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Abstract

Since the introduction of tree codes by Schulman (STOC 1993), explicit construction of
such codes has remained a notorious challenge. While the construction of asymptotically-good
explicit tree codes continues to be elusive, a work by Cohen, Haeupler and Schulman (STOC
2018), as well as the state-of-the-art construction by Ben Yaacov, Cohen, and Yankovitz (STOC
2022) have achieved codes with rate Ω(1/log log𝑛), exponentially improving upon the original
construction of Evans, Klugerman and Schulman from 1994. All of these constructions rely,
at least in part, on increasingly sophisticated methods of combining (block) error-correcting
codes.

In this work, we identify a fundamental barrier to constructing tree codes using current
techniques. We introduce a key property, which we call immediacy, that, while not required
by the original denition of tree codes, is shared by all known constructions and inherently
arises from recursive combinations of error-correcting codes. Our main technical contribution
is the proof of a rate–immediacy tradeo, which, in particular, implies that any tree code with
constant distance and non-trivial immediacymust necessarily have vanishing rate. By applying
our rate-immediacy tradeo to existing constructions, we establish that their known rate
analyses are essentially optimal. More broadly, our work highlights the need for fundamentally
new ideas—beyond the recursive use of error-correcting codes—to achieve substantial progress
in explicitly constructing asymptotically-good tree codes.

∗Department of Computer Science, Tel Aviv University, Tel Aviv, Israel. Email: gil@tauex.tau.ac.il. Supported by
ERC starting grant 949499.

†E&AS Division, California Institute of Technology, Pasadena, USA. Email: schulman@caltech.edu. Supported in
part by NSF Award 2321079.

‡Tata Institute of Fundamental Research, Mumbai, India. Email: piyush.srivastava@tifr.res.in. Supported in part
by the Department of Atomic Energy, Government of India, under project no. RTI4001, by SERB MATRICS grant
number MTR/2023/001547, and by the Infosys-Chandrasekharan virtual center for Random Geometry.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 46 (2025)



1 Introduction

Coding theory addresses the problem of communication over an imperfect channel. In the classic
setting [Sha48, Ham50], Alice aims to communicate a message to Bob via a channel that may
introduce errors. The central question is: how should Alice encode her message so that Bob can
accurately recover it, provided that the number of errors is limited? This scenario motivates the
notion of an error-correcting code. Formally, a function 𝐶 : Σ𝑘 → Σ𝑛 is an error-correcting code
with distance 𝛿 if, for every pair of distinct strings 𝑥,𝑦 ∈ Σ𝑘 , their respective encodings 𝐶 (𝑥)
and 𝐶 (𝑦) dier in at least a 𝛿 fraction of positions, with respect to the Hamming distance. The
rate of information transmission 𝜌 = 𝑘

𝑛
and the fraction of errors corrected, 𝛿

2 , are competing
parameters. A fundamental problem in coding theory is to construct explicit asymptotically good
codes, i.e., codes that maintain constant distance 𝛿 > 0 and constant rate 𝜌 > 0. Here, by “explicit”
we mean that the encoding function 𝐶 can be computed in polynomial time. Justesen [Jus72] was
the rst to provide such an explicit construction. Since then, many explicit constructions have
been developed (see, e.g., [TVZ82, SS96]).

While error-correcting codes solve the problem of sending a single message from Alice to
Bob, there are scenarios involving dynamic interaction, where messages exchanged depend on
previously communicated information. Interactive coding addresses this more intricate problem
of enabling reliable interactive communication over imperfect channels. Standard error-correcting
codes are insucient for this task. Readers interested in this rapidly growing research eld are
encouraged to consult the comprehensive survey by Gelles [Gel17].

Tree codes are crucial combinatorial structures introduced in [Sch93, Sch96] to facilitate
deterministic interactive coding. Analogous to error-correcting codes in single-message scenarios,
tree codes are trees equipped with a specic distance property. To dene this formally, we rst
introduce some notation. Let𝑇 be an innite complete rooted binary tree, with edges labeled from
an alphabet Σ. For two vertices 𝑢, 𝑣 of equal depth, let their least common ancestor be denoted𝑤 .
Let ℓ be the number of edges on the path from 𝑢 (or 𝑣) to𝑤 . Dene 𝑝𝑢, 𝑝𝑣 ∈ Σℓ as the sequences of
symbols labeling the edges on the paths from𝑤 to 𝑢 and from𝑤 to 𝑣 , respectively. The quantity
ℎ(𝑢, 𝑣) denotes the relative Hamming distance between 𝑝𝑢 and 𝑝𝑣 . Intuitively, ℎ(𝑢, 𝑣) measures
how distinct the sequences labeling the paths to 𝑢 and 𝑣 are, disregarding their common prex. A
tree code enforces a minimum bound on this quantity:

Denition 1 (Tree codes [Sch93]). Let 𝛿 ∈ [0, 1] and let 𝑇 be an innite complete rooted binary
tree. A labeling of the edges of 𝑇 from an alphabet Σ is called a tree code with distance 𝛿 if, for
every pair of vertices 𝑢, 𝑣 at the same depth, it holds that ℎ(𝑢, 𝑣) ≥ 𝛿 . The rate of the tree code,
denoted by 𝜌 , is dened as 1

log2 |Σ|
.

An alternative denition found in the literature describes a tree code as a family (𝑇𝑛)𝑛∈N, where
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each 𝑇𝑛 is a rooted binary tree of nite depth 𝑛. Such a family is called a tree code with distance 𝛿
if each 𝑇𝑛 has a distance of at least 𝛿 , as previously dened. Clearly, an innite tree code naturally
induces such a nite family when truncated at any given depth. Conversely, it has been shown
that the opposite direction also holds [BYCY22], with only a constant degradation in parameters.
Hence, we use these two denitions interchangeably throughout this informal discussion.

Initially, it was not clear whether an asymptotically good tree code—one with both positive
rate and positive distance—existed. Schulman provided three distinct proofs showing that, for any
constant 𝛿 < 1, a tree code exists with alphabet size |Σ| = 𝑂𝛿 (1) that achieves distance 𝛿 . More
recently, by adapting one of these approaches, it was proved that there is a tree code with just
|Σ| = 4 symbols, namely a rate-12 tree code, and positive distance (specically, 𝛿 > 0.136) [CS20].
It was also observed in [CS20] that 3 symbols are insucient for guaranteeing positive distance.
However, all known existence proofs of asymptotically good tree-codes are non-explicit, relying
on probabilistic methods in non-trivial ways. Despite signicant interest, the explicit construction
of asymptotically-good tree codes remains a notorious open problem.

Given these diculties, researchers have naturally considered constructing tree codes allowing
for vanishing rate, where the objective is nonetheless to minimize the rate deterioration as a
function of the depth 𝑛.1 A trivial construction which encodes the entire path from the root on
each edge, achieves 𝛿 = 1 but rate 1

𝑛
. In an unpublished manuscript, Evans, Klugerman, and

Schulman [EKS94] provided a construction with rate Ω(1/log𝑛). An improvement was made
only fairly recently by Cohen, Haeupler and Schulman [CHS18], who constructed tree codes with
rate Ω(1/log log𝑛). A decoding algorithm to the latter tree code construction was devised by
Narayanan and Weidner [NW20], who also suggested alternative constructions. Connections
between [CHS18] and the work of Pudlák [Pud16] were explored by Bhandari and Harsha [BH20].
Additionally, two distinct explicit constructions with constant rate were proposed by Moore and
Schulman [MS14] and by Ben Yaacov, Cohen, and Narayanan [BYCN21], but their correctness
hinges upon plausible but unproven conjectures.

The state-of-the-art construction by Ben Yaacov, Cohen, and Yankovitz [BYCY22] also achieves
a rate of Ω(1/log log𝑛) for constant distance 𝛿 , but it improves upon the dependence on the
distance parameter. Specically, while the construction of [CHS18] has a rate that is upper
bounded by 𝑂 (1/log log𝑛) regardless of the value of 𝛿 , the construction of [BYCY22] achieves
rate Ω(1/(

√
𝛿 · log log𝑛)). In particular, it can attain constant rate by compromising on the

distance, achieving a distance of 𝛿 = Ω(1/(log log𝑛)2). This related, “dual” problem—constructing
a constant-rate tree code with slowly deteriorating distance—was rst studied by Gelles, Haeupler,
Kol, Ron-Zewi, and Wigderson [GHKRZW16], who showed how to achieve distance Ω(1/log𝑛).

1We sometime also refer to the depth 𝑛 of a tree code as its transmission length.
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1.1 Immediacy

Given the lack of progress in constructing tree codes over the past few decades—despite signicant
eorts—it is important to better understand why current techniques fall short. Identifying a
barrier could help steer research away from potential dead ends. More specically, since tree
codes induce standard block error-correcting codes, and these codes are heavily relied upon in
all known constructions (except for the two conjecture-based approaches [MS14,BYCN21]), it is
natural to ask: to what extent can tree codes be constructed from block codes? Exploring this
question may shed light on the fundamental nature of tree codes and clarify how “close” they
truly are to their well-understood counterparts, block error-correcting codes.

The main contribution of this paper is identifying a fundamental barrier in the construction
of tree codes. We observe that each of the existing explicit constructions of tree codes (except
those relying on unproven conjectures) satises a stronger guarantee than strictly required for a
tree code, which we refer to as immediacy. This stronger property arises inherently due to the
recursive nature of existing constructions [EKS94, CHS18, NW20, BYCY22]. While immediacy
might be desirable in certain contexts, we prove that it incurs a signicant cost in rate. Specically,
we establish a quantitative rate-immediacy tradeo, precisely capturing the achievable rate given
a code’s immediacy. Our results show that existing tree code constructions essentially achieve an
optimal rate-immediacy balance, thus clarifying why their rate inevitably vanishes. More broadly,
our work indicates that the framework typically employed—tiling standard error-correcting block
codes in progressively sophisticated ways—cannot yield asymptotically good tree codes. Such
strategies inherently satisfy the immediacy property, constraining their potential rate.

We formally dene immediacy in detail later, as its precise denition is somewhat technical,
involving a certain set system (see Section 3). However, to capture the essence, we rst provide
an informal, simplied denition in which immediacy is represented by a monotone-increasing
function Imm : N→ N. A tree code𝐶 is said to have immediacy Imm if, for every pair of messages
𝑥,𝑦, every index 𝑠 where 𝑥𝑠 ≠ 𝑦𝑠 , and each integer 𝑘 ≥ 1, the relative Hamming distance between
𝐶 (𝑥) and 𝐶 (𝑦), restricted to the interval [𝑠, 𝑠 + Imm(𝑘)) (provided that 𝑠 + Imm(𝑘) is no larger
than the depth of 𝑇 ), is bounded below by 𝛿 .

Note that the denition of a standard tree code imposes no non-trivial immediacy constraint.
Disagreements between corresponding codewords are required to accumulate only starting from
the rst index 𝑠 at which the two messages 𝑥 and 𝑦 dier. In contrast, immediacy requires that
disagreements accumulate starting from every index 𝑠 for which 𝑥𝑠 ≠ 𝑦𝑠 , at interval lengths
determined by the immediacy function Imm. Put dierently, unlike a standard tree code, a tree
code with immediacy function Imm supports cold-start decoding. That is, during any interval
indicated by the immediacy function, provided the adversary does not excessively interfere
with transmissions in this interval, the receiver can decode the 𝑠-th bit, even if earlier parts of
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the message cannot yet be reconstructed. While this property may be advantageous in certain
applications, our results show that it is an “overly expensive” feature that cannot be aorded when
aiming to construct asymptotically good tree codes.

By inspection, it can be shown that the rst tree code construction [EKS94], which has a rate
of Ω(1/log𝑛) (where 𝑛 is the depth of the tree), possesses a non-trivial immediacy property that
corresponds roughly to Imm(𝑘) = 2Θ(𝑘) , which we denote throughout this informal presentation
as exp(𝑘).2 At this informal stage, it is convenient to regard Imm as a real-valued function—which
in this case is Imm(𝑥) = exp(𝑥)—thus extending the original discrete denition. With this, our
main result can be informally stated as follows (see also the remarks below for some subtleties
that are omitted here for simplicity):

Theorem 1 (Main result; informal). Let 𝑇 be a depth-𝑛 tree code with constant distance and
immediacy function Imm. Then, the rate of 𝑇 satises

𝜌 = 𝑂

(
1

Imm−1(𝑛)

)
.

Recall that for the construction given in [EKS94], we have Imm(𝑥) = exp(𝑥) and so Imm−1(𝑥) =
Θ(log𝑥). Thus, Theorem 1 implies that the rate of this construction cannot exceed 𝑂 (1/log𝑛),
thereby explaining its known rate. Theorem 1 also explains the rate achieved by the state-of-the-art
tree code constructions [CHS18,NW20,BYCY22]. Upon inspection, these constructions—similarly
to [EKS94]—also rely on composition of error-correcting codes and possess a non-trivial, though
exponentially weaker, immediacy that corresponds roughly to Imm(𝑥) = exp(exp(𝑥)).3 Thus,
Theorem 1 implies that the rate of these constructions cannot exceed𝑂 (1/log log𝑛), matching the
proven rate of these codes. More generally, immediacy should be kept in mind when constructing
tree codes, and Theorem 1 can be applied to any proposed construction to obtain a quantitative
upper bound on the achievable rate. It is worth noting that the two constructions whose analyses
rely on unproven conjectures [MS14,BYCN21] do not appear to exhibit non-trivial immediacy.
Therefore, they are not excluded from being asymptotically good codes by this work.

Subtleties omitted from the informal discussion. The precise formulation of our main
result, presented in Theorem 4, builds on a more intricate notion that we refer to as immediacy
codes (see Denition 4). The connection between this formal denition and the simplied notion
of immediacy functions introduced earlier in this section is claried in Section 3.1. While the

2The precise immediacy property enjoyed by the [EKS94] construction is slightly dierent, and starts only after a
“lag”: see Section 5. However, it is helpful to temporarily ignore this technical issue in order to understand the main
ideas.

3Again, the precise immediacy property enjoyed by the [CHS18] construction is slightly dierent, and starts only
after a “lag”: see Section 5. Again, it is helpful to temporarily ignore this technical issue.
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core idea of our main result is captured by Theorem 1, there are important subtleties to note.
For instance, it turns out that exponential immediacy (i.e. Imm(𝑘) = exp(𝑘) as described above)
implies linear immediacy. Consequently, Theorem 1 should be interpreted as applying only to
exponential (or faster-growing) immediacy.

Rate–distance–immediacy tradeo. We point out that Theorem 1 also applies to codes with
vanishing distance. In fact, for a general relative distance 𝛿 > 0, the upper bound on the rate 𝜌
stated in Theorem 1 exhibits, roughly, an inverse-linear dependence on 𝛿 . The precise details are
more nuanced, and we direct the reader to the formal statement of our main result in Theorem 4,
and to the computations leading to eqs. (8) and (9). The key takeaway, however, is that Theorem
1, in its full generality, yields a rate–distance–immediacy tradeo. For ease of presentation, we
choose to focus on the tradeo between rate and immediacy in this introductory section (see
Section 1.2 for further discussion).

Randomized vs. deterministic encoding schemes. Randomized hashing schemes were
employed for online and interactive communication [Sch92] before deterministic schemes were
made possible by tree codes. Randomized schemes do not suer a tradeo between rate and
immediacy, and oer computationally ecient encoding and decoding. It was therefore a very
considerable accomplishment of Brakerski, Kalai, and Saxena [BKS20] to show that, using only
constant-rate explicit tree codes, all encoding and decoding tasks of the parties can be performed
in polynomial time. The method uses a rotating cast of tree codes in order to simulate some of the
properties which one could get very simply, if one were using a code with an immediacy property.
Our result thus “in hindsight” explains why the authors had to resort to a complex encoding
protocol, rather than simply running their desired communication pattern over an underlying,
tree-code-equipped channel.

Tree code variants. We conclude this section by noting that the interactive coding theorem
can also be established using a weaker variant of tree codes known as potent tree codes which was
introduced by Gelles, Moitra, and Sahai [GMS11]. On the other hand, stronger variants of tree
codes featuring local testability were recently introduced by Moud, Rosen, and Rothblum [MRR25].
It is interesting to compare this local testability guarantee with the immediacy property of tree
codes, as immediacy also provides a form of local guarantee, albeit of a seemingly dierent nature.
Lastly, we mention that a signal-processing analogue of tree codes was introduced by Schulman
and Srivastava [SS19], and a variant of tree codes, dubbed palette-alternating tree codes which
allows one to bypass the 1

2-rate barrier was introduced by Cohen and Samocha [CS20].
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1.2 Technical overview and organization of the paper

We follow the time-honoured tradition of using information theoretic tools for bounding capa-
bilities of codes. Information theory had its genesis in understanding fundamental limitations
on source and channel coding in the stochastic error model. However, it has also been useful in
understanding limitation on codes in the “Hamming model” of a bounded number of worst case
errors, including in the setting of more modern coding-theoretic notions such as the notion of local
decoding analyzed by Katz and Trevisan [KT00, Section 3.1], as well as its more delicate relaxed
variant analyzed by Gur and Lachish [GL21] (see also [DGL23, Gol23]). In our application to
understanding immediacy properties of tree codes, the crucial ingredient turns out to be a careful
accounting of the “common information” between dierent parts of the codeword, performed
simultaneously at dierent length scales.

The main conceptual contribution of this paper, introduced in Section 3, is the notion of
immediacy codes. The notion of immediacy codes provides a more robust formulation of the
informal notion of immediacy functions discussed in the introduction (the close connection
between the two notions is further explored in Section 3.1), and also allows us to smoothly carry
out the accounting of common information alluded to above. The main information theoretic tool
we need for this accounting is a form of the data processing inequality (Lemma 3)4 to quantify
“common information” between dierent parts of a code word. Our main technical result is that
immediacy codes cannot have high rates (Theorem 4): this is proved in Section 4. We emphasize
that once we have set up the denition of immediacy codes and the requisite form of the data
processing inequality, the proof of this result is technically quite simple.

Finally, in Section 5, we apply our framework to study the immediacy properties of the tree
code constructions proposed in [EKS94], [CHS18] and [GHKRZW16]. As discussed earlier, the
immediacy properties of these constructions dier slightly from the informal notion introduced
above. For the rst two constructions, we show that the rates achieved by these codes are
optimal—up to constant factors—with respect to the immediacy guarantees they provide. The
construction of [GHKRZW16] attempts to tackle a dierent tradeo: it achieves an Ω(1/log𝑛)
distance with constant rate. We show that for the immediacy guarantee that this construction
provides, no constant rate tree code can improve the distance to 𝜔

(
log log𝑛
log𝑛

)
.

We do not carry out a full analysis of the immediacy properties of the constructions in
[NW20,BYCY22]. The construction of [NW20] employs the same “code tiling” structure as [CHS18];
the main dierence lies in the “outer” large-alphabet tree code used. Since immediacy is determined
primarily by the code tiling aspect, the analysis of [NW20] proceeds similarly to our analysis
of [CHS18]. The construction of [BYCY22], in contrast, uses a somewhat dierent code-tiling

4This corollary of the (proof of the) data processing inequality also underlies the formulation of the Gács-Körner
common information (see, e.g., [KA10, Section III]), but we do not need this connection for this paper.
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strategy. Nevertheless, a variant of our analysis for [CHS18] can still be readily adapted to study
its immediacy properties. Lastly, we note that the construction of [GHKRZW16] is similar to that
of [EKS94] with respect to the code-tiling component. As such, our result—when viewed not as a
rate–immediacy tradeo but rather as a distance–immediacy tradeo—can be used to establish an
upper bound on the distance achievable by the construction.

We begin in the next section with some technical preliminaries.

2 Preliminaries

Notation. We will view strings 𝑠 of length ℓ as indexed by integers in {1, 2, . . . , ℓ} =·· [ℓ]. Given
such a string, and a subset 𝐴 ⊆ [ℓ] we denote by 𝑠𝐴 the sub-sequence of 𝑠 obtained by taking the
letters at the indices in 𝐴. We will sometimes overload the usual notation for real intervals (e.g.
[𝑎, 𝑏], (𝑎, 𝑏] etc.) to refer only to the integers in those intervals: this overloading should always be
clear from the context. We denote log2 𝑥 by lg𝑥 for any positive real 𝑥 .

2.1 Information theory

We use standard information theoretic notation for entropy, conditional entropy and mutual
information (see, e.g., [CT06]), which we now proceed to review. Given a random variable𝑋 taking
values in some nite set Ω, its entropy 𝐻 (𝑋 ) is dened as −∑

𝜔∈Ω Pr [𝑋 = 𝜔] · lg Pr [𝑋 = 𝜔] (so we
measure entropy in bits). Given a tuple (𝐴1, 𝐴2, . . . , 𝐴𝑘) of random variables, 𝐻 ((𝐴1, 𝐴2, . . . , 𝐴𝑘))
is often written as 𝐻 (𝐴1, 𝐴2, . . . , 𝐴𝑘) (and even just as 𝐻 (𝐴1𝐴2 . . . 𝐴𝑘) when there is no risk of
confusion with multiplication). Given two random variables 𝑋 and 𝑌 , both taking values in
(possibly dierent) nite sets, the conditional entropy 𝐻 (𝑋 |𝑌 ) is dened as

𝐻 (𝑋 |𝑌 ) ··= −
∑︁
𝑥,𝑦

Pr [𝑋 = 𝑥,𝑌 = 𝑦] · lg Pr [𝑋 = 𝑥 |𝑌 = 𝑦] . (1)

The mutual information 𝐼 (𝑋 : 𝑌 ) is then dened as

𝐼 (𝑋 : 𝑌 ) = 𝐻 (𝑋 ) − 𝐻 (𝑋 |𝑌 ). (2)

If 𝑍 is another random variable taking values in a nite set, the conditional mutual information
𝐼 (𝑋 : 𝑌 |𝑍 ) is dened as

𝐼 (𝑋 : 𝑌 |𝑍 ) = 𝐻 (𝑋 |𝑍 ) − 𝐻 (𝑋 |𝑌, 𝑍 ). (3)

We collect below some of the standard properties of these quantities. The proofs of these properties
are easy, and can be found, e.g., in [CT06].
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Proposition 2 (Properties of mutual information and entropy). Let 𝑋,𝑌 and 𝑍 be random
variables taking values in nite sets Ω1,Ω2,Ω3 respectively. Then

• (Non-negativity of the entropy) 0 ≤ 𝐻 (𝑋 ) ≤ lg |Ω1 |.

• (Non-negativity of the mutual information) 𝐼 (𝑋 : 𝑌 ) ≥ 0 and 𝐼 (𝑋 : 𝑌 |𝑍 ) ≥ 0.

• (Conditioning reduces entropy) 𝐻 (𝑋 |𝑌, 𝑍 ) ≤ 𝐻 (𝑋 |𝑌 ) ≤ 𝐻 (𝑋 ).

• (Chain rule for entropy) 𝐻 (𝑋,𝑌 ) = 𝐻 (𝑋 ) + 𝐻 (𝑌 |𝑋 ) = 𝐻 (𝑌 ) + 𝐻 (𝑋 |𝑌 ).

• (Sub-additivity of entropy) 𝐻 (𝑋,𝑌 ) ≤ 𝐻 (𝑋 ) + 𝐻 (𝑌 ).

• (Chain rule for mutual information) 𝐼 (𝑋,𝑌 : 𝑍 ) = 𝐼 (𝑋 : 𝑍 ) + 𝐼 (𝑌 : 𝑍 |𝑋 ) = 𝐼 (𝑌 : 𝑍 ) + 𝐼 (𝑋 :
𝑍 |𝑌 ).

• (Conditional entropy of deterministic functions is zero) If there is a function 𝑓 : Ω2 → Ω1 such
that 𝑓 (𝑌 ) = 𝑋 , then 𝐻 (𝑋 |𝑌 ) = 0.

In this paper, we will often use these properties without much comment.

3 Immediacy codes

In this section, we rst introduce the notion of immediacy codes ( Denition 4), a formal abstraction
of the informal notion of immediacy discussed in the introduction. To connect the two notions,
we show in Section 3.1 how codes with the two kinds of immediacy functions discussed in the
introduction satisfy the immediacy code property. In Section 4, we prove our main technical result
(Theorem 4): a general rate upper bound for immediacy codes.

We begin with a few combinatorial denitions that go into the denition of immediacy codes.
By a partition of a set 𝑈 , we mean an ordered tuple of pairwise disjoint non-empty subsets of 𝑈
whose union is𝑈 .

Denition 2 (Tagged partitions). A tagged partition 𝑆 of [𝑛] is a partition (𝑆1, 𝑆2, . . . , 𝑆𝑘) of [𝑛],
along with an ordered partition (le(𝑆𝑖), right(𝑆𝑖)) of each 𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , into two non-empty sets.

Denition 3 (Laminar partitions). An (𝛼, ℓ)-laminar partition of𝑛 is a tuple 𝑃 = (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃ℓ)
of partitions of [𝑛] into disjoint non-nonempty subsets, in which 𝑃1, . . . , 𝑃ℓ are tagged partitions,
and which satises the following properties:

1. (Size property) For each 1 ≤ 𝑖 ≤ ℓ , and for each 𝐵 ∈ 𝑃𝑖 , |le(𝐵) | ≥ 𝛼 |𝐵 |. (Here, le(·) is as
in the denition of a tagged partition).
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2. (The laminar property) For each partition 𝑃𝑖 with 𝑖 ≥ 1, and any subset 𝐵 ∈ 𝑃𝑖 , there exist
sub-collections of 𝑃𝑖−1 that are partitions of le(𝐵) and right(𝐵), respectively, into pairwise
disjoint non-empty sets (see g. 1 for an illustration).

le(𝐵) right(𝐵)· · · · · · 𝑃𝑖

· · · · · · 𝑃𝑖−1

Figure 1: An illustration of laminar partitions

Denition 4 (Immediacy codes). An (𝛼, ℓ)-immediacy code with code alphabet Σ and transmis-
sion length𝑛 is a function 𝑐 : Σ𝑛in → Σ𝑛 alongwith an (𝛼, ℓ)-laminar partition 𝑃 = (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃ℓ)
of [𝑛] such that

• (The code decodes a large neighborhood) If 𝐵 is a subset in a partition 𝑃𝑖 ∈ 𝑃 for 𝑖 ≥ 1,
then for all 𝑥,𝑦 ∈ Σ𝑛in, 𝑥le(𝐵) ≠ 𝑦le(𝐵) implies that 𝑐 (𝑥)right(𝐵) ≠ 𝑐 (𝑦)right(𝐵) . In other words,
there is a function 𝜙𝐵 : Σ| right(𝐵) | → Σ| le(𝐵) |

in such that 𝜙𝐵 (𝑐 (𝑥)right(𝐵)) = 𝑥le(𝐵) for all
𝑥 ∈ Σ𝑛in. (Here, le(𝐵) and right(𝐵) are as in the denition of a tagged partition.)

For some applications, the neighborhood decoding condition above may not hold for all subsets
in all partitions. For handling these cases, we will also need the following weakening of the above
denition.

Denition 5 (Decient Immediacy code). A 𝐷-decient (𝛼, ℓ)-immediacy code with code
alphabet Σ and transmission length 𝑛 is a function 𝑐 : Σ𝑛in → Σ𝑛 along with an (𝛼, ℓ)-laminar
partition 𝑃 = (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃ℓ) of [𝑛] such that

1. There exist deciency subsets 𝑆𝑖 of 𝑃𝑖 , for 1 ≤ 𝑖 ≤ ℓ , such that the total size of all the subsets
contained in the 𝑆𝑖 is at most 𝐷 . In symbols,

ℓ∑︁
𝑖=1

∑︁
𝐵∈𝑆𝑖

|𝐵 | ≤ 𝐷. (4)

2. (The code often decodes a large neighborhood) If 𝐵 is a subset in a partition 𝑃𝑖 ∈ 𝑃

for 𝑖 ≥ 1 such that 𝐵 is not an element of the corresponding deciency set 𝑆𝑖 , then for all
𝑥,𝑦 ∈ Σ𝑛in, 𝑥le(𝐵) ≠ 𝑦le(𝐵) implies that 𝑐 (𝑥)right(𝐵) ≠ 𝑐 (𝑦)right(𝐵) . In other words, there is a
function 𝜙𝐵 : Σ| right(𝐵) | → Σ| le(𝐵) |

in such that 𝜙𝐵 (𝑐 (𝑥)right(𝐵)) = 𝑥le(𝐵) for all 𝑥 ∈ Σ𝑛in. (Here,
le(𝐵) and right(𝐵) are as in the denition of a tagged partition.)

9



3.1 Immediacy functions and immediacy codes

We now show that tree codes satisfying the immediacy conditions described in the introduction
also satisfy the immediacy code condition, with parameters depending upon the distance and the
immediacy function. In order to avoid technical issues such as divisibility, we make here some
simplifying assumptions on the form of the immediacy function. We note that these assumptions
apply to the examples of immediacy functions discussed in the introduction, and also that the
framework of immediacy codes is exible enough that one can work through a similar route even
when they do not hold.

Let 𝑇 : {0, 1}𝑛 → Σ𝑛 be a tree code with immediacy function Imm, distance parameter
𝛿 ∈ (0, 1), and suppose that its depth 𝑛 = 2 · Imm(ℓ𝑡), where ℓ and 𝑡 are positive integers, with
𝑡 = 𝑡 (𝛿) possibly depending upon the distance 𝛿 . Let 𝜅 ··= blg(2/𝛿)c be a positive integer so that
2−𝜅 < 𝛿 ≤ 2−𝜅+1. We assume that 𝑡 can be chosen so that for each 1 ≤ 𝑗 ≤ ℓ ,

2−𝜅 · Imm( 𝑗𝑡) is an integer, and
2 · Imm(( 𝑗 − 1)𝑡) divides 2−𝜅 · Imm( 𝑗𝑡)

(5)

(We note that this is the main technical assumption that would need to be modied when working
with immediacy functions other than those discussed in the introduction. For the two immediacy
functions discussed in the introduction, we show how to choose such a 𝑡 towards the end of this
section.)

Given these preliminaries, we now show that 𝑇 is an (𝛼, ℓ)-immediacy code with 𝛼 ··= 2−(𝜅+1)

and ℓ as above. We rst show that with the divisibility condition in eq. (5), we naturally obtain
an (𝛼, ℓ) laminar partition (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃ℓ). For each 0 ≤ 𝑗 ≤ ℓ , partition [𝑛] = [2Imm(ℓ𝑡)] into
consecutive blocks of length 2Imm( 𝑗𝑡) each, and let these blocks constitute the tagged partition 𝑃 𝑗 .
Given a block 𝐵 ∈ 𝑃 𝑗 for 𝑗 ≥ 1, we dene le(𝐵) to be the set of the leftmost 2−𝜅 · Imm( 𝑗𝑡) integers
in 𝐵 and right(𝐵) to be the rightmost 2Imm( 𝑗𝑡) − |le(𝐵) | integers in 𝐵. Given the divisibility
conditions in eq. (5), we can then verify by a direct computation that both the laminar and size
properties in the denition of an (𝛼, ℓ)-laminar partition are satised by this construction. In
particular, le(𝐵) and right(𝐵) are disjoint unions of blocks in 𝑃 𝑗−1.

We now show that𝑇 is also an immediacy codewith respect to the tagged partition (𝑃0, 𝑃1, . . . , 𝑃ℓ).
Fix any 1 ≤ 𝑗 ≤ ℓ and any block 𝐵 in the tagged partition 𝑃 𝑗 . We only need to show that if
𝑥,𝑦 ∈ {0, 1}𝑛 dier on some index in le(𝐵), then 𝑇 (𝑥) and 𝑇 (𝑦) dier on some index in right(𝐵).
For any such 𝑥,𝑦, let 𝑖 be the smallest index in 𝐵 on which 𝑥 and 𝑦 dier, and let 𝑆 be the in-
terval [𝑖, 𝑖 + Imm( 𝑗𝑡)) of length Imm( 𝑗𝑡). By the choice of 𝑥 and 𝑦, we have 𝑖 ∈ le(𝐵). Since
|le(𝐵) | = Imm( 𝑗𝑡) · 2−𝜅 , |𝐵 | = 2Imm( 𝑗𝑡), and 𝜅 ≥ 1, it then follows that 𝑆 is contained in 𝐵, and
intersects right(𝐵). Further, by the denition of the immediacy function, the Hamming distance
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between 𝑇 (𝑥)𝑆 and 𝑇 (𝑦)𝑆 must be at least

𝛿 · Imm( 𝑗𝑡) > 2−𝜅 Imm( 𝑗𝑡) = |le(𝐵) |.

Thus, since this Hamming distance is greater than the length of le(𝐵), it must be the case that
𝑇 (𝑥)𝑆 and 𝑇 (𝑦)𝑆 dier also on some index in right(𝐵), as we wanted to prove. This proves that 𝑇
is an (𝛼, ℓ)-immediacy code, with 𝛼 = 2−(𝜅+1) , as chosen above.

Anticipating the rate upper bound for (𝛼, ℓ)-immediacy codes proved below in our main
result (Theorem 4), we thus get that if Σ is the output alphabet of𝑇 , it must be the case that (recall
that 𝑛 = 2 · Imm(ℓ𝑡 (𝛿)))

lg |Σ| ≥ ℓ

21+𝜅
=
Imm−1(𝑛/2)
𝑡 (𝛿) · 21+𝜅 ≥ 𝛿

4𝑡 (𝛿) Imm−1(𝑛/2). (6)

Put dierently, the rate 𝜌 of such a tree code satises

𝜌 ≤ 4𝑡 (𝛿)
𝛿 · Imm−1(𝑛/2)

. (7)

(We remark here that since we work in the setting of constant distance 𝛿 , we have not attempted
to optimize the dependence on 𝛿 in the above computation.)

Choosing 𝑡 (𝛿). We now show how to choose 𝑡 (𝛿) so as to satisfy the divisibility conditions of
eq. (5), for the two immediacy functions considered in the introduction.

Case 1: Imm(𝑘) = 2𝑘 . Put 𝑡 (𝛿) = 1+𝜅 = blg(4/𝛿)c. A direct computation shows that the condition
in eq. (5) holds with this choice. The rate upper bound in eq. (7) becomes

𝜌 ≤ 4 lg(4/𝛿)
𝛿 · lg(𝑛/2) . (8)

Case 2: Imm(𝑘) = 22𝑘 . Put 𝑡 (𝛿) ··= dlg(𝜅 + 2)e = dlg blg(8/𝛿)ce. Again, a direct computation
shows that the condition in eq. (5) holds with this choice. The rate upper bound in eq. (7)
becomes

𝜌 ≤ 4 · dlg lg(8/𝛿)e
𝛿 · lg lg(𝑛/2) . (9)
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4 Rate upper-bound for immediacy codes

In this section, we prove our main result: a rate upper bound for immediacy codes (Theorem 4).
The main ingredient is a simple information theoretic tool, that we describe next. As stated in the
introduction, given this tool and the denition of immediacy codes, the proof of the main result
becomes quite simple.

4.1 Data processing inequality

We will need the following simple consequence of (the usual proof of) the data processing
inequality. Similar inequalities arise also in studies of the Gács-Körner common information (see,
e.g., [KA10]).

Lemma 3 (A consequence of the data processing inequality). Let 𝐴, 𝐵,𝐶 be discrete random
variables such that 𝐻 (𝐴|𝐵) = 𝐻 (𝐴|𝐶) = 0. Then 𝐼 (𝐵 : 𝐶) ≥ 𝐻 (𝐴). In particular,

𝐻 (𝐵) + 𝐻 (𝐶) ≥ 𝐻 (𝐵,𝐶) + 𝐻 (𝐴).

Proof. Since 𝐴, 𝐵,𝐶 are discrete, the associated entropies and conditional entropies are non-
negative. Combining this with the non-negativity of mutual information and conditional mutual
information, we thus have

0 ≤ 𝐼 (𝐴 : 𝐶 |𝐵) ≤ 𝐻 (𝐴|𝐵) = 0. (10)

We also have 𝐼 (𝐴 : 𝐶) = 𝐻 (𝐴) − 𝐻 (𝐴|𝐶) = 𝐻 (𝐴). The chain rule for mutual information along
with the non-negativity of the conditional mutual information then gives

𝐻 (𝐴) = 𝐼 (𝐴 : 𝐶) ≤ 𝐼 (𝐴 : 𝐶) + 𝐼 (𝐵 : 𝐶 |𝐴)

= 𝐼 (𝐴, 𝐵 : 𝐶) eq. (10)
= 𝐼 (𝐵 : 𝐶) + 𝐼 (𝐴 : 𝐶 |𝐵) = 𝐼 (𝐵 : 𝐶),

which proves that 𝐼 (𝐵 : 𝐶) ≥ 𝐻 (𝐴). The nal claim follows since 𝐻 (𝐵,𝐶) = 𝐻 (𝐵) + 𝐻 (𝐶) − 𝐼 (𝐵 :
𝐶). �

4.2 Statement and proof of the main result

The following is our main result, formalizing Theorem 1.

Theorem 4 (Rate upper bound for immediacy codes). Let 𝑛 be a positive integer, and suppose
that 𝑐 : Σ𝑛in → Σ𝑛 is an (𝛼 (𝑛), ℓ (𝑛))-immediacy code . Then,

lg |Σ| ≥ 𝛼 (𝑛)ℓ (𝑛) lg |Σin | . (11)
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Proof. To simplify notation, we shorten ℓ (𝑛) to ℓ in the following. Let 𝑃 = (𝑃0, 𝑃1, . . . , 𝑃ℓ) be the
laminar partition associated with the immediacy code 𝑐 . Modify the code 𝑐 so that it is systematic,
in the sense that 𝑐 (𝑥)𝑘 determines 𝑥𝑘 for each 1 ≤ 𝑘 ≤ 𝑛: this can be done by changing the alphabet
to Σ × Σin, and simply concatenating 𝑥𝑘 to each 𝑐 (𝑥)𝑘 . Note that even after the modication, the
code 𝑐 continues to be an immediacy code, with the same associated laminar partition 𝑃 . However,
the output alphabet of the code now is Σ′ where Σ′ = Σ × Σin.

Let 𝑋 be uniformly distributed over Σ𝑛in, and dene 𝑌 = 𝑐 (𝑋 ). We then have 𝐻 (𝑋 ) = 𝐻 (𝑌 ) =
𝑛 · lg |Σin |, where we measure entropy in bits. Now, consider any subset 𝐵 that is an element of
one of the partitions 𝑃𝑖 , for some 𝑖 ≥ 1. Since 𝑐 is systematic, we than have 𝐻 (𝑋le(𝐵) |𝑌le(𝐵)) =
𝐻 (𝑋le(𝐵) |𝑐 (𝑋 )le(𝐵)) = 0. Further, by the neighborhood decoding property of the immediacy code
𝑐 , we also have

𝐻 (𝑋le(𝐵) |𝑌right(𝐵)) = 𝐻 (𝜙𝐵 (𝑐 (𝑋 )right(𝐵)) |𝑐 (𝑋 )right(𝐵)) = 0. (12)

(Here, 𝜙𝐵 is as in the denition of the neighborhood decoding property of an immediacy code.)
Applying Lemma 3, we then have

𝐻 (𝑌𝐵) = 𝐻 (𝑌le(𝐵), 𝑌right(𝐵)) ≤ 𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵)) − 𝐻 (𝑋le(𝐵)) (13)
= 𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵)) − |le(𝐵) | · lg |Σin | (14)
≤ 𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵)) − 𝛼 (𝑛) |𝐵 | · lg |Σin | , (15)

where the last inequality follows since le(𝐵) ≥ 𝛼 (𝑛) |𝐵 |, by the size property of (𝛼 (𝑛), ℓ (𝑛))-
laminar partitions. Note that eq. (15) holds for every subset 𝐵 that is part of some partition 𝑃𝑖 ,
𝑖 ≥ 1, of 𝑃 . Dene, for 0 ≤ 𝑖 ≤ ℓ

𝑇𝑖 ··=
∑︁
𝐵∈𝑃𝑖

𝐻 (𝑌𝐵). (16)

We then have, for 1 ≤ 𝑖 ≤ ℓ ,

𝑇𝑖 =
∑︁
𝐵∈𝑃𝑖

𝐻 (𝑌𝐵)
eq. (15)
≤ −𝛼 (𝑛)𝑛 · lg |Σin | +

∑︁
𝐵∈𝑃𝑖

(
𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵))

)
(17)

≤ −𝛼 (𝑛)𝑛 · lg |Σin | +
∑︁

𝐵′∈𝑃𝑖−1
𝐻 (𝑌𝐵′) = 𝑇𝑖−1 − 𝛼 (𝑛)𝑛 · lg |Σin | . (18)

where the second inequality follows from the laminar property of the laminar partition 𝑃 (which
ensures that each of le(𝐵) and right(𝐵) are disjoint unions of sets in the partition 𝑃𝑖−1, for every
set 𝐵 ∈ 𝑃𝑖 ), along with the sub-additivity of entropy: for any two random variables 𝑍1 and 𝑍2,
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𝐻 (𝑍1, 𝑍2) ≤ 𝐻 (𝑍1) + 𝐻 (𝑍2). By induction, eq. (18) thus gives

𝑇ℓ ≤ 𝑇0 − 𝛼 (𝑛)𝑛ℓ · lg |Σin | . (19)

The subadditivity of entropy also gives 𝑇ℓ ≥ 𝐻 (𝑌 ) = 𝑛 · lg |Σin |, and

𝑇0 ≤
𝑛∑︁
𝑖=1

𝐻 (𝑌𝑖) ≤ 𝑛 · (lg |Σin | + lg |Σ|), since each 𝑌𝑖 has support Σ′ = Σ × Σin. (20)

Substituting these in eq. (19) gives lg |Σ| ≥ 𝛼 (𝑛)ℓ · lg |Σin | . �

The proof above is robust to certain small perturbations to the denition of an immediacy code.
In particular, it can be easily adapted to establish rate upper bounds for 𝐷-decient immediacy
codes as well, as we show below.

Theorem 5 (Rate upper bound for decient immediacy codes). Let 𝑛 be a positive integer,
and suppose that 𝑐 : Σ𝑛in → Σ𝑛 is a 𝐷-decient (𝛼 (𝑛), ℓ (𝑛))-immediacy code . Then,

lg |Σ| ≥ 𝛼 (𝑛) ·
(
ℓ (𝑛) − 𝐷

𝑛

)
· lg |Σin | . (21)

Proof. The proof is a minor modication of the proof of Theorem 4, but we include all the details
for completeness. Let 𝑃 = (𝑃0, 𝑃1, . . . , 𝑃ℓ) be the laminar partition associated with the 𝐷-decient
immediacy code 𝑐 , and let the deciency subsets 𝑆𝑖 ⊆ 𝑃𝑖 be as in the denition (Denition 5).
Modify the code 𝑐 so that it is systematic, in the sense that 𝑐 (𝑥)𝑘 determines 𝑥𝑘 for each 1 ≤ 𝑘 ≤ 𝑛:
this can be done by changing the alphabet to Σ × Σin, and simply concatenating 𝑥𝑘 to each 𝑐 (𝑥)𝑘 .
Note that even after the modication, the code 𝑐 continues to be a 𝐷-decient immediacy code,
with the same associated laminar partition 𝑃 and the same associated deciency sets. However,
the output alphabet of the code now is Σ′ where Σ′ = Σ × Σin.

Let𝑋 be uniformly distributed over Σ𝑛in, and dene𝑌 = 𝑐 (𝑋 ), so that𝐻 (𝑋 ) = 𝐻 (𝑌 ) = 𝑛 ·lg |Σin |.
Now, consider any subset 𝐵 that is an element of one of the partitions 𝑃𝑖 , for some 𝑖 ≥ 1. Since 𝑐
is systematic, we than have 𝐻 (𝑋le(𝐵) |𝑌le(𝐵)) = 𝐻 (𝑋le(𝐵) |𝑐 (𝑋 )le(𝐵)) = 0. Further, in case 𝐵 ∉ 𝑆𝑖 ,
then by the neighborhood decoding property of the decient immediacy code 𝑐 , we also have

𝐻 (𝑋le(𝐵) |𝑌right(𝐵)) = 𝐻 (𝜙𝐵 (𝑐 (𝑋 )right(𝐵)) |𝑐 (𝑋 )right(𝐵)) = 0. (22)

(Here, 𝜙𝐵 is as in the denition of the neighborhood property of a decient immediacy code.)
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Applying Lemma 3, we then have

𝐻 (𝑌𝐵) = 𝐻 (𝑌le(𝐵), 𝑌right(𝐵)) ≤ 𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵)) − 𝐻 (𝑋le(𝐵)) (23)
= 𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵)) − |le(𝐵) | · lg |Σin | (24)
≤ 𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵)) − 𝛼 (𝑛) |𝐵 | · lg |Σin | , (25)

where the last inequality follows since le(𝐵) ≥ 𝛼 (𝑛) |𝐵 |, by the size property of (𝛼 (𝑛), ℓ (𝑛))-
laminar partitions. Note that when 𝑖 ≥ 1, eq. (25) holds for every subset 𝐵 ∈ 𝑃𝑖 \ 𝑆𝑖 . The only
dierence with the proof of Theorem 4 is that when 𝐵 ∈ 𝑃𝑖 is an element of the deciency set 𝑆𝑖 ,
we however only have (by the sub-additivity of the entropy):

𝐻 (𝑌𝐵) = 𝐻 (𝑌le(𝐵), 𝑌right(𝐵)) ≤ 𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵)). (26)

Dene, for 0 ≤ 𝑖 ≤ ℓ

𝑇𝑖 ··=
∑︁
𝐵∈𝑃𝑖

𝐻 (𝑌𝐵) . (27)

We then have, for 1 ≤ 𝑖 ≤ ℓ ,

𝑇𝑖 =
∑︁
𝐵∈𝑃𝑖

𝐻 (𝑌𝐵)
eqs. (25) and (26)

≤ −𝛼 (𝑛)𝑛 · lg |Σin | + 𝛼 (𝑛) · lg |Σin | ·
∑︁
𝐵∈𝑆𝑖

|𝐵 |

+
∑︁
𝐵∈𝑃𝑖

(
𝐻 (𝑌le(𝐵)) + 𝐻 (𝑌right(𝐵))

)
(28)

≤ −𝛼 (𝑛)𝑛 · lg |Σin | + 𝛼 (𝑛) · lg |Σin | ·
∑︁
𝐵∈𝑆𝑖

|𝐵 | +
∑︁

𝐵′∈𝑃𝑖−1
𝐻 (𝑌𝐵′) (29)

= 𝑇𝑖−1 − 𝛼 (𝑛)𝑛 · lg |Σin | + 𝛼 (𝑛) · lg |Σin |
∑︁
𝐵∈𝑆𝑖

|𝐵 | . (30)

where the second inequality follows from the laminar property of the laminar partition 𝑃 (which
ensures that each of le(𝐵) and right(𝐵) are disjoint unions of sets in the partition 𝑃𝑖−1, for every
set 𝐵 ∈ 𝑃𝑖 ), along with the sub-additivity of entropy. By induction, eq. (30) thus gives

𝑇ℓ ≤ 𝑇0 − 𝛼 (𝑛)𝑛ℓ · lg |Σin | + 𝛼 (𝑛) · lg |Σin | ·
ℓ∑︁

𝑖=1

∑︁
𝐵∈𝑆𝑖

|𝐵 | ≤ 𝑇0 − 𝛼 (𝑛) · lg |Σin | · (𝑛ℓ − 𝐷) , (31)

where the last inequality uses the fact that the code is only 𝐷-decient (eq. (4) of Denition 5).
The subadditivity of entropy yields 𝑇ℓ ≥ 𝐻 (𝑌 ) = 𝑛 · lg |Σin |, and also that

𝑇0 ≤
𝑛∑︁
𝑖=1

𝐻 (𝑌𝑖) ≤ 𝑛 · (lg |Σin | + lg |Σ|), since each 𝑌𝑖 has support Σ′ = Σ × Σin. (32)
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Substituting these in eq. (31) gives lg |Σ| ≥ 𝛼 (𝑛) ·
(
ℓ − 𝐷

𝑛

)
· lg |Σin | . �

5 Rate upper-bounds for immediacy properties of known
constructions

In this section, we describe the immediacy properties enjoyed by the tree code constructions
of [CHS18], [EKS94] and [GHKRZW16]. The rst two are similar to—but not the same as—the
informal notion of immediacy discussed in the introduction. However, as we show below, our
general framework of immediacy codes developed in Section 3 still applies, and allows us to
conclude that the Ω(1/log log𝑛) and Ω(1/log𝑛) rates achieved by these constructions are the
best possible (up to constant factors) given the immediacy properties they achieve. The third
construction, due to [GHKRZW16], tackles a dierent trade-o: what is the best (even if vanishing,
as 𝑛 increases) distance one can achieve for a tree code if one imposes the condition that the
rate has to be constant. For this construction we show that the distance Ω(1/log𝑛) distance it
achieves with a constant rate is tight up to a log log𝑛 factor for the immediacy guarantee that this
construction provides.

5.1 The CHS construction

We start with the construction of [CHS18] (which for brevity we shall call the CHS construction).
To describe the immediacy properties of this construction, we rst import some of the notation
set up in [CHS18]. In the following, references to theorems, pages etc. in [CHS18] refer to the
ECCC version of [CHS18]. Dene a sequence of length scales (following the proof of Theorem
1.1 in [CHS18, p. 16]) given by ℓ1 ··= 220 and ℓ𝑖+1 ··= ℓ2𝑖 /210 for 𝑖 ≥ 1; thus ℓ𝑖 = 210 · 322𝑖 for every
positive integer 𝑖 . We consider a transmission length 𝑛 of the form ℓ𝑚+1 for some positive integer
𝑚. Thus, 𝑛 is divisible by each ℓ𝑖 , 1 ≤ 𝑖 ≤ 𝑚, and no divisibility issues arise in the following
description. We also note for future use that for 𝑖 ≥ 1

16
√
ℓ𝑖 ≤

3ℓ𝑖
8
. (33)

For each length scale ℓ𝑖 , 1 ≤ 𝑖 ≤ 𝑚 + 1 as above, we consider the partition 𝑃𝑖−1 of [𝑛] into 2𝑛/ℓ𝑖
consecutive disjoint intervals of length ℓ𝑖/2 each. In agreement with the terminology in [CHS18],
we refer to the elements of the 𝑃𝑖 as blocks. For a block 𝐵 ∈ 𝑃𝑖 for 𝑖 ≥ 1, we denote by le(𝐵) the
set consisting of the rst |𝐵 |/4 positions in 𝐵, and by right(𝐵) the set consisting of the last 3|𝐵 |/4
positions in 𝐵. With these denitions, 𝑃 ··= (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃𝑚) is a (1/4,𝑚)-laminar partition of
[𝑛]. In particular, for any 𝐵 ∈ 𝑃𝑖 , 𝑖 ≥ 1, le(𝐵) and right(𝐵) are disjoint unions of blocks in 𝑃𝑖−1,
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because ℓ𝑖/2 divides ℓ𝑖+1/8.

The CHS immediacy condition. We can now describe the immediacy-like property satised
by the CHS tree code construction. Denote their code by 𝑇 . Let 𝑥 and 𝑦 be two strings in {0, 1}𝑛

which dier at a position 𝑠′ ∈ [𝑛]. Then, for any 𝑖 such that 2 ≤ 𝑖 ≤ 𝑚 + 1 such that 𝑠′ is not in
the rightmost block in 𝑃𝑖−1 (i.e., such that 𝑠′ ≤ 𝑛 − ℓ𝑖/2), the following is true. Let 𝑠 (𝑖) denote the
leftmost position in the unique block 𝐵 ∈ 𝑃𝑖−1 containing 𝑠′ such that 𝑥𝑠 (𝑖) ≠ 𝑦𝑠 (𝑖) . Then, for any 𝑑
satisfying

ℓ𝑖−1/2 = 16
√
ℓ𝑖 ≤ 𝑑 ≤ ℓ𝑖/2, (34)

it holds that
ΔHamming

(
𝑇 (𝑥)𝐼 (𝑑),𝑇 (𝑦)𝐼 (𝑑)

)
≥ 𝑑/3, (35)

where 𝐼 (𝑑) denotes the interval
𝐼 (𝑑) ··= [𝑠 (𝑖), 𝑠 (𝑖) + 𝑑] . (36)

The above condition is implicit in the proof given in [CHS18]: in particular, it follows by substitut-
ing 𝑠 (𝑖) above in the role played by the “split” 𝑠 in the proof of Claim 6.4 of [CHS18].

We then have the following consequence of the above immediacy condition.

Lemma 6. Let𝑚 be a positive integer. Let the sequence ℓ1, ℓ2, . . ., the positive integer 𝑛 = ℓ𝑚+1, and
the (1/4,𝑚)-laminar partition 𝑃 = (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃𝑚) of 𝑛 be as dened above. Let 𝑇 : {0, 1}𝑛 → Σ𝑛

be a code satisfying the CHS immediacy condition described above. Consider any block 𝐵 in a partition
𝑃𝑖−1 ∈ 𝑃 , 2 ≤ 𝑖 ≤ 𝑚 + 1, so that 𝐵 is not the rightmost block in 𝑃𝑖−1. Then, there exists a function
𝜙𝐵 such that for any 𝑥 ∈ {0, 1}𝑛 , 𝜙𝐵 (𝑐 (𝑥)right(𝐵)) = 𝑥le(𝐵) . In other words, the prex 𝑥le(𝐵) of 𝑥𝐵 is
uniquely determined given the sux 𝑐 (𝑥)right(𝐵) of 𝑐 (𝑥)𝐵 .

Proof. It is sucient to show that if 𝑥,𝑦 ∈ {0, 1}𝑛 are such that 𝑥le(𝐵) ≠ 𝑦le(𝐵) then it must be
the case that 𝑐 (𝑥)right(𝐵) ≠ 𝑐 (𝑦)right(𝐵) . Consider therefore 𝑥,𝑦 ∈ {0, 1}𝑛 such that 𝑥le(𝐵) ≠ 𝑦le(𝐵) .
Thus, there must be a position 𝑠′ in le(𝐵) such that 𝑥𝑠 ′ ≠ 𝑦𝑠 ′ . Let 𝑠 (𝑖) be the leftmost such position
in le(𝐵). Choose 𝑑 so that the interval

𝐼 (𝑑) = [𝑠 (𝑖), 𝑠 (𝑖) + 𝑑] = 𝐵 ∩ [𝑠, 𝑛],

i.e., so that 𝐼 (𝑑) is the sux of 𝐵 starting at 𝑠 (𝑖). Since |𝐵 | = ℓ𝑖/2, this 𝑑 is of the form ℓ𝑖/2 − 𝑘 (𝑖),
where 𝑘 (𝑖) ≥ 1 is the relative index, counting starting with one from the left, of 𝑠 (𝑖) within 𝐵.
Since 𝑠 (𝑖) ∈ le(𝐵) and le(𝐵) consists of the leftmost |𝐵 | /4 = ℓ𝑖/8 positions in 𝐵, it is also the
case that 𝑘 (𝑖) ≤ ℓ𝑖/8. Given eq. (33), 𝑑 therefore satises the lower bound required in eq. (34) since
𝑘 (𝑖) ≤ ℓ𝑖/8 and 𝑖 ≥ 2. It also satises the upper bound required in eq. (34) by construction. Since
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𝐵 is, by hypothesis, not the rightmost block in 𝑃𝑖−1, eq. (35) then yields that

ΔHamming
(
𝑐 (𝑥)𝐼 (𝑑), 𝑐 (𝑦)𝐼 (𝑑)

)
≥ 𝑑/3 = ℓ𝑖

8
+ ℓ𝑖/8 − 𝑘 (𝑖)

3
. (37)

Suppose, if possible, that 𝑐 (𝑥)right(𝐵) = 𝑐 (𝑦)right(𝐵) , so that ΔHamming
(
𝑐 (𝑥)right(𝐵), 𝑐 (𝑦)right(𝐵)

)
= 0.

Let 𝑆 denote the sux of le(𝐵) starting from the position 𝑠 (𝑖), so that 𝐼 (𝑑) = 𝑆 t right(𝐵). We
then have

ΔHamming
(
𝑐 (𝑥)𝐼 (𝑑), 𝑐 (𝑦)𝐼 (𝑑)

)
= ΔHamming (𝑐 (𝑥)𝑆 , 𝑐 (𝑦)𝑆 ) + ΔHamming

(
𝑐 (𝑥)right(𝐵), 𝑐 (𝑦)right(𝐵)

)
(38)

= ΔHamming (𝑐 (𝑥)𝑆 , 𝑐 (𝑦)𝑆 ) ≤ |𝑆 | = ℓ𝑖

8
− 𝑘 (𝑖) + 1. (39)

However, this contradicts eq. (37) since ℓ𝑖 ≥ 32 and 𝑘 (𝑖) ≥ 1. It must therefore be the case that
𝑐 (𝑥)right(𝐵) ≠ 𝑐 (𝑦)right(𝐵) . �

It is an easy consequence of the above lemma that any binary tree code satisfying the CHS
immediacy condition is a decient immediacy code, with a small deciency parameter.

Proposition 7. Let𝑚 be a positive integer. Let the sequence ℓ1, ℓ2, . . ., the positive integer𝑛 = ℓ𝑚+1, and
the (1/4,𝑚)-laminar partition 𝑃 = (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃𝑚) of 𝑛 be as dened above. Let 𝑇 : {0, 1}𝑛 → Σ𝑛

be a code satisfying the CHS immediacy condition. Then𝑇 is an 𝑛-decient (1/4,𝑚)-immediacy code.

Proof. For each 1 ≤ 𝑖 ≤ 𝑚 dene 𝑆𝑖 to consist only of the rightmost block in 𝑃𝑖 . Then, it follows
directly from Lemma 6 that 𝑇 is a 𝐷-decient (1/4,𝑚)-immediacy code with deciency sets
𝑆1, 𝑆2, . . . , 𝑆𝑚 , provided 𝐷 satises

𝐷 ≥
𝑚∑︁
𝑖=1

∑︁
𝐵∈𝑆𝑖

|𝐵 |. (40)

Now, the latter quantity can be bounded from above as

𝑛

2

𝑚∑︁
𝑖=1

ℓ𝑖+1
ℓ𝑚+1

≤ 𝑛, (41)

using the growth condition on the ℓ𝑖 . Thus the choice 𝐷 = 𝑛 works. �

Applying Theorem 5, we thus get that the output alphabet size of any binary tree code satisfying
the CHS immediacy condition with transmission length 𝑛 as above satises

lg |Σ| ≥ 𝑚 − 1
4

= Ω(lg lg𝑛), (42)

since 𝑛 = 210 · 322𝑚+1
. Thus, the rate 𝜌 of such a code must satisfy 𝜌 = 𝑂 (1/lg lg𝑛).
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5.2 The EKS construction

We now turn to the construction of [EKS94] (which for brevity we shall call the EKS construction.)

A version of this construction can be described as follows. Let ECCℓ : {0, 1}ℓ →
{
{0, 1}𝑏

}ℓ
denote

an error-correcting block code with distance 𝛿 ∈ (0, 1). (It is known that there is a choice of
𝑏 = 𝑏 (𝛿), independent of the block-length ℓ , so that such a code exists for each positive integer
ℓ , and is such that ECCℓ can be computed in time polynomial in ℓ : see, e.g., [CHS18, Lemma 3.2
in the ECCC version].) Note that ECC1 can be chosen to be the repetition code of length 𝑏. For
simplicity, we describe the construction of the EKS tree code 𝑇 when the depth 𝑛 = 2𝑘 is a power
of 2. For 0 ≤ 𝑖 ≤ 𝑘 , let 𝑃𝑖 be the partition of [𝑛] consisting of 𝑛/2𝑖 consecutive disjoint blocks
of length 2𝑖 each, and we write 𝑃𝑖, 𝑗 = {( 𝑗 − 1)2𝑖 + 1, . . . , 𝑗 · 2𝑖}. For a message 𝑥 ∈ {0, 1}𝑛 we let
𝑥𝑃𝑖, 𝑗 ∈ {0, 1}2𝑖 denote the restriction of 𝑥 to the interval 𝑃𝑖, 𝑗 . To describe the encoding 𝑇 (𝑥) of a
message 𝑥 ∈ {0, 1}𝑛 , we form the following (𝑘 + 1) × 𝑛 table with entries in {0, 1}𝑏 :

1. The rst row consists of the concatenation of ECC1(𝑥 𝑗 ) for 𝑗 = 1, . . . , 𝑛.

2. The 𝑖th row, for 2 ≤ 𝑖 ≤ 𝑘 + 1, consists of (0𝑏)2𝑖−2 followed by the concatenation of
ECC2𝑖−2 (𝑥𝑃𝑖−2, 𝑗 ) for 𝑗 = 1, . . . , 𝑛 · 22−𝑖 − 1. Informally, the code blocks in the 𝑖th row are
“right-shifted” by 2𝑖−2.

The encoding𝑇 (𝑥) is dened by letting its 𝑗 th character, for 1 ≤ 𝑗 ≤ 𝑛, be the 𝑗 th column (from
the left) of this table. Note that because of the “right shift” operation in item 2, this construction
satises the “online” requirement for tree codes. The output alphabet of 𝑇 is {0, 1}𝑏 (𝑘+1) .

The EKS immediacy condition. From the construction, it is easy to see that the EKS construc-
tion satises the following version of immediacy. Denote the code by𝑇 , and let 𝑥,𝑦 ∈ {0, 1}𝑛 be two
strings that dier at a position 𝑠′ ∈ [𝑛]. Let 0 ≤ ℓ < 𝑘 be any integer such that 𝑠′ ≤ 𝑛− 2ℓ = 2𝑘 − 2ℓ .
Dene 𝑠 = 𝑠 (ℓ) ··=

⌈
𝑠′/2ℓ

⌉
· 2ℓ to be the smallest multiple of 2ℓ that is at least as large as 𝑠′. Then

ΔHamming(𝑇 (𝑥)(𝑠,𝑠+2ℓ ],𝑇 (𝑦)(𝑠,𝑠+2ℓ ]) ≥ 𝛿 · 2ℓ > 0. (43)

We now show that any code satisfying the immediacy condition described by eq. (43) must
be an (Ω(1),Ω(log𝑛))-immediacy code. To see this, we consider the partitions 𝑃𝑖 , 0 ≤ 𝑖 ≤ 𝑘 , of
[𝑛] = [2𝑘] considered above, and convert each of them into a tagged partition by dening, for each
𝐵 ∈ 𝑃𝑖 with 𝑖 ≥ 1, le(𝐵) to be the leftmost 2𝑖−1 entries in 𝐵 and right(𝐵) to be the rightmost 2𝑖−1

entries in 𝐵. With this construction, it is immediate that (𝑃0, 𝑃1, 𝑃2, . . . , 𝑃𝑘) is a (1/2, 𝑘)-laminar
partition. Since the code𝑇 satises the immediacy condition in eq. (43), it is also immediate that it
satises the neighborhood decoding property for each 𝐵 ∈ 𝑃𝑖 with 𝑖 ≥ 1. We thus see that any
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tree code 𝑇 with depth 𝑛 = 2𝑘 and satisfying the immediacy condition given by eq. (43) must be a
(1/2, 𝑘)-immediacy code. Applying Theorem 4, we thus see that the output alphabet Σ of such a
code must satisfy

|Σ| ≥ 𝑘

2
= Ω(lg𝑛), (44)

since 𝑛 = 2𝑘 . Thus the rate 𝜌 of such a code must be 𝑂 (1/lg𝑛).

5.3 The GHKRZW construction

We now turn to a tree code construction by Gelles, Haeupler, Kol, Ron-Zewi and Wigder-
son [GHKRZW16] (which, for brevity, we shall refer to as the GHKRZW construction). While
related to the EKS construction discussed in Section 5.2, this construction is qualitatively dier-
ent from the previous constructions considered in this paper in that it insists upon a constant,
non-vanishing rate even if at the cost of a vanishing distance parameter. We show here that for
the immediacy guarantee the GHKRZW construction achieves, and given its requirement of a
constant rate, the Ω(1/log𝑛) vanishing distance it achieves is tight up to a log log𝑛 factor.

The GHKRZW construction (described in [GHKRZW16, Section 5.1]) demonstrates the follow-
ing: there exists a positive integer 𝑘0, such that for every 𝜖 ∈ (0, 1) there is a tree code 𝑇 , with
transmission length 𝑛, input alphabet Σin ··= {0, 1}(lg𝑛)/𝜖 , output alphabet Σ ··= {0, 1}1+(lg𝑛)/𝜖 (so
that its rate is 1/(1 + 𝜖)) and distance parameter 𝛿 is 𝜖

32𝑘0·lg𝑛 . Here, it is convenient to assume
(as we do now) that lg𝑛, 𝑘0 and 1/𝜖 are all powers of two, and that 𝑘0 ≥ 16. (The notation and
conventions here are essentially exactly those adopted in [GHKRZW16, Section 5.1]).

The GHKRZW immediacy condition. The distance proof for the GHKRZW construction,
given in Section 5.2 of [GHKRZW16], in fact establishes the following immediacy property. Let
𝑘0, 𝜖 be parameters not growing with the transmission length 𝑛 (as above) and let𝑚 ··= (𝑘0/𝜖) · lg𝑛
be as dened in [GHKRZW16]; note that𝑚 is also a power of two by the assumptions adopted
above. Let 𝑡 be any integer satisfying lg𝑚 ≤ 𝑡 ≤ lg𝑛 − 1. Suppose that 𝑥,𝑦 ∈ Σin dier at a
position 𝑖 ≤ 𝑛 − 2𝑡 , and Let 𝑖0 = 𝑖0(𝑡) ··=

⌊
(𝑖 − 1)2−𝑡

⌋
· 2𝑡 be the largest multiple of 2𝑡 that is smaller

than 𝑖 , as dened in [GHKRZW16, Section 5.2]. Then,

ΔHamming
(
𝑇 (𝑥)(𝑖0,𝑖0+2𝑡+1],𝑇 (𝑦)(𝑖0,𝑖0+2𝑡+1]

)
≥ 𝛿 · 2𝑡+1. (45)

To prove this, one repeats the proof in Section 5.2 of [GHKRZW16], ignoring the parameter 𝑗
in that proof, and also ignoring the condition, stipulated in the proof, that 𝑖 is the rst position
on which 𝑥 and 𝑦 dier. The last paragraph on p. 1930 in [GHKRZW16], combined with the rst
display on p. 1931 (neither of which use the latter condition that 𝑖 is the rst position on which 𝑥
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and 𝑦 dier), then yields (a slightly stronger version of) the above condition, after we note that 𝛿′

in that proof is at least 8𝛿 , where 𝛿 , as above, is the distance parameter achieved by the GHKRZW
construction.5

We now show that any constant rate tree code satisfying the immediacy condition specied by
eq. (45) cannot have distance much better than the GHKRZW construction. The proof is similar to
the case of an exponential immediacy function analyzed in Section 3.1.

As in that proof, our goal is to show that such a code is an immediacy code with appropriate
parameters. We begin by dening the corresponding laminar partition. Let 𝛿 ∈ (0, 1) be the
distance parameter (possibly dependent upon 𝑛) of such a code. Let 𝜅 ··= blg(2/𝛿)c be a positive
integer so that 2−𝜅 < 𝛿 ≤ 2−𝜅+1. Set

ℓ ··= 1 + b(lg (𝑛/(2𝑚)))/𝜅c . (46)

Let 𝑃0 be the partition of [𝑛] into 𝑛 singletons, and for 1 ≤ 𝑖 ≤ ℓ , dene 𝑃𝑖 to the partition of [𝑛]
into blocks of consecutive integers, each of length 𝑛/2𝜅 ·(ℓ−𝑖) . Thus, for 1 ≤ 𝑖 ≤ 𝑖 + 1, any set 𝐵 in 𝑃𝑖
is an interval of the form (𝑏 · 2𝑡+1, (𝑏 + 1) · 2𝑡+1], where 𝑏 is an integer and 𝑡 = lg𝑛 −𝜅 · (ℓ − 𝑖) − 1.
For 1 ≤ 𝑖 ≤ ℓ , convert 𝑃𝑖 into a tagged partition by dening, for each 𝐵 ∈ 𝑃𝑖 , le(𝐵) to be the set
of the smallest 2−𝜅 · |𝐵 | elements in 𝐵 (so that right(𝐵) = 𝐵 \ le(𝐵)). It is easy to verify that the
above construction gives a (2−𝜅, ℓ)-laminar partition of [𝑛].

We now show that any code satisfying the immediacy condition of eq. (45) must be a (2−𝜅, ℓ)-
immediacy code. We use the laminar partition dened above. Fix 1 ≤ 𝑗 ≤ ℓ and 𝐵 ∈ 𝑃 𝑗 .
Let 𝑡 = lg𝑛 − 𝜅 · (ℓ − 𝑗) − 1 be as above (note that 𝑡 satises lg𝑚 ≤ 𝑡 ≤ lg𝑛 − 1), so that
𝐵 = (𝑏 · 2𝑡+1, (𝑏 + 1) · 2𝑡+1] for some non-negative integer 𝑏. Consider any 𝑥,𝑦 ∈ Σ𝑛in that dier on
le(𝐵) = (𝑏 · 2𝑡+1, (𝑏 + 2−𝜅) · 2𝑡+1]. Thus, there exists 𝑖 ∈ le(𝐵) ⊆ (𝑏 · 2𝑡+1, (𝑏 + 1/2) · 2𝑡+1] such
that 𝑥𝑖 ≠ 𝑦𝑖 . The immediacy condition of eq. (45) then gives that

ΔHamming (𝑇 (𝑥)𝐵,𝑇 (𝑦)𝐵) ≥ 𝛿 · 2𝑡+1 > 2−𝜅 · 2𝑡+1 = |le(𝐵) | . (47)

Here the second inequality uses 𝛿 > 2−𝜅 . Thus, we see that the Hamming distance between 𝑇 (𝑥)𝐵
and 𝑇 (𝑦)𝐵 is strictly more than the size of le(𝐵) whenever 𝑥le(𝐵) and 𝑦le(𝐵) dier. This implies
that 𝑇 (𝑥)right(𝐵) and 𝑇 (𝑦)right(𝐵) must dier whenever 𝑥le(𝐵) and 𝑦le(𝐵) dier. This establishes
that 𝑇 is a (2−𝜅, ℓ)-immediacy code.

We now apply Theorem 4 to see that a tree code 𝑇 : Σ𝑛in → Σ𝑛 satisfying the immediacy

5For the convenience of the reader, we note here that there is a minor typographical error on p. 1930 of
[GHKRZW16], where the “max” in the rst display in Section 5.2 should actually be “min”.
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condition of eq. (45) must therefore satisfy

lg |Σ|
lg |Σin |

≥ 2−𝜅 · ℓ
eq. (46)
≥

𝛿 · lg 𝑛
2𝑚

2 · lg(2/𝛿) . (48)

Recall that𝑚 = (𝑘0/𝜖) · lg𝑛, where 𝑘0, 𝜖 do not grow with 𝑛. Thus, eq. (48) shows that any constant
rate tree code satisfying the immediacy condition eq. (45) of the GHKRZW construction must
have a distance parameter 𝛿 satisfying

𝛿

log(1/𝛿) = 𝑂 (1/log𝑛). (49)

In particular, a code with the immediacy guarantee that the GHKRZW construction achieves
cannot achieve a distance parameter 𝛿 that is 𝜔

(
log log𝑛
log𝑛

)
.
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