
ar
X

iv
:s

ub
m

it/
63

52
17

7
 [

cs
.C

C
]

 1
0

A
pr

 2
02

5

Deterministic factorization of constant-depth algebraic

circuits in subexponential time

Somnath Bhattacharjee * Mrinal Kumar † Varun Ramanathan†

Ramprasad Saptharishi† Shubhangi Saraf ‡

Abstract

While efficient randomized algorithms for factorization of polynomials given by algebraic

circuits have been known for decades, obtaining an even slightly non-trivial deterministic algo-

rithm for this problem has remained an open question of great interest. This is true even when

the input algebraic circuit has additional structure, for instance, when it is a constant-depth

circuit. Indeed, no efficient deterministic algorithms are known even for the seemingly easier

problem of factoring sparse polynomials or even the problem of testing the irreducibility of

sparse polynomials.

In this work, we make progress on these questions: we design a deterministic algorithm

that runs in subexponential time, and when given as input a constant-depth algebraic circuit

C over the field of rational numbers, it outputs algebraic circuits (of potentially unbounded

depth) for all the irreducible factors of C, together with their multiplicities. In particular, we

give the first subexponential time deterministic algorithm for factoring sparse polynomials.

For our proofs, we rely on a finer understanding of the structure of power series roots of

constant-depth circuits and the analysis of the Kabanets-Impagliazzo generator. In particular,

we show that the Kabanets-Impagliazzo generator constructed using low-degree hard polyno-

mials (explicitly constructed in the work of Limaye, Srinivasan & Tavenas) preserves not only

the non-zeroness of small constant-depth circuits (as shown by Chou, Kumar & Solomon), but

also their irreducibility and the irreducibility of their factors.

*University of Toronto, Canada. Email: somnath.bhattacharjee@mail.utoronto.ca
†Tata Institute of Fundamental Research, Mumbai, India. Email: {mrinal, varun.ramanathan,

ramprasad}@tifr.res.in. Research supported by the Department of Atomic Energy, Government of India, un-

der project number RTI400112, and in part by Google and SERB Research Grants.
‡University of Toronto, Canada. Email: shubhangi.saraf@utoronto.ca

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 44 (2025)

http://arxiv.org/submit/6352177/pdf

Contents

1 Introduction 3

1.1 Our results . 5

1.2 Related prior work . 7

2 Overview of proofs 9

2.1 Restricting to roots . 9

2.2 Analyzing the KI generator on such circuits . 10

2.3 Computing general factors . 11

3 Standard preliminaries 13

3.1 Notation . 13

3.2 Truncation . 13

3.3 Polynomial Identity Lemma . 14

3.4 Interpolation . 14

3.5 Strassen’s division elimination . 15

3.6 Resultant and Discriminant . 15

3.7 Gauss’ lemma . 17

3.8 The Kabanets-Impagliazzo generator . 17

3.9 Lower bounds and PIT for constant-depth circuits . 18

4 Preliminaries for polynomial factorization 18

4.1 Regularized polynomials . 18

4.2 Squarefree decomposition . 19

4.3 Newton iteration . 19

4.4 A lemma of Chou, Kumar & Solomon . 21

4.5 Deterministic factorization . 22

5 Algorithm 23

5.1 Main theorems and high-level overview . 23

5.1.1 High-level overview of the algorithm . 24

5.2 The algorithm . 26

5.3 Algorithm for factors of squarefree polynomials . 26

5.4 Algorithm for obtaining irreducible factors from the right univariate projections . . 27

6 Technical building blocks 28

6.1 Properties of roots modulo Tk . 28

6.2 Complexity of low degree homogeneous components of roots 29

2

6.2.1 Why do we need the quadratic convergence version of Newton iteration? . . 33

7 Warm-up: preserving true roots under variable reduction 33

8 Preserving irreducibility under variable reduction 38

8.1 From irreducibility testing to divisibility tests . 39

8.2 From divisibility testing to polynomial identity tests 41

8.3 Building up to the proof of Theorem 5.1 . 45

8.4 Proof of Theorem 5.1 . 49

9 Proof of correctness of the algorithm 50

9.1 Analysis of Algorithm 3 . 50

9.1.1 Linear system for computing the unique minimal polynomial 51

9.2 Analysis of Algorithm 2 . 55

9.3 Analysis of Algorithm 1 . 56

1 Introduction

The main problem of interest in this work is that of polynomial factorization — given a polynomial

as input, output its decomposition into a product of irreducible polynomials.

For this paper, we work in the setting where the input is a multivariate polynomial which

is specified by a (small) algebraic circuit computing it, and we are over the field Q of rational

numbers. This problem saw significant progress starting in the 1980s where a sequence of results

culminating in the works of Kaltofen [Kal89] and Kaltofen & Trager [KT90] gave a randomized

algorithm that when given a size s algebraic circuit C computing an n variate degree d polynomial

over Q, terminated in poly(s, d, n) time and output algebraic circuits for all the irreducible factors

of C (together with their multiplicities). A surprising fact that is implicit in these results is a closure

result for polynomials computable by small circuits - all irreducible factors of C have algebraic

circuits of size poly(s, d, n). This is necessary for us to be able to entertain any hopes of having a

polynomial time algorithm for this problem since a priori it is not even clear if there is a description

of the output (namely, the irreducible factors of C) that is polynomially bounded in the input

parameters s, d, n.

These polynomial factorization algorithms represent a significant landmark in our understand-

ing of a fundamental problem in computational algebra on their own. However, in hindsight,

the impact of this line of research seems to go far beyond this original context - these results

and the techniques discovered in the course of their proofs have since found many diverse ap-

plications in algorithm design, pseudorandomness, coding theory and complexity theory, e.g.

[Sud97, GS99, Ale05, Bog05, DGV24].

3

Among the most important problems in this broad area of polynomial factorization that con-

tinue to be open is that of derandomizing the results of Kaltofen [Kal89] and Kaltofen & Trager

[KT90]. In fact, even before randomized factoring algorithms were studied for general circuits,

they were studied in the setting of sparse polynomials. A beautiful work by von zur Gathen and

Kaltofen [GK85] gave the first randomized factoring algorithm for sparse polynomials1. Even for

sparse polynomials, the problem of derandomizing these factoring algorithms is of great interest

and has received considerable attention over the last decade or two.

We now know from the work of Shpilka & Volkovich [SV10] that efficient deterministic poly-

nomial factorization is at least as hard as efficient deterministic polynomial identity testing- the

reduction simply being that to check whether a multivariate f (x) is non-zero, we check if the poly-

nomial (f (x) + yz) is irreducible. This connection clearly continues to hold for structured sub-

classes for algebraic circuits like formulas, branching programs, sparse polynomials and constant-

depth circuits. Thus, the task of derandomizing polynomial factorization for any such subclass

of circuits must necessarily be preceded by a non-trivial deterministic polynomial identity testing

algorithm for the subclass.

Perhaps a bit surprisingly, Kopparty, Saraf & Shpilka [KSS15] also showed a reduction in the

other direction - efficient deterministic polynomial identity testing for algebraic circuits implies

efficient deterministic polynomial factorization for algebraic circuits. This reduction between the

problems of polynomial factorization and polynomial identity testing continue to hold in both the

black box model (where we only have query access to the input algebraic circuits) and the white

box model (where we can look inside the given circuits). An important aspect of the reduction in

[KSS15] is that even for the task of factorizing polynomials computed by very structured circuits

like formulas, constant-depth circuits or even sparse polynomials, the PIT instances that we en-

counter on the way are for seemingly much more powerful circuit classes like algebraic branching

programs. Thus, non-trivial PIT algorithms for a structured circuit class do not immediately yield

a non-trivial deterministic algorithm for factorization of polynomials computed in this class.

A very natural example of this phenomenon is that of sparse polynomials (which are depth

2 circuits) and even general constant-depth circuits. For the case of sparse polynomials, we have

known polynomial-time PIT algorithms for a while from the work of Klivans & Spielman [KS01],

and for arbitrary constant-depth circuits, we also now have non-trivial deterministic algorithms

for polynomial identity testing of constant-depth circuits. These follow from the lower bounds

for constant-depth circuits in the recent work of Limaye, Srinivasan and Tavenas [LST21] and the

connections between hardness and derandomization for such circuits in the work of Chou, Kumar

and Solomon [CKS19]2. However, these deterministic polynomial identity tests do not seem to

immediately imply non-trivial deterministic factorization results for either sparse polynomials

1The running time obtained was polynomial in the sparsity of the factors
2An alternative deterministic subexponential time algorithm for PIT for constant-depth circuits was given by An-

drews and Forbes [AF22] in a subsequent work.

4

or polynomials computed by constant-depth circuits. In fact, the following seemingly simpler

question also appears to be open.

Question 1.1. Design a subexponential-time deterministic algorithm that when given a sparse polynomial

as input, decides if it is irreducible.

More generally, as Forbes & Shpilka mention (Questions 1.4 and 4.1 in [FS15]) in their sur-

vey on polynomial factorization, very natural questions around derandomization of polynomial

factorization algorithms are wide open.

1.1 Our results

Our main result in this paper addresses this question and more generally, the question of determin-

istic polynomial factorization for constant-depth circuits. More precisely, we prove the following.

Theorem 1.2 (Informal version of Theorem 5.2). For every constant ε > 0, constant ∆ ∈ N and

sufficiently large n, the following statement is true.

There is a deterministic algorithm that takes as input an algebraic circuit C over the field Q on n

variables with depth ∆, and size and degree poly(n), runs in time exp(O(nε)) and outputs algebraic

circuits (of potentially unbounded depth) for all irreducible factors of C, together with their multiplicities.

This result in particular also gives the first subexponential deterministic factoring algorithm

for sparse polynomials (which is the case when ∆ = 2).

At the heart of our proof is the deterministic construction of a variable reduction map that

reduces the number of variables in a constant-depth circuit substantially, while preserving its

factorization profile. The following theorem is our main technical result.3

Theorem 1.3 (Informal version of Theorem 5.1). For every ε > 0, every constant ∆ ∈ N and all

sufficiently large n, there is a polynomial map Γε,∆ : Qnε
→ Qn of degree o(log n) with the following

properties.

• Given ε, ∆, the map Γε,∆ can be constructed deterministically in time exp(O(nε)).

• Γε,∆ is a variable reduction map that preserves the irreducibility of n-variate polynomials that can

be computed by depth ∆ circuits of size and degree poly(n). In other words, an n-variate algebraic

circuit C of size and degree poly(n) is irreducible if and only if the nε-variate polynomial Ĉ obtained

from C by composing it with Γε,∆ is irreducible.

3The theorem follows immediately from Theorem 5.1 and our deterministic implementation of some (fairly stan-
dard) preprocessing steps in the factorization algorithm. In fact, by a slight modification of our proofs, a stronger
version of this theorem can be shown to be true where the time complexity of constructing the map Γε,∆ is quasipoly-
nomially bounded in n. However, this does not improve the overall time complexity of the algorithm in Theorem 1.2
since some steps in the algorithm, for instance, that of deterministic factorization of nε variate polynomials of degree
poly(n), still run in time exp(O(nε)).

5

• More generally, Γε,∆ is a variable reduction map that preserves the irreducibility of the factors of

n-variate polynomials that can be computed by depth ∆ circuits of size and degree poly(n).

Obtaining Theorem 1.2 from Theorem 1.3. The second item of the above theorem, when com-

bined with known deterministic factorization algorithms for nε-variate polynomials of degree at

most poly(n) that run in time nO(nε) (polynomial in the size of the dense representation of such

polynomials), essentially gives us a subexponential time deterministic irreducibility testing algo-

rithm for sparse polynomials, and more generally for constant-depth circuits. Similarly, the third

item of Theorem 1.3 can be combined with known ideas in algorithms for polynomial factorization

(with some effort) to give Theorem 1.2.

We end this section with a brief discussion of some quantitative and qualitative aspects of the

main theorems.

Improvements in time complexity. Given the reduction from polynomial identity testing to

polynomial factorization in [SV10], we know that one cannot hope to improve the running time

of the algorithm in Theorem 1.2 significantly for general constant-depth circuits, unless we have

significantly better deterministic polynomial identity testing algorithms for these problems. How-

ever, for the case of sparse polynomials, we have known polynomial time PIT algorithms for more

than two decades [KS01], and thus we can, in principle, expect faster factorization or irreducibility

testing algorithms for sparse polynomials. It is a very natural question to explore further.

Closure results for constant-depth circuits. We do not know if irreducible factors of polynomi-

als with small constant-depth circuits (or even the more restricted class of sparse polynomials)

must be computable by small constant-depth circuits, and Theorem 1.2 does not appear to shine

any light on such a closure result. As a consequence, the outputs of the algorithm in Theorem 1.2

are general unbounded depth circuits of polynomial size. In fact, we do not even know of non-

trivial upper bounds on the size of constant-depth circuits for irreducible factors of sparse polyno-

mials. It would be very interesting to obtain such closure results or to gather some evidence that

points towards such a statement being false.

Field dependence in Theorem 1.2. Our results in Theorem 1.2 are stated over the field of ratio-

nal numbers. However, the results hold a little more generally - our proofs continue to work over

any underlying field over which we have an efficient deterministic algorithm for factoring uni-

variate polynomials, over which the lower bounds of Limaye, Srinivasan & Tavenas [LST21] for

constant-depth circuits, the results of Andrews & Wigderson [AW24], and the Taylor-expansion-

based techniques of Chou, Kumar & Solomon [CKS19] continue to work. The field of rational

numbers satisfies all these properties. The results also continue to hold over finite fields of mod-

erately large characteristic (polynomially large in the degree and number of variables) since they

6

satisfy all the properties stated above. However, for our presentation in this paper, we just work

over the field of rational numbers and skip the minor technical changes needed to see the exten-

sion of the results to finite fields of moderately large characteristic.

1.2 Related prior work

Following the subexponential time deterministic PIT algorithms for constant-depth algebraic cir-

cuits that follow from the lower bounds in the work of Limaye, Srinivasan & Tavenas [LST21],

there has been a renewed interest in obtaining deterministic algorithms for factorization of constant-

depth circuits. This includes the results of Kumar, Ramanathan & Saptharishi [KRS23], who gave

a subexponential time deterministic algorithm to compute all constant-degree factors of polyno-

mials computed by constant-depth circuits and an alternative proof as well as a generalization of

this result by Dutta, Sinhababu & Thierauf [DST24]. However, these results do not appear to give

anything non-trivial for factors that are not low-degree.

Another result that is very relevant here is a work of Kumar, Ramanathan, Saptharishi & Volk

[KRSV24] that gave a deterministic subexponential time algorithm that on input a constant-depth

circuit outputs a list of circuits, of unbounded depth and with division gates, such that every

irreducible factor of the input polynomial is computed by some circuit in this list. However, a sig-

nificant drawback of this result is that the output list could contain circuits that do not correspond

to any factor of the input, or aren’t even valid circuits in the sense that they involve division by

a circuit that computes an identically zero polynomial. In particular, their algorithm does not im-

ply a deterministic subexponential time algorithm for testing irreducibility of a sparse polynomial

since even when the input is irreducible, the algorithm could output a collection of circuits of ten-

tative factors. However, in this case, none of the output circuits correspond to a true factor of the

input polynomial. Unfortunately, since the depth of these output circuits is potentially large (and

they contain division gates), we have no deterministic way of checking if there is a polynomial

in the output list that corresponds to a true factor of the input. Thus, the question of pruning the

output list deterministically in [KRSV24] to identify true factors is non-trivial and is essentially

open.

A recent work of Andrews & Wigderson [AW24] gives efficient parallel algorithms (essentially

constant-depth circuits) for a variety of problems related to polynomial factorization, such as GCD

and LCM computation of polynomials. As a consequence of their techniques, they show that

the resultant and the discriminant polynomials can be computed by constant-depth circuits of

polynomial size, and the squarefree part of a polynomial with small constant-depth circuits is a

small constant-depth circuit. The techniques of Andrews & Wigderson also give an alternative

proof of the results in [KRSV24]. However, it suffers from the same drawback as [KRSV24] - some

of the circuits in the output list might not correspond to any valid factors of the input, and might

not even be valid circuits since they might have a division by an identically zero circuit built

7

inside.

Even though the aforementioned results represent some interesting progress towards the ques-

tion of obtaining deterministic factorization of constant-depth circuits continues, it seems fair to

say that the original problem has largely remained open. In particular, these results do not say any-

thing at all about even the question of sparse irreducibility testing (Question 1.1), which seems like

a natural and possibly simpler intermediate step on the way to obtaining deterministic factoriza-

tion of constant-depth circuits.

Factoring of sparse polynomials has been studied for a long time and it was initiated by the

work of von zur Gathen and Kaltofen almost four decades ago [GK85]. This work gave the first

randomized factoring algorithm for sparse polynomials, and the running time obtained was poly-

nomial in the sparsity of the factors. Ever since this work, it has been an interesting question to

obtain deterministic factoring algorithms for sparse polynomials, especially since we have known

how to derandomize PIT for this class for a while.

There are special cases of sparse polynomials for which we do know some results on irre-

ducibility testing and factoring. The work of Bhargava, Saraf & Volkovich [BSV18] gave a quasipoly-

nomial time deterministic factoring algorithm for sparse polynomials where each variable has

bounded degree. This extends prior works by Shpilka & Volkovich [SV10] which gave determin-

istic factoring algorithms for multilinear sparse polynomials and Volkovich [Vol17] which deter-

ministic factoring algorithms for multiquadratic sparse polynomials.

As the main result of this paper (Theorem 1.2), we give a subexponential time deterministic

algorithm for factorizing polynomials computable by small constant-depth circuits and, in partic-

ular, sparse polynomials (which are equivalent to depth-2 circuits). On the way to the proof, we

obtain a deterministic subexponential time algorithm for testing the irreducibility of polynomials

computable by small constant-depth circuits. In terms of techniques, we rely on some of the in-

sights from prior work, e.g. [CKS19, KRS23, KRSV24, AW24] and introduce some new ideas on the

way that might have further applications for problems of this nature. In particular, for our proofs,

we crucially rely on technical observations about the structure of power series roots of polynomials

with small constant-depth circuits, and their interaction with tools from hardness-vs-randomness

for algebraic circuits, e.g. the Kabanets-Impagliazzo generator. As our main technical statement,

we show that this generator, when invoked with a low-degree polynomial that is hard for constant-

depth circuits (as constructed in [LST21]) not only preserves the non-zeroness of constant-depth

circuits4 (as was already known), but also preserves their irreducibility (and the irreducibility of

their factors).

In the next section, we discuss these techniques in greater detail and give an overview of the

proof of Theorem 1.2.

4For this, we need to assume that the circuit has undergone some initial preprocessing, which again is done using a
similar generator.

8

2 Overview of proofs

Almost all factorization algorithms proceed with some initial pre-processing to guarantee the fol-

lowing requirements:

• P(x, z) is squarefree and monic in z.

• We have that P(0, 0) = 0 and ∂z(P)(0, 0) 6= 0.

The above non-degeneracy conditions can typically be guaranteed relatively easily via a random-

ized algorithm. To do this deterministically, we use a recent result of Andrews & Wigderson

[AW24] (see Theorem 4.4) to get a squarefree decomposition of P. In fact, their theorem says

something more that is useful for us: the squarefree parts of P are computable by a small constant-

depth circuit since P is computable by a small constant-depth circuit. Moreover, we can obtain

this decomposition via a deterministic subexponential time algorithm that uses the now known

deterministic PIT algorithms for constant-depth circuits [LST21, AF22].

We also translate the x variables appropriately (again using deterministic PIT for constant-

depth circuits) to ensure that we are working with polynomials that are monic in z and each of the

squarefree parts remains squarefree even when all the x variables are set to zero.

We then invoke a univariate factorization algorithm to find a root of P(0, z), which for this

discussion we assume is zero. Furthermore, we replace each xi with xiT, for a fresh variable T, to

work with a polynomial of the form P(T, x, z). Note that P(0, x, z) ∈ F[z]; we will refer to such

polynomials as T-regularized.5

The general plan is to use Newton iteration, starting with ϕ0(T, x) = 0, to get “approxi-

mate roots” ϕk−1(T, x) satisfying degT(ϕk−1) < k and ϕk−1(T, x) = ϕ0(T, x) mod T such that

P(T, x, ϕk−1(T, x)) = 0 mod Tk. We can obtain a small circuit for ϕk−1, although not necessarily

one of constant depth. The hope is that, if k is large enough, then we can recover from ϕk−1 a true

factor of P(T, x, z).

2.1 Restricting to roots

Let us start by focusing on just extracting factors of P(T, x, z) of the form (z− f (T, x)). If f (T, x) =

ϕ0(T, x) mod T, then uniqueness of Newton Iteration guarantees that ϕk−1(T, x) = f (T, x) mod

Tk as well. This therefore leads to the following natural algorithm:

1. Compute a circuit for ϕk−1(T, x) for k > degT(P), with degT(ϕk−1) < k, via Newton Itera-

tion.

2. Check if P(T, x, ϕk−1(T, x)) = 0.

5More generally, we say that a polynomial in F[T, x, z] is T-regularized if every monomial with x-degree at least one
in the polynomial has T-degree at least one.

9

If it were the case that ϕk−1 was actually computable by a constant-depth circuit, then the circuit

P(T, x, ϕk−1) is also constant-depth circuit and we can check for zeroness via known subexpo-

nential time PIT for constant-depth circuits. Unfortunately, we do not (yet) know if ϕk−1(T, x) is

computable by small constant-depth circuits.

The main insight is to notice that the circuit for ϕk−1 that we obtain is structured enough that

perhaps we can show that P(T, x, ϕk−1(T, x))
?
= 0 can be tested via the same PIT nevertheless.

We show that we can analyze the standard Kabanets-Impagliazzo generator instantiated with a

suitable hard polynomial for such structured circuits and prove that it does preserve nonzeroness.

The details can be found in Section 7.

2.2 Analyzing the KI generator on such circuits

The main structural lemma that drives our analysis is the following that shows that “low degree

parts” of approximate roots can indeed be computed via not-too-large constant-depth circuits.

Lemma (Informal version of Lemma 6.3). Suppose ϕk−1(T, x) with degT ϕk−1 < k is an approximate

z-root of P(T, x, z) as above. Then, for every integer ℓ ≥ 0, there is a circuit Cℓ(T, x) of constant depth and

“not-too-large” size that agrees with ϕk−1 on all monomials of degree at most ℓ. That is,

Cℓ(T, x) = ϕk−1(T, x) mod 〈x〉ℓ ,

where “not-too-large” is poly(size(P), deg(P)) · (log k)poly(ℓ).

While this is reminiscent of a lemma of [CKS19] (Lemma 4.9) that allows one to argue that low-

degree components of a root have small constant-depth circuits, there is an important difference

in our statement: ϕk−1(T, x) is a root modulo Tk, whereas we want a small constant-depth circuit

to compute the root modulo 〈x〉ℓ i.e. a different set of variables. This difference demands a little

more care (see Section 6.2.1), although morally we still use a Taylor-expansion based approach

along the lines of [CKS19].

With the above lemma, we would be able to show that the Kabanets-Impagliazzo generator

will indeed preserve the nonzeroness of P(T, x, ϕk−1(T, x)) when instantiated with a hard polyno-

mial for constant-depth circuits.

Theorem (Informal version of Theorem 7.3). Let f be a polynomial that requires “large” constant-depth

circuits. Then,

P(T, x, ϕk−1(T, x)) 6= 0 =⇒ P(T, x, ϕk−1(T, x)) ◦KI f 6= 0

where KI f : F[x] → F[w] is the Kabanets-Impagliazzo generator instantiated with the polynomial f .

10

We now briefly outline why this is true. Let us define R(T, x) := P(T, x, ϕk−1(T, x)). To prove

the above lemma, assume on the contrary that the generator KI f did not preserve the non-zeroness

of R(T, x). By the standard hybrid argument (with additional substitutions), there are “easy-to-

compute” polynomials fi’s such that

R(f1, f2, . . . , fi−1, xi, fi+1, . . . , fn, T) 6= 0

but R(f1, f2, . . . , fi−1, f , fi+1, . . . , fn, T) = 0.

(fi+1, . . . , fn are just field constants). Therefore, the polynomial xi − f divides the polynomial

R(f1, . . . , fi−1, xi, fi+1, . . . , fn, T). At this point, we make use of the following result by Chou, Ku-

mar and Solomon (stated informally).

Theorem (Chou-Kumar-Solomon (follows immediately from Lemma 4.9)). Let R(w, y) be a non-

zero polynomial with R(w, g(w)) = 0 for some polynomial g of degree at most ℓ, with ∂yR(0, g(0)) 6= 0.

For all i ≤ ℓ, suppose there are small circuits Ci(w, y) such that

Ci(w, y) = ∂yi R mod 〈w〉ℓ.

If ℓ is “small”, then g is a “small” composition of the circuits C1, . . . , Cℓ. In particular, if ℓ is small and each

Ci is a small, constant-depth circuit, then g is also computable by a “small-ish”, constant-depth circuit.

For our setting, let R̃(w, y, T) = R(f1, f2, . . . , fi−1, y, fi+1, . . . , fn, T) which has y − f (w) as a

factor. Note that this is not a constant-depth circuit as R(T, x) = P(T, x, ϕk−1(T, x)) and ϕk−1 is

not known to have a constant-depth circuits. However, if deg(f) is small enough, then the above

theorem of Chou, Kumar and Solomon asserts that we can construct a constant-depth circuit for

(y − f (w)) if we are able to build constant-depth circuits for Hom≤deg(f)

(

∂yi R̃(w, y, T)
)

. For-

tunately, our main structural lemma states that low-degree homogeneous parts of ϕk−1 do have

not-too-large constant-depth circuits. Putting this together, we are able to assert that f (w) must

also be computable by a not-too-large constant-depth circuit, thus contradicting the hardness of f .

2.3 Computing general factors

For computing general factors, at a high level, the proof proceeds in three broad steps. We first

show a way of characterizing irreducibility of polynomials by (exponentially many) divisibility

tests involving the power series roots of these polynomials. We then show that these divisibility

tests can be reduced to PIT instances for circuits that might not be constant-depth, but have some

additional structure. And finally, in spite of being unable to show that these PIT instances are for

constant-depth circuits, we manage to show that the Kabanets-Impagliazzo hitting set generator

[KI04] invoked with low degree hardness for constant-depth circuits from [LST21] preserves the

11

non-zeroness of these PIT instances. This part of the proof again builds upon the techniques from

[CKS19]. We now discuss these steps in a bit more detail and refer to Section 8 for the full proof.

The main technical insight of our proof is that the Kabanets-Impagliazzo generator invoked

with low-degree hard polynomials for constant-depth circuits in fact preserves irreducibility of

small constant-depth circuits and their factors. Let us consider the polynomial P(0, 0, z) over the

algebraic closure Q, and let us assume this splits as (z− ζ1) · · · (z− ζd). Let ϕ(1)(T, x), . . . , ϕ(d)(T, x)

be the approximate root lifted from ζi — i.e., it satisfies P(T, x, ϕ(i)) = 0 mod Tk and ϕ(i)(0, 0) = ζi,

where k is large enough. Then, each true factor Q(T, x, z) of P(T, x, z) corresponds to some subset

SQ of these approximate roots. That is, we must have

Q(T, x, z) = ∏
i∈SQ

(z− ϕ(i)(T, x)) trunc Tk

where “ trunc Tk” denotes the operation of discarding all monomials that have degree k or more

in T. As a consequence, if P(T, x, z) is indeed irreducible, then for every subset ∅ 6= S ([d] we

have QS(T, x, z) does not divide P(T, x, z) as a polynomial, where

QS(T, x, z) = ∏
i∈S

(z− ϕ(i)(T, x)) trunc Tk .

Turns out, the non-divisibility of such QS, P can be expressed as an appropriate PIT via stan-

dard reductions from divisibility testing to PIT [For15, AW24]. Once again, this is not a PIT of a

constant-depth circuit due to the presence of the ϕ(i)(T, x) sub-circuits which are not known to

have small constant-depth circuits. Nevertheless, since we are able to show that ϕ(i)(T, x) has

enough structure to allow us to build small constant-depth circuits for their “low-degree” com-

ponents, we are able to argue that the Kabanets-Impagliazzo generator, when instantiated with

a sufficiently hard low-degree polynomial, will preserve the non-zeroness of such PIT instances.

Furthermore, our algorithms do not proceed by directly derandomizing these PIT instances since

there are exponentially many of them to deal with. We only use this reduction in the analysis of

our algorithms.

Overall, this yields a variable reduction (to nε variables, for any ε > 0) that allows us to

preserve the factorization pattern of any constant-depth circuit. From this, recovering circuits

(although not necessarily constant-depth) for the factors is relatively straightforward, given the

known algorithms for polynomial factorization.

Organization

The rest of the paper is organized as follows. We begin by recalling some standard notations and

preliminaries in Section 3, and some preliminaries related to polynomial factorization in Section 4.

We describe the details of our algorithms in Section 5, and discuss their analysis, assuming some

12

technical results in Section 9. We discuss the proof of these technical results in detail in Section 6,

Section 7 and Section 8.

For readers familiar with the general area of algebraic circuit complexity and some familiarity

with polynomial factorization algorithms, we recommend skipping the preliminaries and going

to Section 5, and then referring to Section 3 and Section 4 as and when needed.

3 Standard preliminaries

3.1 Notation

• Throughout the paper F denotes a field and Q denotes the field of rational numbers.

• We use letters like x, y, z to refer to formal variables and letters like a, b, c as constants, as

would be clear from the context. Boldface letters x, y, z, a, b etc. refer to tuples of such objects.

The arity of the tuple is generally specified unless it is clear from the context.

• We say that a multivariate polynomial P is monic in a specific variable y if the coefficient of

the highest degree monomial in y in P is a non-zero field constant.

• An algebraic circuit over a field F on variables x is a directed acyclic graph with internal

nodes being labeled by product (×) or sum (+), and the leaves (nodes of in-degree zero)

being labeled by variables in x or constants from F. All the fan-ins are unbounded.

Such a circuit computes a polynomial in a natural sense - a leaf computes the polynomial

that is equal to its label, a sum gate computes the sums of its inputs and a product gate

computes the product of its inputs. The size of an algebraic circuit equals the number of

edges in it and the depth equals the length of the longest path from a leaf to an output node

(a node of out-degree zero). We refer to the surveys [SY10, Sap15] for detailed discussions

on algebraic circuits.

• Polynomial identity testing or PIT refers to the decision problem where the input is an alge-

braic circuit, and the goal is to decide if the polynomial computed by the circuit is identically

zero.

• For a polynomial P and a variable y, degy(P) refers to the degree of P with respect to y.

Similarly, for a tuple x of variables, degx(P) refers to the total degree of P with respect to

variables in x.

3.2 Truncation

We start with the important, although non-standard definitions that are helpful in succinctly ex-

pressing our technical statements in the paper.

13

Definition 3.1 (Polynomial truncation). For a polynomial Q(x) ∈ R[x] and a positive integer k, Q trunc 〈x〉k

denotes the unique polynomial Q̃ with x-degree less than k such that Q̃ ≡ Q mod 〈x〉k. We extend this

notation to Q(T, x) ∈ F[x][T] (as well as power-series in F[x]JTK) and use Q trunc Tk to denote the

truncation interpreting Q(T, x) ∈ R[T] (or RJTK) for R = F[x]. ♦

While it is common to slightly overload notation and use mod 〈x〉k to also denote trunc 〈x〉k,

we choose to separate these notations for reasons of clarity.

3.3 Polynomial Identity Lemma

We now recall the statement of the polynomial identity lemma.

Lemma 3.2 (Polynomial Identity Lemma [Ore22, DL78, Sch80, Zip79]). Let P be an n-variate non-

zero polynomial of degree at most d over a field F. And, let S be any subset of F.

Then, the number of zeroes of P on the product set S× S× · · · × S is at most d|S|n−1. In particular, if

|S| > d, then P is non-zero on at least one point on S× S× · · · × S.

3.4 Interpolation

We now recall the standard interpolation lemma for extracting coefficients of univariates from

their evaluations.

Lemma 3.3 (Interpolation (cf. [Sap15, Lemma 5.3])). Let R be a commutative ring that contains a field

F of at least d + 1 elements, and let α0, . . . , αd be distinct field elements in F. Then, for each i ∈ {0, . . . , d},

there are constants βi0, . . . , βid ∈ F such that for every f (x) = f0 + f1x + · · ·+ fdxd ∈ R[x] we have

fi =
d

∑
j=0

βij · f (αj).

The following corollary invokes this lemma in some of the contexts that appear in our proof.

The proof is immediate from the lemma.

Corollary 3.4 (Standard consequences of interpolation). Let α0, . . . , αd be distinct elements in F. Then,

1. [Partial derivatives] If C(x, y) has degree d in the variable y, then the i-th order partial derivative

of C with respect to y can be expressed as an F[y]-linear combination of
{

C(x, αj) : j ∈ {0, . . . , d}
}

.

That is, there are polynomials µ0(y), . . . , µd(y) (not depending on C) of degree at most d such that

∂yi C(x, y) = µ0(y) · C(x, α0) + · · ·+ µd(y) · C(x, αd).

2. [Homogeneous components] Let C(x) be a degree d polynomial. Then, for any subset xS ⊆ x and

any i ∈ [d], the degree i homogeneous part of C with respect to xS, denoted by HomxS,i(C), can be

14

expressed as

HomxS,i(C) =
d

∑
j=0

βi,j · C(αj · xS, xS)

for some constants βi,j ∈ F (not depending on C).

3. [Truncation] Let C(x) be a degree d polynomial and let xS ⊆ x be a subset of variables. Then, for

any ℓ ∈ [d], the truncation C(x) trunc 〈xS〉
ℓ+1 can be expressed as

C(x) trunc 〈xS〉
ℓ+1 =

d

∑
j=0

γℓ,j · C(αj · xS, xS)

for some constants γℓ,j ∈ F (not depending on C).

In particular, if C is computable by a size s, depth ∆ circuit, then all of the above operations yield a circuit

of size poly(d, s) and depth ∆ +O(1).

3.5 Strassen’s division elimination

We recall a classical theorem of Strassen for division elimination in algebraic circuits.

Theorem 3.5 (Division elimination in algebraic circuits [Str73]). Let C be an algebraic circuit of size s

with division gates that computes a multivariate polynomial P of degree d over any sufficiently large field

F.

Then, there is an algebraic circuit Ĉ of size at most poly(s, d) that computes the polynomial P and does

not have any division gates.

As a matter of notation, algebraic circuits throughout this paper do not have division gates. We

explicitly mention if we have to deal with circuits with division gates at any point in our proof.

In our proofs, we rely on the following consequence of the above theorem. The proof easily

follows from the standard proof of Theorem 3.5, for instance in [SY10].

Lemma 3.6 (Algorithmic division elimination). Let F be any field.

There is a deterministic algorithm that takes as input algebraic circuits of size at most s computing n

variate polynomials A, B over F, a point u ∈ Fn and a degree parameter d such that (a) B divides A, (b)

the quotient A/B has degree at most d, and (c) B(u) 6= 0, and outputs a (division free) algebraic circuit for

the quotient A/B. Moreover, the algorithm runs in time poly(s, d).

3.6 Resultant and Discriminant

The notion of resultant and its close connection to GCD of two univariate polynomials plays an im-

portant role in our proof (and in most polynomial factorization algorithms). We start by recalling

15

the definition.

Definition 3.7 (Sylvester Matrix and Resultant). Let F be any field, and let P and Q be univariates over

F of degree equal to a ≥ 1 and b ≥ 1 respectively.

Let ΓP,Q : Fb × Fa → Fa+b be the F linear map that maps a pair (U, V) of univariates over F with

degree of U at most (b− 1) and degree of V at most (a − 1) to the polynomial (UP + VQ) of degree at

most (a + b− 1).

Then, the Sylvester matrix of P and Q is the (a + b)× (a + b) matrix for the F-linear map ΓP,Q, when

the inputs and the outputs are represented as their coefficient vectors.

And, the Resultant of P, Q is defined as the determinant of the Sylvester Matrix of P and Q. ♦

Clearly, the entries of the Sylvester matrix as defined above are the coefficients of P and Q.

In some applications in this paper, we end up invoking the notion of the resultant while work-

ing with multivariates P, Q. In these applications, we think of these multivariates as univariates

in one of the variables, with the coefficients coming from the field of rational functions in the other

variables. Unless otherwise clear from the context, we indicate the variable with respect to which

these definitions are invoked.

The resultant has a deep and extremely useful connection to the GCD of two polynomials as

the following classical theorem indicates. We refer to Chapter 6 in the book [vzGG13] for a proof.

Theorem 3.8 (Resultants and GCD [vzGG13, Corollary 6.20]). LetR be a unique factorization domain,

and let P, Q ∈ R[z] be non-zero polynomials. Then, degz(gcd(P, Q)) ≥ 1 if and only if Resy(P, Q) = 0,

where gcd(P, Q) ∈ R[z] and Resz(P, Q) ∈ R. Moreover, there exist polynomials A, B ∈ R[z] satisfying

Resz(P, Q) = AP + BQ.

A special case of the resultant that is very natural to study is when we consider the resultant of

a polynomial P(z) and its derivative dP
dz . This resultant is referred to as the discriminant of P, and

unless the derivative vanishes for trivial reasons (for instance over fields of small characteristic),

the discriminant captures the squarefreeness of P. More precisely, we have the following theorem.

Theorem 3.9 (Discriminant and squarefreeness [DSS22, Lemma 12]). Let F be any field of character-

istic zero, and let P(z) be a univariate over F of degree at least one. Then, P(z) is squarefree if and only if

its discriminant Resz(P, ∂P
∂z) is non-zero.

A beautiful result of Andrews and Wigderson shows that the resultant can be computed by a

constant-depth circuit.

Theorem 3.10 (Computing resultants via constant-depth circuits [AW24, Theorem 6.1]). Let F be

a field of characteristic zero. For a fixed ∆ ∈ N, there is a family of depth-∆ circuits {Cn}n∈N with size

≤ poly(n) such that the following is true. If f , g ∈ F[z] are degree-n univariate polynomials given by

their coefficients, then Cn takes the coefficients of f and g as input, and computes the resultant Resz(f , g).

16

3.7 Gauss’ lemma

The following basic lemma of Gauss is useful for us in our proof.

Lemma 3.11 (Gauss’ lemma [vzGG13, Section 6.2, Corollary 6.10]). Let R be a unique factorization

domain with the field of fractions K. Then, a monic polynomial P(z) is irreducible in R[z] if and only if it

is irreducible in K[z].

In particular, for any monic P(z), the factorization of P(z) into its irreducible factors in R[z] is identical

to the factorization of P(z) into its irreducible factors in K[z].

Moreover, for a monic P(z) ∈ K[z], its factors can also be assumed to be monic in z without

loss of generality.

3.8 The Kabanets-Impagliazzo generator

The Kabanets-Impagliazzo hitting set generator [KI04] for algebraic circuits is an adaptation of

the Nisan-Wigderson generator in classical complexity to the algebraic setting. It allows us to

obtain non-trivial derandomization for PIT for algebraic circuits from sufficiently hard explicit

polynomial families. More precisely, Kabanets & Impagliazzo showed in [KI04] that given an

explicit polynomial family that requires exponential size algebraic circuits, there is a deterministic

algorithm for PIT for algebraic circuits (with size and degree polynomially bounded in the number

of variables) that runs in quasipolynomial time.

This generator and the details of its analysis play an important role in the proofs in this paper.

We start by recalling the notion of combinatorial designs, and then define the generator.

Definition 3.12 (Combinatorial designs). Let n, σ, µ, ρ ∈ N. A family of subsets S = (S1, . . . , Sn) is a

(n, σ, µ, ρ) design if:

• ∀i ∈ [n] : Si ⊆ [µ]

• ∀i ∈ [n] : |Si| = σ

• For any i, j ∈ [n] s.t. i 6= j : |Si ∩ Sj| < ρ

♦

The following theorem gives an explicit construction of such designs.

Lemma 3.13 (Explicit construction of designs [NW94]). For any positive integers n, σ with n < 2σ,

there exists an explicit (n, σ, µ, ρ)-design with µ =
σ2

log n
and ρ = log n.

Moreover, each subset inside the design can be computed in poly(n, 2µ) time deterministically.

Definition 3.14 (KI-generator KIg,S [KI04]). Let F be a field, n, σ be positive integers with n < 2σ and

g(x) be a σ-variate polynomial. Let S = (S1, . . . , Sn) be an explicit (n, σ, µ, ρ)-design from Lemma 3.13.

17

The Kabanets-Impagliazzo generator given by g and S is a polynomial map KIg,S : Fµ → Fn defined by

w 7→ (g1(w), . . . , gn(w)), where for each i ∈ [n], gi(w) := g(wSi
) for wSi

:= {wj : j ∈ Si}. Thus,

KIg,S also defines a homomorphism from F[x1, . . . , xn] to F[w1, . . . , wµ] that maps each xi to gi(w). ♦

3.9 Lower bounds and PIT for constant-depth circuits

We now recall the results of [LST21] that prove superpolynomial lower bounds for constant-depth

circuits.

Theorem 3.15 (Lower bounds for constant-depth circuits [LST21, Corollary 4]). Suppose n, d ∈ N

with d ≤ log n/100 and F is a field with char(F) = 0 or greater than d. Then, for any product-depth

∆ ∈ N, there exists an explicit n-variate polynomial P(x1, . . . , xn) ∈ F[x1, . . . , xn] of degree d such that

any algebraic circuit of product-depth at most ∆ must have size at least ndexp(−O(∆))
.

In [CKS19], it was shown that explicit low degree hard polynomials for constant-depth circuits

as shown in the above theorem imply non-trivial deterministic PIT algorithms for constant-depth

algebraic circuits. An alternative route to achieving the same result was shown later by Andrews

& Forbes. We recall this theorem below.

Theorem 3.16 (Subexponential time deterministic PIT for constant-depth circuits [LST21, AF22]).

Let ε > 0 be a real number and F a field of characteristic 0. Let C be an algebraic circuit of size s ≤

poly(n) and depth ∆ = o(log log log n), computing an n-variate polynomial . Then, there is a determin-

istic algorithm that can decide whether the polynomial computed by C is identically zero or not, in time

(s∆+1 · n)O(nε).

4 Preliminaries for polynomial factorization

4.1 Regularized polynomials

Definition 4.1 (T-regularized polynomials and non-degenerate, truncated, approximate z-roots of

order k). Let P(T, x, z) be a polynomial in F[T, x, z] that is monic in the variable z, and Φ(T, x) ∈ F[x]JTK

be a power series.

• Φ(T, x) is said to be an approximate z-root of order k with respect to T if

P(T, x, Φ(T, x)) ≡ 0 mod Tk.

Moreover, an approximate z-root Φ of order k is truncated if degT Φ < k. Throughout the pa-

per, approximate roots will be defined modulo Tk. For the sake of brevity, we sometimes refer to an

approximate z-root of order k with respect to T as just an approximate z-root of order k.

18

• P(T, x, z) is T-regularized with respect to z if P(0, x, z) ∈ F[z], that is, every monomial that

depends on x is divisible by T.

• Φ(T, x) is a non-degenerate approximate z-root of P(T, x, z) if

(∂zP)(0,0, α) 6= 0

where α = Φ(0,0) ∈ F; that is, the constant term of Φ is not a repeated root of P(0,0, z). ♦

The following simple observation follows immediately from the above definitions.

Observation 4.2. Let P(T, x, z) be a polynomial in F[T, x, z] that is monic in the variable z, T-regularized,

and let Φ(T, x) ∈ F[x]JTK be a power series.

If Φ(T, x) is an approximate z-root of P(T, x, z), then Φ(0, x) – a root of the univariate P(0, x, z) ∈ F[z] –

is a scalar in F, implying that Φ(0, x) = Φ(0,0). Moreover, (∂zP)(0,0, z) = (∂zP)(0, x, z).

4.2 Squarefree decomposition

We say that a polynomial P is squarefree if it is not divisible by the square of another polynomial. In

particular, every irreducible factor of P appears with multiplicity one in the unique factorization

of P.

We now define the notion of squarefree decomposition of a polynomial.

Definition 4.3 (Squarefree decomposition). Let F ∈ F[x] be a polynomial such that F(x) = ∏
m
i=1 Gi(x)

ei .

Let r = maxi∈[m] ei, where each Gi is irreducible. Then the squarefree decomposition of F is (F1, F2, . . . , Fr),

where for each i ∈ [r], Fi := ∏j∈[m]:e j=i Gj. ♦

The following theorem of Andrews & Wigderson shows that squarefree parts of a polynomial

computable by a small constant-depth circuit have small constant-depth circuits, and moreover,

we can compute such a decomposition deterministically given an appropriate PIT oracle.

Theorem 4.4 (Squarefree decomposition [AW24]). Let F be a field of characteristic zero or characteristic

greater than D. LetO be an oracle that solves polynomial identity testing for constant-depth circuits. Then,

there is a deterministic polynomial-time algorithm with oracle access to O which does the following:

1. The algorithm receives as a input a constant-depth circuit that computes a polynomial F of degree D.

2. The algorithm outputs a collection of constant-depth circuits C1, . . . , Cr such that Ci computes Fi,

where (F1, . . . , Fr) is the squarefree decomposition of F.

4.3 Newton iteration

We now recall various flavors of Newton iteration that we use in our proofs.

19

Lemma 4.5 (Newton iteration with linear convergence [CKS19, Lemma 5.1]). Let R = F[x] be a

polynomial ring, and let H(x, z) ∈ R[z]. Suppose ϕ ∈ FJxK is a power-series such that H(x, ϕ) =

0 mod 〈x〉m and ∂zH(0, ϕ(0)) 6= 0. Then,

ϕ′ := ϕ−
H(x, ϕ)

∂zH(0, ϕ(0))

satisfies H(x, ϕ′) = 0 mod 〈x〉m+1 and ϕ′ = ϕ mod 〈x〉m. Furthermore, such an extension ϕ′ of ϕ is

unique in the sense that any ϕ′′ that satisfies H(x, ϕ′′) = 0 mod 〈x〉m+1 and ϕ′′ = ϕ mod 〈x〉m must

satisfy

ϕ′ = ϕ′′ mod 〈x〉m+1.

Corollary 4.6 ([CKS19, Corollary 5.5], [KRSV24, Lemma 3.1]). Let R = F[x] be a polynomial ring,

and let H(x, z) ∈ R[z] be a polynomial of degree D and a circuit of size s. Suppose u ∈ F such that:

H(0, u) = 0

∂H

∂z
(0, u) 6= 0

Then for every k ∈ N, there is a unique truncated, non-degenerate, approximate z-root Φk(x) of order k

with respect to x for H(x, z), satisfying Φk(0) = u. Moreover, there is a deterministic algorithm that runs

in time poly(s, D, k) and outputs a circuit of size poly(s, D, k) for Φk(x).

Lemma 4.7 (Newton iteration with quadratic convergence [vzGG13, Lemma 9.21, Lemma 9.27]).

Let R = F[x] be a polynomial ring, and let H(x, z) ∈ R[z].

Suppose ϕ ∈ FJxK is a power-series such that H(x, ϕ) = 0 mod 〈x〉m and ∂zH(0, ϕ(0)) 6= 0. Then,

for any power series σ ∈ FJxK satisfying

σ(x) =
1

∂zH(x, ϕ)
mod 〈x〉m

we have that ϕ′ := ϕ−H(x, ϕ)σ satisfies H(x, ϕ′) = 0 mod 〈x〉2m and ϕ′ = ϕ mod 〈x〉m. Furthermore,

such an extension ϕ′ of ϕ is unique in the sense that any ϕ′′ that satisfies H(x, ϕ′′) = 0 mod 〈x〉2m and

ϕ′′ = ϕ mod 〈x〉m must satisfy

ϕ′ = ϕ′′ mod 〈x〉2m.

Lemma 4.8 (Quadratic-convergence Newton Iteration without divisions). Let R = F[x] be a poly-

nomial ring, and let H(x, z) ∈ R[z]. Suppose there exists α ∈ F such that H(0, α) = 0 and ∂zH(0, α) =

20

β 6= 0. For each i ≥ 0, define polynomials ϕi, σi ∈ F[x] as follows:

ϕ0 := α, σ0 := (1/β),

For i ≥ 0, ϕi+1 := ϕi − H(x, ϕi) · σi, σi+1 := 2σi − σ2
i · ∂zH(x, ϕi+1).

Then H(x, ϕi) = 0 mod 〈x〉2
i

, ϕi+1 = ϕi mod 〈x〉2
i

, and σi · ∂zH(x, ϕi) = 1 mod 〈x〉2
i

.

Proof. We prove this by induction on i. The base case i = 0 follows by definition.

Now suppose that for some i ≥ 0, H(x, ϕi) = 0 mod 〈x〉2
i

and σi · ∂zH(x, ϕi) = 1 mod 〈x〉2
i

.

By Lemma 4.7, it follows that ϕi+1 := ϕi − H(x, ϕi) · σi satisfies H(x, ϕi+1) = 0 mod 〈x〉2
i+1

and

ϕi+1 = ϕi mod 〈x〉2
i

.

σi+1 · ∂zH(x, ϕi+1)− 1 = (2σi − σ2
i · ∂zH(x, ϕi+1)) · ∂zH(x, ϕi+1)− 1

= (σi · ∂zH(x, ϕi+1)− 1)−
(

(σi · ∂zH(x, ϕi+1))
2 − σi · ∂zH(x, ϕi+1)

)

= − (σi · ∂zH(x, ϕi+1)− 1)2

= 0 mod 〈x〉2
i+1

where the last equality follows because ϕi+1 = ϕi mod 〈x〉2
i

and σi · ∂zH(x, ϕi) − 1 = 0 mod

〈x〉2
i

.

4.4 A lemma of Chou, Kumar & Solomon

The following technical lemma of Chou, Kumar & Solomon [CKS19] is used in the analysis of

Kabanets-Impagliazzo generator for constant-depth circuits. The lemma, both as a blackbox and

the technical ideas therein are important for our proofs.

Lemma 4.9 (Lemma 5.2 and Lemma 5.3 in [CKS19]). Let P ∈ F[x, y] and let R(x) be polynomials such

that R is of degree at most d, P(x, R(x)) ≡ 0 and ∂P
∂y (0, R(0)) is non-zero.

Then, there exists a (d + 1)-variate polynomial Q(z) of degree at most d such that

R(x) ≡ Q(h0(x), h1(x), . . . , hd(x)) mod 〈x〉d+1 ,

where for every i ∈ {0, 1, . . . , d}, hi(x) is defined as

hi(x) :=
∂P

∂yj
(x, R(0))−

∂P

∂yj
(0, R(0)) trunc 〈x〉d+1 .

For our proofs, we end up invoking Lemma 4.9 in settings where the polynomial P also de-

pends on an additional variable T (whereas R does not). In this case, the quantity ∂P
∂y (T, 0, R(0))

potentially depends on the variable T. Since our root R does not depend on the variable T, we can

21

set T to some field constant without disturbing the starting conditions for Newton iteration, and

thus we can perform Newton iteration as usual.

Lemma 4.10. Let P ∈ F[T, x, y] and let R(x) be polynomials such that R is of degree at most d, P(T, x, R(x)) ≡

0 and ∂P
∂y (T, 0, R(0)) is non-zero.

Then, there exists a κ ∈ F and a (d + 1)-variate polynomial Q(z) ∈ F[z] of degree at most d such that

R(x) ≡ Q(h0(κ, x), h1(κ, x), . . . , hd(κ, x)) mod 〈x〉d+1 ,

where for every i ∈ {0, 1, . . . , d}, hi(x) is defined as

hi(T, x) :=
∂P

∂yi
(T, x, R(0))−

∂P

∂yi
(T, 0, R(0)) trunc 〈x〉d+1 .

Proof. Since ∂P
∂y (T,0, R(0)) = δ(T) ∈ F[T] for some δ(T) 6≡ 0, there exists a κ such that δ(κ) = δ0 6=

0. Thus, the polynomial P̃(x, y) := P(κ, x, y) satisfies P̃(x, R(x)) ≡ 0 and ∂P̃
∂y (0, R(0)) = δ0 6= 0,

for some δ0 ∈ F. Applying Lemma 4.9 on P̃ and R(x) tells us that there exists a (d + 1)-variate

polynomial Q(z) of degree at most d such that

R(x) ≡ Q(h0(x), h1(x), . . . , hd(x)) mod 〈x〉d+1 ,

where for every i ∈ {0, 1, . . . , d}, hi(x) is defined as

hi(x) :=
∂P̃

∂yj
(x, R(0))−

∂P̃

∂yj
(0, R(0)) trunc 〈x〉d+1 .

Since P̃(x, y) := P(κ, x, y), the required statement follows.

For most of this paper, the only operation we are allowed on the T-variable is scaling by a field

element since we care about roots modTk, and we want to preserve the T-degree of monomials

during any such operations/substitutions. But the above lemma will be invoked at a point when

we are concerned about roots mod 〈x〉d, not modTk, which is why it will be okay to replace T

by a field element κ.

4.5 Deterministic factorization

For our proof, we need the following classical theorem of Lenstra, Lenstra and Lovasz.

Theorem 4.11 (Factorizing polynomials with rational coefficients [LLL82, vzGG13]). Let P ∈ Q[x]

be a monic polynomial of degree d. Then there is a deterministic algorithm computing all the irreducible

factors of P that runs in time poly(d, t), where t is the maximum bit-complexity of the coefficients of f .

22

For our proofs, we also rely on a deterministic algorithm for factoring n variate degree d poly-

nomials that run in time dO(n). This is implicit in many known algorithms for polynomial factor-

ization, for instance, in the results of Kopparty, Saraf, Shpilka [KSS15]. Such a statement can also

be inferred from our proofs in this paper. We recall a formal statement of this nature from a work

of Lecerf below.

Theorem 4.12 ([Lec07, Proposition 4]). Suppose P(x1, . . . , xn, y) ∈ Q[x, y] be a polynomial that is

monic in y with total degree d. Further, suppose that P is squarefree and P(0, y) is squarefree. Then,

there is a deterministic algorithm that takes P as input in the dense representation and outputs each of its

irreducible factors in time ≤ O(N2), where N = (n+d+1
n).

Intuitively, the proof of the theorem follows from standard Hensel Lifting or Newton Iteration

based algorithms for polynomial factorization, and observing (as formally done in [KSS15]) that

at every stage of the algorithm, randomness is needed only for polynomial identity testing. More-

over, these PIT instances are all polynomials of degree poly(d) and on O(n) variables, and hence

by Lemma 3.2 can be solved deterministically in time dO(n).

5 Algorithm

5.1 Main theorems and high-level overview

First, we describe our main structural result, which states that the Kabanets-Impagliazzo hitting-

set generator, when instantiated with a sufficiently hard low-degree polynomial and an appro-

priate combinatorial design, preserves the irreducibility of the factors of constant-depth circuits.

The precise statement requires a few more conditions, and these conditions are without loss of

generality.

Throughout the paper, we will use G = {gm}m∈N to denote a family of explicit polynomials

such that for every m ∈ N, gm ∈ F[x1, . . . , xm], dm := deg(gm) ≤ O(log log(m)). Further, G has

the property that for any depth ∆ ∈N, if C = {Cm}m∈N is a family of depth-∆ circuits computing

G, then C requires size md
exp(−O(∆))
m , which is mω(1). Theorem 3.15 gives us such a family of explicit

low-degree polynomials that are hard for constant-depth circuits.

Theorem 5.1 (Irreducibility-preserving variable reduction). Fix any ∆ ∈ N and ε ∈ (0, 0.5). For an

absolute constant6 C∆,ε ∈ N, let n ∈ N, n ≥ C∆,ε and x := (x1, . . . , xn). Let P(T, x, z) be a nonzero

polynomial with the following properties.

• P(T, x, z) is computable by a size s ≤ poly(n) and depth ∆ circuit.

6If a(n) = O(b(n)), then there exists some C such that for all n > C, a(n) ≤ b(n); the C∆,ε in our statement is for
this purpose. The precise value of C∆,ε depends on the exact hardness of the polynomial in G and the upper bounds
obtained in our proofs.

23

• P(T, x, z) is monic in z and T-regularized, with deg(P) = D ≤ poly(n).

• P(T, x, z) and P(0, x, z) = P(0,0, z) are squarefree.

Let σ = O(nε), µ = O(n2ε

log(n)), ρ = O(log(n)), and let S be an (n, σ, µ, ρ)-design. Let KIgσ,S : Fµ → Fn

be the polynomial map in Definition 3.14 defined using the design S and the polynomial gσ from the family

of hard polynomials G. Then, the following is true.

A polynomial F(T, x, z) is an irreducible factor of P(T, x, z) if and only if F(T, KIgσ ,S(w), z) is an

irreducible factor of P(T, KIgσ ,S(w), z).

A few remarks regarding the choice of parameters in Theorem 5.1:

• The family G has degree dm ≤ O(log log(m)) so that (log(m))poly(dm) is poly(m). We can

work with any dm ≤ O((log m)α) for some small enough α depending on the exponent in

poly(dm), but log log(m) works in every case and makes it simpler to state the theorems.

• The design S has σ = O(nε) because G is guaranteed to be superpolynomially hard for

constant-depth circuits. Stronger hardness guarantees can be used with smaller σ to get

algorithms with better time complexity, as is usually the case in hardness-vs-randomness

results.

We now describe our main algorithmic result. Informally, the result states that for every choice

of depth ∆ ∈ N, there is a deterministic algorithm A∆ such that A∆ takes a depth-∆ circuit for a

polynomial P as input, and outputs small (but unbounded depth) circuits along with multiplicity

information for each irreducible factor of P. Moreover, A∆ runs in time subexponential in the

input size.

Theorem 5.2 (Deterministic subexponential time algorithm for factorization of constant-depth cir-

cuits). Fix any ∆ ∈ N and ε ∈ (0, 0.5). There exists an algorithm A∆,ε which, for all sufficiently large

n,

• takes as input a polynomial P(x) ∈ Q[x1, . . . , xn] of degree D ≤ poly(n) with a depth-∆, size

s ≤ poly(n) circuit;

• outputs poly(s, D)-sized circuits for each irreducible factor of P, along with the multiplicity of each

such factor; and

• runs in time poly(s, D)O(n2ε).

5.1.1 High-level overview of the algorithm

1. Suppose P(x) is the polynomial that we would like to factor. We first use the algorithm by

Andrews and Wigderson (Theorem 4.4) to compute the squarefree decomposition of P. Now,

we deal with each squarefree part separately.

24

2. For a specific squarefree part Pr(x), we perform some of the standard transformations (xi 7→

T · xi + ai · z + bi) so that the polynomial Pr(T, x, z) is monic in z variable, T-regularized, and

Pr(0, x, z) = Pr(0,0, z) is squarefree.

3. We apply KIg,S (w) on Pr(T, x, z) (instantiated with an appropriately chosen low-degree

hard polynomial g and a design S). This maintains the irreducibility of each factor (The-

orem 5.1). At this point, we are working with an nε-variate polynomial for some ε ∈ (0, 1).

Thus, we can use a brute-force / dense-representation factorization algorithm to factorize

Pr(T, KIg,S (w), z) in subexponential time (Theorem 4.12).

4. Since Pr(0, x, z) = Pr(0, KIg,S (w), z) = Pr(0,0, z), taking an irreducible factor of Pr(T, KIg,S (w), z)

and setting T to 0 precisely tells us G(0, x, z) for each irreducible factor G(T, x, z) of Pr(T, x, z).

Thus, we now have G(0, x, z) = G(0,0, z) for each G that is an irreducible factor of P, and

we can deal with each G separately.7

5. Suppose G(T, x, z) is an irreducible factor, and we have access to the univariate G(0, x, z) =

G(0,0, z). We factorize G(0,0, z) using Theorem 4.11. G(0,0, z) could have a linear factor

of the form (z − α); in this case, we use Newton iteration (Corollary 4.6) to lift the root α

to a truncated, approximate z-root ϕ(T, x) of P(T, x, z) of sufficiently high accuracy. But all

the factors of G(0,0, z) might be non-linear. In this situation, we artificially add a root u of

G(0,0, z) to the field; more precisely, if H(z) is an arbitrary irreducible factor of G(0,0, z),

we work over the field Q[u]
H(u) so that u is now a root of G(0,0, z). We can efficiently simulate

arithmetic in this field. Thus, we can lift the root u to a truncated, approximate z-root ϕ(T, x)

of P(T, x, z) of sufficiently high accuracy.

6. (Lemma 9.1) Given a truncated, approximate z-root ϕ of P(T, x, z), we set up a linear system

whose solution will give us a minimal polynomial of the root ϕ. Since we know G(0, x, z),

we know the z-degree of G; this is essentially the information we need to set up the linear

system in a way that ensures that the solution is the same as the irreducible factor G.

7. (Theorem 9.2) The solution to the linear system can be represented as a small circuit using

Cramer’s rule, but this involves a division by a determinant. We shall now use Strassen’s

division elimination to represent the solution as an arithmetic circuit without division gates;

this requires a point where the denominator evaluates to a nonzero value. To this end, we

again compose the denominator with KIg,S to get an nε-variate polynomial; since this de-

nominator essentially captures the uniqueness of the minimal polynomial, we can prove

7At this point, with the right univariate projections G(0,0, z) for each irreducible factor G(T, x, z), one way to get the
irreducible factors is to perform Hensel lifting (for instance, see [Sud98, Lecture 7] or [ST20]). While Hensel lifting usually
ends with a reconstruction step that involves solving a linear system, the clean-up for us would just be a truncation since
Hensel lifting guarantees that if we start off with the right univariate projection, we will retrieve the right factor, modulo
higher degree terms that might have accumulated in the process.

25

that KIg,S , by maintaining irreducibility of factors, also maintains the non-zeroness of the

denominator. We can now use a brute-force derandomization of the Polynomial Identity

Lemma to find a point where the denominator evaluates to a nonzero value, and hence, carry

out Strassen’s division elimination. Thus, we have division-free circuits for each irreducible

factor G(T, x, z) of P(T, x, z).

8. Finally, we can undo our initial transformations and output circuits for the irreducible factors

of the input polynomial P(x), along with their multiplicities.

5.2 The algorithm

Fix any ∆ ∈ N and ε ∈ (0, 0.5). The following algorithm is the “outermost” wrapper for our

complete algorithm, and it can be thought of as the algorithm A∆,ε in Theorem 5.2. The algorithm

computes the squarefree decomposition of the input polynomial, and then uses Algorithm 2 on

each squarefree part of the decomposition.

Algorithm 1: All factors of depth-∆ circuits, parameter ε ∈ (0, 0.5)

Input : A depth-∆ circuit CP(x) of size s ∈ N, computing a degree-D polynomial

P(x) = ∏
m
i=1 Gi(x)

ei ∈ Q[x], where x = (x1, . . . , xn).

Output : A list L = {(CG1
(x), e1), . . . , (CGm(x), em)}, such that each CGi

(x) is a circuit of size

poly(s, D) and depth poly(D), which computes the irreducible factor Gi(x), and ei is

the multiplicity of Gi in P.

1 Run Andrews-Wigderson (Theorem 4.4) on CP(x) to get circuits CP1(x), . . . , CPr(x) of depth

∆′ = ∆ + O(1), computing P1(x), . . . , Pr(x) where r = maxi∈[m] ei and Pi(x) = ∏j∈Si
Gj(x) for

Si = {j ∈ [m] : ej = i}

2 Initialize L← ∅

3 forall i ∈ [r] do

4 Run Algorithm 2 for parameters ∆′ and ε on CPi
(x) to get a list Li := {CGj

(x) : j ∈ Si}

5 For each CGj
(x) ∈ Li, add (CGj

(x), i) to L.

6 return L.

5.3 Algorithm for factors of squarefree polynomials

In this section, we will describe the algorithm for steps 3 and 4 of the overview in Section 5.1.1.

Fix any ∆ ∈ N.

Let G = {gm}m∈N be a family of polynomials such that for every m ∈ N, gm ∈ F[x1, . . . , xm],

dm := deg(gm) ≤ O(log log(m)). Further, G has the property that for any depth ∆ ∈ N, if

C = {Cm}m∈N is a family of depth-∆ circuits computing G, then C requires size md
exp(−O(∆))
m , which

is mω(1). Theorem 3.15 gives us such a family of explicit low-degree polynomials that are hard for

constant-depth circuits.

26

Let ε ∈ (0, 0.5). Let σ = O(nε), µ = O(n2ε

log(n)), ρ = O(log(n)), and let S be an (n, σ, µ, ρ)-design.

Let KIgσ ,S : Fµ → Fn be the polynomial map in Definition 3.14 defined using the design S and

the polynomial gσ from the family of hard polynomials G.

Algorithm 2: Factors of squarefree polynomial with depth-∆ circuits, parameter ε ∈

(0, 0.5)
Input : A depth-∆ size-s circuit CP computing the squarefree degree-D polynomial

P(x) = ∏j∈[m] Gj(x), where the Gjs are the irreducible factors of P.

Output : A list L = {CG1
(x), . . . , CGm(x)}, such that each CGj

(x) is a circuit of size poly(s, D)

and depth poly(D), which computes the irreducible factor Gj(x).

1 Compute a ∈ Qn such that δ = HomD[P](a) 6= 0 using Theorem 3.16. Let

P̂(x, z) := P(x + (a · z))/δ and for each j ∈ [m], Ĝj(T, x, z) := Gj(x + (a · z))/ Homdeg(Gj)
[Gj](a)

// Ensures that P̂ is monic in z

2 Compute b ∈ Qn such that Discz(P̂)(b) 6= 0 using Theorem 3.16. Let P̃(T, x, z) := P̂((T · x) + b, z)

and for each j ∈ [m], G̃j(T, x, z) := Ĝj((T · x) + b, z)

// Ensures that P̃(T, x, z) is T-regularised, and P(0,0, z) is squarefree.

3 Construct the map KIgσ ,S using Lemma 3.13 and gσ ∈ G as given by Theorem 3.15.

4 Factorize CP̃(T, KIg,S(w), z) so that for each j ∈ [m], CG̃j
(T, KIg,S (w), z) is a circuit that computes

G̃j(T, KIg,S (w), z), satisfying the property that G̃j(0, KIg,S(w), z) = G̃j(0,0, z).

5 Run Algorithm 3 with parameters ∆ + 2 and ε on CP̃(T, x, z) and {G̃j(0,0, z) : j ∈ [m]} to get a list

L′ = {CG̃1
(T, x, z), . . . , CG̃m

(T, x, z)}.

6 For each CG̃j
(T, x, z) ∈ L′, compute CGj

(x) := CG̃j
(1, x− b, 0).

7 Output L = {CG1
(x), . . . , CGm(x)}

5.4 Algorithm for obtaining irreducible factors from the right univariate projections

In this section, we describe the algorithm for steps 5-7 of the overview in Section 5.1.1. Fix any

∆ ∈ N and ε ∈ (0, 0.5).

27

Algorithm 3: Factors of monic, T-regularized, squarefree polynomial with depth-∆ circuit,

parameter ε ∈ (0, 0.5)
Input :

• A depth-∆ size-s circuit CP̃ computing a squarefree degree-D polynomial

P̃(T, x, z) = ∏j∈[m] G̃j(T, x, z), where the G̃is are the irreducible factors of P̃. Further, P̃(T, x, z) is

monic in z, T-regularized with respect to x and CP̃(0, x, z) = CP̃(0,0, z) is squarefree.

• For each j ∈ [m], the univariate polynomial G̃j(0, x, z) = G̃j(0,0, z).

Output : A list L = {CG̃1
(T, x, z), . . . , CG̃m

(T, x, z)}, such that each CG̃i
(T, x, z) is a circuit of

size poly(s, D) and depth poly(D), which computes the irreducible factor G̃i(T, x, z)

of P̃(T, x, z).

Prerequisites :KIgσ,G constructed in Algorithm 2 using Lemma 3.13 and Theorem 3.15

1 Initialize L← ∅

2 forall j ∈ [m] do

3 Factorize the degree-Dz polynomial G̃j(0,0, z) (Theorem 4.11) to get G̃j(0,0, z) = ∏
r j

l=1 Hl(z),

where every Hl(z) is distinct, monic and irreducible.

4 Let H(z) be an arbitrary irreducible factor of G̃j(0,0, z). Let K be the field Q[u]
H(u)

.

5 Use Newton iteration (Lemma 4.5) to compute a truncated, non-degenerate, approximate z-root

ϕ(T, x) ∈ K[T, x] of G̃j(T, x, z) of order 2D · Dz + 1 such that ϕ(0, x) = ϕ(0,0) = u ∈ K.

6 Use the algorithm from Theorem 9.2 (with KIgσ ,G) on ϕ(T, x) to compute a circuit CG̃j
for G̃j.

7 Add CG̃j
to L.

8 return L

6 Technical building blocks

6.1 Properties of roots modulo Tk

The following lemma observes that certain homomorphisms defined by polynomial maps pre-

serve approximate roots for a polynomial. This will be used to argue that an approximate root

remains an approximate root (with some nice properties) even after we plug in the Kabanets-

Impagliazzo generator.

Lemma 6.1 (Preserving root properties under homomorphisms). Let k > 1 be any natural number

and let P(T, x, z) ∈ F[T, x, z] and R(T, x) ∈ F[T, x] be polynomials satisfying the following properties.

• P(T, x, z) is T-regularized and it is monic in z.

• R(T, x) is a truncated, non-degenerate, approximate z-root of P(T, x, y) of order k.

For a new tuple w of µ variables distinct from T, x, z, polynomials h1, h2, . . . , hn ∈ F[w] and a non-

zero field constant γ ∈ F, let Λ : F[T, x, z] → F[T, w, z] be the ring homomorphism defined by T 7→ γT,

xi 7→ hi(w) and z 7→ z. Then, the following are true.

28

• Λ(R)(0, w) = R(0, x) ∈ F

• Λ(P)(T, w, z) is T-regularized, and it is monic in z.

• Λ(R)(T, w) is a truncated, non-degenerate, approximate z-root of Λ(P)(T, w, y) of order k

Proof. The lemma follows essentially because Λ is a homomorphism.

1. By Observation 4.2, R(0, x) ∈ F. Since Λ is a homomorphism with the property that degT(f) =

degT(Λ(f)) for any f ∈ F[T, x, z], it follows that Λ(R)(0, w) = R(0, x).

2. If a monomial m ∈ F[T, x, z], is T-regularized, then so is Λ(m). Since Λ is a homomorphism,

this property extends to all polynomials. Similarly, since Λ(z) = z, Λ(P) remains monic in

z.

3. P(T, x, R(T, x)) ≡ 0 mod Tk, or equivalently, every monomial in P(T, x, R(T, x)) has T-

degree at least k. As observed in the first point, Λ is a homomorphism with the property that

degT(f) = degT(Λ(f)) for any f ∈ F[T, x, z]. Thus, Λ(P)(T, w, Λ(R)(T, w)) ≡ 0 mod Tk.

The following lemma observes that truncated, non-degenerate, approximate roots of a polyno-

mial are unique once the value of the root at T = 0 is decided; it follows almost immediately from

the uniqueness of approximate roots computed via Newton iteration.

Lemma 6.2 (Uniqueness of truncated, non-degenerate, approximate roots). Let k ∈ N. Suppose

Ψ1(T, x) and Ψ2(T, x) are truncated, non-degenerate, approximate z-roots of order k with respect to T for

a T-regularized polynomial P(T, x, z). If Ψ1(0, x) = Ψ2(0, x) = α ∈ F, then Ψ1(T, x) ≡ Ψ2(T, x).

Proof. Since Ψ1(T, x) is a non-degenerate root of P(T, x, z) which is T-regularized, ∂P
∂z (0, x, Ψ1(0, x)) =

∂P
∂z (0, x, Ψ1(0, x)) = ∂P

∂z (0,0, α) = β ∈ F is nonzero. Similarly, ∂P
∂z (0, x, Ψ2(0, x)) = ∂P

∂z (0, x, Ψ2(0, x)) =
∂P
∂z (0,0, α) = β. Since α satisfies P(T, x, α) ≡ 0 mod T and ∂P

∂z (0, x, α) = β ∈ F for β 6= 0, Lemma 4.5

tells us that there is a unique truncated, approximate z-root Φ(T, x) of order k for P(T, x, z), satis-

fying Φ(0, x) = α. Thus, Φ(T, x) ≡ Ψ1(T, x) ≡ Ψ2(T, x).

6.2 Complexity of low degree homogeneous components of roots

The following is our main technical lemma where we argue that the low-degree homogeneous

components of an approximate root for a constant-depth circuit can be computed by a small

constant-depth circuit.

Lemma 6.3. Let k > 1 be any natural number and let P(T, w, z) ∈ F[T, w, z] and R(T, w) ∈ F[T, w]

be polynomials satisfying the following properties.

29

• P(T, w, z) is computable by a depth ∆ circuit of size s.

• P(T, w, z) is T-regularized and monic in z.

• R(T, w) is a truncated, non-degenerate, approximate z-root of P(T, x, z) of order k with respect to T.

Then, for every ℓ ∈ N, there is an algebraic circuit Cℓ ∈ F[T, w] of depth at most (∆ +O(1)), size at most
(

poly(s, deg(P)) · (log k)poly(ℓ)
)

Cℓ(T, w) = R(T, w) trunc 〈w〉ℓ .

Proof. As seen in Observation 4.2, R(0, w) is a root of P(0, 0, z), and hence must be a field ele-

ment α (possibly from an extension of F) and does not depend on w. Similarly, we also get that
∂P
∂z (0, w, R(0, w)) is a non-zero field element that we denote by β. Thus, R(T, w) is the unique

lift of the root α of P(T, w, z) modulo T to a root modulo the ideal Tk (Lemma 6.2). In partic-

ular, we can view R as an outcome of Newton Iteration (and then eventual truncation modulo

Tk). We prove the lemma by induction on this iteration, and maintaining the following inductive

claim. Let 2m ∈ [k, 2k] be the smallest power of 2 greater than k. From Lemma 4.8, we get that the

sequence of polynomials ϕ0, ϕ1, . . . , ϕm, ψ0, ψ1, . . . , ψm ∈ F[T, w] defined as

ϕ0 = α, ψ0 = (1/β),

For i ≥ 0, ϕi+1 = ϕi − P(T, w, ϕi) · ψi, ψi+1 = 2ψi − ψ2
i ·

∂P

∂z
(T, w, ϕi+1).

satisfy

R(T, w) = ϕm(T, w) trunc Tk .

We note that while we are dealing with polynomials in both T and w variables, the lifting is

happening only with respect to T. In this sense, we are really viewing the polynomial P(T, w, z) as

a polynomial in F[w][T, z] for the purpose of this lifting. We now use the following claim, whose

proof we defer to the end of this section, to complete the proof of the lemma.

Claim 6.4. For every i ≥ 0, there exists a set Gi of at most τi ≤ 2(ℓ+ 1)i polynomials {g1, g2, . . . , gτi
} in

F[T, w] and two (τi + 1)-variate polynomials Qi(T, u1, . . . , uτi
), Q̂i(T, u1, . . . , uτi

) ∈ F[T, u] such that

ϕi ≡ Qi(T, g1, . . . , gτi
) mod 〈w〉ℓ ,

and

ψi ≡ Q̂i(T, g1, . . . , gτi
) mod 〈w〉ℓ .

30

Moreover, each polynomial g in Gi is of the form ∂P
∂zj (T, w, γ) for some j ≤ (ℓ+ 1) and γ ∈ F[T].

From the fact that R(T, w) = ϕm(T, w) trunc Tk, we get that

R(T, w) trunc 〈w〉ℓ =
(

ϕm(T, w) trunc Tk
)

trunc 〈w〉ℓ .

Now, since T and w are disjoint variables, we can exchange the order of the operations of truncat-

ing modulo T and truncating modulo 〈w〉ℓ. So, we have that

R(T, w) trunc 〈w〉ℓ =
(

ϕm(T, w) trunc 〈w〉ℓ
)

trunc Tk .

From Claim 6.4, we get that

R(T, w) trunc 〈w〉ℓ =
(

Qm(T, g1, g2, . . . , gτm) trunc 〈w〉ℓ
)

trunc Tk .

We would like to show that the RHS of the above equation has a small constant-depth circuit.

Since we eventually truncate to T-degree k− 1, we can assume without loss of generality that the

T-degree of Qm and each gi is at most k− 1. In particular, if gi equals ∂P
∂zj (T, w, γ) for some j ∈ N

and γ ∈ F[T], this γ can be assumed to be of T-degree at most (k− 1). Moreover, since P(T, w, z)

is a polynomial with a depth-∆ circuit of size s, we get, from Corollary 3.4 that ∂P
∂zj (T, w, z) has

a depth (∆ + O(1)) circuit of size at most s · poly(deg(P)). From the bound on the degree of

γ ∈ F[T], we get that each gi(T, w) has a depth (∆ + O(1)) circuit of size at most s · poly(deg(P)).

Finally, we note that we can view Qm(T, g1, g2, . . . , gτm) as

Q̃m(T, g1(T, w)− g1(T, 0), g2(T, w)− g2(T, 0), . . . , gτm(T, w)− gτm(T, 0)),

for some polynomial Q̃m. Since we are only interested in working with the above polynomial

modulo 〈w〉ℓ and every monomial in each of the polynomials gj(T, w)− gj(T, 0) has w-degree at

least one, we get that Q̃m(T, u1, . . . , uτm) can be assumed to have degree at most ℓ in the u vari-

ables. Thus, Q̃m(T, u1, . . . , uτm) can be computed by a depth-2 circuit of size at most k · (τm+ℓ

ℓ
) ≤

k · (log k)poly(ℓ). Combining this circuit with the constant-depth circuits for gj(T, w) (and hence

gj(T, w)− gj(T, 0)) gives us a depth-(∆+O(1)) circuit C̃ of size at most poly(s, deg(P)) · (log k)poly(ℓ)

satisfying

C̃(T, w) ≡ Qm(T, g1, . . . , gτm) mod Tk mod 〈w〉ℓ+1 .

The T-degree of this circuit is at most degT(Q̃m) · ℓ · k ≤ poly(k, ℓ). The w-degree of this circuit is at

most ℓ · deg(P). Thus, we can apply the operations trunc 〈w〉ℓ+1 and trunc Tk by an application

of Corollary 3.4 to get the circuit Cℓ(T, w) in the conclusion of the lemma.

We now discuss the proof of Claim 6.4.

31

Proof of Claim 6.4. We prove the claim via an induction on i. For i = 0, we already know that

ϕ0 = α and ψ0 = 1
β are polynomials in F[T] and hence the claim immediately holds. We now

assume that the claim holds for ϕi and ψi i.e.

ϕi ≡ Qi(T, g1, . . . , gτi
) mod 〈w〉ℓ ,

and

ψi ≡ Q̂i(T, g1, . . . , gτi
) mod 〈w〉ℓ

and show that it must hold for ϕi+1 and ψi+1.

From the inductive definitions of ϕi+1 and ψi+1, we get that

ϕi+1 ≡ ϕi − P(T, w, ϕi) · ψi

and

ψi+1 ≡ 2ψi − ψ2
i ·

∂P

∂z
(T, w, ϕi+1)

If γi := ϕi(T, 0), i.e. γi is the w-free part of ϕi, we get via a Taylor expansion that

P(T, w, ϕi) = P(T, w, γi + (ϕi − γi)) =
deg(P)

∑
j=0

1
j!
·

∂P

∂zj
(T, w, γi) · (ϕi − γi)

j . (6.5)

From the definition of γi, we have that every monomial in (ϕi − γi) has w-degree at least one.

Thus, for every j ≥ ℓ, we have that (ϕi − γi)
j ≡ 0 modulo 〈w〉ℓ. Thus, we have that

P(T, w, ϕi) ≡
ℓ

∑
j=0

1
j!
·

∂P

∂zj
(T, w, γi) · (ϕi − γi)

j mod 〈w〉ℓ .

Similarly,

∂P

∂z
(T, w, ϕi+1) ≡

ℓ

∑
j=0

1
j!
·

∂P

∂zj+1 (T, w, γi+1) · (ϕi+1− γi+1)
j mod 〈w〉ℓ .

Thus, ϕi+1 can be written as a polynomial in Qi, Q̂i and polynomials in the set { ∂P
∂zj (T, w, γi) : j ∈

{0, 1, . . . , ℓ}}, where the coefficients of this polynomial are from the ring F[T] and all equalities

hold modulo 〈w〉ℓ. Similarly, ψi+1 can be written as a polynomial in Qi+1, Q̂i and polynomials in

the set { ∂P
∂zj (T, w, γi+1) : j ∈ {1, 2, . . . , ℓ+ 1}}, where the coefficients of this polynomial are from

the ring F[T] and all equalities hold modulo 〈w〉ℓ. Moreover, in going from i to (i + 1), we have

32

increased the size of the generating set additively by at most 2(ℓ+ 1). Furthermore, each of the new

elements of this generating set is again of the form ∂P
∂zj (T, w, γ) for some j ≤ (ℓ+ 1) and γ ∈ F[T].

An immediate consequence of Lemma 6.3 is the following corollary.

Corollary 6.6. Let k ∈ N, P(T, w, z) ∈ F[T, w, z] and R(T, w) ∈ F[T, w] be polynomials that satisfy

the hypothesis of Lemma 6.3.

Then, for every ℓ ∈ N, there is an algebraic circuit Cℓ ∈ F[T, w] of depth at most 2∆ + O(1) and size

at most
(

poly(s, deg(P)) · (log k)poly(ℓ)
)

such that

Cℓ(T, w) ≡ P (T, w, R(T, w)) trunc 〈w〉ℓ .

6.2.1 Why do we need the quadratic convergence version of Newton iteration?

It would be instructive to step back and see why Newton iteration with quadratic convergence

was required in the above argument. A slight modification of Lemma 4.9 will let us argue that

low-degree components of approximate roots of a polynomial have small constant-depth circuits.

However, there are subtle differences in the statement of Lemma 4.9 and the statement of Lemma 6.3.

The key difference is that the approximate root ϕk is with respect to the variable T, whereas we

are extracting homogeneous components of degree up to ℓ with respect to a different set of variables.

Therefore, we may have contributions of w-degree at most ℓ from terms with T-degree up to k. So,

we cannot replace ϕk by a root of lower accuracy such as ϕℓ.

In the above proof of Lemma 6.3, each level of the iteration adds to the number of “generators”

used in the composition. Using the standard Newton iteration of k steps for ϕk would result in

O(k) generators and would not yield the required size bounds needed for our proof. The version

of Newton iteration with quadratic convergence ensures that we obtain ϕk from log k iterations,

and results in the eventual number of “generators” as O(log k) instead (which was crucial for the

final circuit size bound).

7 Warm-up: preserving true roots under variable reduction

In this section, we use the techniques of Section 6 to show a variable reduction map that will help

us identify whether a given truncated power series root of a constant-depth circuit is a true root

(and not just a sufficiently good truncation of a power series root). As described in the proof

overview, the idea is to work with a PIT instance formed by plugging-in a candidate root into

the input polynomial. In Lemma 7.1, we show that low-degree roots of such PIT instances have

relatively small constant-depth circuits when the input polynomial has a small constant-depth

circuit.

33

Lemma 7.1. Let k > 1 be any natural number and let P(T, w, y, z) ∈ F[T, w, z] and R(T, w, y) ∈

F[T, w, y] be polynomials satisfying the following properties.

• P(T, w, y, z) is computable by a depth ∆ circuit of size s.

• P(T, w, y, z) is T-regularized and monic in z.

• R(T, w, y) is a truncated, non-degenerate, approximate z-root of P(T, w, y, z) of order k.

Let F(w) ∈ F[w] be a polynomial of degree at most ℓ such that (y− F(w)) divides P (T, w, y, R(T, w, y)).

Then, F can be computed by an algebraic circuit of depth (∆ +O(1)) and size at most

poly(s, deg(P)) · (log k)poly(ℓ) .

Proof of Lemma 7.1. We start by setting ourselves up to invoke Lemma 4.10, a version of Lemma 4.9

from [CKS19]. To do this, we first need to ensure that the hypothesis of the lemma holds in our

case.

Setting up to invoke Lemma 4.10: The first issue is that F(w) could be a y-root of high multi-

plicity of P (T, w, y, R(T, w, y)). To work around this, we work with an appropriately high order

derivative of P with respect to y. To this end, we start by viewing P (T, w, y, R(T, w, y)) as a uni-

variate polynomial in y with coefficients from the ring F[T, w]. Thus, P (T, w, y, R(T, w, y)) can be

decomposed as

P (T, w, y, R(T, w, y)) =
D

∑
i=0

Pi(T, w)yi ,

where each Pi is a polynomial in only T and w variables. Let (m + 1) be the largest integer such

that (Y− F(w))m+1 divides P (T, w, y, R(T, w, y)). So, to reduce the multiplicity of the y-root F(w)

to 1, we consider the polynomial P̂ defined as

P̂(T, w, y) :=
∂P (T, w, y, R(T, w, y))

∂ym
.

Thus, we have that (y− F(w)) divides P̂ and does not divide ∂P̂
∂y . As a consequence, we get that

∂P̂
∂y (T, w, F(w)) is a non-zero polynomial in F[T, w]. By shifting the w variables if needed to a + w

for some a ∈ F|w|, we get that

∂P̂

∂y
(T,0, F(0)) 6≡ 0 .

We are now in a position to invoke Lemma 4.10, which tells us that there exists a κ ∈ F and a

34

(ℓ+ 1)-variate polynomial Q(u) ∈ F[u] of degree at most ℓ such that

F(w) ≡ Q(h0(κ, w), h1(κ, w), . . . , hℓ(κ, w)) mod 〈w〉ℓ+1 , (7.2)

where for every i ∈ {0, 1, . . . , ℓ}, hi(T, w) is defined as

hj(T, w) :=
(

∂P̂

∂yj
(T, w, F(0))−

∂P̂

∂yj
(T, 0, F(0))

)

trunc 〈w〉ℓ+1 .

Given the bounds on the number of variables and u-degree of Q(u), we get that Q(u) is com-

putable by an algebraic circuit of depth-2 and size at most exp(O(ℓ)). At this point, if we can

somehow replace each hi(T, w) by a small constant-depth circuit, we can obtain a small constant-

depth circuit for F(w) by combining these with the depth-2 circuit for Q, and then extracting

certain homogeneous components of interest.

Constant-depth circuits for hi(T, w): Recall that P̂(T, w, y) is a derivative of P(T, w, y, R(T, w, y))

with respect to ym. Thus, from Corollary 3.4, we get that P̂ can be written as an F[y]-weighted lin-

ear combination of the polynomials in the set

{P(T, w, βi, R(T, w, βi)) : i ∈ {0, 1, . . . , deg(P)}}

where βi’s are distinct field constants and every weight in the linear combination has y-degree at

most deg(P).

hj(T, w) =

(

∂P̂

∂yj
(T, w, F(0))−

∂P̂

∂yj
(T, 0, F(0))

)

trunc 〈w〉ℓ+1

=

((

∂

∂yj+m
P(T, w, y, R(T, w, y))

)∣

∣

∣

∣

y=F(0) −
∂P̂

∂yj
(T, 0, F(0))

)

trunc 〈w〉ℓ+1

=

((

D

∑
i=0

Λi(F(0))P(T, w, βi, R(T, w, βi))

)

−
∂P̂

∂yj
(T, 0, F(0))

)

trunc 〈w〉ℓ+1

=

(

D

∑
i=0

Λi(F(0))P(T, w, βi, R(T, w, βi)) trunc 〈w〉ℓ+1

)

−
∂P̂

∂yj
(T, 0, F(0))

Thus, to show that hi(T, w) have small constant-depth circuits, it suffices (up to multiplicative

factors of poly(deg(P))) to show that the polynomials (P(T, w, βi, R(T, w, βi)) trunc 〈w〉ℓ+1) have

small constant-depth circuits. But, this is exactly the content of Corollary 6.68 , which shows that

8There is a slight subtlety here: P(T, w, y, R(T, w, y)) must still satisfy the hypothesis of Lemma 6.3/Corollary 6.6
after replacing each y by a field constant βi. But this is true because of Lemma 6.1.

35

(P(T, w, βi, R(T, w, βi)) trunc 〈w〉ℓ+1) has a circuit of depth ∆ + O(1) and size

(

poly(s, deg(P)) · (log k)poly(ℓ)
)

.

This gives a circuit Ci(T, w) of roughly the same size with a constant additive increase in depth for

each hi(T, w), and thus a circuit C̃i(w) := Ci(κ, w) for each hi(κ, w), where κ is the field constant

in Equation (7.2).

Putting things together: Plugging in these circuits as inputs to the depth-2 circuit for Q(u), we

get that there is a circuit C(w) = Q(C̃0(w), . . . , C̃ℓ(w)) of size
(

poly(s, deg(P)) · (log k)poly(ℓ)
)

and depth (∆ + O(1)) such that

F(w) ≡ C(w) mod 〈w〉ℓ+1 .

The w-degree of C(w) is at most ℓ ·deg(Q), which is at most ℓ2. By using Corollary 3.4 to compute

the truncation C(w) trunc 〈w〉ℓ+1, we get a depth-(∆ +O(1)) circuit for F(w), of size at most

(

poly(s, deg(P)) · (log k)poly(ℓ)
)

.

Now, we will use Lemma 7.1 to prove the main theorem of this section: the Kabanets-Impagliazzo

generator, instantiated with an appropriate design and a low-degree polynomial, preserves the

roots of constant-depth circuits, while ensuring that no new roots are created. This is a special

case of Theorem 5.1.

Theorem 7.3 (Checking validity of a root). Let k > 1 be any natural number and let A(T, x, z) ∈

F[T, x, z] and Φ(T, x) ∈ F[T, x] be polynomials satisfying the following properties.

• A(T, x, z) is computable by a depth ∆ circuit of size s.

• A(T, x, z) is T-regularized and monic in z.

• Φ(T, x) is a truncated, non-degenerate, approximate z-root of A(T, x, z) of order k

• A(T, x, Φ(T, x)) is not identically zero in F[T, x].

Let S be a (n, σ, µ, ρ)-design and let g be a σ-variate polynomial of degree d. For a new tuple w of µ

variables distinct from T, x, z, let us define the polynomial map KIg,S : Fµ → Fn using Definition 3.14.

Then, the following statement is true.

36

If A(T, KIg,S (w), Φ(T, KIg,S (w))) is identically zero, then g can be computed by an algebraic circuit

of depth ∆′ = (∆ +O(1)) and size s′ which is at most

poly(s, deg(A), k) · (ρ log k)poly(d) .

In particular, if g cannot be computed by a size s′ depth ∆′ circuit, then A(T, KIg,S (w), Φ(T, KIg,S (w)))

is identically zero if and only if A(T, x, Φ(T, x)) is identically zero.

The proof of this theorem is based on some of the same principles as that of the proof of

Theorem 5.1. However, the underlying technical details are considerably shorter and cleaner. We

now discuss the proof.

Proof of Theorem 7.3. Let B̂j(T, x, w) be the polynomial obtained by replacing the variables x1, . . . , xj−1

in the polynomial A(T, x, Φ(T, x)) by the polynomials g1, . . . , gj−1 ∈ F[w] respectively. From the

hypothesis of the theorem, we know that B̂0 is not identically zero and B̂n is identically zero. Thus,

there must be a j such that B̂j is not identically zero but B̂j+1 is identically zero. We focus on this j

for the rest of the proof.

Note that B̂j depends on the variables T, w and xj, xj+1, . . . , xn but does not depend on the

variables x1, x2, . . . , xj−1. Moreover, B̂j+1 is obtained from B̂j by substituting xj by gj. For ease of

notation, we refer to the variable xj as y for the rest of this argument. Let Bj be the polynomial

obtained from B̂j by setting the variables xj+1, . . . , xn and {wi : wi /∈ Sj} to constants from F

such that Bj remains non-zero. Since B̂j is a non-zero polynomial, a random substitution of these

variables from F (assuming it is large enough) has this property. Thus, Bj only depends on the

variables T, y, {wi : wi ∈ Sj}. For ease of notation, we continue to refer to the tuple wSj
as w.

We know that when we substitute y by gj in Bj, we end up with the identically zero polynomial.

In other words, (y− gj) divides Bj. At this point, we would like to invoke Lemma 7.1 to conclude

the proof. In order to do that, we need to make sure that the hypothesis of the lemma holds, which

we do now.

From its definition, we know that

B̂j(T, x, w) := A(T, g1(w), . . . , gj−1(w), xj, xj+1, . . . , xn) .

Now, to obtain Bj from B̂j, we set the variables xj+1, . . . , xn and the w variables outside the set Sj

to field constants, and rename xj as y. For every i < j, the above setting of w variables outside

the set Sj to field constants reduces each gi to a polynomial ĝi that has degree at most d and only

depends on at most ρ w variables in the set |Si ∩ Sj|. Thus, ĝi can be written as a sum of at most

(ρ+d
d) ≤ ρd many monomials, and hence is a depth 2 algebraic circuit of size at most ρO(d).

For i ∈ [j + 1, n], let the variable xi be set to the field element αi, and let Â(T, w, y) and

37

Φ̂(A, w, y) be the polynomials defined as

Â(T, w, y, z) := A
(

T, ĝ1(w), . . . , ĝj−1(w), y, αj+1, . . . , αn, z
)

,

and

Φ̂(T, w, y) := Φ
(

T, ĝ1(w), . . . , ĝj−1(w), y, αj+1, . . . , αn

)

.

Thus, we also get that Bj(T, w, y) = Â(T, w, y, Φ̂). A direct application of Lemma 6.1 tells us that

Â(T, w, y, z) is T-regularized and monic in z, and Φ̂ is a truncated, non-degenerate, approximate

z-root of Â(T, w, y, z) of order k. Also, since the degree of each ĝi is at most d, we have that the total

degree of Â is at most d · deg(A). Since A has a circuit of depth ∆ and size s, from the discussion

above, we can plug in a small depth-2 circuit of size at most ρO(d) for each ĝi, and get that Â has a

circuit of depth ∆ + 2 and size
(

sρO(d)
)

.

So, the hypothesis of Lemma 7.1 continue to hold if we set the polynomials P and R in Lemma 7.1

to Â and Φ̂ respectively, with size and depth bound on the circuit complexity of Â being
(

sρO(d)
)

and ∆ + 2 respectively.

Finally, since (y − gj(w)) divides Bj(T, w, y), which equals (Â(T, w, y, Φ̂(T, w, y))), we get

from an application of Lemma 7.1 that gj(w) has a depth ∆′ = (∆ + O(1)) circuit of size s′ which

is at most

(

poly(sρd, deg(Â), k) · (log k)poly(d)
)

≤
(

poly(s, deg(A), k) · (ρ log k)poly(d)
)

.

The contrapositive tells us that if every depth-∆′ circuit for g requires size greater than s′ obtained

as an upper bound above, then A(T, KIg,S (w), Φ(T, KIg,S (w))) is identically zero if and only if

A(T, x, Φ(T, x)) is identically zero. This completes the proof of the theorem.

8 Preserving irreducibility under variable reduction

We prove our main technical result (Theorem 5.1) in this section. Together with the ideas dis-

cussed in Section 9, this is sufficient to complete the proof of correctness of our algorithms. To

this end, we first start by showing that the irreducibility of factors of multivariate polynomials

can be characterized by certain divisibility tests involving approximate power series roots of the

polynomial. We then show that these divisibility tests can be reduced to polynomial identity tests

for certain circuits, where the instances are built using constant-depth circuits and their approxi-

mate power series roots. A reduction from divisibility testing to PIT was shown by Forbes [For15]

and was later used in factorization algorithms in [KRS23, KRSV24]. However, our proof for this

reduction here is different from that in [For15] and goes via a recent result of Andrews & Wigder-

son [AW24] that shows that the transformation between elementary symmetric polynomials and

38

power symmetric polynomials can be done efficiently using constant-depth circuits. This alterna-

tive proof offers a clearer insight into the structure of the PIT instances and this structure if helpful

in completing our proof. Finally, we show that these PIT instances can be solved deterministically

in subexponential time using the Kabanets-Impagliazzo generator invoked with the explicit low

degree hard polynomials in [LST21]. This analysis is the core technical part of the proof and is

perhaps a little surprising since while we are unable to show that the PIT instances we work with

are themselves constant-depth circuits. Nevertheless, we manage to show that the generator can

still be analyzed and shown to work for such circuits.

8.1 From irreducibility testing to divisibility tests

The following lemma is the first step towards our approach of relating irreducibility testing to

divisibility tests.

Lemma 8.1. Let P(T, x, z) be a nonzero squarefree polynomial that is monic in z and T-regularized with

respect to z with degz P = D. Let k > degT(P) and P(0, x, z) (which equals P(0, 0, z)) be squarefree.

Also, let P(T, x, z) = ∏i∈[D](z− ϕi(T, x)) be the factorization of P(T, x, z) where the roots ϕi(T, x) are

from the ring of power series F[x]JTK.9 Suppose R1, R2, . . . , RD ∈ F[T, x] are truncated, non-degenerate,

approximate z-roots of P of order k with respect to T that satisfy

Ri ≡ ϕi mod Tk .

For any subset S ⊆ [D], define QS(T, x, z) := (∏i∈S(z− Ri(T, x)) trunc Tk). Then, for any S ⊆ [D],

QS(T, x, z) divides P(T, x, z) if and only if ∏i∈S(z− ϕi(T, x)) ∈ F[T, x, z] (and not just F[x]JTK[z]). In

other words, QS divides P if and only if ∏i∈S(z− ϕi(T, x)) is a polynomial in T, x, z.

Moreover, if QS divides P then, QS equals the polynomial ∏i∈S(z− ϕi(T, x)).

Proof. For any S ⊆ [D], if FS(T, x, z) := ∏i∈S(z − ϕi(T, x)) ∈ F[T, x, z] i.e. FS(T, x, z) is a true

polynomial factor of P(T, x, z), then we observe that QS(T, x, z) = (∏i∈S(z− Ri(T, x)) mod
〈

Tk
〉

)

must equal FS(T, x, z): since k > degT(P) ≥ degT(FS),

FS(T, x, z) = FS(T, x, z) trunc
〈

Tk
〉

= ∏
i∈S

(z− ϕi(T, x)) trunc
〈

Tk
〉

= ∏
i∈S

(z− Ri(T, x)) trunc
〈

Tk
〉

= QS(T, x, z) .

9Such a factorization exists because each root of the univariate P(0, x, z) can be extended to a power series root via
Newton iteration; see [DSS22, Theorem 4].

39

For the other direction, let S ⊆ [D] and suppose QS divides P. Thus, QS = ∏i∈U(z− ϕi(T, x))

for some U ⊆ [D]. In particular, QS(0,0, z) = ∏i∈U(z − ϕi(0,0)) = ∏i∈U(z − Ri(0,0)), which

follows because for each i ∈ [D], ϕi(T, x) = Ri(T, x) mod
〈

Tk
〉

for some k > degT(P) ≥ 1. But, by

definition of QS, QS(0,0, z) = ∏i∈S(z− Ri(0,0)) and so, ∏i∈S(z− Ri(0,0)) = ∏i∈U(z− Ri(0,0)).

Since P(0,0, z) is squarefree10, each ϕi(0,0) is distinct, and equivalently, each Ri(0,0) is distinct.

Thus, U = S and ∏i∈S(z− ϕi(T, x)) ∈ F[T, x, z].

An application of the above lemma that we use later in this section is the lemma below. This

lemma characterizes the irreducible factors of a polynomial P by a set of (potentially exponentially

many) divisibility tests. We later reduce these divisibility tests into instances that we derandomize

to get Theorem 5.1.

Lemma 8.2. Let P(T, x, z) be a nonzero squarefree polynomial that is monic in z and T-regularized, with

degz P = D. Let k > degT(P) and P(0, x, z) (which equals P(0, 0, z)) be squarefree.

Also, let P(T, x, z) = ∏i∈[D](z− ϕi(T, x)) be the factorization of P(T, x, z) where the roots ϕi(T, x) are

from the ring of power series F[x]JTK.11 Suppose R1, R2, . . . , RD ∈ F[T, x] are truncated, non-degenerate,

approximate z-roots of P of order k that satisfy

Ri ≡ ϕi mod Tk .

Then, for any subset S ⊆ [D], QS(T, x, z) := ∏i∈S(z− Ri(T, x)) trunc Tk is an irreducible factor of

P(T, x, z) if and only if

• QS(T, x, z) divides P(T, x, z), and

• for every strict subset U ⊂ S with |U| ≥ 1, QU(T, x, z) ∤ P(T, x, z), where QU(T, x, z) :=

∏i∈U(z− Ri(T, x)) trunc Tk

Proof. For the forward direction of the proof, suppose QS is an irreducible factor of P. Then clearly,

QS must divide P. Moreover, from Lemma 8.1, we get that QS equals ∏i∈S(z− ϕi(T, x)). To obtain

the second item, we argue via contradiction. Suppose that there exists a proper subset U of S such

that QU divides P. So, from Lemma 8.1, we have that ∏i∈U(z − ϕi(T, x)) must be a polynomial

in T, x, z and equal QU . But then, from the same lemma (invoked with the polynomial P being

replaced by QS), we have that QU must be a factor of QS. Since U is a non-empty proper subset

of S, the z-degree of QU is at least one and strictly less than the z-degree of QS, and hence QU is a

10While squarefreeness implies that each irreducible factor of P(0,0, z) over F is unique, this also implies that each
root of P(0, 0, z) in F is unique because squarefreeness is captured by the non-vanishing of the discriminant, which
only depends on the coefficients of P(0, 0, z) and not on the underlying field.

11Such a factorization exists because each root of the univariate P(0, x, z) can be extended to a power series root via
Newton iteration; see [DSS22, Theorem 4].

40

non-trivial factor of QS. But this contradicts the irreducibility of QS. This completes the proof of

the second item.

For the reverse direction, the first item in the hypothesis already guarantees that QS is a factor

of P; Lemma 8.1 further tells us that QS = ∏i∈S(z − ϕi(T, x)). Now, all we need to argue is

the irreducibility of QS. We do this via contradiction. Suppose that QS is not irreducible, and

let A be a (non-trivial) factor of QS. Since QS is monic in z, we get that A is also monic in z

with z-degree at least one and strictly less than |S|. So, by an application of Lemma 8.1, we get

that there is a non-trivial proper subset U of S such that A = ∏i∈U(z− ϕi(T, x)) and moreover,

A = ∏i∈U(z− Ri(T, x)) trunc Tk. But since A divides QS and QS divides P, we get that A divides

P, which immediately contradicts the second item in the hypothesis.

This completes the proof of the lemma.

An immediate consequence of the above lemma is the following corollary that gives a certificate

of irreducibility of a polynomial, in terms of an exponentially large set of divisibility tests.

Corollary 8.3. Let P(T, x, z) be a nonzero squarefree polynomial that is monic in z and T-regularized, with

degz P = D. Let k > degT(P) and P(0, x, z) (which equals P(0, 0, z)) be squarefree.

Let P(T, x, z) = ∏i∈[D](z− ϕi(T, x)) be the factorization of P(T, x, z) where the roots ϕi(T, x) are from

the ring of power series F[x]JTK.

Then, P is irreducible over F if and only if for every subset S of [D], the polynomial QS(T, x, z) :=

∏i∈S(z− Ri(T, x)) trunc Tk does not divide P in the ring F[T, x, z].

The above corollary together with the reduction from divisibility testing to PIT in the next sec-

tion gives us a reduction from irreducibility testing to PIT. However, we note that Corollary 8.3

gives exponentially many (in degree D) divisibility testing instances, and thus it isn’t immediately

clear if this reduction can be useful for obtaining subexponential time irreducible testing algo-

rithms. It is for this reason that our algorithm for factorization does not proceed directly using

this reduction and only uses the corollary (and the previous lemmas) in its analysis.

8.2 From divisibility testing to polynomial identity tests

Let us recall the standard definitions of the power sum symmetric polynomials and the elementary

symmetric polynomials, particularly in the context of roots of a univariate polynomial.

Definition 8.4. For any monic univariate polynomial P = ∏j∈[d](z− αj) ∈ F[z] and natural number i,

Psymi(P) and Esymi(P) are the power sum symmetric polynomial ∑j αi
j and the elementary symmetric

polynomial ∑S⊆[d]:|S|=i ∏j∈S αj of degree i respectively in the multiset of roots of P. ♦

The following important lemma from a recent beautiful work of Andrews and Wigderson

[AW24] (but also present in earlier works such as [SW01]) shows that there is a constant-depth

circuit that computes the power sum symmetric polynomials of a multiset from the elementary

41

symmetric polynomials of the multiset; similarly, there is a constant-depth circuit that computes

the elementary symmetric polynomials of a multiset from the power sum symmetric polynomials

of the multiset.

Lemma 8.5 ([AW24, Lemma 3.4, Lemma 3.6]). Let F be any field of characteristic zero and n ∈ N

be any natural number. Then, there is a constant-depth circuit of size and degree poly(n) that takes the

n-variate polynomials {Esymi(x) : i ∈ [n]} as inputs and outputs the polynomials {Psymi(x) : i ∈ [n]}.

Similarly, there is a constant-depth circuit of size and degree poly(n) that takes the n-variate polynomi-

als {Psymi(x) : i ∈ [n]} as inputs and outputs the polynomials {Esymi(x) : i ∈ [n]}.

In [For15, Section 7.2], Forbes showed that the question of deterministic divisibility testing for

polynomials from a certain complexity class can be reduced to deterministic PIT for polynomials

from a related complexity class. This reduction was extensively used in [KRS23] and [KRSV24].

The following version offers a different approach for reducing divisibility testing to PIT, using

Lemma 8.5.

Lemma 8.6. Let D ≥ t ≥ 0 be integer parameters. Let F be any field of characteristic zero. Then, there

is a constant-depth poly(D, t)-sized circuit DivTestD,t on D + t + 1 variables, that takes (D + t) inputs

labelled f0, . . . , fD−1 ∈ F and g0, . . . , gt−1 ∈ F respectively, such that

DivTestD,t(z, f0, . . . , fD−1, g0, . . . , gt−1) = 0

if and only if the polynomial f (z) = f0 + f1z + · · · + ft−1zt−1 + zt divides the polynomial g(z) = g0 +

g1z + · · ·+ gD−1zD−1 + zD.

Proof. By Lemma 8.5, we can construct multi-output circuits PSymToESymn and ESymToPSymn

of size poly(n) and depth O(1) such that for every choice of α1, . . . , αn we have

ESymToPSymn(E1, . . . , En) = (P1, . . . , Pn)

PSymToESymn(P1, . . . , Pn) = (E1, . . . , En)

where Ei = Esymi(α1, . . . , αn)

and Pi = Psymi(α1, . . . , αn).

Let f (z) = ∏
D
i=1(z− αi) where S f = {α1, . . . , αD} is the multiset of roots of f (in the algebraic

closure of F), and let Sg be the multiset of roots of g(z).

Note that e
(f)
i := Esymi(S f) = (−1)i fD−i for i = 1, . . . , D and e

(g)
i = Esymi(Sg) = (−1)igt−i

42

for i = 1 . . . , t. Define the pseudo-quotient of f and g, referred to by h̃ as follows:

h̃(z) = zD−t − zD−t−1e
(h)
1 + · · ·+ (−1)D−te

(h)
D−t

where e
(h)
i = PSymToESymD−t (r1, . . . , rD−t)

where rj =
(

ESymToPSymD

(

e
(f)
1 , . . . , e

(f)
D

)

− ESymToPSymt

(

e
(g)
1 , . . . , e

(g)
t

))

j

If g | f , then the multiset S f is the union of the multiset Sg and the multiset Sh of roots of

h = f /g. In that case, for each i = 1, . . . , D− t, we have

Psymi(S f) = Psymi(Sg) + Psymi(Sh)

=⇒ Psymi(Sh) = Psymi(S f)− Psymi(Sg).

Therefore, h̃(z) = h(z) if g | f .

The circuit DivTestD,t(f0, . . . , fD−1, g0, . . . , gt−1) outputs the polynomial f (z)− h̃(z) · g(z) where

h̃(z) is computed as stated above. By construction, this is a circuit of size poly(D, t) and depth

O(1). Furthermore, as argued above, if g | h then h̃(z) = h(z) = f (z)/g(z) and hence the above

computes the zero polynomial. If g(z) ∤ f (z), then f (z) − h̃(z)g(z) is nonzero for every choice of

h̃(z) and hence the above is nonzero polynomial.

The following lemma uses Lemma 8.6 to show that we can reduce the question of checking

whether a candidate factor (constructed using various approximate roots from Newton iteration)

is an actual factor, to a PIT instance.

Lemma 8.7. Let F be a field of characteristic zero. Let P(T, x, z) ∈ F[T, x, z] be a polynomial that is monic

in z. Let R1(T, x), R2(T, x), . . . , Rℓ(T, x) ∈ F[T, x] be polynomials of T-degree at most (k− 1).

Then, there exists a circuit DivTestdegz(P),ℓ on at most (degz(P) + ℓ+ 1)-variables and size and degree

at most poly(deg(P), ℓ, k) that is computable by a depth-(∆ + O(1)) such that

Q(T, x, z) :=

(

∏
i∈[ℓ]

(z− Ri(T, x))

)

trunc Tk

divides P(T, x, z) if and only if

DivTestdegz(P),ℓ

(

z, P0(T, x), . . . , Pdegz(P)(T, x), (Esym1(R) trunc Tk), . . . , (Esym
ℓ
(R) trunc Tk)

)

≡ 0 ,

where, for every i, Pi(T, x) is the coefficient of zi in P, when viewing it as a univariate in z with coefficients

in the ring F[T, x] andR = {R1, R2, . . . , Rℓ}.

Proof. This almost immediately follows from Lemma 8.6 since each of the polynomials

43

Esym1(R) trunc Tk, . . . , Esym
ℓ
(R) trunc Tk are the coefficients of

(

∏i∈[ℓ](z− Ri(T, x))
)

trunc Tk.

As it is, the DivTest circuit would capture divisibility when the coefficients of the input (univariate)

polynomials (in the variable z) are from a field, but since we are dealing with monic polynomials,

Gauss’ Lemma (Lemma 3.11) ensures that Q(T, x, z) divides P(T, x, z) in F(T, x)[z] if and only if

Q(T, x, z) divides P(T, x, z) in F(T, x)[z]. The theorem now follows.

Lemma 8.8. Let F be a field of characteristic zero. Let R1(T, x), R2(T, x), . . . , Rℓ(T, x) ∈ F[T, x] be

polynomials of T-degree at most (k− 1).

Then, there is a multi-output algebraic circuit Ĉ with depth (∆ + O(1)) and size poly(ℓ, k, deg(P))

that takes as input the polynomials of the form {Ri(αjT, x) : i ∈ [ℓ], j ∈ [poly(ℓ, k, deg(P))]} and outputs
(

Esymi(R1, R2, . . . , Rℓ) trunc Tk
)

for every i ∈ [ℓ]. Here {αj : j ∈ [poly(ℓ, k, deg(P))]} are elements of

F.

Proof. From Lemma 8.5, we get that there is a multi-output constant-depth circuit C on ℓ variables

that can be computed by a constant-depth circuit of size and degree poly(ℓ) such that

C(Psym1(R), . . . , Psymn(R)) = (Esym1(R), . . . , Esymn(R)) ,

where, R = (R1, R2, . . . , Rℓ). For ease of notation, we just focus on the computation of one of the

Esymj(R) and consider the equality

Esymj(R) = C(Psym1(R), . . . , Psymn(R)) .

The above equality immediately gives us a constant-depth circuit that takes R as input and out-

puts their elementary symmetric polynomials. However, the goal is to compute these things mod-

ulo Tk.

To recover Esymj(R) trunc Tk from the above equality, we think of each Ri(T, x) as a polyno-

mial in F[x][T] and apply Corollary 3.4 with respect to the variable T since we want to extract all

the monomials that have T-degree at most k. This only incurs a polynomial blow up in size and an

additive constant increase in depth. Moreover, the new circuit can be seen to be taking as inputs

polynomials of the form {Ri(αjT, x) : i ∈ [ℓ], j ∈ [poly(ℓ, k, deg(P))]}.

The following is an immediate consequence of Lemma 8.8 and Lemma 8.7.

Corollary 8.9. Let F be a field of characteristic zero. Let P(T, x, z) ∈ F[T, x, z] be a polynomial that is

monic in z. Let R1(T, x), R2(T, x), . . . , Rℓ(T, x) ∈ F[T, x] be polynomials of T-degree at most (k− 1).

Then, there exists a circuit C on at most (poly(ℓ, k, deg(P)))-variables and size and degree at most

poly(deg(P), ℓ, k) that is computable by a depth (∆ + O(1)) circuit such that

(

∏
i∈[ℓ]

(z− Ri(T, x))

)

trunc Tk

44

divides P(T, x, z) if and only if

C
(

z, P0(T, x), . . . , Pdegz(P)(T, x),R
)

≡ 0 ,

where, for every i, Pi(T, x) is the coefficient of zi in P, when viewing it as a univariate in z with coefficients

in the ring F[T, x] andR =
(

Ri(αjT, x) : i ∈ [ℓ], j ∈ [poly(ℓ, k, deg(P))]
)

, with each αj being an element

of F.

8.3 Building up to the proof of Theorem 5.1

Theorem 8.10 is our main technical theorem building up to Theorem 5.1. It shows that for the

kind of circuits that show up when testing the divisibility of candidate factors, if composing such

a circuit, say C, with the KI generator – instantiated with a polynomial g and a design S – breaks

the nonzeroness of C, then the polynomial g must be “easy”.

Theorem 8.10. Let k > 1 be any natural number and for every i ∈ [ℓ], let Ai(T, x, z) ∈ F[T, x, z] and

Φi(T, x) ∈ F[T, x] be polynomials satisfying the following properties.

• Each Ai(T, x, z) is computable by a depth ∆ circuit of size s

• Each Ai(T, x, z) is T-regularized and is monic in z.

• For every i ∈ [ℓ], Φi(T, x) is a truncated, non-degenerate, approximate z-root of Ai(T, x, z) of order

k.

Let S be a (n, σ, µ, ρ)-design and let g be a σ-variate polynomial of degree d. For a new tuple w of

µ variables distinct from T, x, z, let us define the polynomial map KIg,S using Definition 3.14. Then the

following is true.

For any circuit C of depth ∆ and size s such that the polynomial

C′(T, x) := C(T, x, Φ1, Φ2, . . . , Φℓ)

is non-zero, if C′(T, KIg,S (w)) is identically zero, then g can be computed by an algebraic circuit of depth

O(∆) and size

poly(s, deg(C′), k) · (ρ log k)poly(d) .

Proof. The proof proceeds along the lines of the proof of Theorem 7.3. In particular, we again apply

the hybrid argument to the sequence of substitutions for xi by gi and arrive at the point j where the

substituted polynomial becomes identically zero for the first time. We again rename the variable

xj as y and set any remaining x variables and w variables outside the set Sj to field constants while

preserving the non-zeroness of the polynomial before the jth substitution. We use Ĉ to denote the

45

result of applying the sequence of substitutions to the circuit C. We use Ĉ′ to denote the result of

applying the sequence of substitutions to the circuit C′. Clearly, it is of the form

Ĉ′(T, w, y) = C(T, ĝ1(T, w), . . . , ĝj−1(T, w), y, b, Φ̂1, . . . , Φ̂ℓ) = Ĉ(T, w, y, Φ̂1, . . . , Φ̂ℓ) ,

where each Φ̂i(T, w, y) is a polynomial in F[T, wSj
, y] that satisfies

Φ̂i(T, w, y) = Φi(T, ĝ1(T, w), . . . , ĝj−1(T, w), y, b)

for field constants b and each ĝi is obtained from gi by setting the w variables outside the set Sj

to field constants according to b and hence depends on only |Si ∩ Sj| ≤ ρ variables. Thus, each ĝi

has a depth-2 circuit of size at most ρO(d). We also know that y− gj(w) divides Ĉ′. From this, we

would like to conclude that gj has a small constant-depth circuit.

We again follow the proof of Theorem 7.3, and reduce to the case that (y − gj) is a factor of

multiplicity one. To this end, we will have to work with an appropriately high enough order

derivative of Ĉ′ with respect to y (depending on the multiplicity). From Corollary 3.4, we get

that this derivative is in the F[y]-span of polynomials of the form Ĉ′(T, w, βi) with βi ∈ F and

i ∈ [degy(Ĉ
′)], and the y-degree of the weights in this linear combination is at most degy(Ĉ

′). Let

us denote the derivative by B. Thus, we have that

B(T, w, y) =

degy(Ĉ
′)

∑
i=0

Ĉ′(T, w, βi)×Λi(y) ,

for univariate polynomials Λi(y) of degree at most degy(Ĉ
′), B is non-zero and satisfies

B(T, w, gj(w)) ≡ 0 ,

and

∂B

∂y
(T, w, gj(w)) 6= 0 .

By shifting the w variables if needed, we can assume without loss of generality that

∂B

∂y
(T, 0, gj(0)) 6≡ 0 .

Thus, from Lemma 4.10, we get that there is a κ ∈ F and a polynomial Q of degree at most d on

(d + 1) variables, that satisfies

gj(w) ≡ Q(h0(κ, w), h1(κ, w), . . . , hd(κ, w)) mod 〈w〉d+1 ,

46

where for every i,

hi(T, w) =
∂B

∂yi
(T, w, gj(0))−

∂B

∂yi
(T,0, gj(0)) trunc 〈w〉d+1 .

Given the degree of Q and the number of variables, we get that it has a depth-2 circuit of size

at most exp(O(d)). The next claim shows that each hi has a constant-depth circuit of small size.

Claim 8.11. Each hi can be computed by a circuit of depth O(∆) and size

s′ ≤ poly(s, deg(C′), k) · (ρ log k)poly(d)

We first use the claim to complete the proof of the lemma, and discuss the proof of the claim.

We take the circuits for hi(T, w) — given by Claim 8.11, denoted by Vi(T, w) — and con-

sider the circuit Q(V0(κ, w), V1(κ, w), . . . , Vd(κ, w)). Clearly, it is of depth O(∆) and size s′ ≤

poly(s, deg(C′), k) · (ρ log k)poly(d) and satisfies

gj(w) ≡ Q(V0(κ, w), V1(κ, w), . . . , Vd(κ, w)) mod 〈w〉d+1 .

We can now apply Corollary 3.4 to obtain the constant-depth circuit for gj(w) with only an

additive increase in depth and a polynomial blow up in the size, thereby giving us the theorem.

Proof of Claim 8.11. From Lemma 6.1, we know that for any β ∈ F, the polynomials Âi(T, w, β)

and Φ̂i(T, w, β), obtained from A and Φ using the substitutions in the above discussion and setting

y = β, continue to satisfy that properties satisfied by Ai, Φi in the hypothesis of the lemma.

Thus, for any field constant β, we can invoke Lemma 6.3 for each Âi(T, w, β) and Φ̂i(T, w, β)

to get that (Φ̂i(T, w, β) trunc 〈w〉d+1) can be computed by a circuit of depth (∆ + O(1)) and size

s′. We now plug these circuits into the input gates of the constant-depth circuit Ĉ to get a circuit

of depth at most O(∆) and size O(s′) that computes the polynomial

Ĉ(T, w, β, (Φ̂1(T, w, β) trunc 〈w〉d+1), . . . , (Φ̂ℓ(T, w, β) trunc 〈w〉d+1)) .

Now, applying Corollary 3.4 with respect to the w variables gives us a circuit of depth O(∆)

and size poly(s′) that computes
(

Ĉ′(T, w, β) trunc 〈w〉d+1
)

, since by definition Ĉ′(T, w, y) equals

Ĉ(T, w, y, Φ̂1, . . . , Φ̂ℓ).

Similar to Lemma 7.112, the claim now follows from the definition of B, Corollary 3.4 and the

fact that the degree of B in T is at most deg(C′).

12Refer to the part of the proof where we show that hi(T, w) can be computed by constant-depth circuits.

47

We now combine the machinery in Section 8.2 with Theorem 8.10 to get the following theorem

that is directly used in the proof of Theorem 5.1.

Theorem 8.12. Let n ∈ N be sufficiently large, and let x = (x1, . . . , xn). Let F be a field of characteristic

zero. Let k > 1 be any natural number. Let P(T, x, z) ∈ F[T, x, z] and R1(T, x), R2(T, x), . . . , Rℓ(T, x) ∈

F[T, x] be polynomials with the following properties.

• P(T, x, z) is computable by a depth ∆ circuit of size s ≤ poly(n)

• P(T, x, z) is T-regularized and is monic in z.

• For every i ∈ [ℓ], Ri(T, x) is a truncated, non-degenerate, approximate z-root of P(T, x, z) of order

k.

Let Q(T, x, z) :=
(

∏i∈[ℓ](z− Ri(T, x))
)

trunc Tk.

Let g be a σ-variate degree d polynomial and S be a (n, σ, µ, ρ)-design. Let KIg,S : Fµ → Fn be the

polynomial map in Definition 3.14 defined using g and S . Then, the following is true.

If Q(T, x, z) does not divide P(T, x, z) but Q(T, KIg,S (w), z) divides P(T, KIg,S (w), z), then g can

be computed by an algebraic circuit of depth ∆′ = O(∆) and size at most

s′ = poly(s, ℓ, k, deg(P)) · (ρ log k)poly(d) .

In particular, if any depth-∆′ circuit for g requires size greater than s′, then Q(T, x, z) divides P(T, x, z)

if and only if Q(T, KIg,S(w), z) divides P(T, KIg,S (w), z)

Proof. If Q(T, x, z) divides P(T, x, z), then Q(T, KIg,S (w), z) certainly divides P(T, KIg,S (w), z).

Suppose Q(T, x, z) does not divide P(T, x, z). Corollary 8.9 tells us that equivalently, there ex-

ists a circuit C on at most poly(ℓ, k, deg(P)) variables, and size and degree at most poly(ℓ, k, deg(P)),

that is computable by a depth (∆ + O(1)) circuit such that

C
(

z, P0(T, x), . . . , Pdegz(P)(T, x),R
)

6≡ 0 ,

where, for every i, Pi(T, x) is the coefficient of zi in P when viewing it as a univariate in z with

coefficients in the ring F[T, x], and R =
(

Ri(αjT, x) : i ∈ [ℓ], j ∈ [poly(s, k, deg(P))]
)

, with each αj

being an element of F.

If Q(T, KIg,S (w), z) divides P(T, KIg,S (w), z), then

C
(

z, P0(T, x) ◦KIg,S (w), . . . , Pdegz(P)(T, x) ◦KIg,S(w),R ◦KIg,S (w)
)

≡ 0 ,

whereR ◦KIg,S (w) := {R ◦KIg,S (w) : R ∈ R}. Observe that

C
(

z, P0(T, x) ◦KIg,S (w), . . . , Pdegz(P)(T, x) ◦KIg,S(w),R ◦KIg,S (w)
)

48

is the same as

C
(

z, P0(T, x), . . . , Pdegz(P)(T, x),R
)

◦KIg,S (w).

Moreover, Lemma 6.1 tells us that each Ri(αjT, x) is a truncated, non-degenerate, approximate

z-root of P(αjT, x, z) of order k, where P(αjT, x, z) is T-regularized and monic in z.

Thus, we can apply Theorem 8.10 to C
(

z, P0(T, x), . . . , Pdegz(P)(T, x),R
)

to conclude that g can

be computed by an algebraic circuit of depth ∆′ = O(∆) and size s′ which is at most

s′ := poly(s, ℓ, k, deg(P)) · (ρ log k)poly(d) .

The contrapositive tells us that if every depth-∆′ circuit for g requires size greater than s′ ob-

tained as an upper bound above, then Q(T, x, z) divides P(T, x, z) if and only if Q(T, KIg,S(w), z)

divides P(T, KIg,S(w), z).

8.4 Proof of Theorem 5.1

We are now ready to prove Theorem 5.1. We start by recalling some notation that we use.

Let G = {gm}m∈N be a family of polynomials such that for every m ∈ N, gm ∈ F[x1, . . . , xm],

dm := deg(gm) ≤ O(log log(m)). Further, G has the property that for any depth ∆ ∈ N, if

C = {Cm}m∈N is a family of depth-∆ circuits computing G, then C requires size md
exp(−O(∆))
m , which

is mω(1). Theorem 3.15 gives us such a family of explicit low-degree polynomials that are hard for

constant-depth circuits.

Theorem 5.1 (Irreducibility-preserving variable reduction). Fix any ∆ ∈ N and ε ∈ (0, 0.5). For an

absolute constant13 C∆,ε ∈ N, let n ∈ N, n ≥ C∆,ε and x := (x1, . . . , xn). Let P(T, x, z) be a nonzero

polynomial with the following properties.

• P(T, x, z) is computable by a size s ≤ poly(n) and depth ∆ circuit.

• P(T, x, z) is monic in z and T-regularized, with deg(P) = D ≤ poly(n).

• P(T, x, z) and P(0, x, z) = P(0,0, z) are squarefree.

Let σ = O(nε), µ = O(n2ε

log(n)), ρ = O(log(n)), and let S be an (n, σ, µ, ρ)-design. Let KIgσ,S : Fµ → Fn

be the polynomial map in Definition 3.14 defined using the design S and the polynomial gσ from the family

of hard polynomials G. Then, the following is true.

A polynomial F(T, x, z) is an irreducible factor of P(T, x, z) if and only if F(T, KIgσ ,S(w), z) is an

irreducible factor of P(T, KIgσ ,S(w), z).

13If a(n) = O(b(n)), then there exists some C such that for all n > C, a(n) ≤ b(n); the C∆,ε in our statement is for
this purpose. The precise value of C∆,ε depends on the exact hardness of the polynomial in G and the upper bounds
obtained in our proofs.

49

Proof. Suppose P(T, x, z) = ∏
D
i=1(z − ϕi(T, x)), where each ϕi(T, x) is a power series root from

F[x]JTK. Then, by Lemma 8.1 and Lemma 8.2, we have that for any subset S ⊆ [D], FS(T, x, z) :=

∏i∈S(z− ϕi(T, x)) is an irreducible polynomial factor of P(T, x, z) if and only if

• QS(T, x, z) divides P(T, x, z), where QS = FS trunc Tk and

• for every strict subset U ⊂ S, QU(T, x, z) ∤ P(T, x, z)

For the given parameters, one can verify that the upper bound s′ given in Theorem 8.12 is at

most poly(n), whereas gσ requires size nω(1) for any constant-depth circuit14. Thus, we can apply

Theorem 8.12 on both the conditions above, to equivalently state that for any subset S ⊆ [D],

FS(T, x, z) = ∏i∈S(z− ϕi(T, x)) is an irreducible polynomial factor of P(T, x, z) if and only if

• QS(T, KIgσ,S(w), z) divides P(T, KIgσ,S (w), z), and

• for every strict subset U ⊂ S, QU(T, KIgσ,S (w), z) ∤ P(T, KIgσ ,S(w), z)

Lemma 6.1 tells us that P(T, KIgσ,S(w), z) will remain a nonzero squarefree15 polynomial that is

monic in z and T-regularized, with degz P = D. Furthermore, P(0, KIgσ ,S(w), z) = P(0, 0, z) will

be squarefree. Thus, we can apply Lemma 8.1 and Lemma 8.2 to the above two conditions to get

that for any subset S ⊆ [D], FS(T, x, z) = ∏i∈S(z− ϕi(T, x)) is an irreducible polynomial factor of

P(T, x, z) if and only if

• ∏i∈S(z− ϕi(T, KIgσ ,S(w))) ∈ Q[T, w, z], and

• for every strict subset U ⊂ S, ∏i∈T(z− ϕi(T, KIgσ,S (w))) 6∈ Q[T, w, z]

These conditions are true if and only if FS(T, KIgσ,S(w), z) = ∏i∈S(z − ϕi(T, KIgσ ,S(w))) is an

irreducible factor of P(T, KIgσ ,S(w), z); this concludes the theorem.

9 Proof of correctness of the algorithm

We will analyze the correctness of our algorithms in a bottom-up fashion, starting with Algo-

rithm 3 and ending with Algorithm 1, which will prove Theorem 5.2.

9.1 Analysis of Algorithm 3

Suppose P(T, x, z) = ∏i∈[m] Gi(T, x, z), where P(T, x, z) is monic in z, T-regularized with degT(P) ≤

deg(P) := D and degz(P) = Dz. P is squarefree and P(0,0, z) is squarefree as well. The Gis are

the irreducible factors of P.
14We chose n sufficiently large enough in the theorem statement (n > C), which implies that for this particular σ, gσ

requires constant-depth circuits larger than s′.
15Squarefreeness is equivalent to each root being non-degenerate, which is maintained by Lemma 6.1.

50

Let G(T, x, z) denote an arbitrary Gi. Suppose G(0,0, z) = ∏j∈[r] Hj(z) is the factorization of

G(0,0, z) into its irreducible factors. Since P(0,0, z) is squarefree, each Hj is distinct. If any of the

Hj(z) had degree 1, we could’ve lifted that root via Newton iteration and proceeded with the rest

of the algorithm. We will now describe how we deal with the absence of roots of G(0,0, z) in Q

using ideas that are standard in the literature (for instance, see [DSS22, Section 6.2]).

Let H(z) be an arbitrary irreducible factor of G(0,0, z) and define the field K := Q[u]
H(u)

for a

new variable u. Thus, we are artificially adding a root of H(u) to our field. Every operation in this

field is polynomial addition or multiplication over Q with the variable u, followed by taking the

reminder mod H(u).

We can now use Newton iteration (Lemma 4.5) to compute a truncated, non-degenerate, ap-

proximate z-root ϕ(T, x) ∈ K[T, x] satisfying G(T, x, ϕ(T, x)) ≡ 0 mod 〈T〉2D·Dz+1 and ϕ(0, x) =

u ∈ K. The following lemma, standard in the factorization literature (see [Bü04, Lemma 3.6]), tells

us that G is the unique minimal polynomial of ϕ with the above constraints.

Lemma 9.1. Let G(T, x, z) ∈ Q[T, x, z] be an irreducible polynomial, monic in z with T-degree at most D

and z-degree exactly Dz. Let ϕ(T, x) ∈ K[T, x] be an approximate root of G of order 2D ·Dz + 1, satisfying

G(T, x, ϕ(T, x)) ≡ 0 mod 〈T〉2D·Dz+1.

Now, suppose B(T, z) ∈ Q(x)[T, z] is monic in z with T-degree at most D and z-degree exactly Dz

satisfying:

B(T, ϕ(T, x)) ≡ 0 mod 〈T〉2D·Dz+1

Then B ≡ G.

Proof. Consider R(T) := Resz(B(T, z), G(T, z)) ∈ Q(x)[T]. By Theorem 3.8, there exist polynomi-

als AB(T, z), AG(T, z) ∈ Q(x)[T, z] such that

R(T) ≡ AB(T, z)B(T, z) + AG(T, z)G(T, z) .

If we plug in z = ϕ, both B(T, ϕ) and G(T, ϕ) vanish mod 〈T〉2D·Dz+1. Thus, R(T) ≡ 0 mod 〈T〉2D·Dz+1.

But the definition of the Resultant tells us that R(T) has T-degree at most 2D · Dz, which means

that R(T) must be identically zero. By Theorem 3.8, this implies that gcd(B, G) is non-trivial in

Q(T, x)[z], but since both B and G are monic in z, Lemma 3.11 tells us that gcd(B, G) is non-trivial

in Q[T, x, z]. Since G is irreducible, G must divide B. Moreover, degz(B) = degz(G), which implies

that B ≡ G.

9.1.1 Linear system for computing the unique minimal polynomial

Let G = {gm}m∈N be a family of polynomials such that for every m ∈ N, gm ∈ F[x1, . . . , xm],

dm := deg(gm) ≤ O(log log(m)). Further, G has the property that for any depth ∆ ∈ N, if

51

C = {Cm}m∈N is a family of depth-∆ circuits computing G, then C requires size md
exp(−O(∆))
m , which

is mω(1). Theorem 3.15 gives us such a family of explicit low-degree polynomials that are hard for

constant-depth circuits.

Theorem 9.2 (Small division-free circuit for the minimal polynomial of an approximate root). Fix

any ∆ ∈ N and ε ∈ (0, 0.5). For an absolute constant C∆,ε ∈ N, let n > C∆,ε and x = (x1, . . . , xn). Let

P(T, x, z) be a polynomial with the following properties.

• P is T-regularized and monic in z with total degree D.

• G(T, x, z) is an irreducible factor of P with z-degree Dz.

• H(z) is an irreducible factor of G(0, x, z), and K is the field Q[u]
H(u)

.

Then, there is a deterministic algorithm A∆,ε (with access to H(z)) which

• takes as input a size s circuit computing ϕ(T, x) ∈ K[T, x], a truncated, approximate z-root of

P(T, x, z) of order (2D · Dz + 1) such that ϕ(0, x) = u is a root of G(0, x, z) over K;

• outputs a division-free circuit over Q for G(T, x, z) with size poly(s, D);

• and runs in time poly(s, D)O(n2ε).

Proof. We would like to compute a polynomial B(T, z) ∈ Q(x)[T, z] that is monic in z with T-

degree at most D and z-degree exactly Dz satisfying:

B(T, ϕ(T, x)) ≡ 0 mod 〈T〉2D·Dz+1

where ϕ(T, x) ∈ K[T, x] is computed by a circuit with constants from K. Lemma 9.1 guarantees

that such a polynomial B has to be the irreducible factor G.

We can separate B into its bihomogeneous components with respect to T and z as

B(T, z) =
d

∑
i=0

D

∑
j=0

Bi,jz
iT j

where each Bi,j can take a value in the field Q(x). Since B is monic in z, Bd,0 = 1 and Bd,j = 0 for

all j > 0. The minimal polynomial satisfies

B(T, ϕ(T, x)) =
d

∑
i=0

D

∑
j=0

Bi,j(ϕ(T, x))iT j ≡ 0 mod 〈T〉2D·Dz+1

which can equivalently be written as 2D · Dz + 1 many linear constraints, where each constraint

expresses that the coefficient of Tl in B(T, ϕ(T, x)) is zero, for some l ∈ {0, 1, . . . , 2D · Dz}. Let

52

ϕ(i,j) denote the coefficient of T j in ϕi. Thus, we have the following linear system in the variables

Bi,j for i ∈ {0, . . . , D} and j ∈ {0, . . . , Dz}.

Bd,0 = 1 (9.3)

∀j ∈ {1, . . . , D} : Bd,j = 0 (9.4)

∀l ∈ {0, 1, . . . , 2D · Dz + 1} :
d

∑
i=0

l

∑
j=0

Bi,j(ϕ)(i,l−j) = 0 (9.5)

At this point, the coefficients of each constraint come from K[x], which means that we can interpret

each constraint as a degree (deg(H)− 1) polynomial in the variable u, with coefficients from Q[x].

Since the minimal polynomial of u is H, it follows that 1, u, . . . , udeg(H)−1 are linearly independent

over Q and, in fact, over16 Q[x]. Thus, for a constraint to be equal to zero, the coefficient of each ur

(for r ∈ {0, 1, . . . , deg(H)− 1}) must be identically zero in Q[x]. To compute the coefficient of ur

in (ϕ)(i,j), we can apply Corollary 3.4 and get a circuit of size poly(s); we will denote this circuit

by (ϕ)(i,j,r). Thus, we can express the constraints of the form Eq. (9.5) using equivalent constraints

of the form:

d

∑
i=0

l

∑
j=0

Bi,j(ϕ)(i,l−j,r) = 0

for every r ∈ {0, . . . , (deg(H)− 1)Dz} and for every l ∈ {0, 1, . . . , 2D · Dz + 1}. The linear system

is now over Q[x], and thus, any solution to the linear system is going to be over Q(x).

We can express the linear system as MϕB = cϕ for a matrix Mϕ with entries in Q[x], the vector

of variables B = (Bi,j) and a vector cϕ ∈ (Q[x])n. Since the linear system has a unique solution

(Lemma 9.1), Mϕ has full column rank. Using some basic linear algebra (for instance, see [KRSV24,

Lemma B.6]), we can rewrite the linear system as MT
ϕ MϕB = MT

ϕcϕ, where MT
ϕ Mϕ is an invertible

square matrix. Thus, we can express the solution to this linear system as B = (MT
ϕ Mϕ)−1(MT

ϕcϕ).

In particular, each Bi,j can be expressed as
Ni,j(x)

det(MT
ϕ Mϕ)

, where both the numerator and the denomi-

nator have circuits of size poly(s, D).17

At this point, we would like to use Strassen’s division elimination (Lemma 3.6) to write each

Bi,j as a circuit without division. Strassen’s method requires that we find a point γ ∈ Qn such

that det(MT
ϕ Mϕ) is non-zero at γ, but this seems to require a hitting set for circuits since the naive

upper bound that we can give for det(MT
ϕ Mϕ) is a small circuit. We will now show that the

variable reduction map from Theorem 5.1 also preserves the nonzeroness of det(MT
ϕ Mϕ).

Let σ = O(nε), µ = O(n2ε

log(n)), ρ = O(log(n)), and let S be an (n, σ, µ, ρ)-design. Let KIgσ,S :

Fµ → Fn be the polynomial map in Definition 3.14 defined using the design S and the polynomial

16If ∑i pi(x)u
i ≡ 0, then ∑i pi(0)u

i = 0.
17Here, we use the well-known fact that the Determinant can be computed efficiently.

53

gσ from the family of hard polynomials G.

Claim 9.6. det(MT
ϕ Mϕ) ◦KIg,S (w) 6≡ 0

Proof. Recall that det(MT
ϕ Mϕ) is non-zero precisely because the irreducible factor G(T, x, z) is the

unique solution for the linear system. Lemma 6.1 tells us that ϕ(T, KIgσ ,S(w)) is the unique

truncated, non-degenerate, approximate z-root of P(T, KIgσ,S (w), z) of order 2D · Dz + 1, satis-

fying ϕ(T, KIgσ,S(w)) = u = ϕ(0, x). By Theorem 5.1, we now know that KIgσ,S(w) preserves

the irreducibility of factors, so G(T, KIgσ,S (w), z) is irreducible. Thus, if we had first applied

KIgσ,S(w) to the polynomial P(T, x, z) and computed the truncated, non-degenerate, approxi-

mate root ϕ(T, KIgσ,S (w)) of order 2D · Dz + 1 starting from the same point u ∈ K, Lemma 9.1

tells us that we would’ve still maintained uniqueness of solution for the linear system that com-

putes a monic minimal polynomial of ϕ(T, KIgσ ,S(w)) of T-degree at most D and z-degree exactly

Dz. Moreover, the new linear system is going to be the same as the old linear system, except

each (ϕ)(i,l−j,r) will be replaced by (ϕ ◦KIgσ ,S(w))(i,l−j,r); this follows because the transformation

x 7→ KIgσ,S (w) preserves the (T, z)-degree and the u-degree of every monomial; in other words,

the matrix Mϕ◦KIgσ,S (w) will be equal to Mϕ ◦ KIgσ,S(w). Thus, uniqueness of the linear system’s

solution implies that det(MT
ϕ Mϕ)(x) ◦KIgσ,S (w) ≡ det(MT

ϕ◦KIgσ,S (w)Mϕ◦KIgσ ,S (w)) 6≡ 0.

Thus, to find a point γ ∈ Qn satisfying det(MT
ϕ Mϕ)(γ) 6= 0, we can first compose it with

KIgσ,S(w) to get a degree poly(n) polynomial on µ = O(n2ε) variables. For this low-variate poly-

nomial, we can use the brute force derandomization of the Polynomial Identity Lemma (Lemma 3.2)

to find a point γ̂ ∈ Qµ such that det(MT
ϕ Mϕ) ◦KIgσ,S is nonzero at γ̂; this takes time poly(s, D)O(n2ε).

Thus, γ := KIgσ,S (γ̂) ∈ Qn will be a point where det(MT
ϕ Mϕ)(γ) 6= 0. We can then use Lemma 3.6

to give a circuit of size poly(s, D) for each Bi,j, which implies that G(T, x, z) = B(T, z) = ∑
d
i=0 ∑

D
j=0 Bi,jz

iT j

has a circuit of size poly(s, D).

Theorem 9.7 (Correctness of Algorithm 3). For any ∆ ∈ N and ε ∈ (0, 0.5), Algorithm 3, for suffi-

ciently large n, satisfies the following.

• It takes as input a depth-∆ size-s circuit CP̃ computing a squarefree degree-D polynomial P̃(T, x, z) =

∏j∈[m] G̃j(T, x, z), where the G̃is are the irreducible factors of P̃. Further, P̃(T, x, z) is monic in z,

T-regularized with respect to x and CP̃(0, x, z) = CP̃(0,0, z) is squarefree.

• It also takes as input the univariate polynomial G̃j(0, x, z) = G̃j(0,0, z) for each j ∈ [m].

• It outputs a list L = {CG̃1
(T, x, z), . . . , CG̃m

(T, x, z)}, such that each CG̃i
(T, x, z) is a circuit of size

poly(s, D) and depth poly(D), which computes the irreducible factor G̃i(T, x, z) of P̃(T, x, z).

• It runs in time poly(s, D)O(n2ε).

54

Proof. The algorithm iterates over each G̃j, so let us focus on one such G̃j. By Theorem 4.11, Line 3

of the algorithm gives the correct factorization of G̃j(0,0, z) into its irreducible factors, and it runs

in time poly(deg(G̃j(0,0, z))). By Corollary 4.6, Line 5 will correctly compute a truncated, non-

degenerate, approximate z-root ϕ(T, x) ∈ K[T, x] of G̃j(T, x, z) of order 2D · Dz + 1 such that

ϕ(0, x) = ϕ(0,0) = u ∈ K. Moreover, it runs in time poly(s, D) and outputs a circuit for ϕ(T, x) of

size poly(s, D). Finally, by Theorem 9.2, Line 6 will correctly compute a circuit CG̃j
for G̃j, of size

poly(s, D), in time poly(s, D)O(n2ε).

9.2 Analysis of Algorithm 2

Theorem 9.8 (Correctness of Algorithm 2). For any ∆ ∈ N and ε ∈ (0, 0.5), Algorithm 2, for suffi-

ciently large n, satisfies the following.

• The input to the algorithm is a depth-∆ size-s circuit CP computing the squarefree polynomial P(x) =

∏j∈[m] Gj(x), where the Gjs are the irreducible factors of P.

• The output of the algorithm is a list L = {CG1(x), . . . , CGm
(x)}, such that each CGj

(x) is a circuit of

size poly(s, D) and depth poly(D), which computes the irreducible factor Gj(x).

• The algorithm runs in time poly(s, D)O(n2ε).

Proof. The coefficient of zD in P̂(x, z) := P(x + (a · z))/δ is HomD[P]/δ = 1, thus P̂ is monic in

z, and P̂ retains the squarefreeness of P. Moreover, Corollary 3.4 tells us that HomD[P] has a size

poly(s, D) and depth (∆ + O(1)) circuit, so Theorem 3.16 outputs a satisfying HomD[P](a) 6= 0,

in time poly(s, D)O(nε).

Since P̂ is monic in z and squarefree, Theorem 3.9 along with Lemma 3.11 tells us that Discz(P̂)(x) 6≡

0. In Line 2, b is chosen to ensure that Discz(P̂)(b) 6= 0. For P̃(T, x, z) := P̂((T · x) + b, z),

Discz(P̃(0, x, z)) = Discz(P̃(0,0, z)) = Discz(P̂)(b) 6= 0, which implies that P̃(0, x, z) ∈ Q[z] is

squarefree. Moreover, Theorem 3.10 (along with an application of Corollary 3.4 for the complexity

of ∂P̂
∂z) tells us that Discz(P̂) = Resz(P̂, ∂P̂

∂z) has a size poly(s, D) and depth (∆+O(1)) circuit. Thus,

we can again use Theorem 3.16 to find b in time poly(s, D)O(nε).

In Line 3, the map KIgσ,S can be constructed in time exp(O(nε)) by using Lemma 3.13.

In Line 4, P̃(T, KIgσ ,S(w), z) is an O(n2ε)-variate polynomial. Using Theorem 4.12, we can factor-

ize CP̃(T, KIg,S(w), z) in time poly(s, D)O(n2ε). For each j ∈ [m], let G̃j(T, x, z) denote Gj((T · x) +

(a · z) + b); G̃j must be irreducible (this is standard in the literature; for a proof, see [KRSV24,

Lemma B.7]).

By Theorem 5.1, for each j ∈ [m], G̃j(T, KIg,S(w), z) is an irreducible factor of P̃(T, KIgσ,S (w), z).

Thus, for j ∈ [m], the factorization in Line 4 will compute a circuit CG̃j
(T, KIg,S(w), z) that com-

putes G̃j(T, KIg,S (w), z), satisfying the property that G̃j(0, KIg,S(w), z) = G̃j(0,0, z).

55

By Theorem 9.7, Algorithm 3 correctly computes the list L′ = {CG̃1
(T, x, z), . . . , CG̃m

(T, x, z)} in

time poly(s, D)O(nε). Line 6 computes CGj
(x) = CG̃1

(1, x− b, 0) for each Gj(x) correctly.

Overall, the algorithm takes time poly(s, D)O(nε) and outputs circuits of size poly(s, D) for each

irreducible factor Gj(x) of P(x).

9.3 Analysis of Algorithm 1

Theorem 5.2 (Deterministic subexponential time algorithm for factorization of constant-depth cir-

cuits). Fix any ∆ ∈ N and ε ∈ (0, 0.5). There exists an algorithm A∆,ε which, for all sufficiently large

n,

• takes as input a polynomial P(x) ∈ Q[x1, . . . , xn] of degree D ≤ poly(n) with a depth-∆, size

s ≤ poly(n) circuit;

• outputs poly(s, D)-sized circuits for each irreducible factor of P, along with the multiplicity of each

such factor; and

• runs in time poly(s, D)O(n2ε).

Proof. Algorithm 1, instantiated with parameters ∆ and ε, is the algorithm A∆,ε claimed in the

theorem statement. Theorem 4.4 ensures the correctness of Line 1 so that for each i ∈ [r], Pi(x)

corresponds to the product of irreducible factors of P that have multiplicity i in the factorization

(and r is the maximum multiplicity of an irreducible factor). The algorithm from Theorem 4.4 runs

in time poly(s, D) with oracle access to a PIT algorithm for constant-depth circuits; replacing each

oracle access by the algorithm in Theorem 3.16 results in a running time of poly(s, D)O(nε). For

each Pi(x), Theorem 9.8 guarantees that the list Li output by Algorithm 2 in Line 4 is exactly a list

of circuits computing the irreducible factors of Pi; moreover, it runs in time poly(s, nD)O(n2ε). Since

factors of Pi have multiplicity i in P, Line 5 adds the right multiplicity information along with each

circuit for factors of Pi. Every irreducible factor of P(x) must occur as an irreducible factor in Pi(x)

for some i ∈ [r]; thus, every irreducible factor along with its multiplicity will be included in the

output list.

Acknowledgements: The discussions leading to this work started when a subset of the authors

were at the workshop on Algebraic and Analytic Methods in Computational Complexity (Dagstuhl

Seminar 24381) at Schloss Dagstuhl. We are thankful to the organisers of the workshop and to the

staff at Schloss Dagstuhl for the wonderful collaborative atmosphere that facilitated these discus-

sions.

git info: 0da216e , (2025-04-10 19:03:06 +0530) Easter-egg? Didn’t factor that in...

56

References

[AF22] Robert Andrews and Michael A. Forbes. Ideals, determinants, and straightening: prov-

ing and using lower bounds for polynomial ideals. In STOC ’22: 54th Annual ACM

SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 389–

402. ACM, 2022.

[Ale05] Michael Alekhnovich. Linear Diophantine equations over polynomials and soft decod-

ing of Reed-Solomon codes. IEEE Trans. Inform. Theory, 51(7):2257–2265, 2005. (Prelimi-

nary version in 43rd FOCS, 2002).

[AW24] Robert Andrews and Avi Wigderson. Constant-Depth Arithmetic Circuits for Linear

Algebra Problems. In 2024 IEEE 65th Annual Symposium on Foundations of Computer

Science (FOCS), pages 2367–2386, 2024.

[Bog05] Andrej Bogdanov. Pseudorandom generators for low degree polynomials. In Proceed-

ings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA,

May 22-24, 2005, pages 21–30. ACM, 2005.

[BSV18] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic Factorization of

Sparse Polynomials with Bounded Individual Degree. In 59th IEEE Annual Symposium

on Foundations of Computer Science, FOCS 2018, pages 485–496. IEEE Computer Society,

2018.

[Bü04] Peter Bürgisser. The Complexity of Factors of Multivariate Polynomials. Foundations of

Computational Mathematics, 4(4):369–396, September 2004.

[CKS19] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure Results for Polynomial

Factorization. Theory of Computing, 15(13):1–34, 2019.

[DGV24] Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk. Optimal Pseudorandom Generators for

Low-Degree Polynomials Over Moderately Large Fields, 2024. Pre-print available at

arXiv:2402.11915.

[DL78] Richard A. DeMillo and Richard J. Lipton. A Probabilistic Remark on Algebraic Pro-

gram Testing. Information Processing Letters, 7(4):193–195, 1978.

[DSS22] Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. Discovering the Roots: Uniform

Closure Results for Algebraic Classes Under Factoring. J. ACM, 69(3), June 2022.

[DST24] Pranjal Dutta, Amit Sinhababu, and Thomas Thierauf. Derandomizing Multivari-

ate Polynomial Factoring for Low Degree Factors, 2024. Pre-print available at

arXiv:2411.17330.

57

http://dx.doi.org/10.1145/3519935.3520025
http://dx.doi.org/10.1145/3519935.3520025
https://doi.org/10.1109/TIT.2005.850097
https://doi.org/10.1109/TIT.2005.850097
http://dx.doi.org/10.1109/FOCS61266.2024.00138
http://dx.doi.org/10.1109/FOCS61266.2024.00138
http://dx.doi.org/10.1145/1060590.1060594
http://dx.doi.org/10.1109/FOCS.2018.00053
http://dx.doi.org/10.1109/FOCS.2018.00053
http://dx.doi.org/10.1007/s10208-002-0059-5
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.4086/toc.2019.v015a013
https://arxiv.org/abs/2402.11915
https://arxiv.org/abs/2402.11915
http://arxiv.org/abs/2402.11915
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1145/3510359
http://dx.doi.org/10.1145/3510359
https://arxiv.org/abs/2411.17330
https://arxiv.org/abs/2411.17330
http://arxiv.org/abs/2411.17330

[For15] Michael A. Forbes. Deterministic Divisibility Testing via Shifted Partial Derivatives. In

Proceedings of the 2015 IEEE 56th Annual Symposium on Foundations of Computer Science

(FOCS), FOCS ’15, page 451–465, USA, 2015. IEEE Computer Society.

[FS15] Michael A. Forbes and Amir Shpilka. Complexity Theory Column 88: Challenges in

Polynomial Factorization1. SIGACT News, 46(4):32–49, dec 2015.

[GK85] J. von zur Gathen and E. Kaltofen. Factoring Sparse Multivariate Polynomials. Journal

of Computer and System Sciences, 31(2):265–287, 1985.

[GS99] Venkatesan Guruswami and Madhu Sudan. Improved decoding of Reed-Solomon

and algebraic-geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767,

1999.

[Kal89] Erich Kaltofen. Factorization of Polynomials Given by Straight-Line Programs. In Ran-

domness and Computation, pages 375–412. JAI Press, 1989.

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing Polynomial Identity

Tests Means Proving Circuit Lower Bounds. Computational Complexity, 13(1-2):1–46,

2004. Preliminary version in the 35th Annual ACM Symposium on Theory of Computing

(STOC 2003).

[KRS23] Mrinal Kumar, Varun Ramanathan, and Ramprasad Saptharishi. Deterministic Algo-

rithms for Low Degree Factors of Constant Depth Circuits. CoRR, abs/2309.09701, 2023.

Pre-print available at arXiv:2309.09701.

[KRSV24] Mrinal Kumar, Varun Ramanathan, Ramprasad Saptharishi, and Ben Lee Volk. To-

wards Deterministic Algorithms for Constant-Depth Factors of Constant-Depth Cir-

cuits, 2024. Pre-print available at arXiv:2403.01965.

[KS01] Adam Klivans and Daniel A. Spielman. Randomness efficient identity testing of mul-

tivariate polynomials. In Proceedings of the 33rd Annual ACM Symposium on Theory of

Computing (STOC 2001), pages 216–223, 2001.

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of Polynomial

Identity Testing and Polynomial Factorization. Computational Complexity, 24(2):295–331,

2015. Preliminary version in the 29th Annual IEEE Conference on Computational Complex-

ity (CCC 2014).

[KT90] Erich Kaltofen and Barry M. Trager. Computing with polynomials given byblack boxes

for their evaluations: Greatest common divisors, factorization, separation of numera-

tors and denominators. Journal of Symbolic Computation, 9(3):301–320, 1990. Computa-

tional algebraic complexity editorial.

58

http://dx.doi.org/10.1109/FOCS.2015.35
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1016/0022-0000(85)90044-3
https://users.cs.duke.edu/~elk27/bibliography/89/Ka89_slpfac.pdf
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.48550/ARXIV.2309.09701
http://dx.doi.org/10.48550/ARXIV.2309.09701
http://arxiv.org/abs/2309.09701
https://arxiv.org/abs/2403.01965
https://arxiv.org/abs/2403.01965
https://arxiv.org/abs/2403.01965
http://arxiv.org/abs/2403.01965
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1145/380752.380801
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/https://doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/https://doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/https://doi.org/10.1016/S0747-7171(08)80015-6

[Lec07] Grégoire Lecerf. Improved dense multivariate polynomial factorization algorithms.

Journal of Symbolic Computation, 42(4):477–494, 2007.

[LLL82] Arjen K. Lenstra, Hendrik W. Lenstra Jr., and László Lovász. Factoring polynomials

with rational coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial Lower

Bounds Against Low-Depth Algebraic Circuits. In Proceedings of the 62nd Annual

IEEE Symposium on Foundations of Computer Science (FOCS 2021), pages 804–814. IEEE,

2021. Preliminary version in the Electronic Colloquium on Computational Complexity

(ECCC), Technical Report TR21-081.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs Randomness. Journal of Computer and

System Sciences, 49(2):149–167, 1994. Available on citeseer:10.1.1.83.8416.

[Ore22] Øystein Ore. Über höhere Kongruenzen. Norsk Mat. Forenings Skrifter, 1(7):15, 1922.

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.

Github survey, 2015.

[Sch80] Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identi-

ties. Journal of the ACM, 27(4):701–717, 1980.

[ST20] Amit Sinhababu and Thomas Thierauf. Factorization of Polynomials Given By Arith-

metic Branching Programs. In 35th Computational Complexity Conference (CCC 2020),

volume 169 of Leibniz International Proceedings in Informatics (LIPIcs), pages 33:1–33:19,

Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[Str73] Volker Strassen. Vermeidung von Divisionen. Journal für die reine und angewandte Math-

ematik, 264:184–202, 1973.

[Sud97] Madhu Sudan. Decoding of Reed Solomon Codes beyond the Error-Correction Bound.

J. Complexity, 13(1):180–193, 1997.

[Sud98] Madhu Sudan. Lecture notes for the course ‘Algebra and Computation’, 1998. Available

from http://people.csail.mit.edu/madhu/FT98/.

[SV10] Amir Shpilka and Ilya Volkovich. On the Relation between Polynomial Identity Testing

and Finding Variable Disjoint Factors. In Automata, Languages and Programming, 37th

International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings, Part

I, volume 6198 of Lecture Notes in Computer Science, pages 408–419. Springer, 2010.

59

http://dx.doi.org/https://doi.org/10.1016/j.jsc.2007.01.003
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1109/FOCS52979.2021.00083
http://dx.doi.org/10.1109/FOCS52979.2021.00083
http://eccc.hpi-web.de/report/2021/081/
http://eccc.hpi-web.de/report/2021/081/
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.8416
https://github.com/dasarpmar/lowerbounds-survey/releases/
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://dx.doi.org/10.4230/LIPIcs.CCC.2020.33
http://eudml.org/doc/151394
http://dx.doi.org/10.1007/978-3-642-14165-2_35
http://dx.doi.org/10.1007/978-3-642-14165-2_35

[SW01] Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of character-

istic zero. Computational Complexity, 10(1):1–27, 2001. Preliminary version in the 14th

Annual IEEE Conference on Computational Complexity (CCC 1999).

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results

and open questions. Foundations and Trends in Theoretical Computer Science, 5:207–388,

March 2010.

[Vol17] Ilya Volkovich. On Some Computations on Sparse Polynomials. volume 81 of LIPIcs,

pages 48:1–48:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge

University Press, 3 edition, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and Alge-

braic Computation, EUROSAM ’79, An International Symposiumon Symbolic and Algebraic

Computation, volume 72 of Lecture Notes in Computer Science, pages 216–226. Springer,

1979.

60

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1007/PL00001609
http://dx.doi.org/10.1007/PL00001609
http://dx.doi.org/http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.48
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1007/3-540-09519-5_73

