
Student-Teacher Constructive Separations and (Un)Provability in

Bounded Arithmetic: Witnessing the Gap

Marco Carmosino, Stefan Grosser

April 12, 2025

Abstract

Let C be a complexity class and A be a language. The statement “A /∈ C” is a separation of A from C.
A separation is constructive if there is an efficient algorithm called a refuter that prints counterexamples
to the statement “M decides A” for every C-algorithm M . Concretely, refuters witness errors of M on A
by printing, on input 1n, an n-bit string x such that M(x) ̸= A(x). Many recent breakthroughs in lower
bounds and derandomization, like the algorithmic method [12], rely on constructive separations as a core
component. Chen, Jin, Santhanam, and Williams [14] studied the consequences of constructivizing clas-
sical non-constructive lower bounds in complexity theory. They showed that (1) constructivizing many
known separations would imply breakthrough lower bounds, and (2) some separations are impossible to
constructivize.

We study a more general notion of “efficient refutation” in terms of C-Student-Teacher Games, where
the C-refuter (Student) is allowed to adaptively propose candidate counterexamples xi to an omniscient
Teacher. If xi fails to witness an error, Teacher reveals a counterexample yi to the statement “xi is a
counterexample to the statement ‘M decides A’ ” — the nature of yi depending on how the separated
language A and complexity class C are defined. We show:

• If there is a P-Student-Teacher constructive separation of Palindromes from one-tape nondetermin-
istic O(n1+ε) time [39], then NP ̸⊂ SIZE[nk] for every k.

• If there is a uniform AC0[qpoly]-Student-Teacher protocol generating truth tables of super fixed
polynomial circuit complexity, then P ̸= NP.

• There is no P-Student-Teacher protocol which for infinitely many c > 0, generates high-Knc

strings.

Our results imply a conditional separation of Jeřábek’s theory VAPC from V1, a theory equivalent to
Buss’s theory S1

2. This improves and significantly simplifies the work of Ilango, Li, and Williams [25],
who separate VAPC from the weaker theory VPV under the existence of indistinguishability obfuscation.
We do not use cryptographic assumptions in our separation. Instead we introduce a natural and plausible
conjecture on the uniformity of proofs in bounded arithmetic, inspired by Kreisel’s Conjecture in logic.
We believe this conjecture to be of independent interest.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 45 (2025)

1 Introduction1

Constructive lower bounds are a key concern of complexity theory. We know that hard functions exist,2

but not how to exhibit them efficiently. There are two ways to formalize the notion of constructivity. The3

algorithmic perspective asks for the computational complexity of searching for witnesses to a complexity4

lower bound, like hard truth tables. The proof-theoretic perspective asks for the weakest logical theory that5

proves complexity lower bounds. This paper obtains new results about both formulations of constructivity6

and the relationship between them.7

In particular, we study the computational model of Student-Teacher Games, which links the proof-8

theoretic and algorithmic perspectives on constructivity. Roughly, if a complexity lower bound LB is provable9

in a “bounded” logical theory, then “efficient” Student-Teacher games witnessing LB follow. We obtain new10

results about Student-Teacher games witnessing: lower bounds for deciding Palindromes, existence of time-11

bounded Kolmogorov-random strings, and existence of Boolean functions of high circuit complexity. From12

these results, we conditionally derive (1) consequences about the provability of these statements and (2)13

separations of expressive and well-studied logical theories. We structure our introduction as follows:14

(i) Building on prior work studying the consequences of algorithmic constructivity in complexity theory15

[14, 28, 50], we show that efficient Student-Teacher games witnessing known complexity lower bounds16

imply breakthrough lower bounds.17

(ii) We scrutinize the relationship between algorithmic constructivity and proof-theoretic constructivity.18

The natural translation into bounded arithmetic of complexity-theoretic statements that mention “poly-19

nomially bounded resources” results in a schema of logical sentences, one for each fixed polynomial.20

This disrupts the well-known connection between provability of lower bounds and witnessing Student-21

Teacher games.22

(iii) We identify a new family of conjectures called Witnessing Hypotheses for Uniform Proofs which give23

Student-Teacher witnessing from a schema of lower bounds. We demonstrate that these conjectures24

are well-founded, and connect them to the famous Kreisel Conjecture in mathematical logic.25

(iv) As a consequence of these conjectures, we give the first known conditional separation between the well-26

studied bounded arithmetic theories VAPC and V1 (equivalently APC1 and S12). Moreover, we do so27

without cryptographic assumptions. This constitutes substantial progress towards understanding the28

necessary tools needed to show unprovability in bounded arithmetic.29

In the remainder of this introduction we give context, motivation, a more detailed description of our30

results, and a list of open problems about constructive complexity theory.31

1.1 Algorithmic Constructivity in Complexity Theory32

Underpinning many recent developments in complexity theory is the notion of constructive lower bounds.33

Namely, algorithms for solving refutation problems and avoidance search problems.34

1. Refutation — If a lower bound holds for a problem Π against a model of computation M , then the35

Π-Refutation for M problem is: given an algorithm A fromM and a number n, print a string of length36

n for which A fails to solve Π correctly; i.e. a counterexample to the claim that “A solves Π.”37

2. Avoidance — Fix Λ =
⋃
n∈N Λn an infinite set of compressible strings, where each Λn denotes the n-bit38

strings described by a particular set of bounded-complexity devices, such as Boolean circuits of size at39

most log(n)2. The Λ-Avoid problem is then: given a number n, print an n-bit string outside Λn. That40

is, print a counterexample to the claim “every n-bit string is compressed by a Λ-device.”41

Refutation has been an explicit object of study since Kabanets [27] introduced refuters to give an uncondi-42

tional weak derandomization of RP. Since then, upper bounds on refuters have been a driving force behind43

derandomization and lower bounds. A seminal example is the algorithmic method of Williams to give lower44

bounds against ACC0. These lower bounds [52, 12] crucially use a refuter for the NTIME hierarchy the-45

orem, with [12] in particular using an almost-everywhere refuter of Fortnow and Santhanam [20] against46

1

NTIMEGUESS[T (n), O(n)], for time-constructive T (n). Refutation has also been recently shown by Chen,47

Tell, and Williams [13] to unify many previous techniques that give conditional derandomization results.48

Avoidance search problems are also intimately tied with circuit lower bounds and derandomization.49

Korten [28] showed that many important explicit construction problems (e.g. computing hard truth tables,50

rigid matrices, and high time-bounded Kolmogorov complexity strings) are all reducable to the avoidance51

problem Empty.52

Empty: Given circuit C : {0, 1}m → {0, 1}n, with n > m output a string x ∈ {0, 1}n outside the range of C.53

This shows that circuit lower bounds and derandomization are implied by fast algorithms for Empty.54

Ren, Santhanam, and Wang [50] deepened this connection by studying algorithms for C-Avoid, parametrized55

by a circuit class C. Finally, Chen, Hirahara, and Ren [10], and a follow-up by Li [36], used Korten’s reduction56

from finding hard truth tables to Empty in order to give truly exponential circuit lower bounds for S2E.57

Constructive Separations. To formally study the power and limitations of constructive lower bounds,58

Chen, Jin, Santhanam, and Williams [14] asked what happens if you can convert several classical non-59

constructive lower bounds into constructive ones? Their definition of constructivity goes through efficient60

Refutation algorithms, and implicitly Avoidance algorithms.161

Definition 1.1 (C-Refuter). Let f : {0, 1}∗ → {0, 1} be a function and let A be an algorithm. The refutation62

search problem Reff,A := {(n, x) | x ∈ {0, 1}n and f(x) ̸= A(x)} asks to find an input x where A disagrees63

with function f . An algorithm R(1n) is a C-refuter against A if R ∈ C and for infinitely many n, (n,R(1n)) ∈64

RefR,A.65

Definition 1.2 (C-Constructive Separation). For complexity classes A,B, C, a separation B ̸⊂ A is called66

C-constructive if for some language LB decidable in B and any proposed algorithm A ∈ A that decides LB ,67

there is a C-refuter RA.68

Chen et al. [14] gave several insights on constructive separations. First, they showed that a P-constructive69

separation for the classic Palindromes lower bound of Maass [39] implies a major complexity separation.70

Theorem 1.3 (Theorem 3.4, [14]). If Maass’s lower bound against deciding Palindromes with one-tape71

nondeterministic Turing machines of subquadratic time can be made P-constructive, then E ̸⊂ SIZE[2δn], for72

some δ > 0.73

They also showed that efficient Avoid algorithms imply complexity separations.74

Theorem 1.4 (Implicit to Theorem 1.7(i), [14]). If there is a uniform AC0[qpoly] algorithm solving Avoid75

for circuits of size s(n) = n(logn)
ω(1)

, then P ̸= NP.76

However, not all known lower bounds can be made constructive. Chen et al. [14] observed that there77

can be no polynomial time algorithm which on input 1n, outputs an n-bit string of high-Kpoly complexity78

(see Proposition 4.4). This contrasts in a peculiar way with the lower bounds of Theorem 1.3 and Theorem79

1.4. Chen et al. [14] argue that understanding better which lower bounds are likely to be constructive or80

non-constructive will be key to progress in complexity theory. See their paper for more details.81

1.2 Our Results: Student-Teacher Constructive Separations82

In this paper, we generalize the results of Chen et al. [14] to the setting of Student-Teacher refuters.83

Definition 1.5 (Student-Teacher Game (Informal)). Let φ(X) = ∀Y θ(X,Y), for θ a quantifier-free formula,84

and let p(n), q(n) be polynomials. We say S(1n) is a C-Student-Teacher game if S is an algorithm in C with85

access to a counterexample oracle CX[φ] which given an X ∈ {0, 1}p(n), either responds “YES” or returns86

a Y ∈ {0, 1}q(n) such that θ(X,Y) is false. We further write CX[φ, r(n)] for a function r(n) to indicate S87

gets access to r(n) calls to the oracle CX.88

1An avoidance algorithm can be thought of as a refuter for the “always-YES” algorithm against some hard language.
For example, a polynomial time algorithm solving Avoid for the function that maps descriptions of s(n)-size circuits to their
truth-tables gives a polynomial time algorithm refuting the “always-YES” algorithm for MCSP[s(n)].

2

Student-Teacher games are a natural model of computation which appear in learning algorithms and89

bounded arithmetic. For many complexity lower bounds, provability in a weak logical theory implies an90

efficient Student-Teacher refuter, rather than a standard refuter as seen in [14]. This means that to study91

the (un)provability of complexity lower bounds, it is necessary to study Student-Teacher games. We make92

this connection more explicit in the following section. See a more detailed definition of Student-Teacher93

games in Section 2.6.94

As an example of a Student-Teacher game, consider a P-Student-Teacher refuter SM solving the refutation95

search problem RefPal,M , with M a one-tape subquadratic time nondeterministic Turing machine. Here,96

φPal(X,W
∗) expresses the following formula:97

φPal(X,W
∗) ≜ “For every witness W of length |X|1.1, [M(X,W) = 0 and X is a palindrome] or98

[M(X,W ∗) = 1 and X is not a palindrome.]”99

Each round, S would propose X,W ∗ to the counterexample oracle CX, where either CX says “YES” if100

X is an input that M fails to decide whether X is a palindrome, or CX responds to S with a witness W101

such that M does correctly decide X.102

Palindromes. We generalize Theorem 1.3 to P-Student-Teacher refuters.103

Theorem 1.6. If for any nondeterministic one-tape subquadratic time Turing machine M there is a P-104

Student-Teacher game SM (1n) with counterexample oracle CX[φPal, O(1)] solving RefPal,M for n-bit inputs,105

then NP ̸⊂ SIZE[nk] for any k ≥ 0.106

A P-Student-Teacher refuter is considerably stronger than a P-refuter in the context of Palindromes107

lower bounds. The oracle CX[φPal] acts as a restricted NP-oracle, as finding a witness W where M(X,W) is108

correct is an NP-language. Nevertheless, we show that P-Student-Teacher refuters for one-tape subquadratic109

NTMs deciding Pal still imply breakthrough circuit lower bounds.110

Weak Shannon Counting. We give a slightly orthogonal result to Theorem 1.4. Here, we consider111

avoidance algorithms for weak Shannon counting. Namely, for a fixed b ∈ N and given an input 1N , output112

a truth-table of length N which is not computed by a size (logN)b Boolean circuit. Let φWSC(X, b) express113

the following formula:114

φWSC(X, b) ≜ “For every circuit C of size (log |X|)b, the truth table generated by C disagrees with X on115

some bit.”116

We introduce the notion of an absolute Student-Teacher game, which solves SIZE[nb]-Avoid for infinitely117

many b. Meaning, the student S takes two inputs: 1N and b (represented in binary) and solves SIZE[nb]-118

Avoid.119

Theorem 1.7. If there is an absolute poly log-uniform AC0[qpoly]-Student-Teacher protocol S(1N , b) with120

oracle CX[φWSC , O(1)] solving SIZE[nb]-Avoid for infinitely many b ∈ N, then P ̸= NP.121

If you simply fix a b ∈ N instead of having an absolute Student-Teacher protocol, then such a Student-122

Teacher protocol does exist (see Section 5). However, we only get our consequence P ̸= NP for an absolute123

Student-Teacher protocol.124

Our notion of an absolute Student-Teacher protocol appears naturally in the context of bounded arith-125

metic and witnessing theorems. See Section 1.4 and Section 4.3 for a discussion.126

High-Kpoly Strings. We now give an avoidance problem which provably has no Student-Teacher game.127

Let φKt(X, b) express the following formula:128

φKt(X, b) ≜ “For every Turing machine and advice pair (M,α) of description length |X|/4, running M for129

nb steps with advice α has output disagreeing with X.”130

Let BHaltDesc[nc, p(n)] be the class of Turing machine and advice pairs (M,α) of total description length131

p(n) which, starting with α on the tape of M , runs for nc time. We then have the following.132

Theorem 1.8. There is no absolute P-Student-Teacher protocol S(1n, b) (b given in unary) with oracle133

CX[φKt , poly(n)] solving BHaltDesc[nb, n/4]-Avoid.134

3

1.3 Proof Theoretic Constructivity in Complexity Theory135

Our results on Student-Teacher constructive separations have several consequences on the provability of lower136

bounds in bounded arithmetic. Bounded arithmetic is a related and more fine-grained notion of constructivity137

that comes from not just the algorithms for refutation and avoidance, but also from the logical expressivity138

needed to prove the correctness of these algorithms.139

Bounded Arithmetic. Bounded arithmetic studies fragments of Peano Arithmetic (PA) which use rea-140

soning inherent to computational complexity classes. The earliest example is the theory I∆0, introduced by141

Parikh [45]. He showed that reasoning in I∆0 corresponds to the Linear Time Hierarchy (LTH), and that cer-142

tain operations like exponentiation are infeasible in this theory. One of the most important and well-studied143

bounded arithmetic theories is Cook’s theory VPV. It is an essentially equivalent version of Cook’s original144

theory, PV1, defined in his seminal 1975 paper [18]. This theory was the first proposed to exactly characterize145

polynomial-time computation and reasoning, and more generally was the first theory introduced to explicitly146

connect standard complexity classes and bounded arithmetic. PV stands for polynomially verifiable, and one147

of Cook’s original motivations for defining this theory was“that the verification method must be uniform,148

in the sense that one can see (by the [PV1-]proof Π) that the verification will always succeed” [19, pg. 83].149

For example, if VPV proves a statement like ∀X φ(X), then there is a polynomial time algorithm Verifyφ150

which on input Y verifies that φ(Y) holds.151

This constructive property is called witnessing. If a theory T proves the existence of some object, then152

this implies there is an efficient algorithm that generates this object. As an example, suppose VPV were153

to prove the following Π2 statement describing a circuit lower bound for language L, which is decided by154

machine M :155

“For every input length n and circuit C ∈ C, there exists an input x of length n such that C(x) ̸=M(x)”156

Then, the witnessing property for VPV says there is a polynomial time algorithm which finds an incorrect x157

when given n,C as input. Notice that this a P-refuter!158

While a provable Π2 statement directly translates into a refuter, the situation is more complicated for159

Πi statements with i ≥ 3. Focusing on i = 3, witnessing properties give Student-Teacher protocols. For a160

Π3 statement ∀n∃X ∀Y θ(n,X, Y), a witnessing Student-Teacher protocol S would take as input 1n, and161

query the counterexample oracle CX[φ] on guesses for a satisfying X, for φ = ∀Y θ(n,X, Y). See Sections162

2.4 and 2.5 for more details on witnessing theorems.163

Π3 formulas naturally encode many refutation and avoidance type statements. Maass’s Palindromes lower164

bound, Shannon counting, and the existence of High-Kpoly strings are all examples. Hence, the (un)provability165

of these statements in bounded arithmetic is closely tied to Student-Teacher constructive separations.166

A Gap Between Constructive Separations and Provability. In Chen et al. [14], they noted a gap167

between constructive separations and provability. A P-constructive separation of B ̸⊂ A does not at all168

guarantee that VPV ⊢ “B ̸⊂ A”. This can be for several reasons: the refuter might not be provably169

correct inside VPV, or B ̸⊂ A might only be formalizable as a Π3 formula, which by witnessing gives a170

Student-Teacher game with an polynomial time student, rather than just a P-refuter. For these reasons, the171

consequences of a (non)constructive separation of B ̸⊂ A may not have any bearing on the (un)provability172

of the same lower bound B ̸⊂ A.173

An explicit example of this gap, given by [17, 11], is proving the correctness of the AKS primality testing174

algorithm [1]. We can formalize the correctness of it as the following formula:175

∀n [AKS(n) = 1←→ ∀1 < d < n, d ∤ n] ,

where AKS is a function symbol for the AKS primality testing algorithm. If this statement were provable176

in VPV, then there would be a polynomial time algorithm which on input 1n, n a composite number, would177

be able to determine a factor of n. Hence, VPV proving the correctness of AKS would imply that factoring178

has a polynomial time algorithm. This shows that the proof of correctness in [1] of their polynomial time179

algorithm AKS uses functions which are themselves not polynomial time computable, unless factoring is easy.180

4

Formalizing Lower Bounds as Schemas. Straightforward translations of many complexity lower bounds181

into the language of bounded arithmetic require schemas of formulas: a sequence of formulas indexed by182

substitution of fixed polynomials {nc}c∈N. Theories of bounded arithmetic cannot quantify over arbitrary183

polynomials in a natural sense.2 A simple example of this would be the Deterministic Time Hierarchy184

theorem.185

DTIMEH(c) ≜ “For every sufficiently large n and Turing machine M , there exists an input X of length n186

where simulating M on X for nc time incorrectly decides hard language Lc+1”187

For each c ∈ N, you get a new formula DTIMEH(c) describing that DTIME[nc+1] ̸⊂ DTIME[nc]. This is188

necessary in bounded arithmetic as exponentiation is not a feasible operation, so a single formula DTIMEH189

quantifying over all c is not possible in a theory like VPV. The same issue also occurs when writing down,190

say, P ̸= NP in the language of VPV.191

This poses a problem when trying to study the provability of lower bounds. Applying witnessing to a192

schema of Π3 formulas Ψ[c] would result in a schema of Student-Teacher games, each solving a different193

search problem parametrized by c. Further, a Student-Teacher game for Ψ[c0] is not required to share any194

structure or runtime with a Student-Teacher game for Ψ[c1], with c0 ̸= c1. This means that our results on195

absolute Student-Teacher games do not automatically imply provability consequences.196

1.4 Our Results: Consequences in Bounded Arithmetic197

We initiate the study of the following natural question about lower bound schemas.198

Question 1.9. Let LB(c) be the logical translation of some complexity theoretic lower bound, parametrized199

by c ∈ N. If VPV ⊢ LB(c), for every c, then does VPV use the same “proof” for every c?200

While it is unclear at all if VPV ⊢ “P ̸= NP”, it is known that VPV ⊢ DTIMEH(c), for every c ∈ N.201

Amazingly, VPV could use “the same” proof for every c! This follows as the refuter for DTIMEH is completely202

agnostic to c, and hence is the same regardless of the value of c. Specifically, there is a hard language203

L ∈ DTIME[nc+1]\DTIME[nc] where a refuter runs linearly in n to construct a counterexample of a proposed204

machine M ∈ DTIME[nc] deciding L. Does this property of the Deterministic Time Hierarchy theorem hold205

more generally for other complexity lower bounds?206

We denote by ‘Witnessing Hypothesis for Uniform Proofs’ (WHUP) that such a phenomenon in fact207

holds, and that for certain classes of lower bound schemas, if a theory T proves the schema, then it does so208

with the same proof.209

Hypothesis 1.10 (WHUP for theory VPV (Informal)). Let VPV ⊢ ∀n ∃X ∀Y θ(n,X, Y, nc), for a quantifier-210

free θ and for infinitely many c ∈ N, and let φ(n,X, c) = ∀Y θ(n,X, Y, nc).3 Then there is a witnessing211

absolute Student-Teacher game S(1n, c) which, for infinitely many c, finds a satisfying X of length n using212

O(1) oracle calls to CX[φ].213

WHUPs can be used to connect the (un)provability of schemas of formulas in bounded arithmetic with214

absolute Student-Teacher constructive separations. Our Witnessing Hypotheses are similar to and inspired by215

a conjecture of Kreisel for Peano Arithmetic. See Section 4 for a detailed discussion where we carefully define216

Witnessing Hypotheses and provide many supporting examples for the validity of WHUPs. We conclude217

this section with a sketch of each of our results on provability.218

Palindromes. First, we extend Theorem 1.6 to provability in VPV. Let Pal be a Π3 formula expressing219

Maass’s lower bound.220

Theorem 1.11. If VPV ⊢ Pal, then NP ̸⊂ SIZE[nk].221

This complements recent work of Chen, Li, and Oliveira [11], showing that if Maass’s lower bound is222

provable in VPV, then collision resistant hash functions do not exist.223

2Bounded theories can include auxiliary quantified variables in a statement to “pad up” and reason about super-polynomial
functions. However, this transformation greatly expands the set of feasible objects. For example, the padded formalizations of
circuit complexity can discuss the entire 2n-bit truth table of an n-input nk-gate circuit C — an object inaccessible to poly-time
algorithms given only C. Müller and Pich [42] explain the trade-offs in detail.

3In the full Witnessing Hypothesis presented in Hypothesis 4.14, we further restrict the structure of the schemas and how c
may be used. See Section 4 and Definition 4.13 for more details.

5

Weak Shannon Counting. Building on the work of Thapen [51], Jeřábek [26], studied the theory VAPC :=224

VPV + dWPHP(VPV) which adds the dual weak pigeonhole principle, the combinatorial principle behind225

Empty and C-Avoid. He showed VAPC has an intimate relationship with randomized complexity (ZPP) and226

approximate counting. Namely, all provably total functions in VAPC are contained in ZPP, and conversely,227

a large natural subclass of ZPP is definable in VAPC. It is possible that VAPC may completely characterize228

ZPP, but this would require showing that ZPP has a complete problem [51].229

VAPC is interesting because of its ability to formalize most known complexity lower bounds. Jeřábek230

showed that it can formalize Shannon counting arguments, and Müller and Pich [42] further illustrated its231

power by formalizing Parity lower bounds and the method of approximations. Recent results in unprovability232

have also been shown. Chen, Li, and Oliveira [11] showed that if collision resistant hash functions exist, then233

Maass’s palindromes lower bound is not formalizable in VAPC.234

We give a result orthogonal to Jeřábek’s provability of Shannon counting in VAPC. We introduce a theory235

V0
to characterize quasipolynomial AC0 reasoning. This theory is incomparable to VAPC, but we show it is236

also capable of proving weak Shannon counting.237

Lemma 1.12. Let b ∈ N. V0
proves the existence of truth tables not computable by Boolean circuits of238

size nb.239

Further, under a WHUP for V0
#, we have consequences for the provability of hard truth tables.240

Theorem 1.13. Assuming a WHUP for the theory V0
#, if V

0
proves for every b ∈ N that there are truth241

tables of hard for size nb circuits, then P ̸= NP.242

We then get as a clear corollary,243

Corollary 1.14. A WHUP for V0
implies that P ̸= NP.244

See Theorem 5.10 for full details.245

Conditional Separation of V1 and VAPC We show the following surprising unprovability result.246

Theorem 1.15. Under a Witnessing Hypothesis, VPV (or even V1) cannot show the existence of High-Kn
b

247

strings, for almost every b ∈ N.248

As a corollary, we conditionally separate theories V1 and VAPC (equivalently S12 and APC1).249

Theorem 1.16. Under a Witnessing Hypothesis, VAPC is not equivalent to V1.250

Proof. In the work of Korten [28], it was shown that APC1 proves the existence of high-Kpoly strings. Fur-251

thermore, the APC1-proofs that “there is a High-Kn
b

string” for each b seem very “uniform” — the only252

substantial difference is which dual weak pigeonhole principle is invoked. Each proof uses dWPHP(Ud) where253

Ud is the nd-step universal Turing machine function symbol.254

However, under a Witnessing Hypothesis (Hypothesis 4.16), V1 does not show these strings exist.255

This improves and greatly simplifies the result of Ilango, Li, and Williams [25] separating VAPC and256

VPV under the existence of indistinguishability obfuscation and NP ̸⊂ i.o. coAM. Our result is also the first257

such conditional separation between any bounded arithmetic theory T and VAPC which uses a plausible4258

non-cryptographic assumption.259

Separating theories of bounded arithmetic should be far easier to prove than demonstrating the existence260

of cryptographic objects like collision resistant hash functions or indistinguishability obfuscation. It is then261

desirable to give conditional separations of theories using assumptions much weaker than cryptography. We262

believe Witnessing Hypotheses are such an assumption. However, Corollary 1.14 indicates that WHUPs are263

still quite strong, as some will imply major complexity separations. Is this the case with a WHUP for VPV?264

Are WHUPs in fact EQUAL to the existence of some cryptographic object?265

4In [33], Kraj́ıček showed that assuming Kolmogorov’s Conjecture, P ⊂ SIZE[nk] for some fixed k, then VAPC is strictly
stronger than VPV. However, Kolmogorov’s Conjecture is widely believed to be false.

6

1.5 Our Techniques266

Constructive Separations. We employ the general strategy of Chen et al. [14] to show that efficient267

refuters imply circuit lower bounds.268

(i) Assume, for sake of contradiction, a complexity collapse (eg. P = NP or P ⊂ SIZE[nk]). Show that a269

C-refuter from a C-constructive separation of B ̸⊂ A produces outputs of very small circuit complexity.270

(ii) Show that there exists a too efficient algorithm M ∈ A for a hard language LB which is correct on all271

inputs of low circuit complexity. This forms a contradiction.272

As mentioned in Section 1.4, this argument is not sufficient on its own to discuss the consequences273

of provability of lower bounds, as provability and witnessing implies Student-Teacher refuters instead of274

standard refuters. To handle this, we introduce several novel round collapse techniques to remove the275

Teacher from Student-Teacher protocols. This gives a reduction to the proof strategy of [14].276

Round Collapses. Round collapse techniques have seen widespread recent study to show the unprovability277

of Π3 sentences in theories of bounded arithmetic [8, 25, 33, 9, 16, 47]. We continue this line of work by278

introducing three novel round collapse arguments.279

A common issue with round collapse techniques is that they are very ad hoc and strongly depend on280

the discussed lower bound. In the case of Maass’s Palindromes lower bound, we introduce in Section 3 a281

very general technique to deal with collapsing a P-Student-Teacher protocol whose counterexample oracle282

CX[φ,O(1)] solves an NP-language. Recall for a one-tape subquadratic time NTMM , φPal(X) certifies that283

for every witness W , M(X,W) = 0 when X is a palindrome. Hence the counterexample oracle CX[φPal]284

solves the NP language of determining a witness W ′ where M(X,W ′) = 1. Assuming NP ⊂ SIZE[nk], we285

may use the Easy Witness Lemma of Murray and Williams [43] to give a compressed description of W ′.286

By providing this compression of W ′ as advice to the Student, we can replace a single query to CX[φPal].287

Repeating this argument allows the conversion of a P-Student-Teacher refuter into a P/o(n)-refuter.288

Our other round collapses are much more ad hoc. For weak Shannon counting and Theorem 1.7, we289

generalize the technique of Chen et al. [14] to efficiently simulate a polylog-uniform AC0
d[qpoly] refuter C(1

n)290

with a general sublinear size Boolean circuit, assuming P = NP. Their idea is to show that computing the291

i-th bit of C(1n) is a Σpd[polylog(n)] problem, which collapses to DTIME[polylog(n)] under P = NP. We292

show this argument completely in Lemma 5.5. Where we must generalize this argument is to further allow a293

polylog-uniform AC0[qpoly] Student-Teacher refuter, and provide a method to remove the CX oracle gates.294

We do so in Section 5.295

The round collapse for high-Kpoly strings and Theorem 1.8 is conceptually the most natural. We take296

direct inspiration from the DTIME[n]-constructive separation of DTIME[nc+1] ̸⊂ DTIME[nc]. The linear time297

refuter RM (1n) simply outputs the padded source code of M , ⟨M⟩ ◦ 0n−|⟨M⟩|. Our observation in Section 4298

is that for an absolute P-Student-Teacher protocol solving BHaltDesc[nc, n/4]-Avoid for all c ∈ N, the source299

code of the Student is a valid response for the counterexample oracle CX[φKt]. We give a fine-grained300

reflection argument to generally transform a P-Student-Teacher protocol for BHaltDesc[nc, n/4]-Avoid into a301

polynomial time algorithm, even when polynomially many Teacher queries are made by the Student-Teacher302

protocol.303

1.6 Comparison to Other Work304

AC0 reasoning and Provable Circuit Lower Bounds. Several previous works have studied the prov-305

ability of circuit lower bounds in bounded arithmetic via round collapses. Pich [47] showed unconditionally306

that the theory V0, corresponding to log-uniform AC0[poly] reasoning, cannot prove superpolynomial size307

circuit lower bounds. This contrasts with our Lemma 1.12, where we show that the theory V0
proves308

fixed polynomial size circuit lower bounds. This suggests an intriguing question of finding the exact logical309

strength necessary for proving fixed polynomial size circuit lower bounds.310

7

Separating VAPC and VPV. Kraj́ıček [33] gave the first conditional separation of VPV and VAPC via round311

collapse techniques. Unfortunately, his round collapse required the unlikely assumption that P ⊂ SIZE[nk].312

In [32], Kraj́ıček called for reasonable assumptions under which VAPC is strictly stronger than VPV. This313

was achieved by Ilango, Li, and Williams [25], who showed that under indistinguishability obfuscation314

and NP ̸⊂ i.o. coAM, these theories are indeed separated. These conditional separations of [33, 25] were315

accomplished by studying the dual weak pigeonhole principle dWPHP(VPV) and Student-Teacher protocols316

for solving Empty.317

Using a Witnessing Hypothesis, we conditionally separate VAPC from an even stronger theory V1, which318

contains VPV. Further, we make use of a weaker, uniform version of the dual weak pigeonhole principle.319

1.7 Open Problems320

This work suggests several continuations and open problems. We provide two directions pertaining to321

(un)provability, and several towards understanding and proving WHUPs.322

Improving the Palindromes round collapse. While we show that a constant round Student-Teacher323

refuter for Palindromes would imply NP ̸⊂ SIZE[nk] for any k > 0, we fall short of proving this for ω(1)324

rounds. Is there a polynomial round Student-Teacher refuter for Palindromes? This could be used to extend325

our provability consequence to theories V 1/S1
2 .326

Unprovability for APC1. In Section 4, we show that under a Witnessing Hypothesis for VPV, generating327

high Kpoly strings is not feasible in VPV. Can this be generalized to unprovability in APC1. This would likely328

have to be for a notion of zero-error time-bounded Kolmogorov complexity, which the authors are unaware329

of appearing in the present meta complexity literature.330

What do proofs look like? Amongst our examples of the “absolute” witness phenomenon, like the refuter331

for DTIMEH, what do the VPV proofs actually look like? This would be a basic building block to understand332

before attempting to prove a WHUP. We emphasize that we know the proofs, but not a structural measure333

or property that makes it clear they are “the same” across different values of the parameter. Surprisingly334

simple polynomial schemas have proofs in VPV where we do not have a solid understanding of their structure.335

One example is,336

φ(b, c) ≜ ∀n c > b→ nc > nb.

As VPV is defined for the purpose of encapsulating polynomial time computation (rather than performing337

arithmetic), even simple arithmetic identities can have “complicated” proofs. Showing that the sequent338

calculus proofs of φ(b, c) over VPV are the same for all b, c ∈ N would be of interest.339

Correct Formulation of “Same” Proofs. We phrase our WHUPs based on the notion of Herbrand340

proofs from the famous Herbrand’s Theorem in first order logic. This allows us to interplay with witnessing341

theorems nicely. However, it is possible that our notion of “same proof” is still too coarse, and that WHUPs342

would be more appropriately phrased in another way. One potential example would be the notion of uniform343

proofs, proposed by Buss [4], where proofs are given an efficiently decidable direct connection language as344

you would a circuit.345

Proving a WHUP. Perhaps the most obvious would be actually showing a WHUP to be true for VPV,346

V0
#, or any other bounded arithmetic theory. We believe that past work on Kreisel’s Conjecture [24, 23, 30]347

serves as an excellent starting point. For example, Kraj́ıcek and Pudlák [30] show that Kreisel’s Conjecture348

is true over any theory which is finitely axiomatizable, of which many theories of bounded arithmetic are349

(including V1 and V0
#).350

Consequences of WHUPs. Corollary 1.14 shows that WHUPs can have immediate consequences if true.351

Are there more examples of WHUP consequences, but for standard theories like VPV and V1? Further, are352

there consequences if WHUPs are false?353

8

1.8 Paper Organization354

In Section 2, we give the requisite preliminaries in bounded arithmetic and complexity theory. In Section355

3, we give our results on Student-Teacher constructive separations for Palindromes, and its applications to356

provability in VPV. In Section 4, we introduce Witnessing Hypotheses for Uniform Proofs and apply them357

to get the unprovability of finding high-Kpoly strings in VPV. We further give a detailed discussion of the358

viability of WHUPs and their inspiration from the famous Kreisel Conjecture in logic. Finally, in Section 5,359

we introduce the theory V0
and show that a WHUP for this theory would imply P ̸= NP.360

2 Preliminaries361

Basic knowledge of complexity classes is assumed. See [3] or any text on complexity theory for a reference of362

the standard definitions. We attempt to keep this paper as self-contained as possible for mathematical logic363

and bounded arithmetic; however, we recommend seeing the SIGACT column of Oliveira [44] which surveys364

much of the recent work on the provability of complexity theory. This survey provides invaluable context to365

the motivations of this paper.366

2.1 Circuit Uniformity367

A family of circuits C = {Cn}n≥1 is called uniform if some uniform algorithm is able to, on input n, compute368

a fixed binary encoding of ⟨Cn⟩. We will use the direct connection encoding of circuits, where ⟨Cn⟩i = 1 if369

and only if i encodes a triple (g, h, r) with g and h being gate indices, and r indicating the type of g (namely,370

one of NOT/AND/OR/INPUT/OUTPUT). In the case that r is an INPUT type, it must also indicate which371

input bit out of n. Topologically, h feeds into g as an input, unless r indicates that g is an INPUT type. We372

will also need an oracle direct connection encoding. This is a slight modification where we add two types of373

gates: ORACLE, and Oracle OUTPUT, where ORACLE represents a black-box oracle that takes in p(n)374

bits and outputs q(n) bits. For both of these gate types, r must also indicate which of the p(n) input bits a375

gate h is feeding into ORACLE, or which of the q(n) output bits an OUTPUT gate g is. Note that given a376

circuit with s(n) gates, its (oracle) direct connection encoding will be of length at most s(n)3.377

Definition 2.1 (LOGTIME-uniformity). We say that a circuit family C = {Cb}n, where Cn is of size s(n),378

is logtime uniform if there is a linear time algorithm U which on input n and an index i < |⟨Cn⟩|, both379

represented in binary, outputs the i-th bit of ⟨Cn⟩. Similarly, such a circuit family is polylogtime uniform if380

the uniform algorithm U runs in time polynomial in the input size.381

2.2 Basic Logic and Terminology382

We will assume basic knowledge of propositional and first-order logic, as well as Gentzen’s sequent calculus.383

We remind the reader of some of the standard syntax below. For a concise and complete introduction to the384

necessary logic and proof theory, see Chapters I-III of [17] or Chapters I and II of [5].385

Definition 2.2 (Syntax).386

Symbols and Terms: The symbols appearing in first-order logic are the usual logical connectives (¬, ∧, ∨, →),387

quantifiers (∀, ∃), specified function and predicate symbols, and constants (0-arity functions). As well, arbi-388

trary names for variables are allowed. A term is inductively defined: any variable x is a term, and for any389

function symbol f of arity k and terms t1, . . . , tk, f(t1, . . . , tk) is a term.390

Formulas: A formula is also inductively defined. Atomic formulas are of the form P (t1, . . . , tk) for a pred-391

icate P of arity k, and general formulas are built up from atomic ones by applying logical connectives and392

quantifiers. We say a variable x in a formula is bound if it is in the scope of a quantifier Qx. Otherwise, it393

is free. A formula with no free variables is called a sentence.394

Substitution: Let A(x) be a formula with x a free variable. For a term t, we denote A(t/x) to be the395

substitution of t for x in A, where we replace every occurence of the free variable x in A with t.396

Definition 2.3. A first-order theory T is a set of sentences which is closed under logical implication.397

Specifically, if T derives via a sequent calculus proof the sentence φ, then φ ∈ T . A set of sentences Γ are398

9

an axiomatization of T if Γ ⊂ T and all of T is derivable from Γ via sequent calculus proofs. The language399

of a theory T , L(T), is the set of symbols for functions, predicates, and constants (0-ary functions) used in400

the logical sentences contained in T . A theory is said to be universal if it has an axiomatization with only401

universally quantified sentences in prenex normal form.402

We can compare theories by considering the set of theorems that they prove. The appropriate notion is403

Definition 2.4 (Conservative Extension). Suppose that T1 and T2 are two theories where T1 ⊆ T2 and the404

vocabulary of T2 may contain function or predicate symbols not in T1. We say T2 is a conservative extension405

of T1 if for every formula φ in the vocabulary of T1, if T2 ⊢ φ then T1 ⊢ φ.406

In other words, the second theory proves nothing new over the original vocabulary.407

In this paper, we study the first-order theory of arithmetic, Peano Arithmetic (PA), as well as its sub-408

theories. We denote by N the standard model of PA, which should be interpreted as the ‘real world’. The409

defining feature of Peano Arithmetic (and its intended model N) is induction: for a formula φ(x, y), the410

axiom of induction, Ixφ, is the sentence:411

∀y (φ(0, y) ∧ ∀x (φ(x, y)→ φ(x+ 1, y))→ ∀xφ(x, y)) .

Peano Arithmetic is defined by basic arithmetic axioms and the axiom of induction for every formula412

φ. For a restricted class of formulas Φ, we define IΦ as the subtheory of PA with induction restricted to413

formulas φ ∈ Φ.414

2.3 Peano Arithmetic415

We recall the characterization of provably recursive functions of IΣn [7].416

Definition 2.5. Let T be a subtheory of PA and f : Nk → N. The function f is Σi-definable in T iff there417

is a formula φ(x1, . . . , xk, y) ∈ Σi such that:418

1. T ⊢ (∀x⃗)(∃!y)φ(x⃗, y)419

2. {(⃗a, b) : N |= φ(⃗a, b)} is the graph of f , i.e. φ(⃗a, b) holds iff f (⃗a) = b for all naturals a⃗, b.420

Σ1-definable functions in a theory T are also commonly called the provably recursive functions of T .421

Lemma 2.6 (Informal). Let f be a function that is provably recursive in PA. Then we can freely add the422

function symbol f to L(PA) and the defining axioms of f to PA without modifying the strength of PA.423

Definition 2.7. Let n ≥ 1. The set of functions which are primitive recursive in Σn is defined inductively424

by:425

1. Constant function 0, succcessor function, and all projection functions are primitive recursive in Σn.426

2. Closure under composition.427

3. If g : Nk → N and h : Nk+2 → N are primitive recursive in Σn, then so is the function f defined by428

f(0, z⃗) = g(z⃗)

f(m+ 1, z⃗) = h(m, z⃗, f(m, z⃗))

4. If φ(z⃗) is a formula (∃x)ψ(x, z⃗) where B ∈ Πn−1 then UA is primitive recursive in Σn.429

Theorem 2.8 (Theorem 12, [7]). The Σn-definable functions of IΣn are the functions which are primitive430

recursive in Σn.431

10

2.4 Theories of Bounded Arithmetic432

We will be working with two-sorted theories, which deal with both a number-type (think in N) and a finite433

binary string type. The binary string type has an equivalent interpretation as a set type, where the i-th434

index of a string X being 1 indicates that i is in the set X. We follow the convention of denoting numbers435

in lower case (x, y, z, . . .) and strings in upper case (X, Y, Z, . . .). All theories in this paper are theories of436

arithmetic, and all share the language of arithmetic (L2
A), which contains the set of first-sort functions and437

predicates, {0, 1, +, ·, S, | · |; =, ≤} and the set of second-sort functions and predicates, {X(·), | · |; =2}.438

Here, S refers to the successor function of a number, X(i) outputs in number type the i-th bit of string X,439

and | · | on a string-type variable outputs a number-type which is the length of the string.440

In two-sorted bounded arithmetic theories, function symbols can be thought of as the run of some resource-441

bounded computational model (eg. Turing machines or uniform circuits). As such, the representation of its442

inputs becomes important. We will take the standard convention that the string-type is presented “as itself”443

in binary and a number-type is represented in unary when supplied as input to a function symbol. A feature444

of Peano Arithmetic and its subtheories is that any function f which is “easily” definable and provably445

total may be freely added to the language without changing the provability of any sentences. Below, we will446

specify exactly what these functions are for each theory we use.447

Definition 2.9. We denote a number quantifier as bounded by writing ∀x < t θ(x) or ∃x < t θ(x), for a term448

t not using x. This is syntactic shorthand for ∀x [x < t =⇒ θ(x)] and ∃x [x < t∧θ(x)] respectively. Similarly449

for quantifiers over strings, we say write ∀X < t θ(X), and ∃X ≤ t θ(X) to indicate ∀X (|X| < t =⇒ θ(X))450

and ∃X (|X| < t∧θ(X)). We say that a formula φ is ΣB0 = ΠB0 if the only quantifiers are bounded quantifiers451

over the number type (though there may be free string variables). A formula φ is ΣBi+1/Π
B
i+1, for i ≥ 0, if φ452

is of the form, ∃X < t θ(X), for θ(X) a ΠBi formula, or respectively, ∀X < t θ(X), for θ(X) a ΣBi formula.453

ΣBi formulas can be thought of as an effective version of the arithmetic hierarchy, and bears many454

similarities and connections to the polynomial hierarchy.455

Definition 2.10 (Provably Total Functions). Let T be a two-sorted subtheory of PA and f : Nk → N. The456

function f is ΣBi -definable in T iff there is a ΣBi -formula φ(x1, . . . , xk, y) such that:457

1. T ⊢ (∀x⃗)(∃!y)φ(x⃗, y)458

2. {(⃗a, b) : N |= φ(⃗a, b)} is the graph of f , i.e. φ(⃗a, b) holds iff f (⃗a) = b for all naturals a⃗, b.459

ΣB1 -definable functions in a theory T are also commonly called the provably total functions of T .460

We may give a lemma similar to Lemma 2.6 for provably total functions.461

Lemma 2.11 ((Informal)). Let f be a function that is provably total in a two-sorted theory T . Then we462

can freely add the function symbol f to L(T) and the defining axioms of f to T without modifying the463

strength of T .464

Theory V0. One of the weakest and most basic of theories in bounded arithmetic that is studied is Cook465

and Nguyen’s theory V0, which captures uniform-AC0 reasoning. It is a uniform version of the propositional466

proof system AC0-Frege, and superpolynomial lower bounds for AC0-Frege imply unprovability in V 0.467

At the base of V0 are the so-called 2-BASIC axioms, which define the basics of how each function and468

predicate in L2
A behaves. This includes statements like x·0 = 0, distributivity of addition over multiplication,469

and many others. See [17] for the full list of axioms. In addition to 2-BASIC are the comprehension axioms470

ΣB0 -COMP, where for any ΣB0 -formula φ, we get the axiom,471

∃X ≤ y ∀z < yX(z)←→ φ(z).

ΣB0 -COMP axioms should be thought of as giving V0 the power to generate truth tables of AC0-computable472

functions. V0 will, in addition to L2
A, have a function symbol f in its language for every LOGTIME-uniform473

AC0 function f , and the ΣB1 -defining axiom of f added to V0. Note it is well-known that LOGTIME-uniform474

AC0 is equivalent to the LOGTIME Hierarchy, so we may include functions symbols for either.475

V0 is surprisingly powerful and expressive. It is capable of proving many elementary theorems about476

number theory and combinatorics and can perform Gödel numbering and coding of sequences. It is known477

that V0 cannot reason about the Parity function (⊕) or other functions which have AC0 lower bounds.478

11

Theory VPV. The full definition of VPV is involved, and the details do not matter here outside of its479

correspondence with polynomial time functions. To see a detailed definition of VPV, see [17]. The language480

of VPV is L2
A along with a symbol f for any polynomial-time computable function f . The theory is defined481

by initially adding the defining axioms of five uniform-AC0 functions, and then using Cobham’s recursive482

definition of polynomial time functions [15] within the theory to build out the rest of FP.483

Theory V1. Adding the comprehension axioms ΣB1 -COMP to 2-BASIC, we go from V0 to V1. As every484

polynomial time function is ΣB1 -definable in V1, we may freely add their definining axioms to the theory485

and add a function symbol for every f ∈ FP. This theory characterizes polynomial time computation and486

reasoning, similarly to VPV. It has the benefit of being much easier to define, and is more easily generalizable487

to reflect reasoning in the i-th level of the polynomial hierarchy (theory Vi). It is known that VPV ⊆ V1, but488

it is open if VPV and V1 are in fact equal; under cryptographic assumptions like the hardness of factoring,489

Thapen showed that V1 is strictly stronger [51]. As we shall also see, there is an important difference in the490

witnessing theorems for VPV compared to the witnessing theorems for V1.491

V1 (and more generally Vi, for i > 0), are equivalent to the single-sorted theories Si2 introduced by Buss492

in his seminal PhD Thesis [6].493

VPV Function Symbols We will be translating several lower bounds against Turing machines of different494

resource bounds. In order to give VPV-translations of these statements, we must introduce some preliminary495

function symbols.496

Let RunM (X,n) be the VPV function symbol that on input X and clock bound n, runs M for n steps497

on input X and outputs the contents of its tape. Similarly for a nondeterministic machine M , an input498

X, clock n, and witness W supplied on a separate read-only witness tape, we have a VPV function symbol499

RunM (X,n,W) which run M for n steps on input X and nondeterminism W and outputs the contents of500

its tape input/work tape.501

Lemma 2.12 (Implicit in [18, 6]). There is a paddable encoding of one-tape deterministic Turing machines502

LTM ⊂ {0, 1}∗ which is decodable in VPV. Specifically, there is a VPV function symbol Run(M,X, n)503

where for every Turing machine M and its binary encoding EM ∈ LTM , VPV ⊢ ∀X ∀n RunM (X,n) =504

Run(EM , X, n).505

Similarly for one-tape nondeterministic Turing machines, we can give an encoding language LNTM ⊂506

{0, 1}∗ which is decodable. Specifically, there is a VPV function symbol Run(M,X, n,W) where for every non-507

deterministic Turing machineM and its binary encoding EM ∈ LNTM , VPV ⊢ ∀X ∀W ∀n RunM (X,n,W) =508

Run(EM , X, n,W).509

The above lemma can be reformulated for k-tape Turing machines for any number k, but we will only510

be concerned with one-tap machines in this paper. We will always assume Turing machines are encoded as511

LTM from Lemma 2.12.512

2.5 Witnessing Theorems in Bounded Arithmetic513

Witnessing theorems broadly show that if a theory T proves a ∀ΣBi formula φ, then there is a function fφ514

computable in a complexity class CT which finds a witness to the existential quantifiers in φ. We will largely515

work only with ∀ΣB1 and ∀ΣB2 formulas, which make witnessing conceptually simpler due to there being a516

single existential quantifier.517

The most classical example of witnessing in Bounded Arithmetic is Buss Witnessing [6], which is written518

in the language of two-sorted theories in [17].519

Theorem 2.13 (Buss Witnessing, [6, 17]). Let T be either V1 or VPV, and let φ be a ΣB1 formula. Suppose520

that521

T ⊢ ∀X∃Y φ(X, Y).

Then there exists a function F ∈ FP such that N |= ∀Xφ(X,F (X)).522

Kraj́ıček, Pudlák, and Takeuti generalized Buss Witnessing to ∀ΣB2 formulas as follows.523

12

Theorem 2.14 (KPT Witnessing Theorem, [34]). Let T be a universal theory with language L. Suppose524

that for a ΣB0 formula φ,525

T ⊢ ∀X ∃Y ∀Z φ(X,Y, Z).

Then for a constant k ≥ 1 and a sequence C1, . . . , Ck of L-string terms,526

T ⊢ ∀X ∀Z [φ(X,C1(X), Z1) ∨ φ(X,C2(X,Z1), Z2) ∨ · · · ∨ φ(X,Ck(X,Z1, . . . , Zk−1), Zk)] .

This theorem applies to VPV, as VPV is a universal theory. For V0 and V1, KPT Witnessing as above527

cannot be immediately applied as neither theory is universal. There are several ways around this. One way528

is to universalize the axioms of V0 and V1 to give conservative extensions V
0
and V

1
, where KPT Witnessing529

can be applied. The other way is to prove KPT Witnessing directly using proof theoretic arguments and530

Buss Witnessing. For V0, we will use the former method and apply the above KPT Witnessing Theorem to531

the universal V
0
. For V1, we present its own KPT Witnessing Theorem below.532

Theorem 2.15 (KPT Witnessing Theorem for V1, [31]). Suppose that for a ΣB0 formula φ,533

V1 ⊢ ∀X ∃Y ∀Z.(|Z| < |X|)φ(X,Y, Z).

Then there is an FP function F such that,534

N |= ∀X ∀Z.(|Z| < |X|) φ(X,F (X), Z),

where F has access to the counterexample oracle CX[φ] which on query (X,Y) outputs a string Z of length535

at most |X| such that N |= ¬φ(X,Y, Z) or “yes” otherwise.536

The Student-Teacher game interpretation of KPT Witnessing is very useful. A Student F , which is537

a search algorithm of some complexity class C, will take in X as input and want to find a Y such that538

∀Z φ(X,Y, Z). They start by proposing F1(X) to the Teacher, the counterexample oracle, who either says539

F1(X) is correct or gives a Z1 back to the Student as a counterexample. This repeats for r rounds until the540

Student proposes a correct Y .541

A difference between VPV and V1 is revealed here: the Student-Teacher game from the KPT Witnessing542

for VPV ends in constantly many rounds, while the Student-Teacher game for V1 ends in polynomially many543

rounds. This makes unprovability of ∀ΣB2 formulas in V1 potentially much harder than in VPV. Unprovability544

of ∀ΣB2 formulas usually goes by applying KPT Witnessing and showing the resulting Student-Teacher game545

can collapse into an impossibly fast/small algorithm without the counterexample oracle. The more rounds546

of a Student-Teacher game, the harder it is to prove that the oracle may be removed.547

2.6 Student Teacher Games and Refuters548

We formally introduce the Student-Teacher game framework which witnesses the KPT Witnessing Theorem.549

Definition 2.16 (C-STCX[φ,r] uniformity). Let C be a complexity class, and for a term t, let550

ψ := ∀n ∃Y (|Y | < t(n))∀Z (|Z| = n) φ(n, Y, Z)

be a formula with φ ∈ ΣB0 and N |= ψ. As well, let r(n) be a time-constructible function. Define Searchφ to551

be the total search problem Searchφ := {(n, Y) | Y a binary string such that N |= ∀Z (|Z| = n) φ(n, Y, Z)}.552

We say that A is a C-STCX[φ,r] search algorithm for Searchφ if A ∈ C and on input 1n, A outputs a553

Y satisfying ∀Z (|Z| = n)φ(n, Y, Z) using at most r(n) many oracle queries to the counterexample oracle554

CX[φ].555

Many complexity lower bounds are easily formalizable as either ∀ΣB1 or ∀ΣB2 formulas in L(VPV) and556

L(V0), where the existential quantifier witnesses a mistake that some Turing machine or algorithm has made557

when attempting to decide a hard language. Applying witnessing theorems to these lower bounds when they558

are provable in bounded arithmetic gives us refuters.559

Suppose, say, VPV were to prove a complexity lower bound formalizable as ∀ΣB2 formula ψ. Applying560

KPT Witnessing, we would then get an P-STCX[φ,r] constructive separation. For a ∀ΣB1 formalizable lower561

bound, Buss Witnessing then directly gives a P-refuter and a P-constructive separation.562

13

2.7 Time-Bounded Kolmogorov Complexity563

There are many ways to define time-bounded Kolmogorov complexity [2, 35]. Some choices made in these564

definitions are essentialy arbitrary, like which efficient universal Turing Machine to use. We will specify565

these choices carefully enough to give a particular translation of time-bounded Kolmogorov complexity into566

theories of (bounded) arithmetic, but our results will not depend on the precise formalization. We follow567

Section 2.2 of [38], elaborating on some details.568

Fix a string pair encoding function ⟨·, ·⟩ : {0, 1}+ × {0, 1}+ → {0, 1}+ defined by the map ⟨u, v⟩ 7→569

dbl(u) ◦ 01 ◦ v, where dbl(u) = u1u1 ◦ u2u2 ◦ · · · ◦ u|u|u|u| simply double-prints each bit of u. Denote by π1570

and π2 the left and right extraction functions, so π1(⟨u, v⟩) = u and π2(⟨u, v⟩) = v. These pair encoding and571

element extraction function are linear-time computable and well-defined for all non-empty binary strings.572

Furthermore, delimiter overhead is only incurred for the length of the first string, plus an additive constant:573

∀u, v |⟨u, v⟩| = 2|u|+ 2 + |v|.574

Fix U a Universal Turing machine that can emulate any single-tape Turing Machine M with at most575

polynomial-time overhead. Let runU (M,x, 1t) denote the function that outputs the entire non-blank contents576

of the tape of M simulated on input x for t steps of U . By the assumption that U is efficient, runU can be577

computed in time poly(|M |, |x|, t).578

Finally, the t-time bounded Kolmogorov Complexity Kt(x) of a string x is the length of the shortest579

two-part description d of x such that U decodes d into x:580

Kt(x) = min
d∈{0,1}∗

{|d| : U(π1(d), π2(d), 1
t(|x|)) = x}

The Kt complexity of any string x is at most |x|, because the two-part description can simply “memorize”581

x. Consider the description d = ⟨H,x⟩ where H is the constant-length description of a Turing Machine that582

immediately halts. Because run outputs the contents of the tape of H, this is simply x. Thus we have the583

following584

Fact 2.17. There is an absolute constant c such that for every function t(n) > 0 and every x ∈ {0, 1}+ it585

holds that Kt(x) ≤ |x|+ c.586

Observe that it is important to pay delimiter overhead for the constant-length machine H instead of587

the variable-length string x to obtain the basic fact above. This is implicit in every reasonable definition of588

time-bounded Kolmogorov complexity.589

3 Provability of Palindromes Lower Bounds590

In this section, we generalize the work of Chen et. al. [14] and show that provability of the palindromes lower591

bound in VPV implies circuit lower bounds.592

To do this, we formalize Maass’s lower bound as a ∀ΣB2 L(VPV)-sentence and, assuming VPV ⊢ “Maass”,593

apply the KPT Witnessing theorem. We then assume a complexity upper bound that both collapses the594

Student-Teacher refuter into a P-refuter and causes a contradiction via the argument of [14].595

In Section 3.1, we give a formalization of palindrome lower bounds and discuss its witnessed Student-596

Teacher refuter under VPV-provability. We then give a slightly generalized version of the constructive597

separations argument of [14]. Finally, in Section 3.3, we identify a complexity assumption that both collapses598

the Student-Teacher refuter and allows a standard constructive separations argument to go through.599

3.1 Formalization of One-Tape Nondeterministic Turing Machine Lower Bounds600

First, we state Maass’s theorem in plain English.601

Theorem 3.1 ([39]). The language PAL := {p ∈ {0, 1}∗ | p a palindrome} is not computable by any602

one-tape nondeterministic Turing machine in n1.1 steps.603

To formalize Theorem 3.1, we will need to introduce several functions, all of which are clearly VPV604

function symbols. The symbol ValNTM(·) takes in a string M and outputs 1 if and only if M is a valid605

14

encoding (M ∈ LNTM) of a one-tape nondeterministic Turing machine. We define IsPal(X) to output 1 if606

the string X is a palindrome, and 0 otherwise. Recall that Run(M,X, t,W) outputs 1 if nondeterministic607

machine M on input X with guess bits W ACCEPTS within t steps. Finally,608

ErriPAL(M,X, t,W) ≜ (IsPal(X) = i) ∧ (Run(M,X, t,W) = 1− i).

Let Pal(n0) denote the following sentence.609

Pal(n0) ≜ ∀n (n > n0)∀M (|M | ≤ n/2)∃X (|X| = n)∃WX (|WX | ≤ n1.1)∀W (|W | ≤ n1.1)
ValNTM(M) ∧

(
Err1PAL(M,X, n1.1,W) ∨ Err0PAL(M,X, n1.1,WX)

)
The formalization covers two cases: either the machine M claims an input X is a palindrome when it is610

not (captured by Err0), or it claims X is not a palindrome when it in fact is (captured by Err1).611

The Student-Teacher Refuter. Assuming VPV ⊢ Pal(n0), for some n0, we have the following Student-612

Teacher game interpretation via the KPT Witnessing theorem.613

Let φ be the innermost ΣB0 formula of Pal(n0), and r be the fixed constant many rounds of the Student-614

Teacher game. A P-Student will take as input 1n and a machine M . In round one, they will query the615

Teacher on a string X and witnessWX where it thinksM incorrectly decides X is or isn’t a palindrome. The616

Teacher will respond with a witnessW that either shows the machineM correctly accepts the palindrome X617

onM(X,W), or that the proposed witnessWX actually rejects a non-palindrome X.5 This is an P-STCX[φ,r]
618

constructive separation for Maass’s lower bound.619

3.2 Constructive Separations for Palindromes620

In order to collapse Student-Teacher games, we will need small amounts of nonuniformity to replace the621

Teacher’s responses. This generalizes the argument of [14] that P-constructive proofs of Maass’s lower622

bound imply breakthrough circuit lower bounds. Here, we will need P/o(nε)-constructivity.623

Lemma 3.2 (Lemma 3.3, [14]). There exists a one-tape nondeterministic Turing Machine M running in624

subquadratic time that acts correctly on all inputs x with circuit complexity |x|δ, for a fixed 0 < δ < 1.625

Proof sketch. First, on input x, M will guess a log n-input circuit Cx of size nδ and evaluate it on all n626

possible inputs to verify that Cx succinctly represents x. Next, for each 0 ≤ i ≤ n/2, M will evaluate Cx on627

i and n− i and ensure that C(i) = C(n− i). In total, M will run in time n · nO(δ) = o(n2) for a sufficiently628

small constant δ.629

Lemma 3.3 (Generalization of Lemma 2.3, [14]). Assume that P ⊂ SIZE[nk] for some k ≥ 1. Let ε > 0. Then630

for any P/o(nε)-algorithm R(1n) with n output bits, we have that the string R(1n) has circuit complexity631

o(nε).632

Proof. Assume that P ⊂ SIZE[nk] for some k ≥ 1, and let R be a P-algorithm with advice α of length633

|α| = o(nε) which takes in a unary input 1n and outputs an n-bit string. For any ε′ > 0, we can construct a634

new P/(|α|+O(log n))-algorithm R′ where R′ takes as input 1n
ε′

and i ∈ [n] in binary, is given n in binary as635

advice, and outputs the i-th bit of R(1n). This is clearly still a polynomial time algorithm, and by the above636

assumption, has a circuit of size O(nε
′k+o(nε)). Set ε′ = ε/2k to achieve the desired circuit complexity.637

The following is a straightforward generalization of the second item of Theorem 3.4 in [14].638

Theorem 3.4. Let 0 < ε < 1. A P/nε-constructive proof of Maass’ bound implies that P ̸⊂ SIZE[nk].639

Proof. Suppose that P ⊂ SIZE[nk]. Then by combining the above two lemmas, there is a one-tape NTM640

M running in subquadratic time that is correct on all strings which could be output by refuters. This641

contradicts Maass’ lower bound being P/nε-constructive.642

5Note that in the second case, no response from the Teacher is actually needed as a polynomial time Student can check this
condition for themselves.

15

3.3 Round Elimination for the Student-Teacher Refuter643

Similar to the round elimination of [8], we show that every query to the counterxample oracle CX can be644

replaced by a sublinear advice string. There are two new ideas compared to previous work.645

(i) Recognize that Teacher in the Student-Teacher refuter is just an NP predicate.646

(ii) By assuming (towards a contradiction) that NP ⊂ SIZE[nk], we can use the Easy Witness Lemma for647

NP to “compress away” Teacher into sub-linear advive, round-by-round.648

Theorem 3.5 (Easy Witness Lemma, [43]). Let k > 0. Suppose that NP ⊂ SIZE[nk]. Then there is a649

constant d > 0 where for any L ∈ NP and Yes-input X, there is a witness W succinctly represented by a650

circuit of size ndk
3

.651

Theorem 3.6. Let r, k be positive integers. Assume that NP ⊆ SIZE[nk]. Then an P-STCX[φ,r]/a(n) refuter652

for Maass implies an P-STCX[φ,r−1]/a′(n) refuter for a(n) = O(nδ) with δ < 1 and a′(n) = C · a(n)O(k3),653

with C > 0 a constant.654

Proof. Let M be a nondeterministic Turing machine clocked to run in time n1.1, and let d be the constant655

appearing in Theorem 3.5. First, we note that without loss of generality, the Student will only propose a656

palindrome to the counterexample oracle. This is because if the Student proposes a non-palindrome, then657

the oracle response can be compressed to 0 bits and completely removed; the Student can check for itself in658

linear time6 that its proposed string X is not a palindrome, and in n1.1 time to simulate M on X and the659

proposed witness WX .660

Let p ∈ {0, 1}n be the first palindrome that the student queries the teacher. As no teacher queries are661

made yet, p is computable in P/a(n). Consider the following NP-language Lwit:662

Lnwit := {x : x ∈ {0, 1}n
1.1

and M(p, x) = 1}.

Note that Lnwit is the set of witnesses to the nondeterministic machine W that takes in 1n as input and663

a string of length a(n) as advice and decides if p is a 1-input to M . Further, we can pad down the input664

to 1n
ε

, for any constant ε > 0, and add n in binary as advice. Pick ε < δ. Hence by Theorem 3.5, there665

exists an x ∈ Lnwit that has circuit complexity (nε + log n+ a(n))
dk3 ≤ (2a(n))dk

3

. We replace the teacher666

by instead giving the student this witness circuit at the beginning of the Student-Teacher game. As a result,667

we change the protocol to have r − 1 rounds of interaction and a(n) + (a(n) + nδ + log n)dk
3

< (4a(n))dk
3

668

bits of advice.669

We then have the following corollaries.670

Theorem 3.7 (Theorem 1.6). If for any nondeterministic one-tape subquadratic time Turing machine M671

there is a P-Student-Teacher game SM (1n) with counterexample oracle CX[φPal, O(1)] solving RefPal,M for672

n-bit inputs, then NP ̸⊂ SIZE[nk] for any k ≥ 0.673

Proof. Suppose there is an P-STCX[φ,r] refuter of constantly many rounds r for Palindromes. Apply Theorem674

3.6 to remove the first teacher query, adding nε bits of advice, for any ε > 0 we desire. Pick ε < 1/
(
100dk3

)2r
.675

Repeatedly apply Theorem 3.6 another r−1 times to have a P/o(n1/100) refuter, we contradict Theorem 3.4.676

677

Theorem 3.8 (Theorem 1.11). If VPV ⊢ Pal(n0), for any n0 > 0, then NP ̸⊂ SIZE[nk].678

Proof. Suppose VPV ⊢ Pal(n0) and that NP ⊂ SIZE[nk] for some k > 0. Then by the KPT-witnessing679

theorem, we get an P-STCX[φ,r] refuter of constantly many rounds r. Applying Theorem 3.7, we have a680

contradiction.681

6Student need not be a one-tape TM, so checking PALINDROME can indeed be linear time.

16

4 Existence of Kt-Random Strings682

Hirahara’s lower bound RKt /∈ P for t = qpoly is unconditionally non-constructive [22, 14]. Could we683

extract a related unprovability result for VPV? Non-constructivity was established by using assumed P-684

refuters to print high-Kt strings for t = qpoly in only poly-time — a contradiction [14]. This suggests to685

begin studying VPV-provability of the lower bound “RKt /∈ P” by considering first the simpler statement686

“there exist Kt-random strings,” abbreviated informally as ∃RKt below.687

Even ∃RKt requires some care to express in VPV. Straightforward (i.e., without padding) translation688

of ∃RKt into VPV with t = qpoly is impossible, because VPV-number-terms must have fixed polynomial689

growth. So we study instead provability of a sequence of statements asserting that high-Kn
c

strings exist:690

“for sufficiently large n, there is an n-bit string X with Kt(X) > n/2” where t = nc for each c.691

Formalization 4.1 (HiKt for VPV). Fixing n0, define the following sequence of VPV sentences for each c ∈ N.692

HiKt[c] := ∀n.(n > n0) ∃X.(|X| = n) ∀D.(|D| < n/2) run(π1(D), π2(D), nc) ̸= X

Remark 4.2. The symbol c is not a free variable in a VPV-formula called HiKt. It is rather the parameter of693

a sequence of formulas where “ nc ” abbreviates the constant-length term n · n · n · · · · · n︸ ︷︷ ︸
c occurences of n

.694

Fixing sufficiently large n0, each statement HiKt[c] is true in the standard model by simple counting.7695

Furthermore, the argument is essentially identical for each c, differing only by a substitution of numeric696

terms. Can VPV carry it out? Can VPV prove HiKt via a “uniform” argument, such that the proofs for697

HiKt[c] and HiKt[c′] with c ̸= c′ have a clean quantitative relationship as syntactic objects?698

We make some progress towards answering these questions about provability of the schema HiKt[c] by699

giving lower bounds on Student-Teacher search for Kt-random strings for each fixed t ∈ poly (Section 4.1)700

and proof-theoretic hypotheses under which these lower bounds imply unprovability (Section 4.3).701

4.1 Student-Teacher-Search Lower Bounds for Kt-Random Strings702

First we derive a sequence of search problems from the schema HiKt as described in Section 2.6. Extract the703

quantifier-free part of HiKt[c] for each c as:704

ψc(n,X,D) := (|D| ≤ n/2 ∧ n > n0)→ (run(π1(D), π2(D), nc) ̸= X ∧ |X| = n)

Because HiKt[c] is true in the standard model for every c, the problem Searchψc
is total and well-defined for705

every c. To ease notation, we spell out and abbreviate these search problems below.706

Definition 4.3 (Search for Kt-Random Strings). For each c ∈ N, abbreviate the problem Searchψc by707

∃HiKt[c] := {(1n, X) | Kn
c

(X) > n/2 ∧ |X| = n}

An answer to the counterexample query X for ∃HiKt[c] is binary string D that is708

1. short, so |D| < n/2 and709

2. describes X, so D = ⟨M,A⟩ with M run on input A for at most nc steps halts with X on the tape.710

Any such D is a valid counterexample to the claim “Kn
c

(X) ≥ n/2.” Having fixed terminology, we are ready711

to state and prove our lower bounds aginst Student-Teacher search for Kt-random strings.712

The base case — Students that make no queries — is implicit in Proposition 1.8 of [14]. Generalizing the713

“indexing template” embedded in that proof yields our construction. Their argument is paraphrased below.714

Proposition 4.4. For c ≥ 1, no student running in time Õ(nc) and making zero queries solves ∃HiKt[c+1].715

7The constant n0 need only be large enough to ensure that run(π1(D), π2(D), nc
0) is well-defined for |D| ≥ n0/2. Thus n0

can be fixed to an absolute constant depending only on the machine and pair encoding implicit in the run and π functions.

17

Proof. Suppose S is a student that runs in time Õ(nc) and solves ∃HiKt[c+ 1] without making any queries.716

Denote by ℓ the description length of S, fix arbitrary n ∈ N, and let xn = S(1n) be the n-bit Knc+1

-random717

string found by S. Define the indexing of S to be the standard, one-tape Turing Machine ix(S) that results718

from substituting S into the Indexing Template (Algorithm 1). Because S makes no queries, it can indeed719

be simulated by a standard one-tape Turing Machine.720

By construction, ix(S), given input n encoded in binary, prints xn. This takes Õ(nc) steps for a larger721

polylog factor than in the original runtime of S, accounting for time to print 1n onto the worktape and722

to run S(1n). The description length of ix(S) is just ℓ + a for an absolute constant a depending on the723

universal machine and book-keeping code to expand the binary representation of n into 1n. Therefore, the724

pair ⟨ix(S), bin(n)⟩ witnesses Knc+1

(xn) ≤ 2(ℓ+ a) + log n+2 — a contradiction for sufficiently large n.725

Algorithm 1 Indexing Template ix(S)

Parameters S the description of a Turing machine
1: On input bin(n)
2: output S(1n)

Observe that an = ⟨ix(S), bin(n)⟩ is a uniform counterexample to the claim “xn is a Kt random string”726

for any zero-query student and sufficently large n. This suggests that even if a student S for ∃HiKt does727

make queries, the description of S could be used to answer and eliminate them. Two-parameter indexing —728

tracking both n and number of queries made by S(1n) — suffices to realize this intuition (Algorithm 2).729

Theorem 4.5. For c ≥ 1, no student running in time nc solves ∃HiKt[2c+ 1].730

Proof. Suppose S is a student of description length ℓ running in time nc that solves ∃HiKt[2c+ 1] using at731

most r(n) < nc queries. By Proposition 4.4, it is immediate that r(n) ≥ 1. We will eliminate these queries732

by constructing a uniform sequence of valid answers — derived from S itself — that are easy to produce733

without a teacher. Before arguing for validity, we show that such a “reflection exchange” of answers and734

queries is well-defined and establish some basic properties (Claim 4.6).735

More precisely, to generate counter-examples for S from the description of S, we must convert S into a736

standard, one-tape Turing machine (TM) — because ∃HiKt is defined with respect to this particular model737

of computation. The Reflection Template transforms any student S into a standard Turing machine rf(S)738

by substituting the description of S into Algorithm 2 below. We must additionally handle the change in739

computational model from the Student, as an oracle Turing machine, to a standard one-tape Turing machine.740

For each standard one-tape Turing machine M , write ⌜M⌝ for the binary encoding of M induced by the741

particular universal machine used to define ∃HiKt. We can now state742

Claim 4.6. There is a standard one-tape Turing machine rf(S) such that, fixing the sequence of answers743

an,j = ⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), bin(j)⟩⟩⟩ and denoting by qn,i the induced sequence of queries744

qn,i = “the i-th query made by S(1n) after getting an,j in response to the j-th query for j ∈ {1, . . . , (i−1)},”745

the following properties hold:746

1. rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), 1⟩⟩ prints the first query made by S(1n).747

2. rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), bin(i)⟩⟩ prints qn,i.748

3. rf(S) runs in time O(ℓ+ n2c log n) on all inputs of the form ⟨⌜rf(S)⌝, ⟨bin(n), bin(j)⟩⟩.749

4. The description length of rf(S) is ℓ+ arf for some absolute constant arf .750

Proof. Observe that “running rf(S) on appropriate inputs” is exactly a constructive definition of the queries751

qn,i for each n and i < r(n). All claimed properties follow by inspection and simulation of rf(S) because752

S is deterministic and time-bounded. The runtime blow up from O(nc) to O(n2c log n) occurs due to the753

treatment of the oracle tape as a 2nd tape, and simulating it on the first via a standard two-to-one tape754

simulation [3]. None of these assertions are about the validity of answers an,j as responses to queries qn,i —755

they assert only that both sequences are well-defined and can be obtained in bounded time by running and756

manipulating the description of rf(S).757

18

Algorithm 2 Reflection Template rf(S)

Parameters S a student
1: On input ⟨D, ⟨bin(n), bin(q)⟩⟩
2: i← 1 ▷ assumption: S makes at least one query
3: loop
4: qn,i ← Simulate S(1n) until it queries teacher
5: if i < q then
6: Answer the simulated query qn,i with ⟨D, ⟨D, ⟨bin(n), bin(i)⟩⟩⟩ ▷ exactly an,i when D = ⌜rf(S)⌝
7: i← i+ 1
8: else
9: break the loop

10: output qn,i ▷ the last query from simulated S(1n)

To eliminate q ≥ 1 queries from S, we answer them with a description of the reflection template applied758

to S — the standard machine rf(S). The Autodidact Template transforms any student S making at most759

r(n) queries into a student ad(S, q) making at most r(n)− q queries by substituting the description of S and760

bin(q) into Algorithm 3 below. Preservation of correctness and runtime guarantees is761

Claim 4.7. Student ad(S, q) runs in time O(n2c log n) and solves ∃HiKt[2c+1] using at most r(n)−q queries.762

Proof. We argue by induction, showing first that student ad(S, 1) solves ∃HiKt[2c + 1] within the claimed763

runtime and makes at most r(n)− 1 queries. Consider the set of first queries qn,1 asked by S(1n) for each n.764

These strings depend only on S and n — so intuitively, their Kn
2c+1

-complexity is bounded. Formally, the765

machine rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), 1⟩⟩ prints qn,1 for each n in at most O(nc log n) steps (items 1 and766

3 of Claim 4.6). Therefore, the machine-input pair767

⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), 1⟩⟩⟩ = an,1

of length O(ℓ) +O(log n) witnesses Kn
c+1

(qn,1) < n/2 for all sufficiently large n. Thus, for sufficiently large768

n, the string an,1 supplied to S(1n) by line 6 of ad(S, 1) is a valid answer to query qn,1. By the assumption769

that S solves ∃HiKt[2c+1], it must produce an element of RKnc+1 given any sequence of valid answers from770

teacher of length at most r(n). Therefore, the simulation of S(1n) executed by ad(S, 1) will solve ∃HiKt[2c+1]771

using at most r(n) − 1 queries to a real teacher, because an,1 is a valid answer to qn,1. Accounting for the772

time complexity of simulation and string manipulation, rf(S, 1) takes at most O(n2c log n) steps on inputs773

1n. This concludes the base case.774

For the inductive step, suppose that student ad(S, i) solves ∃HiKt[2c+ 1] using at most r(n)− i queries.775

Inspecting the autodidact template we have that, when running ad(S, i): (1) all queries made by S until the776

(i+ 1)-th query are answered by an,j for j ∈ {1, . . . , i} and (2) query qn,(i+1) is the first query answered by777

teacher. Because ad(S, i) is a student solving ∃HiKt[2c+1], it must produce an element of RKn2c+1 given any778

sequence of valid answers from teacher of length at most r(n)− i. We argue that an,(i+1) is a valid answer779

to query qn,(i+1).780

The standard, one-tape machine rf(S) on input ⟨⌜rf(S)⌝, ⟨bin(n), bin(i+ 1)⟩⟩ prints qn,(i+1) in at most781

O(ℓ+ nc log n) steps (items 2 and 3 of Claim 4.6). Therefore, the machine-input pair782

⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), bin(i+ 1)⟩⟩⟩ = an,(i+1)

of length at most O(ℓ) + O(log n) + O(log r(n)) (by item 4 of Claim 4.6) witnesses Kn
2c+1

(qn,(i+1)) < n/2783

for all sufficiently large n, because we know r(n) < nc from the runtime bound of S. Therefore, student784

ad(S, i + 1) correctly simulates one additional teacher response for S compared to ad(S, i) and so solves785

∃HiKt[2c+ 1] using at most r(n)− (i+ 1) queries. Induction on i now proves Claim 4.7.786

Now conclude the proof of Theorem 4.5 by substituting q = r(n) into Claim 4.7 to get that ad(S, q) solves787

∃HiKt[2c+ 1] using zero queries in Õ(n2c) time, contradicting Proposition 4.4.788

19

Algorithm 3 Autodidact Template ad(S, q)

Parameters q ∈ N and S a student
1: On input 1n

2: i← 1 ▷ assumption: reflect at least one query
3: loop
4: qn,i ← Simulate S(1n) until it queries teacher
5: if i ≤ q then
6: Answer the simulated query qn,i with an,i = ⟨⌜rf(S)⌝, ⟨⌜rf(S)⌝, ⟨bin(n), bin(i)⟩⟩⟩
7: i← i+ 1 ▷ increment #queries reflected
8: else
9: break the loop

10: Continue simulating S(1n) but answer all subsequent queries by asking teacher
11: output the output of simulated S(1n)

4.2 Gap Between Student-Teacher Search Lower Bounds & VPV-Unprovability789

The Student-Teacher search lower bounds above do not suffice to obtain VPV-unprovability. Suppose VPV790

proves HiKt[c] for every c. Applying KPT-witnessing, we would obtain for every c a DTIME[qc] Student-791

Teacher search solving ∃HiKt[c], for some arbitrary polynomial qc. There is no contradiction to Theorem 4.5,792

because it does not control the relationship between nc and qc. However, if qc = o(nc/2) could be guaranteed793

for even a single c, then unprovability of the HiKt schema in VPV would follow.794

One way forward is to make a stronger assumption about the supposed VPV-proofs of HiKt[c]. In larger795

theories than VPV that are known to prove HiKt[c] for each c, the proofs are uniform — essentially the same796

for each c. An assumption like “VPV proves HiKt[c] for each c and furthermore the proofs are structurally797

uniform” could enable control over Student runtime, such that a single polynomial-time algorithm witnesses798

Kt-random strings for every t ∈ poly.799

Such dramatic consequences of uniform proofs might seem unrealistic; the term nc appears in the800

quantifier-free part of HiKt[c], so shouldn’t any student witnessing HiKt[c] take time at least nc? This801

appealing but flawed intuition presumes that witnessing requires simulation of an nc-time machine. In re-802

ality, Teacher may be the only party responsible for an nc-time computation — it depends on the scheme.803

In Section 4.5 we give several examples of VPV schemata Φ[c] parameterized by arbitrary polynomial time804

bounds nc — with quantifier prefix identical or similar to HiKt[c] — where both (1) each statement is prov-805

able in VPV for every c by the “same” proof and (2) witnessing the statement takes absolute polynomial806

time — not nc for each c.807

Summarizing the above, it is both plausible and well-motivated to ask for better control over the com-808

plexity of witnessing terms when VPV proves a parameterized sequence of theorems by “essentially the same”809

proof. This requires a definition of uniform proofs. Towards this end, we discuss next a similar question810

about Peano Arithmetic (PA) and extract a witnessing hypothesis for uniform VPV-proofs by analogy.811

4.3 Kriesel’s Conjecture & Witnessing Hypotheses for Uniform Proofs812

A fundamental question about “merging” a sequence of theorems into a single theorem appeared in 1975 as813

Problem 34 on Friedman’s list of One Hundred and Two Problems in Logic, attributed to Kriesel [21]. For814

some theories, a positive answer to this question would imply uniform witnessing.815

Conjecture 4.8 (Kriesel’s Conjecture, §4.4 of [49]). Suppose for a formula φ(x) and a number k, one can816

prove φ(Sc(0)) in Peano Arithmetic using ≤ k steps for every c. Then ∀cφ(c) is provable in Peano Arithmetic.817

Efforts to resolve Kriesel’s Conjecture (KC) uncovered a peculiar situation: KC is very sensitive to how818

PA is axiomatized! For example, KC is true when PA is axiomatized with a ternary relation for multiplication819

[46, 41] or with minimality instead of induction [23]. But KC is false when PA has a function symbol for820

subtraction [24], and remains open for the “textbook” presentation of PA using function symbols {S,+,×}.821

Hrubeš discusses these issues in detail [23].822

20

Let PAL denote the theory of Peano Arithmetic with symbols for every primitive recursive function,823

axiomatized by a list L of formulas. If KC is true for PAL, then it is straightforward to extract parameter-824

independent witnessing terms from a sequence of proofs: just apply KC followed by KPT witnessing. This825

interchanges the order of quantifiers as desired: a single sequence of witnessing terms that works for all826

sentences in the schema. One intermediate step is required — PA is not a universal theory, and so KPT827

does not apply directly. We work out the details below for ∃KtR, towards developing a uniform witnessing828

hypothesis for the weaker theory VPV by analogy. First recall the KPT theorem, stated below for single-829

sorted theories.830

Theorem 4.9 (Single-Sorted KPT). Let T be a universal theory with vocabulary L. Let φ be an open831

L-formula, and suppose that T ⊢ ∀x⃗ ∃y ∀z φ(x⃗, y, z). Then there is a finite sequence t1, . . . , tr of L-terms832

such that833

T ⊢ ∀x⃗ ∀z1, . . . zr[φ(x⃗, t1(x⃗), z1) ∨ φ(x⃗, t2(x⃗, z1), z2) ∨ · · · ∨ φ(x⃗, tr(x⃗, z1, . . . , zr−1), zr)]

Now translate “for every c and almost every n, there exists a Kn
c

-random string of length n” into a834

PA-formula. Because PA-terms are not bounded by polynomials, here we can admit the runtime exponent c835

as a free variable. Fixing sufficiently large n0, define836

HiKt(c) := ∀n.(n > n0) ∃x.(x < 2n) ∀d.(d < 2n/2) run(π1(d), π2(d), unary(exp(n, c))) ̸= x

For every reasonable list of axioms L, if PAL includes all primitive recursive functions, it includes the837

necessary function symbols and proves their relevant properties.838

• unary(w) is the PAL symbol for the function that outputs z such that bin(z) = 1w, and839

• exp(n, c) is the PAL symbol for the exponentiation function nc.840

• run is the PAL function symbol for runU from the definition of time-bounded Kolmogorov complexity,841

• π1(z) and π2(z) are the PAL symbols for the pair decoding functions (see Section 2.7).842

Again, this translation of ∃KtR exploits the power of PA to admit c as a variable of the object language.843

Proposition 4.10. Suppose KC is true for PAL and there exist absolute constants n0 and k such that one844

can prove HiKt(Sc(0)) in PAL using ≤ k steps for every c. Then, letting PA′
L be any universal conservative845

extension of PAL, there is a finite sequence of PA′
L-terms q1, . . . qr such that846

PA′
L ⊢ ∀c ∀n.(n > n0) ∀d1, . . . , dr

[
(run(π1(d1), π2(d1), unary(exp(n, c))) ̸= q1(n, c)) ∨

(run(π1(d2), π2(d2), unary(exp(n, c))) ̸= q2(n, c, d1)) ∨
. . . ∨

(run(π1(dr), π2(dr), unary(exp(n, c))) ̸= qr(n, c, d1, . . . dr−1))

]
Proof. Assume that PAL proves HiKt as in the statement of the lemma, and KC is true of PAL. Applying847

KC, we have PAL ⊢ ∀c HiKt(c) for some absolute constant n0. Now let PA′
L be any universal conservative848

extension of PAL. Because PA′
L extends PAL, we also have PA′

L ⊢ ∀c HiKt(c). Because PA′
L is universal,849

appeal to KPT witnessing (Theorem 4.9) concludes this proof.850

4.4 Conditional Unprovability of HiKt[c] in VPV and V1
851

By analogy to the outcome of assuming KC and applying KPT to a conservative universal extension of PA,852

introduce the following853

21

Hypothesis 4.11 (Witnessing for Linecount-Uniform VPV-Proofs). Let φ(n, p,X, Y) be a ΣB0 (VPV) formula854

with all free variables displayed. Suppose there is an absolute constant n0 , number k, and VPV-term t such855

that one can prove ∀n.(n > n0) ∃X.(|X| < t(n)) ∀Y φ(n, nc, X, Y) in VPV using ≤ k steps for every c. Then856

there is a finite sequence F1, . . . Fr of VPV-function symbols that are absolutely witnessing :857

for every c, VPV ⊢ ∀n.(n > n0) ∀Y1, . . . , Yr
[
φ(n, nc, F1(n, c), Y1) ∨

φ(n, nc, F2(n, c, Y1), Y2) ∨
· · · ∨

φ(n, nc, Fr(n, c, Y1, . . . Yr−1), Yr)

]
The asymmetry in how c is given to φ compared to how c is given to each Fi — nc vs. c — is crucial for858

our applications. If Hypothesis 4.11 holds, then any student derived from the hypothesis takes arguments 1n859

and 1c because numeric terms are supplied in unary for two-sorted complexity classes (see Section 2.4). If c860

were instead given to Fi as n
c, the implicit student would take poly(nc) time to print Knc

-random strings of861

length n— and no contradiction would arise. However, combining Hypothesis 4.11 with the Student-Teacher862

lower bounds for ∃HiKt from the last section (Theorem 4.5), we have863

Corollary 4.12. Under the Witnessing Hypothesis for Linecount-Uniform VPV-Proofs, there is no fixed k864

such that one can prove HiKt[c] in VPV using ≤ k steps for each c.865

This would rule out linecount uniform proofs of HiKt[c]. However, linecount uniformity — though well-866

motivated by Kriesel’s Conjecture — is certainly not the only reasonable notion of uniformity in proofs. We867

hope that a deeper understanding of uniform VPV-proofs will emerge by studying witnessing hypotheses868

that emphasize different aspects of common structure in theorems and proofs. To begin the investigation,869

we introduce a strong witnessing hypothesis that emphasizes the common element in statements like HiKt[c]870

— substitution of polynomial time-bounds into the execution of Turing machines, formalized as871

Definition 4.13 (poly-Runtime Schema). Fix a universal function symbol run(M,A, s) to output the tape872

of machineM run on input A for s steps. An infinite sequence of formulas Φ is a poly-runtime schema if Φ is873

obtained by taking an infinite union over substitution of polynomial runtimes. Formally, let φ be a formula874

with a free variable p occuring only in terms of the form run(M,A, p) — as the time bound. Then,875

Φ =
⋃
c∈N

φ(p/nc)

We refer to the c-th sentence in such a schema by Φc.876

Hypothesis 4.14 (Witnessing for poly-Runtime Schema in VPV). Suppose Φ is a poly-runtime schema with877

φ = ∀n.(n > n0) ∃X.(|X| < t(n)) ∀Y ψ(n, p,X, Y) for ψ a ΣB0 (VPV) formula and t a VPV-term, and there878

is an absolute constant n0 such that VPV ⊢ Φ. Then there is a finite sequence F1, . . . Fr of VPV-function879

symbols that are absolutely witnessing :880

for infinitely many c, VPV ⊢ ∀n.(n > n0) ∀Y1, . . . , Yr
[
ψ(n, nc, F1(n, c), Y1) ∨

ψ(n, nc, F2(n, c, Y1), Y2) ∨
· · · ∨

ψ(n, nc, Fr(n, c, Y1, . . . Yr−1), Yr)

]
The conclusion is essentially identical to that of the linecount WHUP. However Hypothesis 4.14 is much881

stronger: it asserts that VPV cannot help but give absolute witnessing if it proves a poly-runtime schema.882

Therefore, combining Hypothesis 4.14 with the Student-Teacher lower bounds for ∃HiKt from the last section883

(Theorem 4.5), we have884

22

Corollary 4.15. Under the Witnessing Hypothesis for poly-Runtime Schemas in VPV, there are infinitely885

many c such that VPV does not prove HiKt[c].886

Under Hypothesis 4.14, we get VPV-unprovability of HiKt[c], but not V1 unprovability. This under-887

exploits our Student-Teacher lower bounds for ∃HiKt, which can eliminate poly-many rounds from Student.888

So, we introduce an appropriate WHUP for V1 — derived from the KPT Theorem for V1 (Theorem 2.15).889

Hypothesis 4.16 (Witnessing for poly-Runtime Schema in V1). Suppose Φ is a poly-runtime schema with890

φ = ∀n.(n > n0) ∃X.(|X| ≤ t(n)) ∀Y ψ(n, p,X, Y) for ψ a ΣB0 (V
1) formula and t a V 1-term, and there is an891

absolute constant n0 such that V1 ⊢ Φ. Then there is an absolutely witnessing FP function F such that for892

infinitely many c,893

N2 |= ∀n.(n > n0)∀Y ψ(n, nc, FCX[Φc], Y)

Corollary 4.17. Under the Witnessing Hypothesis for poly-Runtime Schemas in V1, there are infinitely894

many c such that V1 does not prove HiKt[c].895

These two corollaries imply separations with Jeřábek’s theory VAPC.896

Theorem 4.18. VAPC ⊢ HiKt[c], for all c ∈ N. Further, under Witnessing Hypotheses, VPV ̸⊢ HiKt[c] and897

V1 ̸⊢ HiKt[c].898

Proof. It was shown by Korten [28] that VAPC ⊢ HiKt[c].899

We spend the remainder of this section addressing the plausibility of these hypotheses, by giving examples900

of VPV-theorems that do enjoy absolute witnessing despite varying polynomial bounds.901

Remark 4.19. It is interesting to note that our arguments do not distinguish between poly-Runtime Schemas902

and runtime schemas of higher time complexity (such as quasipolynomial time). Let pb(n) = n(logn)
b

. Then903

we can consider the two-sorted variant of S13 and study the provability of the schema HiKpb(n). Our WHUPs904

and round collapse techniques would extend to this setting, separating S13 from the theory corresponding to905

the quasipolynomial form of VAPC.906

4.5 Examples of Schemata With “Uniform” Proofs & Absolute Witnessing907

The WHUPs discussed in this section apply to VPV-schemata of the form908

Φ[c] := ∀n.(n > n0) ∃X ∀Y φ(nc, X, Y)

where φ(p,X, Y) is ΣB0 for each c ∈ N. Here we give examples of simple VPV-theorems to illustrate that909

this class of schemata is non-trivial. All these examples have both proofs that are identical up to numeric910

substitutions and witnessing algorithms that run in some absolute polynomial time — not nc for each c.911

Therefore, no contradiction can arise from assuming a WHUP (and constant-line proofs) for any of these912

theorems. The WHUP would just “automatically” transform proofs into witnessing algorithms that meet913

known complexity upper bounds. The common element in all these examples is efficient transformation914

of encoded Turing Machines. For each example we describe the VPV-translation and carefully discuss the915

complexity of witnessing. We do not argue for VPV-provability, because all these theorems follow from916

properties of universal machines and lemmas about efficient string manipulation that are readily available917

in VPV — see the discussion in Sections 2.1 and 4 of [48].918

4.5.1 Machine Templates919

The first three examples give basic properties of machine-only Kolmogorov complexity. Fix a universal920

Turing machine U and define the machine-only t-time bounded Kolmogorov Complexity moKtU (x) of a string921

x as the length of the shortest encoded machine that prints x when simulated by U :922

moKtU (x) = min
d∈{0,1}∗

{|d| : U(d, ε, 1t(|x|)) = x}

This definition is brittle compared to standard time-bounded Kolmogorov complexity. The UTM never923

provides any input to the encoded machine d, forcing d to “hardcode” useful strings instead of reading them924

23

from an input tape. Therefore the basic fact about Kt — ∀xKt(x) < |x| + a for an absolute constant a925

— fails. However, we can recover something similar for moKt, even in VPV: an uniform upper bound on926

moKt(x) for every x.927

Memorization Templates. For every polynomial time bound t, for every string length n, there is a928

hardcoded-string “template” machine M of length n, such that any string X of “sufficiently smaller” length929

can be pasted into the template to produce a new machine M ′. The machine M ′ prints X in less than t930

time. Pasting is a polynomial-time string function that copies the bits of Y into a sequence of states of M .931

We formalize this as a VPV-schema below, varying the polynomial time bound.932

MEMT[n0, c] := ∀n.(n > n0) ∃M.(|M | = n) ∀X.(|X| ≤ n/16) runU (pasteU (M,X), nc) = X

VPV cannot quantify over arbitrary polynomial time bounds, but it can prove the MEMT schema via an933

essentially-identical proof for each c. However, no contradiction can arise from a WHUP because it is easy934

to witness M : print the U -encoding of a Turing Machine that prints an explicit all-zero string instead of an935

implicit all-zero string. That is, the ith state of M is “write 0 to the tape, move the head right, transition936

to state i+1.” The paste function replaces the “write 0” element of state i of M with bit X(i). The content937

of this simple theorem is the gap between n and |X| — it asserts an upper bound on the cost of memorizing938

a string relative to some fixed model of computation and encoding of machines shared by runU and pasteU .939

Notice that witnessing M in this example takes linear time completely independant of c. This is more940

restrictive than the consequences of a WHUP, which allows witnessing algorithms to take 1c as an argument.941

Our next example actually exploits this dependence.942

Clocking Templates. For every polynomial time bound p, for each sufficiently large n, a “template”943

machine M of length n enforces a p-step timeout on shorter machines, making sure they halt in time p944

and signalling a fault if they run too long. We’ll formalize this in VPV using a pair encoding function: the945

clocking template applied to machine description D outputs ⟨h, run(D, ε, nc)⟩ where h is 1 if D halted within946

nc steps and zero otherwise. Consider the following collection of VPV-theorems CLOCKT[n0, c] :=947

∀n.(n > n0) ∃M.(|M | = n) ∀D.(|X| ≤ n/16)(halt(D, ε, nc)→ run(paste(M,D), ε, n2c) = ⟨1, run(D, ε, nc)⟩)
∧ (¬halt(D, ε, nc)→ run(paste(M,D), ε, n2c) = ⟨0, run(D, ε, nc)⟩)

Once again, there is a straightforward witnessing for M : print the U -encoding of a machine that explicitly948

prints the all-zero string Z of length n/16 to the worktape (as in the memorization template), and then runs949

a nc-clocked U to simulate Z. Pair the worktape contents of the results with 0 or 1 depending on if Z halted.950

The paste function then replaces the explicitly-coded Z with the encoding of D, resulting in a template with951

the desired behaviour.952

Witnessing this template actually depends on c: the clock requires c log(n) hardcoded bits in the descrip-953

tion of M . However, this dependence is not polynomial: for sufficiently large n, c log(n) < n. Inspecting the954

WHUPs for VPV (Hypotheses 4.11, 4.14) we see that the witnessing function symbols occur as F (n, c, . . .),955

meaning that n and c are given in unary to the witnessing algorithm. Therefore, in fixed poly(n, c) time we956

can hardcode the binary representation of nc into a clock. This is an example where the straightforward957

witnessing has exactly the complexity implied by a WHUP.958

Clocked Unrolling Templates. VPV can also discuss a local formulation8 of machine-only Kt(x), which959

bounds the time complexity of producing each individual bit xi of x given i in binary. Consider the following960

polynomial-time function, which “unrolls” a given machine into an n-bit string — essentially a machine961

analog of the truth-table generator for circuits [32].962

For every polynomial time bound p, for each sufficiently large n, a “template” machine M of length n963

can extract an n-bit vector of p-step decisions from sufficiently shorter machines. That is, pasting a shorter964

8A local formulation of standard Kt complexity appears, for example, as Definition 3 of [37] where a hardness assumption
about deciding local Kt is used in a direct and elegant construction of pseudo-random functions.

24

Algorithm 4 Unrolling a Machine, Unroll(D,n, nc)

Parameters n in unary, nc in unary
1: for all i ∈ {0, . . . , n} do
2: if D run on input bin(i) accepts within nc steps then
3: Print 1
4: else
5: Print 0

machine D into M and running the result agrees with Unroll(D,n, p). Translating into VPV define the965

schemea UNROLLT[n0, c] :=966

∀n.(n > n0) ∃M.(|M | = n) ∀D.(|D| ≤ n/16) runU (pasteU (M,D), ε, n2c+1) = Unroll(D,n, nc)

Witness M in poly(n, c) time by printing an appropriate U -encoding of Algorithm 5 below.967

Algorithm 5 Unrolling Template

Parameters D the description of a machine, n in unary, nc in unary
1: Write 0n/16 to the worktape
2: Move the head two cells right — leaving a blank
3: Write 1n to the worktape
4: Move the head two cells right — leaving a blank
5: Write 1n

c

to the worktape
6: Run Unroll on the contents of the worktape, with arguments separated by blanks

To accomodate paste, implement line 1 ofM by explicitly printing 0 symbols — one state per symbol, exactly968

as in the previous two templates. Implement lines 3 and 4 by maintaining binary counters on the worktape.969

This requires O(log n) and O(c log n) bits to be hardcoded in M , respectively. Finally, the code of Unroll970

takes some absolute constant number of bits in the encoding of M . Just as above, printing M takes fixed971

polynomial time given (1n, 1c) as input.972

4.5.2 Deterministic Time Hierarchy Theorem973

Consider the compressible-counterexample deterministic time hierarchy theorem, used to obtain Student-974

Teacher lower bound for constructing circuits [8].975

Lemma 4.20. For every c ∈ N, there is a language Hc ∈ DTIME[nc+1] satisfying the following:976

• Counterexamples: Every candidate nc-time TM M that tries to compute Hb will make a mistake977

on an n-bit input xerror = ⌜M⌝ ◦ π where ◦ denotes concatenation and π ∈ 0∗ is a padding string978

chosen to make |xerror| = n for all sufficiently large n.979

• Compressibility of Counterexamples: The counterexamples xerror are efficiently compressible to980

O(log(n)) bits by recording both the constant-length description M and n in binary, by just padding981

M to the appropriate length.982

Though the diagonalization machine Hc uses time O(nc+1), the implicit refuter uses only time O(n) —983

and is the same regardless of which polynomial “slice” of the hierarchy is being refuted! The deterministic984

time hierarchy theorem has a straightforward translation into a sequence of VPV-sentences.985

Formalization 4.21.

DTIMEH[c] := ∀n ∀M.(|M | < n/16) ∃X.(|X| = n) run(M,X, nc) ̸= run(Hc, X, n
c+1)

This is a simpler formula than the VPV-schemata Φ[c] used in WHUPs, because the quantifier prefix is986

∀∃ instead of ∀∃∀. We know that VPV ⊢ DTIMEH[c] for each c, and each proof is “essentially the same”987

up to substitution of nc (Lemma 3.1 of [29]). Therefore, Buss Witnessing (Theorem 2.13) applies and we988

25

immediately get refuters for Hc. But the uniformity is not expoited by Buss Witnessing – we get a sequence989

of refuters with arbitrary and unrelated polynomial runtime for each c, and indeed each runtime may be990

much larger than nc. This is much worse than the absolute refuter obtained outside VPV.991

In this simpler setting, is there a generic way to convert such uniform collections of proofs into absolute992

witnessing that we already know exists? To further assess the plausibility of such convenient witnessing, we993

let wH be the VPV-term given by the compressible counterexamples of Lemma 4.20 and ask the following994

Question 4.22. Does VPV prove that wH witnesses the DTIMEH[c] errors for each c?995

4.5.3 Efficient Conversion From Multi-Tape to One-Tape Turing Machines996

It is a classical theorem that for k ≥ 2 any k-tape Turing Machine can be simulated by a one-tape Turing997

Machine with at most quadratic overhead.998

Theorem 4.23 (Claim 1.6 of [3]). If the language L can be decided in time nc on a k-tape Turing Machine,999

then L can be decided in time 16kn2c on a single-tape Turing Machine.1000

Formalize this in VPV by defining the function symbols runk and run1 to simulate k-tape and single-tape1001

Turing Machines, respectively. Then consider the following collection of VPV-theorems ONE.TAPE[n0, k, c] :=1002

∀M ∃M ′ ∀n.(n ≥ n0) ∀X.(|X| = n) runk(M,X, nc) = run1(M
′, X, 16kn2c)

This quantifier prefix is identical to that of Φ[c], but the types are different: strings instead of numbers.1003

Therefore, a witnessing algorithm for ONE.TAPE is given M encoded in binary and must print the encoding1004

of M ′. The encoding length |M | under any reasonable encoding — which we fix using runk — is determined1005

by the number of states and alphabet size. The number of states in M ′ given by straightforward proofs1006

of Theorem 4.23 is exponential in k but linear in the states and alphabet-size of M . Therefore, in a fixed1007

polynomial time in |M |, a witnessing algorithm prints M ′. Only the transformation of the “code” of M1008

matters to the witnessing algorithm — not the runtime bound on M .1009

5 Consequences of Provably Hard Truth Tables1010

Under a natural witnessing hypothesis for a theory corresponding to uniform AC0[qpoly], we have P ̸= NP.1011

5.1 A Theory for AC0[qpoly]-Reasoning1012

In Section 2.4, we recalled the two-sorted theory V0 which corresponds to log-uniform AC0 circuits. Here,1013

we extend the definition to a new theory denoted V0
#, corresponding to polylog-uniform AC0[qpoly]. The1014

definition of V0
is very simple: starting from the axioms of V0 and language L(V0), add the function symbol1015

#, commonly known as the smash operator, to the language and defining axioms of V 0. Smash is defined1016

by axioms stating x#y = 2|x|·|y|, for numbers x, y. It is used to give quasipolynomial growth rates of the1017

number type.1018

The characterization of V0 with uniform AC0 is carried out in detail in Chapters IV and V of [17]. They1019

treated AC0 as the logtime-hierarchy LH, known to be equivalent to logtime-uniform AC0.1020

Theorem 5.1 (Folklore). log-uniform AC0[poly] = LH.1021

Importantly, this is generalizable to the polylog-hierarchy polyLH.1022

Theorem 5.2 (Folklore). polyLH = polylog-uniform AC0[qpoly]1023

Cook and Nguyen showed that all logtime-uniform AC0-functions are ΣB1 -definable in V0, as well as the1024

converse witnessing theorem that any ∀ΣB1 sentence provable in V0 has its existential quantifier witnessed1025

by a logtime-unform AC0 function.1026

This correspendence holds for uniform AC0[poly], but generalizes to any class of circuit sizes that is closed1027

under composition, with the appropriate modification of the language and axioms. By adding the smash1028

operator #, it is standard to get an identical correspondence between polylog-uniform AC0[qpoly] and V0
#.1029

We believe this theory is of independent interest, and will discuss it’s strength at the end of the section.1030

26

5.2 Stating Existential Circuit Lower Bounds in L(V0
#)1031

We first give a logical translation of the classical lower bound due to Shannon.1032

Theorem 5.3 (Shannon Counting). Let b > 0. For every sufficiently large N , there exists a truth table X1033

of length N which is not succinctly represented by any |N |-input circuit of size |N |b.1034

Normally, it would be impossible to describe such a lower bound in L(V0) or L(V0
#), as it involves1035

evaluating general circuits, instead of AC0 circuits. However, because our feasible objects will be truth1036

tables of length 2n, we can evaluate general circuits of each fixed polynomial size nc in size qpoly(2n)-AC0.1037

While we normally reserve capital letters for string-types, we will use N to refer to 2n in this section. More1038

formally, we use the following folklore lemma about AC0 evaluation of general circuits.1039

Lemma 5.4 (Folklore). Let k > 0. There is a polylog-uniform AC0 circuit of size N log(N)3k which on input1040

the DCL encoding of a general circuit C of size nk and an input x of n bits, outputs C(x).1041

Proof. By a standard counting argument, it is known that there are at most 2O(s(n) logn) circuits of size s(n).1042

As a DCL representation of a size s(n) circuit is a string of length at most s(n)2, we have that there are1043

at most 2O(s(n)2 logn) DCL strings of size s(n) circuits. Plugging in s(n) = nk, we get that there are up to1044

2O(n2k logn) = O(N (logN)3) DCL strings of size nk circuits.1045

We construct an AC0 circuit E to evaluate any size nk general circuit as follows:1046

1. Circuit Lookup Layer: Have a multiplexer identify the which circuit C has been input1047

2. Input Lookup Layer: Have a multiplexer identify the circuit input x which has been specified.1048

3. Evalutation Layer: Output the memorized evaluation of indentified circuit C and input x.1049

Uniformity. Normally, the above circuit would be highly non-uniform. However, in the size regime of1050

N = 2n, this becomes feasible. A polylog-uniformity algorithm of E would have runtime polylog(N log(N)2k),1051

which is DTIME[poly(n)]. This means that a uniformity algorithm AE running in time log(N)c = nc for1052

circuit E has time to evaluate circuits of size nc/3. Setting c > 3k would allow for the uniformity algorithm1053

to, after stages (1) and (2), evaluate the input (C, x) and give the output bits.1054

By Lemma 5.4, we have in V0
a sequence of function symbols for generating the truth tables of fixed-1055

polynomial size general circuits given as input. This is feasible due to the input length N , where a fixed1056

polynomial is only polylog. Define the sequence of symbols TTb(C,N) as functions that take a number N1057

and circuit C of length |C| = |N |b and output the truth table of C of length N . These operations have1058

function symbols and defining axioms in V0
because the polylog-uniform AC0 complexity will be N ·qpoly(N)1059

to evaluate the circuit C on each of the N possible inputs (by Lemma 5.4). We will also assert that TTb(·, ·)1060

checks if the input circuit is valid and of length |N |b, and treats it as the constant 0 function if it is not.1061

This is because verifying a DCL encoding can be done efficiently in AC0. We can now give the following1062

translation,1063

Hard(b) ≜ ∀N ∃X (|X| = N)∀D (|D| < N) TTb(D,N) ̸= X

The above formula makes a choice to rely on the function symbol TTb verifying that N is a power of two and1064

the circuit D is a valid circuit of size |N |b instead of explicitly verifying this outside of the function symbol.1065

We make this choice because we will need a WHUP for V0
#, and the cleanest presentation of such a WHUP1066

is given when TTb absorbs the circuit verification procedure. See the discussion on WHUPs below for more1067

detail.1068

Comparison to VAPC and Shannon Counting. The typical description of Shannon counting is that1069

there exists a truth table x of length N , which has circuit complexity N/ logN . It is this formulation1070

which Jeřábek showed is provable in VAPC. Our logical translation, however, is weaker: we only require1071

proving a schema that asserts a truth table with super-fixed-polynomial circuit complexity exists, rather1072

than exponential.1073

27

5.3 Round Elimination of the Student-Teacher Refuter1074

Student-Teacher Interpretation The structure of the Student-Teacher game is very similar to previous1075

sections. In each round, a polylog-uniform AC0[qpoly(N)] Student constructs a truth table X and queries1076

the Teacher. Every round that the Student is not correct, the Teacher will respond with a small circuit D1077

that succinctly represents X. Crucially, Teacher’s response (to be replaced with a SearchMCSP oracle) is of1078

length polylog(N) and computable in PH.1079

The round elimination strategy will be different from previous sections. We will show that the problem1080

of outputting the i-th bit of the Student-Teacher game is in fact in the polylog hierarchy polyLH, and use the1081

assumption P = NP to show that the output of the Student-Teacher game will have small circuit complexity.1082

We begin with a warm-up lemma.1083

Lemma 5.5 (Lemma 2.5, [14]). Assume P = NP. Then for every polylogtime-uniform AC0 algorithm A1084

which outputs n bits on input 1n, the output A(1n) has circuit complexity at most polylog(n).1085

Proof. Let D be the uniformity machine for AC0 algorithm A which on input n in binary and index i in1086

binary, reports the i-th bit of wire and gate information of An, the n-th AC0 circuit of family A. Let f(n, i)1087

be the function that outputs the i-th output bit of An(1
n). Notice that f is in PH: due to An being constant1088

depth, one can existentially and universally guess gate/wire information and verify it due to D. This means1089

the evaluation of f is in Σd-TIME[O(logd n)] for some constant d depending on the depth of circuit A and1090

the polynomial time SAT algorithm. By assumption, P = PH, hence the evaluation of An(1
n) may be done1091

in deterministic polylogn time. It is standard to convert such a program to a circuit of polylog size.1092

The above lemma is a blueprint for the generalization to Student-Teacher games. Let φb denote the1093

quantifier-free part of Hard[b], to state1094

Lemma 5.6. Assume P = NP. Let r ∈ N be a constant. Then any polylog-uniform AC0[N (logN)k]-STCX[φb,r]
1095

game for Hard[b] has output of circuit complexity log(N)m = nm on inputs 1N , for some m = m(k) > 0.1096

Furthermore, if k = O(1), then m = O(1).1097

Proof. We exactly follow the proof of Lemma 5.5 with one major modification: we must replace the oracle1098

gates/Teacher’s responses.1099

Let the Student S be an AC0
d [N

(logN)k] counterexample oracle circuit with d > r and a uniformity1100

algorithm A(i, n) which runs in time (logN)q1 . As well, let P = NP be realized by a polynomial time SAT1101

algorithm of time nα. As SearchMCSP ∈ FNP there is by assumption a fixed polynomial p = p(N, |s(n)|),1102

for s(n) a size function s(n) < 2n/n, where SearchMCSP ∈ DTIME[p(N, s(n))]. With s(n) = nb, we have1103

that there is a LOGTIME-uniform circuit family {CN}N of size p(N)k solving SearchMCSP. By Lemma 5.4,1104

we can evaluate CN by a polylog-uniform AC0
3[N

log(N)3k] circuit EN . Let the uniformity algorithm for E , AE ,1105

run in time (logN)q2 for some constant q2. From student S, we modify the oracle circuit, by replacing any1106

oracle gate by the circuit solving SearchMCSP(·, nb), EN , and all oracle output bits by the output bits of EN .1107

Denote this new circuit S∗.1108

By the same proof of Lemma 5.5, the output S∗(1N) has circuit complexity (logN)m = nm, where1109

m = 100dαkmax(q1, q2). This follows by the repeated application of the polynomial time SAT algorithm,1110

and the substitution of EN into S for each Teacher oracle.1111

Finally, we will introduce a WHUP for V0
in order to obtain an absolute Student-Teacher game for any1112

b ∈ N and Hard[b]. Proof-theoretic consequences will follow.1113

Witnessing Hypothesis. The structure of the schema Hard[b] is somewhat different from the schema1114

HiKt[c] for the existence of high Kpoly strings seen in Section 4. For Hard[b], we are substituting function1115

symbols instead of substituting runtimes, contrasting with our WHUP for VPV which substitutes runtimes1116

into a universal machine. Such a difference is natural when we go from reasoning with Turing machines to1117

reasoning with circuits. Another variation of WHUPs is required to handle varying function symbols.1118

Definition 5.7. A parametrized uniform circuit family {Cn(b)}n is a circuit family where the uniformity1119

algorithm A(i, n, b) takes in an index to the DCL i, the input length n, and an additional parameter b, all1120

represented in binary. Unless stated otherwise, we will only consider polylog-uniformity.1121

28

Definition 5.8. Fix a parametrized uniform AC0[qpoly] family C(b) = {Cn(b)}n and let fb(X) be the V0
#1122

function symbol which evaluates C on input X with parameter b for the uniformity machine. We say that1123

an infinite sequence of formulas Φ is a parametrized uniform schema if Φ is obtained by taking an infinite1124

union over parameter values of a parametrized uniform circuit family. Formally, let φ be a formula which1125

has a parametrized uniform function symbol fp. We denote φ(fp/b), b ∈ N to be “substituting” the value b1126

for the parameter p, where we use the function fb wherever f is named in φ. We set1127

Φ =
⋃
c∈N

φ(fp/c).

Outside the theory, this can be thought of as a substitution; all we are doing is substituting numerals into1128

the parameter of a uniformity algorithm. However, it is not a true term substitution in the object language,1129

as a first order theory cannot treat functions as free variables.1130

The following WHUP for V0
strengthens the WHUP for VPV using parametrized uniform circuits.1131

Hypothesis 5.9 (V0
Witnessing Hypothesis for Uniform Proofs). Suppose Φ =

⋃
c∈N φ(fp/c) is a parametrized1132

uniform schema with φ ∈ ΣB2 and V0
⊢ Φ. Then there is a finite sequence F1, . . . Fr of V

0
#-function symbols1133

such that, for infinitely many c,1134

V0
⊢ ∀n ∀Y⃗1, . . . ,∀Y⃗r

(
φ(n, nc), F1(n, c), Y⃗1) ∨ φ(n, nc, F2(n, c, Y⃗1), Y⃗2)∨

· · · ∨ φ(n, nc, Fr(n, c, Y⃗1, . . . , Y⃗r−1), Y⃗r)
)

We are now ready to show our provability consequences for V0
#.1135

Theorem 5.10. Assume Hypothesis 5.9. If V0
⊢ Hard(b), for every b ∈ N, then P ̸= NP.1136

Proof. Because Hard[b] is a parametrized-uniform schema, under Hypothesis 5.9, there is a fixed polylog-1137

uniform AC0[qpoly(N)] student S for the Student-Teacher game of Hard(b), for infinitely many b ∈ N. For1138

sake of contradiction, assume P = NP. Let m = m(5.6) be the exponent in the circuit size of S(1N), per1139

Lemma 5.6. Note that m is a constant. If b > m, then we have a contradiction, as the output S(1N) will1140

have circuit complexity smaller than nb.1141

5.4 VPV# Proves Hard(b) for Every b1142

Before demonstrating that V0
⊢ Hard(b), we show as a conceptually simpler task that VPV# ⊢ Hard(b), for1143

an appropriate logical translation of weak Shannon counting in L(VPV)∪ {#}. The theory VPV# takes the1144

theory VPV and adds the functions symbols and defining axioms for | · |1 and #, where | · |1 gives the length1145

of a number, and # is the smash operator. With these additions, we have the following L(VPV#) logical1146

translation Hard(b),1147

∀n,N.(n = |N |1) ∃F.(|F | = N) ∀D.(|D| = nb) TT(D,N) ̸= F

We can prove weak Shannon counting in this theory by iterated halving, the classic procedure common1148

in learning algorithms. Let Cb be the set of Boolean circuits of size nb with n input bits. There are at most1149

2O(n
b logn) such circuits. If N = 2n, then this number is bounded by N#N#N · · ·#N , b + 1 many times.1150

Set C0b = Cb. We will proceed in rounds; in round i, we set1151

bi = arg min
b∈{0,1}

|{C ∈ Ci−1
k | TT(C)i = b}|

Cik = {C ∈ Ci−1
k | TT(C)i = bi}.

Clearly, |Cib| ≤ |C
i−1
b |/2, hence halving our search space. After r = |Cb| rounds, we will have 0 re-1152

maining circuits matching the truth table prefix b1b2 . . . br. If 0 circuits remain, then we have the answer1153

29

b1b2 . . . br0
N−r. As N is feasible in the translation Hard(b), computing bi each round is a feasible minimiza-1154

tion in VPV#. This step is feasible in VPV#, but not in V0
#. Finally, the rounds can be expressed as a ΣB01155

induction over the bits of the resulting truth table, where one existentially guesses a number b ∈ {0, 1}i in1156

round i < |N#N#N · · ·#N |1 which is the least popular truth table prefix generated by size nb circuits.1157

5.5 V0
⊢ Hard(b)1158

We give a proof sketch that, in fact, V0
⊢ Hard(b), for every b ∈ N. We need the following folklore theorem,1159

Theorem 5.11. [17] V0 proves the soundness of bounded depth Frege1160

Corollary 5.12. V0
proves the soundness of quasipolynomial size bounded depth Frege.1161

Lemma 5.13. V0
⊢ Hard(b), for every b ∈ N.1162

Proof Sketch. It is known that depth-(1.5) Frege has quasipolynomial sized propositional proofs of the1163

dWPHP [40]. Further, these proofs are highly uniform, in the sense that you can give a direct connection1164

language for the proofs, as you would for circuits, and this language would be polylog-uniform AC0[poly].1165

A V0
proof of Hard(b) would simply verify the soundness of the bounded depth Frege proof of dWPHP,1166

substituting each propositional variable xC,T with the assertion that the truth table of the circuit C of size1167

nb is T .1168

This proof method is likely not the easiest method; a more straightforward way would be directly taking1169

the bounded arithmetic proof of dWPHP(Σb1(α)) in Buss’s theory T 2
2 (α), and reformulating it as a proof in1170

V0, replacing the uninterpreted oracle symbol α with V0 function symbols.1171

We then get as a corollary the surprising consequence,1172

Corollary 5.14. If Hypothesis 5.9 is true, then P ̸= NP.1173

6 Acknowledgements1174

Stefan Grosser was supported by the NSERC PGS D Scholarship. The authors thank Robert Robere, Sam1175

Buss, Erfan Khaniki, and Jan Pich for helpful discussions. The authors also thank Robert Robere, Sam1176

Buss, and Noel Arteche for suggesting improvements to an earlier draft of the paper. In particular, the1177

authors thank Erfan Khaniki for pointing out the necessity for bounding Skolem terms in our WHUPs.1178

Part of this work was completed while the authors attended the Simons Institute “Meta Complexity”1179

program reunion in April 2024.1180

References1181

[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. “PRIMES is in P”. In: Annals of mathematics1182

(2004), pp. 781–793.1183

[2] Eric Allender et al. “The pervasive reach of resource-bounded Kolmogorov complexity in computational1184

complexity theory”. In: J. Comput. Syst. Sci. 77.1 (2011), pp. 14–40. doi: 10.1016/J.JCSS.2010.06.1185

004. url: https://doi.org/10.1016/j.jcss.2010.06.004.1186

[3] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge University1187

Press, 2009.1188

[4] Samuel R Buss. “Bounded arithmetic and constant depth Frege proofs”. In: Complexity of computations1189

and proofs 13 (2004), pp. 153–174.1190

[5] Samuel R Buss. Handbook of proof theory. Elsevier, 1998.1191

[6] Samuel R. Buss. Bounded arithmetic. Bibliopolis, 1986.1192

30

https://doi.org/10.1016/J.JCSS.2010.06.004
https://doi.org/10.1016/J.JCSS.2010.06.004
https://doi.org/10.1016/J.JCSS.2010.06.004
https://doi.org/10.1016/j.jcss.2010.06.004

[7] Samuel R. Buss. “The witness function method and provably recursive functions of peano arithmetic”.1193

In: Logic, Methodology and Philosophy of Science IX. Ed. by Dag Prawitz, Brian Skyrms, and Dag1194

Westerst̊ahl. Vol. 134. Studies in Logic and the Foundations of Mathematics. Elsevier, 1995, pp. 29–68.1195

doi: https://doi.org/10.1016/S0049-237X(06)80038-8. url: https://www.sciencedirect.1196

com/science/article/pii/S0049237X06800388.1197

[8] Marco Carmosino et al. “LEARN-uniform circuit lower bounds and provability in bounded arithmetic”.1198

In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2022,1199

pp. 770–780.1200

[9] Marco Carmosino et al. “Provability of the Circuit Size Hierarchy and Its Consequences”. In: (2024).1201

[10] Lijie Chen, Shuichi Hirahara, and Hanlin Ren. “Symmetric Exponential Time Requires Near-Maximum1202

Circuit Size”. In: Proceedings of the 56th Annual ACM Symposium on Theory of Computing. 2024,1203

pp. 1990–1999.1204

[11] Lijie Chen, Jiatu Li, and Igor Carboni Oliveira. Reverse mathematics of complexity lower bounds. Apr.1205

2024. url: https://eccc.weizmann.ac.il/report/2024/060/.1206

[12] Lijie Chen, Xin Lyu, and R Ryan Williams. “Almost-everywhere circuit lower bounds from non-1207

trivial derandomization”. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science1208

(FOCS). IEEE. 2020, pp. 1–12.1209

[13] Lijie Chen, Roei Tell, and Ryan Williams. “Derandomization vs Refutation: A Unified Framework for1210

Characterizing Derandomization”. In: 2023 IEEE 64th Annual Symposium on Foundations of Com-1211

puter Science (FOCS). IEEE. 2023, pp. 1008–1047.1212

[14] Lijie Chen et al. “Constructive separations and their consequences”. In: 2021 IEEE 62nd Annual1213

Symposium on Foundations of Computer Science (FOCS). IEEE. 2022, pp. 646–657.1214

[15] Alan Cobham. “The intrinsic computational difficulty of functions”. In: (1965).1215

[16] Stephen Cook and Jan Kraj́ıček. “Consequences of the provability of NP in P/poly”. In: The Journal1216

of Symbolic Logic 72.4 (2007), pp. 1353–1371.1217

[17] Stephen Cook and Phuong Nguyen. Logical foundations of proof complexity. Vol. 11. Cambridge Uni-1218

versity Press Cambridge, 2010.1219

[18] Stephen A Cook. “Feasibly constructive proofs and the propositional calculus (preliminary version)”.1220

In: Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook. 2023, pp. 193–1221

218.1222

[19] Stephen A. Cook. “Feasibly Constructive Proofs and the Propositional Calculus (Preliminary Ver-1223

sion)”. In: Proceedings of the 7th Annual ACM Symposium on Theory of Computing, May 5-7, 1975,1224

Albuquerque, New Mexico, USA. Ed. by William C. Rounds et al. ACM, 1975, pp. 83–97. doi: 10.1225

1145/800116.803756. url: https://doi.org/10.1145/800116.803756.1226

[20] Lance Fortnow and Rahul Santhanam. “New non-uniform lower bounds for uniform classes”. In: 31st1227

Conference on Computational Complexity (CCC 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-1228

matik. 2016.1229

[21] Harvey Friedman. “One Hundred and Two Problems in Mathematical Logic”. In: J. Symb. Log. 40.21230

(1975), pp. 113–129. doi: 10.2307/2271891. url: https://doi.org/10.2307/2271891.1231

[22] Shuichi Hirahara. “Unexpected hardness results for Kolmogorov complexity under uniform reductions”.1232

In: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,1233

Chicago, IL, USA, June 22-26, 2020. Ed. by Konstantin Makarychev et al. ACM, 2020, pp. 1038–1234

1051. isbn: 978-1-4503-6979-4. doi: 10.1145/3357713.3384251. url: https://doi.org/10.1145/1235

3357713.3384251.1236

[23] Pavel Hrubes. “Kreisel’s Conjecture with minimality principle”. In: J. Symb. Log. 74.3 (2009), pp. 976–1237

988. doi: 10.2178/JSL/1245158094. url: https://doi.org/10.2178/jsl/1245158094.1238

[24] Pavel Hrubes. “Theories very close to PA where Kreisel’s Conjecture is false”. In: J. Symb. Log. 72.11239

(2007), pp. 123–137. doi: 10.2178/JSL/1174668388. url: https://doi.org/10.2178/jsl/1240

1174668388.1241

31

https://doi.org/https://doi.org/10.1016/S0049-237X(06)80038-8
https://www.sciencedirect.com/science/article/pii/S0049237X06800388
https://www.sciencedirect.com/science/article/pii/S0049237X06800388
https://www.sciencedirect.com/science/article/pii/S0049237X06800388
https://eccc.weizmann.ac.il/report/2024/060/
https://doi.org/10.1145/800116.803756
https://doi.org/10.1145/800116.803756
https://doi.org/10.1145/800116.803756
https://doi.org/10.1145/800116.803756
https://doi.org/10.2307/2271891
https://doi.org/10.2307/2271891
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.2178/JSL/1245158094
https://doi.org/10.2178/jsl/1245158094
https://doi.org/10.2178/JSL/1174668388
https://doi.org/10.2178/jsl/1174668388
https://doi.org/10.2178/jsl/1174668388
https://doi.org/10.2178/jsl/1174668388

[25] Rahul Ilango, Jiatu Li, and R Ryan Williams. “Indistinguishability obfuscation, range avoidance, and1242

bounded arithmetic”. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing.1243

2023, pp. 1076–1089.1244

[26] Emil Jeřábek. “Dual weak pigeonhole principle, Boolean complexity, and derandomization”. In: Annals1245

of Pure and Applied Logic 129.1-3 (2004), pp. 1–37.1246

[27] Valentine Kabanets. “Easiness assumptions and hardness tests: Trading time for zero error”. In: Journal1247

of Computer and System Sciences 63.2 (2001), pp. 236–252.1248

[28] Oliver Korten. “The hardest explicit construction”. In: 2021 IEEE 62nd Annual Symposium on Foun-1249

dations of Computer Science (FOCS). IEEE. 2022, pp. 433–444.1250

[29] Jan Kraj́ıcek and Igor C. Oliveira. “Unprovability of circuit upper bounds in Cook’s theory PV”. In:1251

Log. Methods Comput. Sci. 13.1 (2017). doi: 10.23638/LMCS-13(1:4)2017. url: https://doi.org/1252

10.23638/LMCS-13(1:4)2017.1253

[30] Jan Kraj́ıcek and Pavel Pudlák. “The number of proof lines and the size of proofs in first order logic.”1254

In: Arch. Math. Log. 27.1 (1988), pp. 69–84.1255

[31] Jan Kraj́ıček. “No counter-example interpretation and interactive computation”. In: Logic from Com-1256

puter Science: Proceedings of a Workshop held November 13–17, 1989. Springer. 1992, pp. 287–293.1257

[32] Jan Kraj́ıček. “On the existence of strong proof complexity generators”. In: Bulletin of Symbolic Logic1258

30.1 (2024), pp. 20–40.1259

[33] Jan Kraj́ıček. “Small circuits and dual weak PHP in the universal theory of p-time algorithms”. In:1260

ACM Transactions on Computational Logic (TOCL) 22.2 (2021), pp. 1–4.1261

[34] Jan Kraj́ıček, Pavel Pudlák, and Gaisi Takeuti. “Bounded arithmetic and the polynomial hierarchy”.1262

In: Annals of pure and applied logic 52.1-2 (1991).1263

[35] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications, 4th1264

Edition. Texts in Computer Science. Springer, 2019. isbn: 978-3-030-11297-4. doi: 10.1007/978-3-1265

030-11298-1. url: https://doi.org/10.1007/978-3-030-11298-1.1266

[36] Zeyong Li. “Symmetric Exponential Time Requires Near-Maximum Circuit Size: Simplified, Truly Uni-1267

form”. In: Proceedings of the 56th Annual ACM Symposium on Theory of Computing. 2024, pp. 2000–1268

2007.1269

[37] Yanyi Liu and Rafael Pass. “A Direct PRF Construction from Kolmogorov Complexity”. In: Advances1270

in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Ap-1271

plications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part IV.1272

Ed. by Marc Joye and Gregor Leander. Vol. 14654. Lecture Notes in Computer Science. Springer, 2024,1273

pp. 375–406. doi: 10.1007/978-3-031-58737-5_14. url: https://doi.org/10.1007/978-3-031-1274

58737-5%5C_14.1275

[38] Yanyi Liu and Rafael Pass. “On One-way Functions and Kolmogorov Complexity”. In: 61st IEEE1276

Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November1277

16-19, 2020. Ed. by Sandy Irani. IEEE, 2020, pp. 1243–1254. doi: 10.1109/FOCS46700.2020.00118.1278

url: https://doi.org/10.1109/FOCS46700.2020.00118.1279

[39] Wolfgang Maass. “Quadratic lower bounds for deterministic and nondeterministic one-tape Turing1280

machines”. In: Proceedings of the sixteenth annual ACM symposium on Theory of computing. 1984,1281

pp. 401–408.1282

[40] Alexis Maciel, Toniann Pitassi, and Alan R Woods. “A new proof of the weak pigeonhole principle”.1283

In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing. 2000, pp. 368–1284

377.1285

[41] Tohru Miyatake. “ON THE LENGTH OF PROOFS IN FORMAL SYSTEMS”. In: Tsukuba Journal of1286

Mathematics 4.1 (1980), pp. 115–125. issn: 03874982. url: http://www.jstor.org/stable/436854361287

(visited on 10/06/2024).1288

[42] Moritz Müller and Ján Pich. “Feasibly constructive proofs of succinct weak circuit lower bounds”. In:1289

Annals of Pure and Applied Logic 171.2 (2020), p. 102735.1290

32

https://doi.org/10.23638/LMCS-13(1:4)2017
https://doi.org/10.23638/LMCS-13(1:4)2017
https://doi.org/10.23638/LMCS-13(1:4)2017
https://doi.org/10.23638/LMCS-13(1:4)2017
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-031-58737-5_14
https://doi.org/10.1007/978-3-031-58737-5%5C_14
https://doi.org/10.1007/978-3-031-58737-5%5C_14
https://doi.org/10.1007/978-3-031-58737-5%5C_14
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
http://www.jstor.org/stable/43685436

[43] Cody Murray and Ryan Williams. “Circuit lower bounds for nondeterministic quasi-polytime: an easy1291

witness lemma for NP and NQP”. In: Proceedings of the 50th Annual ACM SIGACT Symposium on1292

Theory of Computing. 2018, pp. 890–901.1293

[44] Igor C Oliveira. “Meta-Mathematics of Computational Complexity Theory”. In: SIGACT News Com-1294

plexity Theory Column (DRAFT) ().1295

[45] Rohit Parikh. “Existence and feasibility in arithmetic”. In: The journal of symbolic logic 36.3 (1971),1296

pp. 494–508.1297

[46] Rohit Parikh. “Some Results on the Length of Proofs”. In: Transactions of The American Mathematical1298

Society - TRANS AMER MATH SOC 177 (Mar. 1973), pp. 29–29. doi: 10.2307/1996581.1299

[47] Ján Pich. “Circuit lower bounds in bounded arithmetics”. In: Annals of Pure and Applied Logic 166.11300

(2015), pp. 29–45.1301

[48] Ján Pich. “Logical strength of complexity theory and a formalization of the PCP theorem in bounded1302

arithmetic”. In: Log. Methods Comput. Sci. 11.2 (2015). doi: 10.2168/LMCS- 11(2:8)2015. url:1303

https://doi.org/10.2168/LMCS-11(2:8)2015.1304

[49] Pavel Pudlák. “Chapter VIII - The Lengths of Proofs”. In: Handbook of Proof Theory. Ed. by Samuel1305

R. Buss. Vol. 137. Studies in Logic and the Foundations of Mathematics. Elsevier, 1998, pp. 547–637.1306

doi: https://doi.org/10.1016/S0049-237X(98)80023-2. url: https://www.sciencedirect.1307

com/science/article/pii/S0049237X98800232.1308

[50] Hanlin Ren, Rahul Santhanam, and Zhikun Wang. “On the range avoidance problem for circuits”.1309

In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS). IEEE. 2022,1310

pp. 640–650.1311

[51] Neil Thapen. “The weak pigeonhole principle in models of bounded arithmetic”. PhD thesis. University1312

of Oxford, 2002.1313

[52] Ryan Williams. “Nonuniform ACC circuit lower bounds”. In: Journal of the ACM (JACM) 61.1 (2014),1314

pp. 1–32.1315

33
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://doi.org/10.2307/1996581
https://doi.org/10.2168/LMCS-11(2:8)2015
https://doi.org/10.2168/LMCS-11(2:8)2015
https://doi.org/https://doi.org/10.1016/S0049-237X(98)80023-2
https://www.sciencedirect.com/science/article/pii/S0049237X98800232
https://www.sciencedirect.com/science/article/pii/S0049237X98800232
https://www.sciencedirect.com/science/article/pii/S0049237X98800232

