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Range Avoidance and Remote Point:
New Algorithms and Hardness
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Abstract

The Range Avoidance (AvoID) problem %-AvoID[n,m(n)] asks that, given a circuit in a
class € with input length n and output length m(n) > n, find a string not in the range of
the circuit. This problem has been a central piece in several recent frameworks for proving
circuit lower bounds and constructing explicit combinatorial objects. Previous work by Korten
(FOCS’ 21) and by Ren, Santhanam, and Wang (FOCS’ 22) showed that algorithms for AvoID
are closely related to circuit lower bounds. In particular, Korten’s work reinterpreted an earlier
result from bounded arithmetic, originally proved by Jefabek (Ann. Pure Appl. Log. 2004), as
an equivalence in computational complexity between the existence of FPNP algorithms for the
general AvoID problem and 2%(™ lower bounds against general Boolean circuits for the class
ENP. In this work, we significantly complement these works by generalizing the equivalence
result to restricted circuit classes and obtain the following:

e For any constant depth unbounded fan-in circuit class € O ACY, there is an FPNF al-
gorithm for €-Avoip[n,n'*¢] (for any constant ¢ > 0) if and only if ENP cannot be
computed by € circuits of size 2°(*). This addresses an open problem by Korten (Bulletin
of EATCS’ 25).

e If ENP cannot be computed by o(2"/n) size formulas, then there is an FPNF algorithm
for NC°-AvoIp[n, 2n]. Note that by an extension of Ren, Santhanam, and Wang (FOCS’
22), an FPNF algorithm for NCS-Avorp[n, n+n?] for any constant § € (0,1) implies ENP
cannot be computed by o(2"/n) size formulas.

These results yield the first characterizations of FPNF ¢~ AvoIb algorithms for low-complexity
circuit classes such as AC.

We also consider the average-case analog of AvoID, the Remote Point (REMOTE-POINT)
problem, and establish:

e For some suitable function ¢(n) and constant v > 0, there is an FPNP algorithm for
REMOTE-POINT[n, nS*7, ¢(O, (log n))] if and only if ENP cannot be (1/2—c(n))-approximated
by circuits of size 2°(™),

Finally, we also present two improved algorithms for NC°-Avorp:

1— S +o(1

)
e A family of 2" time algorithms for NCJ-AvoIp[n, n!*¢] for any ¢ > 0, exhibiting
the first subexponential-time algorithm for any super-linear stretch.

e Faster local algorithms for NC{-AvoIp[n, n+ 1] running in time O(an"), improving the
naive 2" - poly(n) bound.
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1 Introduction

The Range Avoidance problem (AvoID for short) is a total search problem introduced in [KKMP21,
Kor21, RSW22|, which has recently garnered significant attention. This interest stems from several
natural motivations, such as identifying natural total search problems in the polynomial hierarchy
(more specifically ¥9) and compelling applications in proof complexity. Notably, Korten [Kor21]
demonstrated that numerous explicit constructions of important combinatorial objects can be re-
duced to instances of AvOID. These include optimal Ramsey graphs, expander graphs, rigid matri-
ces, and hard functions, among others.

At its core, the Range Avoidance problem captures a broad class of objects whose existence is
typically proven via the probabilistic method [Erd47]. As such, solving AvoID offers a potentially
unified way for constructing these objects explicitly. We now define the problem formally.

Definition 1.1 (AvoiD). The range avoidance problem, denoted by AvoID, is the total search
problem in which, given a Boolean circuit C : {0,1}" — {0,1}™ for m := m(n)'> n, output any
y € {0,1}™ \ Range(C), where Range(C) := {C(z) | x € {0,1}"}.

Closely related is the more general REMOTE-POINT? problem, which is studied extensively in
previous works [KKMP21, CHLR23, CL24| and can be thought as the “average-case analog” of
AvoIb.

Definition 1.2 (REMOTE-POINT). Given a code where the encoding function is represented by a
circuit C = {0,1}" — {0,1}™ for m := m(n) > n and the codewords are the range of the circuit,
find an m-bit string that is far from all codewords in Hamming distance.

While the original formulation of AvOID allows arbitrary circuits, subsequent work initiated
by [RSW22| has focused on the problem for restricted circuit classes.

Definition 1.3. Let € be a (multi-output) circuit class,

e ¢-AvoID[n, m| is the class of AVOID problems where the circuits are in €, with input length
n and output length m;

e ©-REMOTE-POINT[n,m,c(n)| denotes the class of REMOTE-POINT problems where the un-
derlying circuits belong to €, with input length n and output length m, and where the desired
output has relative Hamming distance 1/2 — c¢(n) from every string in the range of circuits

n €.

A prominent motivation for studying - AvoID is its implication for circuit lower bounds. In par-
ticular, [RSW22] showed that for any circuit class € satisfying the universality property — namely,
the truth table generator TTy (i.e., a circuit that, given an encoding of a circuit C' € €, outputs
C’s truth table) is itself computable by & circuits (e.g., ACY, TC?, NC!) — efficient algorithms for
%¢-AvoID imply circuit lower bounds for €. Specifically, solving ¢-AvoID in FP (resp. FPNP)
implies that E (resp. ENP) does not have € circuits.> Analogously, FP (resp. FPNP) algorithms
for €-REMOTE-POINT imply average-case % circuit lower bounds, which are central questions in
the area of average-case complexity that have resulted in a large body of works improving corre-
lation bounds for various models of computation (e.g., [Che24, CR22, CLW20, CL23, LZ24]). On

'The function m(n) is called the stretch of the circuit.
2We sometimes use RPP as a shorthand for REMOTE-POINT.
3The size of the circuit lower bound depends on the stretch of the AvoID instance.



the other hand, these results also imply that it is potentially hard to design efficient algorithms for
%-AvoOID even when % is restricted, hence many algorithms given in previous work are conditional.

Furthermore, these works also demonstrate that AvoID is already extremely interesting and
useful for restricted classes of circuits, for example, even when the circuit is in the class NC°, and
even when each output bit only depends on at most 4 input bits. Below, we use NC% to stand for
circuits in NC® where each output bit depends on at most k input bits. The same notation goes for
the class NC'. In this sense, the work of [RSW22| shows that, suppose for every constant & > 0,
there is an FP (resp. FPNP) algorithm for NC-AvoIip[n, n + nf], then for every k > 1, there is
an FP (resp. FPNP) algorithm for NC;-AvoID; and for every v > 0, there is a family of functions
in E (resp. ENP) that cannot be computed by Boolean circuits of depth n!~7. Furthermore,
[GLW22| showed that constructing binary linear codes achieving the Gilbert-Varshamov bound or
list-decoding capacity, and constructing rigid matrices reduce to NCS—AVOID; and [GGNS23| showed
that constructing rigid matrices reduces even to NCg—AVOID.

Driven by these motivations and applications, there have been several works studying both al-
gorithms and hardness results for AvoiD and REMOTE-POINT. On the algorithm side, [CHLR23| de-
signed an unconditional FPNF algorithm for ACC’-REMOTE-POINT[n, qpoly(n), 1/poly(n)] (gpoly(n)
denotes quasi-polynomial(n)), recovering the state-of-the-art average-case lower bound for ACC?
against ENP. A recent breakthrough [CHR24, Li24] showed that S;E ¢ 4.0.-SIZE[2"/n]* via a
single-valued FS;P algorithm to AvOID, improving over the decades’ old lower bound that A3E =
E>2 ¢ SIZE[2°(")] [MVW99]. On the hardness side, Ilango, Li, and Williams [ITLW23] showed that
under the assumption that subexponential secure indistinguishability obfuscation (¢O) exists [JLS21]
and NP # coNP, we have that AvoiD ¢ FP (i.e., there are no polynomial-time algorithms to solve
AvoID). A subsequent work by Chen and Li [CL24] generalizes the framework and shows that under
plausible cryptographic assumptions, ¥-AvoID and ¥-REMOTE-POINT are not in FP, or even not
in SearchNP, when the underlying € has small enough stretch (e.g., in the case of NC’-AvoIp,
the hardness works for the minimal stretch m(n) =n + 1).

However, for certain applications (e.g., explicit constructions of important combinatorial objects)
one would desire relatively efficient algorithms (e.g., polynomial-time algorithms or at least FPNP
algorithms). Yet even for the case of NCY-AvoID, the current state-of-the-art results only work for
large stretches. For example, the polynomial-time algorithms for NC%—A\/OID |[GLW22, GGNS23]
require the stretch to be at least n*~!/log(n). Most recently, this was improved to O(n*/?) for even
k by [KPI25], which also improved the stretch to (O(n*/2+(k=2)/(2k+4))) with an FPNF algorithm
for odd k. A conditional FPNF algorithm was proposed in [RSW22| for NC°-AvoIp with stretch
n'*e for any constant ¢, and whether there is an unconditional FPNY algorithm for such stretch is
left as a central open question in [RSW22]. Even if one allows for subexponential (20" ™)) time,
the best known algorithms for NC-Avoip only works for stretch n*~2+¢ [GGNS23).

A recent work by Kuntewar and Sarma [KS25] showed that the monotone version of NC3-
AvoIip[n,n + 1], i.e., MONOTONE-NCI-AvOID[n, n + 1] can be solved in polynomial time; the sym-
metric version of NC3-Avoip[n, 8n + 1], i.e., SYMMETRIC-NC3-AvoID[n,n + 1] can be solved in
polynomial time.

These results fall short of the above mentioned goal of a unified approach towards explicit con-
structions of combinatorial objects, as most interesting explicit construction problems only reduce
to €-AvoID with very small stretch. For example, in the case of NC’-AvoID, to show a better circuit
lower bound, one needs m = n + n°1); while finding rigid matrices enough for Valiant’s application
needs m = n + n?/3 [GGNS23|. This was also noted and remarked in [RSW22].

“The prefix “i.0.-” indicates that S;E is not infinitely often in SIZE[2™ /n], that is S2E eventually requires SIZE[2" /n)
circuit.



“We think this result reveals some fundamental difference between the small-stretch
regime (m(n) = n + 1), for which an avoidance algorithm for NC? implies breakthrough
lower bounds, and the large-stretch regime (m(n) = n'+t%(1), for which an avoidance
algorithm for NC® seems within reach (Theorem 3.12).”

Therefore, it is interesting and important to study the tradeoff between the stretch and the
hardness for €-AvoiD when € is restricted (e.g., NC°, ACY and ACCY), and similarly for %-
REMOTE-POINT as better algorithms in this case may lead to stronger average-case circuit lower
bounds. In this paper, we make progress towards this direction, by establishing several new re-
sults in terms of both algorithms and hardness for ¥-AvoiD and ¥-REMOTE-POINT, where % are
suitable classes of circuits.

1.1 Owur Results

While as mentioned before, several previous works showed that algorithms for ¥-AvoIiD or %-
REMOTE-POINT with small stretch lead to circuit lower bounds, the works [Jer04, Kor21, CHR24]
remarkably showed that the converse is also true in the case where % is the class of unrestricted
Boolean circuits. Specifically, they showed that

Avomp € FPNP «— ENP ¢ 0.-SIZE[2°™] «— ENP ¢ i.0.-SIZE[2" /n]®

In particular, assuming ENP does not have subexponential-size circuits implies an FPNFP al-
gorithm for AvOID on unrestricted circuits. This assumption is significantly weaker than the
classical hardness required in PRG-based approaches [IW97, KvM02], which assume that E lacks
subexponential-size SAT-oracle circuits to derandomize FZPPNF .

Thus, for unrestricted Boolean circuits, algorithms for Avoib and lower bounds for ENF are, in a
precise sense, equivalent. However, such an equivalence was previously unknown for restricted circuit
classes. Our first major contribution is to significantly extend previous works, by establishing (near)
equivalence for certain restricted classes %, more specifically constant depth circuits with possible
augmented gates®. As a result, we also obtain conditional FPNF algorithms for €-AvoIp for these
circuit classes ¥ with suitable smaller stretch, under much weaker assumptions than those needed
for general AvoID in [Kor21]. In addition, we establish a new equivalence result between FPNF
algorithms for REMOTE-POINT and average-case general circuit lower bound for ENP.

1.1.1 Equivalence between FPNF ¥-AvoIp Algorithms and Exponential-size ¢ Circuit
Lower Bound against ENP

As mentioned in the above paragraphs, previous works [Kor21, RSW22| established the direction
from AvoOID algorithms to circuit lower bounds. In this work, we complete the equivalence by
showing the converse direction for a range of natural restricted circuit classes.

Results for NC Circuits with Small Stretch. Our first set of results concerns NC) circuits.
We show that near-maximal formula lower bounds against ENP imply efficient algorithms for NCQ—
AvOID with small stretch:

5The original second equivalence obtained by [Kor21] is ENF ¢ i.0.-SIZE[2°™)] «—= ENP ¢ i.0.-SIZE[2"/(2n)],
which can be strengthened by a finer encoding arguments of circuits [CHR24].
5Say, exact threshold gates.



Theorem 1.4. If ENP requires near-mazimum (Q(2"/n)) size formulas”, then there is an FPNF ql-
gorithm for NC°-Avorp[n, 2n]. In particular, this implies an FPNY algorithm for NC-Avorip[n, 2n).

Conversely, extending ideas from [RSW22| (with the proof deferred to Appendix C), we show:

Theorem 1.5 (Strong Version of Theorem 5.8 in [RSW22|). For any constant 6 € (0,1), NCI-
Avorp[n,n + n’] € FPNP — ENP ¢ i o -Formula[o(2"/n)].

Together, these results nearly characterize the hardness of proving near-maximum ENF lower
bounds against formulas in terms of FPNP algorithms for NC}-AvorD.

Results for Constant Depth Circuit Classes Containing AC? with Polynomial Stretch.
In the regime of polynomial stretch, we obtain tight equivalences for constant depth unbounded
fan-in circuit classes € satisfying AC® C ¢

Theorem 1.6. For any constant depth unbounded fan-in circuit class € such that AC® C €
(e.g., ACO,ACCO,TCO), ENP requires 24 size € circuits if and only if there is an FPNP ql-
gorithm for €-Avoipn, n'¢] for any constant € > 0.

Moreover, we show analogous equivalences for FQPNP8 algorithms and EXPNP circuit lower
bounds:

Theorem 1.7. For any constant depth unbounded fan-in circuit class € such that AC° C €,
EXPNP requires 24 size € circuits if and only if there is an FQPNF algorithm for € -AvoID[n, n'*e)
for any constant € > 0.

These results represent the first equivalence theorems connecting algorithms for - AvoIiD with
explicit lower bounds for ENP and EXPNF in restricted circuit classes.

We remark that the complexity-theoretic assumptions we made for Theorem 1.4 and Theorem 1.6
are consistent with our current knowledge of circuit lower bounds.

Connections to Open Problems. Our results make progress on the following open question:

Open Problem 1.8 (Open problem 2 in [Kor25|). Can we reduce € -AvOID to circuit lower bounds
for € for any circuit class € C P /poly?

Specifically, Theorem 1.6 and Theorem 1.7 address Open Problem 1.8 in the stretch regime
m(n) = n'*¢ for any constant ¢ > 0, and any circuit classes containing ACY. In addition, Theo-
rem 1.4 and Theorem 1.5 also nearly pin down the hardness of proving ENP requires exponential
size formulas in terms of NCQ—AVOID algorithm: proving such a lower bound should be no harder
than proving NCJ-Avoip[n,n + n°] € FPNF for any § € (0,1), but should be no easier than
NCY%-Avoip[n, 2n] € FPNP,

"In a preliminary version of this paper (Revision1OfTR25-049), we claim a near equivalence regarding “exponential-
size NC! circuits”. However, exponential-size NC' circuits actually do not make sense because if the circuit is in NC
and the depth is O(logn), then the size has to be polynomial. It only makes sense to talk about exponential size AC*
circuits.

(o]
SFQP denotes the class of functions computable in quasi-polynomial time, i.e., time T(n) = n(°8™ w


https://eccc.weizmann.ac.il/report/2025/049/

1.1.2 Equivalence between FPNY RPP Algorithms and Average-case Exponential-size
Circuit Lower Bound against ENP

Recall the definition of good function from [RSW22].

Definition 1.9 (Good function [RSW22|). A function f : N — N is good if there is a Turing
machine that, given the input n (in binary), outputs the value f(n) (also in binary), and runs in
time at most poly(logn,log f(n)).

The equivalence result for AvoID established in [Kor21| naturally raises the question of whether
a similar equivalence holds in the average-case setting. In this paper, we answer this question
affirmatively and obtain the following theorems.

Theorem 1.10. Let ¢ : N = N be a good and monotonically decreasing function which satisfies
¢(O(logn)) > 1/n. Then ENP cannot be (1/2 + c(n))-approzimated by 2° -size general boolean
circuits if and only if there is an FPNP algorithm for REMOTE-POINT[n, n%%7, ¢(O(logn))] for
some constant v > 0.

Theorem 1.11. Let ¢ : N — N be a good and monotonically decreasing function which satisfies
c(O(logn)) > 1/n. Then EXPNP cannot be (1/24 c(n))-approzimated by 2° -size general boolean
circuits if and only if there is an FQPNY algorithm for REMOTE-POINT[n, n%t7, c(Oy(logn))] for
some constant vy > 0.

1.1.3 New NC’-AvoIip Algorithms

I . l-gEg+o() | .
As our second contribution, we design a new 2" " time algorithm for NC%—A\/OID[n,nHE].

This gives the first subexponential-time? algorithm for NC%—A\/OID with any super-linear stretch for
any constant k.

1 g o)
Theorem 1.12. For any ¢ > 0, there exists a family of 2% “ time algorithms for NC%—
AvorIp[n,n'T¢]. In addition, the algorithm can output a succinct representation of > 1/2 fraction
of strings outside the range.

Previously, the best known algorithms with comparable running time were applicable only to
stretch m(n) = O(n*/?) [KPI25|', making our result the first to achieve subexponential-time
performance with superlinear stretch for all k. Subsequently, the work of [GLW22| further improved

) . RE 22 +0(1)
the running time to 2 .

Using a known connection between NC°-AvoIip and local PRGs, we show that faster AvoID
algorithms would contradict plausible cryptographic assumptions.

Theorem 1.13. Suppose Assumption 2.20 is true, there does not exist an algorithm for NC% -AvoID
running in time on” for some constant 0 < 8 < 1 that identifies negl(n) fraction of strings outside
the range.

We also design an improved algorithm for the regime of minimal stretch m = n + 1, improving
over brute-force search.

(k—2)n
Theorem 1.14. There exists a family of O(n -2 %1 ) time algorithms for NCY-Avorp[n,n + 1].

9There are two notions of subexponentiality in literature: Nect 2°("°) and Ueccr 20("°) " Here, we denote by

subexponential a function that is contained in (J,, 20(n%)
0For the special case k = 3, an algorithm with comparable running time was obtained in [GGNS23].



Previous and our algorithmic results are summarized in Table 1. Overall, these results expand the
algorithmic landscape for €-AvoID across both small and large stretch regimes, with implications
for circuit lower bounds and local PRG security.

Problem Algorithm Assumption Reference
AvoID[n, n + 1] FPNP ENP ¢ i.0.-SIZE[2°(")] [Kor21]
Avoip[n,n + 1] svFS,P1! - [CHLR23, Li24]

_ _2¢e o(1)

NCO-AvoID[n, n+¢] gn' F-s Ol - [GLY23]
NC{-Avorp[n, O (n*—1/21ogn)| FP — [GLY25]
NC3,-RPP[n, Os(ntlogn),O(1)] FP — [KPI25]

NCO-AvoIp[n, n'+e] FPNP Assumption 2.19 [RSW22]

ACC-RPP[n, qpoly(n), 1/poly(n)] FPNP — [CHLR23]
RPP[n,n%, ¢(0,(logn))] FPNP ENP ¢ i.o.—Avgc(n)—SIZE[2o(”)] Theorem 1.6
€-Avoip[n, n'*e] FPNP ENP ¢ i.0-6-SIZE[2°0)] Theorem 1.6
NCY-Avoip[n, 2n] FPNP ENP ¢ i.0.-Formula[o(2" /n)] Theorem 1.4
NC)-Avorp[n, n'*e] gn' T — Theorem 1.12
NC{-Avorp[n, nF~1/logh =2 n] FP Assumption 5.5 Theorem 5.6
NC?-Avoib[n,n + 1] O(nQ%n) — Theorem 1.14

Table 1: Range Avoidance and Remote Point Algorithms. In the 9-th row, we assert € is a constant
depth unbounded fan-in circuit class which contains AC?,

1.2 Technical Overview

Equivalence between %-Avoip[n,n't¢] € FPNP and ENP ¢ i.0.-¢-SIZE[2°(")]. For a con-
stant depth unbounded fan-in circuit class &, we establish a tight equivalence between the com-
plexity of solving €-Avoip[n, n!*¢] in FPNF and proving exponential lower bounds for & circuits
against ENP | generalizing the reduction of Jefabek and Korten [Jef04, Kor21|, who proved that
Avoib € FPNP if and only if ENP ¢ i.0.-SIZE[20()]12,

The forward direction — namely, that an FPNP algorithm for €-AvoID implies exponential €
circuit lower bounds against ENP — was largely established in [RSW22]. A key component of this
argument is the universality property of the circuit class €: that the truth table generator TT¢ can
itself be computed by a circuit in 4. We strengthen and formalize this notion, showing that any

1We use svFS2P to denote single-valued FS2P algorithm.

12This reduction, which we refer to as Jefdbek-Korten reduction, was originally proved in the framework of bounded
arithmetic by Jefabek [Jer04], and later translated to the language of computational complexity by Korten [Kor21].
Specifically, as pointed out to us by Erfan Khaniki, [Jef04, Proposition 3.5] proved that the dual weak pigeonhole
principle (dwPHP(PV)) is equivalent to the statement asserting the existence of Boolean functions with exponential
circuit complexity in Buss’ bounded arithmetic theory S3 which captures polynomial time reasoning. An FPNF
algorithm for AvoID can be extracted from the dual weak pigeonhole principle (i.e., formalization of the totality of
AvoIp) in S3 via the Witnessing Theorem from [Kra92].



circuit class € containing ACY satisfies this property. The intuition is that the universal circuit I/
acts as a decoder: given an encoding of a circuit C' and an input z, it decodes C and evaluates it
on z. Since decoding and simple simulation can be implemented in AC?, this universality follows
for all such classes.

The reverse direction, which shows that exponential % circuit lower bounds for functions in
imply that €-Avoip € FPNP | proceeds by generalizing Korten’s construction based on the GGM-
tree. We illustrate the approach in the context of AC’-AvoIiD[n,n'*¢], although the framework
extends to the broader ¥-REMOTE-POINT[n, n!T¢] problem for any % containing AC?.

We first briefly recall the FPNP reduction from circuit lower bound to AvoID in [Jer04, Kor21|
which we thereafter refer to as Jerdbek-Korten reduction. Given an instance of AVOID[n, 2n|, which
we call C, one constructs a new circuit GGM[C] by composing C' along the nodes of a perfect binary
tree of height k (this construction is known as the GGM-tree construction). The resulting circuit has
stretch n - 2%, and the output y € Range(GGM[C]) can be regarded as encoding the truth table of a
function g, whose input is the bits used to select a path in the tree. Importantly, due to redundancy
and the tree structure in GGMI[C], this output y can be computed by a relatively small-size circuit
at the cost of increasing the depth. Thus, the complexity of the function g — whose truth table is
y — can be bounded in terms of the complexity of C' and the structure of the GGM-tree.

We generalize this framework in the following three aspects: (1) the fan-out of the tree, denoted
by ¢; (2) the height of the tree, denoted by k; and (3) the circuit C, which we draw from a restricted
circuit class €.

Let ¢ denote the stretch of the resulting circuit after composing C' through the generalized
GGM-tree, which we denote by GGMy, ;[C] (see Figure 1 for an illustration). It is easy to see
that £ = n - ¢*. To analyze the complexity of any y € Range(GGMy 4 1 [C]), we associate it with a
function g : {0, 1}1°8¢ — {0, 1} (corresponding to the structure of the GGM-tree), whose truth table
is exactly y.

ENP

Figure 1: Generalized g-ary GGM-Tree

The circuit computing g can be constructed by composing the circuit C' with k layers of multi-
plexing (selection) and a final indexing operation. These multiplexing and indexing subcircuits can
be implemented by O(n)-size DNF formulas, and hence belong to any class containing DNF (such
as AC?).

Assuming C € Acg where ACS denotes depth d ACY circuits, to ensure that g € ACY, we must
take k = O(1). By setting the fan-out ¢ = nf, the overall stretch becomes £ = n - n** = n'**¢ and
the resulting circuit g has size O(n) + O(|C| - k) = O(n'T¢).

Now suppose there exists a function f € ENP that requires AC?lk circuits of size at least £7 for



some constant v € (0,1). Then for sufficiently large ¢, f cannot be in the range of GGM, [C],
since all such y have low circuit complexity. Thus, we can use f to find a string not in Range(C')
by traversing the GGM-tree with an NP oracle backwards. This yields an FPNP algorithm for
ACY-Avoibp[n, ng], completing the reduction.

Altogether, this establishes a precise characterization:

%-Avoip[n, n'*e] e FPNP «— ENP ¢ j.0-4-SIZE[2°)]

for any constant depth unbounded fan-in circuit class € containing ACY, and where the stretch
satisfies ng = n'*¢ for any arbitrary constant & > 0.

Equivalence between RPP[n,n5%7 ¢(O,(logn))] € FPNF and ENP ¢ i.o.-Avgc(n)-SIZE[ZO(”)].
We try to extend the GGM-style idea to REMOTE-POINT. Nevertheless, the original Jefabek-Korten
reduction does not work for REMOTE-POINT. Consider the toy case of GGMyy, 2 2[C]. Assume that
we have an average-case hard truth table y and are not able to find a remote point of C' at relative
distance p by traversing down the tree. Divide y into two blocks y1,y2, each of size 2n. Then
there exists x, x1,z2 € {0,1}" such that C(x1) =, y1, C(z2) =, y2, and C(x) =, (x1 o x2), where
C(z1),C(x2), and C(x) respectively achieve the maximum distance from yi, y2, and z1 o z9 among
all points in Range(C'). However, dividing C(x) into two blocks of equal size 2} and z}, it is unclear
how close C(z}) is to C(z1) and how close C(x%) is to C(z2). In other words, it is hard to argue
about the distance between y and GGMuyy, 22[C](x).

To solve this problem, we use an idea from [CHLR23| that reduces REMOTE-POINT to AvVOID,
and incorporate an error-correcting code at each node of the GGM-tree to prevent the accumulation
of errors across levels. To illustrate the core idea, consider first the simpler case of a code with unique
decoding. Suppose at each node, we compose the circuit C' : {0,1}" — {0,1}™ with a unique
decoder Decyniq : {0,1}™ — {0,1}9" for a code with decoding radius p. If a string y € {0,1}" is
not in Range(Decypiq © C), then its encoding Enc(y) (under the code’s natural encoding) is at least
p-far from Range(C'). This property effectively isolates the error at each node: the failure to find a
preimage of y under Decypiq 0 C' directly implies that y is a remote-point for C, without the error
propagating to its children. This allows the reduction to proceed similarly to the AvOID problem,
by searching for a preimage on each node of the tree.

However, unique decoding limits us to a radius of p < 1/4 — ¢, which is insufficient for our
purposes. In the actual construction, we employ list-decoding to achieve a larger radius of p =
1/2 —e. We use a list-decodable code with a decoder Decjig; : {0,1}™ — ({0, 1}9")~. At each node,
applying Decjist © C' produces a list of candidate values. We then apply a padding method to pad
both the input and the output of C' with extra log L bits. This enables us to select one candidate
from this list to pass to the next level of the tree.

Hence we get a conditional FPNP for REMOTE-POINT. Combining with a refinement of
the result in [RSW22| (Theorem 2.8), it yields an equivalence between the FPNP algorithm for
REMOTE-POINT and the average-case circuit lower bound for ENP .

Subexponential time NC’-AvoIp algorithm for any superlinear stretch. We present the
1— 221 +o(1)
first subexponential-time algorithm for NC%-Avorp[n, n'*¢], achieving runtime 2" * for any

€ > 0. Our approach exploits structural limitations of local circuits in terms of their associated
bipartite graphs to identify small subcircuits with poor expansion, enabling targeted enumeration
over their input-output behavior.

The algorithm is based on the following high-level idea: every NC%[n, n circuit corresponds
to a degree-k left-regular bipartite graph with n right vertices (inputs) and m = n'*¢ left vertices

1+s]



(outputs). Using standard probabilistic methods, one can show that a random left-regular bipartite
graph with degree k, n right vertices and m(n) = n'™¢ left vertices is a (K = o(n),A =1 — o(1))
vertex expander — meaning that for every subset of left vertices of size < K, it has > K A neighbors.
One would expect these probabilistic arguments to be actually tight. Assuming so, we would be
able to find a Hall-violating subsets (i.e., a subset of outputs whose neighbors have size smaller than
the subset of outputs) in any such graphs.

Luckily, the lower bound results on disperser graphs from [RTS00] can be adapted to argue that
such graphs necessarily contain Hall-violating subsets of outputs of size at most K = n!ET o),
This means that every such circuit contains a subcircuit of size K that maps a subset of inputs to
outputs non-surjectively.

Our algorithm proceeds by brute-force search for such Hall-violating subsets S C [m] of size
K. Once a violating subset is found, we isolate the corresponding subcircuit C” of size K, and
enumerate all strings in {0, 1}/7)! to find those not in the image of C’. We then lift these local
non-image strings to full-length output strings by assigning arbitrary values outside of .S, yielding
many globally valid strings not in the image of the full circuit C.

This gives the following guarantee: for every NC% [n,n'*¢] circuit, we can find (and succinctly
represent) at least gnite-1 strings outside the range of the circuit in time

m 1— 55 +0(1)
kE—1
) — 2n

0(2(%))

Under a conjectured tight bound on bipartite dispersers, we further refine this analysis to
1— e g o)
show that even smaller Hall-violating subsets exist, yielding improved runtimes of 2» *~°

Notably, this leads to polynomial-time algorithms for NCY-AvoID in stretch regimes as low as
m = nF~1/1log" 2 n, improving a prior work [GGNS23| which required larger stretch.

Finally, we connect our algorithmic result to pseudorandomness. We show that any subexponential-
time AVOID algorithm capable of identifying a non-negligible fraction of non-image strings for NC%
circuits contradicts the existence of secure NCg—based pseudorandom generators (PRGs) against
subexponential-time adversary. In particular, under standard assumptions about local PRGs, our
algorithm demonstrates that no such PRG with stretch n!*% can be secure against 2" -time distin-
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guishers for any v > 1 — 55 4 o(1), even with constant distinguishing advantage.

Improvement over brute-force for NC?-Avoip[n,n +1].  We design a greedy, local algorithm
for solving NC%—AVOID[n, n+1] that proceeds by iteratively fixing output bits to values that provably
shrink the preimage space of the circuit. At each step, the algorithm selects an unfixed output bit
y; and assigns it a value such that the number of inputs consistent with all fixed output values
decreases by at least a factor of 1/2. This ensures that after at most n + 1 such assignments, the
preimage space collapses to an empty set, yielding a string outside the image of the circuit.

The core technical challenge lies in bounding the “decision space”, i.e., the portion of the input
space that must be explored to determine the effect of fixing an output bit. We analyze this by
modeling the NC% circuit as a bipartite dependency graph between input and output bits, and we
introduce the notion of the traversed space: the subset of input variables affected by the fixed output
bits. We show that after fixing ¢ output bits, the maximum size of any connected component (i.e.,
subspace) in the traversed space is bounded by 2(k=2)t+1 " This follows from structural properties of
bounded-locality circuits and a case-based inductive argument.

Combining this with the observation that fixing each output bit reduces the entropy of the input
space by one, we find that the decision space remains small as long as t < n/(k —1). In particular,



the algorithm only needs to examine subspaces of size at most

o(k=2n/(k=1).

leading to a total runtime of O(n - Q(k_z)”/(k_l)). Notably, when k& = 2, the runtime becomes linear,
reproducing the result of [GLW22|. For larger k, this provides a non-trivial improvement over brute
force.

We also show a matching lower bound for this greedy strategy: under mild assumptions on the
structure of random NC% circuits (specifically, that they form good bipartite vertex expanders), any
such greedy algorithm necessarily explores an exponential-sized decision space in the worst case.
This demonstrates that while the algorithm performs well for £ = 2, solving NC%—AVOID efficiently
in the general case may require fundamentally different techniques.

1.3 Subsequent Work

Subsequent to our work, Guruswami, Lyu, and Yuan [GLY25] presented an FP algorithm for NCY-
Avoip[n, O,(n*~1/2logn)], which now represents the state-of-the-art polynomial-time algorithm

125 +o(1) | .
for NC%-AvoID. They also obtained a 2" *°  -time algorithm for NC?-Avoip[n, n'*¢], offer-
ing a slight improvement over our subexponential-time algorithm. The rest of our results remain
orthogonal to their work.

1.4 Paper Organization

The rest of the paper is organized as follows. In Section 2 we give some preliminary knowledge and
some primitives from prior works. In Section 3 we present the generalized Jefabek-Korten reduction,
the conditional FPNP algorithm as well as the precise characterization of ENP circuit lower bound
in terms of ¥-AvOID problems. In Section 4 we further extend the generalized Jerabek-Korten
reduction to solve REMOTE-POINT problems, giving a conditional FPNP algorithm as well as the
precise characterization of the average-case circuit lower bound of ENP . In Section 5 we present the
subexponential-time NC’-AvoIp algorithm for any superlinear stretch. In Section 6 we present the
non-trivial algorithm for NC°-Avoip[n,n + 1]. Finally, we conclude in Section 7 with some open
problems.

2 Preliminaries

2.1 Notations

We use € to denote a circuit class, e.g., NC°, AC?, ACC?, TC?, etc. We use €[n, m(n)] to denote €
with input length n and output length m(n). We use &) o %2 to denote the composition of circuits
from €7 and %5 respectively. We use %), s 4 to denote all the single-output ¢’ circuit of input length
n, size s, and depth d. We use ¢-AvoID[n, m(n)] to denote €-AvoID problem where the circuit ¢
has input length n and output length m(n). We call m(n) the stretch of the ¥-AvoIiD problem.

Given a circuit C': {0,1}" — {0, 1}™ where m > n. For a partial assignment of an m-bit string
y, we use y ¢ Range(C') to denote that any assignment consistent with y is not in the range of the
circuit C.

We use <pp (resp. <ppnp) to denote reduction in FP (resp. FPNP).

For two strings =,y € {0,1}", define the relative Hamming Distance to be the fraction of indices
where x and y differ, formally 6(z,y) = &|{i € [N] : 2; # y;}|. For a string 2 € {0,1}" and a
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subset S C {0,1}¥, we say that z is p-close/far to S iff minyegd(x,y) < p/mingesd(z,y) > p.
When S = {y}, we also say that x is p-close/far to y.

We use PRGs to denote pseudorandom generators. We use Bip,, ,,, p to be the set of bipartite
multigraphs that have m left vertices and n right vertices where m > n+1 and are D-left regular. We
often use capital letters for random variables and corresponding small letters for their instantiations.
Let s be an integer, {Vi, Va, -, V5} be a set of random variables. We use Vis) to denote the subset
{V1,--+,Vs}. For any strings y; and ya, let 1 o y2 denote the concatenation of y; and y2. Let Fo
denote the binary field.

We will adopt 0-index, e.g., the first bit of s string s is sg, the first child of a parent in a tree
is its 0-th child, etc. The height of a tree is referred to as the number of edges in the longest path
from the root node to any leaf node.

2.2 Formulas, NC Circuits and AC Circuits

We use standard definitions of circuit complexity classes. A Boolean circuit is a directed acyclic
graph composed of logic gates with bounded fan-in (e.g., A, V, =) computing functions over {0, 1}.
A family of circuits {Cy, }nen is said to compute a function f : {0,1}* — {0,1}* if, for every input
length n, the circuit C, correctly computes f on inputs of length n. We use the size s of a circuit as
its number of gates plus the length of output, and the depth d to denote the length of the longest
path between input bits and output bits.

A formula is a specific type of circuit where the fan-out of every gate is restricted to exactly one.
This means the output of each gate can be used as the input to at most one other gate, or it may
serve as exactly one bit of the output.

Definition 2.1 (NC circuits [GGNS23]). The circuit class NC’ contains multi-output Boolean cir-
cuits on n inputs of depth O(log'n) where each gate has fan-in 2. We are particularly concerned
with the following classes of circuits:

e For every constant k > 1, NC% is the class of circuits where each output depends on at most
k inputs.

o NC! is the class of circuits of depth O(logn) where all gates have fan-in 2.

e Linear NC! circuits are circuits of depth O(logn) where every gate has fan-in 2 and computes
an affine function, i.e., the XOR of its two inputs or its negation.

Proving a super-linear circuit lower bound on the size of arithmetic computing an n-output
function from FP or even FENY [GGNS23, Val77, AB09, Frontier 3| is a decades-old challenge.
Valiant [Val77] introduced the problem of explicitly constructing rigid matrices and showed that
this would prove super-linear lower bounds on the size of (linear) NC! circuits.

Definition 2.2 (AC Circuits). We denote by AC’ the class of Boolean functions computable by a
family of circuits of:

e polynomial size,
e depth O(log'n),
e unbounded fan-in A and V gates,

e and — gates allowed only at the input level and are not counted into the depth.
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We say a function f is in AC' if it is computed by a family of AC* circuits. The class AC is
defined as the union AC = |J;~, AC".

We use the notation ACQ to denote the family of AC* circuits with depth at most d.

More generally, an AC'-circuit of size s(n), where s(n) may be super-polynomial of n, is defined
identically to an AC' circuit but relaxing the size restriction from polynomial to s(n).

For a correlation factor 2y > 0, we say that a circuit C' : {0,1}" — {0, 1} (1/24~)-approximates
a function f : {0,1}" — {0,1} if C(x) = f(z) for (1/2 + ) fraction of inputs from {0,1}". Let
N := 2", and the truth table of C' be TT¢ € {0, 1}V, the truth table of f be TT; € {0,1}". Then
the above is equivalent to §(TT¢, TTy) < (1/2 — ).

For a function f : {0,1}" — {0,1}, we define SIZE(f) to be the minimum size of a circuit
computing f exactly. Similarly, for v > 0, we define Avg,-SIZE(f) to be the minimum size of a
circuit that (1/2 + ~)-approximates f.

We use SIZE[s(n)] to denote the set of functions with boolean circuit complexity s(n). We use €-
SIZE[s(n)] to denote the set of functions with ¢’ circuit complexity s(n). We use Avg,-€-SIZE[s(n)]
to denote the set of functions that can be (1/2 + ~)-approximated by ¢ with circuit complexity
s(n).

We use Formula[s(n)] to denote the set of functions that can be computed by size-s(n) boolean
formulas.

Definition 2.3 ((¢’) Circuit Complexity of a String). Given a bit string s € {0,1}", we define the
(€ ) circuit complexity of s to be the smallest (€ ) circuit whose truth table agrees with s for the first
n indices. In particular, the formula complexity of s to be the smallest formula whose truth table
agrees with s for the first n indices.

2.3 Universality Property and Truth Table Generator

Definition 2.4 (Universality Property [RSW22]). Let € be a circuit class. We say that € has the
universality property if there is a constant ¢ > 1 such that for any good function s : N — N, there is
a sequence of € circuits {Us p }nen such that the following are true:

o The size of Uy, is s(n)¢ and it has O(slog s + n) variables.

e Given an input ((C),x), where (C) is the encoding of a € circuit C of size s on n variables,
and x € {0,1}", it accepts the input iff C accepts x.

o The family Us,, is uniform: there is a Turing machine that on input (1°,1"), outputs the
description of Us,, in polynomial time.

Theorem 2.5 ([CHS5|). The class AC° has universality property.
Theorem 2.6 ([Bus87]). The class NC* has universality property.

In effect, any circuit class containing AC? has universality property. We include in Appendix A
for a detailed proof.

Definition 2.7 (Truth Table Generator). Let TT : {0,1}°G108%) — (0 112" be the circuit that
takes as input the description of a size-s circuit on n variables, and outputs the truth table of this
circuit. Here TT denotes truth table. Define TTq : {0,1}901085) — £0,1}2" to be the circuit that
takes as input the description of a size s € circuit on n variables, and outputs the truth table of this
€ circuit. It is clear that if € has universality property, then TTy € €.
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The following modified Theorem says that solving €-REMOTE-POINT on T T¢ implies € circuit
lower bounds with tight parameters (see Appendix C for a proof).

Theorem 2.8 (Modified Theorem 5.2 of [RSW22]|). Let € be any circuit class that has the univer-
sality property, and ¢, f : N — N be monotone functions that are good. Suppose there is an FPNP
(resp. FP, FQPNY ) algorithm for €-REMOTE-POINT[N, f(N),c¢(N)], where each output gate has
€ circuit complexity poly(N). Then for some constant ¢ > 0, ENP (resp. E, EXPNY ) cannot be

(1/2 + c(f~1(2"))) approzimated by € circuits of size %,

2.4 Error-correcting Code

Here we will quickly review the basic concepts from coding theory that will be needed for this work.
A binary code C of block length 7’ is a subset of {0,1}". We use n = log|C| to denote the message
length of C, and the rate of C equals n/n’. Each string in C is called a codeword. The distance of C
is defined as ming.,s 6(x, 2") where x, 2" € C.

A list decoding algorithm for a binary code C of block length n’ needs to do the following. Given
an error parameter 0 < p < 1 and a received word y € {0, 1}”/ the decoder needs to output all
codewords ¢ € C such that d(c,y) < p. We say that a code C of block length n' is (p, L)-list-
decodable, if for every such y, there are at most L codewords which satisfy §(c,y) < p.

Definition 2.9 ((n,n’, p, L)-code). For a binary code C of block length n' and message length n, an
encoding function for C is a bijection Enc : {0,1}" — C (assume w.l.o.g that n is an integer), which
can also be extended as an injection from {0,1}" to {0,1}". Since C and Enc are essentially the
same object, we will use Enc to refer to C.

Suppose that Enc is (p, L)-list-decodable, and use Dec : {0,1}" — ({0,1}")Y to denote the list
decoding algorithm for it. Then we call that (Enc, Dec) is a (n,n’, p, L)-code, which means that Enc
has message length n and block length n’, as well as its list decoding algorithm Dec.

We often need to select a specific block of the list decoded from the codeword. So we define the
following notation:

Definition 2.10 (Selector of list-decoding). For a (n,n’, p, L)-code (Enc,Dec), its selector Selpec :
{0,1}" x [L] — {0,1}" outputs the z-th block of Dec(w) over the input w € {0,1}" and z € [L].
W.l.0.g, assume that log L is an integer, and we also view the input domain as {0, 1}”/+103L where
the first n' bits form the codeword, and the remaining log L bits represent an integer in [L].

The classic Johnson bound [Joh62] implies that non-ezplicitly a binary code of relative distance
1/2—¢2is (1/2—¢,1/e?)-list-decodable. When we require that both the encoding and list-decoding
algorithms run efficiently, Guruswami and Rudra [GR08, Gur09] showed that:

Theorem 2.11 (Theorem 13 of |[GRO8]). Given an integer n > 1 and reals v > 0 and 0 <
e < 1/2, there exists an explicit binary code Enc with message length n and block length at most
O(1/7)
(1/7)°W . (n3 /317, which is <% — ¢, (%) v )-list—decodable and the list decoding algorithm
)0(1/7)

Dec runs in time (%

Specifically, there exists a (n, O(n3etD+7),1/2 — n—¢, poly(n))-code (Enc, Dec) for any constant
¢,y > 0, where both Enc and Dec run in poly(n) time.
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2.5 Bipartite Vertex Expander

Definition 2.12 (Vertex expander [Vad12]). A digraph G is a (K, A) vertex expander if for all sets
S of at most K wvertices, the neighborhood N(S) = {u : Jv € S s.t. (u,v) € E} is of size at least
A-|S|.

Definition 2.13 (Left regular bipartite graphs [Vad12]). Let Bip,, ,, p be the set of bipartite multi-
graphs that have m left vertices and n right vertices where m > n+1 and are D-left-reqular, meaning
that every vertex on the left has D neighbors, but vertices on the right may have varying degrees.

We use (K, A)-Bip,, ,, p to denote G € Bip,, ,,, p that are also (K, A) vertex expander.
The following Theorem 2.14 and Theorem 2.15 are modified from [Vad12].

Theorem 2.14 (Existence of (2(n), D — 1 —¢)-Bip,, ,, p). For every constant D, 0 < e < 1, there
exists a constant a > 0 such that for all n, m = O(n), a uniformly random graph from Bip,, ,,, p is
an (an, D — 1 — ¢) vertex expander with probability at least 1/2.

Theorem 2.15 (Existence of (o(n), 1)-Bip,, ,, p). For every constant D and every 0 < 8 < 1, there

exists a function A = n'=P/(P=2) such that for all n, and m = n**P, a uniformly random graph
from Bip,, ,,, p is an (4, 1) vertex expander with probability at least 1/2.

The following definition of Hall-violating set stems from Hall’s matching theorem.

Definition 2.16 (Hall-violating set). In a bipartite graph G with bipartite classes L and R, a set
H C L is a Hall-violating set if |N(H)| < |H|.

Disperser graphs are special cases of bipartite expanders.

Definition 2.17 (Disperser graphs [Sip86, CW89|). A bipartite graph G = (Vi = [N],Va = [M], E)
is a (K,e)-disperser graph, if for every X C Vi of cardinality K, [T'(X)| > (1 — )M (i.e., every
large enough set in Vi misses less than an € fraction of the vertices of Vo). The size of G is |E(G)|.

The following theorem gives necessary conditions for G to be a disperser.

Theorem 2.18 (Lower bounds for disperser graphs [RTS00]). Let G = (Vi = [N],Va = [M], E) be
a (K,e)-disperser. Denote by D the average degree of a vertex in V3.

1. Assume that K < N and [D] < w (i.e., G is not trivial). If ﬁ < e < %, then

D=Q( log ), and if e > 5, then D = Qizrgr=ayy - 108 %)-

2. Assume that K < % and D < %. Then, % = Q(log %)

2.6 Local Algorithms

A local algorithm for AvOID problems probes very few bits to determine any particular output bit
of the string out of the range. A local algorithm for a related problem Missing-String was proposed
in [VW23].
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2.7 Some Assumptions

Assumption 2.19 ([RSW22|). For every constants k > 1 and ¢ > 0, there is an FPNY algorithm
that given any k-uniform directed hypergraph G and any predicate P : {0, 1}* — {0,1}, outputs a
P-sparsifier of G with error e = 0.5 using O(n) hyperedges.

Assumption 2.20 ([JLS21|). There exists a boolean function G : {0,1}" — {0,1}"™ where m =
n'tT for some constant T > 0, and where each output bit computed by G depends on a constant
number of input bits, such that the following computational indistinguishability holds:

{G(o) |0 {0,1}"} ~c {y | y « {0,1}"}

The subexponential security of PRG requires the above indistinguishability to hold for adversaries
of size on” for some constant 8 > 0, with negligible distinguishing advantage.

3 Generalized GGM-Tree and Conditional FPN?Y Algorithms

In light of the difficulty in obtaining an unconditional FPNF algorithm for AC’-AvoIp[n, qpoly(n)]
and NC°-Avoip([n, n + o(n)] [RSW22], we turn our attention to exploring which assumptions might
yield such an FPNP algorithm for AC’-Avoib and NC’-Avorip.

Korten [Kor21| observed that AvoID admits an FZPPNP algorithm. Moreover, he, building
on the work of Jefabek [Jef04|, obtained a conditional derandomization of this algorithm under
assumptions (e.g., ENP requires circuits of size 29(")) significantly weaker than those required by
standard approaches (which typically demand, for example, that E requires SAT-oracle circuits of
size 22" [KvMO02|). His approach, which we have dubbed Jefabek-Korten reduction in the intro-
duction, also inspired a recent breakthrough achieving near-maximal circuit lower bounds against
SoE [CHR24, Li24].

These developments motivate us to explore generalizations of Jefabek-Korten reduction aimed
at derandomizing the FZPPNY algorithm for restricted circuit classes €, specifically NC° and
constant-depth unbounded fan-in circuit classes containing ACY.

3.1 Generalized Jerabek-Korten Reduction

We now define a generalized GGM-tree and demonstrate that it characterizes the feasibility of
solving #-AvoID in FPNP | even when % is as weak as NC? or AC?. Previously, such tight corre-
spondences were only known for unrestricted circuit classes.

Generalized GGM-tree Construction GGM, ;[C]: Given a circuit C': {0,1}" — {0, 1}9",
the height k and a parameter ¢ = ng®, construct GGMy 4 x[C] : {0,1}" — {0, 1}* as follows: On
the input = € {0,1}", the output GGMy , ;[C](x) is defined as:

1. Build a valued perfect g-ary tree of height k. Let (i,7) denote the j-th node at level
i(0<i<k0<j<q).

e Foreach 0 <i <k, 0<j<q and 0 <h < ¢, the h-th child of node (i, ) is node
(i+1,q7 + h).

e The value on node (i, j) is denoted by v; ;.

2. Set vo0 = x.
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3. At each node (4, j) with ¢ < k, compute y = C(v; ;) and assign the (h + 1)-th block of n
bits of y to viy1,¢j4+n, for any 0 < h <g.

4. Finally, set GGMy 4 [C](7) = vgo 0+ 0V k1.

When g = 2, we get the classic binary GGM-tree, showed in Figure 2.

N
L

[TTTTTI
T1Ty .- Tp _

Figure 2: Apply the circuit C : {0,1}" — {0,1}?" over the GGM-tree of height k to obtain the
circuit C* : {0,1}" — {0,1}2"",

Circuit Complexity of the Output. Like the analysis in [Kor21|, we show that due to the
simple repetitive nature of the GGM-tree’s structure, strings produced by it all have very low
circuit complexity.

Theorem 3.1. Let C : {0,1}" — {0,1}9" be a circuit where with size sc. Let C* = GGMy 4 1[C]
have tree height k. Then for any x € {0,1}", it follows that:

1. The circuit complexity of C*(x) is at most O(s¢ - k)

2. Let be € be a constant depth unbounded fan-in circuit class containing AC®. If we further
guarantee that C is a € circuit with size s¢ and k = O(1), then the € circuit complexity of
C*(x) is at most O(sc - k).

3. We can also extend the result to the case of formula complexity. Given that C can be imple-
mented by a formula of size s, the formula complexity of C*(x) is at most O(sg - k).

Proof. We first consider the classic circuit case. Figure 3 illustrates a succinct circuit ¢ : {0, 1}1°8¢ —
{0,1} whose truth table corresponds to a string y = C*(z) € Range(C*).

In general, the succinct circuit simulates a root-to-leaf path. And it can be constructed as
follows: It consists of k instances of the circuit C concatenated in series. Between each pair of
consecutive C’s, a path selector (multiplexer) is incorporated to choose the specific n-bit block
corresponding to the chosen child node at that level of the tree. Finally, an output selector is added
at the end to extract a single bit from the final n-bit output of the leaf node, based on a given
index.
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Repeated k times

q choices —— n C

..................

i T gl b Yig

q choices

A A A

Figure 3: A succinct circuit whose truth table is y = C*(x), for any y in the range of C* [Kor21,
Figure 2|. Each C circuit has input length n and output length gn, and is overlayed by ¢ new
C' circuits in the next level. As in [Kor21], dotted boxes indicate the number of bits along a
wire; = is hardwired as constants/advice for any given y. The only true inputs to this circuit
are i, j.

To see that g has small circuit complexity, we note that each path selector, which chooses one
n-bit block from ¢ such blocks, can be computed easily with O(gn) A, V or — gates. Given that s¢
is at least gn, the total size of the succinct circuit is O(s¢ - k).

For formula complexity, we just observe that the multiplexer can be also implemented by a
formula with size O(gn).

For ¥ complexity, since % can use gates with unbounded fan-in, the multiplexer can be also
implemented by a € circuit with size O(gn). Additionally, the extra requirement k& = O(1) guaran-
tees that the depth is still a constant, which shows that the succinct circuit still belongs to %, as
desired. O

Consequently, any string y € {0, 1}¢ with circuit complexity exceeding O(s¢ - k) must lie outside
Range(C*).

Modified Jerabek-Korten Reduction. We give a variant of the Jerdbek-Korten reduction
based on the generalized GGM-tree.
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Algorithm 1: Jerabek-Korten”(C, f): Modified Jefdbek-Korten Reduction for g-ary GGM-

Tree
Input: A circuit C': {0,1}" — {0,1}9", the height k and a string f ¢ Range(GGMy 4 x[C]).
Output: A string y ¢ Range(C).

1 for j « 0 to¢* -1 do

2 | Wk ¢ SngnG+) 3

3 end

a4 fori=k—11%t 0do

5

6

for j =0 toq" —1do
Use the NP oracle to find the lexicographically smallest v; ; such that
C(vij) = Vig1,4j O O Vitlgjrg-1;

7 if v; ; does nost exist then
8 return v; 1,4 © - 0 Vit1,gj4q—1;
end
10 end
11 end

12 return 1 ;

This framework enables us to efficiently recover a string not in the range of C, given one outside
the range of GGMy 4 [C].

Lemma 3.2. Given that f ¢ Range(GGMy,;[C]), Algorithm 1 guarantees to find a y € {0,1}"
such that y # 1 and y & Range(C). Moreover, Algorithm 1 only needs poly(£) = poly(n,¢*) calls
for NP oracle.

Proof. The running time of Algorithm 1 is trivially poly(¢). For correctness, if y # L, the algorithm
actually finds a string out of Range(C') and returns it in line 8.

Now assume that y = L, i.e. the algorithm returns an empty string. Then each v; ; exists, and
therefore C(v; j) = Vit1,4j © - © Vig1,gj+q—1 for any i < k.

This tells us GGMy 4 x[C](vo,0) = vko © - 0 vy oy = f, which contradicts the fact that f ¢
Range(GGMy 4 x[C1). O

3.2 Conditional FPN* Algorithm for NC’- AvoIp[n, 2n]

In this section, we show that assuming near-maximum (€2(2"/n)) size formula lower bound against
ENP | we can obtain an FPNF algorithm for NC°-Avoip(n, 2n).

Theorem 3.3. If ENY requires near-mazimum (Q(2"/n)) size formulas, then there is an FPNE
algorithm for NC°-Avorp|n, 2n).

Proof. Let C : {0,1}* — {0,1}*" be a circuit in NC°. It can be computed by a formula with
size s¢ = O(n). Consider applying the generalized GGM-tree construction C* = GGMy 3 ;[C] with
height k& = t-log log n for a sufficiently large constant ¢. Then the output length £ = n-2* = nlog’ n.
For each y € Range(C*), by the third statement of Theorem 3.1, the formula complexity of y is
O(sc - k) = O(nloglogn) = o(¢/log¥?).

Consequently, we get that any string f € {0, 1} with formula complexity Q(¢/log¥) lies outside
the range of C*. And such a string can be found in 20026 = poly(¢) = poly(sc) time by our
assumption about the formula lower bound of ENP . Conclusively, given such a string f, we can
invoke Algorithm 1 to recover a string not in Range(C'), thereby obtaining an FPNP algorithm for
NC°-Avoip[n, 2n). O
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Combining with Theorem 1.5, we nearly pin down the hardness of proving ENP requires expo-

nential size formulas in terms of NCg—AVOID algorithm: proving such a lower bound should be no
harder than proving NC}-Avoip[n, n +n°] € FPNP for any ¢ € (0,1), but should be no easier than
NCY-Avoip[n, 2n] € FPNP,

3.3 Conditional FPN? Algorithm for ©-AvoIiD[n, n'*e]

We now extend our generalized framework to establish an equivalence between lower bounds against
a circuit class € and the existence of FPNF algorithms for -AvoIlp, under mild stretch.

Theorem 3.4. Let € be a constant depth unbounded fan-in circuit class satisfying AC® C €. Then
the following are equivalent:

1. ENP does not have 2°0 -size € circuits;

PNP

2. For every constant € > 0, there exists an F algorithm for €-AvoIb[n, n'*¢].

Proof. (* <= 7) This direction follows from the universality of %, as formalized in Theorem 2.8
(just let ¢(n) = 1/2, and we get the corresponding theorem for Avoib). Specifically, if TT¢ can be
implemented within %, then the existence of an FPNF algorithm for €-AvoIp implies that ENP
requires exponential-size € circuits. See Appendix A for a detailed proof.

(“ = ) We now show that assuming ENP requires 27%(= 2(") size € circuits, one can
obtain an FPNF algorithm for %-Avoip[n, n'*], for any constant e > 0, via the generalized GGM
construction.

Let C : {0,1}" — {0,1}™" be an instance of €-AvoID[n, n' €], where each output bit of C is
computed by a ¢ circuit of size s¢ = n'.

Let us construct C* = GGMy 4 ;[C] with parameters ¢ = n° and k = O(1). Then the output
length is £ = n - ¢* = n'**¢. By the second property of Theorem 3.1, the circuit complexity of any
y € Range(C*) is bounded by O(s¢ - k) = O(n?).

Now suppose there exists a string y* € {0, 1}4 with € circuit complexity > ¢7 = n7(1+ke) for
some constant 0 < 7 < 1. Since 7(1 + ke) > ¢ (by choosing k appropriately), it follows that
y* & Range(C™).

Actually, according to our assumption of the € circuit lower bound of , such a string can
be computed in poly(¢) = poly(n) time. Thus applying Algorithm 1 on input C' and y* allows us
to find a string outside Range(C), and this yields an FPNF algorithm. O

ENP

The above proof also extends to the setting of FQPNF algorithms and corresponding lower

bounds for EXPNP | Intuitively, if one can construct the truth table of a length-¢ function in quasi-
polynomial time, then the hard function lies in EXP. Combined with Theorem 2.8, this yields the
following theorems.

Theorem 3.5. For any constant depth unbounded fan-in circuit class € such that AC® C €,
EXPNY requires 24 size € circuits if and only if there is an FQPNY algorithm for € -Avorp[n, n'*]
for any constant € > 0.

The smallest circuit class of the equivalence result is AC’. However, it is also an intriguing
question to obtain FPNF algorithm for NC’-Avoip[n, n!*].

Remark 3.6. Instantiating the same framework for € = NC° yields that ENP requires exponential-
size (DNF o NC°)* o DNF circuits (k being the depth of the GGM tree) = an FPNF algorithm for
NC°-Avorp[n, n'*e].
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4 Generalization of Jerabek-Korten Reduction to REMOTE-POINT

As we mentioned in the introduction, the REMOTE-POINT problem RPP[n,m(n),c(n)] is the
average-case analog of AvoiD[n,m(n)]. Algorithms for REMOTE-POINT imply average-case lower
bound.

For example, by the work of [CHLR23]|, it is known that the state-of-the-art FPNP algorithm
for ACC’-REMOTE-POINT recovers the best-known almost-everywhere average-case lower bounds!?
against ACCY circuits by Chen, Lyu, and Williams [CLW?20)].

However, it was not known whether the reverse is true. In the following, we extend the general-
ized Jefabek-Korten reduction to REMOTE-POINT, and use it to prove an equivalence between an
FPNP algorithm for REMOTE-POINT and the average-case circuit lower bound for ENP .

Modified GGM-tree Construction GGM, ;[C, (Enc, Dec)] for REMOTE-POINT: Given
a circuit C' : {0,1}" — {0,1}"™, a (¢(n + log L), m, ¢, L)-code (Enc,Dec), the height k& and a
parameter £ = (m + log L) - ¢*~1, construct GGMy,, x[C, (Enc, Dec)] as follows: On the input
z € {0,1}"1oe L the output GGMy,, x[C, (Enc, Dec)](z) is defined as:

1. Define a padded circuit C : {0,1}" x {0, 1}°6L — {0, 1}18L: C(w, z) = C(w)oz, Yw €
{0,1}7, 2 € {0, 1}loe L.

2. Build a valued perfect g-ary tree of height & — 1. Let (7, ) denote the j-th node at level
i(0<i<k0<j<dq).

e Foreach0 <i<k—1,0<j < ¢ and 0 < h < g, the h-th child of node (i, j) is
node (i +1,qj + h).

e The value on node (4, j) is denoted by v; ;.

3. Set vo0 = x.

4. At each node (4,7) with i < k — 1, we first compute y = Selpec(C(vs;)) (recall the
definition of selectors in Definition 2.10, and here we view the first m bits of CN'(UM) as
the codeword, while the last log L bits form an integer in [L]). Then assign the (h+1)-th
block of n + log L bits of y to v;11 gj+n, for any 0 < h < gq.

5. Finally, set GGMy 4 x[C, (Enc, Dec)|(z) = é(vk_lyo) 0---0 5(vk,17qk_1,1).

Comparing two constructions for Avoidb and REMOTE-POINT, for REMOTE-POINT, we replace
C on each non-leaf node by and Selpec © 5, and each leaf node by C. Figure 4 demonstrates the
modified GGM-tree construction for ¢ = 2.

And the following algorithm can be used in place of Algorithm 1 to obtain REMOTE-POINT
algorithms from a suitable average-case lower bound.

13Typically, a strong average-case lower bound states that certain problems cannot be (1/2 4 1/s)-approximated
by size-s circuits [CHLR23].
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A truth table with high average-case circuit complexity

C C C C C

/ Selpec \ / Selpec \ / Selpec \ . / Selpec \

Figure 4: Modified GGM-tree Construction GGMy 4 [C, (Enc, Dec)| for REMOTE-POINT. We
will demonstrate that a truth table with high average-case circuit complexity is a remote point
for GGMy 4 1[C, (Enc, Dec)], and can be used to find a remote point for C.

Algorithm 2: Jefabek-KortenV8(C, (Enc, Dec), f): Modified Jeféabek-Korten reduction for
REMOTE-POINT

Input: A circuit C': {0,1}" — {0,1}™, a (¢(n +log L), m,1/2 — ¢, L)-code (Enc, Dec), the
height k, and a string f € {0,1}¢ which is (1/2 — ¢)-far from
Range(GGMy 4 1 [C, (Enc, Dec)]).
Output: A string y € {0,1}" which is (% —c—(3+¢)- %)—f&r from Range(C).
1 for j < 0 to¢* ' —1do

2 Use the NP oracle to find the lexicographically smallest vj_; ; such that
6(C(Vk-1,4); flmtlog L)-j,(m+log L)-(i+1))) S 1/2— ¢

3 if vy_1; does not exist then

4 ‘ return f[(m+10gL)-j,(m+logL)-j+m) )

5 end

6 end

7 fori+ k—2to0do

8 | forj« 0toqg —1do

9 Use the NP oracle to find the lexicographically smallest v; ; such that

Selpec(C(vij)) = Vit1,5 © *** © Vi1,gjtg—1 ;

10 if v; ; does not exist then

11 ‘ return Enc(viHm 0:-+0 Ui+1,qj+q71) )

12 end

13 end
14 end

15 return | ;
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The correctness of Algorithm 2 is based on the following lemma, which tells us the relation
between an AvOID instance of Selpec © C' and a remote-point of C.

Lemma 4.1 (Modified from [CHLR23|). For a circuit C : {0,1}" — {0,1}", a (¢(n+log L), m,1/2—
¢, L)-code (Enc, Dec) and a padded circuit C shown in Step 1, let C" : {0, 1}l — £0, 1} (Hlog L)
be the circuit defined as C'(z) = Selpec(C(z)), Ya € {0, 1}”+1°gL. If a string y € {0,1}a(n+log L)
does not belong to Range(C"), then Enc(y) is a (1/2 — ¢)-far from Range(C).

Proof. Assume that 3z € {0,1}" s.t. 6(Enc(y),C(z)) < 1/2 — c¢. Then by the definition of list-
decodable code, we have y € Dec(C(z)), and hence 3z € {0,118 L st. y = Selpec(C(x),2) =
Selpec(C(z, z)) = C'(z, z), which leads to a contradiction. O

Lemma 4.2. Given that f € {0,1}* is (1/2 — ¢)-far from Range(GGMy, x[C, (Enc, Dec)]), Algo-
rithm 2 guarantees to find a y € {0,1}"™ such that y # L and y is (l —c— (% +c) - logL> -far

from Range(C). Additionally, if Enc runs in poly(n,q) time, Algorithm 2 only needs poly(£) =
poly(n, ¢*=1) calls for NP oracle.

Proof. The running time is trivial. For correctness, assume that y = L, i.e. the algorithm returns
an empty string. Then each v; ; exists, and therefore SeIDec(é(vivj)) = Vit1,4j O O Vit1,gjtq—1 fOT
any i <k —1 and 6(C(vk-1,); fimtlog L)-j,(mlog L)-(j+1))) < 1/2 —¢(n).

This tells us that GGMy, [C, (Enc, Dec)](vo,0) = 6(1);6_170) o-- -Oé(Uk_qu—l_l) is (1/2—c¢)-close
to f, which contradicts the fact that f is (1/2 — ¢)-far from Range(GGMy, 1[C, (Enc, Dec)]). This
shows y # L.

Next we prove that y is (% —c—(3+0¢)- logL> far from Range(C). If v; ; (i < k — 1) does not

exist, by Lemma 4.1, Enc(v;41,4j0: - -00i41,qj4+¢—1) is (1/2—c)-far, and of course (% —c— (% + c) . log L

far, from Range(C). _
If vg_1,; does not exist, then flmtiog 1).5,(m-+log )-(j+1)) 18 (1/2 —¢)-far from Range(C). Here the

algorithm deletes that last log L bits, only returns f{i,410g L)-j,(m+log L).j+m)- Note that C (z,2) is
defined as C(x) o 2, and hence the distance between f{(n410g L)-j,(m+log L)-j+m) and Range(C) is at

feast: 1 1 1 1 log L
D (e =
<<2 c) (m+log L) logL)2 c <2+c> ,

as desired. [

Applying the modified GGM-tree construction and Algorithm 2, we can derive an FPNF algo-
rithm for REMOTE-POINT under the assumption of average-case circuit lower bounds.

Theorem 4.3. Suppose the function ¢ : N — N is good and monotonically decreasing, and satisfies
c(O(logn)) > 1/n. For any constant 0 < 7 < 1, if ENP ¢ AVE(n)-SIZE[2T"], then there exists a

constant v > 0 and an FPNY algorithm for REMOTE-POINT [n, no+7, c(OTﬁ(log n))} .

Proof. We use the modified GGM-tree construction and apply the corresponding reduction from Al-
gorithm 2. Suppose now we consider the circuit C' : {0,1}" — {0,1}™ where m = n%t7. Choose
a (2(n + O(logn)),m,1/2 — 1/n,poly(n))-code (Enc,Dec) from Theorem 2.11. Since Dec runs in
poly(n) time, Selpec can also be implemented by poly(n)-size circuits. Let sz and sse be circuit

complexities of C and Selpec.
Set the height k =2 [1 -1og(sg + ssel) | + 1. Then the output length of GGMy 4« [C, (Enc, Dec)]
is ¢ = m2k-1 > ($C+Sse|) 2/
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Let L € ENP be the language which cannot be (1/2 + ¢(n))-approximated by any circuit with
size 27", And y € {0,1}¢ is the corresponding truth table with length £. Note that y cannot be
(1/2 + c(log ¢))-approximated by any circuit with size £7 > (s5 + ssel)?.

We claim that y is (1/2—c(log ¢))-far from Range(GGMy,, x[C, (Enc, Dec)]). To show this, observe
that if a string 3’ € {0,1}% is (1/2 — c(log £))-close to Range(GGMy,, x[C, (Enc, Dec)]), then it can be
(1/2 4+ c(log £))-approximated by the succinct circuit similar to Figure 3 with size O((sz + ssel) - k)

(here the only difference is that we replace C’s with Selpec © é’s). The gap between Q((sz + 55e1)?)
and O((sg + ssel) - k) proves our claim.

Then note that sz + ssei = poly(n). Thus logl = k — 1 + log(m + O(logn)) = O.,(logn).
By choosing v appropriately, we have c¢(logf) > 1/n. Therefore applying Algorithm 2 on input
y gives us a string z € {0, 1} which is (% — c(log ) — (% + c(log?)) - %)—f&r, and of course
(1/2—¢(O7~(logn)))-far, from Range(C). The algorithm described above can be easily implemented
in FPNP given that Enc runs in poly(n) time. O

Corollary 4.4. Let ¢ : N — N be a good and monotonically decreasing function which satisfies
c(O(logn)) > 1/n. Then ENP ¢ 1.0.-AVg () -SIZE[2°(™)] if and only if there exists a constant ~y > 0

and an FPNY algorithm for REMOTE—POINT[n, nSt7, c(OW(log n))} .

Proof. One direction is proved in Theorem 4.3. For the converse direction, let ¢(n) = ¢(O,(logn))
and f(n) = nS*7. Then ¢/(f~1(2")) = ¢(O,(log 2"/(6+7))) = ¢(n) with suitable v, and f~1(2")/log f~1(2") =
28+(n)  Thus the proof is complete just by Theorem 2.8. O

Similarly, we can also get the connection between the FQPNF algorithm for REMOTE-POINT
and the average-case circuit lower bound against EXPNF:

Theorem 4.5. Let ¢ : N — N be a good and monotonically decreasing function which satisfies
c(O(logn)) > 1/n. Then EXPNP ¢ i.o.—Avgc(n)—SIZE[ZO(")] if and only if there exists a constant

v >0 and an FQPNY algorithm for REMOTE-POINT [n, n%t7, ¢(O0, (log n))] )

Discussion. Note that based on our approach, any future improvements on circuit complex-
ity, rate or error correction radius of the list-decoder will improve the equivalence result. Espe-
cially if there exists a decoder that can be implemented in some restricted circuit classes (e.g.
ACY, ACC?, TCO), we can potentially establish equivalence for restricted circuit classes.

1—ﬁ+o(1)

5 A Family of 2" Time Algorithms for NC'-AvoIbp[n, n!*9]

5.1 Algorithm

In this subsection, we present an improved subexponential-time algorithm for NC%—AVOID[TL, nite].
Our algorithm operates by identifying a small Hall-violating subcircuit and solving the corre-
sponding restricted AvOID instance. Specifically, we reduce the original instance to a smaller one

of the form NC9-Avorp[n’ — 1,n/] where n’ = n' % 17°1) and then enumerate over the image of
1 gy ()
this small subcircuit. This yields a total runtime of 27 ' .

We begin by viewing the NCY circuit C': {0,1}" — {0,1}™ as a k-left-regular bipartite graph
between m output bits (left side) and n input bits (right side).
The key combinatorial fact we use is the following:
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Lemma 5.1 (Lower bound from [RTS00]). Let G = (L = [M],R = [N],E) be a D-left-reqular
bipartite graph that is a (K, W)-disperser. Then
log(M/(K —1)) log(M/(K —1))

D=D> log(l/(l—%))_kl - log(N/(K —1))+1

1+€]

In our NC%[n, n setting, rearranging the above, we obtain:

2n)* .
(K—l)’“‘lé(nﬁ)‘E = K <Ko=2FT.p F1 41,

Consequently, when K > K|, any Ncg[n, n!*¢] circuit cannot have the topological structure of

a k-left-regular (K, T“TKH)—disperser, and hence must contain a subset of K outputs with at most
(1- ”_TK‘H) -n = K — 1 distinct neighbors, violating Hall’s condition. Brute-force search can find
such subset and define a subcircuit C’ of size K, which fails to be surjective. This leads to the
following algorithm:

Algorithm 3: Improved Subexponential-Time Algorithm for NC°-Avoip[n, n!*]
Input: An NC{ circuit C: {0,1}" — {0,1}™, with m > n'** for some constant ¢ > 0.
Output: A set of strings y1,...,y, € {0,1}"™ such that y; ¢ Range(C).
1. Search over all subsets S C [m] of size K = | Ky| + 1, and find one with |[['(S)| < |5]
(guaranteed by Lemma 5.1). Let C” be the induced subcircuit.

IT(S)

2. Enumerate all 27! inputs and identify strings v/, ..., v, ¢ Range(C").

3. For each y}, construct y; € {0,1}" that agrees with y/ on S and is * (representing arbitrary
value) elsewhere.

4. Output y1, ...,y

1-gE7+o(1)
Theorem 5.2. Algorithm 8 runs in time 2" "' .

£

1-gEg+o(1) J——
Proof. In Step 1, we enumerate all (Z) < (%)K =2on M subsets. Step 2 performs 27 *
1— Sy o)
enumerations. Step 3 is linear in output size. Thus the total runtime is 2% ' . O
1— &7 +o(1)

Corollary 5.3. There exists a family of 2" time algorithms for NC%—AVOID[n,nHS]. In
addition, the algorithm can output a succinct representation of > 1/2 fractions of strings outside
the range.

Proof. For the subcircuit, there are more than half of the strings outside the range of the subcircuit.
- 75 +o(1)
And since we allow 27 ** time, we can output all such strings, and any fixing of the rest of

the bits is a valid string not in the range of the larger circuit. This implies that Algorithm 3 can
output a succinct representation of > 1/2 fractions of strings outside the range. O
Remark 5.4. When e = (k—1) (1 - %), i.e., m = n¥*/log"" 1 n, the algorithm runs in
polynomial time.
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Tighter Bounds via Improved Disperser Assumption. If the disperser bound of Lemma 5.1
can be improved to:
(2 N)Dfl

K-1)P2<
( ) <0

(5.1)
D— €
then setting K = 2D7—21’ NP2 41 again yields M < N'*¢ (matching exactly the existence bound
from Theorem 2.15), and the same algorithm applies.
Based on the above observation, we make the following assumption:

Assumption 5.5. Let G = (L = [M],R = [N], E) be a D-left-regular bipartite graph that is also a
(K, W} disperser, then it holds that

o log(M/(K — 1)) B log(M/(K — 1))
D—-1=0D 1210g(1/(17w))+1_log(N/(K—l))+1-

1-gE5+o(1) .
Theorem 5.6. Suppose Assumption 5.5 is true, there exists a family of 2% ** time algorithms

for NC%—AVOID[n,nH'E]. In particular, the family of algorithms runs in polynomial time for NC%—
Avorp[n,n*=1/log"=2n]. In addition, they output a succinct representation of > 1/2 fractions of
strings outside the range.

5.2 Implications for Local PRGs

Our subexponential-time AvOID algorithm has implications for PRG constructions in NC° (i.e.,
local PRG).

Theorem 5.7. Suppose there erists a €-AvoId[n,m(n)] algorithm that, in time 2", outputs a
succinct representation of a non-negligible fraction of non-image strings. Then no €[n, m(n)]-based
pseudorandom generator is 2 -secure.

Proof. Let C € € be a PRG with output length m(n). Let adversary A accept an input y iff
y ¢ Range(C). Since the AVOID algorithm runs in time 27", this gives a distinguisher that accepts
at least 2™(~1 non-image strings but accepts none from the PRG, violating the security of the

PRG. O

Corollary 5.8. Assuming the existence of 2™ -secure local PRGs in NC2[n, m(n)], there cannot
exist an algorithm for NC-AvoIp[n, m(n)] that runs in time 2" for any v < B and identifies a
negl(n) fraction of non-image strings.

6 A Faster Local Greedy Algorithm for NC)-AvoID[n,n + 1]

6.1 Algorithm

We present a simple greedy algorithm for NC?-Avoip[n, n + 1] that runs in time

(k—2)n
O (n -2 R ) .

When k = 2, this yields a linear-time algorithm, matching the result of [GLW22].
Before presenting the algorithm, we need the following definition of preimage space.
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Definition 6.1 (Preimage Space). Let C': {0,1}" — {0,1}"™ be a Boolean circuit. For a partial
assignment § € {0,1,x}"™ to the output bits, the preimage space of § is defined as

Preimage(y) := {z € {0,1}" | C(z) is consistent with y}.

In other words, Preimage(y) is the set of all valid input assignments x such that the output C(x)
agrees with the fized bits of 7.

Algorithm 4: Improved Greedy Algorithm for NC2-AvoIip[n, n 4 1]

Input: An NC{ circuit C: {0,1}" — {0,1}™, where m >n + 1.
Output: A string y € {0,1}™, such that y ¢ Range(C).
1 initially all bits of y are unassigned.
2 while there exists an unassigned output bit y; and the preimage space is non-empty do
Assign a value to y; such that the preimage space Preimage(y) is reduced by at least a
factor of 1/2;
end
if all output bits are assigned then
‘ return the assigned output string;
else
‘ Assign arbitrary values to unassigned bits and output the resulting string;
end

w

© 0w N o ook

6.2 Analysis

(k—=2)n

Theorem 6.2. Algorithm 4 solves NCY-AvoIpn,m] for m >n +1 in time O (n <27F1 >

Proof. We first argue that the algorithm always finds a valid non-image string. After fixing at most
(n + 1) output bits, the preimage space is reduced to the empty set, so the output string obtained
is guaranteed to lie outside the image of the circuit.

To analyze the running time of Algorithm 4, we model the input-output behavior of C' via
random variables:

o Let X = (X1,...,X,) denote i.i.d. uniform input random variables.

e and Y = (Y1,...,Y),) denote the output random variables.

Each output bit Y; is computed as:
Y, = fz (Xa,-(l)v s 7X0'i(k)) )

where f;: {0,1}* — {0,1} is a Boolean function and o;: [k] — [n] indicates the input positions
read. For each i € [m], we say that X, (1),..., Xy, ) are the input variables that are adjacent to
Y;.

Let Y represent a subsequence of Y and § the fixing of Y. Then there exists a (partial) assign-
ment ¢y’ € {go0o ook ,jolo s---x  }st y ¢ Range(C) iff Ho(X |Y =9) =0

(m—1—|Y]) of +'s (m—1-]Y) of #’s

and m — D}\ > (0. Thus, the algorithm can be viewed as a process that reduces the min-entropy of
X by successively fixing bits of Y.

In the beginning of the process, X;’s are i.i.d. uniform random variables. Upon fixing an output
bit, the input random variables adjacent to it become correlated. In general, fixing output bits
iteratively will change the dependence.
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Definition 6.3 (Connected Output Bits). We say that two fized output variables Y, and Yy, where
a,b € [m],a # b are connected if the sets of input variables adjacent to them intersect, i.e.,

U Xeto | 0| U Xt | # 2
i€[k]

i€[k]

Definition 6.4 (Preimage Subspace). Let C: {0,1}" — {0,1}™ be a Boolean circuit, and let
Y C {Y1,...,Y} be a subset of the output variables. Denote by X C {X1,..., X} the set of
input variables adjacent to Y. For a fizing § € {0,111 of Y, the preimage subspace of (Y,7) is
defined as

PreimageSub(Y = ) := { Z € {0, 1}'5(‘ | 3x € {0,1}" such that C(x) is consistent with § and x| = T }.

In words, PreimageSub(}N/ = 7) is the set of all assignments of the input variables adjacent to Y that
are consistent with fixing Y to 3.

Remark 6.5 (Preimage Space vs. Preimage Subspace). We emphasize the distinction between the
two notions introduced above. The preimage space Preimage(y) C {0,1}" refers to the set of all
Jull input assignments consistent with a partial output fizing y. In contrast, the preimage subspace
PrelmageSub( =7) C {0, 1}‘X| only records the assignments to those input variables X that are
adjacent to Y. Thus, the subspace is a projection of the full preimage space onto the relevant
coordinates, ignoring the inputs that play no role in determining Y. This distinction will be crucial
i our running-time analysis later.

Lemma 6.6 (Decomposition of Preimage Subspace). Guen a subset of ¢t output random variables
denoted by YO that are fized to §). Then PreimageSub(Y(t) = ;&(t)) can be decomposed into disjoint
subspaces Th,Ts, ..., Ts where s > 1.

Proof. Classify Y®) into s connected components according to Definition 6.3. Denote the connected
components by Y(t) f/s(t). For i € [s], let ﬂm be the fixing of Y/i(t). Each component }z(t)

(2

corresponds to a disjoint preimage subspace T; := PreimageSub(f’i(t) = QZ@). Furthermore, it
holds that {T1,...,Ts} are determined by mutually independent input random variables, since
by Definition 6.3, their adjacent output variables are not connected. O

Hence, upon fixing 7 output bits, the input variables adjacent to the r output bits can be viewed
as clusters of mutually independent random variables. The clusters are independent of each other,
but internally correlated. Each cluster corresponds to a connected component of the fixed output
bits.

Preimage subspace of a subset of output bits corresponding to a fixing: Let r be the num-
ber of fixed output bits. Denote the fixed output bits as Y;,,Y:,, -+, Y:,. and their fixing as
Yt15 Yty » Y. The preimage subspace of Y3, ,Y;,,---,Y;, corresponding to yi,, Yto, -+ 5 Yt,
is the set of valid fixings of the random variables

U {Xati(1)7 to aXatl.(k;)}‘

1€]r]

T

Let Y(® denotes the concatenation of the ¢ output random variables that have been ﬁxed,Ng](t)
be its fixing, and X® denotes the concatenation of the input random variables adjacent to Y.
Let us define the following useful notion of traversed decision space.
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Definition 6.7 (traversed decision space 7 (t)). After Y®) is fived to gjft), according to Lemma 6.6,
let the decomposition of the corresponding preimage subspace of the YW be Ty, ..., T,, each over
disjoint subsets of X®). Define:

T@)={T,....T.}, w(T®):=2" T[T

i€[s]

where |T;| denotes the cardinality, or the number of possible assignments of the input random
variables associated with the space T;.

Intuitively, the function w(7 (t)) upper bounds the effective search space we need to track after
t output bits are fixed — the preimage space of the next output bit to be fixed intersects at most
k subsets in 7 (¢) while any set in 7 (¢) has size > 2.

The following claim says that the search space is non-trivially bounded.

Claim 6.8. For all t, we have w(T (t)) < 2(k=2)t+k,

Proof. We proceed inductively.

Base Case: When t = 1, it holds that there are only one input space corresponding to the fixed
output bit, and it holds that

w(T(1)) =281 |1y | < 282+,

For the inductive case, assume that w(7(h)) < 26=2h+F for b = (¢t — 1), we prove in the
following that w(7(t)) < 2=2t+k also holds. There are two cases to consider:

Case 1: The inputs adjacent to the new output bit are disjoint from the inputs of all previously
traversed output bits. In this case, the decision of which boolean value to assign to the current
output bit only depends on a constant-sized space of 2¥ values. Let s; denote |7(t)|. Then
the new subspace added to 7 (¢) is Ts,. It holds that

w(T(t)) S 2—1 . 2(k—2)(t—1)+k’ . ’Tst‘ — 2—1 . 2(k—2)(t—1)k1 . 2]{3—1 S 2(k—2)t+k
by induction.

Case 2: Suppose ¢ € (0,k] of the inputs adjacent to the new output bit intersects with 1 < r
subspaces T},,...,T;, in T(t —1). Since T3, ..., T}, are disjoint, it holds that » < ¢. Then,
fixing this output bit merges the intersected subspaces. Moreover, since only (k — ¢) new
random variables are introduced into X, the growth from the product of the sizes of the
spaces T3, , ..., T3, to the size of the merged subspace is bounded by a factor of at most k=t
On the other hand, our choice to fix the output bit always reduces the preimage size by at

least half. Hence, the net increase is bounded by:
w(T(t)) <27 w(T(t — 1)) - 28771 < olk=Drk

by induction.

Remark 6.9. The following is true

Hoo( XD | Y ) =log H T3 | = log (\PreimageSub(f/(t) = gj(t))o .

1€[s]
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X®
2l Xt

Proof. Initially, every assignment of X® has equal probability density 1 / since X® forms

the minimal sufficient set of random variables determining Y (®),
Because the partial assignments in each T; for i € [s] are independent, the product [];c(y T3]

exactly counts the number of valid assignments consistent with fixing Y ® = (.
Moreover, each valid assignment has the same probability density, and this property remains
invariant as we fix the bits of Y sequentially. O

By a similar proof, we have
Remark 6.10. The following is true

|Preimage(7)| = 9Hoo (X|Y)

Finally, we use a “meet-in-the-middle” argument to analyze the running time. By Claim 6.8, the
size of the traversed decision space grows at most as

T (1)) < 202"

On the other hand, fixing ¢ output bits shrinks the preimage space — equivalently, the quantity
2Hoo(XIVW) {5 gize at most 27, Thus, when determining the ¢-th output bit, the algorithm
needs to examine a subspace of size at most

k+(k—2)n
min{Q(k_Q)H_k, 2n—t} S 27 k=1

Since the algorithm performs at most (n + 1) steps and each step inspects a space of size at
k+(k—2)n
most 2 k=1 | the overall running time is

(k—2)n
O(n-2 k=1 > .

6.3 Lower Bound

The following result shows that Algorithm 4 has exponential worst-case runtime, giving evidence of
the intrinsic hardness of NCY-Avoip[n, O(n)].

Theorem 6.11. Algorithm j runs in exponential time in the worst case for NCY-Avorp[n, O(n)].

Proof. By Theorem 2.14, a random NCY[n, O(n)] circuit is an (Q(n),k — 1 — )-bipartite expander
with probability at least 1/2, where € is constant arbitrarily close to 0. Fix such a circuit. For an
arbitrary subset of output bits of size Q(n), the induced subgraph on inputs and outputs is nearly a
tree, with only O(1) cycles. This is the worst-case scenario in the above case analysis of Algorithm 4:

e there will be only a major single subspace in 7T (t);

e there are almost no cycles in the subcircuit, there is no means to additively reduce the size of

T(t).
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These essentially imply that the upper bound on w(7(t)) could be tight if at each step of the fixing
we reduce the input space by roughly 1/2. This happens in the following instances.

Assuming each predicate f; is a random Boolean function (say, implemented by resilient func-
tions), then when we iteratively fix each output bit, no matter which bit value we assign to the
next unfixed bit, with high probability, the traversed decision space increases by a factor of 2¥=2,
Thus, the number of configurations to track grows exponentially, and the traversed decision space
size necessarily reaches 29,

From the output string’s perspective, this means that every (n)-bit projection of the image is
nearly uniform. Hence, no partial assignment over 2(n) output bits can efficiently help identify a
non-image string, and the algorithm explores exponentially many paths. O

Remark 6.12. Note that no unconditional exponential-time lower bound can be shown for any
NCY-AvoID algorithms in the constant-stretch regime. Indeed, since NC°-AvoID € FX, [Kor21], it
follows that if P = NP, then NC°-Avoip € FP. Thus, an unconditional exponential-time lower
bound would imply NP #£ P.

7 Conclusion and Open Problems

Open Problem 1.

e (Hardness) Improve the stretch for the hardness of NC’-AvorD problem: by [CL24], we know
that NC'-AvoIp[n,n + 1] ¢ SearchNP. Under randomized encoding techniques [RSW22],
this also implies that NCJ-AvoIip[n,n + 1] € SearchNP. Can we prove that under plausible
assumptions NC’-Avoip[n,O(n)] ¢ SearchNP, or even for some small constant e, NC-
Avoibd[n, n't¢] ¢ SearchNP when k is large.

1—gE7+o(1)
e (Algorithms) In the work, we show that there is a 27 " T fime algorithm for NCY-

Avorp[n,n'*¢]. Does there exist a 27" time algorithm for NCY-Avoip[n, n'*] for some
e > 07 If so, then assuming ETH (Exponential Time Hypothesis) [IPZ98, IP01], NC{-
Avoip[n, n'*¢] € SearchNP.

Open Problem 2. In this work, we only prove equivalence results for polynomial stretch. Can
we extend such equivalence to quasipolynomial stretch? Ideally, we would be able to prove the
following conjecture.

Conjecture 1. 35 s.t., ENP requires 2"° size ACCO circuit complexity if and only if there is an

FPNP algorithm for AC’-Avorp[n, qpoly(n)], where each output bit is computed by a qpoly(n) size
ACCY circuit.

Assuming Conjecture 1 is true and leveraging on existing ACC® circuit lower bound against
ENP [Wil14, CLW20|, the reduction directly yields an FPNF algorithm for ACCY-Avoip[n, gpoly(n)]
where each output bit is computed by a gpoly(n)-size ACCP circuit.

We remark that the technique in this paper seems to fall short of achieving this, as to condense
a hard function of large quasi-polynomial stretch using Jerfabek-Korten’s reduction, one seems to
need the depth of the tree to be super-constant.
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Open Problem 3. Recall that [Jer04, Kor21, CHR24]| proved the following equivalence result.
Avoip € FPN? «— ENP ¢ j.0.-SIZE[2°™] «— ENP ¢ i.0.-SIZE[2"/n)].
The second equivalence is a hardness amplification result.

1. Is there such a similar amplification result for restricted circuit classes? Given Theorem 1.6
and that AC’-Avoip algorithm for smaller stretch implies stronger lower bounds according
to Theorem 2.8, the answer could be negative.

2. Is there such an average-case to average-case hardness amplification pheonomemon, possibly
by proving reduction between different instances of REMOTE-POINT? It is unclear how to
generalize the FPNP reduction of AvoID from any polynomial stretch to minimal stretch to
REMOTE-POINT.
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A Universality Property of Low-Depth Circuits

The following theorem is implicit in [CHS85].
Theorem A.1. Any circuit class containing ACY has the universality property.

Proof. We show that for any circuit C' € €, s 4, Where € is any circuit class containing ACP, there
exists a circuit Uy, s g € ¢ that satisfies the three conditions of the universality property as defined
in Definition 2.4.

We first need the following definition about the succinct encoding of C.

Definition A.2 (Encoding Format (Size O(slogs))). Let the circuit C' have n inputs, m gates, s
wires (i.e., total fan-in across all gates is s), and depth d. We encode the circuit as a list of gates:
Each gate descriptor includes:

e Gate type: 2-3 bits.

e List of fan-in wires: each wire is indexed by a log s-bit value pointing to: either an input
x;, or another gate g;.

Note that the number of bits for the gate is:
O(1 + (fan-in) - log s)
Summing over all gates:

Z fan-in(g) =s == Total encoding size = O(slog s)

gates

Then the following universal circuit construction applies.
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General Universal Circuit Construction for ¥ O AC’. Consider the following set-up of
parameters:

e Input size: n
e Wire bound: s

e Depth bound: d (can be constant or more, depending on the class)

Let C' be any circuit in ¢ with those bounds. We construct a universal circuit U, ;4 with the
following properties:
Inputs:

® r1,...,T,: regular inputs
e (C): an encoding of a circuit C of size (wires) < s, depth < d, using a total of O(slogs) bits
Outputs:

e The output(s) of the simulated circuit C'(x)

Universal Gate Module. For each gate in the simulated circuit, the universal circuit will include
a universal gate module that:

¢ Reads the gate type from the encoding
e Selects the inputs using a list of log s-bit selectors

e Evaluates the function (A, V, =) as per the encoding

Input selection is done via a selector tree or multiplezer circuit using control bits from the
encoding. This works in any class that can simulate a selector (e.g., ACO).

Layered Construction (Depth-Universal Simulation). For a depth-d circuit C, simulate it
layer-by-layer:

e Build d layers in the universal circuit
e Each layer contains O(s) universal gate modules

e Layer i reads inputs from layer ¢ — 1 or from the original inputs

This preserves depth:
e [f € has constant depth, depth remains constant

e If ¢ allows polylog-depth, so does U, s 4
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Final Construction: Universal Circuit U,, s 4. Let ¢ be any circuit class containing ACO, and
let s and d be polynomially bounded functions of n.
Then we can construct a uniform family of universal circuits {U, s 4} such that:

e Each U, ;4 has:

— n regular inputs

O(slog s) encoding inputs

O(s) auxiliary gates
— Depth O(d)

e For any circuit C' € ¢ with n inputs, < s wires, and depth < d, and for any input x € {0,1}",
we have:

Un,s7d(x> <C>) = C(l‘)

This universal circuit simulates any circuit from € with specified resource bounds, given only
its succinct encoding and input. O

B Reductions Between AvOID Instances via Direct-Sum

In this section, we present a reduction between instances of ¢-AvoID, focusing on how to relate
instances with varying input/output lengths.
We present a direct-sum-type reduction that improves upon prior reductions in the literature.

Theorem B.1. For any constant § € (0,1) and any circuit class €, it holds that
% -AvoIp[n,n + 1] <ppne €-Avoip[n,n + n’).

Specializing to € = NC%, this reduction yields several consequences when combined with results
from [RSW22, GLW22, GGNS23|.

For instance, [GGNS23| showed that explicitly constructing rigid matrices sufficient for Valiant’s
program reduces to NCg—AVOID[n, n+n?/ 3]. Moreover, improving the current FPNP constructions
of rigid matrices [BHPT24] would follow from an FPNF algorithm for NC-Avoip[n, n 4 n'2/17—¢]
for any constant € > 0.

By Theorem B.1, we obtain that even solving NC3-Avoip[n, n+n] for any constant § € (0,1) is
already sufficient to yield such constructions — though this suggests that doing so is likely as hard
as solving the hardest case which has the minimum stretch NC%—AVOID[n7 n + 1], a stretch regime
believed to lie beyond SearchNP [CL24].14

This reduction also applies to other explicit construction problems reducible to small-stretch
NC%—AVOID, including:

e constructing binary linear codes approaching the Gilbert—Varshamov bound,
e list-decodable codes achieving list-decoding capacity,

e optimal Ramsey graphs.!?

Y Pprecisely speaking, [CL24| only shows that it is likely that NC3[n,n + 1]-AvoiD ¢ SearchNP.
15While we are not aware of a formal reduction for Ramsey graphs in the literature, we provide one in Appendix D.
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Hence, this result is both a positive and negative message: on the one hand, it shows the
potential power of solving small-stretch AvVOID instances; on the other hand, it aligns with the
growing evidence that these instances are unlikely to be in SearchINP.

In the following, we present the proof of Theorem B.1.

Proof of Theorem B.1. Construct s = n% @+ copies of C € € of input size n'/(+1) ecach with
stretch n/(@1) 4 1. Concatenating them yields a circuit €’ with input size n and output size
n + n® (@) Given y ¢ Range(C’), we can partition y into s equal-sized blocks and use an NP-
oracle to find a block not in Range(C) in time O(s). O

Figure 5: Concatenating small instances (circuits) with small stretch to a larger instance (cir-
cuit) with larger stretch.

C Missing Proofs

C.1 Proof of Theorem 2.8

We restate and prove Theorem 2.8 here, which is a version of the implication of ¥-AvoID algorithms
to circuit lower bounds based on wuniversality property of the circuit classes from [RSW22|, with
tightened parameters.

Theorem C.1 (Refinement of Theorem 5.2 from [RSW22|). Let € be any circuit class that has
the universality property, and f : N — N be a monotone function that is good. Suppose there is an
FPYNP (resp. FP, FQPNP) algorithm for €-REMOTE-POINT[N, f(N),c(N)], where each output

gate has € circuit complexity poly(N). Then for some constant ¢ > 0, ENP (resp. E, EXPNF)
—1/9n
cannot be (1/2 + c(f~1(2")))-approzimated by € circuits of size %.

Proof. Consider the truth table mapping:
TTe: {0,1}Y — {0,1}*",

which maps the encoding (C) of a single-output % circuit of size s = s(n) to its truth table. By the
universality of €, there exists a constant ¢ such that N = O(slogs). In particular,

10g10g f_1(2n)> < f—1(2n)

v (1

for sufficiently large n.
Thus, the output length 2™ satisfies:

2" > F(N).

Moreover, each output bit of TT¢ can be computed by a € circuit of size poly(V), since evaluating
C on any input is efficient by assumption.
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Applying the FPNF algorithm for €-AvoID[N, f(N)], we can find a string y ¢ Range(TTy).
This string represents the truth table of a Boolean function f: {0,1}" — {0,1} that cannot be
computed by any € circuit of size s. Since the AvoID algorithm runs in FPNP | the function f is
in FENP.

By the definition of ¥-REMOTE-POINT[N, f(N),c(N)], the output of the algorithm on the
instance C, which we call y, has relative hamming distance > 1/2 — ¢(V) from Range(C). Then it
holds that Range(C) and y agrees on < 1/2 + ¢(f~1(2")) fraction of inputs. O

C.2 Proof of Theorem 1.5

We reproduce Theorem 1.5 here for convince:

Theorem C.2. For any constant 6 € (0,1), an FPNP algorithm for NC}-Avoip[n, n + n?] implies
that ENP requires Q(27 /n)-size formulas.

Proof. By Theorem B.1, an FPNP algorithm for NCQ-A\/OID[n, n+n’] implies an FPNP algorithm
for NC3-Avoip[n, n+1]. By instantiating Theorem C.1 with formulas, we have Formula-Avorp[n, n-+
1] < ¢ FPYY — ENP ¢ Formula[o(2"/n)]. By [RSW22], we have NC}-Avoip[n,n + 1] €
FP — Formula-Avoip[n,n + 1] € FP. Hence, it holds that NC}-Avoip[n,n + 1] € FPNP —
ENP ¢ Formula[o(2"/n)] (tighted version of [RSW22, Theorem 5.8]). Combining the above we
have, for any constant 1 > § > 0, it holds that NC}-Avoip[n,n 4+ nd] € FPNP — ENP ¢
Formula[o(2™/n)]. O

D Reducing Explicit Construction of Optimal Ramsey Graphs to
NCY- Avoip

The current state-of-the-art explicit construction of a (logo(l) n)-Ramsey graph is due to [Li23].
It is well-known that an explicit construction of a two-source extractor with parameters (logn +
2log(1/e(n)) + 3,e(n)) and constant error €(n) = O(1) would imply an explicit O(logn)-Ramsey
graph.

In this section, we show that constructing such two-source extractors can be reduced in poly-
nomial time to the problem of finding strings outside the range of circuits in the class NC3-Avorp.
Our approach closely follows the strategy of [Kor21], who constructed circuits for AvOID instances.

Theorem D.1. Let £(n) be any efficiently computable function satisfying 1/n¢ < e(n) < 1/2
for some constant ¢ > 0 and sufficiently large n. Then, the problem of explicitly constructing a
(logn + 2log(1/e(n)) + 3,(n))-two-source extractor reduces in polynomial time to NC3-AvoID.

Proof. The high-level idea is to encode a partial truth table of a candidate extractor on “bad”
sources, i.e., sources on which the extractor fails to produce an e-biased output. We then build a
circuit that takes this partial truth table as input and computes the coefficients of a polynomial
that interpolates exactly the points in the bad source. Any string outside the image of this circuit
corresponds to a set of coefficients whose polynomial disagrees with every such bad source, thereby
certifying the extractor as valid.

Consider the function f:{0,1}" — {0,1}" defined as:

22k

f(z) = Z ozt
i=1
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and define g(z) = f(z) mod 2, where arithmetic is over a suitable extension field.
The input to the circuit consists of:

1.

The two sources X,Y, each of size 2¥, where each element is an n-bit string. These require
2.2k . p = 2k+tly bits.

. A single bit b € {0,1} indicating the biased output value.
. The coefficients §; for encoding the outputs on bad sources, which require 22k(2n — 1) bits.

. A string S € {0, 1}2% of Hamming weight (1/2 — ¢) - 22¢, specifying the support of the bad

outputs. This can be encoded using at most 22¢(1 — £2) +log(2%*) bits (via standard entropy
bounds).

The total number of input bits is:

ok +n 4142220 — 1) 4+ 22K (1 — &%) + 2k.

The number of output bits is:

92k .

corresponding to the full truth table of f(x).
By choosing parameters such that:

22ke2 _ o —1 -2l >0,

we ensure that the number of inputs is strictly less than the number of outputs, making the con-
struction amenable to the AvOID framework.

Computing the coefficients «; from the evaluations of f(z) can be done via polynomial interpola-
tion, specifically by inverting a Vandermonde matrix. This procedure is known to be in NC! [Ebe84].
Finally, by applying the known reduction from NC!-Avoib to NCY-AvoIp given in [RSW22], we con-
clude that explicitly constructing optimal two-source extractors (and thus optimal Ramsey graphs)
reduces to NCJ-AvoIp. O
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