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Abstract

We prove a non-linear Edelstein-Kelly theorem for polynomials of constant degree, fully
settling a stronger form of Conjecture 30 in Gupta (2014), and generalizing the main result of
Peleg and Shpilka (STOC 2021) from quadratic polynomials to polynomials of any constant
degree.

As a consequence of our result, we obtain constant rank bounds for depth-4 circuits with
top fanin 3 and constant bottom fanin (denoted Σ3ΠΣΠd circuits) which compute the zero
polynomial. This settles a stronger form of Conjecture 1 in Gupta (2014) when k = 3, for any
constant degree bound; additionally this also makes progress on Conjecture 28 in Beecken,
Mittmann, and Saxena (Information & Computation, 2013). Our rank bounds, when combined
with Theorem 2 in Beecken, Mittmann, and Saxena (Information & Computation, 2013) yield
the first deterministic, polynomial time PIT algorithm for Σ3ΠΣΠd circuits.
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1 Introduction

Polynomial Identity Testing (PIT) is a fundamental problem in algebraic complexity theory, with far
ranging applications in theoretical computer science as well as in mathematics. The PIT problem
asks whether a given algebraic circuit over a field F formally computes the zero polynomial. When
the field F is sufficiently large, the PIT problem equivalently asks whether the given algebraic circuit
evaluates to zero on all inputs. This latter perspective is the source for a very simple randomized
algorithm for the PIT problem, via the polynomial identity lemma. When the field is large enough,
to test whether the given circuit computes the zero polynomial, one simply evaluates the given
circuit at a random point. This simple algorithm places PIT in the class coRP.

The task of derandomizing the PIT problem is closely tied to the quest of proving explicit
lower bounds for algebraic circuits [HS80; Agr05; KI04]. Additionally, derandomizing the PIT
problem, even for special classes of circuits, has resulted in the derandomization of key problems
in mathematics and computer science [AKS04; FS13; Mul17; FGT19]. For an overview on PIT, see
[Sax09; SY10; Sax14].

Given the strong consequences arising from the derandomization of the PIT problem, even
for special classes of circuits, there has been significant research devoted to its solution. Due to
the difficulty of the general problem, attention has turned to more tractable and natural classes
of circuits, such as the class of sparse polynomials (also known as depth-2 circuits) [KS01], and
depth-3 circuits [DS07; KS09; SS13]. The recent breakthroughs in depth reduction [AV08; Gup+13;
Tav15] have demonstrated that the general PIT problem can be reduced to the special cases of the
PIT problem for unrestricted depth-3 circuits or homogeneous depth-4 circuits. These results have
rekindled interest in these classes, leading to a concentrated research effort on the PIT problem for
these classes, such as the works [KS09; BMS13; SS13; Gup14; Guo21; DDS21].

Since the depth-3 and depth-4 cases are equivalent to the general PIT problem, an additional
restriction has been considered in the aforementioned works: in the depth-3 case the top fanin of
the circuit is assumed to be constant, and in the depth-4 case both top and bottom fanins of the
circuits have been assumed to be constant. Henceforth, we denote by ΣkΠΣ the set of all depth-3
circuits with top fanin k and by ΣkΠΣΠd the set of all depth-4 circuits with top fanin bounded by k
and bottom fanin bounded by d (where one should think of k and d as being constants).

The work [DS07], which initiated the study of the PIT problem for ΣkΠΣ circuits, gave a
deterministic, quasipolynomial time algorithm for this problem. Moreover, in [DS07, Section 7],
the authors raised the connection between Σ3ΠΣ identities and a generalization of the famous
Sylvester-Gallai problem, thereby initiating a connection between PIT and discrete geometry. Such
a connection was built in the hopes of obtaining deterministic, polynomial time algorithms for the
PIT problem for ΣkΠΣ circuits. As it turns out, the conjecture posed in [DS07, Section 7] had already
been settled (when the base field is R) by Edesltein and Kelly in [EK66].

The above connection was further studied and generalized to ΣkΠΣ circuits by the works
[KS09; SS13], culminating with a strong and elegant relationship between higher dimensional
Sylvester-Gallai configurations and ΣkΠΣ identities ([SS13, Theorem 1.4]).

The work of [Gup14] proposed non-linear generalizations of several relevant Sylvester-Gallai
type conjectures that would be needed in order to generalize to the ΣkΠΣΠd case the connections
between PIT and discrete geometry that were forged in the ΣkΠΣ case. Following the breakthrough
of [Shp20], which established the first non-linear Sylvester-Gallai theorem for quadratic polynomi-
als, a sequence of works has confirmed several of Gupta’s conjectures [PS20; PS21; OS22; OS24;
Gar+23; GOS25]. Among these works, the paper of Peleg and Shpilka [PS21] has been the only of
such works to establish a deterministic PIT algorithm for Σ3ΠΣΠ2 circuits, via a generalization of
the Edelstein-Kelly theorem for quadratic polynomials.
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In this work, we prove a generalized version of the Edelstein-Kelly theorem for polynomials
of bounded degree, thereby fully settling a stronger form of [Gup14, Conjecture 30] and settling
Gupta’s main conjecture ([Gup14, Conjecture 1]) when k = 3, for any constant degree d. Our main
result, when combined with [BMS13, Theorem 2], yields the first polynomial-time, deterministic
PIT algorithm for Σ3ΠΣΠd circuits.

Before formally stating our main result, and its consequences to the PIT problem, we explain
how Edelstein-Kelly configurations (and their generalizations) naturally appear in the PIT problem
for Σ3ΠΣΠd circuits.

1.1 PIT and generalized Edelstein-Kelly configurations

We begin by introducing the classical linear Edelstein-Kelly configurations [EK66]:

Definition 1.1 (Edelstein-Kelly configurations). Let K be a field, A := {u1, . . . ,ua},B := {v1, . . . , vb}
and C := {w1, . . . ,wc} be pairwise disjoint subsets of P(KN). We say that (A,B,C) forms a linear
Edelstein-Kelly configuration if given any pair of vectors in distinct sets, their linear span con-
tains a vector in the third set. The rank of an Edelstein-Kelly configuration (A,B,C) is given by
dim spanK {A ∪B ∪ C}.

When K = R, [EK66, Theorem 3] proves that the rank of any Edelstein-Kelly configuration is at
most 3. When K = C, the fractional Sylvester-Gallai theorem of [Bar+11] implies that the rank of
any Edelstein-Kelly configuration is bounded from above by a universal constant. The fact that
such configurations must be constant dimensional is known as an Edelstein-Kelly type theorem.

With the above definition and rank bound at hand, we explore how Edelstein-Kelly configura-
tions naturally arise in Σ3ΠΣ identities. Let x = (x1, . . . , xN) be a tuple of variables, and let S := C[x]
denote the polynomial ring over C. In the introduction, we will assume that our given polyno-
mials and circuits are homogeneous, and we follow standard notation and refer to homogeneous
polynomials as forms. In Section 7 we will formally show our rank bounds without this assumption.

Suppose a Σ3ΠΣ circuit computes a form P, which takes the following form:

P =

m∏
i=1

ℓi(x) +

m∏
j=1

gj(x) +

m∏
k=1

hk(x), (1.1)

where each ℓi,gj,hk is a linear form.1

If P ≡ 0, that is, the circuit forms an identity (equivalently, computes the zero polynomial), and
if this identity is efficiently represented – meaning no subset of the summands add to zero, and the
summands share no common factor2 – we are led to ask whether the involved linear forms must
necessarily lie in a low-dimensional space, i.e., depend on only a few variables. To capture the
”true number of variables” of the circuit given by Eq. (1.1), Dvir and Shpilka [DS07] introduced the
rank of a depth-3 circuit as the dimension of the linear span of all linear forms appearing in it. For
the circuit in Eq. (1.1), the rank is given by dim spanC

{
ℓi,gj,hk

}
i,j,k∈[m]

.
Consider a linear form ℓi from the first gate and a second linear form gj from the second gate.

Since P ≡ 0, we have that for any a ∈ CN such that ℓi(a) = gj(a) = 0, it must be the case that∏
hk(a) = 0. In other words, we have that V(ℓi,gj) ⊂ V (

∏
hk) =

⋃
k V (hk). Since the algebraic

set V
(
ℓi,gj

)
is irreducible, we must have V

(
ℓi,gj

)
⊂ V (ha) for some a ∈ [m]. This last condition

(combined with the symmetry among the gates) is exactly the local constraint arising from the dual
formulation of Edelstein-Kelly configurations in Definition 1.1. By the Edelstein-Kelly theorems

1Note that, since we are only given the circuit computing P, we do not explicitly know its coefficients and monomials.
2This corresponds to the circuit being simple and minimal as defined in [DS07].
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above we deduce that spanC
{
ℓi,gj,hk

}
= O(1). This shows that any Σ3ΠΣ identity essentially

depends on constantly many variables. Combined with [KS08], this gives a black box deterministic
PIT algorithm for Σ3ΠΣ circuits.

Let us now see how a natural non-linear generalization of Definition 1.1 arises in the study of
Σ3ΠΣΠd PIT. Consider a form Q computed by a Σ3ΠΣΠd circuit. It has the form

Q =

m1∏
i=1

Ai(x) +

m2∏
j=1

Bj(x) +

m3∏
k=1

Ck(x),

where Ai,Bj,Ck are forms of degree at most d. IfQ ≡ 0 and the representation is efficient, as in the
previous case, we have V(Ai,Bj) ⊆ V (

∏
Ck).3 However, as the forms are not necessarily linear,

we have that V
(
Ai,Bj

)
is not necessarily irreducible, and thus we cannot guarantee the existence

of k ∈ [m] such that V
(
Ai,Bj

)
⊂ V (Ck). Nevertheless, the above relations led Gupta [Gup14] to

generalize the definition of Edelstein-Kelly configurations in the following way:

Definition 1.2 (Non-linear Edelstein-Kelly configurations). Let K be a field, A,B and C be finite
sets of irreducible forms in K[x] of degree at most d. We say that (A,B,C) forms a d-Edelstein-Kelly
configuration over K if the following conditions hold:

1. any two forms are pariwise non-associate

2. for any A ∈ A,B ∈ B, we have that: ∏
C∈C

C ∈ rad (A,B) .

Moreover, such relation works for any permutation of the sets A,B and C.

Note that when d = 1, the above definition, together with the fact that ideals generated by linear
forms are prime, becomes the same as the usual (linear) Edelstein-Kelly configuration, recovering
Definition 1.1. Moreover, by the algebra-geometry correspondence given by the Nullstellensatz,
whenever the field K is algebraically closed, the above algebraic condition becomes V (A,B) ⊆
V
(∏

C∈CC
)
, thereby recovering the geometric condition from Σ3ΠΣΠd identities.

Similarly to the linear case, Gupta proposed the following conjecture:4

Conjecture 1.3 (Non-Linear Edelstein-Kelly conjecture). There exists a function λ : N → N such that,
if (A,B,C) forms a d-Edelstein-Kelly configuration over a field K of characteristic zero, then

dim spanK {A ∪B ∪ C} ⩽ λ(d).

Since every Σ3ΠΣΠd identity gives rise to a non-linear Edelstein-Kelly configuration (the
three sets are simply the irreducible factors of each of the product gates), the above conjecture,
when combined with [BMS13, Theorem 2], would yield the first polynomial-time, deterministic PIT
algorithm for this circuit class.

The work of Peleg and Shpilka [PS21, Theorem 1.6] confirmed Conjecture 1.3 for the case when
d = 2. Our main theorem is to confirm the above conjecture for any value of d.

3By symmetry among the gates, we also have V(Ai,Ck) ⊆ V (
∏
Bj) and V(Bj,Ck) ⊆ V (

∏
Ai).

4Conjecture 1.3 is a stronger form of [Gup14, Conjecture 1] when k = 3, where transcendence degree is replaced by
the dimension of the span of the polynomials in the configuration.
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1.2 Our Results

Now that we have discussed the connections between Edelstein-Kelly configurations and PIT, we
are ready to state our main result: non-linear Edelstein-Kelly configurations have bounded rank.

Theorem 1.4 (Rank bound for EK-configurations). There exists a function λ : N → N such that for any
d-Edelstein–Kelly configuration (A,B,C) over a field K of characteristic 0, we have

dim(spanK {A ∪B ∪ C}) ⩽ λ(d).

Our main theorem generalizes the main result of [PS21] to forms of any bounded degree d.
Additionally, our proof technique is more general and simpler than the proof in [PS21], as we have
a simpler case analysis than their work.

Since any simple and minimal Σ3ΠΣΠd identity gives rise to a non-linear Edelstein-Kelly
configuration, we obtain the following corollary.

Corollary 1.5. There is a function λ : N → N such that for any simple and minimal Σ3ΠΣΠd-identity Φ
over a field K of characteristic 0, we have rankΦ ⩽ λ(d).

The above rank bound, when combined with [BMS13, Theorem 2], implies the following
derandomization result for PIT.

Corollary 1.6. There is a deterministic polynomial-time algorithm for identity testing of Σ3ΠΣΠd-circuits.

Our proof strategy, much like the proofs in previous works on the non-linear generalizations
of Sylvester-Gallai configurations, is to ”construct” the function λ by induction on the degree of
Edelstein-Kelly configurations. The main tool employed in previous works to reduce the degree
of these configurations is to apply a sequence of general quotients (see definition in Section 5)
to certain special vector spaces of forms that appear in our configuration. Since these general
quotients map polynomial rings into quotient rings of polynomial rings, we need to further
generalize our definition of Edelstein-Kelly configurations to this more general setting. We provide
this generalization in Definition 3.5, and in Section 1.4 we outline the subtleties and challenges we
need to overcome to achieve our results.

Equipped with this general and more versatile type of configurations, our strategy to reduce the
degree of the configuration is similar to the one employed in [GOS25]: we find small vector spaces
of forms that, when quotiented out via a general quotient, makes a constant fraction of the forms in
our Edelstein-Kelly configuration to ”factor more,” and therefore drop degree. However, due to
the combinatorial restrictions imposed by Edelstein-Kelly configurations, the implementation of
this step is more delicate, and requires the development of a new potential function which captures
the reducibility of an Edelstein-Kelly configuration with respect to a given vector space of forms.
This connection is established in Section 5.3, and we heavily use it in Section 6 to prove our main
technical theorem, which we now state.

Theorem 1.7. For any two positive integers d, e such that e ⩾ 2 and d ⩽ e , there exist ascending functions
Λd,e : Ne → Ne and λd,e : N → N, both independent of K and N, such that the following holds.

Let K be an algebraically closed field of characteristic 0 and S := K[x1, · · · , xN]. Let U ⊂ S⩽e be a
Λd,e-strong graded vector space and R = S/(U). If (A,B,C) is a (d, z,R)-EK configuration in R for some
z ∈ S1, then we have

dim(spanK {A ∪B ∪ C}) ⩽ λd,e(dim(U)).

i.e. the dimension of the K-linear span of A,B,C is upper bounded by a function of d, e, δ and dim(U),
which is independent of the field K, the number of variables N and the cardinality of A,B,C.

In Section 6, we show how Theorem 1.4 follows as an easy corollary of the above theorem.
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1.3 Proof overview

We now describe our proof strategy and its implementation, giving an overview of the new ideas
needed and the new technical challenges that we overcome to implement our inductive approach
and prove our generalized Edelstein-Kelly theorem.

At a high level, our approach to prove rank bounds on Edelstein-Kelly (EK) configurations
follows the inductive approaches from previous works, in particular the works [PS21; OS24; GOS25].
Their main idea is to prove the existence of small vector spaces of forms which are in some sense
”present in many forms” in the given configuration.

Let R := C [x1, . . . , xN], and S := R [y1, . . . ,yn] be two polynomial rings and F := (A,B,C) ⊂ S

be a d-Edelstein-Kelly configuration. Thus, we can write F = F1∪· · ·∪Fd, where Fe := (Ae,Be,Ce)
are the forms in F of degree e (with their place in the partition). We start with the assumption that
each form only depends on constantly many variables in S.5 A number of key ideas can already be
highlighted in this easier setting.

We want to control the highest degree forms Fd in our configuration, with the goal of reducing
to the case when the highest degree is d − 1, where we can proceed inductively. From now on
whenever we talk about conditions on two of the sets, we assume that the symmetric conditions
with the permuted sets also hold, unless stated otherwise.

If many ideals of the form (Ai,Bj), where Ai ∈ Ad,Bj ∈ Bd are prime, then the Edelstein-Kelly
condition implies that the set Fd is essentially a (robust) linear Edelstein-Kelly configuration. In this
case, the linear Sylvester-Gallai theorems imply that constantly many forms F1, . . . , Fa are a basis for
spanC {Fd}, and if z1, . . . , zr is the union of the set of variables of F1, . . . , Fa, then Fd ⊂ C [z1, . . . , zr].
This is sufficient to control the forms of Fd and apply our inductive step. The interesting case is
thus when there are many ideals generated by forms in Fd that are not prime. In this case, the goal
is to show that the forms in Fd must share many variables in common. The steps listed below show
how previous works have dealt with this case.

Step 1 - Structure theorems: In this work, the main structure theorem we use is [GOS25, Theo-
rem 4.16]. In fact we require a stronger form of this theorem, which we prove in Proposition 2.3
and Corollary 4.17. We briefly explain how such a structure theorem is helpful in our setting.

Suppose we have an irreducible form P ∈ S \ (x1, . . . , xN). Suppose Q1, . . . ,Qr ∈ R are irre-
ducible forms. We are interested in bounding the number of Qi such that (P,Qi) is not prime. In
[OS24], a bound was proved for the number of Qi such that (P,Qi) is not radical, and this bound
only depends on the degree of P. In the case of prime ideals however, things are more complicated.
Consider for example P = y4

1 − x1x2y
2
2. The form P is irreducible, since it is linear in x1. However,

for any Q ∈ R, the ideal
(
P, x1x2 −Q

2
)

is not prime, since y2
1 −Qy2 ∈

(
P, x1x2 −Q

2
)
. Therefore,

such a bound cannot exist for every P.
The structure theorem [GOS25, Theorem 4.16] states that the above only happened because

P is reducible as a polynomial in the ring C (x1, . . . , xN) [y1, . . . ,yn], since it has factorisation
P =

(
y2

1 −
√
x1x2y2

) (
y2

1 +
√
x1x2y2

)
. In particular, the theorem states that as long as P is irreducible

not just as a polynomial in S, but also as a polynomial in C (x1, . . . , xN) [y1, . . . ,yn], then the number
of Qi such that (P,Qi) is not prime is bounded by a function of only degP. Such a P is said to be
absolutely irreducible over the variables x1, . . . , xN.

The reason why this type of structure theorem is useful is the following: forms that are absolutely
reducible will factor when a graded quotient is applied. Therefore, we want to try and find a small
vector space of linear forms such that many forms in our configuration are absolutely reducible with

5The set of variables may be different across the forms, otherwise the main theorem is trivially true. Also, note that
the variables of S are both the x and y variables.
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respect to this vector space. Due to the additional constraints coming from the EK configurations,
we need the more robust form of [GOS25, Theorem 4.16] for pencils of forms, which we prove in
Proposition 2.3.

The proof of Proposition 2.3 proceeds by studying the Noether equations that define reducibility
over algebraically closed fields. If a form P is absolutely irreducible, then it does not satisfy some
Noether equation, and therefore neither does P +Qi for all except constantly many Qi. As in the
proof of [GOS25, Theorem 4.16], the non trivial step here is to show that the bound is independent
of n,N. We obtain this using a Bertini type theorem.

Step 2 - Finding a set of variables which makes several forms ”factor more”: We start with the
configuration F and vector space V := 0. The vector space V will play the role of the small set of
variables that control F (i.e., make many forms in F ”factor more”). As discussed before, if for
every A ∈ Ad, many of the ideals (A,B) with B ∈ Bd are prime, then the set of degree d forms Fd

is a robust linear EK configuration, therefore it has small linear rank.
Therefore, let us assume that this does not happen. In other words, for a constant p we can

essentially assume that A1, . . . ,Ap ∈ A are such that
(
Ai,Bj

)
is not prime for every 1 ⩽ i ⩽ p

and 1 ⩽ j ⩽ |B| /2. As discussed above, the structure theorem will imply that the forms Bj are all
absolutely reducible over the variables of A1, . . . ,Ap. Since p is constant, and we are assuming each
form in F depends on constantly many variables, the total number of variables of A1, . . . ,Ap is a
constant. Therefore when we update V to include the space spanned by these variables we make a
some progress, since the Bj’s are factoring under a general quotient.

Now that half the forms in Bd are absolutely reducible, we try to control Ad, in particular
the forms that are still absolutely irreducible over the new V . This forces us to look at the EK
relationships between Ai and Bj for 1 ⩽ j ⩽ |B| /2. Recall that these forms of B are already
absolutely reducible over V . This makes it a challenge to study the ideals

(
Ai,Bj

)
, since we cannot

directly apply the prime bound. Hence, we have to apply the structure to the factors of Bj as a
polynomial with coefficients in C (V), which poses some algebraic challenges (and will force us to
work over the general quotient).

In order to control Ad, we look for long sequences A1, . . . ,Ar of forms that are not only ab-
solutely irreducible over V , but also their pairwise spans spanC

{
Ai,Aj

}
does not contain any

absolutely reducible form (we call such sequences unbreakable pencils Definition 6.3). This is
where our strengthened structure theorem applies: if no such long sequences exist, then the forms
in Ad pairwise span absolutely reducible forms, and by adding a few more variables to V , we
can deduce that every form in Ad is absolutely reducible. We are thus left with the case that long
sequences A1, . . . ,Ar do exist (here, long means bigger than the bounds of the structure theorem,
therefore r is still a constant). In this case let V ′ be the vector space obtained by adding the variables
of A1, . . . ,Ar to V .

With the above long sequence at hand, we are able to deduce that a large fraction of the forms
in B that are already absolutely reducible over V , will be be even more absolutely reducible over
V ′. This notion of being even more absolutely reducible is captured by a more refined potential
function than used in previous works, in particular because the potential function will depend on
the general quotient used. This poses some algebraic challenges, as this restricts the generality of
the graded quotients that we can apply. We explain how we overcome this in Step 3 below.

If B is not the smallest among the three sets, then after constantly many iterations of this step,
we can argue that the potential function reaches its maximum, which will imply that all the forms
in B are absolutely reducible. However, we face the following combinatorial challenge: we cannot
force a particular set to be controlled. The reason being that the change in the potential function at
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each step depends on the relative sizes of Ad,Bd,Cd. If B is the smallest of the three sets, then we
need to do some more combinatorial work to be able to control one of the other sets from the fact
that we control B.

If we manage to overcome all of these challenges, then we reach a stage where we have a vector
space V , and every form in one of the sets Ad,Bd,Cd is absolutely reducible over V . Another
application of the structure theorem will allows us to find a slightly bigger vector space V ′ such
that all of Fd is absolutely reducible over V ′, and we can apply induction. We now summarise the
above challenges, and discuss how we overcome them.

Combinatorial challenges and solutions: As discussed above, the outline of our method is to
first show that half the forms in some set are absolutely reducible, and then extend this to control
all the forms in some large enough set. This is difficult to do when the sets are all of different sizes.
The main challenge comes from the fact that we have no way of controlling how Fd fails to be a
robust linear EK configuration. It might be the case that this failure only allows us to control the
smallest of the sets.

This is overcome by noting that if the sets are of vastly different sizes, then the failure of
configuration to be a linear EK configuration will be more structured, and we will be able to control
one of the bigger two sets. However if the sets are not that different in size, then control of the
smallest gate will be enough to make the above arguments work, with slight modifications in
parameters. Our intermediate lemma become slightly more involved since they will now depend
on these relative sizes.

Algebraic challenges and solutions: On the algebraic side, our structure theorem is about abso-
lutely irreducible form, but as we increase the base vector space of linear forms, we need to be able
to apply the structure theorem to argue about forms that are absolutely reducible. We are able to
still use the structure theorem by arguing about the factors of the images of reducible forms under
the graded quotients. This in turn will require us to compare images of forms under sequences of
graded quotients, so we will always have to ensure that our quotients are compatible with previous
quotients. To this end, we introduce the notion of twisted graded quotients, which allow us to track
the progress on the factorization of the forms in our original configuration.

Further, we will have to define a potential function that captures fine grained notions of ”how
close a form is to an algebra,” and also how much it factorises with respect to that vector space.
We have to also study how this potential changes as the vector space is iteratively modified. This
potential function will also be defined using graded quotients, and tracking the change in potential
as the vector space is modified will require the quotients to be compatible as described above.

Step 3 - Graded quotients and potential function: We can now finally describe our algebraic
tools and our technical contributions on the algebraic side. The notion of graded quotients was
introduced in [OS24], and further developed in [GOS25], as a generalization of projection maps
used in [Shp20; PS20; PS21; PS22; Gar+23]. In the simplest case, graded quotients can be described
as follows. Let S := C[x1, · · · , xm,y1, · · · ,yn], and let z be a new variable. For (α1, · · · ,αm) ∈ Cm,
consider the map φα : S[z] → C[z,y1, · · · ,yn] given by xi 7→ αiz. Given a finite set of forms
F ⊆ S, one can apply such a map φα and obtain a corresponding set of forms φα(F) in the new
polynomial ring. If α is chosen to be general enough, then the map φα preserves several useful
properties of forms, such as linear independence. Moreover, if the image φα(F) is low-dimensional
for general choices of α, then the span of F itself must be low-dimensional. These properties played
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a key role in establishing uniform bounds for quadratic Edelstein-Kelly and Sylvester-Gallai-type
configurations in [Shp20; PS20; PS21; PS22; GOS22; Gar+23].

In [OS24], a more general tool of graded quotients was developed which can deal with higher
degree forms instead of variables xi. In particular, for a C-algebra R and a finite dimensional vector
space V ⊆ R, with basis F1, · · · , Fm, a graded quotient is given by a map of the form Fi 7→ αiz

deg(Fi).
In particular, we have a map φV ,α : R[z] → R ′, where R ′ is a quotient ring R[z]/I. Moreover, if the
forms Fi are “strong” enough, i.e. they behave as variables, then useful properties of φα also hold
in this general setting as shown in [OS24]. In [GOS25], it was shown that such graded quotients
can also capture absolute irreducibility. In the situation of polynomial rings, this property shows
that a form F ∈ S is absolutely irreducible with respect to C(x1, ·, xm), iff φα(F) is irreducible for
general choices of α.

Recall that in our setting of EK-configurations, we want to successively build vector spaces
V , such as V = spanC {x1, · · · , xm}, which make more number of forms absolutely reducible
with respect to the function field C(V). Note that absolute irreducibility over C(x1, · · · , xm) is
significantly more challenging to handle than irreducibility in the polynomial ring C[z,y1, · · · ,ym].
Therefore, these graded quotients provide an effective tool to handle absolute irreducibility in
our case. However, this approach leads us beyond the realm of polynomial rings, as the graded
quotient rings are not necessarily polynomial rings. Thus, we consider EK-configurations more
generally in quotient rings, and prove rank bounds in this general setting in Theorem 1.7.

Moreover, in Proposition 5.14, we show that the Edelstein-Kelly property is preserved un-
der such general quotients. This property enables us to inductively reduce the degree of EK-
configurations by controlling the highest degree forms in F. As mentioned before, several new
technical challenges appear in our setting, which were not present in the previous works that
employed graded quotients.

Composition. Given a vector space V , we would like to increase it to another vector space Y,
such that more forms of our EK-configuration become absolutely reducible with respect to the
corresponding fields of rational functions. Therefore, by the equivalent criterion discussed above,
we want to find new forms F such that φY,β(F) is reducible while φV ,α(F) is irreducible. Although
V ⊆ Y, in general these two quotient maps might not be compatible. In other words, the quotient
map φY,β might not be a composition of two quotients of the form φV ,α and φW,γ. In Section 5,
we define the notion twisted quotients and overcome this technical obstacle by showing that we
can still decompose φY,β as a composition of φV ,α and an appropriate twisted quotient (up to
isomorphism).

Potential function. In the setting of EK configurations, it is not enough to increase the number
of forms that factor under a quotient. We also need a more refined measure of how much a given
form factors. Although previous works such as [OS24; GOS25] had employed graded quotients,
this finer requirement is a novel that we face due to EK-configurations. In Section 5.3, we quantify
this by defining a potential function using the graded quotients. In particular, for a graded quotient
map φV ,α we have an associated potential function Ψ such that the following two key properties
hold. For two forms P,Q, if Ψ(P) > Ψ(Q), then P depends more on the variables in V than Q does.
Moreover, Ψ(P) > Ψ(Q) also implies that P factors more with respect to V than Q. For a given
EK-configuration F, we quantify the total amount of factoring and closeness with respect to V as
the group potential, which is a sum of the individual potentials of forms in F.

Given these technical tools, we employ the strategy discussed earlier to prove our rank bound
on EK-configurations. Moreover, our proof works without the simplifying assumptions made in
the beginning. We discuss the key ideas below.
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Step 4 - Removing assumptions: We started with the assumption that every form in F depended
only on constantly many variables. In general, it is possible that the forms depend on many or
even all the variables. This issue was overcome in [OS24], building on the seminal work of [AH20].
They show that forms H1, . . . ,Ha of high enough strength (a notion we define in Section 4) behave
essentially like variables, in the sense that C [H1, . . . ,Ha] is isomorphic to a polynomial ring. Further,
the extension C [H1, . . . ,Ha] ⊂ S has many of the properties that the extension C [x1, . . . , xa] ⊂ S

has, the most useful of them being that this extension preserves arbitrary intersection of ideals. The
work of [OS24] is able to generalize the notion of general projections of linear forms from [Shp20] to
the setting of strong vector spaces, and in our work we build on [OS24] to add the extra flexibility
to work with compatible quotients, which is done in Section 5.

The notion of absolute irreducibility for strong algebras is done in [GOS25], where they also
define the notion of absolute reducibility with respect to strong vector spaces (see Section 4.5). In
that work, they show that general graded quotients send forms that are absolutely reducible with
respect to strong vector spaces to reducible forms. We are able to use the generalization done in
[GOS25] and combine it with our approach to solve the Edelstein-Kelly theorem.

1.4 Summary of contributions & comparison with previous works

We are now able to provide a summary of our contributions, along with a more in-depth comparison
between the most relevant previous works to ours: [PS21; GOS25]. We begin by sumarising our
contributions:

1. We prove that non-linear Edelstein-Kelly configurations have bounded rank, therefore prov-
ing that the blackbox PIT algorithm of [BMS13] runs in polynomial-time for Σ3ΠΣΠd circuits

2. On the algebro-geometic size, we are able to significantly enhance the general graded quotients
developed in [OS24] via the compatibility and twists to be able to more carefully track the
reducibility of any form with respect to a sequence of compatible quotients, as well as to
lift the bounds from the quotiented spaces to the original space. This ability, along with our
potential function, allows us to get quantitative control over how our configurations factor
with respect to a given sequence of strong vector spaces.

Another important point, albeit less central than the above, is the refinement of the prime
bounds of [GOS25] to be able to capture irreducibility inside of certain pencils of forms.

3. Combinatorially, we provide a more streamlined method to iteratively construct the desired
vector spaces, as well as a simpler and more general procedure to find a suitable small vector
space to increase the strong vector space under which our configuration factors more. This
allows us to handle the more restrictive combinatorial constraints imposed by the Edelstein-
Kelly configurations.

Comparison between our work and [PS21]. A key technical ingredient in the proof of [PS21] is a
structure theorem for ideals generated by pairs of quadratics, that was introduced in [Shp20] and
then further refined in [PS20] and [PS21]. The structure theorem essentially states that the ideal
I = (Q1,Q2) (where Q1,Q2 are quadratic forms) is either prime, or has a minimal prime of the
form (Q1,a) for a linear form a, or has a linear minimal prime. This is an extremely fine grained
classification of the structure of ideals generated by two quadratics, which one cannot hope to
develop in more general settings.

With this theorem at hand, the proof of [PS21] proceeds by considering all ideals (Q1,Q2) with
Q1,Q2 in different sets, and classifying them based on which of the three structural properties they
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have. The simpler case is when only the first and third of the above conditions is satisfied. If every
form Qi satisfies the first structural condition with a constant fraction of the other forms, then the
configuration is essentially a partial linear EK configuration. If every form Qi satisfies the third
structural condition with a constant fraction of the other forms, then there exists a small collection
of linear forms v1, . . . , vr such that every form in the configuration is in the ideal (v1, . . . , vr), and a
general projection can be applied. In general, it might be the case that other forms satisfy the first
condition with constant fraction of the other forms, and some forms satisfy the second condition.
In this case, a careful case analysis is performed to combine the above two arguments.

The hard case is when there are forms that satisfy the second property with most other forms in
the configuration. This boils down to the condition that most forms in the configuration are of the
form Q0 + aibi for some quadratic form Q0. When this happens, much work is done to show that
the forms ai,bi themselves form a partial EK configuration. The remaining small fraction of forms
that are not of this type also have to be dealt with, leading to a further case analysis.

In comparison, our method gets rid of the fine-grained structure theorem, in favour of what
we call the prime bounds Theorem 2.2, Proposition 2.3. We note that these bounds are not new,
Theorem 2.2 was proved and used in [GOS25], and a similar bound for radical ideals was proved
and used in [OS24]. There is almost no hope of generalising the earlier structure theorem beyond
the case of quadratics or cubics, since the degree of the ideals grow fast (this is what controls the
number of cases), as do the complexity of prime ideals of low degree (this is what controls the
complexity of each case). Our method of using the prime bounds not only easily generalises, but
also does so without requiring as much case analysis.

Extending the result from quadratics to forms of higher degree also required a stronger inductive
hypothesis, and requires us to generalise the notion of EK configurations to rings that are quotients
of polynomial rings. This idea was introduced in [OS24], and was also used in [GOS25].

In addition to the generalization to higher degree forms, another advantage of our approach
is in the simplification and streamlining of some of the combinatorial aspects of non-linear EK
configurations, which allows us to do less case analysis in the more general setting.

Comparison between our work and [GOS25]. In this work, we use the main structure theorem
from [GOS25], along with a technical observation which allows us to account for slightly more
general primality phenomena. This appears in Proposition 2.3, which informally states that being
absolutely irreducible is a fairly robust notion, and is almost invariant under perturbation by
change of constant term. At a high level, this allows us to isolate the highest degree forms in our
EK configuration. This in turn plays a crucial role in the combinatorial arguments used to control
the sets in the configuration.

Since the combinatorics of the Edestein-Kelly problem is more involved than product Sylvester-
Gallai configurations, our contributions (compared to [GOS25]) are more on the development of a
more refined potential function, along with a more refined general graded quotient. In the analysis
of [GOS25], it was fairly straightforward to lower bound the change in potential in each step of the
argument. Here, getting this bound is more challenging, and requires us to analyze not just one
graded quotient, but two graded quotients at a time. Comparing two graded quotients introduces
its own challenges, since the composition of two graded quotients is a slightly different object that
just one larger graded quotient. This requires the introduction of a slightly more general quotient
(a twisted graded quotient).
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1.5 Related work

We now elaborate on previous and related works on generalizations of Sylvester-Gallai configura-
tions and the PIT problem for depth-4 circuits.

1.5.1 Sylvester-Gallai and Edelstein-Kelly configurations

In [Gup14], as a first step of his programme to give deterministic, poly-time algorithms for the PIT
problem for ΣkΠΣΠd circuits, Gupta proposed the study of an algebro-geometric generalization of
the linear Sylvester-Gallai configurations, later termed radical Sylvester-Gallai configurations.

The first progress on Gupta’s radical Sylvester-Gallai conjecture ([Gup14, Conjecture 2]) was
made by [Shp20] in the special case when d = 2. Subsequently, [OS22] proved [Gup14, Conjecture
2] for d = 3, and [OS24] fully resolved this conjecture in the affirmative for any degree.

However, as we have seen in the connections to the PIT problem, two weaker requirements
appear: one is only required that the product of certain forms lies in the radical of any pair of
forms, and also the forms are divided into sets. This led [PS20] to consider product Sylvester-Gallai
configurations, where the first of the two extra conditions is now included. In the same paper,
the authors prove a product Sylvester-Gallai theorem for quadratic forms. Recently, the work of
[GOS25] has fully resolved the product Sylvester-Gallai conjecture for any degree d.

Finally, in [PS21], building on their previous works, Peleg and Shpilka settled Conjecture 1.3
for the case when d = 2, thereby achieving a deterministic, polynomial-time algorithm for the PIT
problem for Σ3ΠΣΠ2 circuits. Our work now resolves Conjecture 1.3 for any constant d. In the
next subsection, after we discuss our proof overview, we will provide a more in-depth comparison
between our work and the work of [PS21].

Recent works [PS22; GOS22; Gar+23] have explored robust and higher-codimensional exten-
sions of the radical Sylvester-Gallai theorems. While these results address intriguing problems in
extremal combinatorial geometry, they are also driven by motivations from the PIT problem for
depth-4 circuits. The hope is that these broader generalizations could lead to new insights – or
perhaps a more accessible proof – of Gupta’s conjectures.

1.5.2 PIT for depth-4 circuits

Depth-4 circuits with bounded top and bottom fan-in are the simplest circuit classes for which we
still lack deterministic polynomial-time algorithms for the PIT problem. Thus, this model has been
attacked via approaches that go beyond the Sylvester-Gallai-based techniques discussed earlier.

In [DDS21], the authors present a quasipolynomial-time PIT algorithm for ΣkΠΣΠd circuits,
leveraging the Jacobian method introduced in [Agr+16]. Their key insight involves applying the
logarithmic derivative and its associated power series expansion to transform the top summation
gate of the circuit into a powering gate. While this transformation technically violates the bounded
top fan-in constraint, circuits with powering gates are well studied, and efficient PIT algorithms are
known for such models. This reduction enables the use of existing tools for PIT in powering-gate
circuits, ultimately leading to their quasipolynomial-time result.

The breakthrough work of [LST22] on proving lower bounds for bounded-depth arithmetic cir-
cuits offers another route toward derandomizing PIT for this model. The hardness-versus-randomness
paradigm has been a powerful tool for establishing connections between circuit lower bounds
and derandomization [Agr05; KI04]. Notably, the results of [CKS19] extended these tradeoffs
to the bounded-depth regime, showing that analogous principles continue to hold even in this
restricted setting. By leveraging these developments, one obtains a subexponential-time PIT algo-
rithm for depth-4 circuits. Building further on the lower bound techniques of [LST22], [AF22]
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constructed another hitting set generator tailored to bounded-depth circuits, yielding an alternative
subexponential-time PIT algorithm with improved parameters. This construction exploits the fact
that such circuits are inherently unable to detect low-rank matrices, due to the algebraic hardness
of computing the determinant in low-depth settings.

It is worth emphasizing, however, that neither of these approaches appears capable of yielding
a fully polynomial-time PIT algorithm for ΣkΠΣΠd circuits. At present, the only known technique
with potential to achieve this goal is the geometric approach introduced by Gupta in [Gup14].
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2 Preliminaries

In this section we establish notation and preliminary facts we will need for the rest of the paper.
Let S = C [x1, . . . , xN] denote the polynomial ring, graded by degree S =

⊕
i⩾0 Si. Given a vector

space V ⊂ S, we use Vi to denote the degree i piece, that is, Vi = V ∩ Si. We say that a vector space
is graded if V = ⊕Vi.

We use form to refer to a homogeneous polynomial. Given two forms A,Bwe say that A,B are
non-associate if A ̸∈ (B) and B ̸∈ (A). If A,B are of the same degree, this is equivalent to them
being linearly independent.

2.1 Algebraic geometry preliminaries

We begin by recalling the notion of absolute irreducibility.

Definition 2.1. A polynomial P ∈ F[x1, · · · , xN] is called absolutely irreducible if P is irreducible in
the polynomial ring F[x1, · · · , xn], over an algebraic closure F of F.

Let S = K[x1, . . . , xn,y1, . . . ,ym] be a graded polynomial ring with deg(xi) = di ⩾ 1 and
deg(yj) = ej ⩾ 1. Let A = K[x1, · · · , xn] and K(A) the fraction field of A. Let d ⩾ 1 and
P ∈ Sd \ (x1, . . . , xn) such that P is absolutely irreducible over K(A).

The following two propositions bound the number of forms Qi ∈ A such that (P,Qi) is not
prime, and the number of such forms such that P+Qi is absolutely reducible respectively. The first
of these was proved in [GOS25]. The novelty in the below statements is the fact that the bounds are
independent of n,m.

Theorem 2.2 ([GOS25, Theorem 4.16]). There are at most Π1(d) pairwise non-associate irreducible
homogeneous elements Qi ∈ A such that (P,Qi) is not prime.

Proposition 2.3. There are at most Π2(d) elements Qi ∈ A such that P +Qi is absolutely reducible over
K(A).

Proof. The proof proceeds in two parts. We first show the existence of a function C̃2 : N× N → N
such that the number of Qi is at most C̃2(m,d). Let F := K(A), the algebraic closure of K(A). Let
S ′ := F [y1, . . . ,ym]. LetM :=

(
m+d+1

d

)
, so PM−1

S ′ can be identified as the space ofm-variate forms
of degree d with coefficients in S ′. By [Eis95, Corollary 14.3], the set of reducible forms are a
closed subvariety of PN−1

S ′ , say Vm,d. Moreover, the degree of Vm,d depends only on m,d. The
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ideal I(Vm,d) can be generated by forms whose degree only depends onm,d, let C̃2(m,n) be the
maximum degree of a generating set for I(Vm,d).

By assumption, P is irreducible in S ′, therefore P ̸∈ Vm,d. Let F be a form in the ideal of Vm,d

of degree at most C̃2(m,d) such that F(P) ̸= 0. Let F ′ be the univariate obtained by specialising all
the variables of F to the coefficients of P, except the constant term. Let P0 be the constant term of P.
We know that F ′ is nonzero, since F ′(P0) = F(P) ̸= 0. Every Qi ∈ F such that P +Hi is absolutely
reducible must satisfy F ′(P0 +Qi) = 0. Since deg F ′ ⩽ C̃2(m,d), there are at most C̃2(m,d) many
Qi.

We now claim that Π2(d) = maxc⩽d,1⩽m ′⩽5 C̃2(m
′, c) satisfies the required properties. Ifm ⩽ 5,

then the claim is true by definition of C2. Assumem ⩾ 6, and towards a contradiction assume that
there are more than Π2(d) forms such that P +Qi is absolutely reducible. Apply m − 5 random
hyperplane sections to P, to obtain a degree c polynomial P ′. By [OS24, Lemma 4.7], the form P ′

is irreducible in S ′. Since the hyperplane sections do not act on F, each of the forms P ′ + Qi is
absolutely reducible, which contradicts the definition of C̃2(5, c).

Corollary 2.4. There are at most Π2(d) non-associate homogeneous degree d forms Qi ∈ A such that
spanK {P,Qi} \ {Qi} contains a form that is absolutely reducible over K(A).

Proof. Suppose λi ∈ K is such that P + λiQi is absolutely reducible. Since the forms Qi are non-
associate, we have λiQi ̸= λjQj for any i ̸= j. Applying Proposition 2.3 completes the proof.

3 Sylvester-Gallai & Edelstein-Kelly Configurations

In this section, we formally define Sylvester–Gallai (SG) configurations, and Edelstein–Kelly (EK)
configurations. We start by defining linear versions of these configurations, and stating known
bounds on them. We then define higher degree EK configurations, which are the main object of
study in this article.

3.1 Linear Sylvester–Gallai configurations

We start with the basic definition of robust linear Sylvester–Gallai (SG) configurations.

Definition 3.1 (Robust linear Sylvester-Gallai configurations). Let r ∈ N , 0 < δ ⩽ 1 and V be a
K-vector space. Let F := {v1, . . . , vm} ⊂ V be a finite set of pairwise linearly independent vectors. We
say that F is a (r, δ)-linear-SG configuration over K if there exists a K-vector subspace U ⊂ V of
dimension at most r such that the following condition holds:

• for any vi ∈ F \U, there exist at least δ(m− 1) indices j ∈ [m] \ {i} such that vj ̸∈ U and∣∣spanK
{
vi, vj

}
∩ F
∣∣ ⩾ 3 or spanK

{
vi, vj

}
∩U ̸= (0).

We will say that F is a (r, δ)-linear-SG configuration over the vector space U.

The following bound on such configurations is proved in [OS24, Proposition 3.5], which is a
generalization of the result [Shp20, Corollary 16], using the sharper bounds from [Dvi+18].

Proposition 3.2. If F is a (r, δ)-linear-SG then dim spanK {F} ⩽ r+ 12/δ.
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3.2 Edelstein–Kelly configurations

We now define partial linear Edelstein–Kelly (EK) configurations. These generalise the classical
notion of EK configurations in three ways. The first is that some forms are allowed to not satisfy any
relationship. The second is that a form in a given set is only required to have span dependencies
with forms in the bigger of the remaining two sets. The third is that we only require dependencies
with a constant fraction of this bigger set.

Definition 3.3 (Partial linear Edelstein–Kelly configurations). Let c ∈ N , 0 < δ ⩽ 1 and V be a
K-vector space. Let F := {v1, . . . , vm} ⊂ V be a finite set of pairwise linearly independent vectors.
We say that F is a (r, δ)-linear-EK configuration over K if there exists a subset G ⊂ F of size at most
r, and a partition F1 ∪ F2 ∪ F3 of the remaining forms F \ G (with |F1| ⩾ |F2| ⩾ |F3|) such that the
following condition holds:

• for any v ∈ F1 there are at least δ |F2| forms u ∈ F2 such that
∣∣spanK {v,u} ∩ (F3 ∪ G)

∣∣ ⩾ 1.

• for any v ∈ F2 there are at least δ |F1| forms u ∈ F1 such that
∣∣spanK {v,u} ∩ (F3 ∪ G)

∣∣ ⩾ 1.

• for any v ∈ F3 there are at least δ |F1| forms u ∈ F1 such that
∣∣spanK {v,u} ∩ (F2 ∪ G)

∣∣ ⩾ 1.

Such configurations were introduced by [Shp20] and further studied by [PS21]. The following
is an improved bound on the dimensions of such configurations, and follows by a more careful
analysis of the proof of [Shp20], and the above improved bound on the dimension of (r, δ)-linear-SG
configurations. For completeness we provide a proof here.

Proposition 3.4. If F is a (r, δ)-linear-EK configuration then dim spanK {F} ⩽ r + cek · δ−1 log
(
δ−1
)

for a universal constant cek.

Proof. Let F1,F2,F3,G be a partition of F that satisfies the properties of the definition. Let δ ′ :=
δ/2. The main step is to find a subset F ′

1 ⊂ F1 such that |F2| ⩽
∣∣F ′

1

∣∣ ⩽ 2 |F2| and such that
F ′

1 ∪ F2 ∪ F3 ∪ G is itself a (r, δ ′/2)-linear-EK configuration, with partition F ′
1,F2,F3. If such a set

F ′
1 exists, then the above configuration is actually an (r, δ ′/8)-linear-SG, since each form satisfies

as span relation with at least δ ′/4 fraction of the total forms. Therefore by Proposition 3.2 we can
deduce that dim spanK

{
F ′

1 ∪ F2 ∪ F3 ∪ G
}
⩽ r + 96 · δ ′−1. Every form F ∈ F1 \ F ′

1 is contained
in spanK {F2 ∪ F3 ∪ G}, since this form satisfies a linear condition with at least one form in F2.
Therefore we can also deduce dim spanK {F} ⩽ r + 96 · δ ′−1 = r + 192 · δ−1, which will complete
the proof.

It suffices therefore to show that such a set F ′
1 exists. We show that it exists as long as |F2|

is bigger than c · δ−1 log
(
δ−1
)

for some fixed constant c. If |F2| is smaller than c · δ−1 log
(
δ−1
)

then so is |F3|. In this case we have dim spanK {F2 ∪ F3 ∪ G} ⩽ r+ 2c · δ−1 log
(
δ−1
)
, and therefore

dim spanK {F} ⩽ 2 + c · δ−1 log
(
δ−1
)
, which will also complete the proof. We show F ′

1 exists by a
standard probabilistic method argument.

Let mi := |Fi| and let p := m2/m1. If m3 ⩽ 2m2 then F ′
1 = F1 satisfies the required properties

and we are done, so we can assume p ⩽ 1/2. Let F ′
1 ⊂ F1 be a subset constructed by picking each

element of F1 independently with probability p.
For each v ∈ F2, let Fspan (v) ⊂ F1 be the set of forms u such that

∣∣spanK {v,u} ∩ (F3 ∪ G)
∣∣ ⩾ 1.

We have
∣∣Fspan (v)

∣∣ ⩾ δm1. The size of the subset F ′
1∩Fspan (v) is a random variable with expectation∣∣Fspan (v)

∣∣m2/m1 ⩾ δm2, and by a Chernoff bound, the probability that it has size less than δ ′m2 is
at most 2−aδm2 for a fixed constant a. Similarly, for v ∈ F3 we can also define Fspan (v), and the
probability that Fspan (v) has size less than δ ′m2 is bounded by 2−aδm2 . Finally, we note that

∣∣F ′
1

∣∣ is
itself a random variable with expectationm2, and the probability that

∣∣F ′
1

∣∣ ⩾ 2m2 is bounded by
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2−bm2 . By a union bound, as long as (m2 +m3) 2−aδm2 + 2−bm2 < 1, there is a set F ′
1 such that∣∣F ′

1

∣∣ ⩽ 2m2 and such that
∣∣Fspan (v) ∩ F ′

1

∣∣ ⩾ δ ′m2 for every v ∈ F2 ∪ F3. Sincem3 ⩽ m2, the above
condition holds as long as m2 ⩾ c · δ−1 log

(
δ−1
)

for a big enough constant c (this constant only
depends on a,b).

Fix a set F ′
1 that satisfies the above conditions. If

∣∣F ′
1

∣∣ < m2, then we arbitrarily add elements to
F ′

1 to ensure that
∣∣F ′

1

∣∣ = m2, this does not break any of the conditions. These conditions exactly
guarantee that F ′

1 ∪ F2 ∪ F3 ∪ G is a (r, δ ′/2)-linear-EK configuration. This completes the proof.

We now define higher degree Edelstein–Kelly configurations, which are our main object of
study.

Definition 3.5 (High degree EK configurations). Let U ⊂ S be a graded finitely generated vector
space such that R := S/ (U) is a UFD, and let z ∈ R1. Let A,B,C ⊂ R be pairwise disjoint finite sets
of irreducible forms of degree at most d. We say that A,B,C is a (d, z,R)-EK configuration if the
following conditions hold:

1. z ̸∈ A ∪B ∪ C, and the union {z} ∪A ∪B ∪ C consists of pairwise non-associate forms.

2. For every A ∈ A,B ∈ B we have

z ·
∏
C∈C

C ∈ rad (A,B) .

3. For every A ∈ A,C ∈ C we have

z ·
∏
B∈B

B ∈ rad (A,C) .

4. For every B ∈ B,C ∈ C we have

z ·
∏
A∈A

A ∈ rad (B,C) .

In the case when the ideals occurring are prime, for example if (A,B) is prime for some
A ∈ A,B ∈ B, then the condition above implies that either z ∈ (A,B) or C ∈ (A,B) for some C ∈ C.
We then say that C is the EK-image of A,B. The image Cmight not be unique, we arbitrarily fix a
choice for every pair.

4 Strong Algebras

In this section we recall the definitions and results that we will need about strong algebras. Most
of the definitions and results from this section are taken from [OS24, Section 5], and we refer the
reader to this paper for motivation and further discussions about these definitions.

4.1 Strength

Let R = ⊕d⩾0Rd be a finitely generated graded K-algebra, generated by R1. In [AH20] the notions
of collapse and strength were defined for a polynomial ring. We will extend those definitions to
finitely generated graded K-algebras and prove the necessary properties below. Henceforth, we
refer to a homogeneous element of R as a form, adopting the same notation for polynomial rings.
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Definition 4.1 (Collapse). Given a non-zero form F ∈ Rd, we say that F has a k-collapse if there exist
k forms G1, . . . ,Gk such that 1 ⩽ deg(Gi) < d and F ∈ (G1, . . . ,Gk).

Definition 4.2 (Strength). Given a non-zero form F ∈ Rd, the strength of F, denoted by s(F), is the
least positive integer such that F has a (s(F) + 1)-collapse but it has no s(F)-collapse. We say that
s(F) ⩾ t whenever F does not have a t-collapse.

Remark 4.3. By the definitions above, a form x ∈ R1 does not have a k-collapse for any k ∈ N. Thus,
we say that for any x ∈ R1, s(x) = ∞. In particular, linear forms in the polynomial ring S have
infinite strength. We will make the convention that s(0) = −1.

Definition 4.4 (Minimum collapse). Given a non-zero form F ∈ Rd and s ∈ N∗ such that s(F) = s−1,
a minimum collapse of F is any identity of the form F = G1H1 + · · ·+GsHs, where Gi,Hi are forms
of degree in [d− 1].

It is useful to define the min and max strength of a linear system of forms of the same degree.

Definition 4.5 (Min and max strength). Given a set of forms F1, . . . , Fr ∈ Rd, define smin(F1, . . . , Fr)
as the minimum strength of a non-zero form in spanK {F1, . . . , Fr} and smax(F1, . . . , Fr) as the maximum
strength of a form in spanK {F1, . . . , Fr}.

In particular, given any non-zero finite dimensional vector space V ⊂ Rd, define smin(V)
(smax(V)) as the minimum (maximum) strength of any non-zero form in V . If V = (0), then there
are no non-zero forms in V . In this case, by convention we define smin((0)) = smax((0)) = ∞. We
will say that a vector space V is k-strong if smin(V) ⩾ k. Note that the zero vector space is infinitely
strong.

4.2 Strong Ananyan-Hochster Vector Spaces

Let R = ⊕d⩾0Rd be a finitely generated graded K-algebra, generated by R1. Given a graded
K-vector space V =

⊕d
i=1 Vi ⊂ R, where δi := dimVi, we denote its dimension sequence by

δ := (δ1, . . . , δd).

Definition 4.6 (Strong Ananyan-Hochster vector spaces). Let R = ⊕d⩾0Rd be a finitely generated
graded K-algebra, generated by R1. For any function B = (B1, · · · ,Bd) : Nd → Nd, we say that a
non-zero graded vector subspace V = ⊕d

i=1Vi ⊂ R, with dimension sequence δ, is a B-strong AH
vector space if Vi is Bi(δ)-strong for all i, i.e. smin(Vi) ⩾ Bi(δ). The subalgebra K[V] ⊂ R generated
by a B-strong AH vector space V is called a B-strong AH algebra.

Note that if V = (0), then V is B-strong for any function B, since smin((0)) = ∞. The following
result is a corollary of [AH20, Theorem A], and a proof can be found in [OS24, Corollary 5.9]. In the
following lemma and the rest of this article, the function A(η,d) : N2 → N is the function defined in
[AH20, Theorem A].

Corollary 4.7. Let V = ⊕d
i=1Vi ⊂ S be a B-strong AH vector space for some B : Nd → Nd. Suppose

Bi(δ) ⩾ A(η, i) + 3(
∑

i δi − 1) for some η ∈ N. Then any sequence of K-linearly independent forms in V
is an Rη-sequence. If η ⩾ 3, then S/(V) is a Cohen-Macaulay, unique factorization domain.

4.3 Lifted strength

Definition 4.8 (Lifted strength). Let U ⊂ S be a graded vector space and R = S/(U). Let F ∈ Rd be
a non-zero form. We define the lifted strength of Fwith respect to U as

s̃min(U, F) := min{smin(Ud + spanK

{
F̃
}
)}
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where F̃ varies over all forms in Sd such that the image of F̃ in R is F. Given a set of forms
F1, · · · , Fm ∈ Rd, we define

s̃min(U, F1, · · · , Fm) = min{smin(Ud + spanK

{
F̃1, · · · , F̃m

}
)},

where F̃i varies over all forms in Sd such that the image of F̃i in R is Fi. Given a non-zero vector
space V ⊂ Rd, we define

s̃min(U,V) = min{s̃min(Ud, F1, · · · , Fm)},

where F1, · · · , Fm vary over all possible bases of V . We say that V ⊂ Rd is k-lifted strong with
respect to U if s̃min(U,V) ⩾ k. For simplicity, we omit U from the notation and write s̃min(V) when
U is clear from the context.

Suppose that U ⊆ S⩽d is of dimension sequence δU. Let V = ⊕d
i=1Vi ⊂ R be a graded vector

space of dimension sequence δV . For any function, B : Nd → Nd we will say that V is B-lifted strong
with respect to U, if Vi is Bi(δU + δV)-lifted strong, i.e. s̃min(U,Vi) ⩾ Bi(δU + δV) for all i ∈ [d]. In
other words, V is B-lifted strong with respect to U, if the vector space U+ spanK

{
F̃1, · · · , F̃m

}
is

B-strong in S, for any homogeneous basis F1, · · · , Fm ∈ R of V and any set of homogeneous lifts
F̃1, · · · , F̃m ∈ S.

4.4 Strengthening and Robustness

For any µ ∈ Nd, we define the translation function tµ : Nd → Nd as tµ = (tµ,1, · · · , tµ,d) where the
i-th component is defined by tµ,i(δ) = δi + µi. In other words, for all i ∈ [d] we add µi to the i-th
component of δ. For any n ∈ N, we let tn := t(n,··· ,n).

The following lemma is proved in [OS24, Lemma 5.15].

Lemma 4.9 (Strengthening of Algebras). For any d ∈ N and a function B : Nd → Nd, there exist
functions CB : Nd → Nd and hB : Nd → Nd, depending on B, such that the following holds:

Given a graded vector space U = ⊕d
i=1Ui ⊂ S with dimension sequence δ ∈ Nd, there exists a B-strong

AH vector space V = ⊕d
i=1Vi such that

1. K[U] ⊂ K[V],

2. for all i ∈ [d], we have dim(Vi) ⩽ CB,i(δ), where CB,i denotes the i-th component of CB =
(CB,1, · · · ,CB,d) : Nd → Nd.

Furthermore, suppose H = ⊕d
i=1Hi ⊂ U is a graded subspace such that smin(Hi) ⩾ hB,i(δ) for all

i ∈ [d]. Then there exists a B-strong AH vector space V satisfying (1) and (2) above such that H ⊂ V .

The following corollary is from [OS24, Corollary 5.16].

Corollary 4.10 (Robustness of strong algebras). Let B,G : Nd → Nd and µ ∈ Nd. Suppose that
Bi(δ) ⩾ hG,i(δ+µ) for all δ ∈ Nd and i ∈ [d], where hG : Nd → Nd is the function defined in Lemma 4.9.
Let U ⊂ S be a B-strong AH vector space andW ⊂ S is a graded vector space with dimension sequences δ
and µ respectively. Then there exists a G-strong AH vector space V such that

1. K[U+W] ⊂ K[V],

2. U ⊂ V ,

3. for all i ∈ [d], dim(Vi) ⩽ CG,i(δ+ µ), where CG : Nd → Nd is the function defined in Lemma 4.9.
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The following corollary corresponds to [OS24, Corollary 5.17].

Corollary 4.11. Let B : Nd → Nd. Let U ⊂ S be a graded vector space with dimension sequence δU ∈ Nd

and let R = S/(U). Let V ⊂ R is a graded vector space with dimension sequence δV ∈ Nd. Suppose V is
h2B ◦ tk-lifted strong with respect to U. Let P1, · · · ,Pk ∈ R⩽d be homogeneous elements. Then there exists
a graded vector space V ′ ⊂ R⩽d such that:

1. V ′ is B-lifted strong with respect to U.

2. P1, · · · ,Pk ∈ K[V ′].

3. V ⊂ V ′.

4. for all i ∈ [d], we have dim(V ′
i) ⩽ C2B,i(tk(δU + δV)) − δU,i. In particular, dim(V ′) ⩽

C(B, δU, δV ,k) :=
∑

(C2B,i(tk(δU + δV)) − δU,i).

Definition 4.12 (Ananyan-Hochster spaces). In the situation of Corollary 4.10, we define AH(U,W)
to be any graded vector space V provided by Corollary 4.10. Similarly, in the situation of Corol-
lary 4.11, we define AHR(V ,P1, · · · ,Pk) to be any vector space V ′ provided by Corollary 4.11.

Remark 4.13. Note that, for given V ,P1, · · · ,Pk, the vector space AHR(V ,P1, · · · ,Pk) is not neces-
sarily unique. As stated in our definition, we use the notation AHR(V ,P1, · · · ,Pk) to denote any
vector space satisfies the properties in Corollary 4.11, whose existence is guaranteed. We will only
use these properties of these spaces and in all our arguments we work with any fixed choice of
such a vector space AHR(V ,P1, · · · ,Pk).

An iterative AH-process. In order to construct strong vector spaces of uniformly bounded dimen-
sion, we will iteratively apply the AH-construction from Definition 4.12. We make a convenient
definition for such iterative processes.

Definition 4.14 ((k, t)-process). Let U ⊆ S be a graded finitely generated vector space such that
R := S/ (U) is a UFD, and k, t ⩾ 1 be integers. Let V ⊆ R be a vector space and let F ⊆ R. A (k, t)
process on V is defined to be a process that starts with the vector space V , and performs at most
t rounds. In each round, at most k forms F1, . . . , Fk of degree at most d are picked from the set
F, and V is updated to AHR(V , F1, . . . , Fk). In each iteration, the picked forms are allowed to be
chosen based on the new V . Note that we are dropping the dependence on d from the notation for
convenience, as dwill always be clear from context.

Strength and dimension bound functions. We introduce some auxiliary functions that will
provide uniform bounds for (k, t)-processes (see Lemma 4.15).

Strength bound function. Given a function B : Nd → Nd, and positive integers k, t, we define a
function H(B,k, t) : Nd → Nd recursively as follows. Let H(B,k, 0) := B, and

H(B,k, t) := h2H(B,k,t−1) ◦ tk+1,

where h is as defined in Lemma 4.9. This function H(B,k, t) captures the strength needed for a
vector space V , so that after applying a (k, t)-process to V , the resulting vector space V ′ is still
B-lifted strong and this (k, t)-process preserves V , i.e. V ⊆ V ′.
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Dimension bound function. Fix δ ∈ Nd, and B,k, t as above. We define a function D(B,k, t, δ) :
Nd → Nd recursively as follows. Let D(B,k, 0, δ) be the identity function. To define D(B,k, t, δ)(µ),
assuming D(B,k, t− 1, δ) is already defined, we first define

η := max
x∈Nd

∥x∥1=∥µ∥1

∥D(B,k, t− 1, δ)(x)∥1 ,

where ∥x∥1 = x1 + · · ·+ xd for x = (x1, · · · , xd) ∈ Nd. We then define the ith coordinate function
Di(B,k, t, δ)(µ) as

Di(B,k, t, δ)(µ) = max
x,∥x∥1=η

C2H(B,k,t),i(tk+1(x+ δ)),

where again C is the function defined in Lemma 4.9. This function D(B,k, t, δ) captures the
dimension upper bound for the result of a (k, t)-process applied on a vector space V .

We note these bounds and basic properties of (k, t) processes below.

Lemma 4.15. Let U ⊆ S be a graded finitely generated vector space such that R := S/ (U) is a UFD, and
k, t,k ′, t ′ ⩾ 1 be integers.

1. The composition of a (k, t) process and a (k ′, t ′) process is a (max (k,k ′) , r+ r ′) process.

2. If V is H(B,k, t)-lifted strong, and if V ′ is the result of a (k, t) process on V , then V ⊂ V ′ and V ′

is B-lifted strong. Moreover, each intermediate vector space that appears as part of the process is
h2B ◦ t1-lifted strong.

3. If V ′ is the result of a (k, t) process on V , then the dimension of V ′ is bounded by D(B,k, t, δU)(δV),
where δU, δV are the dimension vectors of V ,U respectively.

Proof. The first property follows by definition. Properties (2) and (3) follow by induction.

4.5 Absolute irreducibility with respect to strong vector spaces

The following definition is from [GOS25].

Definition 4.16. Let B : Nd → Nd. Suppose Bi(δ) ⩾ A(η, i)+ 3(
∑

i δi− 1) for some η ∈ N. Suppose
R = S/ (U). Suppose V ⊂ R is a graded vector space that is h2B ◦ t1-lifted strong with respect to
U. Suppose P ∈ R is a form. Let V ′ be the vector space obtained by applying Corollary 4.11 to
V and P. Let y1, . . . ,ya be a basis of homogeneous forms of V , and ya+1, . . . ,yb extend this to a
basis of V ′. We say P is absolutely reducible over V if P is absolutely reducible as a polynomial in
K (y1, . . . ,ya) [ya+1, . . . ,yb].

Absolute reducibility and irreducibility with respect to vector spaces was defined in [GOS25] to
allow Theorem 2.2 to be applied in more general settings. In the same setting, we can also apply
Corollary 2.4. The functions Π1(d),Π2(d) : N → N referred to in the following lemma is the same
functions whose existence is guaranteed by Theorem 2.2, Corollary 2.4 respectively.

Corollary 4.17 (Corollary of Theorem 2.2, Corollary 2.4). Let B : Nd → Nd. Suppose Bi(δ) ⩾
A(η, i) + 3(

∑
i δi − 1) for some η ∈ N. Suppose R = S/ (U). Suppose V ⊂ R is a graded vector space that

is h2B ◦ t1-lifted strong with respect to U. Suppose P ∈ R is absolutely irreducible with respect to V such
that degP = d. There are at most Π1(d) irreducible non-associate forms Qi ∈ K [V] such that (Qi,P) is
not prime. Further, there are at most Π2(d) pairwise non-associate degree d irreducible forms Hi ∈ K [V]

such that spanK {P,Hi} \ {Hi} contains a form that is absolutely reducible over V .
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Proof. Let V ′ be the vector space obtained by applying Corollary 4.11 to V and P. Let y1, . . . ,ya be
a basis of homogeneous forms of V , and ya+1, . . . ,yb extend this to a basis of V ′. The ring K [V ′] is
isomorphic to a polynomial ring in the variables yi. Further, P is irreducible as a form in K [V ′] by
definition of absolute irreducibility with respect to V .

Therefore we can apply Theorem 2.2 to deduce that there are at most Π1(d) forms Qi ∈ K [V]

such that (P,Qi) is not prime as an ideal of K [V ′]. Further, since y1, . . . ,yb form a prime sequence,
prime ideals of K [V ′] extend to prime ideals in R.

Similarly, by Corollary 2.4, there are at most Π2(d) forms Hi ∈ K [V] such that (P,Hi)d \ {Hi}

contains a form that is absolutely reducible over V , when we treat (P,Hi) as an ideal in K [V ′]. Since
both P,Hi have degree d, the ideal (P,Hi) contains the same elements in degree d when treated as
an ideal of K [V ′] and as an ideal of R. This completes the proof.

5 Graded Quotients

This section defines graded quotients and the essential properties needed for the degree reduction
step in the proof of our main technical theorem. The definitions and results in the first part of this
section are from [OS24; GOS25]. The definitions and results in subsequent parts are new to this
work. For completeness, we state all the statements we need from previous works without proof,
while we provide a proof of all the new/refined statements that we claim here.

Throughout this section, we fix positive integers d,η ∈ N with η ⩾ 3. Throughout this section,
B : Nd → Nd denotes an ascending function such that Bi(δ) ⩾ A(η, i) + 3(

∑
i δi − 1) for all i ∈ [d].

Here A(η, i) is the function defined in Section 4.2.
The following definition corresponds to [OS24, Definition 6.1].

Definition 5.1 (Graded Quotients). Let U = ⊕d
i=1Ui ⊂ S be a graded vector space of dimension

sequence δ in S and R := S/(U) be the quotient ring. Let V = ⊕d
i=1Vi ⊂ R be a graded subspace of

dimension sequence µ.
Let F1, . . . , Fn be a homogeneous basis for V and z be a new variable. For α ∈ Kn, let Iα ⊆ R[z] be

the homogeneous ideal generated by the forms {F1 −α1z
deg(F1), . . . , Fn −αnz

deg(Fn)}. We define the
graded quotient map φV ,α as the quotient homomorphism of finitely generated graded K-algebras
given by

φV ,α : R[z] → R[z]/Iα.

Remark 5.2. The definition above depends on the choice of the basis F1, · · · , Fn for V . We omit this
from the notation for simplicity. We will apply this graded quotient construction for sufficiently
strong vector spaces V . Therefore [AH20] shows that any basis of Vα forms an Rη sequence.
Similarly, several of our statements regarding these graded quotients will apply independent of the
choice of the basis. However, for certain applications we will deal with explicit choices of bases
and we define the notion of compatible graded quotients in that context (Definition 5.8).

The next proposition and lemma correspond to [OS24, Proposition 6.3] and [OS24, Lemma 6.4].

Proposition 5.3. Suppose V ⊂ R is B-lifted strong with respect to U. Then R[z] and R[z]/Iα are quotients
of S[z] by Rη-sequences, for any choice of α ∈ Kn. In particular, they are Cohen-Macaulay UFDs.

General points. We say that a property P holds for a general α ∈ Km, if there exists a non-
empty open subset U ⊆ Km such that the property P holds for all α ∈ U. Here U ⊆ Km is open
with respect to the Zariski topology. Hence U is the complement of the zero set of finitely many
polynomial functions on Km. Note that, equivalently a property P holds for a general α ∈ Km, if
there is a closed subset Z ⊆ Km such that the P holds for all α ̸∈ Z.

22



Lemma 5.4. Let S = K[x1, · · · , xN] and z be a new variable. Fix positive integers d1, · · · ,dn ∈ N.
For α ∈ Kn, let Iα = (x1 − α1z

d1 , · · · , xn − αnz
dn). Let φα : S[z] → S[z]/Iα be the quotient ring

homomorphism.

1. The ideal Iα is prime in S[z], and the composition morphism K[z] ↪→ S[z] → S[z]/Iα is injective.

2. If F ∈ K[x1, · · · , xn] is a non-zero polynomial, then φα(F) ̸= 0 in S[z]/Iα for a general α ∈ Kn.

3. Let F ∈ S \K[x1, · · · , xn], then φα(F) ̸∈ K[z] in S[z]/Iα, for a general α ∈ Kn.

4. If F ∈ S is a non-zero polynomial, then φα(F) ̸= 0 in S[z]/Iα for a general α ∈ Kn.

5. If F,G ∈ S have no common factor, then gcd(φα(F),φα(G)) ∈ K[z] for a general α ∈ Kn.

6. If F ∈ S is square-free. Then, for a general α ∈ Kn, the multiple factors of φα(F) must be in K[z].

The next proposition corresponds to [GOS25, Proposition 6.5].

Proposition 5.5. Let V ⊂ R be a B-lifted strong vector space and φα : R[z] → R[z]/Iα be a graded quotient
as defined in Definition 5.1.

1. The ideal Iα is a prime ideal in R[z] and the composition K[z] ↪→ R[z] → R[z]/Iα is injective.

2. If F ∈ R \ {0}, then φα(F) ̸= 0 for a general α ∈ Kn.

3. If F ̸∈ K[V] ⊂ R, then φα(F) ̸∈ K[z] for a general α ∈ Kn.

4. If F ̸∈ (V) then φα(F) ̸∈ (z) in R[z]/Iα.

5. If F is absolutely reducible with respect to V then φα(F) is a reducible form in R[z]/Iα for general α.

6. If F is absolutely irreducible with respect to V and F ̸∈ (V), then φα(F) is irreducible for general α.

The next proposition corresponds to [OS24, Proposition 6.6].

Proposition 5.6. Let G : Nd → Nd be a function such that Gi(δ) ⩾ hB,i ◦ t2(δ) for all δ ∈ Nd. Let
V ⊂ R⩽d be a G-lifted strong vector space and φα : R[z] → R[z]/Iα be a graded quotient as defined in
Definition 5.1. Let F,G ∈ R⩽d be such that they have no common factor. There exists a non-empty open
subset U ⊆ Kdim(V) such that for all α ∈ U we have:

1. gcd(φα(F),φα(G)) ∈ K[z].

2. If F,G are homogeneous, then gcd(φα(F),φα(G)) = zk for some k ∈ N. In particular, we have
gcd(φα(zF),φα(zG)) = zk+1 for some k ∈ N. Furthermore, if F,G ̸∈ K[V] ⊂ R then φα(F),
φα(G) are linearly independent.

3. If F ∈ R is a square-free form, then φα(F) does not have multiple factors other than zk for some k ∈ N.

The next proposition corresponding to [OS24, Proposition 6.9], tells us that if a finite set of forms
resulting from a general quotient has small vector space dimension, then it must be the case that
the original set of forms must have small vector space dimension. We refer to this result as ”lifting
from general quotients,” as we are lifting our upper bounds for the quotiented configurations to
the original configurations.
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Proposition 5.7 (Lifting from general quotients). Let d, e ∈ N such that 1 ⩽ d ⩽ e. Let U ⊂ S⩽e be a
graded vector space generated by formsH1, · · · ,Ht. Let R = S/(U). Let V ⊂ R⩽e be a B-lifted strong vector
space with basis F1, · · · , Fn ∈ R. Let φα : R[z] → R[z]/Iα be a graded quotient as defined in Definition 5.1.
Let F ⊂ R⩽d be a finite set of homogeneous elements. Suppose that there exists D ∈ N and a dense set
U ⊂ Kn such that dim spanK {φα(F)} ⩽ D for every α ∈ U. Then

dim spanK {F} ⩽ d2(1 + d)2n+2D · Πt
i=1 deg(Hi) · Πn

j=1 deg(Fj).

While the statement of [OS24, Proposition 6.9] requires that the set of α for which the rank
bound holds is an open set, the proof only requires the weaker condition that the set of such α is
dense. The fact that this weaker condition suffices will be crucial for us.

5.1 Compatible graded quotients and twisted quotients

Definition 5.8 (Compatible graded quotients). Let R = S/(U) and V , Y ⊆ R be finite dimensional
K-vector spaces such that V ⊆ Y. Let FV ,FY be K-linear bases of V , Y respectively. We say that
FV ,FY are compatible bases if FV ⊆ FY .

Consider the compatible bases given by FV = {F1, · · · , Fm} and FY = {F1, · · · , Fm,G1, · · · ,Gn}.
Let α ∈ Km,β ∈ Kn and let y1,y2 be new variables. Let φV ,α : R[y1] → R[y1]/IV ,α be the graded
quotient given by Fi 7→ αiy

deg(Fi)
1 . Let φY,(α,β) : R[y1] → R[y1]/IY,(α,β) be the graded quotient

that sends Fi 7→ αiy
deg(Fi)
1 and Gj 7→ βjy

deg(Gj)
1 . Then we will say that φV ,α and φY,(α,β) are

compatible graded quotients.

Given two compatible quotients φV ,α and φY,(α,β), we would like to express φY,(α,β) as a
composition of φV ,α and another graded quotient of the form φW,β, where W ⊆ R[y1]/IV ,α is
some vector space. However, in order to make such a composition work, we need to include the
variable y1 in the vector space W, and we will need to adjoin a new variable y2 for the second
quotient map. This leads to an incompatibility where it is not not enough to use a quotient of the
form φW,β, since we also need to send y1 7→ γy2, for some scalar γ ∈ K, under the second quotient.
This naturally leads to the notion of a twisted quotient defined below. Moreover, in Proposition 5.11
we note that we can indeed decompose φY,(α,β) into a composition of φV ,α and a twisted quotient.

Definition 5.9 (Twists). Let γ ∈ K∗ and d1, · · · ,dn ∈ N. For β ∈ Kn, we define the twist of β by γ
as the natural action of the torus given by γ · β = (γd1β1, · · · ,γdnβn).

Definition 5.10 (Twisted quotient). Let V ⊆ R with a basis {F1, · · · , Fn} and β ∈ Kn. For γ ∈ K∗,
we will say that the graded quotient φV ,γ·β is the γ-twist of the graded quotient φV ,β.

We will often consider a tuples (α,β,γ) where β varies in an open subset depending on α.
Furthermore, γ varies in an open subset depending on β. We note the following elementary result
that will help us formalize this notion of relative generality.

Proposition 5.11. Fix integers d1, · · · ,dn ⩾ 1. Let V ⊆ Kn+1 be a non-empty open subset. Let
f : K×Kn → Kn+1 be the map f(γ,β) = (γ,γd1β1, · · · ,γdnβn). The we have the following.

1. The inverse image f−1(V) is an open subset of Kn+1.

2. The image p2(f
−1(V)) ⊆ Kn is a non-empty open subset, where p2 is the projection map K×Kn →

Kn.
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3. For each β ∈ U2 := p2(f
−1(V)), there exists a non-empty open subset Tβ ⊆ K, such that f(γ,β) ∈ V

for all γ ∈ Tβ.

Proof. We know that f is a continuous map in Zariski topology. Therefore f−1(V) is an open subset.
We have the second statement since projection maps are open maps with respect to Zariski topology.
Let U2 := p2(f

−1(V)). For each β ∈ U2, we define Tβ := f−1(V) ∩ p−1
2 (β). Note that the fiber

p−1
2 (β) is isomorphic to the affine space K. Since β ∈ p2(f

−1(V)), we have that Tβ is non-empty.
Furthermore, Tβ is open by the openness of f−1(V).

Proposition 5.12. Let R = S/(U) and V , Y ⊆ R be finite dimensional K-vector spaces such that V ⊆ Y.
Let α ∈ Kdim(V) and β ∈ Kdim(Y)−dim(V). Let φV ,α and φY,(α,β) be compatible graded quotients with
compatible bases FV ⊆ FY . Let Y ′ = spanK {FY \ FV }. We denote Y ′

α = φV ,α(Y
′) ⊆ R ′

α, where
R ′
α := R[y]/IV ,α. Let Yα = spanK {y1, Y ′

α}. Then the following holds.

1. Let B : Nd → Nd be such that Bk(δ+ µ) ⩾ Bk(δ) + ∥µ∥1 for all δ,µ ∈ Nd. If Y is B-lifted strong,
then Y ′

α is also B-lifted strong.

2. Let γ ∈ K∗. For a general α, we have a commutative diagram of K-algebra homomorphisms.

R[y1] R ′
α R ′

α[y2]/IYα,γ·(1,β)

R[y1] R[y1]/IY,(α,β)

φV ,α

id

φYα ,γ·(1,β)

≃
φY,(α,β)

where the map φYα,γ·(1,β) sends y1 7→ γy2 and on Y ′
α it is same as the twisted quotient φY ′

α,γ·β.
Moreover, the vertical isomorphism sends y2 7→ 1

γy1.

Proof. (1) If Y = ⊕d
k=1Yk is B-lifted strong in R, then we have s̃min(U, Yk) ⩾ Bk(δU + δY) for

any graded piece Yk. Let Q1, · · · ,Qr ∈ S lifts of a basis of Yk. Now δY = δV + δY ′ and hence
s̃min(U, Yk) ⩾ Bk(δU + δY ′) + ∥δV∥1. Let H1, · · · ,Ht ∈ S be lifts of a basis of a graded piece
(Y ′

α)k ⊆ R ′
α. Then, for any F ∈ Uk + spanK {H1, · · · ,Ht}, we may write F = P + Q + T , where

P ∈ Uk, Q ∈ spanK {Q1, · · · ,Qr} and T ∈ IV ,α. Therefore,

s(F) ⩾ s(P +Q) − s(T) ⩾ s̃min(U, Yk) − ∥δV∥1 ⩾ Bk(δU + δY ′) ⩾ Bk(δU + δY ′
α
)

as s(T) ⩽ ∥δV∥1 and δY ⩾ δY ′
k
. Since F ∈ Uk + spanK {H1, · · · ,Ht} was arbitrary, we get that

s̃min(U, (Y ′
α)k) ⩾ Bk(δU + δY ′

α
), and hence Y ′

α is B-lifted strong.
(2) Let FV = {F1, · · · , Fm} and FY = {F1, · · · , Fm,G1, · · · ,Gn}. For a general α, we have that

the images of G1, · · · ,Gn in R ′
α are linearly independent, and hence they are a basis of Y ′

α. Then
composition of the first two horizontal maps sends Fi 7→ αi(γy2)

deg(Fi) and Gj 7→ βj(γy2)
deg(Gj).

Therefore, we have an isomorphism R ′
α[y2]/IYα,γ·(1,β) ≃ R[y1,y2]/I, where I is generated by the

forms y1 − γy2, Fi − αiy
deg(Fi)
1 ,Gj − βj(γy2)

deg(Gj) with all i ∈ [m], j ∈ [n]. Now we have an
isomprphism R[y1,y2]/(y1 − γy2)

∼−→ R[y1] given by y2 7→ 1
γy1. This isomorphism descends to

an isomorphism R[y1,y2]/I ≃ R[y1]/IY,(α,β). By composing these two isomorphisms, we get the
desired vertical isomorphism R ′

α[y2]/IYα,γ·(1,β)
∼−→ R[y1]/IY,(α,β).
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5.2 Graded Quotients and Edelstein-Kelly Configurations

We now define the image of a (d, z,R)-EK configuration under a graded quotient map. We also
show that the image defined this way is itself an EK configuration.

Definition 5.13. Let U ⊂ S be a graded finitely generated vector space such that R := S/ (U) is a
CM UFD. Let A,B,C be a (d, z,R)-EK configuration. Let V ⊂ R⩽d be a hB ◦ t2-lifted strong vector
space such that z ∈ V , and φα : R [y] → R [y] /Iα be a graded quotient.

We define a configuration φα(A),φα(B),φα(C) as

φα(A) :=
{
A ′ |A ∈ A,A ′|φα(A),A ′ ̸= 1, (A ′,y) = 1,A ′ irreducible

}
,

φα(B) :=
{
B ′ |B ∈ B,B ′|φα(B),B ′ ̸= 1, (B ′,y) = 1,B ′ irreducible

}
,

φα(C) :=
{
C ′ |C ∈ C,C ′|φα(C),C ′ ̸= 1, (C ′,y) = 1,B ′ irreducible

}
.

Proposition 5.14. Let U ⊂ S be a graded finitely generated vector space such that R := S/ (U) is a CM
UFD. Let A,B,C be a (d, z,R)-EK configuration. Let V ⊂ R⩽d be a hB ◦ t2-lifted strong vector space
such that z ∈ V , and φα : R [y] → R [y] /Iα be a graded quotient. Let φα(A),φα(B),φα(C) be the
image of the EK configuration under the graded quotient as defined in Definition 5.13. There is an open
subset U ⊂ KdimV such that for every α ∈ U, the sets φα(A),φα(B),φα(C) are an (d,y,R [y] /Iα)-EK
configuration.

Proof. Let F := A ∪ B ∪ C and φα(F) := φα(A) ∪ φα(B) ∪ φα(C). We start by verifying the first
condition for the configuration to be an EK configuration, which is equivalent to φα(F) ∪ {y}

consisting of pairwise non associate irreducible forms.
By construction, the forms in φα(F) ∪ {y} are irreducible. By item 3 of Proposition 5.6, for any

F and F ′ such that φα(F) = yrF ′, we have that F ′ is squarefree. Suppose F ′,G ′ ∈ φα(F) \ {y} are
irreducible factors of φα(F),φα(G) respectively, for F,G ∈ F. By item 2 of Proposition 5.6 we have
(φα(F),φα(G)) = y

t for some t. Since (F ′,G ′)|(φα(F),φα(G)), and since (y, F ′) = (y,G ′) = 1, we
deduce that (F ′,G ′) = 1. Therefore the forms in φα(F) ∪ {y} are pairwise non associate.

Suppose A ′ ∈ φα(A),B ′ ∈ φα(B) are irreducible factors of φα(A),φα(B) respectively, for
A ∈ A,B ∈ B. We have

z ·
∏
C∈C

C ∈ rad (A,B) .

Applying the map φα, we obtain

y ·
∏
C∈C

ytCφα(C) ∈ rad (φα(A),φα(B)) ⊂ rad
(
A ′,B ′) .

For each such C, we either have φα(C) = ytC for some tC, or C ′|φα(C) for some C ′ ∈ φα(C).
Therefore we have

y ·
∏

C ′∈φα(C)

C ′ ∈ rad
(
A ′,B ′) .

This shows the second condition for EK configurations, and a symmetric argument shows the third
and fourth conditions.
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5.3 Potential function

In this section, we define a potential function that will be useful in controlling EK configurations.
Informally, the potential function measures how close a form is to a given vector space. It will be
convenient to define the potential so that the closer the form is to the space, the higher the potential
is. Our main arguments will therefore involve steps that increase the potential by a sufficient
amount.

Let U ⊆ S be a graded finitely generated vector space such that R := S/ (U) is a CM UFD. Let
V ⊆ R be a h2B ◦ t1-lifted strong vector space and α ∈ Kdim(V). The quotient map φV ,α : R[y] →
R[y]/IV ,α is defined in Section 5.

Individual potential. For a form F ∈ R, let φV ,α(F) = y
r
∏s

i=1 F
ri
i be an irreducible factorization.

We define the potential of Fwith respect to V and α as

ψV ,α(F) = 2r+ s.

Proposition 5.15 (Potential of product). For any two forms F,G ∈ R. Suppose that φV ,α(F),φV ,α(G)
have c number of common irreducible factors other than y. Then

ΨV ,α(FG) = ΨV ,α(F) + ΨV ,α(G) − c.

In particular,
ΨV ,α(FG) ⩽ ΨV ,α(F) + ΨV ,α(G).

Moreover, equality occurs iff gcd(F,G) = yt for some t ⩾ 0.

Proof. Suppose we have the irreducible factorizations φV ,α(F) = ya
∏s

i=1 F
di

i and φV ,α(G) =

yb
∏t

i=1G
ei

i . Since φV ,α(FG) = φV ,α(F)φV ,α(G), we have

ΨV ,α(FG) = 2(a+ b) + s+ t− c ⩽ 2a+ s+ 2b+ t = ΨV ,α(F) + ΨV ,α(G).

Moreover, we have equality iff c = 0.

Group potential. For a finite set of forms G ⊆ R, we define the potential of G with respect to the
pair (V ,α) as

ΦV ,α(G) =
∑
G∈G

ψV ,α(G).

Remark 5.16. Note that if G ⊆ R⩽d, thenΦV ,α(B) ⩽ 2d|B| for any (V ,α).

Potential increasing forms. Let V ⊆ Y be both h2B ◦ t1-lifted strong vector spaces in R. Let
α ∈ Kdim(V) and β ∈ Kdim(Y)−dim(V). We say that F ∈ G is a potential increasing form with respect to
the pairs (V ,α) and (Y, (α,β)) if

ΨY,(α,β)(F) > ΨV ,α(F).

The notion of potential increasing captures the property that a form factors more when quo-
tiented with respect to Y than V . First we note that for general quotients potential does not
decrease.

Proposition 5.17 (Non-decreasing property). Let V ⊆ Y be both h2B ◦ t1-lifted strong vector spaces
in R of dimensions m and m + n respectively. Let φV ,α and φY,(α,β) be compatible graded quotients
with respect to bases FV ⊆ FY . Let Y ′ = spanK {FY \ FV }, R ′

α = R[y1]/IV ,α, Y ′
α = φV ,α(Y

′) and
Yα = spanK {y1, Y ′

α}.
Fix a square-free form F ∈ R. For a general α ∈ Km, there exists a non-empty open subset U ⊆ Kn

(depending on α) such that for all β ∈ U the following holds.
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1. We have ΨY,(α,β)(F) ⩾ ΨV ,α(F).

2. Moreover, ΨY,(α,β)(F) = ΨV ,α(F) iff one of the following holds

2.1 F ∈ K[V].

2.2 Let Fi be an irreducible factor of φV ,α(F) such that Fi ̸∈ (y1). Then its image φYα,γ·(1,β)(Fi) is
irreducible and φYα,γ·(1,β)(Fi) ̸∈ (y2) for general γ ∈ K.

Proof. Note that the quotient map φY,(α,β) : R → R[y2]/IY,(α,β) factors, up to isomorphism, as
φY,(α,β) = φYα,γ·(1,β) ◦φV ,α by Proposition 5.12. Suppose we have the irreducible factorization

φV ,α(F) = y
r
1

s∏
i=1

Frii .

Then we have

φY,(α,β)(F) = y
r
1

s∏
i=1

φYα,γ·(1,β)(Fi)
ri .

If s = 0, then φV ,α(F) is a power of y1 up to scalar multiples. By Proposition 5.5, we have
V ∈ K[V]. In particular, ΨY,(α,β)(F) = ΨV ,α(F) = 2 deg(F).

Suppose that s > 0. By Proposition 5.6, there exists a non-empty open subset V ⊆ Kn+1 such
that for all γ · (1,β) ∈ V, the forms φYα,γ·(1,β)(Fi) and φYα,γ·(1,β)(Fj) do not have any common
factors other than y2 for i ̸= j. We let U be the image of f−1(V) under the projection K×Kn → Kn,
where f(γ,β) = γ · (1,β) as in Proposition 5.11. Let Gi = φYα,γ·(1,β)(Fi). We have an irreducible
factorization Gi = yai

2
∏si

i=1Hi. Note that since Gi is irreducible, the forms Hi appear with
multiplicity 1 by Proposition 5.6. Now, using the isomorphism in Proposition 5.11, we have

ΨY,(α,β)(F) = 2r+
s∑

i=1

2riai +
s∑

i=1

si ⩾ 2r+ s = ΨV ,α(F).

Moreover, equality occurs iff ai = 0 and si = 1 for all i ∈ [s]. In other words Gi is irreducible and
Gi not a scalar multiple of y2.

We note the following criterion for when the potential strictly increases.

Lemma 5.18 (Potential increasing criterion). Let V ⊆ Y be both h2B ◦t1-lifted strong vector spaces in R of
dimensionsm andm+n respectively. LetφV ,α andφY,(α,β) be compatible graded quotients with respect to
bases FV ⊆ FY . Let Y ′ = spanK {FY \ FV }, R ′

α = R[y1]/IV ,α, Y ′
α = φV ,α(Y

′) and Yα = spanK {y1, Y ′
α}.

Let F ∈ R be a square-free form. Let α ∈ Km be a general element. Suppose that there exists a factor Fk
of φV ,α(F) in R ′

α, such that

1. Fk is not a scalar multiple of y1, and

2. Fk is absolutely reducible with respect to Yα or Fk is in the ideal (Yα) in R ′
α.

Then there exists a non-empty open subset U ⊆ Kn (depending on α) such that for all β ∈ U, the form F

is potential increasing with respect to the pairs (V ,α) and (Y, (α,β)).
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Proof. Suppose that we have factorization φV ,α(F) = yr1
∏s

i=1 F
ri
i in R ′

α. Note that the quotient
map φY,(α,β) : R→ R[y2]/IY,(α,β) factors as φY,(α,β) = φYα,γ·(1,β) ◦φV ,α by Proposition 5.12. Let
U ⊆ Kn be the non-empty open subset provided by Proposition 5.17.

Let Fk be a factor of φV ,α(F) with properties (1) and (2) in the hypothesis. In particular, Fk is
not a scalar multiple of y1. Therefore F ̸∈ K[V] by Proposition 5.5.

Case 1. Suppose that Fk ∈ (Yα). Then for any γ,β, the form φYα,γ·(1,β)(Fk) is divisible by y2.
Therefore φYα,γ·(1,β)(Fk) is reducible if deg(φYα,γ·(1,β)(Fk)) > 1. If deg(φYα,γ·(1,β)(Fk)) = 1, then
it is a scalar multiple of y2.

Case 2. Now suppose that Fk is absolutely reducible with respect to Yα. Then by Proposition 5.5,
there exists a non-empty open subset V ⊆ Kn+1 such that φYα,γ·(1,β)(Fk) is a reducible form for
γ · (1,β) ∈ Kn+1. We let U2 to be the image of f−1(V) under the projection K×Kn → Kn, where
f(γ,β) = γ · (1,β) as in Proposition 5.11.

Therefore, by combining both cases above, there exists a non-empty open subset U ′ := U2 ∩ U

such that for all β ∈ U ′, the form φYα,γ·(1,β)(Fk) is either reducible or it is a scalar multiple of y2,
for a general γ depending on β. Then Proposition 5.17 implies that we must have a strict inequality
ΨY,(α,β)(F) > ΨV ,α(F) for all β ∈ U ′.

6 Uniform bounds on Edelstein-Kelly type configurations

In this section, we show that higher degree EK configurations have bounded rank. As discussed
earlier, our approach is to induct on the degree of the forms in the configuration. The base case is a
configuration where all the forms are linear. We show that such configurations are essentially (1, 1)-
linear-EK configurations, therefore they have bounded rank by Proposition 3.4. In the inductive
step, we control all the forms of highest degree in the configuration, and then apply a graded
quotient to reduce to configurations where the highest degree forms have degree one lower than
what we started with.

In the first subsection, we focus on controlling the highest degree forms in EK-configurations.
The second subsection will then formalize the above inductive argument. For the rest of this section,
fix positive integer η ⩾ 3 and set ε := 1/16. We will use the auxiliary functions H,D defined in
Section 4.

6.1 Controlling highest degree forms

We begin by establishing some notation specific to this subsection.

Notation 6.1. Fix an integer e. Let µ : Ne → Ne be an ascending function such that µi(δ) ⩾ A(η, i) +
3 ∥δ∥1, where A is the function defined in [AH20, Theorem A]. Let U ⊆ S⩽e be a graded finitely generated
vector space such that R := S/ (U) is a UFD, and z ∈ R1. Let A,B,C ⊂ R⩽d be sets that form a (d, z,R)-EK
configuration (Definition 3.5) for 2 ⩽ d ⩽ e. Let F := A ∪B ∪ C.

Suppose V ⊆ R⩽d is a h2µ ◦ t1-lifted strong vector space. Let AV
d denote the set of forms in Ad which

are not in (V) and are absolutely irreducible with respect to V .

AV
d := {F ∈ Ad | F ̸∈ (V) and F absolutely irreducible with respect to V}.

We denotemV
a :=

∣∣AV
d

∣∣. We useMV
a to denote |A|−mV

a , this is the number of forms in A that either have
degree less than d, or are absolutely reducible over V , or are in the ideal generated by V .

In particular, if we take V = (0), then m(0)
a ,M(0)

a are the sizes of the degree d and degree less than d
pieces of A respectively. We similarly definemb,Mb,mc,Mc. We will assume that |A| ⩾ |B| ⩾ |C|.
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Our goal in this section is to construct a vector space W such that all the degree d forms in
A,B,C are absolutely reducible over W or in the ideal (W), i.e. mW

a = mW
b = mW

c = 0. First, we
show that if the algebra K[V] contains a sufficient fraction of forms, then we may find W such that
at least one ofmW

a ,mW
b ,mW

c is 0.

Lemma 6.2. Suppose |C| ⩾ 2Π2(d)ε
−1. Further suppose V is a H(µ, 1, 2 · d · ε−1)-lifted strong vector

space such that one of the following holds.

• |K [V] ∩A| ⩾ ε |A| or

• |K [V] ∩B| ⩾ ε |B| or

• |C| ⩾ |B| /2 and |K [V] ∩ C| ⩾ ε |C|.

Then there is a µ-lifted strong vector spaceW obtained by applying a (1, 4 · d · ε−1) process to V such that
mW

b ·mW
b ·mW

c = 0, i.e. at least one of the sets A,B,C have no degree d forms absolutely irreducible over
W.

Proof. We first assume |K [V] ∩A| ⩾ ε |A|. Let A1, . . . ,Ar be the elements in |K [V] ∩A|. In this case
a (1, 2 · d · ε−1) process will suffice.

We now describe one iteration of our (1, 2·d·ε−1) process. Let B ∈ Bd be a form that is absolutely
irreducible over V . If no such B exists, then every form in Bd is absolutely reducible over V , which
impliesmV

b = 0, and we terminate the process. Since B is absolutely irreducible over V , there are at
most Π1(d) elements among A1, . . . ,Ar such that (B,Ai) is not prime. Reordering, we can assume
that (Ai,B) is prime for 1 ⩽ i ⩽ s with s = r−Π1(d). Since r ⩾ ε |A| and |A| ⩾ |C| ⩾ 2Π1(d)ε

−1, we
have s ⩾ ε |A| /2.

Note that z ̸∈ (Ai,B) as deg(B) = d > 1 and z,Ai are non-associate forms. Hence, by the EK
condition, there exists Ci ∈ (Ai,B) ∩ C for 1 ⩽ i ⩽ s, as (Ai,B) is prime. Since degB = d, we
have degCi = d, and we can write Ci = αiB + HiAi. If Ci ∈ (V) then B ∈ (V), contradicting
assumption. If Ci = Cj, then αjB + HjAj = αiB + HiAi. If we also have αi ̸= αj then again
B ∈ (V), a contradiction. Therefore, if Ci = Cj then αi = αj, and further Ai,Aj are distinct factors
of Ci − αiB = Cj − αjB. Since degCj − αjB = d, and since these factors are distinct, there are at
most d indices such that Ci1 = · · · = Cia . In conclusion, the above paragraph shows that the set of
forms C1, . . . ,Cs consists of at least s/d distinct forms, none of which are in the ideal (V).

We now update V to AHR(V ,B). After this update, mV
c reduces by at least s/d, which is at

least ε |A| /2d. Note that we still have |K[V] ∩ A| ⩾ ε|A|. Therefore if mV
b ̸= 0, we may apply the

argument above again and reduce mV
c by s/d. Since mV

c is at most |A| to start with, after 2 · d · ε−1

complete iterations of the above, we have a vector space W such that mW
b = 0 or mW

c = 0. The
claimed bound on the lifted strength ofW follows from Lemma 4.15.

In the case when |K [V] ∩B| ⩾ ε |B| the exact same argument applies with every occurrence
of A and B swapped. In the last case, we have |K [V] ∩ C| ⩾ ε |C| and |C| ⩾ |B| /2. If we just swap
the roles of A and C in the above argument, then essentially in each iteration we are reducingmV

a

by ε |C| /2. However, this does not suffice, because mV
a might be significantly bigger than C, and

therefore we cannot guarantee that the iteration terminates after constantly many steps. Therefore,
instead of just swapping the roles of A and C, we replace the role of A with C and the role of B
with A. Now in each iteration we are reducing mV

b by at least ε |C| /2. The further assumption
that |C| ⩾ |B| /2 implies that we are reducingmV

b by at least ε |B| /4. Therefore the above iteration
terminates after 4 · d · ε−1 steps.

Definition 6.3. Let F1, · · · , Fa ∈ R be homogeneous of degree d. We will say that F1, · · · , Fa generate
unbreakable pencils if they are linearly independent and smin(Fi, Fj) > 0 for all i, j ∈ [a]. Alternatively,
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given a set of degree d forms S ⊆ Rd, we will say that the set S is unbreakable pencil generating if S is
a linearly independent set and smin(F,G) > 0 for any F,G ∈ S.

Note that if F1, · · · , Fa generate unbreakable pencils, then Fi is irreducible for all i ∈ [a].

Lemma 6.4. Let G be a finite set non-associate irreducible homogeneous forms in Rd. Suppose that for any
unbreakable pencil generating subset S ⊆ G, we have |S| ⩽ b. Then there exists a subset T ⊆ G such that the
following holds.

1. |T | ⩽ (Π2(d) + 1) · b.

2. Let Y ⊆ R be any h2µ ◦ t1-lifted strong vector space with T ⊆ K[Y]. Then every form in G is absolutely
reducible over Y or in the ideal (Y).

Proof. Let us consider the unbreakable pencil generating subsets of G with respect to the partial
order given by inclusion. Let S1 ⊆ G be a maximal unbreakable pencil generating set. We will define
subsets Hi ⊆ G iteratively. We set H1 := S1. Note that for every form F ∈ G \ H1 we have either
smin(F,H1) = 0 for some H1 ∈ H1 or that F ∈ (H1) the ideal generated by H1. Now let S2 ⊆ G \ H1
be a maximal unbreakable pencil generating set. Note that if {F} ∪ S2 is not an unbreakable pencil
generating set for some F ∈ G, then F ∈ H1. Let H2 := H1 ∪ S2. Then, for every form F ̸∈ H2 there is
a H2 ∈ S2 such that smin(F,H2) = 0, or F ∈ (S2).

We repeat this process iteratively and set Hi+1 := Hi∪Si+1 where Si+1 is a maximal unbreakable
pencil generating subset of G \ Hi. Note that |Si| ⩽ b for all i by assumption. Therefore, in each
iteration, we add at most b forms. We do thisΠ2(d)+1 times. Then we have HC(d)+1 ⩽ (Π2(d)+1)b.
Let T := HΠ2(d)+1. We will show that this set T satisfies the desired property. Let Y ⊆ R be a
h2B ◦ t1-lifted strong vector space such that T ⊆ K[Y].

Let F ∈ G be a form that is not in the ideal (Y). Hence F ̸∈ (Si) for all i. Recall that Si is a
maximal unbreakable pencil generating set in G\Si−1. Therefore, for every 1 ⩽ i ⩽ Π2(d)+ 1, there
is aHi ∈ Si such that smin(F,Hi) = 0. Let Pi = F+βiHi with s(Pi) = 0. In particular, Pi is reducible
in R. Note that Pi ̸∈ (Y), as F ̸∈ (Y). Hence no irreducible factor of Pi can lie in K[Y]. Hence, the
forms Pi are absolutely reducible over Y. If Pi = γPj, then F ∈

(
Hi,Hj

)
by the assumption that

the forms in G are non-associate, therefore F ∈ K [Y]. If the forms Pi,Pj are all non-associate and
not in (Y), then by Corollary 4.17 the form Fmust be absolutely reducible with respect to Y. This
completes the proof.

Recall that for α ∈ Kdim(V), we denote by φV ,α the graded quotient homomorphism R[y] →
R[y]/Iα as defined in Section 5. We will look for subsets S ⊆ AV

d such thatφV ,α(S) is an unbreakable
pencil generating set in R[y]/Iα. The following lemma shows that if all such subsets have their size
upper bounded by a fixed constant, then we can increase the vector space V toW in a controlled
way and ensure thatmW

a = 0.

Lemma 6.5. Fix an integer r > 0. Suppose V is H(µ, 1, (Π2(d) + 1) · r)-lifted strong. Suppose that there
exists a dense subset Z ⊆ Kdim(V) such that for all α ∈ Z we have

r > max{|S| | S ⊆ AV
d and φV ,α(S) is an unbreakable pencil generating set}.

Then there exists a µ-lifted strong vector spaceW obtained by applying a (1, (Π2(d) + 1) · r)-process to V
such that every form in AV

d is absolutely reducible overW or in (W), i.e. we havemW
a = 0.

Proof. By Proposition 5.6, we can further replace Z by a possibly a possible smaller dense subset,
and assume that φV ,α(A

V
d ) consists of pairwise non-associate forms. Then for each α ∈ Z, we
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can apply Lemma 6.4 to the set φV ,α(A
V
d ) ⊆ R[y1]/IV ,α and obtain a subset Tα ⊆ φV ,α(A

V
d ) with

properties (1) and (2) from Lemma 6.4. For each α ∈ Z let us choose T̃α ⊆ AV
d which a lift of Tα.

Note that there are finitely many choices for T̃α. Therefore we may replace Z by a possibly smaller
dense subset and assume that there exists a fixed set T̃ ⊆ AV

d such that T̃ = T̃α for all α ∈ Z. In
particular, the following holds:

1. |T̃ | ⩽ (Π2(d) + 1) · r, and

2. For all α ∈ Z and for any Yα ⊆ R[y1]/IV ,α which is h2µ ◦ t1-lifted strong vector space with
φV ,α(T̃) ⊆ K[Y], every form in φV ,α(A

V
d ) is absolutely reducible over Y or in the ideal (Yα) .

We let W := AH(V , T̃). Now we check that we will have mW
a = 0. Note that V ⊆ W by

Corollary 4.11. LetW = V +W ′, whereW ′ is obtained by extending a basis of V to a basis ofW.
Then φV ,α(W

′) is a h2µ ◦ t2-lifted strong vector space in R[y]/Iα by part (1) of Proposition 5.12.
Let W ′

α = φV ,α(W
′). We also have φV ,α(T̃) ⊆ K[y1,W ′

α] for all α ∈ Z. In particular, by taking
Wα := spanK {y1,W ′

α}, we know that every form in φV ,α(A
V
d ) is absolutely reducible overWα or

in (Wα).
Let F ∈ AV

d . Note that by replacing Z with a possibly smaller dense subset, we may assume
that dim(W ′) = dim(W ′

α) for all α ∈ Z by Proposition 5.6. For β ∈ Kdim(W ′) and γ ∈ K, consider
the map φYα,γ·(1,β) as in Proposition 5.12. Let us denote R ′

α = R[y]/IV ,α. Let G := φV ,α(F). We
consider two situations below.

Case 1. Suppose that G ∈ (Wα) in R[y1]/IV ,α. Then we may compose with map φWα,γ·(1,β) as
in Proposition 5.11. Under this composition φWα,γ·(1,β) ◦ φV ,α, we see that F mapped to a form
in (y2). By the isomorphism in Proposition 5.12, we conclude that φW,(α,β) maps F to a form in
(y1). Since α is general and β can also be chosen to be general, we have F ∈ (W) in R by part (4) of
Proposition 5.5.

Case 2. Now suppose that we have G ̸∈ (Wα) and G is absolutely reducible over Wα for all
α ∈ Z. By Proposition 5.5 there exists a non-empty open subset V ⊆ Kn+1 such that φYα,γ·(1,β)(G)

is reducible for all γ · (1,β) ∈ V. We let Uα be the image of f−1(V) under the projection map
p2 : K×Kdim(W ′) → Kdim(W ′), where f(γ,β) = γ · (1,β) as in Proposition 5.11.

Note that φW,(α,β) = φYα,γ·(1,β) ◦φV ,α by Proposition 5.12. Let Z ′ := {(α,β) | α ∈ Z,β ∈ Uα}.
Then Z ′ ⊆ Kdim(W) is a dense set. Now for all (α,β) ∈ Z ′, we have φW,(α,β)(F) is reducible
in R[y1]/IW,(α,β), by the isomorphism in Proposition 5.12. As F ̸∈ (W), we conclude that F is
absolutely reducible over W by Proposition 5.5. Since F ∈ AV

d was arbitrary, we conclude that
mW

a = 0 as desired. The claimed bound on the strength ofW follows from Lemma 4.15.

Lemma 6.6. Suppose |C| ⩾ 2Π1(d)ε
−1. Let k := 10 · d · (Π2(d) + Π1(d)) · (Π2(d) + 1). Let V be a

H(µ,k, 8 · d · ε−1)-lifted strong vector space such that one of the following holds.

• MV
a ⩾ 6ε |A| or

• MV
b ⩾ 6ε |B| or

• MV
c ⩾ 6ε |C| and |C| ⩾ |B| /2.

Then there is a µ-lifted strong vector spaceW obtained by applying a (k, 8 · d · ε−1) process to V such that
mW

a ·mW
b ·mW

c = 0.

Proof. We first assumeMV
b ⩾ 6ε |B|. In this case a (k, 4 · d · ε−1) process will suffice. Recall that for

any vector spaceW, the set AW
d is the set of forms in Ad which are not in (W) and are absolutely

irreducible with respect toW. Also, we havemW
a := |AW

d | andMW
a := |A|−mW

a .
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Let Π3(d) := Π2(d) + Π1(d). Let a := 10 · d · Π3(d). We will describe one iteration of the desired
(k, 4 · d · ε−1) process below and we will show that at most 4 · d · ε−1 iterations suffice.

First let us note two special cases which yield a vector space W with mW
a ·mW

b ·mW
c = 0. If

we reach any of these two breaking conditions during the iterative process, we will terminate the
process. The first condition will involve properties of B and the second will involve A.

Breaking condition 1. Suppose that |B ∩K [V]| ⩾ ε |B|. Then we apply Lemma 6.2 to V , and call
the resulting spaceW. We terminate the iterative process.

Breaking condition 2. Suppose that there exists a dense subset Z ⊆ Kdim(V) such that for all α ∈ Z

we have

a > max{|S| | S ⊆ AV
d and φV ,α(S) is an unbreakable pencil generating set}.

Here φV ,α : R[y1] → R[y1]/IV ,α is a graded quotient. Then we apply Lemma 6.5 and letW be the
resulting vector space. We terminate the iterative process.

Iterative step. Suppose that none of the breaking conditions occur. Then we have |B∩K[V]| < ε|B|.
Moroever, there exists a non-empty open subset U ⊆ Kdim(V), such that for all α ∈ U there exists
a set Sα ⊆ AV

d where |Sα| = a and φV ,α(Sα) is an unbreakable pencil generating set. Since there
are finitely many possibilities for such Sα, we may replace U by a dense subset Z ⊆ Kdim(V) and
assume that all the Sα are the same set for all α ∈ Z. Let S = Sα for all α. Note that S ̸⊆ K[V], as
S ⊆ AV

d . Therefore, we may apply Proposition 5.6 and assume that |φV ,α(S)| = |S|, after possibly
replacing Z with a smaller dense set. Moreover, we may also assume that all elements of φV ,α(S)
are irreducible of degree d. We update V to AH(V , S) and go to the next iteration.

Now we will show that after at most 2 · d · ε−1 iterations of the above process, one of the two
break conditions must be met. This implies that the above process is a (k, 4 · d · ε−1) process as
required, and that the required conclusion holds.

Analysis of one iteration. Suppose that |B ∩ K[V]| < ε|B|. Moreover, there exists a set S ⊆ AV
d

with |S| = a and a dense set Z ⊆ Kdim(V), such that for all α ∈ Z the set φV ,α(S) is an unbreakable
pencil generating in R[y1]/IV ,α. Let R ′

α := R[y1]/IV ,α. We define Y := AHR(V , S). Note that Y is a
h2µ ◦ t1-lifted strong vector space in R ′

α by Lemma 4.15, since it is a vector space that is intermediate
in a (k, 4 · d · ε−1) process and since V is strong enough. Moreover we have V ⊆ Y. By choosing
compatible bases of V ⊆ Y, we let Y = V + Y ′ and Y ′

α := φV ,α(Y) ⊆ R ′
α, as in Lemma 5.18. Let

Yα = spanK {y1, Y ′
α} .

Let B1, . . . ,Br ∈ B be the forms that either have degree less than d, or that are absolutely
reducible with respect to V or in the ideal (V). By definition, we have r = MV

b . Among these
forms, let B1, . . . ,Bs be the set of forms that are not in K [V]. Since |B ∩K [V]| < ε |B|, we have
s ⩾MV

b − ε |B|.
For α ∈ Z, let Gα ⊆ {B1, · · · ,Br} be the (possibly empty) subset of forms such that some factor of

φV ,α(Bi), other than y1, is either absolutely reducible over Yα, or in the ideal (Yα). Now there are
finitely many possibilities for Gα as B1, · · · ,Br are fixed. Therefore, by replacing Z with a possibly
smaller dense subset, we may assume that there exists a set G such that Gα = G for all α ∈ Z. In
particular, if Bi ∈ G then some factor of φV ,α(Bi), other than y1, is either absolutely reducible over
Yα, or in the ideal (Yα), for all α ∈ Z. Therefore, if Bi ∈ G then ΨY,(α,β)(Bi) > ΨV ,α(Bi), for all
α ∈ Z and for general β ∈ Kdim(Y ′) (depending on α) by Lemma 5.18. We will show below that
|G| ⩾ ε |B|.

First, let us show that this condition implies that there can be at most 2 · d · ε−1 number of
iterations before a breaking condition is reached.

Bounding total number of iterations. Suppose we know that |G| ⩾ ε |B| at each iteration. Now each
form in G is potential increasing with respect to (V ,α) and (Y, (α,β)), for all α ∈ Z and general
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choice of β (depending on each α). Then, in each iteration, when we increase V to Y, the group
potential of B increases by at least ε |B|, i.e.

ΦY,(α,β)(B) > ΦV ,α(B)

for a dense set of α ∈ Z ′ and general β (depending on α). In other words, the group potential jumps
by at least ε|B| for a dense set of (α,β), when we replace V by Y. Note that the group potential of B
is upper bounded by 2d |B| by Remark 5.16, irrespective of the choice of α,β. Therefore there can
be at most 2 · d · ε−1 iterations that do not reach a break condition.

Showing |G| ⩾ ε|B| for each iteration. Suppose that we have fixed V and a dense set of Z ⊆ Kdim(V)

as above. Suppose that |G| < ε|B|. We can further reorder B1, . . . ,Bs so that the elements of G are at
the end of the ordering. Suppose B1, . . . ,Bt ̸∈ G, we have t ⩾MV

b − 2ε |B| ⩾ 4ε |B|.
For each Bi with i ⩽ t, fix an irreducible factor B ′

i of φV ,α(Bi), such that B ′
i is not a scalar

multiple of y1. Note that deg(B ′
j) < d, by the choice of Bj and Proposition 5.5. Since Bi ̸∈ G, we

know that B ′
i is absolutely irreducible over Yα and B ′

i ̸∈ (Yα). Recall that S ⊆ K[Y], and hence
φV ,α(S) ⊆ K[Yα]. Moreover, Yα is sufficiently strong by Proposition 5.12, so that we may apply
Corollary 4.17. Hence each B ′

i is not prime with at most Π1(d) elements in φV ,α(S). Moreover each
B ′
i spans something reducible with at most Π2(d) many elements in φV ,α(S).

Recall that |φV ,α(S)| = |S| = a. Let φV ,α(S) = {F1, · · · , Fa}. We denoted Π3(d) = Π1(d) + Π2(d).
Then by a double counting, at most 2Π3(d) of the forms among F1, . . . , Fa are not prime with more
than t/2 of the B ′

i. Let b := a− 2Π3(d). We may reorder and assume that for any fixed i ∈ [b], there
are at least t/2 forms among the B ′

j, such that (Fi,B ′
j) is prime.

By Proposition 5.14 we know that the sets φV ,α(A),φV ,α(B),φV ,α(C) form a (d, z,R)-EK con-
figuration. Therefore, for each Fi,B ′

j which form a prime ideal, there exists a form C ∈ C such that

φV ,α(C) ∈
(
Fi,B ′

j

)
. For i ∈ [b], we let Pi,α be the set of forms C ∈ Cd such that φV ,α(C) ∈

(
Fi,B ′

j

)
for some j such that

(
Fi,B ′

j

)
is prime. Now there are finitely many possibilities for the sets

Pi,α ⊆ Cd. Therefore, by replacing Z with a possibly smaller dense subset, we may assume that
there exists a set Pi such that Pi = Pi,α for all α ∈ Z. Recall that Fi is of degree d. Moreover B ′

j

does not divide φV ,α(C) by Proposition 5.6, since B ′
j ̸∈ (y1) and α varies in a dense set. Therefore

φV ,α(C) is irreducible and has degree d, as φV ,α(C) ∈ (Fi,B ′
j). Since this holds for all α in a dense

set, we see that Cmust be absolutely irreducible over V , by Proposition 5.5.
We first prove that each |Pi| ⩾ t/2(d+ 1) ⩾ t/4d. Fix i = 1 without loss of generality. Suppose

F1 is prime with B ′
1, . . . ,B ′

t/2. Suppose |P1| < t/2(d + 1). Then there exists C ∈ Pi such that
φV ,α(C) ∈ (F1,B ′

j) for all j ∈ [d+ 1], after a possible reordering of B ′
1, . . . ,B ′

t/2. Therefore we have

c1F1 + B
′
1H1 = · · · = cd+1F1 + B

′
d+1Hd+1

for some scalars ci ∈ K and forms Hi ∈ R ′
α. Recall that and deg(B ′

i) < d for all i and deg(F1) = d.

If ci ̸= cj for some i ̸= j, then we have
(
F1,B ′

i

)
⊆
(
B ′
i,B

′
j

)
. This is a contradiction since

(
F1,B ′

i

)
is

prime. Therefore we have c1 = · · · = cd+1. Now each of B ′
2, . . . ,B ′

d+1 are factors of H1, which is a
contradiction since H1 has at most d factors.

Since t ⩾ 4ε|B|, we have |Pi| ⩾ ε |B| /d ⩾ εmV
c /d. The number of sets Pi is b := a − 2Π3(d).

Hence b > d(Π3(d) + 2)ε−1. By double counting, we can assume that there is a common element in
P1, . . . ,PΠ3(d)+2. We use this to derive the contradiction, completing the proof.

Suppose C lies in P1, . . . ,PΠ1(d)+2 with C ′ = φV ,α(C). Therefore, for each Fi there exists B ′
i

such that C ′ = ciFi +HiB
′
i. We therefore have

(
c1F1 − ciFi,B ′

1

)
⊆
(
B ′

1,B ′
i

)
for all 2 ⩽ i ⩽ Π3(d) + 1.

Recall that φV ,α(S) is an unbreakable pencil generating set. Hence the forms c1F1 − ciFi are
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nonzero and pairwise non associate, by the linear independence of F1, . . . , Fa. Further, each element
is irreducible as smin(Fi, Fj) ⩾ 1. Recall that B ′

1 is absolutely irreducible over Yα and B ′
1 ̸∈ (Yα).

Therefore, by Corollary 4.17, there is a j such that
(
c1F1 − cjFj,B ′

1

)
is prime. Since B ′

1,B ′
j are

irreducible in R ′
α, which is a UFD, the ideal has height 2. Therefore we must have an equality(

c1F1 − cjFj,B ′
1

)
=
(
B ′

1,B ′
j

)
. This is a contradiction.

In the case whenMV
a ⩾ 6ε |A| the exact argument holds with all occurrences of A,B swapped.

Now suppose we are in the case whenMV
c ⩾ 6ε |C| and |C| ⩾ |B| /2. We swap the roles of C and B.

Note that in this case, |C ∩K [V]| ⩾ ε |C| is also a valid breaking condition, since Lemma 6.2 can be
applied with C by assumption. The only other place in the arguments where the relative sizes of
A,B,C play a role is to ensure that the sets Pi have a common intersection. Each set in this case
will have size ε |C| /d, which is at least εmV

b /2d by assumption. The rest of the argument remains
the same.

Lemma 6.7. Suppose V is a H(µ,Π1(d) + Π2(d) + 1, 2)-lifted strong space such that one of mV
a ,mV

b ,mV
c

is zero. Then there is a µ-lifted strong spaceW obtained by applying a (Π1(d) + Π2(d) + 1, 2) process to V
such thatmW

a = mW
b = mW

c = 0.

Proof. In this proof, the roles of A,B,C can be freely permuted. Therefore without loss of generality
assumemV

a = 0. Let Π3(d) := Π1(d) + Π2(d).
Let B1, . . . ,Br be the forms in Bd that are absolutely irreducible over V . If the span of B1, . . . ,Br

is less than Π3(d) + 1, then we add a basis of this set to V , and call this resulting space Y. We
have mY

b = mY
a = 0, and we move to the next step. Suppose the span is larger than Π3(d) + 1.

Without loss of generality, assume B1, . . . ,BΠ3(d)+1 are linearly independent. Let Y be the space
AH(V ,B1, . . . ,BΠ3(d)+1). Now let C be a form in Cd that is absolutely irreducible over Y, if such
a form exists. There is at least one form among B1, . . . ,BΠ3(d)+1 say Bi such that (C,Bi) is prime,
and does not span anything absolutely reducible. However, the EK image of Bi,C has to be a form
in Ad that is absolutely irreducible over V , but no such form exists. Therefore, we have mY

c = 0.
This completes the first step of our process.

After rearranging again, we can assume now that mY
a = mY

b = 0. Among the forms in
Ad,Bd, pick a set of forms F1, . . . , FΠ3(d)+1 that are linearly independent. If such forms exist, set
W = AH(Y, F1, . . . , FΠ3(d)+1). Each form C ∈ Cd that is absolutely irreducible overW has at least
one Fi such that (Fi,C) is prime and does not span anything absolutely reducible, but the EK image
of this ideal is in Ad ∪Bd which only consists of absolutely reducible forms.

Suppose F1, . . . , FΠ3(d)+1 cannot be picked. Then we instead define F1, . . . , FΠ3(d)+1 to be a set
of linearly independent forms in A ∪ B that consist of a basis of Ad ∪ Bd (the forms are now
allowed to be of lower degree), if possible. Again let W = AH(Y, F1, . . . , FΠ3(d)+1). Again if
C ∈ Cd is absolutely irreducible over W then we have (C, Fi) is prime for some i, and therefore
G = αC+ FiHi for some degree d form G ∈ Ad ∪Bd. This implies that C is in the ideal generated
byW, since by assumption every form in Ad ∪Bd is in the span ofW. This is again a contradiction.

The only remaining case is when A ∪B has span at most Π3(d) + 1. In this case, we just pick
F1, . . . , Fa to be a basis of A ∪ B, and set W = AH(V , F1, . . . , Fa). Every element of A ∪ B is in
the algebra K [W]. Now for any C ∈ Cd that is not in the ideal, and for any element say A ∈ A,
the radical ideal rad (A,C) has to contain

∏
B∈B B. The latter element is in K [W], and by the

elimination theorem [OS24, Lemma 4.26], the only element in rad (A,C) ∩K [W] is A, which is a
contradiction.

Therefore in all cases, we havemW
a = mW

b = mW
c = 0. The claimed bound on the strength of

W follows from Lemma 4.15.
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The following lemma combines the above results and allows us to fully control the highest
degree forms in an EK-configuration.

Lemma 6.8. Let c := 3(Π1(d) + Π2(d) + 1) and δ := 8 · ε · (Π1(d) + Π2(d) + 1)−1. Let k := 6 · d ·
(Π1(d) + Π2(d) + 1)3 · ε−1 + c+ cek · δ−1 and t := 8 · d · ε−1 + 3. Let µ be a function, and suppose U is
H(µ,k, t)-strong. There is a (k, t) process starting with 0 such that the resulting spaceW ⊂ R is µ-lifted
strong and satisfiesmW

a = 0 andmW
b = 0 andmW

c = 0. Further, dimWi ⩽ Di(µ,k, t, δU), where δU is
the dimension vector of U.

Proof. The first step is to find a space V such that one ofmV
a ,mV

b ,mV
c is zero.

If |C| < 2Π1(d)ε
−1 then we pick V = AH(0,C) and we are done. IfM(0)

b ⩾ 6ε |B| orM(0)
a ⩾ 6ε |A|

then we apply Lemma 6.6 starting with 0 and we are done.
Now consider the sets Ad,Bd,Cd. Even though we have |A| ⩾ |B| ⩾ |C|, we cannot assume

|Ad| ⩾ |Bd| ⩾ |Cd|. For each form F ∈ Fd we define a subset Fspan (F) as follows. If F ∈ Ad and
|Bd| ⩾ |Cd| then Fspan (F) ⊂ Bd is the set of forms B ∈ Bd such that

∣∣spanK {F,B} ∩ Cd

∣∣ ⩾ 1. If
instead |Cd| ⩾ |Bd| then Fspan (F) ⊂ Cd is the set of forms C ∈ Cd such that

∣∣spanK {F,C} ∩Bd

∣∣ ⩾ 1.
We can similarly define Fspan (F) for forms F ∈ Bd,Cd. In each case, Fspan (F) will be a subset of the
bigger of the two degree d parts of the remaining sets. The fractional size of Fspan (F) is defined to
be the ratio of

∣∣Fspan (F)
∣∣ and the size of whichever among Ad,Bd,Cd that Fspan (F) is a subset of.

For a form F ∈ Ad ∪ Bd, we have Fspan (F) ⊂ Cd only if |Cd| ⩾ |Bd| or |Cd| ⩾ |Ad|. We are
in the case where M(0)

b < 6ε |B| < |B| /2 and M(0)
a < 6ε |A| < |A| /2, equivalently in the case

where |Bd| ⩾ |B| /2 and |Ad| ⩾ |A| /2. Therefore if Fspan (F) ⊂ Cd then we have |C| ⩾ |B| /2. This
observation will be useful later in the proof.

If the set Ad ∪ Bd ∪ Cd is a (c, δ)-linear EK configuration (as defined in Definition 3.3), then
by Proposition 3.4 we can find a basis of Ad ∪ Bd ∪ Cd of size at most c + cek · δ−1, and we are
done. Suppose they do not form such a configuration. In particular, there are at least c forms
in Fd with fractional Fspan (F) smaller than δ. By the pigeonhole principle, there are at least
c/3 = Π1(d) + Π2(d) + 1 such forms within the same set. We now do a case analysis.

Case |C| ⩽ |B| /2: The key observation in this case is that none of the Fspan (F) are subsets of Cd.
We analyse the subcase when there are c/3 forms in Cd with Fspan (Ci) ⊂ Ad having fractional
size less than δ. The other subcases have the exact same proof (with the roles of A,B swapped
if |Ad| ⩽ |Bd|). Suppose forms C1, . . . ,Cc/3 ∈ Cd have fractional size less than δ, and suppose
Fspan (Ci) ⊂ Ad. Let Y := AH(0,C1, . . . ,Cc/3). If there is some A ∈ Ad such that (Ci,A) is prime,
then A ∈ Fspan (Ci). Therefore each Ci is prime with at most δ |Ad| elements of Ad. By a union
bound, there are are at most (c/3)δ |Ad| ⩽ 4ε |A| elements in Ad that are prime with some element
among C1, . . . ,Cc/3. The remaining (1 − 10ε) |A| elements of A are either absolutely reducible over
Y or in the algebra. Therefore, we haveMY

a ⩾ (1 − 10ε) |A| ⩾ 6ε |A|. Now we can apply Lemma 6.6
starting with Y and the resulting space V is such that one ofmV

a ,mV
b ,mV

c is zero.

Case |C| ⩾ |B| /2: In this case, it is possible that some forms F ∈ Fd are such that Fspan (F) ⊂ Cd. If
we are in this case and we haveM(0)

c ⩾ 6ε |C| then we can Lemma 6.6 starting with 0 and we are
done. Therefore we have to deal with the subcase whenM(0)

c ⩽ 6ε |C|.
If there are c/3 forms F1, . . . , Fc/3 all in Ad or Bd with Fspan (F) ⊂ Cd and fractional size less

than δ, then we can set Y := AH(0, F1, . . . , Fc/3), and we have MY
c ⩾ (1 − 10ε) |C| ⩾ 6ε |C|. Therefore

we can invoke Lemma 6.6. In the other cases, for example if the c/3 forms are in Cd, then the
analysis from the previous case applies. Therefore, we have V such that one ofmV

a ,mV
b ,mV

c is zero.
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Now that we have the space V , we apply the process of Lemma 6.7 to obtainW. The fact that
this entire process is a (k, t) process for the claimed k, t follows simply by adding up the number of
iterations in the intermediate processes, and taking a max for the number of forms added at each
step of the intermediate processes (for incomparable terms we use the sum to bound the max). The
claimed bounds on the strength and dimension ofW follow from Lemma 4.15 and the observation
that since U is H(µ,k, t)-strong, the 0 vector space in R is H(µ,k, t)-lifted strong.

6.2 Putting it all together

We can now prove our main theorem for EK-configurations, which we restate here for convenience.

Theorem 1.7. For any two positive integers d, e such that e ⩾ 2 and d ⩽ e , there exist ascending functions
Λd,e : Ne → Ne and λd,e : N → N, both independent of K and N, such that the following holds.

Let K be an algebraically closed field of characteristic 0 and S := K[x1, · · · , xN]. Let U ⊂ S⩽e be a
Λd,e-strong graded vector space and R = S/(U). If (A,B,C) is a (d, z,R)-EK configuration in R for some
z ∈ S1, then we have

dim(spanK {A ∪B ∪ C}) ⩽ λd,e(dim(U)).

i.e. the dimension of the K-linear span of A,B,C is upper bounded by a function of d, e, δ and dim(U),
which is independent of the field K, the number of variables N and the cardinality of A,B,C.

Proof. For each fixed e, we prove the result by induction on d. Therefore, for the rest of this proof
we fix e. Fix µ : Ne → Ne such that µi(δ) = A(η, i) + 3 ∥δ∥1, where A is the function defined in
[AH20, Theorem A]. We will define the functions Λd,e and λd,e inductively, and simultaneously
prove that they have the claimed properties.

The base case is when d = 1. Define Λ1,e := h2µ ◦ t2. If U is Λ1,e-strong for this choice, then
any two linear forms in R that are non associate form a prime ideal by [OS24, Proposition 5.10].
In particular, for any A ∈ A,B ∈ B the ideal (A,B) is prime, and rad (A,B) = (A,B). The second
condition for (1, z,R)-EK configurations reduces to the condition that the linear span ofA,B contains
some element in C ∪ {z}. The third and fourth conditions reduce to similar symmetric statements.
This shows that the set F is a (1, 1)-partial linear EK configuration, where the error subset G is the
singleton {z}, and the partitions A,B,C witness the required partition in the definition of (1, 1)-
partial linear EK configurations. Therefore we can bound the dimension of F by λ1,e := 1 + cek.
This completes the base case.

Inductively, suppose we have proved the theorem for d − 1, and in particular suppose the
functionsΛd−1,e, λd−1,e are defined. Let c := 3(Π1(d)+Π2(d)+1) and δ := 8·ε·(Π1(d)+Π2(d)+1)−1.
Let k := 6 · d · (Π1(d) + Π2(d) + 1)3 · ε−1 + c + cek · δ−1 · log δ−1 and t := 8 · d · ε−1 + 3. Set
Λd,e := H(Λd−1,e,k, t).

Suppose U is Λd,e-strong, and A,B,C is an (d,R, z)-EK configuration. By Lemma 6.8, there
exists a vector space W ⊂ R that is Λd−1,e-lifted strong such that every degree d form in F is either
in the ideal generated byW, or absolutely reducible with respect toW. For a general choice of α,
consider the graded quotient R [y] → R [y] /Iα where Iα is the ideal is the ideal corresponding toW
and α in R [y]. By Proposition 5.14, the image of the configuration A,B,C is itself an (d,y,R [y] /Iα)-
EK configuration. Further, since every degree d form in F is either in the ideal generated by W,
or absolutely reducible with respect toW, we can deduce by Proposition 5.5 that the image is in
fact a (d− 1,y,R [y] /Iα)-EK configuration. Note that R [y] /Iα = S [y] /U+ Iα. Further, sinceW is
Λd−1,e-lifted strong, we can deduce that U + Iα is generated by a Λd−1,e-strong vector space of
dimension at most dimU+dimW. We can apply the inductive hypothesis to deduce that the image
of the configuration under the graded quotient has dimension at most λd−1,e(dimW + dimU).
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By Proposition 5.7 we can deduce that the dimension of the original configuration is bounded by
λd−1,e(dimW+dimU) · (1+d)3 dimW+4 · edimU. We also have dimW ⩽

∑d
i=1Di(Λd−1,e,k, t, δU).

Therefore, if we set

λd,e(u) := max
δ∈Ne

∥δ∥1=u

λd−1,e

(
d∑

i=1

Di(Λd−1,e,k, t, δ) + u

)
· (1 + d)3

∑d
i=1 Di(Λd−1,e,k,t,δ)+4 · eu,

then we are done.

A straightforward corollary is our main theorem on EK-configurations.

Theorem 1.4 (Rank bound for EK-configurations). There exists a function λ : N → N such that for any
d-Edelstein–Kelly configuration (A,B,C) over a field K of characteristic 0, we have

dim(spanK {A ∪B ∪ C}) ⩽ λ(d).

Proof. The vector space (0) is µ-strong for any function µ. Therefore we can invoke Theorem 1.7
with U = (0), and it suffices to pick λ(d) := λd,d(0).

7 Rank bounds and PIT for depth four identities

We start this section by formally establishing the relationship between EK-configurations and
Σ3ΠΣΠd circuits. In particular, we show how to define an EK configuration from a Σ3ΠΣΠd circuit,
and how the ranks of the two objects are related. Our approach here is to create a configuration
by collecting together all irreducible factors of the polynomials computed at each gate, and then
homogenising them.

Definition 7.1 (Configuration corresponding to Σ3ΠΣΠd circuits.). Given a Σ3ΠΣΠd circuit T =∑3
i=1

∏
j Pij, we define a configuration of forms as follows. Let A ′ be the set of irreducible factors

of the polynomials
{
P1j

}
j
. Define A to be the set of forms obtained by homogenising the forms in

A ′, where we homogenise using a new variable z. If A contains a subset of forms that are pairwise
associate, then we discard all except one form from this subset from A, so the final set A does not
have any pair of forms that are associate to each other. Similarly, the sets B,C are defined using the
polynomials

{
P2j

}
j

and
{
P3j

}
j

respectively.
The sets A,B,C consist of irreducible homogeneous forms of degree at most d from the ring

S [z]. Further, neither of the three sets contains the form z.

Lemma 7.2. Suppose T =
∑3

i=1
∏

j Pij =
∑3

i=1 Ti is a simple minimal circuit that computes 0. The sets
A,B,C as defined in Definition 7.1 are a (d, z,S [z])-EK configuration. Further, rank T ⩽ λd where λ is the
rank of the EK configuration.

Proof. Note that T continues to compute zero, and continues to be simple and minimal when we
consider it as a polynomial in S [z]. For a circuit computing zero with top fan-in three, minimality
is equivalent to the pairwise linear independence of T1, T2, T3. In particular, none of T1 + T2, T2 +
T3, T1 + T3 are zero. This will be used implicitly throughout the rest of the argument.

By construction, the sets A,B,C each consist of non-associate forms. Suppose a form A ∈ A and
a form B ∈ B are associate. Suppose A,B are obtained by homogenising A ′,B ′ respectively. Since
A,B are associate, the polynomials A ′,B ′ are scalar multiples of each other. Since A ′,B ′ are factors
of T1, T2 respectively, and since T = 0, it must be that A ′ is also a factor of T3. This implies that
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A ′|gcd (T1, T2, T3), contradicting simplicity. Therefore A and B are disjoint, and the union A ∪ B

consists of non-associate forms. A symmetric argument with the other pairs of sets shows that
A,B,C are pairwise disjoint, and that the union consists of non-associate forms. Since none of these
sets contain z, the union {z} ∪A ∪B ∪ C consists of pairwise non-associate forms. This shows the
first condition.

Now suppose A ∈ A,B ∈ B are forms that are obtained by homogenising A ′,B ′ respectively.
We have T3 ∈ (A ′,B ′) ⊂ rad (A ′,B ′). Let C ′ be the set of irreducible factors of

{
P3j

}
j
, we have∏

C ′∈C ′ C ′ ∈ rad (T3) ⊂ rad (A ′,B ′). Upon homogenisation, we obtain
∏

C∈CC ∈ rad (zA, zB) ⊂
rad (A,B). Therefore z ·

∏
C∈CC ∈ rad (A,B). This shows that the second condition for the

configuration to be an EK configuration holds, and by symmetric arguments so do the third and
fourth condition.

We now show the final statement. The homogenisation of Pij is a polynomial of degree at most
d in a basis for the EK configuration. Therefore, these homogenisations span a vector space of
dimension at most λd. Picking a basis and setting z = 1 gives a basis for the forms Pij.

Our results on rank bounds for Σ3ΠΣΠd circuits and deterministic PIT algorithm follows easily
from our bounds on EK-configuration. We restate the corollaries for convenience.

Corollary 1.5. There is a function λ : N → N such that for any simple and minimal Σ3ΠΣΠd-identity Φ
over a field K of characteristic 0, we have rankΦ ⩽ λ(d).

Proof. By Definition 7.1 we can define an EK configuration from the circuit Φ. By Theorem 1.4,
the rank of the configuration is bounded by λ(d) for the function λ defined in the theorem. By
Lemma 7.2, the rank of the circuit is bounded by ρ(d) := λ(d)d.

Corollary 1.6. There is a deterministic polynomial-time algorithm for identity testing of Σ3ΠΣΠd-circuits.

Proof. By Corollary 1.5, simple minimal Σ3ΠΣΠd identities have rank bounded by ρ(d). Therefore
by [BMS13, Theorem 2], there is an algorithm for identity testing of such circuits that runs in time
(dsρ(d)n)O(d

2ρ(d)), where s is the size of the circuit.

8 Conclusion

We prove rank bounds and therefore give the first polynomial time identity testing algorithm for
the class of Σ3ΠΣΠd circuits. We do so by showing that higher degree generalisations of Edelstein-
Kelley configurations have bounded rank. Our work builds upon the framework introduced in
[OS24] and refined in [GOS25].

The main open problem left by our work is to show rank bounds for ΣkΠΣΠd circuits, with
k > 3. This is the main conjecture in the work of [Gup14] and [BMS13] in the bounded bottom fanin
regime. The main problem in this more general settings is that in such circuits, the same form can
occur in more than one gate, even if the circuit is simple and minimal. This increases the difficulty
of the combinatorial steps in our proof.
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