or
randomized polynomial time algorithm that reveals the input (or an equiv-
alent input) is known. Note that proving that no such deterministic (or
randomized) algorithm exists yields P ̸= NP .

Succinct representation was introduced in [10] and further studied in
[22], proving that graph instances that encode 3-SAT imply NEXPTIME in
their succinct representations. See also, [7] for NEXPTIME hard-in-average
succinct-permanent instances.

A new Bloom filter-based succinct representation of graphs allows encod-
ing of an n nodes graph G, in polylogarithmic time and space, such that G
consists of a log(n)1 nodes clique; clique among a particular set of nodes.

Such a succinct representation of a graph ([10, 22]) for which an instance
of a (log(n) size) clique problem exists is beyond P under reasonable assump-
tions (see [3] for the explicit graph case). Using Bloom filter encoding allows
us to plant ([9]) a clique in an instance of a one way function that serves as
a heuristic to requiring more than polynomial time to be reversed. In fact,
it establishes a new potential one way function candidate for commitment
schemes.

In addition, we present techniques to mask the plant clique; blackboxing
the arrays and hashes of the Bloom filter.

Papadimitriou and Yannakakis [22] wrote: “Our results suggest that, as a
rule, succinct representations have the effect of precisely exponentiating the
complexity (time or space) of graph properties.”

However, their reductions are for the worst cases, structuring specific,
succinct representations, which does not imply the average case complexity.
Structuring a succinct representation with a planted solution may reveal the
solution. In the sequel, we use a random list of log(n) vertices that participate
in the planted clique, together with (a universal) hash function, resulting in
a Bloom filter encoding, to define the entire graph; if the definition exposes
the clique vertices, then the pre-image can be immediately found, and re-
versibility is trivial. The instance we produce does not (explicitly) reveal the
clique vertices. Moreover, we use self masking to mask the planted solution
further.

1Here and in the sequel, we use log(n) as a synonym for log2(n).
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We use the randomization of the clique vertices to encode the universal
hash function parameters. Similarly to a subset-sum (in the binary field)
presented in [1], we prove that an instance has a high probability of having
only one pre-image.

2. Preliminaries on One Way Functions

The following definition is taken from [11].

A function f : {0, 1}∗ → {0, 1}∗ is one-way if:

1. There exists a probabilistic polynomial time (PPT) algorithm that, on
input x, outputs f(x);

2. For every PPT algorithm A there is a negligible function νA such that
for sufficiently large k,

Pr[f(z) = y | x s←− {0, 1}k; y ← f(x); z ← A(1k, y)] ≤ νA(k)

As proof for the existence of a one way function implies P ̸= NP , we
only prove univalence with high probability. Namely, the probability of a z
value that is different from x is negligible.

In the sequel, we describe generations of instances that serve as commit-
ments that we believe are hard to reverse, see e.g., [13] for the usage for a
planted clique in explicit, rather than an implicit succinct represented graph
for a cryptographic commitment. We use an input random string as a source
for random values when generating an instance; in effect, randomly select a
log(n) vertices identities set and possibly hash parameters.

Our instance is generally defined by randomly chosen log(n) distinct ver-
tices identities, each of log(n) bits, that we use to construct a clique; in some
constructions, the Bloom filter hash function(s) parameters are also part of
the instance. Random strings that yield a permutation of the same set of
log(n) vertices identities are regarded as equivalent, as they yield the same set
of vertices; we augment the output with a definition of a permutation perm
among the chosen vertices relative to their sorted permutation. Therefore,
the reverse requirement is merely to find the set of log(n) vertices identities
used to output an instance.

An instance is univalent if the solution exposes the log(n) distinct ver-
tices identities that yield the exposed instance using the generation process.
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Univalence with a certain probability is based on calculating the probability
of the existence of more than one solution.

When the random hash parameters are part of the instance, they are
obtained from the (suffix of the) input string. The solution, the set of log(n)
distinct vertices identities, coupled with hash parameters of the instance,
serve as inputs for executing the instance generation procedure and should
result in the instance.

3. Bloom Filter Succinct Graphs with a Planted Clique

Universal hash functions. There are several choices for universal hash
functions, which mimic random mapping with a low probability of collisions.
Our analysis assumes that the hashing results are uniformly and indepen-
dently distributed (approximation), comparable to using random results that
are uniformly and independently selected.

• The first one has been presented by Carter and Wegman in [5]:
Let ha,b be a universal hash function mapping an integer in the 1, 2, . . . , n2

range. In fact, we consider the input for ha,b expressed by 2 log(n) bits used to
describe a graph edge between two graph vertices’ identities. The calculation
of the hash value is by the following formula, where ph > 2 log2(n) is a prime,
a ̸= 0 and b are smaller than ph, and m = 2 log2(n).

ha,b(x) = (((ax+ b) mod ph) mod m) + 1 (1)

We do not restrict ourselves to a specific universal hash function, allow-
ing the use of cryptographic universal hash functions, preferring not to use
ones that are based on computation security, e.g., the universal one-way hash
functions [20], [4], [18], that may be employed instead of the universal hash
function mentioned above as a building block. We next describe an alterna-
tive example of a hash function based on the Toeplitz matrix [15].

• Toeplitz matrix-based hash, e.g., [15]:
Randomly choose a binary vector r1 of length 2 log(n) bits as the first row
of a matrix h with the number of rows equal to the logarithmic number of
entries of the Bloom filter array. The vector of the second row is obtained by
rotating the bits of r1, and in general, the vector of the ith row is obtained
by rotating r1, i − 1 times. For a given edge (u, v), u < v, multiply the
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concatenation of the binary representations of u and v, u ◦ v (we use ◦ to
represent concatenation) by the Toeplitz matrix associated with hr1 to obtain
the hash of an edge (u, v) into SG. Note that in the sequel, we typically use a
Toeplitz matrix of 2 log3(n) rows and 2 log(n) columns. A repetition pattern
appears in the matrix because there are more rows than columns. We may
define an Toeplitz matrix enhanced hash by a matrix using (polylogarithmic)
log2(n) independently randomly chosen rows; each of these rows defines a
square Toeplitz matrix; these matrices are concatenated to form the needed
nonsquare matrix avoiding row repetitions. In the sequel, we refer to the
standard Toeplitz matrix, though analogous results can be stated in terms
of the enhanced version.

Note that there exists a polylogarithmic size circuit (using logical gates,
AND, NAND, OR, NOR, XOR, NXOR) representation of the constructed
Bloom filter that represents the value one (and the address) of each (and
therefore of all) of the entries in the Bloom filter. Thus, the succinct repre-
sentation using Bloom filter, can be stated in terms of succinct circuits, as
assumed in [10], [22].

Definition 1. Let n be the number of nodes in a graph G(V,E). Vertices
identifier i ∈ V respects, 1 ≤ i ≤ n, and an edge identifier (i, j) ∈ E respects,
1 ≤ i < j ≤ n. A random string defines the values of the integers a and b for
ha,b, each expressed by a polylogarithmic number of bits (e.g., 2 log3(n)) that
are exposed as the parameters of the universal hash function ha,b. In addition,
log(n) integers each of log(n) bits that define the identities of vertices of a
clique with log(n) vertices in the graph G.

Given a hash function ha,b and log(n) numbers, vi1, vi2, . . . , vi log(n) that
represent vertices in a clique of log(n) vertices, the graph G is defined as
follows:

A binary array SG of 2 log2(n) (later we use other polylogarithmic sizes,
e.g., 2 log3(n)) bits, where all bits are zero but the bits SG[ha,b(vij, vik)], which
are set to have value one. The array SG is a succinct representation of
G(V,E), where V = 1, 2, . . . , n and E is the set of undirected edges (u, v)
(u < v) for which SG[ha,b(u, v)] = 1, where ha,b(u, v) = ha,b(u+ v log(n)).

The output consists of a and b and an array SG of 2 log2(n) bits (that
correspond to a Bloom filter), such that each bit with value one in SG at
index l corresponds to at least one edge (i, j), i < j, between two vertices in
the clique, for which ha,b(i, j) = l.
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Note that a, b and the clique edges, defined by the input string, define the
bits values of the SG. The SG is an array of 2 log2(n) (or e.g., 2 log3(n)) bits,
such that a bit with index l has a value one iff there is a clique edge (i, j) for
which ha,b(i, j) = l (or hr1(i, j) = l when the Toeplitz matrix is used).

Note that after the clique edge insertions, an edge of the n nodes graph
exists with probability α, where α is the ratio of number of ones in SG
over the total number of entries in SG. α can be tuned to imply (w.h.p)
the univalent of the graph to consist of no clique of size log(n) but the one
embedded, as described next.

An important issue to note: The probability space of the graphs G defined
by the mapping above is not the well-known G(n, p) (for p = α), since the
probabilities of edges to exist might not be independent. The independence
(approximation) is based on the uniform distribution yielded by the universal
hash function used to construct SG, see, e.g., [5], [17], [21].

To increase the probability for univalence, namely, one clique w.h.p, SG
should contain more zeros than ones. In the sequel, we suggest replacing the
2 log2(n) bits in SG to 2k0 log

2(n) bits.

4. Singularity of the log(n) Planted Clique

In this section, we prove that the uniqueness of the (plant) clique solution
is implied by α ≤ 1/(2k0), k0 = log(n).

Our one way function is defined by:
• Instance. A binary array SG of 2 log3(n) entries and h, where h is defined
by a, b and ph

2 in the case of the Carter and Wegman universal hash function
ha,b or r1 in the case of hr1 of a Toeplitz hash. In addition, a permutation
definition perm for the log(n) vertices of the clique.

– The output of the OWF is the instance.

• Generation. Generate SG a binary array of 2 log3(n) entries. SG encodes
log(n) randomly chosen vertices and randomly chosen hash function parame-
ters (according to the input random string) having the value one in all entries

2A convention for choosing the smallest qualified ph is used whenever ph value is not
explicitly defined.
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that correspond, utilizing h, to an edge of the clique; all the rest of the entries
are zeros.

– The input random string of the OWF. A random string used to define:
(1) log(n) distinct random vertices identities defined by the input random
string according to the permutation index described in [8] used to define the
first log(n) vertices in a permutation. Let perm be the permutation of these
log(n) vertices that imply a sorted version of them3. In the sequel, we use
Extract Distinct log(n) Vertices for the procedure above that is used to ex-
tract the log(n) vertices and perm. (2) The following suffix of the random
string defines the hash function parameters, log(2 log3(n)) bits for a, b in case
of ha,b or 2 log(n) bits for r1.

• Solution. A set of log(n) vertices arranged according to perm that can be
used to generate SG using the generation process above.

Theorem 4.1. For the graphs defined in Definition 1 there exists α ≤
1/(2k0), where k0 is at most polylogarithmic in n, and n ≥ n0, for which
the probability of having an additional non-planted clique of size log(n) en-
coded by SG, assuming independent uniform probability of edge existence, is
less than 2(c2c)/(2c)c−1 where c = log(n).

Proof. The proof assumes independence of probabilities of edge existence,
as in the standard definition of a random graph G(n, p). The assumption
is based on (the approximate) uniform distribution yielded by the universal
hash function used to construct SG, see, e.g., [5], [17], [21].
We compute an upper bound on the probability that the output graph con-
tains one or more non-planted cliques of size log(n). We call such clique a
bad clique. We compute for each k ∈ [1, log(n)], an upper bound on the
probability that the graph contains a bad clique that has exactly k vertices
that are not in the planted clique. We then sum up all the upper bounds to
have an upper bound on the probability that the output graph contains a
bad clique.
• k = 1. The bad clique contains exactly log(n)−1 vertices of the planted one
and one vertex that is not in the planted clique. The probability that node v

3Outputing perm as part of the instance allows exact reversibility to the input random
string, once vertices clique are revealed.
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is not in the planted clique and log(n)−1 specific vertices in the planted clique
form such a bad clique is αlog(n)−1. Hence, by the union bound, the probabil-
ity of such a bad clique is bounded from above by (n− log(n)) log(n)αlog(n)−1.
• k = 2. In this case the probability that two nodes u, v not in the planted
clique are connected to each other and also to a given subset of k − 2 nodes
in the planted clique is α2 log(n)−3; Since 2 log(n)− 3 non planted edges must
be in the graph as follows: 2 log(n)− 4 connecting u and v to k− 2 nodes in
the planted graph, plus the edge (u, v). Using the union bound over all pairs
of nodes not in the clique and all subsets of log(n) − 2 nodes in the clique,
we get: (

n− log(n)

2

)(
log(n)

2

)(
α2 log(n)−3

)
• For arbitrary k ∈ [2, log(n)], the probability that the graph contains a clique
consisting of specific k vertices not in the planted clique and specific log(n)−k
vertices in the plated clique is α(k(log(n)−k)+(k2)). By the union bound over all
possible combinations, we get that this probability is bounded by(

n− log(n)

k

)(
log(n)

k

)(
α(k(log(n)−k)+(k2))

)
Summing up the probabilities for all k ∈ [1, log(n)] yields

log(n)∑
k=1

[(
n− log(n)

k

)(
log(n)

k

)(
α(k(log(n)−k)+(k2))

)]
(2)

When k0 = log(n), α ≤ 1/(2 log(n)), the elements in the sum can be
upper bounded by: (n log(n))k/(2 log(n))k(log(n)−(k+1)/2). nk upper bounds
the first binomial, and the second binomial is upper bound by logk(n). The
power of the fraction is k(log(n)− (k + 1)/2).

n = 2c, yields that the k’th element in the sum is ((c2c)k)/(2c)k(c−(k+1)/2).
For big enough c, e.g., c = 64, the result for k = 1 is less than 2−371, for
k = 2, less than 2−735, for k = 3, 2−1092, and for the last element of the sum,
k = c = 64, the probability is less than 2−9512, thus, approaching zero with
the growth of k in the sum.

The ratio among an element in the sum over the previous element is:
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[(c2c)(k+1)/(2c)(k+1)(c−((k+1)+1)/2)]/[(c2c)k)/(2c)k(c−(k+1)/2)] = c2c/(2c)c−(k+2)/2

(3)
Larger the k smaller the ratio, consider the last elements, where k = c−1,

then the ratio is c2c/((2c)c−(c+1)/2)) = c2c/(2c)(c/2)−1. When c = 64, the
smallest ratio is 2−147, much smaller than 1/2, and is smaller than 1/2 for
every c > 8. When the ratio is always less than or equal to 1/2, we can
bound the sum by doubling the first element of the sum.

Thus, the sum of the first log(n) elements is less than 2(c2c)/(2c)c−1.
Therefore, for n = 264, the probability for a univalent solution is greater
than 1− 2−370.

Note that when k0 = log(n), the number of bits in SG is 2 log3(n), and,
therefore, polylogarithmic. Also, observe that the number of edges in the im-
plicitly defined graph is Θ(n2/ log(n)), exponentially more than the Θ(log2 n)
edges of the planted clique. Note further that our probabilistic analysis for
univalence is for the expected case rather than in the worst case, which is a
benefit in the scope of one-way functions.

The following conjecture is based on the quoted citation from [22] “Our
results suggest that, as a rule, succinct representations have the effect of
precisely exponentiating the complexity (time or space) of graph properties.”

The function defined by the input and output above is a specific (Bloom
Filter based) succinct representation of the log(n) clique. A clique of size
three, namely, the graph property of having a triangle, is proven in [10] to be
in NP for both upper and lower bounds when the graph is represented in a
certain succinct form. We conjecture that our succinct representation of the
log(n) clique is also NP hard.

As the symmetry among nodes’ identities yields indifference in the iden-
tities to the solution of an instance, to the clique’s existence or finding, G
instances are also hard on average.

We use this conjuncture in every one of the next sections, assuming the
obtained succinct representation of the planted log(n) clique instances are
NP hard on average and do not reveal the clique planted in them. We prove
that with high probability, no clique other than the planted clique is encoded
in an instance.

In terms of the equivalence sets, the set of edges of G mapped to the i’th
entry SG[i] = 0 is an empty set. Each entry SG[i] in SG with a value of one
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represents a distinct set of edges of G of approximately (n2 − n)/(4 log3(n))
edges.

Roughly speaking, we next aim to blare the information associated with
each bit of value one ofGS[i] by using several hash functions for mapping each
edge to a binary array, and later even avoid the exposure of the parameters
of the hash functions. The entropy [24] grows as we use a smaller number
of bits in the binary array to represent the same number of random bits.
Similarly, the Kolmogorov complexity [14] is higher when the number of bits
in the binary array is smaller while the number of random bits encoded stays
the same, leading to incompressibility.

In the next sections, we reduce the instance number of bits while preserv-
ing the high probability for the univalent of the planted clique and keeping
the number of edges in the implicit graph exponentially larger than the in-
stance size. In particular, we preserve (or enlarge) the number of edges to
be qualified as edges in the explicit graph.

Black-boxing heuristics were suggested in e.g., [23]. Consider an oracle
ORC that answers queries on whether an edge (i, j) exists in a graph G.
Consider further that ORC uses the Bloom Filter succinct representation
to answer queries. Thus, eliminating any information that the exposure of
the Bloom Filter binary array and the hash functions may reveal. Then,
we may obtain the following theorem that assumes (the approximation) of
independence among edge existence in the explicit graph.

Theorem 4.2. The number of queries needed to reveal a log(n) planted clique
by querying the oracle ORC that uses polylogarithmic Bloom filter succinct
representation for answering queries is exponential in the Bloom filter size.

Proof. A sequence of queries may identify a planted clique either by querying
(log2(n)− log(n))/2 edges that form a clique or querying and identifying all
edges that are not part of the clique which form a complementary set of
edges to the clique. The complementary set strategy requires Θ(n2− log2(n))
queries, which is exponential in the ORC memory. To identify a clique by
querying the clique edges, there must exist a query on one of the clique
edges, say (i, j), for which a first positive answer is obtained (note that the
answer is “laconic” and does not reveal that the edge is a clique edge); the
probability of querying on the first clique edge and receiving a positive answer
is Θ(log2(n)/n2). Therefore, the expected number of queries is exponential
in the succinct representation employed by ORC.

10



The next chapters are heuristics for the ORC abstraction and usage sce-
nario.

5. Towards Black-boxing the Binary Array

Bloom filters benefit from using several hash functions to reduce the false-
positive probability and use an array length that fits the number of the hash
functions to yield α = 1/2. Using several binary arrays and hash functions
can yield a more balanced number of ones and zeros in the succinct graph
representation. Our concern is establishing univalence while avoiding the
discovery of the planted clique by polynomial time algorithms. Hash function
black-boxing heuristics (e.g., [23]) serves as our goal rather than reducing the
false-positive probability. Thus, we suggest a heuristic black-boxing of the
SG array content to have the highest entropy, using several Bloom filters,
SG1, SG2, . . . , SGf , each SGi employing an independently chosen at random
hash function while keeping the univalence as described next.

Given that the number of elements to be hashed is |Ec| = (log2(n) −
log(n))/2, we choose SGi, to employ a binary array of size m = |Ec|/ ln(n)
entries, which is the optimal size when SGi uses one hash function. Further-
more, the choice of m implies α = 1/2.

To reduce the probability of outputting a positive answer, we output a
positive answer iff every SGi Bloom filter outputs a positive answer. To keep
the arguments of Theorem 4.1, we use f Bloom filters to obtain the proba-
bility of α for a positive answer. A positive answer from the Bloom filter is
obtained only when all f hash functions return one. Thus, α = ((log2(n) −
log(n))/2)/(2 log3(n)) = (1/2)f , yielding f = 2 + log(log(n)), thus, polylog-
arithmic size of memory, (|Ec|/ ln(2))f = (|Ec|/ ln(2))(2 + log(log(n))). The
generation process is, therefore, polylogarithmic.

Here our one way function is defined by:

• Instance. f binary arrays SG1, SG2, . . . , SGf , each of (log2(n)−log(n))/ ln(2)
bits, where f = 2+ log(log(n)). In addition, f = 2+ log(log(n)) descriptions
(parameters) for hash functions h1, h2, . . . , hf . Where the description of h
is defined by a, b, and ph in the case of the universal Carter and Wegman
definition of the hash function ha,b described above, and r1 in the case of
Toeplitz, hr1 . In addition, a permutation definition perm for the log(n) ver-
tices of the clique.
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– The output of the OWF is the instance.

• Generation. Randomly generate v1, v2, . . . , vlog(n) distinct vertices each in
the range 1 to n. Randomly generate the parameters for h1, h2, . . . , hf . Gen-
erate f binary arrays SG1, SG2, . . . , SGf , each of (log2(n) − log(n))/ ln(2)
bits, where f = 2 + log(log(n)). Every of SGis uses hi to encode the edges
of the clique defined by v1, v2, . . . , vlog(n); having the value one in all entries
that correspond when utilizing hi, to an edge of the clique; all the rest of the
entries of SGi are zeros.

– The input random string of the OWF. A random string used to define:
(1) Extract Distinct log(n) Vertices from the random input string, and com-
pute perm, their permutation with relation to their sorted permutation.
(2) The following suffix of the random strings defines f hash functions pa-
rameters, either two log(2 log3(n)) bits for a, b in case of ha,b for each of the
f functions, or 2 log(n) bits for r1 for each of the f functions.

• Solution. A set of log(n) vertices that can be used to generate SG1, SG2, . . . , SGf

when coupled with h1, h2, . . . , hf using the generation process above

Theorem 4.1 implies univalence after black-boxing the binary array as the
probability for finding the value one (and therefore also zero) in the original
one array version is identical to returning the value one as a result of finding
one in every SGi, when using hi over the queried edge.

6. Towards Black-boxing the Hash Parameters

Next, we show that the singularity of the planted clique is preserved
even when the universal hash parameters are unraveled; a function of the
unraveled planted clique edges defines the parameters. Thus, Black-boxing
the hash functions also (see, e.g., [23]).

The number of possible values for the parameters of a universal hash
function, in the case of Carter and Wegman definition, is hf1 = (2 log3(n))2,
and the number of random bits used to define hf1 is 2 + 6 log(log(n)) bits,
each edge of the clique is represented by 2 log(n) > 2+6 log log(n) bits. Thus,
we can use the random bits related to the planted clique, possibly bits that
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are a function of three distinct clique edges that form a triangle4 bitwise xor
them to define the parameters of hf1.

Similarly, the number of possible values for the parameters of a universal
hash function, in the case of Toeplitz, is hf2 = 22 log(n) (in the original form,
a small factor more in our suggested enhanced form). The number of ran-
dom bits used to define hf2 is 2 log(n) bits; thus, we can use the xor of the
three first (say, according to their integer values) distinct clique edges, each
of which is not yet used for defining the hash functions parameters.

Here our one way function is defined by:

• Instance. f binary arrays SG1, SG2, . . . , SGf , each of (log2(n)−log(n))/ ln(2)
bits, where f = 1+log(log(n))/2. In addition, a permutation definition perm
for the log(n) vertices of the clique.

– The output of the OWF is the instance.

• Generation. Randomly generate a sorted vector v1, v2, . . . , vlog(n) of distinct
vertices each in the range 1 to n. Produce a sorted array, Ec of (log2(n) −
log(n))/2 entries, (vi, vj), edges of the clique. Let tae1, tae2, . . . be a vector
of triangles of distinct clique edges ordered lexicographically by their indices.
The number of such triangles is |Ec|/3. For j = 0, 1, . . . compute tae3j+1 ⊕
tae3j+2⊕ tae3j+3 to generate the parameters for hj+1, generating parameters
for h1, h2, . . . , hf . As the number of triangles is (log2(n) − log(n))/6, that
is greater than f = 1 + log(log(n))/2, and at most three triangles suffice to
encode the parameters (a, b, p) or r1 of a hash function, the parameters of all
hash functions can be defined by the triples.

Generate f binary arrays SG1, SG2, . . . , SGf , each of (log2(n)−log(n))/ ln(2)
bits, where f = 1+ log(log(n))/2. Every of SGis uses hi to encode the edges
of the clique defined by v1, v2, . . . , vlog(n); having the value one in all entries
that correspond, utilizing hi, to an edge of the clique; all the rest of the
entries of SGi are zeros.

4Triangles are NP to be found in succinct graph representation [10], which yields an
extra difficulty to be discovered in the (masked) succinctly represented instance. Other
choices for defining the hash parameters as a function of the random clique vertices are
possible.
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– The input random string of the OWF. A random string used to define
log(n) distinct vertices using the Extract Distinct log(n) Vertices over the
random input string.

• Solution. A set of log(n) vertices, v1, v2, . . . , vlog(n) that can be used to gen-
erate the instance SG1, SG2, . . . , SGf when coupled with the h1, h2, . . . , hf

that are generated from the clique edges formed among v1, v2, . . . , vlog(n), as
defined in the generation process.

Theorem 6.1. There are polylogatrimtic in n number of black-boxed arrays
and polylogarithmic black-boxed hash function parameters, implying with a
high probability that the planted clique is the only solution for an instance.

Proof. Theorem 4.1 implies univalence when the hash parameters used for
planting the clique are considered. Considering all possible non planted
cliques

(
n

log(n)

)
−1 < nlog(n), each defines (random but correlated with the ran-

dom clique vertices identities) hash function parameters that yield a probabil-
ity (2 log(n))(log

2(n)−log(n))/2, to form a clique. The additional probability due
to black-boxing the hash parameters is bounded by nlog(n)/(2 log(n))(log

2(n)−log(n))/2

which is 2(c
2+c)/2c−(c2−c)/2, where c = log(n). When c = 64, the additional

probability due to black-boxing the hash function is 2−10016.

7. Self Masking for Further Enhancement of Black-boxing

Consider an instance being only SG where SG = SG1 ⊕ SG2 . . .⊕ SGf .
When assuming symmetry due to the approximate uniform independent
probability of the resulting xored bits of SG, then the number of possible
SG’s is 2(log

2(n)−log(n))/ ln(2). The number of possible cliques of log(n) vertices
is
(

n
log(n)

)
.

Thus, the probability that a clique is mapped to a certain SG is:
(

n
log(n)

)
/(2(log

2(n)−log(n))/ ln(2)).

When n = 264 the probability is upper bounded by 2−2044.

Here our one way function is defined by:

• Instance. A binary array SG, of (log2(n)− log(n))/ ln(2) bits. In addition,
a permutation definition perm for the log(n) vertices of the clique.

– The output of the OWF is the instance.
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• Generation. Randomly generate a sorted vector v1, v2, . . . , vlog(n) of distinct
vertices each in the range 1 to n. Produce a sorted array, Ec of (log2(n) −
log(n))/2 entries, (vi, vj), edges of the clique. Let tae1, tae2, . . . be a vector
of triangles of distinct clique edges ordered lexicographically by their indices.
The number of such triangles is |Ec|/3. For j = 0, 1, . . . compute tae3j+1 ⊕
tae3j+2⊕ tae3j+3 to generate the parameters for hj+1, generating parameters
for h1, h2, . . . , hf . As the number of triangles is (log2(n)− log(n))/6, that is
greater than f = 1+ log(log(n))/2, the parameters of all hash functions can
be defined by the triples.

Generate f binary arrays SG1, SG2, . . . , SGf , each of (log2(n)−log(n))/ ln(2)
bits, where f = 1+ log(log(n))/2. Every of SGis uses hi to encode the edges
of the clique defined by v1, v2, . . . , vlog(n); having the value one in all entries
that correspond, utilizing hi, to an edge of the clique; all the rest of the
entries of SGi are zeros.

Generate SG = G1 ⊕ SG2 ⊕ . . . SGf .

– The input random string of the OWF. A random string used to define
log(n) distinct vertices using the Extract Distinct log(n) Vertices over the
random input string.

• Solution. A set of log(n) vertices, v1, v2, . . . , vlog(n) that can be used to gen-
erate the instance SG1, SG2, . . . , SGf when coupled with the h1, h2, . . . , hl

that are generated from the clique edges formed among v1, v2, . . . , vlog(n), as
defined in the generation process. Such that SG = G1 ⊕ SG2 ⊕ . . . SGf .

Univalent and Birthday paradox. Before analyzing the probability of
collision existence being very close to one, by the negligible probability that
a value of SG will be associated with a clique, the probability of a clique
being associated with a distinct SG is negligibly less than 1.

Still, when considering the birthday paradox, the probability of finding
any set (of two or more) cliques that yield the same SG is high as we calculate
next, but still, finding the colliding instance can be a challenge. A commit-
ment can be based on several instances to reverse to ensure that several have
no collisions, see e.g., [2].

The collision probability is approximately:

1− e−((n2−n)/2)(((n2−n)/2)−1)/(2·2(log2(n)−log(n))/ ln(2))
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Which is close to one, when, for example, n = 264.

8. Discussion

One may use exponential preprocessing to construct an exponential lookup
table, computing the result for every possible input set of log(n) vertices; such
preprocessing requires memory for storing approximately 2(log

2(n)−log(n))/2 val-
ues. Obviously, for every OWF candidate, reversing an instance requires only
O(1) operations once such (exponential) preprocessing is done.

On the other hand, when exponential preprocessing and exponential pro-
cessing are not feasible at any stage, we speculate that finding the planted
cliques is a nonfeasible (exponential) challenge to cope with.

We cannot anticipate all possible algorithms that may be used to reverse
an instance; moreover, proving that no such algorithm exists implies P ̸=
NP .

Lastly, observe that attacks can take a different approach than trying to
solve an instance directly; see, e.g., [16] in another context, for the useful
great idea of solving different randomly chosen instances to solve a given
one; the goal of [16] is proving hardness on average. In our scope, a possi-
ble attack may be based on algorithm that uses several, logq(n), for some
constant q, random (sorted) vectors, cli, each of log(n) distinct vertices,
cl1, cl2, . . . , cllogq(n), yielding polynomial time computation to compute a poly-
nomial number of outputs inst1, inst2, . . . , instlogq(n). The attack then may
use (cli, insti) as points in, say, an approximation function F (x, y). F (x, y)
attempts, we speculate unsuccessfully, to reflect the result of the construction
of the OWF . If no two (cli, insti), (clj, insti), cli ̸= clj, despite the birthday
paradox analysis, then the definition of F−1(x, y) maybe, but we speculate
unlikely be, feasible.
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