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Abstract

The Range Avoidance (Avoid) problem C -Avoid[n,m(n)] asks that, given a circuit in a
class C with input length n and output length m(n) > n, find a string not in the range of
the circuit. This problem has been a central piece in several recent frameworks of proving
circuit lower bounds and constructing explicit combinatorial objects. Previous works by Korten
(FOCS’ 21) and Ren, Santhanam, and Wang (FOCS’ 22) showed that algorithms for Avoid are
closely related to circuit lower bounds. In particular, Korten’s work established the equivalence
between FPNP algorithms for general Avoid and 2Ω(n) general boolean circuit lower bounds for
the class ENP. In this work, we significantly complement these works by generalizing Korten’s
result to restricted circuit classes, and obtaining the following:

• For any C ⊇ AC0, there is an FPNP algorithm for C -Avoid[n, n1+ε] (for any constant
ε > 0) if and only if ENP cannot be computed by C circuits of size 2o(n).

• For any integer i, if ENP cannot be computed by o(2n/n) size NCi+1 circuits, then there is
an FPNP algorithm for NCi-Avoid[n, 2n]. Note that by an extension of Ren, Santhanam,
and Wang (FOCS’ 22), an FPNP algorithm for NCi-Avoid[n, n + nδ] for any constant
δ ∈ (0, 1) implies ENP cannot be computed by o(2n/n) size NCi+1 circuits.

These results yield the first characterizations of FPNP C -Avoid algorithms for low-complexity
circuit classes such as AC0. We also extend our results to the average-case analog of Avoid,
the Remote Point (Remote-Point) problem, and establish similar equivalence between FPNP

algorithms and the average-case circuit lower bounds for ENP. Finally, we also present two
improved algorithms for NC0-Avoid:

• A family of 2n
1− ε

k−1
+o(1)

time algorithms for NC0
k-Avoid[n, n1+ε] for any ε > 0, exhibiting

the first subexponential-time algorithm for any super-linear stretch.

• Faster local algorithms for NC0
k-Avoid[n, n+1] running in time O(n2

k−2
k−1n), improving the

naive 2n · poly(n) bound.

∗Department of Computer Science, Johns Hopkins University, lixints@cs.jhu.edu. Supported by NSF CAREER
Award CCF-1845349 and NSF Award CCF-2127575.

†Department of Computer Science, Johns Hopkins University, yzhong36@jhu.edu. Supported by NSF CAREER
Award CCF-1845349.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 49 (2025)



Contents

1 Introduction 1
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Equivalence between FPNP C -Avoid Algorithms and Exponential-size C
Circuit Lower Bound against ENP . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 New NC0-Avoid Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Paper Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Preliminaries 9
2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 NC Circuits and AC Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Some Previous Results on NC0-Avoid . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Universality Property and Truth Table Generator . . . . . . . . . . . . . . . . . . . . 11
2.5 Bipartite Vertex Expander . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Local Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 The Existence of PRGs in NC0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Generalized GGM-Tree and Conditional FPNP Algorithms 13
3.1 Generalized Korten’s Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Conditional FPNP Algorithm for NCi-Avoid[n, 2n] . . . . . . . . . . . . . . . . . . . 15
3.3 Conditional FPNP Algorithm for C -Avoid[n, n1+ε] . . . . . . . . . . . . . . . . . . . 16
3.4 Generalization of Korten’s Reduction to Remote-Point . . . . . . . . . . . . . . . . 18

4 A Family of 2n
1− ε

k−1
+o(1)

Time Algorithms for NC0-Avoid[n, n1+ε] 19
4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Implications for Local PRGs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 A Faster Local Greedy Algorithm for NC0
k-Avoid[n, n+ 1] 21

5.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Conclusion and Open Problems 23

A Universality Property of Low-Depth Circuits 28

B NCi+1-Avoid[n, n+ 1] ≤FP NCi-Avoid[n, n+ 1] 30

C Reductions Between Avoid Instances via Direct-Sum 31

D Missing Proofs 32
D.1 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

E Bipartite Vertex Expanders in Various Parameter Regimes 33
E.1 Proof of Theorem 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
E.2 Proof of Theorem 2.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

F Reducing Explicit Construction of Optimal Ramsey Graphs to NC0
4-Avoid 35



1 Introduction

The Range Avoidance problem (Avoid for short) is a total search problem introduced in [KKMP21,
Kor22, RSW22], which has recently garnered significant attention. This interest stems from several
natural motivations, such as identifying natural total search problems in the polynomial hierarchy
(more specifically Σ2) and compelling applications in proof complexity. Notably, Korten [Kor22]
demonstrated that numerous explicit constructions of important combinatorial objects can be re-
duced to instances of Avoid. These include optimal Ramsey graphs, expander graphs, rigid matri-
ces, and hard functions, among others.

At its core, the Range Avoidance problem captures a broad class of objects whose existence is
typically proven via the probabilistic method [Erd47]. As such, solving Avoid offers a potentially
unified way for constructing these objects explicitly. We now define the problem formally.

Definition 1.1 (Avoid). The range avoidance problem, denoted by Avoid, is the total search
problem in which, given a Boolean circuit C : {0, 1}n → {0, 1}m for m := m(n)1> n, output any
y ∈ {0, 1}m \ Range(C), where Range(C) := {C(x) | x ∈ {0, 1}n}.

Closely related is the more general Remote-Point2 problem, which is studied extensively in
previous works [KKMP21, CHLR23, CL24] and can be thought as the “average-case analog” of
Avoid.

Definition 1.2 (Remote-Point). Given a code where the encoding function is represented by a
circuit C : {0, 1}n → {0, 1}m for m := m(n) > n and the codewords are the range of the circuit,
find an m-bit string that is far from all codewords in Hamming distance.

While the original formulation of Avoid allows arbitrary circuits, subsequent work initiated
by [RSW22] has focused on the problem for restricted circuit classes.

Definition 1.3. Let C be a (multi-output) circuit class,

• C -Avoid[n,m] is the class of Avoid problems where the circuits are in C , with input length
n and output length m;

• C -Remote-Point[n,m, c(n)] is the class of Remote-Point problems where the circuits
are in C , with input length n, output length m and whose output has relative hamming distance
1/2− c(n) from any strings in the range of C .

A prominent motivation for studying C -Avoid is its implication for circuit lower bounds. In par-
ticular, [RSW22] showed that for any circuit class C satisfying the universality property — namely,
the truth table generator TTC (i.e., a circuit that, given an encoding of a circuit C ∈ C , outputs
C’s truth table) is itself computable by C circuits (e.g., AC0,TC0,NC1) — efficient algorithms for
C -Avoid imply circuit lower bounds for C . Specifically, solving C -Avoid in FP (resp. FPNP)
implies that E (resp. ENP) does not have C circuits.3 Analogously, FP (resp. FPNP) algorithms
for C -Remote-Point imply average-case C circuit lower bounds, which are central questions in
the area of average-case complexity that have resulted in a large body of works improving corre-
lation bounds for various models of computation (e.g., [Che24, CR22, CLW20, CL23, LZ24]). On
the other hand, these results also imply that it is potentially hard to design efficient algorithms for

1The function m(n) is called the stretch of the circuit.
2We sometimes use RPP as a shorthand for Remote-Point.
3The size of the circuit lower bound depends on the stretch of the Avoid instance.
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C -Avoid even when C is restricted, hence many previous works also give conditional algorithms
under various assumptions.

Furthermore, these works also demonstrate that Avoid is already extremely interesting and
useful for restricted classes of circuits, for example, even when the circuit is in the class NC0, and
even when each output bit only depends on at most 4 input bits. Below, we use NC0

k to stand for
circuits in NC0 where each output bit depends on at most k input bits. The same notation goes for
the class NC1. In this sense, the work of [RSW22] shows that, suppose for every constant ε > 0,
there is an FP (resp. FPNP) algorithm for NC0

4-Avoid[n, n + nε], then for every k ≥ 1, there is
an FP (resp. FPNP) algorithm for NC1

k-Avoid; and for every γ > 0, there is a family of functions
in E (resp. ENP) that cannot be computed by Boolean circuits of depth n1−γ . Furthermore,
[GLW22] showed that constructing binary linear codes achieving the Gilbert-Varshamov bound or
list-decoding capacity, and constructing rigid matrices reduce to NC0

4-Avoid; and [GGNS23] showed
that constructing rigid matrices reduces even to NC0

3-Avoid.
Driven by these motivations and applications, there have been several works studying both al-

gorithms and hardness results for Avoid and Remote-Point. On the algorithm side, [CHLR23] de-
signed an unconditional FPNP algorithm for ACC0-Remote-Point[n, qpoly(n), 1/poly(n)] (qpoly(n)
denotes quasi-polynomial(n)), recovering the state-of-the-art average-case lower bound for ACC0

against ENP. A recent breakthrough [CHR24, Li24] showed that S2E ̸⊂ i.o.-SIZE[2n/n]4 via a
single-valued FS2P algorithm to Avoid, improving over the decades’ old lower bound that ∆3E =
EΣ2 ̸⊂ SIZE[2o(n)] [MVW99]. On the hardness side, Ilango, Li, and Williams [ILW23] showed that
under the assumption that subexponential secure indistinguishability obfuscation (iO) exists [JLS21]
and NP ̸= coNP, we have that Avoid ̸∈ FP (i.e., there are no polynomial time algorithms to solve
Avoid). A subsequent work by Chen and Li [CL24] generalizes the framework and shows that under
plausible cryptographic assumptions, C -Avoid and C -Remote-Point are not in FP, or even not
in SearchNP, when the underlying C has small enough stretch (e.g., in the case of NC0-Avoid,
the hardness works for the minimal stretch m(n) = n+ 1).

However, for certain applications (e.g., explicit constructions of important combinatorial objects)
one would desire relatively efficient algorithms (e.g., polynomial-time algorithms or at least FPNP

algorithms). Yet even for the case of NC0-Avoid, the current state-of-the-art results only work for
large stretches. For example, the polynomial-time algorithms for NC0

k-Avoid [GLW22, GGNS23]
require the stretch to be at least nk−1/ log(n). Most recently, this was improved to Õ(nk/2) for even
k by [KPI25], which also improved the stretch to (Õ(nk/2+(k−2)/(2k+4))) with an FPNP algorithm
for odd k. A conditional FPNP algorithm was proposed in [RSW22] for NC0-Avoid with stretch
n1+ε for any constant ε, and whether there is an unconditional FPNP algorithm for such stretch is
left as a central open question in [RSW22]. Even if one allows for subexponential (2O(n1−ε)) time,
the best known algorithms for NC0

k-Avoid only works for stretch nk−2+ε [GGNS23].
A recent work by Kuntewar and Sarma [KS25] showed that the monotone version of NC0

3-
Avoid[n, n+ 1], i.e., Monotone-NC0

3-Avoid[n, n+ 1] can be solved in polynomial time; the sym-
metric version of NC0

3-Avoid[n, 8n + 1], i.e., Symmetric-NC0
3-Avoid[n, n + 1] can be solved in

polynomial time.
These results fall short of the above mentioned goal of a unified approach towards explicit con-

structions of combinatorial objects, as most interesting explicit construction problems only reduce
to C -Avoid with very small stretch. For example, in the case of NC0-Avoid, to show a better circuit
lower bound, one needs m = n+ no(1); while finding rigid matrices enough for Valiant’s application
needs m = n+ n2/3 [GGNS23]. This was also noted and remarked in [RSW22].

4The prefix “i.o.-” indicates that S2E is not infinitely often in SIZE[2n/n], that is S2E is almost-everywhere hard
for SIZE[2n/n].
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“We think this result reveals some fundamental difference between the small-stretch
regime (m(n) = n+1), for which an avoidance algorithm for NC0 implies breakthrough
lower bounds, and the large-stretch regime (m(n) = n1+Ω(1)), for which an avoidance
algorithm for NC0 seems within reach (Theorem 3.12).”

Therefore, it is interesting and important to study the tradeoff between the stretch and the
hardness for C -Avoid when C is restricted (e.g., NC0, AC0 and ACC0), and similarly for C -
Remote-Point as better algorithms in this case may lead to stronger average-case circuit lower
bounds. In this paper, we make progress towards this direction, by establishing several new results
in terms of both algorithms and hardness for C -Avoid and C -Remote-Point, where C represents
low-depth circuits.

1.1 Our Results

While as mentioned before, several previous works showed that algorithms for C -Avoid or C -
Remote-Point with small stretch lead to circuit lower bounds, the works [Kor22, CHR24] re-
markably showed that the converse is also true in the case where C is the class of unrestricted
Boolean circuits. Specifically, they showed that

Avoid ∈ FPNP ⇐⇒ ENP ̸⊂ i.o.-SIZE[2o(n)] ⇐⇒ ENP ̸⊂ i.o.-SIZE[2n/n]5

In particular, assuming ENP does not have subexponential-size circuits implies an FPNP al-
gorithm for Avoid on unrestricted circuits. This assumption is significantly weaker than the
classical hardness required in PRG-based approaches [IW97, KvM02], which assume that E lacks
subexponential-size SAT-oracle circuits to derandomize FZPPNP.

Thus, for unrestricted Boolean circuits, algorithms for Avoid and lower bounds for ENP are,
in a precise sense, equivalent. However, such an equivalence was previously unknown for restricted
circuit classes. Our first major contribution is to significantly complement previous works, by
establishing (near) equivalence when C is restricted. As a result, we also obtain conditional FPNP

algorithms for C -Avoid and C -Remote-Point for a vast range of circuit classes C with suitable
smaller stretch, under much weaker assumptions than those needed for general Avoid in [Kor22].

1.1.1 Equivalence between FPNP C -Avoid Algorithms and Exponential-size C Circuit
Lower Bound against ENP

As mentioned in the above paragraphs, previous work [Kor22, RSW22] established the direction
from circuit lower bounds to Avoid algorithms. In this work, we complete the equivalence by
showing the converse direction for a range of natural restricted circuit classes.

Results for NC Circuits with Small Stretch. Our first set of results concerns NCi circuits.
We show that near-maximal circuit lower bounds against ENP in NCi+1 imply efficient algorithms
for NCi-Avoid with small stretch:

Theorem 1.1. For any integer i, if ENP requires near-maximum (Ω(2n/n)) size NCi+1 circuits,
then there is an FPNP algorithm for NCi-Avoid[n, 2n].

Conversely, extending ideas from [RSW22] (with the proof deferred to Appendix D), we show:
5The original equivalence obtained by [Kor22] is ENP ̸⊂ i.o.-SIZE[2o(n)] ⇐⇒ ENP ̸⊂ i.o.-SIZE[2n/(2n)], which

can be strengthened by a finer encoding arguments of circuits [CHR24].
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Theorem 1.2. For any constant δ ∈ (0, 1) and any integer i, NCi-Avoid[n, n+ nδ] ∈ FPNP =⇒
ENP ̸⊂ i.o.-NCi+1-SIZE[o(2n/n)].

Together, these results nearly characterize the hardness of proving near-maximum ENP lower
bounds against NCi+1 in terms of FPNP algorithms for NCi-Avoid.

We also generalize this characterization to the Remote-Point problem:
Recall the definition of good function from [RSW22].

Definition 1.4 (Good function [RSW22]). A function f : N → N is good if there is a Turing
machine that, given the input n (in binary), outputs the value f(n) (also in binary), and runs in
time at most poly(log n, log f(n)).

Theorem 1.3. For any integer i and any monotone function c : N→ N that is good, if ENP cannot
be (1/2 + c(2

n

2 ))-approximated by near-maximum (Ω(2n/n)) size NCi+1 circuits, then there is an
FPNP algorithms for NCi-Remote-Point[n, 2n, c(n)].

Theorem 1.4. Let c : N → N be any monotone function c : N → N that is good. For any
constant δ ∈ (0, 1) and any integer i, NCi-Remote-Point[n, n + nδ, c(n)] ∈ FPNP =⇒ ENP ̸⊂
i.o.-Avgc( 2n

2
)NC

i+1-SIZE[o(2n/n)].

Results for Circuit Classes Containing AC0 with Polynomial Stretch. In the regime of
polynomial stretch, we obtain tight equivalences for circuit classes C satisfying AC0 ⊆ C :

Theorem 1.5. For any circuit class C such that AC0 ⊆ C (e.g., AC0,ACC0,TC0,NC1), ENP

requires 2Ω(n) size C circuits if and only if there is an FPNP algorithm for C -Avoid[n, n1+ε] for
any constant ε > 0.

Theorem 1.6. For any circuit class C such that AC0 ⊆ C and any monotone function c : N→ N
that is good, ENP cannot be (1/2 + c(2

n
1+ε ))-approximated by 2Ω(n) size C circuits if and only if

there is an FPNP algorithm for C -RPP[n, n1+ε, c(n)] for any constant ε > 0.

Moreover, we show analogous equivalences for FQPNP algorithms and EXPNP circuit lower
bounds:

Theorem 1.7. For any circuit class C such that AC0 ⊆ C , EXPNP requires 2Ω(n) size C circuits
if and only if there is an FQPNP algorithm for C -Avoid[n, n1+ε] for any constant ε > 0.

Theorem 1.8. For any circuit class C such that AC0 ⊆ C and any monotone function c : N→ N
that is good, EXPNP cannot be (1/2+ c(2

n
1+ε ))-approximated by 2Ω(n) size C circuits if and only if

there is an FQPNP algorithm for C -RPP[n, n1+ε, c(n)] for any constant ε > 0.

These results represent the first equivalence theorems connecting algorithms for C -Avoid and
C -Remote-Point with explicit lower bounds for ENP and EXPNP in restricted circuit classes.

We remark that the complexity-theoretic assumptions we made for Theorem 1.5 and Theorem 1.1
are consistent with our current knowledge of circuit lower bounds.

Connections to Open Problems. Our results make progress on the following open questions:

Open Problem 1.1 (Open problem 2 in [Kor25]). Can we reduce C -Avoid to circuit lower bounds
for C for any circuit class C ⊆ P/poly?
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Open Problem 1.2 (Open problem 7 in [GGNS23]). Do there exist polynomial-time algorithms
with NP oracles that solve NC0

3-Avoid for stretch m = o(n2/ log(n))?

Specifically, Theorem 1.5 and Theorem 1.7 address Open Problem 1.1 in the stretch regime
n 7→ n1+ε, for any constant ε > 0, and any circuit classes containing AC0. In addition, Theorem 1.2
and Theorem 1.1 also nearly pin down the hardness of proving ENP requires near-maximum NCi+1

circuit in terms of NCi-Avoid algorithm: proving such a lower bound should be no harder than
proving NCi[n, n+nδ] ∈ FPNP for any δ ∈ (0, 1), but should be no easier than NCi[n, 2n] ∈ FPNP6.

Theorem 1.5 partially addresses Open Problem 1.2. Given the high plausibility of ENP ̸⊂ AC0-
SIZE[2o(n)], one would expect there to be an FPNP algorithm even for AC0-Avoid[n, n1+ε].

1.1.2 New NC0-Avoid Algorithms

As our second contribution, we design a new 2n
1− ε

k−1
+o(1)

time algorithm for NC0
k-Avoid[n, n1+ε].

This gives the first subexponential-time7 algorithm for NC0
k-Avoid with any super-linear stretch for

any constant k.

Theorem 1.9. For any ε > 0, there exists a family of 2n
1− ε

k−1
+o(1)

time algorithms for NC0
k-

Avoid[n, n1+ε]. In addition, the algorithm can output a succinct representation of ≥ 1/2 fraction
of strings outside the range.

Previously, the best known algorithms with similar runtime only worked for stretch n 7→
nk−2+ε [GGNS23], making our result the first to achieve subexponential-time performance with
superlinear stretch for all k.

Using a known connection between NC0-Avoid and local PRGs, we show that faster Avoid
algorithms would contradict plausible cryptographic assumptions.

Theorem 1.10. Suppose Assumption 2.11 is true, there does not exist an algorithm for NC0
k-Avoid

running in time 2n
β for some constant 0 < β < 1 that identifies negl(n) fraction of strings outside

the range.

We also design an improved algorithm for the regime of minimal stretch m = n+ 1, improving
over brute-force search.

Theorem 1.11. There exists a family of O(n · 2
(k−2)n
k−1 ) time algorithms for NC0

k-Avoid[n, n+ 1].

Previous and our algorithmic results are summarized in Table 1. Overall, these results expand the
algorithmic landscape for C -Avoid across both small and large stretch regimes, with implications
for circuit lower bounds and local PRG security.

1.2 Technical Overview

Equivalence between C -Avoid[n, n1+ε] ∈ FPNP and ENP ̸⊂ i.o.-C -SIZE[2o(n)]. We establish
a tight equivalence between the complexity of solving C -Avoid[n, n1+ε] in FPNP and proving
exponential lower bounds for C circuits against ENP, generalizing the framework of Korten [Kor22],
who proved that Avoid ∈ FPNP if and only if ENP ̸⊂ i.o.-SIZE[2o(n)].

6In the case of i = 0, the results apply to NC0
4-Avoid.

7There are two notions of subexponentiality in literature:
⋂

c<1 2
O(nc) and

⋃
c<1 2

O(nc). Here, we denote by
subexponential a function that is contained in

⋃
c<1 2

O(nc).
8We use svFS2P to denote single-valued FS2P algorithm

5



Problem Algorithm Assumption Reference

Avoid[n, n+ 1] FPNP ENP ̸⊂ i.o.-SIZE[2o(n)] [Kor22]

Avoid[n, n+ 1] svFS2P
8 − [CHLR23, Li24]

NC0
k-Avoid[n, nk−1/ log(n)] FP − [GGNS23]

NC0
k-Avoid[n, nk−2+ε] 2O(n1−ε) − [GGNS23]

NC0
2t-RPP[n,Ot(n

t log n), O(1)] FP − [KPI25]

NC0
2t+1-Avoid[n, Õ(nt+ 2

2t+3 )] FPNP − [KPI25]

NC0-Avoid[n, n1+ε] FPNP Assumption 2.4 [RSW22]

ACC0-RPP[n, qpoly(n), 1/poly] FPNP − [CHLR23]

C -RPP[n, n1+ε, c(n)] FPNP ENP ̸⊂ i.o.-Avg
c(2

n
1+ε )

-C -SIZE[2o(n)] Theorem 1.5

NCi-RPP[n, 2n, c(n)] FPNP ENP ̸⊂ i.o.-Avgc( 2n
2
)-NC

i+1-SIZE[o(2n/n)] Theorem 1.1

NC0
k-Avoid[n, n1+ε] 2n

1− ε
k−1

+o(1)

− Theorem 1.9

NC0
k-Avoid[n, nk−1/ logk−2(n)] FP Assumption 4.3 Theorem 4.4

NC0
k-Avoid[n, n+ 1] O(n2

k−2
k−1

n) − Theorem 1.11

Table 1: Range Avoidance and Remote Point Algorithms (AC0 ⊆ C ).

The forward direction — namely, that an FPNP algorithm for C -Avoid implies exponential C
circuit lower bounds against ENP — was largely established in [RSW22]. A key component of this
argument is the universality property of the circuit class C : that the truth table generator TTC can
itself be computed by a circuit in C . We strengthen and formalize this notion, showing that any
circuit class C containing AC0 satisfies this property. The intuition is that the universal circuit U
acts as a decoder: given an encoding of a circuit C and an input x, it decodes C and evaluates it on
x. Since decoding and simple simulation can be implemented in AC0, this universality follows for
all such classes.

The reverse direction, which shows that exponential C circuit lower bounds for functions in ENP

imply that C -Avoid ∈ FPNP, proceeds by generalizing Korten’s construction based on the GGM-
tree. We illustrate the approach in the context of AC0-Avoid[n, n1+ε], although the framework
extends to the broader C -Remote-Point[n, n1+ε] problem for any C containing AC0.

We first briefly recall Korten’s reduction [Kor22]. Given an instance of Avoid[n, 2n], which
we call C, one constructs a new circuit GGM[C] by composing C along the nodes of a GGM-tree
of height k. The resulting circuit has stretch n · 2k, and the output y ∈ Range(GGM[C]) can be
regarded as encoding the truth table of a function g, whose input are the bits used to select a path
in the tree. Importantly, due to redundancy and the tree structure in GGM[C], this output y can be
computed by a relatively small-size circuit at the cost of increasing the depth. Thus, the complexity
of the function g — whose truth table is y — can be bounded in terms of the complexity of C and
the structure of the GGM-tree.

We generalize this framework in the following three aspects: (1) the fan-out of the tree, denoted
by q; (2) the height of the tree, denoted by k; and (3) the circuit C, which we draw from a restricted
circuit class C .
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Let ℓ denote the stretch of the resulting circuit after composing C through the generalized
GGM-tree, which we denote by GGMℓ,q,k[C] (see Figure 1 for an illustration). It is easy to see
that ℓ = n · qk. To analyze the complexity of any y ∈ Range(GGMℓ,q,k[C]), we associate it with a
function g : {0, 1}log ℓ → {0, 1} (corresponding to the structure of the GGM-tree), whose truth table
is exactly y.

...

......

...

......

...

Figure 1: Generalized q-ary GGM-Tree

The circuit computing g can be constructed by composing the circuit C with k layers of multi-
plexing (selection) and a final indexing operation. These multiplexing and indexing subcircuits can
be implemented by O(n)-size DNF formulas, and hence belong to any class containing DNF (such
as AC0).

Assuming C ∈ AC0
d where AC0

d denotes depth d AC0 circuits, to ensure that g ∈ AC0, we must
take k = O(1). By setting the fan-out q = nε, the overall stretch becomes ℓ = n · nkε = n1+kε, and
the resulting circuit g has size O(n) +O(|C| · k) = O(n1+ε).

Now suppose there exists a function f ∈ ENP that requires AC0
dk circuits of size at least ℓγ for

some constant γ ∈ (0, 1). Then for sufficiently large ℓ, f cannot be in the range of GGMℓ,q,k[C],
since all such y have low circuit complexity. Thus, we can use f to find a string not in Range(C)
by traversing the GGM-tree with an NP oracle backwards. This yields an FPNP algorithm for
AC0

d-Avoid[n, nq], completing the reduction.
Altogether, this establishes a precise characterization:

C -Avoid[n, n1+ε] ∈ FPNP ⇐⇒ ENP ̸⊂ i.o.-C -SIZE[2o(n)]

for any C containing AC0, and where the stretch satisfies nq = n1+ε for any arbitrary constant
ε > 0.

Subexponential time NC0-Avoid algorithm for any superlinear stretch. We present the
first subexponential-time algorithm for NC0

k-Avoid[n, n1+ε], achieving runtime 2n
1− x

k−1
+o(1)

for any
ε > 0. Our approach exploits structural limitations of local circuits in terms of their associated
bipartite graphs to identify small subcircuits with poor expansion, enabling targeted enumeration
over their input-output behavior.

The algorithm is based on the following high-level idea: every NC0
k[n, n

1+ε] circuit corresponds
to a degree-k left-regular bipartite graph with n right vertices (inputs) and m = n1+ε left vertices
(outputs). Using standard probabilistic methods, one can show that a random left-regular bipartite
graph with degree k, n right vertices and m(n) = n1+ε left vertices is a (K = o(n), A = 1 − o(1))
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vertex expander — meaning that for every subset of left vertices of size ≤ K, it has ≥ KA neighbors.
One would expect these probabilistic arguments to be actually tight. Assuming so, we would be
able to find a Hall-violating subsets (i.e., a subset of outputs whose neighbors have size smaller than
the subset of outputs) in any such graphs.

Luckily, the lower bound results on disperser graphs from [RTS00] can be adapted to argue that
such graphs necessarily contain Hall-violating subsets of outputs of size at most K = n1− ε

k−1 . This
means that every such circuit contains a subcircuit of size K that maps a subset of inputs to outputs
non-surjectively.

Our algorithm proceeds by brute-force search for such Hall-violating subsets S ⊆ [m] of size
K. Once a violating subset is found, we isolate the corresponding subcircuit C′ of size K, and
enumerate all strings in {0, 1}|Γ(S)| to find those not in the image of C′. We then lift these local
non-image strings to full-length output strings by assigning arbitrary values outside of S, yielding
many globally valid strings not in the image of the full circuit C.

This gives the following guarantee: for every NC0
k[n, n

1+ε] circuit, we can find (and succinctly
represent) at least 2n

1+ε−1 strings outside the range of the circuit in time

O(2(
m
K)) = 2n

1− ε
k−1

+o(1)

.

Under a conjectured tight bound on bipartite dispersers, we further refine this analysis to
show that even smaller Hall-violating subsets exist, yielding improved runtimes of 2n

1− ε
k−2

+o(1)

.
Notably, this leads to polynomial-time algorithms for NC0

k-Avoid in stretch regimes as low as
m = nk−1/ logk−2 n, improving prior work [GGNS23] which required larger stretch.

Finally, we connect our algorithmic result to pseudorandomness. We show that any subexponential-
time Avoid algorithm capable of identifying a non-negligible fraction of non-image strings for NC0

k

circuits contradicts the existence of secure NC0
k-based pseudorandom generators (PRGs) against

subexponential-time adversary. In particular, under standard assumptions about local PRGs, our
algorithm demonstrates that no such PRG with stretch n1+ε can be secure against 2nγ -time distin-
guishers for any γ ≥ 1− ε

k−1 + o(1), even with constant distinguishing advantage.

Improvement over brute-force for NC0
k-Avoid[n, n+1]. We design a greedy, local algorithm

for solving NC0
k-Avoid[n, n+1] that proceeds by iteratively fixing output bits to values that provably

shrink the preimage space of the circuit. At each step, the algorithm selects an unfixed output bit
yi and assigns it a value such that the number of inputs consistent with all fixed output values
decreases by at least a factor of 1/2. This ensures that after at most n such assignments, the
preimage space collapses to a singleton or empty set, yielding a string outside the image of the
circuit.

The core technical challenge lies in bounding the “decision space” i.e., the portion of the input
space that must be explored to determine the effect of fixing an output bit. We analyze this by
modeling the NC0

k circuit as a bipartite dependency graph between input and output bits, and we
introduce the notion of the traversed space: the subset of input variables affected by the fixed output
bits. We show that after fixing t output bits, the maximum size of any connected component (i.e.,
subspace) in the traversed space is bounded by 2(k−2)t+1. This follows from structural properties of
bounded-locality circuits and a case-based inductive argument.

Combining this with the observation that fixing each output bit reduces the entropy of the input
space by one, we find that the decision space remains small as long as t ≤ n/(k− 1). In particular,
the algorithm only needs to examine subspaces of size at most

2(k−2)n/(k−1),
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leading to a total runtime of O(n · 2(k−2)n/(k−1)). Notably, when k = 2, the runtime becomes linear,
reproducing the result of [GLW22]. For larger k, this provides a non-trivial improvement over brute
force.

We also show a matching lower bound for this greedy strategy: under mild assumptions on the
structure of random NC0

k circuits (specifically, that they form good bipartite vertex expanders), any
such greedy algorithm necessarily explores an exponential-sized decision space in the worst case.
This demonstrates that while the algorithm performs well for k = 2, solving NC0

k-Avoid efficiently
in the general case may require fundamentally different techniques.

1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2 we give some preliminary knowledge
and some primitives from prior works. In Section 3 we present the generalized Korten’s framework,
conditional FPNP algorithms as well as the precise characterization of ENP circuit lower bound
in terms of Avoid (Remote-Point) problems. In Section 4 we present the subexponential-time
NC0-Avoid algorithm for any superlinear stretch. In Section 5 we present the non-trivial algorithm
for NC0-Avoid[n, n+ 1]. Finally, we conclude in Section 6 with some open problems.

2 Preliminaries

2.1 Notations

We use C to denote a circuit class, e.g., NC0,AC0,ACC0,TC0, etc. We use C [n,m(n)] to denote C
with input length n and output length m(n). We use C1 ◦ C2 to denote the composition of circuits
from C1 and C2 respectively. We use Cn,s,d to denote all the single-output C circuit of input length
n, size s, and depth d. We use C -Avoid[n,m(n)] to denote C -Avoid problem where the circuit C
has input length n and output length m(n). We call m(n) the stretch of the C -Avoid problem.
We use SIZE[s(n)] to denote the set of functions with boolean circuit complexity s(n). We use
C -SIZE[s(n)] to denote the set of functions with C circuit complexity s(n). We use ≤FP (resp.
≤FPNP) to denote reduction in FP (resp. FPNP).

For two strings x, y ∈ {0, 1}N , define the relative Hamming Distance to be the fraction of indices
where x and y differ, formally δ(x, y) := 1

N |{i ∈ [N ] : xi ̸= yi}|.
For a correlation factor 2γ > 0, we say that a circuit C : {0, 1}n → {0, 1} (1/2+γ)-approximates

a function f : {0, 1}n → {0, 1} if C(x) = f(x) for (1/2 + γ) fraction of inputs from {0, 1}n. Let
N := 2n, and the truth table of C be TTC ∈ {0, 1}N , the truth table of f be TTf ∈ {0, 1}N . Then
the above is equivalent to δ(TTC ,TTf ) < (1/2− γ).

For a function f : {0, 1}n → {0, 1}, we define SIZE(f) to be the minimum size of a circuit
computing f exactly. Similarly, for γ > 0, we define Avgγ-SIZE(f) to be the minimum size of a
circuit that (1/2 + γ)-approximates f .

We use PRGs to denote pseudorandom generators. We use Bipn,m,D to be the set of bipartite
multigraphs that have m left vertices and n right vertices where m ≥ n+1 and are D-left regular. We
often use capital letters for random variables and corresponding small letters for their instantiations.
Let s be an integer, {V1, V2, · · · , Vs} be a set of random variables. We use V[s] to denote the subset
{V1, · · · , Vs}. For any strings y1 and y2, let y1 ◦ y2 denote the concatenation of y1 and y2. Let F2
denote the binary field.

We will adopt 0-index, e.g., the first bit of s string s is s0, the first child of a parent in a tree
is its 0-th child, etc. The height of a tree is referred to as the number of edges in the longest path
from the root node to any leaf node.
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2.2 NC Circuits and AC Circuits

We use standard definitions of circuit complexity classes. A Boolean circuit is a directed acyclic
graph composed of logic gates with bounded fan-in (e.g., ∧, ∨, ¬) computing functions over {0, 1}.
A family of circuits {Cn}n∈N is said to compute a function f : {0, 1}∗ → {0, 1}∗ if, for every input
length n, the circuit Cn correctly computes f on inputs of length n.

Definition 2.1 (NC circuits [GGNS23]). The circuit class NCi contains multi-output Boolean cir-
cuits on n inputs of depth O(logi(n)) where each gate has fan-in 2. We are particularly concerned
with the following classes of circuits:

• For every constant k ≥ 1, NC0
k is the class of circuits where each output depends on at most

k inputs.

• NC1 is the class of circuits of depth O(log(n)) where all gates have fan-in 2.

• Linear NC1 circuits are circuits of depth O(log(n)) where every gate has fan-in 2 and computes
an affine function, i.e., the XOR of its two inputs or its negation.

Proving a super-linear circuit lower bound on the size of arithmetic computing an n-output
function from FP or even FENP [GGNS23, Val77, AB09, Frontier 3] is a decades-old challenge.
Valiant [Val77] introduced the problem of explicitly constructing rigid matrices and showed that
this would prove super-linear lower bounds on the size of (linear) NC1 circuits.

Definition 2.2 (AC Circuits). We denote by ACi the class of Boolean functions computable by a
family of circuits of:

• polynomial size,9

• depth O(logi n),

• unbounded fan-in ∧ and ∨ gates,

• and ¬ gates allowed only at the input level and are not counted into the depth.

We say a function f is in ACi if it is computed by a family of ACi circuits. The class AC is
defined as the union AC =

⋃
i≥0 AC

i.
We use the notation ACi

d to denote the family of ACi circuits with depth at most d.

Definition 2.3 (DNF). The term DNF refers to AC0
2 (∨ ◦ ∧) circuits.

2.3 Some Previous Results on NC0-Avoid

NC0-Avoid with Strong Parameters Simulates NC1-Avoid. NC0-Avoid with strong pa-
rameters simulates NC1-Avoid using the randomized encoding technique [RSW22].

Theorem 2.1 (NC0-Avoid with strong parameters simulates NC1-Avoid [RSW22]). The following
is a polynomial time reduction from NC1-Avoid to NC0-Avoid with exact stretch computed

1. NC1-Avoid[n, ℓ] ≤FP NC0
4-Avoid[n, n+ nlogn+poly(n)(ℓ−n)]

2. NC1-Avoid[n,poly(n)] ≤FP NC0
4-Avoid[n, 2n]

In fact, in this paper we show that for any integer i, NCi+1-Avoid[n, n+1] ≤FP NCi-Avoid[n, n+
1]. The proof is deferred to Appendix B.

9We also say, e.g., exponential-size AC circuits. The “polynomial size” is the default setting when we refer to AC
circuits without explicitly spelling out the size.
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Matrix Rigidity and the Connection to NC0
3-Avoid.

Theorem 2.2 ([Val77]). If a family of matrices (Mn)n≥1, Mn ∈ Fn×n
2 , is (εn, nδ)-rigid for constant

ε, δ > 0, then the linear map x 7→Mx requires linear NC1 circuits of size Ω(n log log(n)).

Definition 2.4 (Rigid [GLW22, GGNS23]). Rigid is the following problem: given input 1n, output
an n× n matrix over F2 that is (εn, nδ)-rigid for constant ε, δ > 0.

Theorem 2.3 ([GGNS23]). Rigid ≤FP NC0
3-Avoid[n, n+ n2/3].

An Assumption that Yields NC0-Avoid[n, n1+ε] Algorithms.

Assumption 2.4 ([RSW22]). For every constants k ≥ 1 and ε > 0, there is an FPNP algorithm
that given any k-uniform directed hypergraph G and any predicate P : {0, 1}k → {0, 1}, outputs a
P -sparsifier of G with error ε = 0.5 using Õ(n) hyperedges.

2.4 Universality Property and Truth Table Generator

Definition 2.5 (Universality Property [RSW22]). Let C be a circuit class. We say that C has the
universality property if there is a constant c ≥ 1 such that for any good function s : N→ N, there is
a sequence of C circuits {Us,n}n∈N such that the following are true:

• The size of Us,n is s(n)c and it has O(s log s+ n) variables.

• Given an input (⟨C⟩ , x), where ⟨C⟩ is the encoding of a C circuit C of size s on n variables,
and x ∈ {0, 1}n, it accepts the input iff C accepts x.

• The family Us,n is uniform: there is a Turing machine that on input (1s, 1n), outputs the
description of Us,n in polynomial time.

Theorem 2.5 ([CH85]). The class AC0 has universality property.

Theorem 2.6 ([Bus87]). The class NC1 has universality property.

In effect, any circuit class containing AC0 has universality property. We include in Appendix A
for a detailed proof.

Definition 2.6 (Truth Table Generator). Let TT : {0, 1}O(s log s) → {0, 1}2n be the circuit that
takes as input the description of a size-s circuit on n variables, and outputs the truth table of this
circuit. Here TT denotes truth table. Define TTC : {0, 1}O(s log s) → {0, 1}2n to be the circuit that
takes as input the description of a size s C circuit on n variables, and outputs the truth table of this
C circuit. It is clear that if C has universality property, then TTC ∈ C .

The following modified Theorem says that solving C -Avoid on TTC implies C circuit lower
bounds with tight parameters (see Appendix D for a proof).

Theorem 2.7 (Modified Theorem 5.2 of [RSW22]). Let C be any circuit class that has the univer-
sality property, and c, f : N → N be monotone functions that are good. Suppose there is an FPNP

(resp. FP, FQPNP) algorithm for C -Remote-Point[N, f(N), c(N)], where each output gate has
C circuit complexity poly(N). Then for some constant ε > 0, ENP (resp. E, EXPNP) cannot be
(1/2 + c(f−1(2n))) approximated by C circuits of size εf−1(2n)

log f−1(2n)
.
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2.5 Bipartite Vertex Expander

Definition 2.7 (Vertex expander [Vad12]). A digraph G is a (K,A) vertex expander if for all sets
S of at most K vertices, the neighborhood N(S) = {u : ∃v ∈ S s.t. (u, v) ∈ E} is of size at least
A · |S|.

Definition 2.8 (Left regular bipartite graphs [Vad12]). Let Bipn,m,D be the set of bipartite multi-
graphs that have m left vertices and n right vertices where m ≥ n+1 and are D-left regular, meaning
that every vertex on the left has D neighbors, but vertices on the right may have varying degrees.

We use (K,A)-Bipn,m,D to denote G ∈ Bipn,m,D that are also (K,A) vertex expander.
The following Theorem 2.8 and Theorem 2.9 are modified from [Vad12]. Since the parameters

are different from the original theorem, we include in Appendix E the corresponding proofs for
completeness.

Theorem 2.8 (Existence of (Ω(n), D − 1 − ε)-Bipn,m,D). For every constant D, 0 < ε < 1, there
exists a constant α > 0 such that for all n, m = O(n), a uniformly random graph from Bipn,m,D is
an (αn,D − 1− ε) vertex expander with probability at least 1/2.

Theorem 2.9 (Existence of (o(n), 1)-Bipn,m,D). For every constant D and every 0 < β < 1, there
exists a function A = n1−β/(D−2) such that for all n, and m = n1+β, a uniformly random graph
from Bipn,m,D is an (A, 1) vertex expander with probability at least 1/2.

The following definition of Hall-violating set stems from Hall’s matching theorem.

Definition 2.9 (Hall-violating set). In a bipartite graph G with bipartite classes L and R, a set
H ⊆ L is a Hall-violating set if |N(H)| < |H|.

Disperser graphs are special cases of bipartite expanders.

Definition 2.10 (Disperser graphs [Sip86, CW89]). A bipartite graph G = (V1 = [N ], V2 = [M ], E)
is a (K, ε)-disperser graph, if for every X ⊆ V1 of cardinality K, |Γ(X)| > (1 − ε)M (i.e., every
large enough set in V1 misses less than an ε fraction of the vertices of V2). The size of G is |E(G)|.

The following theorem gives necessary conditions for G to be a disperser.

Theorem 2.10 (Lower bounds for disperser graphs [RTS00]). Let G = (V1 = [N ], V2 = [M ], E) be
a (K, ε)-disperser. Denote by D̄ the average degree of a vertex in V1.

1. Assume that K < N and ⌈D̄⌉ ≤ (1−ε)M
2 (i.e., G is not trivial). If 1

M ≤ ε ≤ 1
2 , then

D̄ = Ω(1ε · log
N
K ), and if ε > 1

2 , then D̄ = Ω( 1
log(1/(1−ε)) · log

N
K ) .

2. Assume that K ≤ N
2 and D̄ ≤ M

4 . Then, D̄K
M = Ω(log 1

ε ).

2.6 Local Algorithms

A local algorithm for Avoid problems probes very few bits to determine any particular output bit
of the string out of the range. A local algorithm for a related problem Missing-String was proposed
in [VW23].
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2.7 The Existence of PRGs in NC0

Assumption 2.11 ([JLS21]). There exists a boolean function G : {0, 1}n → {0, 1}m where m =
n1+τ for some constant τ > 0, and where each output bit computed by G depends on a constant
number of input bits, such that the following computational indistinguishability holds:

{G(σ) | σ ← {0, 1}n} ≈c {y | y ← {0, 1}m}

The subexponential security of PRG requires the above indistinguishability to hold for adversaries of
size 2n

β for some constant β > 0, with negligible distinguishing advantage.

3 Generalized GGM-Tree and Conditional FPNP Algorithms

In light of the difficulty in obtaining an unconditional FPNP algorithm for AC0-Avoid[n, qpoly(n)]
and NC0-Avoid[n, n+ o(n)] [RSW22], we turn our attention to exploring which assumptions might
yield such an FPNP algorithm for AC0-Avoid and NC0-Avoid.

Korten [Kor22] observed that Avoid admits an FZPPNP algorithm. Moreover, he obtained a
conditional derandomization of this algorithm under assumptions (e.g., ENP requires circuits of size
2Ω(n)) significantly weaker than those required by standard approaches (which typically demand,
for example, that E requires SAT-oracle circuits of size 2Ω(n) [KvM02]). His approach, which we
refer to as Korten’s framework, also inspired a recent breakthrough achieving near-maximal circuit
lower bounds against S2E [CHR24, Li24].

These developments motivate us to explore generalizations of Korten’s framework aimed at
derandomizing the FZPPNP algorithm for restricted circuit classes C .

Korten’s Framework in a Nutshell. Given an Avoid instance described by a circuit C :
{0, 1}n → {0, 1}2n, Korten’s reduction evaluates C along a GGM-style computation tree [GGM86]
to define an expanded circuit C∗ (see Figure 2). A key insight is that every string y ∈ Range(C∗)
has low circuit complexity Lemma 3.1. Thus, if one finds a string y′ ∈ {0, 1}|Range(C∗)| with higher
circuit complexity, then y′ ̸∈ Range(C∗). This gap can be leveraged: given such a y′, and access
to a circuit-inversion oracle, one can traverse the tree and extract a string not in the range of the
original circuit C.

Lemma 3.1 (The output of GGM-tree has small circuit complexity [GGM86, CHR24]). Let GGMEval(C, T, x, i)
denote the i-th bit of GGMT [C](x). There is an algorithm running in Õ(|C| · log T ) time that, given
C, T, x, i outputs GGMEval(C, T, x, i).
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Figure 2: Apply the circuit C : {0, 1}n → {0, 1}2n over the GGM-tree of height k to obtain the
circuit C∗ : {0, 1}n → {0, 1}2kn.

3.1 Generalized Korten’s Framework

We now define a generalized GGM-tree and demonstrate that it characterizes the feasibility of
solving C -Avoid in FPNP, even when C is as weak as AC0. Previously, such tight correspondences
were only known for unrestricted circuit classes.

Generalized GGM-tree Construction GGMℓ,q,k[C]: Given a circuit C : {0, 1}n → {0, 1}nq
and parameters ℓ = nqk, construct GGMℓ,q,k[C] as follows:

1. Assign the root vertex (0, 0) the value v0,0 = x.

2. Build a perfect q-ary tree of height k. Let (i, j) denote the j-th node at level i (0 ≤ i ≤ k,
0 ≤ j < qi).

3. At each node (i, j), compute y = C(vi,j) and assign its h-th child the h-th block of n bits
of y, for h ∈ [q].

4. The output GGMℓ,q,k[C](x) is the concatenation of the values at the qk leaves.

Circuit Complexity of the Output.

Theorem 3.2. Let C : {0, 1}n → {0, 1}m be a circuit where each output bit has circuit complexity
sC . Let C∗ = GGMℓ,q,k[C] have tree height k. Then:

• The output length (stretch) of C∗ is ℓ = mk/nk−1.

• The circuit complexity of C∗(x) is at most O(sC · k).

Proof. We prove by each bullet.

• Each increase in the depth level stretches the output length by a multiplicative factor of m/n.
According to the definition of the height of the tree, the final stretch ℓ = mk/nk−1.
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• To compute a specific bit of C∗(x), we only iteratively apply the C for k times. The rest of
the configuration operations can be implemented by size O(sC · k) AC0 circuits, as detailed in
the following paragraph.

Consequently, any string y ∈ {0, 1}ℓ with circuit complexity exceeding O(sC ·k) must lie outside
Range(C∗).

Implementing the Succinct Circuit. Figure 3 illustrates a succinct circuit g : {0, 1}log ℓ →
{0, 1} whose truth table corresponds to a string y ∈ Range(C∗). For any such y, a circuit imple-
menting g can be built using a single C circuit, provided that C is in C and k is not too large.

The key components of this construction are:

• (Multiplexers) Given a log n-bit index i and n bits x1, ..., xn, selection can be implemented
as a DNF of the form:

n−1∨
j=0

((i = j) ∧ xj+1)

where (i = j) is computed by conjoining each bit of i with its matching bit in j (or its
negation).

• (Tree Evaluation) Evaluating a depth-k GGM-tree over a hardwired input x can be done
with C circuits of size O(|C| · k).

• (Indexing) Extracting an individual bit from the final output is another instance of multi-
plexing.

This framework enables us to recover a string not in the range of C, given one outside the range
of C∗.

Modified Korten’s Reduction. We give a variant of Korten’s reduction that traverses the
generalized GGM-tree using post-order traversal:

Definition 3.1 (Post-order traversal for perfect q-ary trees). In the post-order traversal, a vertex
u1 precedes u2 (u1 <P u2) if u1 is visited before u2 in a depth-first search that processes children
from the 0-th to the (q − 1)-th before the parent.

3.2 Conditional FPNP Algorithm for NCi-Avoid[n, 2n]

In this section, we show that, for any integer i, assuming near-maximum (Ω(2n/n)) size NCi+1

circuit lower bound against ENP, we can obtain an FPNP algorithm for NCi-Avoid[n, 2n].

Theorem 3.3. For any integer i, if ENP requires near-maximum (Ω(2n/n)) size NCi+1 circuits,
then there is an FPNP algorithm for NCi-Avoid[n, 2n].

Proof. Let C : {0, 1}n → {0, 1}2n be a circuit in NCi. Consider applying the generalized GGM
construction C∗ = GGMℓ,q,k[C], and let g : {0, 1}log ℓ → {0, 1} denote the succinct circuit computing
the truth table of an output y ∈ Range(C∗).

We now analyze the circuit complexity of g, using the structure of NCi.
Choose parameters as follows:
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Algorithm 1: Korten′′(C, f): Modified Korten’s Reduction for q-ary GGM-Tree
Input: Circuit C : {0, 1}n → {0, 1}n·q and string f ∈ {0, 1}ℓ \ Range(GGMℓ,q,k[C]).
Output: A string y /∈ Range(C).
Data: GGM-tree with q-ary branching and height k.

1 for j ← 0 to qk − 1 do
2 vk,j ← f[jn,(j+1)n)

3 end
4 for vertex (i, j) in post-order traversal do
5 Let vi,j be the lexicographically smallest x such that C(x) = vi+1,qj ◦ · · · ◦ vi+1,qj+q−1

6 if no such x exists then
7 Set remaining vertices to ⊥ and return vi+1,qj ◦ · · · ◦ vi+1,qj+q−1

8 end
9 end

10 return ⊥

• Let k = c · logi+1 log n for a sufficiently large constant c;

• Then ℓ = n · 2k = n · 2c logi+1 logn, so:

ℓ

log ℓ
=

n · 2c logi+1 logn

log n+ c logi+1 log n

• Since |C| = O(n), it follows that O(|C| · k) = O(n logi+1 log n) = o(ℓ/ log ℓ).

Thus, by Theorem 3.2, any y ∈ Range(C∗) can be computed by an NCi circuit of size O(n logi+1 log n),
while any string f ∈ {0, 1}ℓ with circuit complexity Ω(ℓ/ log ℓ) lies outside the range of C∗.

Consequently, given such a string f , we can invoke Algorithm 1 to recover a string not in
Range(C), thereby obtaining an FPNP algorithm for NCi-Avoid[n, 2n] under the assumption that
f is hard.

3.3 Conditional FPNP Algorithm for C -Avoid[n, n1+ε]

We now extend our generalized framework to establish an equivalence between lower bounds against
a circuit class C and the existence of FPNP algorithms for C -Avoid, under mild stretch.

Theorem 3.4. Let C be a circuit class satisfying AC0 ⊆ C . Then the following are equivalent:

1. ENP does not have 2o(n)-size C circuits;

2. For every constant ε > 0, there exists an FPNP algorithm for C -Avoid[n, n1+ε].

Proof. (“ ⇐= ”) This direction follows from the universality of C , as formalized in Theorem 2.7.
Specifically, if TTC can be implemented within C , then the existence of an FPNP algorithm for
C -Avoid implies that ENP requires exponential-size C circuits. See Appendix A for a detailed
proof.

(“ =⇒ ”) We now show that assuming ENP requires 2Ω(n)-size C circuits, one can obtain an
FPNP algorithm for C -Avoid[n, n1+ε], for any constant ε > 0, via the generalized GGM construc-
tion.
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Let C : {0, 1}n → {0, 1}n1+ε be an instance of C -Avoid[n, n1+ε], where each output bit of C is
computed by a size-sC = nc C circuit of depth d.

Let us construct C∗ = GGMℓ,q,k[C] with parameters chosen as follows:

• Set q = nε and k = O(1);

• Then ℓ = n · qk = n1+kε, the output length of C∗;

• By Theorem 3.2, the circuit complexity of any y ∈ Range(C∗) is bounded by sC∗ = k · sC =
O(nc), since k is constant.

n

k log(nε)

logn

x C

n

n

n

n

.

.

. nϵ choices n C

n

n

n

n

.

.

. nϵ choices n · · · · · · n yi,jxi
j

Repeated k times

i

j

Figure 3: A succinct circuit whose truth table is y, for any y in the range of C∗ [Kor22, Figure
2]. Each C circuit has input length n and output length n1+ε and is by overlayed by nε new C
circuits in the next level. As in [Kor22], dotted boxes indicate the number of bits along a wire;
x is hardwired as constants/advice for any given y. The only true inputs to this circuit are i, j.

Now suppose there exists a string y∗ ∈ {0, 1}ℓ with C circuit complexity ≥ ℓδ = nδ(1+kε) for
some constant δ > 0, and depth (2 + d)k + 2. Since δ(1 + kε) > c (by choosing k appropriately), it
follows that y∗ ̸∈ Range(C∗).

Applying Algorithm 1 on input C and y∗ allows us to find a string outside Range(C), using an
NP oracle and evaluation of C circuits of size O(nδ(1+kε)). Since C and all circuits in the reduction
are polynomial size (in ℓ), this yields an FPNP algorithm.

It remains to verify that the succinct circuit for y∗ can be efficiently implemented by C . As
illustrated in Figure 3, each bit of y∗ can be computed by:

• Selecting one of q = nε blocks using a multiplexer implementable by a size-O(nε) DNF;

• Applying the circuit C on the selected input block, using a size-n1+ε · sC = n1+ε+c C circuit;

• Repeating for k layers of GGM-tree evaluation (multiplexing and applying C);

• Performing a final selection to extract the i-th bit from the output of the last layer.

Since C is closed under constant-depth composition and contains AC0, the entire computation
stays within C , with total size O(k · n1+ε+c) = O(n1+ε+c) and depth (2 + d)k+2. Thus, we obtain
the desired succinct circuit and complete the reduction.
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The above proof also extends to the setting of FQPNP algorithms and corresponding lower
bounds for EXPNP. Intuitively, if one can construct the truth table of a length-ℓ function in quasi-
polynomial time, then the hard function lies in EXP. Combined with Theorem 2.7, this yields the
following theorems.

Theorem 3.5. For any circuit class C such that AC0 ⊆ C , EXPNP requires 2Ω(n) size C circuits
if and only if there is an FQPNP algorithm for C -Avoid[n, n1+ε] for any constant ε > 0.

The smallest circuit class of the equivalence result is AC0. However, it is also an intriguing
question to obtain FPNP algorithm for NC0-Avoid[n, n1+ε].

Remark 3.1. Instantiating the same framework for C = NC0 yields that ENP requires exponential-
size (DNF ◦ NC0)k ◦ DNF circuits =⇒ an FPNP algorithm for NC0-Avoid[n, n1+ε].

3.4 Generalization of Korten’s Reduction to Remote-Point

As we mentioned in the introduction, the Remote-Point problem C -RPP[n,m(n), c(n)] is the
average-case analog of C -Avoid[n,m(n)]. Algorithms for Remote-Point imply average-case lower
bound.

For example, by the work of [CHLR23], it is known that the state-of-the-art FPNP algorithm
for ACC0-Remote-Point recovers the best-known almost-everywhere average-case lower bounds10

against ACC0 circuits by Chen, Lyu, and Williams [CLW20].
However, it was not known that the reverse is true. While in this work we were not able to

establish this, we were able to prove an equivalence in the polynomial-stretch regime for any circuit
class containing AC0.

Specifically, the following algorithm can be used in place of Algorithm 1 to obtain C -Remote-Point
algorithms from a suitable average-case lower bound.

Applying Algorithm 2 to the proof of Theorem 3.3 yields the following theorem.

Theorem 3.6. For any integer i and any monotone function c : N→ N that is good, if ENP cannot
be (1/2 + c(2

n

2 ))-approximated by near-maximum (Ω(2n/n)) size NCi+1 circuits, then there is an
FPNP algorithms for NCi-Remote-Point[n, 2n, c(n)].

Applying Algorithm 2 to the proof Theorem 3.4, we obtain the following theorem.

Theorem 3.7. For any circuit class C such that AC0 ⊆ C and any monotone function c : N→ N
that is good, ENP cannot be (1/2 + c(2

n
1+ε ))-approximated by 2Ω(n) size C circuits if and only if

there is an FPNP algorithm for C -RPP[n, n1+ε, c(n)] for any constant ε > 0.

This also extends to EXPNP circuit lower bound and FQPNP algorithms.

Theorem 3.8. For any circuit class C such that AC0 ⊆ C , EXPNP cannot be (1/2 + c(2
n

1+ε ))-
approximated by 2Ω(n) size C circuits if and only if there is an FQPNP algorithm for C -RPP[n, n1+ε, c(n)]
for any constant ε > 0.

10Typically, a strong average-case lower bound states that certain problems cannot be 1/2 + 1/s-approximated by
size-s circuits [CHLR23]
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Algorithm 2: KortenAvg(C, f): Modified Korten’s reduction for Remote-Point
Input: C : {0, 1}n → {0, 1}n·q denotes the input circuit whose size is sC , and

f ∈ {0, 1}ℓ\Range(GGMℓ,q,k[C]) denotes the input average-case hard truth table:
let ℓ(n) = ℓ, and f cannot be (1/2 + c(ℓ−1(n)))-approximated by C circuits (such
that GGMℓ,q,k[C] ∈ C ) of size O(k · sC) ; // we assume that c(·) is a good
function.

Output: A string y that is (1/2− c(n))-far from Range(C).
Data: A perfect q-ary tree of height k that contains the computational history.

1 for j ← 0 to qk − 1 do
2 vk,j ← f[jn,(j+1)n) ; // set f to the leaves
3 end
4 for vertex (i, j) in the Post-Order Traversal do
5 Set vi,j be the lexicographically smallest string such that

δ(C(vi,j), vi+1,qj ◦ vi+1,qj+1 ◦ · · · ◦ vi+1,qj+(q−1)) ≤ 1/2− c(n) ; // this step requires
an NP oracle

6 if vi,j does not exist then
7 Set all remaining vertices ⊥ ;
8 return vi+1,qj ◦ vi+1,qj+1 ◦ · · · ◦ vi+1,qj+(q−1) ;
9 end

10 end
11 return ⊥;

4 A Family of 2n
1− ε

k−1
+o(1)

Time Algorithms for NC0-Avoid[n, n1+ε]

4.1 Algorithm

In this subsection, we present an improved subexponential-time algorithm for NC0
k-Avoid[n, n1+ε].

Our algorithm operates by identifying a small Hall-violating subcircuit and solving the corre-
sponding restricted Avoid instance. Specifically, we reduce the original instance to a smaller one
of the form NC0

k-Avoid[n′ − 1, n′] where n′ = n1− ε
k−1 , and then enumerate over the image of this

small subcircuit. This yields a total runtime of 2n
1− ε

k−1
+o(1)

.
We begin by viewing the NC0

k circuit C : {0, 1}n → {0, 1}m as a degree-k left-regular bipartite
graph between m output bits (left side) and n input bits (right side).

The key combinatorial fact we use is the following:

Lemma 4.1 (Lower bound from [RTS00]). Let G = (L = [M ], R = [N ], E) be a left-regular bipartite
graph that is a (K0,

N−K0
N )-disperser. Then

D = D̄ ≥ log(M/(K0 − 1))

log(1/(1− N−K0
N )) + 1

≥ log(M/K0)

log(N/K0) + 1
.

Rearranging the above, we obtain:

M ≤ ND

KD−1
0

.

Setting K0 = N1− ε
D−1 , we get M ≤ N1+ε, which matches the stretch regime of interest.
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Thus, any NC0
k[n, n

1+ε] circuit must contain a subset of K = n1− ε
k−1 outputs with fewer than K

distinct neighbors, violating Hall’s condition. Brute-force search can find such a subset and define
a subcircuit C′ of size K, which fails to be surjective. This leads to the following algorithm:

Algorithm 3: Improved Subexponential-Time Algorithm for NC0-Avoid[n, n1+ε]

Input: An NC0
k circuit C : {0, 1}n → {0, 1}m, with m ≥ n1+ε for some constant ε > 0.

Output: A set of strings y1, . . . , yℓ ∈ {0, 1}m such that yi /∈ Range(C).
1. Search over all subsets S ⊆ [m] of size K = n1− ε

k−1 , and find one with |Γ(S)| < |S|
(guaranteed by Lemma 4.1). Let C′ be the induced subcircuit.

2. Enumerate all 2|Γ(S)| inputs and identify strings y′1, . . . , y
′
ℓ /∈ Range(C′).

3. For each y′i, construct yi ∈ {0, 1}m that agrees with y′i on S and is * (representing arbitrary
value) elsewhere.

4. Output y1, . . . , yℓ.

Theorem 4.2. Algorithm 3 runs in time 2n
1− ε

k−1
+o(1)

.

Proof. In Step 1, we enumerate all
(
m
K

)
≤

(
em
K

)K
= n

kε
k−1

·n1− ε
k−1

= 2n
1− ε

k−1
+o(1)

subsets. Step

2 performs 2n
1− ε

k−1 enumerations. Step 3 is linear in output size. Thus the total runtime is
2n

1− ε
k−1

+o(1)

.

Remark 4.1. When ε = (k − 1)
(
1− log logn+O(1)

logn

)
, i.e., m = nk/ logk−1 n, the algorithm runs in

polynomial time.

Tighter Bounds via Improved Disperser Assumption. If the disperser bound of Lemma 4.1
can be improved to:

M ≤ ND−1

KD−2
0

, (4.1)

then setting K0 = N1− ε
D−2 again yields M ≤ N1+ε (matching exactly the existence bound from The-

orem 2.9), and the same algorithm applies.
Based on the above observation, we make the following assumption:

Assumption 4.3. Let G = (L = [M ], R = [N ], E) be a left-regular bipartite graph that is also a
(K0,

N−K0
N ) disperser, then it holds that

D − 1 = D̄ − 1 ≥ log(M/(K0 − 1))

log(1/(1− N−K0
N )) + 1

=
log(M/K0)

log(N/K0) + 1
.

Theorem 4.4. Suppose Assumption 4.3 is true, there exists a family of 2n
1− ε

k−2
+o(1)

time algorithms
for NC0

k-Avoid[n, n1+ε]. In particular, the family of algorithms runs in polynomial time for NC0
k-

Avoid[n, nk−1/ logk−2(n)]. In addition, the algorithm can output a succinct representation of ≥ 1/2
fractions of strings outside the range.
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4.2 Implications for Local PRGs

Our subexponential-time Avoid algorithm has implications for local PRG constructions in NC0.

Theorem 4.5. Suppose there exists a C -Avoid[n,m(n)] algorithm that, in time 2n
γ , outputs non-

negligible fraction of non-image strings and can succinctly describe them. Then no C -based pseudo-
random generator is 2n

γ -secure.

Proof. Let C ∈ C be a PRG with output length m(n). Let adversary A accept an input y iff
y ∈ C -Avoid(C). Since the Avoid algorithm runs in time 2n

γ , this gives a distinguisher that
accepts at least 2m(n)−1 non-image strings but accepts none from the PRG, violating the security
of the PRG.

Corollary 4.6. Assuming the existence of 2m(n)β -secure local PRGs in NC0
k, there cannot exist an

algorithm for NC0
k-Avoid that runs in time 2n

γ for any γ < β and identifies a negl(n) fraction of
non-image strings.

5 A Faster Local Greedy Algorithm for NC0
k-Avoid[n, n+ 1]

5.1 Algorithm

We present a simple greedy algorithm for NC0
k-Avoid[n, n+ 1] that runs in time

O

(
n · 2

(k−2)n
k−1

)
.

When k = 2, this yields a linear-time algorithm, matching the result of [GLW22].

Algorithm 4: Improved Greedy Algorithm for NC0
k-Avoid[n, n+ 1]

Input: An NC0
k circuit C : {0, 1}n → {0, 1}m, where m ≥ n+ 1.

Output: A string y ∈ {0, 1}m, such that y /∈ Range(C).
1 while there exists an unassigned output bit yi and the input space is non-empty do
2 Assign a value to yi such that the remaining preimage space is reduced by at least a

factor of 1/2;
3 end
4 if all output bits are assigned then
5 return the assigned output string;
6 else
7 Assign arbitrary values to unassigned bits and output the resulting string;
8 end

5.2 Analysis

Theorem 5.1. Algorithm 4 solves NC0
k-Avoid[n,m] for m ≥ n+ 1 in time O

(
n · 2

(k−2)n
k−1

)
.

Proof. We first argue that the algorithm always finds a valid non-image string. After at most n
fixings of output bits, the input space is reduced to a singleton, so the output string obtained is
guaranteed to lie outside the image of the circuit.

To analyze the running time of Algorithm 4, we model the input-output behavior of C via random
variables:
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• Let X = (X1, . . . , Xn) denote the input bits,

• and Y = (Y1, . . . , Ym) denote the output bits.

Each output bit Yi is computed as:

Yi = fi
(
Xσi(1), . . . , Xσi(k)

)
,

where fi : {0, 1}k → {0, 1} is a Boolean function and σi : [k] → [n] indicates the input positions
read.

A string y /∈ Range(C) iff H∞(C−1(y)) = 0. Thus, the algorithm can be viewed as a process
that reduces the min-entropy of X by successively fixing values of Y .

Let us define the following useful notion of traversed space.

Definition 5.1 (Traversed Space T (t)). After fixing t output bits, the corresponding input space
can be decomposed into mutually independent subspaces T1, . . . , Ts, each over disjoint sets of input
variables. Define:

T (t) := {T1, . . . , Ts}, w(T (t)) := max
i∈[s]
|Ti|.

Claim 2. For all t, we have w(T (t)) ≤ 2(k−2)t+1.

Proof. We proceed inductively. There are two main cases at each step:

Case 1: The inputs to the new output bit are disjoint from the inputs of all previously traversed
output bits. In this case, the decision of which boolean value to assign to the current output
bit only depends on a constant-sized space of 2k values.

Case 2: Suppose ℓ ∈ (0, k] of the inputs to the new output bit overlap with previously seen input
variables. Then, setting this output bit potentially increases the size of some traversed sub-
space. Specifically, the space increases by a factor of at most 2k−ℓ, but since our choice of the
fixing of the output bit always reduces the preimage size by at least half, the net increase is
bounded by:

w(T (t)) ≤ w(T (t− 1)) · 2k−ℓ · 1
2
≤ 2(k−2)t+1,

by induction.

This shows that the traversed space grows at most exponentially with rate (k−2)t. On the other
hand, fixing t output bits reduces the input space size to at most 2n−t. The algorithm terminates
once the traversed space size exceeds the input space size, which occurs when

2(k−2)t+1 ≥ 2n−t =⇒ t ≥ n

k − 1
.

Thus, the worst-case number of steps is n
k−1 , and in each step we consider a subspace of size 2(k−2)t+1,

yielding a total running time of O
(
n · 2(k−2)n/(k−1)

)
.
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5.3 Lower Bound

The following result shows that Algorithm 4 has exponential worst-case runtime, giving evidence of
the intrinsic hardness of NC0

k-Avoid[n,O(n)].

Theorem 5.3. Algorithm 4 runs in exponential time in the worst case for NC0
k-Avoid[n,O(n)].

Proof. By Theorem 2.8, a random NC0
k[n,O(n)] circuit is an (Ω(n), k − 1 − ε)-bipartite expander

with probability at least 1/2, where ε is constant arbitrarily close to 0. Fix such a circuit. For an
arbitrary subset of output bits of size Ω(n), the induced subgraph on inputs and outputs is nearly a
tree, with only O(1) cycles. This is the worst-case scenario in the above case analysis of Algorithm 4:

• there will be only a single subspace in T (t);

• there are almost no cycles in the subcircuit, there is no means to additively reduce the size of
T (t).

These essentially imply that the upper bound on w(T (t)) could be tight if at each step of the fixing
we reduce the input space by roughly 1/2. This happens in the following instances.

Assuming each predicate fi is a random Boolean function (say, implemented by resilient func-
tions), then when we iteratively fix each output bit, no matter which bit value we assign to the
next unfixed bit, with high probability, the queried space increases by a factor of 2k−2. Thus, the
number of configurations to track grows exponentially, and the traversed space size reaches 2Ω(n).

From the output string’s perspective, this means that every Ω(n)-bit projection of the image is
nearly uniform. Hence, no partial assignment over Ω(n) output bits can efficiently help identify a
non-image string, and the algorithm explores exponentially many paths.

Remark 5.1. Note that no unconditional exponenetial-time lower bound can be shown for any
NC0-Avoid algorithms in the constant-stretch regime. Indeed, since NC0-Avoid ∈ FΣ2 [Kor22], it
follows that if P = NP, then NC0-Avoid ∈ FP. Thus, an unconditional exponential-time lower
bound would imply NP ̸= P.

6 Conclusion and Open Problems

Open Problem 1. In [GLW22], it was shown that C = NC0
k[n,Ω(n

k−1)] cannot sample O(1)-
almost pairwise independent distribution (and therefore also O(1)-biased distribution) under any
input distribution. Therefore, one could use the support of any O(1)-biased distribution as a hitting
set for the strings outside Range(C). On the other hand, it is known that the support size of any
ε-biased distribution is O(n2/ε2).

There is some slackness left in their method. Given circuits that cannot sample 1/poly(n)-biased
distribution under any input distribution, the support of 1/poly(n)-biased distribution would also
form a polynomial-sized hitting set for such circuits. The same approach could work for a stretch
regime m(n) < Ω(nk−1) as long as NC0

k[n,m(n)] cannot sample 1/poly(n)-biased distribution under
any input distribution. In particular, this would yield an FPNP algorithm for smaller stretch.

A Lower Bound. Note that one could use Vazirani’s XOR lemma to show that NC0
k[n, n + 1]

circuit cannot sample 2−(n+3)/2-biased distribution. Recall

Lemma 6.1 (Vazirani’s XOR Lemma). Let Z1, · · · , Zm be 0-1 random variables that are ε-biased
for linear tests. Then, this distribution of (Z1, · · · , Zm) is ε · 2m/2-close to uniform.
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Observe that H∞(C(µ)) ≤ n while H∞(Un+1) = n+1. Therefore, we have C(µ) is (≤ 1/2)-close
to uniform. Hence, it holds that ε ≤ 2−(n+1)/2−1 = 2−(n+3)/2.

The above upper bound and lower bound lead to the following question.
Question 1. Identify the stretch regime of m(n) where NC0

k(µ) circuits cannot sample 1/poly(n)-
biased distribution for any input distribution µ.

Open Problem 2.

• (Hardness) Improve the stretch for the hardness of NC0-Avoid problem: by [CL24], we
know that NC1-Avoid[n, n+ 1] ̸∈ SearchNP. Under randomized encoding techniques Theo-
rem 2.1, this also implies that NC0

4-Avoid[n, n + 1] ̸∈ SearchNP. Can we prove that under
plausible assumptions NC0-Avoid[n,O(n)] ̸∈ SearchNP, or even for some small constant,
NC0-Avoid[n, n1+ε] ̸∈ SearchNP.

• (Algorithms) In the work, we show that there is a 2n
1− ε

k−1
+o(1)

time algorithm for NC0
k-

Avoid[n, n1+ε]. Does there exist a 2n
o(1) time algorithm for NC0

k-Avoid[n, n1+ε] for some
ε > 0? If so, then assuming ETH (Exponential Time Hypothesis) [IPZ98, IP01], NC0

k-
Avoid[n, n1+ε] ∈ SearchNP. In addition, we give a conditional FPNP algorithm for NC0-
Avoid[n, 2n], are there unconditional FPNP algorithm for NC0

k-Avoid[n, n1+ε] for some ε > 0

Open Problem 3. In this work, we only prove equivalence results for polynomial stretch. Can
we extend such equivalence to quasipolynomial stretch? Ideally, we would be able to prove the
following conjecture.

Conjecture 1. ∃δ s.t., ENP requires 2n
δ size ACC0 circuit complexity if and only if there is an

FPNP algorithm for AC0-Avoid[n, qpoly(n)], where each output bit is computed by a qpoly(n) size
ACC0 circuit.

Assuming Conjecture 1 is true and leveraging on existing ACC0 circuit lower bound against
ENP [Wil14, CLW20], the reduction directly yields an FPNP algorithm for ACC0-Avoid[n, qpoly(n)]
where each output bit is computed by a qpoly(n)-size ACC0 circuit.

We remark that the technique in this paper seems to fall short of achieving this, as to condense a
hard function of large quasi-polynomial stretch using Korten’s reduction, one would need the depth
of the tree to be super-constant.

Open Problem 4. Recall that [Kor22] proved the following equivalence result.

Avoid ∈ FPNP ⇐⇒ ENP ̸⊂ i.o.-SIZE[2o(n)] ⇐⇒ ENP ̸⊂ i.o.-SIZE[2n/n].

The second equivalence is a hardness amplification result. Is there such a similar amplification result
for restricted circuit classes? Given Theorem 1.5 and that AC0-Avoid algorithm for smaller stretch
implies stronger lower bounds according to Theorem 2.7, the answer could be negative.
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A Universality Property of Low-Depth Circuits

The following theorem is implicit in [CH85].

Theorem A.1. Any circuit class containing AC0 has the universality property.

Proof. We show that for any circuit C ∈ Cn,s,d, where C is any circuit class containing AC0, there
exists a circuit Un,s,d ∈ C that satisfies the three conditions of the universality property as defined
in Definition 2.5.

We first need the following definition about the succinct encoding of C.

Definition A.1 (Encoding Format (Size O(s log s))). Let the circuit C have n inputs, m gates, s
wires (i.e., total fan-in across all gates is s), and depth d. We encode the circuit as a list of gates:
Each gate descriptor includes:

• Gate type: 2–3 bits.

• List of fan-in wires: each wire is indexed by a log s-bit value pointing to: either an input
xi, or another gate gj.

Note that the number of bits for the gate is:

O(1 + (fan-in) · log s)

Summing over all gates:∑
gates

fan-in(g) = s =⇒ Total encoding size = O(s log s)

Then the following universal circuit construction applies.
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General Universal Circuit Construction for C ⊇ AC0. Consider the following set-up of
parameters:

• Input size: n

• Wire bound: s

• Depth bound: d (can be constant or more, depending on the class)

Let C be any circuit in C with those bounds. We construct a universal circuit Un,s,d with the
following properties:

Inputs:

• x1, . . . , xn: regular inputs

• ⟨C⟩: an encoding of a circuit C of size (wires) ≤ s, depth ≤ d, using a total of O(s log s) bits

Outputs:

• The output(s) of the simulated circuit C(x)

Universal Gate Module. For each gate in the simulated circuit, the universal circuit will include
a universal gate module that:

• Reads the gate type from the encoding

• Selects the inputs using a list of log s-bit selectors

• Evaluates the function (∧, ∨, ¬) as per the encoding

Input selection is done via a selector tree or multiplexer circuit using control bits from the
encoding. This works in any class that can simulate a selector (e.g., AC0).

Layered Construction (Depth-Universal Simulation). For a depth-d circuit C, simulate it
layer-by-layer:

• Build d layers in the universal circuit

• Each layer contains O(s) universal gate modules

• Layer i reads inputs from layer i− 1 or from the original inputs

This preserves depth:

• If C has constant depth, depth remains constant

• If C allows polylog-depth, so does Un,s,d
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Final Construction: Universal Circuit Un,s,d. Let C be any circuit class containing AC0, and
let s and d be polynomially bounded functions of n.

Then we can construct a uniform family of universal circuits {Un,s,d} such that:

• Each Un,s,d has:

– n regular inputs

– O(s log s) encoding inputs

– O(s) auxiliary gates

– Depth O(d)

• For any circuit C ∈ C with n inputs, ≤ s wires, and depth ≤ d, and for any input x ∈ {0, 1}n,
we have:

Un,s,d(x, ⟨C⟩) = C(x)

This universal circuit simulates any circuit from C with specified resource bounds, given only
its succinct encoding and input.

B NCi+1-Avoid[n, n+ 1] ≤FP NCi-Avoid[n, n+ 1]

[RSW22] showed Theorem 2.1 (NC1-Avoid[n, n + 1] ≤FP NC0-Avoid[n, n + 1]) based on the fact
that every function in NC1 has a perfect randomized encoding in NC0

4 [AIK06]. Below we first recall
the definition of perfect randomized encoding and then extend the results in [AIK06] to NC Hierachy.
The simulation result NCi+1-Avoid[n, n+1] ≤FP NCi-Avoid[n, n+1] follows from the same proof
strategy in [RSW22].

Definition B.1. Let ℓ = ℓ(n), m = m(n) be good functions, and consider functions

fn : {0, 1}n → {0, 1}ℓ and f̂n : {0, 1}n × {0, 1}m → {0, 1}ℓ+m.

We say that f̂ is a perfect randomized encoding of f if there is a polynomial-time computable decoder
Dec : {0, 1}ℓ+m → {0, 1}ℓ such that for every x ∈ {0, 1}n and y ∈ {0, 1}ℓ+m, f(x) = Dec(y) iff there
is r ∈ {0, 1}m such that f̂(x, r) = y.

Theorem B.1 (Recursive Perfect Randomized Encodings for NC Hierarchy). For any integer i,
any function f ∈ NCi+1 admits a perfect randomized encoding computable in NCi. That is,

NCi+1 ⊆ PREN(NCi),

where PREN(C ) denotes the class of functions that have a perfect randomized encoding computable
in the circuit class C .

Proof Sketch. We proceed by induction on i.

• Base Case (i = 0): Applebaum, Ishai, and Kushilevitz [AIK06] construct a perfect random-
ized encoding in NC0 for every function in NC1 via ⊕ branching programs and randomizing
polynomials.
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• Inductive Step: Suppose the claim holds for some i ≥ 0; that is, NCi+1 ⊆ PREN(NCi). Let
f ∈ NCi+2. Since NCi+2 circuits can be composed from polynomially many NCi+1 subcircuits,
write

f(x) = Ctop(C1(x), . . . , Cm(x)),

where Cj , Ctop ∈ NCi+1. By the inductive hypothesis, each Cj has a perfect randomized
encoding Ĉj(x, rj) in NCi. Let yj := Cj(x) and define a perfect randomized encoding
Ĉtop(y1, . . . , ym, rtop) for Ctop using the inductive hypothesis again.

Define the randomized encoding of f as:

f̂(x, r1, . . . , rm, rtop) := Ĉtop(Ĉ1(x, r1), . . . , Ĉm(x, rm), rtop).

Since composition of perfect randomized encodings preserves all the property of perfect ran-
domized encodings [AIK06, Lemma 4.11], the result f̂ is a perfect randomized encoding of f
in NCi+1.

Hence, we conclude that for any integer i, we have

NCi+1 ⊆ PREN(NCi).

Corollary B.2 (NCi-Avoid with strong parameters simulates NCi+1-Avoid). There is a polynomial
time reduction from NCi+1-Avoid[n, n+ 1] to NCi-Avoid[n, n+ 1]

Proof Sketch. The proof follows from the same proof strategy in [RSW22, Theorem 5.8] given The-
orem B.1.

For any integer i, let f : {0, 1}n → {0, 1}ℓ be the input of the range avoidance problem where each
output gate of d can be computed by an NCi+1 of size s = poly(n). Let m := poly(n, ℓ, s) ≤ poly(n).
Let the function f̂ : {0, 1}n × {0, 1}m → {0, 1}ℓ+m, where f̂ ∈ NCi is the randomized encoding of
f from Theorem B.1. Let y be a non-output of f̂ , then z = Dec(y) is a non-output of f . Since
Dec is computable in polynomial-time, the reduction works in polynomial time. Setting ℓ = n + 1
completes the proof.

C Reductions Between Avoid Instances via Direct-Sum

In this section, we present a reduction between instances of C -Avoid, focusing on how to relate
instances with varying input/output lengths.

We present a direct-sum-type reduction that improves upon prior reductions in the literature.

Theorem C.1. For any constant δ ∈ (0, 1) and any circuit class C , it holds that

C -Avoid[n, n+ nδ] ≤FPNP C -Avoid[n, n+ 1].

Specializing to C = NC0
k, this reduction yields several consequences when combined with results

from [RSW22, GLW22, GGNS23].
For instance, [GGNS23] showed that explicitly constructing rigid matrices sufficient for Valiant’s

program reduces to NC0
3-Avoid[n, n+ n2/3]. Moreover, improving the current FPNP constructions

of rigid matrices [BHPT24] would follow from an FPNP algorithm for NC0
3-Avoid[n, n+ n12/17−ε]

for any constant ε > 0.
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By Theorem C.1, we obtain that even solving NC0
3-Avoid[n, n+nδ] for any constant δ ∈ (0, 1) is

already sufficient to yield such constructions — though this suggests that doing so is likely as hard
as solving the hardest case which has the minimum stretch NC0

3-Avoid[n, n + 1], a stretch regime
believed to lie beyond SearchNP [CL24].11

This reduction also applies to other explicit construction problems reducible to small-stretch
NC0

k-Avoid, including:

• constructing binary linear codes approaching the Gilbert–Varshamov bound,

• list-decodable codes achieving list-decoding capacity,

• optimal Ramsey graphs.12

Hence, this result is both a positive and negative message: on the one hand, it shows the
potential power of solving small-stretch Avoid instances; on the other hand, it aligns with the
growing evidence that these instances are unlikely to be in SearchNP.

In the following, we present the proof of Theorem C.1.

Proof of Theorem C.1. Construct s = nd/(d+1) copies of C ∈ C of input size n1/(d+1), each with
stretch n1/(d+1) + 1. Concatenating them yields a circuit C′ with input size n and output size
n + nd/(d+1). Given y /∈ Range(C′), we can partition y into s equal-sized blocks and use an NP-
oracle to find a block not in Range(C) in time O(s).

...C C C C C

C ′

Figure 4: Concatenating small instances (circuits) with small stretch to a larger instance (cir-
cuit) with larger stretch.

D Missing Proofs

D.1 Proof of Theorem 1.2

We restate Theorem 1.2:

Theorem D.1. For any constant δ ∈ (0, 1) and any integer i, an FPNP algorithm for NCi-Avoid[n, n+
nδ] implies that ENP requires Ω(2n/n)-size NCi+1 circuits.

Proof. By Theorem C.1, an FPNP algorithm for NCi-Avoid[n, n+nδ] implies an FPNP algorithm
for NCi-Avoid[n, n+1]. Therefore, it suffices to prove the result assuming such an algorithm exists
for NCi-Avoid[n, n+ 1].

Moreover, by Corollary B.2, we have a polynomial-time reduction:

NCi+1-Avoid[n, n+ 1] ≤FP NCi-Avoid[n, n+ 1],

11Precisely speaking, [CL24] only shows that it is likely that NC0
4[n, n+ 1]-Avoid ̸∈ SearchNP.

12While we are not aware of a formal reduction for Ramsey graphs in the literature, we provide one in Appendix F.
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so it suffices to assume an FPNP algorithm for NCi+1-Avoid[n, n+ 1].
We now restate and prove a version of the implication of C -Avoid algorithms to circuit lower

bounds based on universality property of the circuit classes from [RSW22], with tightened parame-
ters.

Theorem D.2 (Refinement of Theorem 5.2 from [RSW22]). Let C be any circuit class that has
the universality property, and f : N → N be a monotone function that is good. Suppose there is an
FPNP (resp. FP, FQPNP) algorithm for C -Remote-Point[N, f(N), c(N)], where each output
gate has C circuit complexity poly(N). Then for some constant ε > 0, ENP (resp. E, EXPNP)
cannot be (1/2 + c(f−1(2n)))-approximated by C circuits of size εf−1(2n)

log f−1(2n)
.

Proof. Consider the truth table mapping:

TTC : {0, 1}N → {0, 1}2n ,

which maps the encoding ⟨C⟩ of a single-output C circuit of size s = s(n) to its truth table. By the
universality of C , there exists a constant c such that N = O(s log s). In particular,

N ≤ f−1(2n) ·
(
1− log log f−1(2n)

log f−1(2n)

)
< f−1(2n),

for sufficiently large n.
Thus, the output length 2n satisfies:

2n > f(N).

Moreover, each output bit of TTC can be computed by a C circuit of size poly(N), since evaluating
C on any input is efficient by assumption.

Applying the FPNP algorithm for C -Avoid[N, f(N)], we can find a string y /∈ Range(TTC ).
This string represents the truth table of a Boolean function f : {0, 1}n → {0, 1} that cannot be
computed by any C circuit of size s. Since the Avoid algorithm runs in FPNP, the function f is
in FENP.

By the definition of C -Remote-Point[N, f(N), c(N)], the output of the algorithm on the
instance C, which we call y, has relative hamming distance ≥ 1/2− c(N) from Range(C). Then it
holds that Range(C) and y agrees on ≤ 1/2 + c(f−1(2n)) fraction of inputs.

Finally, since NCi+1 satisfies the universality property by Theorem 2.7, applying the above
theorem with C = NCi+1 and f(N) = N+1 implies that an FPNP algorithm for NCi+1-Avoid[n, n+
1] yields a function in ENP requiring circuit size Ω(2n/n) in NCi+1, as desired.

E Bipartite Vertex Expanders in Various Parameter Regimes

E.1 Proof of Theorem 2.8

We restate Theorem 2.8 for convenience.

Theorem E.1 (Existence of (Ω(n), D − 1 − ε)-Bipn,m,D). For every constant D and 0 < ε < 1,
there exists a constant α > 0 such that for all n, and m = O(n), a uniformly random graph from
Bipn,m,D is an (αn,D − 1− ε) vertex expander with probability at least 1/2.
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Proof. We generate a uniformly random graph G← Bipn,m,D by independently selecting D random
neighbors on the right for each left vertex v ∈ [m].

Let pK denote the probability that there exists a subset S ⊆ [m] of size |S| = K ≤ αn whose
neighborhood N(S) has size less than (D − 1 − ε)K. Fix such an S, and consider the multiset
V1, . . . , VKD ∈ [n] of all neighbors of vertices in S, chosen independently with replacement.

We define Vi to be a repeat if Vi ∈ {V1, . . . , Vi−1}. Then, for all i, even conditioned on
V1, . . . , Vi−1, the probability that Vi is a repeat is at most (i− 1)/n ≤ KD/n.

Hence, the number of repeats among V1, . . . , VKD stochastically dominates the number of colli-
sions in a balls-and-bins process with KD balls and n bins. Therefore,

Pr [|N(S)| ≤ (D − 1− ε)K] ≤ Pr [At least (1 + ε)K repeats among V1, . . . , VKD]

≤
(

KD

(1 + ε)K

)(
KD

n

)(1+ε)K

.

Now summing over all such sets S, we obtain:

pK ≤
(
m

K

)(
KD

(1 + ε)K

)(
KD

n

)(1+ε)K

≤
(me

K

)K
(

De

1 + ε

)K (
KD

n

)(1+ε)K

=

(
Kε ·me2D2+ε

(1 + ε)n1+ε

)K

≤
(
αε ·me2D2+ε

(1 + ε)n

)K

,

where in the last step we used the assumption that K ≤ αn. Since m = O(n), choosing α small
enough ensures pK ≤ 4−K . Therefore,

PrG∼Bipn,m,D
[G is not an (αn,D − 1− ε) expander] ≤

⌈αn⌉∑
K=1

4−K <
1

2
. (E.1)

E.2 Proof of Theorem 2.9

We restate Theorem 2.9.

Theorem E.2 (Existence of (o(n), 1)-Bipn,m,D). For every constant D and every 0 < β < 1, there
exists a function A = n1−β/(D−2) such that for all n, and m = n1+β, a uniformly random graph
from Bipn,m,D is an (A, 1) vertex expander with probability at least 1/2.

Proof. The argument closely follows the proof of Theorem 2.8. Fix a subset S ⊆ [m] of size K, and
consider its multiset of neighbors. The probability that N(S) ≤ (D−1)K is at most the probability
that there are at least (D − 1)K repeats among the KD chosen neighbors.

Using the same reasoning as above:

pK ≤
(
m

K

)(
KD

(D − 1)K

)(
KD

n

)(D−1)K

≤
(me

K

)K
(

KDe

(D − 1)K

)(D−1)K (
KD

n

)(D−1)K

=

(
eDDD+1KD−2m

(D − 1)D−1nD−1

)K

.
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Now, since m = n1+β , this quantity becomes small as long as

K ≪
(
nD−1

m

)1/(D−2)

= n1− β
D−2 .

Thus, for all K ≤ A := n1−β/(D−2), we get pK ≤ 4−K . As before, summing over K ≤ A implies
that with high probability, the graph is an (A, 1)-vertex expander.

F Reducing Explicit Construction of Optimal Ramsey Graphs to
NC0

4-Avoid

The current state-of-the-art explicit construction of a (logO(1) n)-Ramsey graph is due to [Li23].
It is well-known that an explicit construction of a two-source extractor with parameters (log n +
2 log(1/ε(n)) + 3, ε(n)) and constant error ε(n) = O(1) would imply an explicit O(log n)-Ramsey
graph.

In this section, we show that constructing such two-source extractors can be reduced in poly-
nomial time to the problem of finding strings outside the range of circuits in the class NC0

4-Avoid.
Our approach closely follows the strategy of [Kor22], who constructed circuits for Avoid instances.

Theorem F.1. Let ε(n) be any efficiently computable function satisfying 1/nc < ε(n) < 1/2 for
some constant c > 0 and sufficiently large n. Then, the problem of explicitly constructing a (log n+
2 log(1/ε(n)) + 3, ε(n))-two-source extractor reduces in polynomial time to NC0

4-Avoid.

Proof. The high-level idea is to encode a partial truth table of a candidate extractor on “bad”
sources, i.e., sources on which the extractor fails to produce an ε-biased output. We then build a
circuit that takes this partial truth table as input and computes the coefficients of a polynomial
that interpolates exactly the points in the bad source. Any string outside the image of this circuit
corresponds to a set of coefficients whose polynomial disagrees with every such bad source, thereby
certifying the extractor as valid.

Consider the function f : {0, 1}n → {0, 1}n defined as:

f(x) =
22k∑
i=1

αix
i−1,

and define g(x) = f(x) mod 2, where arithmetic is over a suitable extension field.
The input to the circuit consists of:

1. The two sources X,Y , each of size 2k, where each element is an n-bit string. These require
2 · 2k · n = 2k+1n bits.

2. A single bit b ∈ {0, 1} indicating the biased output value.

3. The coefficients βi for encoding the outputs on bad sources, which require 22k(2n− 1) bits.

4. A string S ∈ {0, 1}22k of Hamming weight (1/2 − ε) · 22k, specifying the support of the bad
outputs. This can be encoded using at most 22k(1− ε2) + log(22k) bits (via standard entropy
bounds).
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The total number of input bits is:

2k+1n+ 1 + 22k(2n− 1) + 22k(1− ε2) + 2k.

The number of output bits is:
22k · n,

corresponding to the full truth table of f(x).
By choosing parameters such that:

22kε2 − 2k − 1− 2k+1n > 0,

we ensure that the number of inputs is strictly less than the number of outputs, making the con-
struction amenable to the Avoid framework.

Computing the coefficients αi from the evaluations of f(x) can be done via polynomial interpola-
tion, specifically by inverting a Vandermonde matrix. This procedure is known to be in NC1 [Ebe84].
Finally, by applying the known reduction from NC1-Avoid to NC0

4-Avoid given in [RSW22], we con-
clude that explicitly constructing optimal two-source extractors (and thus optimal Ramsey graphs)
reduces to NC0

4-Avoid.
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