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Abstract
In this paper, we initiate the study of deterministic PIT for Σ[k]ΠΣΠ[δ] circuits over fields of

any characteristic, where k and δ are bounded. Our main result is a deterministic polynomial-
time black-box PIT algorithm for Σ[3]ΠΣΠ[δ] circuits, under the additional condition that one
of the summands at the top Σ gate is squarefree.

Our techniques are purely algebro-geometric: they do not rely on Sylvester–Gallai-type
theorems, and our PIT result holds over arbitrary fields.

The core of our proof is based on the normalization of algebraic varieties. Specifically, we
carry out the analysis in the integral closure of a coordinate ring, which enjoys better algebraic
properties than the original ring.

1 Introduction
Polynomial Identity Testing (PIT) is the fundamental problem of deciding whether a given mul-
tivariate algebraic circuit computes the identically zero polynomial. Equivalently, it asks whether
two arithmetic circuits compute the same polynomial, by checking whether their difference is iden-
tically zero. Despite its simple formulation, PIT captures a striking randomized vs. deterministic
dichotomy in complexity theory. On the one hand, it admits an efficient randomized algorithm: by
the Schwartz–Zippel Lemma [Sch80, Zip79], evaluating a degree-d polynomial at a random point
(or tuple of points) over a sufficiently large field yields a correct identity test with high probability.
This leads to a fast Monte Carlo algorithm that treats the circuit as a black box. On the other
hand, no efficient deterministic algorithm is known, even when the circuit’s structure is fully ac-
cessible. In complexity-theoretic terms, PIT lies in the class coRP, but whether it can be solved
in P remains a major open question. Closing this gap is widely regarded as a central challenge in
theoretical computer science. Indeed, PIT is often viewed as the algebraic analogue of the classic
P vs. BPP (or P vs. RP) question.

The importance of PIT lies both in its algorithmic applications and its deep connections to
complexity theory. It has been used in a wide range of settings, such as primality testing [AKS04],
polynomial factoring [KSS14, BSV20, KRS24, DST24], and perfect matching [Lov79, MVV87,
CRS95, FGT21, ST17]. More fundamentally, PIT plays a central role in the hardness vs. random-
ness paradigm, and its derandomization is known to imply long-sought arithmetic circuit lower
bounds [HS80, KI04].

Over the past few decades, there have been numerous results on deterministic PIT for various
restricted models, including sparse polynomials, depth-3 circuits, low-depth circuits, and arithmetic
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branching programs, among others. See, for example, [LST24, AF22] for recent breakthroughs,
including subexponential-time deterministic PIT algorithms for low-depth circuits over fields of
characteristic zero or large characteristic. For surveys of earlier developments, see [Sax09, Sax14,
SY10]. Nonetheless, despite decades of significant progress, a general polynomial-time deterministic
PIT algorithm remains elusive. As such, PIT continues to serve as a central testing ground for our
understanding of algebraic structure, pseudorandomness, and computational hardness.

Depth-4 PIT. A major breakthrough by Agrawal and Vinay [AV08] revealed that PIT for
depth-4 circuits essentially captures the full complexity of general PIT. Roughly speaking, they
showed that any arithmetic circuit of subexponential size can be transformed into a depth-4 circuit
of subexponential size. Thus, proving lower bounds for the latter would imply lower bounds for the
former. Combined with hardness-vs-randomness connections [NW94, KI04], they further showed
that a complete derandomization of depth-4 PIT—even for circuits with slightly unbounded top fan-
in and O(logn) bottom fan-in—would yield a quasi-polynomial-time deterministic PIT algorithm
for general circuits. Notably, no analogous reduction is known in the Boolean setting.

This equivalence was unexpected: it elevated depth-4 circuits from a technical intermediate to
a canonical class encapsulating the full difficulty of PIT. As a result, depth-4 PIT has become a
central focus in the broader derandomization program.

Despite this equivalence, the expressive power of general depth-4 circuits makes deterministic
PIT for them highly challenging. This has motivated a refined line of work focused on syntactic
subclasses, notably Σ[k]ΠΣΠ[δ] circuits—depth-4 circuits in which the top fan-in is at most k, and
the bottom multiplication gates have fan-in at most δ, where k and δ are bounded. The study
of deterministic PIT for these circuits has led to the development of new techniques grounded in
Sylvester–Gallai-type arguments and tools from algebraic geometry.

1.1 Previous Work

Sylvester–Gallai-based approach. A Σ[k]ΠΣΠ[δ] circuit consists of a top Σ gate of fan-in at
most k, followed by alternating layers of unbounded Π, Σ, and Π gates, where the bottom Π
gates have fan-in at most δ. This model naturally generalizes bounded top fan-in depth-3 circuits
(Σ[k]ΠΣ), for which efficient deterministic PIT algorithms are known. Over fields of character-
istic zero, Sylvester–Gallai (SG)-type theorems [EK66, BM90] from combinatorial geometry have
been used to establish constant-rank bounds on the linear forms in Σ[k]ΠΣ circuits, leading to
deterministic polynomial-time black-box PIT algorithms [DS07, KS09, SS13].

Gupta [Gup14] conjectured a nonlinear Sylvester–Gallai-type statement which, if true, would
yield deterministic polynomial-time black-box PIT algorithms for Σ[k]ΠΣΠ[δ] circuits with bounded
k and δ over fields of characteristic zero. Motivated by this conjecture, Shpilka proved an SG-type
theorem for quadratic polynomials, initiating a substantial line of work [Shp20, PS22, PS21, GOS22,
OS22, GOPS23, OS24, GOS25c] aimed at fully resolving the conjecture.

Notably, Peleg and Shpilka [PS21], building on earlier work [Shp20, PS22], proved a quadratic
SG-type theorem that yields a deterministic polynomial-time black-box PIT algorithm for Σ[3]ΠΣΠ[2]

circuits. Subsequent works [OS22, GOPS23, OS24, GOS25c] extended these results and introduced
new techniques, including connections to the Stillman uniformity phenomenon and applications of
the Cohen–Macaulay property from commutative algebra.

However, SG-based methods remain largely confined to characteristic zero. Kayal and Sax-
ena [KS07] showed that the constant-rank bounds implied by SG-type arguments do not hold in
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positive characteristic, even for the simpler Σ[k]ΠΣ model.

Other work. Dutta, Dwivedi, and Saxena [DDS21] gave a deterministic quasipolynomial-time
black-box PIT algorithm for Σ[k]ΠΣΠ[δ] circuits. Due to their use of logarithmic derivatives, the
result holds only when the characteristic of the base field is zero or sufficiently large. Their ap-
proach reduces the problem to black-box PIT for read-once oblivious arithmetic branching programs
(ROABPs). However, obtaining a deterministic polynomial-time black-box PIT algorithm for this
class remains open despite extensive effort.

We also mention the recent breakthrough of superpolynomial lower bounds for low-depth circuits
by Limaye, Srinivasan, and Tavenas [LST24]. This result, together with the earlier work of Chou,
Kumar, and Solomon [CKS18] or the work of Andrews and Forbes [AF22], yields subexponential-
time black-box PIT algorithms for low-depth circuits, including Σ[k]ΠΣΠ[δ] circuits. These algo-
rithms also rely on properties that only hold when the characteristic is zero or large. Recently,
Forbes [For24] extended the superpolynomial lower bound for low-depth circuits to positive charac-
teristics. However, whether the PIT algorithms themselves can be extended to this setting remains
an open question [For24].

In summary, all of the results and approaches mentioned above assume that the characteristic of
the base field is zero or sufficiently large. This naturally raises the following question: Is it possible
to design a nontrivial, or even polynomial-time, deterministic PIT algorithm for Σ[k]ΠΣΠ[δ] circuits
over arbitrary fields? We believe the answer is yes. In this work, we make progress toward answering
this question affirmatively.

As a reality check, any such result must first address the simpler case of Σ[k]ΠΣ circuits.
Deterministic polynomial-time algorithms for this class are indeed known in positive characteristics:
they were first obtained by Kayal and Saxena in the white-box setting [KS07], and later by Saxena
and Seshadhri in the black-box setting [SS12]. Notably, these results do not rely on SG-type
theorems or other arguments that require assumptions on the characteristic of the base field. Our
work is inspired by these approaches and seeks to extend them to the depth-4 setting.

Concurrent work. In a recent exciting and independent paper [GOS25b], Garg, Oliveira, and
Sengupta gave a deterministic polynomial-time black-box PIT algorithm for Σ[3]ΠΣΠ[δ] circuits over
fields of characteristic zero. Their work and ours were developed independently and use different
techniques. The release of the two papers was coordinated.

1.2 Our Results

In this paper, we initiate the study of deterministic PIT for Σ[k]ΠΣΠ[δ] circuits over fields of any
characteristic. Our main result is a deterministic polynomial-time black-box PIT algorithm for
Σ[3]ΠΣΠ[δ] circuits under the condition that one of the summands at the top Σ gate is squarefree.

Our techniques are purely algebro-geometric. Notably, the proof does not rely on Sylvester–
Gallai-type theorems, and the result remains valid even over fields of small positive characteristic.

We begin by stating the homogeneous version of our result.

Theorem 1.1 (Main theorem, homogeneous version). Let Cn,d,k,δ,F be the set of polynomials F ∈
F[X] = F[X1, . . . , Xn] over a field F satisfying the following conditions:

(1) F can be expressed as a sum F =
∑k0−1

i=0 Fi, where k0 ≤ k, Fi =
∏mi

j=1 fi,j for i ∈ {0, 1, . . . , k0−
1}, and each fi,j ∈ F[X] is a nonzero homogeneous polynomial of degree at most δ.
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(2) deg(Fi) = d0 for some d0 ≤ d and all i ∈ {0, 1, . . . , k0 − 1}.

(3) There exists i ∈ {0, 1, . . . , k0−1} such that Fi is squarefree, meaning that the irreducible factors
of Fi over F are distinct.

Then there exists an explicit (nd)Oδ(1)-sized hitting set H ⊆ Fn for Cn,d,3,δ,F. Equivalently, there
exists a deterministic black-box PIT algorithm for Cn,d,3,δ,F that makes at most (nd)Oδ(1) evaluation
queries.

The above homogeneous result easily extends to an analogous statement for inhomogeneous
polynomials. We now explain how this extension works.

Let F =
∑k0−1

i=0 Fi ∈ F[X1, . . . , Xn], where F0, . . . , Fk0−1 are nonzero and possibly inhomoge-
neous polynomials. Define the homogenization of F with respect to F0, . . . , Fk0 as

H(F, F0, . . . , Fk0−1) :=
k0−1∑
i=0

Fi(X1/X0, . . . , Xn/X0)Xd0
0 , where d0 = max

0≤i≤k0−1
(deg(Fi)),

which is a homogeneous polynomial living in F[X0, X1, . . . , Xn].
We now state the inhomogeneous version of our result.

Corollary 1.2 (Main theorem, inhomogeneous version). Let C∗
n,d,k,δ,F be the set of polynomials

F ∈ F[X] = F[X1, . . . , Xn] over a field F that can be written as a sum F =
∑k0−1

i=0 Fi for some
k0 ≤ k such that H(F, F0, . . . , Fk0−1) ∈ Cn,d,k,δ,F. This includes all those F =

∑k0−1
i=0 Fi with k0 ≤ k

for which the following conditions hold:

(1) Fi =
∏mi

j=1 fi,j for i ∈ {0, 1, . . . , k0 − 1}, where each fi,j ∈ F[X] is a nonzero polynomial of
degree at most δ.

(2) d0 := max0≤i≤k0−1(deg(Fi)) is at most d.

(3) Fi is squarefree for some i ∈ {0, 1, . . . , k0 − 1} satisfying deg(Fi) = d0, or more generally,
satisfying deg(Fi) ≥ d0 − 1.

And there exists an explicit (nd)Oδ(1)-sized hitting set H ⊆ Fn for C∗
n,d,3,δ,F. Equivalently, there

exists a deterministic black-box PIT algorithm for C∗
n,d,3,δ,F that makes at most (nd)Oδ(1) evaluation

queries.

Proof. Consider i ∈ {0, 1, . . . , k0 − 1}. Note that

Fi(X1/X0, . . . , Xn/X0)Xd0
0 =

mi∏
j=1

(
fi,j(X1/X0, . . . , Xn/X0)Xdeg(fi,j)

0

)Xd0−deg(Fi)
0 .

Here, each factor fi,j(X1/X0, . . . , Xn/X0)Xdeg(fi,j)
0 is not divisible by X0. Therefore, if Fi is square-

free and deg(Fi) ≥ d0 − 1, then Fi(X1/X0, . . . , Xn/X0)Xd0
0 is also squarefree. So if F =

∑k0−1
i=0 Fi

satisfies Item 3 in Corollary 1.2, then H(F, F0, . . . , Fk0−1) satisfies Item 3 in Theorem 1.1. It is
straightforward to verify that Item 1 and Item 2 in Corollary 1.2 imply the corresponding items in
Theorem 1.1 as well.
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It remains to construct an explicit (nd)Oδ(1)-sized hitting set H∗ ⊆ Fn for C∗
n,d,3,δ,F. First, by

Theorem 1.1, there exists an explicit (nd)Oδ(1)-sized hitting set H ⊆ Fn+1 for Cn+1,d,3,δ,F.
Let us first assume that a0 ̸= 0 for all (a0, . . . , an) ∈ H. Construct the set

H∗ = {(a1/a0, . . . , an/a0) : (a0, . . . , an) ∈ H}.

Consider a nonzero polynomial F =
∑k0−1

i=0 Fi ∈ C∗
n,d,3,δ,F. Then H(F, F0, . . . , Fk0−1) is a nonzero

polynomial in Cn,d,3,δ,F. Choose a = (a0, . . . , an) ∈ H such that H(F, F0, . . . , Fk0−1)(a) ̸= 0. By
definition,

H(F, F0, . . . , Fk0−1)(a) =
k0−1∑
i=0

Fi(a1/a0, . . . , an/a0)ad0
0 = F (a1/a0, . . . , an/a0)ad0

0 .

Therefore, F (a1/a0, . . . , an/a0) = H(F, F0, . . . , Fk0−1)(a)a−d0
0 ̸= 0, where (a1/a0, . . . , an/a0) ∈ H∗

by construction. So H∗ is a hitting set for C∗
n,d,3,δ,F, whose size is at most |H| = (nd)Oδ(1).

Finally, we remove the assumption that a0 ̸= 0 for all (a0, . . . , an) ∈ H. Observe that the
class Cn+1,d,3,δ,F is closed under invertible linear transformations of the coordinates. Therefore, the
hitting set property for Cn+1,d,3,δ,F is preserved under such transformations as well.

We may assume that 0 = (0, . . . , 0) /∈ H, since any non-constant homogeneous polynomial
always vanishes at 0. Hence, every point in H has at least one nonzero coordinate.

We can deterministically and efficiently find an invertible linear transformation ϕ : Fn+1 → Fn+1

such that every point (a0, . . . , an) ∈ ϕ(H) satisfies a0 ̸= 0. We then replaceH by ϕ(H) and construct
H∗ as before.

We remark that removing Item 3 from Corollary 1.2 (the squarefreeness condition) recovers the
class Σ[3]ΠΣΠ[δ].

Previously, no polynomial-time deterministic PIT algorithm was known for the classes of poly-
nomials described in Theorem 1.1 and Corollary 1.2, and no subexponential-time algorithm was
known over fields of small positive characteristic.

1.3 Proof Overview

To explain our ideas, we begin with a solved case: consider a nonzero polynomial F ∈ Σ[2]ΠΣΠ[δ],
i.e., a depth-4 circuit with top fan-in two. In this case, we can write F = F1 + F2 ̸= 0, where F1
and F2 are products of nonzero polynomials, each of degree at most δ.

Suppose
F1 = g1 · · · gr and F2 = h1 · · ·hs (1)

are factorizations of F1 and F2 into irreducible polynomials, respectively. If F2 = cF1 for some
c ∈ F×, then F = (c + 1)F1, which is again a product of degree-(≤ δ) nonzero polynomials. PIT
for such polynomials is straightforward. So assume this is not the case. Then the factorizations in
(1) do not “match.” That is, there does not exist a bijection σ : [r]→ [s] such that gi and hσ(i) are
scalar multiples of each other for all i ∈ [r].

It is natural to choose an affine line ℓ such that restricting to ℓ reduces the ambient dimension
while preserving the non-matching structure of the factorizations. In other words, we want F1|ℓ
and F2|ℓ to still have non-matching factorizations. This ensures that (F1 + F2)|ℓ ̸= 0, reducing the
problem to PIT for univariate polynomials, which is easy.
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To ensure the factorizations remain non-matching after restriction, it suffices to guarantee that
any two coprime polynomials g, h ∈ {g1, . . . , gr, h1, . . . , hs} remain coprime after restricting to ℓ, i.e.,
they do not share a common root on the line. Geometrically, this amounts to ensuring that ℓ avoids
the codimension-two variety V (g, h). In [Guo24], it is shown how to construct a polynomial-sized
set of lines such that most lines avoid all such varieties. This effectively (re)solves the problem.

We now move to the class Cn,d,3,δ,F. Let F be a nonzero polynomial in this class. Then we may
write

F = F0 + F1 + F2,

where F0, F1, F2 are homogeneous of the same degree and are products of nonzero homogeneous
polynomials, each of degree at most δ. Furthermore, one of the summands, say F0, is squarefree.

In the study of Boolean circuits, one common technique is applying a restriction (i.e. partial
assignment) to simplify the circuit. An analogous idea works here: we restrict F to the zero locus
of an irreducible factor θ of F0 to eliminate F0. Algebraically, this corresponds to working in the
quotient ring F[X1, . . . , Xn]/(θ), where each Fi is replaced by F i := Fi mod θ. Since θ divides F0,
we have F 0 = 0. Thus, we have effectively reduced to the k = 2 case, though now over the quotient
ring.

Why can’t we directly reuse the k = 2 argument? The issue is that F[X1, . . . , Xn]/(θ) is not,
in general, a unique factorization domain (UFD), so the factorizations of F 1 and F 2 are not well-
defined.

But is unique factorization truly necessary? We argue that it is not: even in the absence of
unique factorization, working in rings with the weaker property of normality still enables us to
obtain meaningful results.

Normality. Let A be an integral domain, whose field of fractions is denoted by Frac(A). We say
A is integrally closed if for any monic polynomial P (X) ∈ A[X], all roots of P (X) in Frac(A) are
in A. An irreducible affine variety is said to be normal if its coordinate ring is integrally closed.

It is not easy to give a purely geometric definition of normality. However, its usefulness lies
in the fact that, if V is a normal variety with coordinate ring A, then for each codimension-one
irreducible subvariety Z ⊆ V , there is a well-behaved “order function” ordZ : Frac(A)→ Z ∪ {∞}
indicating the order of zeros or poles of every g ∈ Frac(A) along Z. For example, for A = F[X,Y ]
and g = (X + Y )2/X3 ∈ Frac(A), we have ordV (X+Y )(g) = 2 and ordV (X)(g) = −3.

If A is normal, then for g ∈ A, one can define a “generalized factorization” of g, where the
“irreducible factors” are not polynomials, but codimension-one irreducible subvarieties Z of V , each
with multiplicity ordZ(g). (This is called the Weil divisor associated with g, written additively as
div(g) :=

∑
Z ordZ(g) · Z.)

With this generalized notion of factorization, one can carry out an argument analogous to (and
in fact generalizing) the one for the k = 2 case, assuming the variety defined by the factor θ of F0
is normal.

Thus, normality may be viewed as a useful weakening of unique factorization. In general,
however, the variety in question may even fail to be normal. To address this, we apply a standard
technique from algebraic geometry known as normalization.

Normalization. Conceptually, the normalization of a variety V produces a normal variety Ṽ
that best approximates V among all normal varieties. Algebraically, if V is affine, normalization
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corresponds to taking the integral closure F̃[V ] of the coordinate ring F[V ] in its field of fractions.
Our key idea is to work within the “nicer” ring F̃[V ] in place of F[V ].

The strategy of enlarging a ring to recover a weak form of unique factorization has deep roots
in number theory. It began with Kummer’s introduction of ideal numbers to address the failure
of unique factorization in cyclotomic rings, and was later formalized by Dedekind through the
theory of ideals, recovering unique factorization at the level of ideal decomposition in number rings.
In modern terms, this philosophy is embodied in the process of normalization—passing to the
integral closure of a ring in its field of fractions—which yields an integrally closed ring that better
approximates a unique factorization domain.

As a concrete example, consider the plane curve C defined by Y 2−X2(X + 1) = 0 (see Fig. 1).
The rational function Z = Y/X satisfies the monic polynomial Z2 − (X + 1) on C, but is not
a regular function in F[C], meaning that it is not well-defined on the curve. Geometrically, this
reflects the fact that C has two branches at the point (0, 0), where the limits of Y/X approach 1
and −1, respectively. Introducing Z as a new coordinate function separates these branches. One
can show that X, Y , and Z generate an integrally closed ring in Frac(F[C]), and that their defining
relations are generated by Y 2 −X2(X + 1), XZ = Y , and Z2 − (X + 1). These equations define
the normalization C̃ ⊆ A3.

(0, 0)

(0, 0, 1)

(0, 0,−1)

X

Y

Z

C C̃

π

Figure 1: Normalization C̃ of the curve C defined by Y 2 −X2(X + 1) = 0. The map π : C̃ → C
sends (x, y, z) 7→ (x, y).

This example illustrates why normalization is useful for defining a generalized notion of factor-
ization. On the non-normal curve C, the singular point (0, 0) behaves like two overlapping points,
with functions like Y/X exhibiting distinct limiting behavior along each branch. After normaliza-
tion, these branches are separated into two points, p1 = (0, 0, 1) and p2 = (0, 0,−1), each admitting
a well-behaved order function ordpi(·).

A knowledgeable reader may recognize the above example as the resolution of singularities of
C. Indeed, the singular locus of a normal variety is known to have codimension at least two. For
curves, which have dimension one, normalization therefore coincides with resolution of singularities.

In higher dimensions, by contrast, resolution of singularities is highly complex in characteristic
zero [Hir64a, Hir64b], and remains an open problem in positive characteristic. Normalization, on
the other hand, is significantly more tractable. A classical theorem of Emmy Noether shows that
the integral closure of a coordinate ring F[V ] is finitely generated as a module over F[V ] (see,
e.g., [Eis95]).
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Constructive normalization has also been extensively studied; see [Sto68, Sei70, Sei75, Tra84,
dJ98]. In this paper, we only require normalization for curves, and we follow the framework of
Trager [Tra84] to perform this task.

That said, normalization is generally regarded as a computationally expensive problem, often
requiring tools such as Gröbner bases. In the context of Geometric Complexity Theory, a key
challenge is the non-normality of certain orbit closures related to the determinant and permanent,
a fact established by Kumar [Kum13]. In that setting, the potential utility of normalization remains
unclear due to its high complexity.

In our setting, however, this complexity is not a barrier. We apply a dimensionality reduction
technique that restricts the input to a carefully chosen constant-dimensional subspace (specifically,
a plane). Consequently, all relevant parameters become constant. As a result, even though normal-
ization may be expensive in general, its cost is constant for us and poses no obstacle to obtaining
deterministic polynomial-time PIT algorithms.

Dimensionality reduction. We reduce the dimension of the ambient space by restricting to a
constant-dimensional subspace (specifically, a plane) while preserving all the structural properties
required for our analysis. This naturally raises the question: How should one choose such a plane?

It is not hard to show that a randomly chosen plane will work with high probability. However,
using randomness would contradict the goal of this work: derandomization. Instead, we restrict
to a generic plane. That is, we treat the parameters defining the plane as indeterminates Y =
(Y1, . . . , Yℓ), where ℓ = Θ(n), and work over the function field F(Y) in place of the original base
field F. The analysis is carried out symbolically over this function field, and we eventually specialize
Y to a tuple a ∈ Fℓ.

This specialization step is constructive. We identify a small collection of polynomialsQ1, . . . , Qm

in the ring F[Y], each of bounded degree, such that any assignment Y← a satisfying Qi(a) ̸= 0 for
all i ensures that the chosen plane preserves the desired properties. Verifying such an assignment
reduces to testing whether each Qi is nonzero at a, which is a bounded-degree PIT problem and
can be solved deterministically in polynomial time [KS01].

Such generic-to-specific arguments are common in algebraic complexity. Notably, they ap-
pear in Kaltofen’s work on multivariate polynomial factorization [Kal95] (see also [KSS14]), and
in Sylvester–Gallai-based approaches to PIT for Σ[k]ΠΣΠ[δ] circuits, e.g., [Gup14]. The general
philosophy—prove that a generic geometric object satisfies a given property, and then deduce that
the property holds for a dense open set of specific instances—is also a standard principle in algebraic
geometry.

Carrying out this analysis introduces several technical challenges, which we address in this
paper. First, the function field F(Y) is not algebraically closed, so arguments must be written more
carefully and sometimes more abstractly. Second, we need to compute Gröbner bases over F(Y).
While degree bounds on the polynomials in a Gröbner basis are well-known [MM82, Dub90], we
additionally require bounds on the coefficient complexity. Specifically, we need to bound the degrees
of numerators and denominators of the rational functions in F(Y) that appear as coefficients. Since
such bounds are not readily available in the literature, we establish them ourselves. These bounds
may be of independent interest for other problems concerning algebraic pseudorandomness.

Third, although we may assume that F is a perfect field by passing to its algebraic closure, the
function field F(Y) may still be non-perfect in characteristic p > 0. In particular, field extensions
over F(Y) can be inseparable, complicating tasks such as computing radicals or primary decompo-
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sitions. To address this, we adjoin pe-th roots of the variables Y for sufficiently large e, thereby
passing to the extended function field F(Y1/pe) := F(Y 1/pe

1 , . . . , Y
1/pe

ℓ ), over which the relevant
extensions become separable.

Organization of this paper. We begin with preliminaries in Section 2. In Section 3, we develop
computational tools, with a focus on Gröbner bases. Section 4 is devoted to the normalization
of curves. Finally, in Section 5, we bring all components together to prove our main theorem
(Theorem 1.1).

2 Preliminaries
Denote by [n] the set {1, 2, . . . , n}. For a polynomial f and a monomial m, let coefff (m) denote
the coefficient of m in f . For polynomials f and g ̸= 0, we write g | f to indicate that g divides f .

It is well-known that designing deterministic black-box PIT algorithms is equivalent to con-
structing explicit hitting sets. We now define this notion formally.

Definition 2.1 (Hitting set). A finite collection H ⊆ Fn of points is said to be a hitting set
for a polynomial f ∈ F[X1, . . . , Xn] if either f = 0 or f(a) ̸= 0 for some a ∈ H. For a family
C ⊆ F[X1, . . . , Xn] of polynomials, we say H ⊆ Fn is a hitting set for C if it is a hitting set for
every f ∈ C.

Let ε ∈ [0, 1]. We say H ⊆ Fn is an ε-hitting set for f ∈ F[X1, . . . , Xn] if either f = 0 or
Pra∈H[f(a) ̸= 0] ≥ 1− ε. We say H is an ε-hitting set for C if it is an ε-hitting set for every f ∈ C.

We focus on constructing explicit hitting sets, although the stronger notion of ε-hitting sets will
also be used. Given a hitting set H, one can boost it to an ε-hitting set as follows: Interpolate a
degree-(|H| − 1) curve C that passes through all points in H, and then choose sufficiently many
points on C. It can be shown that the resulting set of points is an ε-hitting set.

2.1 Commutative Algebra

All rings are assumed to be commutative with unity. The algebraic closure of a field F is denoted
by F.

A matrix over a ring A is denoted by An×m, or more generally by AS×T , where S and T are
the index sets for rows and columns, respectively. We often use A[i, j] to denote the (i, j)-th entry
of A.

The ideal of a ring A generated by a set S ⊆ A is denoted ⟨S⟩. And the ideal of A generated
by f1, . . . , fk ∈ A is denoted ⟨f1, . . . , fk⟩.

Prime, maximal, and radical ideals. An ideal p of a ring A is a prime ideal if ab ∈ p =⇒ a ∈ p
or b ∈ p. Equivalently, p is prime if A/p is an integral domain.

An ideal p of A is a maximal ideal if it is maximal among all ideals properly contained in A.
Equivalently, p is maximal if A/p is a field. All maximal ideals are prime.

For an ideal p of A, the radical of A is the ideal √p := {a ∈ A : ak ∈ p for some k ≥ 1}. An
ideal p is radical if p = √p. Prime ideals and maximal ideals are both radical.
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Absolute irreducibility. A polynomial f ∈ F[X] is absolutely irreducible over F if it is irreducible
over the algebraic closure F of F. This is equivalent to f being irreducible over every algebraic
extension of F. By convention, the zero polynomial is not considered irreducible.

Separability. A polynomial f(X) ∈ F[X] is said to be separable over F if its roots are distinct in
the algebraic closure of F. This is equivalent to the statement that f(X) and its derivative f ′(X)
are coprime. An algebraic element over F is said to be separable over F if its minimal polynomial
over F is separable. The set of separable elements in an algebraic extension K/F form a subfield of
K containing F, called the separable closure of F in K. An algebraic extension K/F is separable if
the separable closure of F in K equals K. Otherwise, it is inseparable.

A field F is perfect if every irreducible polynomial over F is separable. Examples of perfect fields
include fields of characteristic zero, finite fields, and algebraically closed fields.

An irreducible polynomial can be inseparable over non-perfect fields, which must have positive
characteristics. We will need the following lemma to address this issue.

Lemma 2.2. Suppose F is a field of characteristic p > 0, and K/F is a finite extension. Let e ≥ 0
be the largest integer such that pe divides [K : F]. For i ≥ 0, let F(i) be the field {a1/pi : a ∈ F}.
Then for e′ ≥ e, every b ∈ K is separable over F(e′).

Proof. Let b ∈ K, and let f(X) be its minimal polynomial over F. Then there exists e0 ≤ e′ such
that over F(e0), we may write

f(X) = g(X)pe0
,

such that g ∈ F(e0)[X] has a monomial whose degree is not divisible by p. In particular, the
derivative g′ of g is nonzero. It suffices to show that b is separable over F(e0). Since b is a root of
g, and g′ ̸= 0, it remains only to show that g is irreducible over F(e0).

Assume, for contradiction, that g(X) = u(X)v(X) for some nonconstant u(X), v(X) ∈ F(e0)[X].
Then f factors over F as f(X) = U(X)V (X) where U(X) = u(X)pe0 and V (X) = v(X)pe0 ,
contradicting the irreducibility of f over F.

Localization. Localization is a construction in algebra that allows us to formally invert a chosen
set of elements in a ring, effectively turning them into units. For example, Q is a localization of Z,
where every nonzero integer has been made invertible. We now give the formal definition.

Definition 2.3 (Localization). Let M be a module over a ring A. Let S be a multiplicative closed
subset of A, i.e, it holds that 1 ∈ S and ab ∈ S for a, b ∈ S. Define S−1M to be the set of
representations of pairs (a, s) ∈M × S subject to the equivalence relation

(a, s) ≡ (b, t) ⇐⇒ (at− bs)u = 0 for some u ∈ S.

Write a/s or a
s for (a, s). Call S−1M the localization of M with respect to S.

S−1A is a ring equipped with addition (a/s) + (b/t) = (at + bs)/(st) and multiplication (a/s) ·
(b/t) = (ab)/(st). And S−1M is an S−1A-module equipped with addition (a/s) + (b/t) = (at +
bs)/(st) and scalar multiplication (a/s) · (b/t) = (ab)/(st).

Intuitively, S−1A is the ring obtained from A by making the elements in S invertible. Note
that if 0 ̸∈ S and A is an integral domain, the condition that (at − bs)u = 0 for some u ∈ S in
Definition 2.3 is equivalent to at− bs = 0 since A does not have a nonzero zero-divisor.

10



Definition 2.4. When S = {1, f, f2, . . . } for some f ∈ A, denote S−1M by Mf . When S = A \ p
for some prime ideal p of A, denote S−1M by Mp. When A is an integral domain and p is the zero
ideal of A, denote Ap by Frac(A), called the field of fractions of A.

We also have the following fact. See, e.g., [Mag] for a proof.

Fact 2.5. Let A be a ring and f ∈ A. Then Af is isomorphic to A[X]/ ⟨Xf − 1⟩ via the map that
sends a/f i to aXi + ⟨Xf − 1⟩ for a ∈ A and i ∈ N, with the inverse map sending X + ⟨Xf − 1⟩ to
1/f .

Local rings. A ring A is local if it has a unique maximal ideal m. For a ring A and a prime ideal
p of A, the ring Ap (see Definition 2.4) is a local ring with the unique maximal ideal pp.

The following statement is well-known.

Lemma 2.6 ([Mat89, Theorem 4.7]). Let A be an integral domain. Then

A =
⋂

prime ideal p⊆A

Ap =
⋂

maximal ideal m⊆A

Am,

where the intersections are taken within Frac(A).

Krull dimension. The (Krull) dimension of a ring A, denoted by dimA, is the length ℓ of the
longest chain of prime ideals p0 ⊆ p1 ⊆ · · · ⊆ pℓ of A.

If A is a finitely generated integral domain over a field K, then dimA equals the transcendence
degree of Frac(A) over K. Under the same assumption, dimA = dimAm holds for every maximal
ideal m of A [AM69, Corollary 11.27].

We say an ideal I of a ring A has dimension k if dim(A/I) = k.

Integrality and finiteness. Let A ⊆ B be commutative rings. We say b ∈ B is integral over
A if there exists a monic polynomial f(X) ∈ A[X] such that f(b) = 0. We say B is integral over
A if every b ∈ B is integral over A. The set of elements in B integral over A is called the integral
closure of A in B, and is a ring [AM69]. The integral closure of an integral domain A in its field of
fractions Frac(A) is simply called the integral closure of A, and denoted Ã.

Lemma 2.7 ([AM69, Corollary 5.4]). Suppose C is integral over B, and B is integral over A.
Then C is integral over A.

Corollary 2.8. Suppose A ⊆ B ⊆ C are commutative rings and B is integral over A. Then c ∈ C
is integral over A if and only if it is integral over B. In other words, the integral closure of A in C
equals the integral closure of B in C.

Proof. Suppose c is integral over A. Then as A ⊆ B, by definition, c is also integral over B.
To see the converse, let C∗ be the integral closure of B in C. Suppose c is integral over B, i.e.,

c ∈ C∗. As C∗ is integral over B and B is integral over A, by Lemma 2.7, C∗ is integral over A.
So c is integral over A.

A module or algebra M over a ring A is said to be finite over A if M is a finitely generated
A-module. Finiteness is closely related to integrality, as indicated by the following lemma.
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Lemma 2.9 ([AM69, Proposition 5.1 and Corollary 5.2]). A finitely generated algebra over a ring
A is a finite module over A iff it is integral over A.

We also include the following lemma.

Lemma 2.10 ([AM69, Proposition 5.13]). Let A be an integral domain. The following are equiv-
alent:

(1) A is integrally closed.

(2) Ap is integrally closed for every prime ideal p of A.

(3) Am is integrally closed for every maximal ideal m of A.

Regular local rings. Let A be a local ring with the maximal ideal m. Use dimk m/m
2 to denote

the dimension of m/m2 as a vector space over k = A/m. We say a local ring A is regular if its Krull
dimension dimA equals dimk m/m

2.

Discrete valuation rings. A discrete valuation on a field K is a mapping v : K× → Z ∪ {∞}
satisfying the conditions:

(1) v(xy) = v(x) + v(y),

(2) v(x+ y) ≥ min(v(x), v(y)), and

(3) v(x) =∞⇐⇒ x = 0.

for all x, y ∈ K. We say a discrete valuation v is normalized if v(K×) = Z.
Given a discrete valuation v : K× → Z∪ {∞}, the valuation ring of v is defined to be {x ∈ K :

v(x) ≥ 0}. An integral domain A is a discrete valuation ring if there is a discrete valuation v on
Frac(A) such that A is the valuation ring of v.

We include the following useful characterizations of discrete valuation rings.

Lemma 2.11 ([AM69, Proposition 9.2]). Let A be a Noetherian1 local domain of dimension one
with the maximal ideal m. Then the following are equivalent:

(1) A is a discrete valuation ring;

(2) A is integrally closed;

(3) A is a regular local ring;

(4) m is a principal ideal;

(5) There exists t ∈ A such that every nonzero ideal of A is of the form
〈
tk
〉

for some k ≥ 0.

We call such t a uniformizer. Given a uniformizer t ∈ A, every element r ∈ A can be written
as r = tku where u is invertible; the (normalized) valuation v on A is determined by v(tku) = k.

1A ring A is Noetherian if every ideal of A is finitely generated. All rings considered in this paper are Noetherian.

12



Valuation at a point. Let A be a (Noetherian) integrally closed domain of dimension one, not
necessarily local. Let m be a maximal ideal of A. By Lemma 2.10, the localization Am is an
integrally closed local domain of dimension one. So by Lemma 2.11, it is also a regular local ring
and a discrete valuation ring. We often denote the corresponding (normalized) discrete valuation
by ordm(·).

From a geometric point of view, the maximal ideal m corresponds to a point p, and ordm(f)
indicates the order of zero or pole of f at p. If ordm(f) ≥ 0, then ordm(f) is the order of zero of f
at p; otherwise, −ordm(f) is the order of the pole of f at p.

Base change. Let A be a ring. For an A-module M and an A-algebra B, their tensor product
M⊗AB over A is defined to be the A-module generated by the set of elements {a⊗b : a ∈M, b ∈ B}
subject to the A-bilinear relations a ⊗ b + a′ ⊗ b = (a + a′) ⊗ b, a ⊗ b + a ⊗ b′ = a ⊗ (b + b′), and
c(a⊗ b) = (ca)⊗ b = a⊗ (cb) for a, a′ ∈M , b, b′ ∈ B, and c ∈ A. The A-module M ⊗A B is also a
B-module. Furthermore, if M is an A-algebra, then M ⊗A B is a B-algebra.

Intuitively, M ⊗A B is obtained from M by changing the ring of scalars from A to B. For
example, if M is an A-algebra A[X1, . . . , Xn]/ ⟨r1, . . . , rm⟩ and A → B is a ring extension, then
M ⊗A B is simply B[X1, . . . , Xn]/ ⟨r1, . . . , rm⟩.

Noether normalization. The Noether normalization lemma is an important lemma in commu-
tative algebra. Roughly speaking, it states that a finitely generated algebra R over a field is not too
far from a polynomial ring, in the sense that R is a finite module over a subring that is isomorphic
to a polynomial ring.

Lemma 2.12 (Noether normalization lemma). Let K/F be a field extension. Let I be an ideal
of A = K[X1, . . . , Xn] such that the Krull dimension of A/I is k. Then for almost all2 c =
(c1,1, . . . , ck,n) ∈ Fkn, it holds that that:

(1) the elements a1, . . . , ak ∈ A/I defined by ai = (
∑n

j=1 ci,jXj) + I are algebraically independent
over K, and

(2) A/I is finite over K[a1, . . . , ak].

In pariticular, such a vector c exists if F is infinite.

See, e.g., [GVJZ23, Lemma 4.8] and its proof.

2.2 Algebraic Geometry

Let F be a field. We use An
F (or simply An) to denote the affine n-space over F, and Pn

F (or simply
Pn) to denote the projective n-space over F. Since F is not necessarily algebraically closed, affine
and projective spaces over F—as well as varieties defined over F within them—must be carefully
formalized, rather than viewed simply as sets of solutions. We refer the reader to [Mum88] and
[Vak24] for formal definitions of these objects.

An affine variety V over a field F is equipped with a ring F[V ], called the coordinate ring of V .
The elements of F[V ] are called regular functions on V . Intuitively, these are algebraic functions
that are well-defined on all of V . For example, the coordinate ring of An

F is simply F[X1, . . . , Xn].
2“Almost all” here means that there exists a nonzero polynomial Q ∈ F[X1,1, . . . , Xk,n] such that the claim holds

for all c ∈ Fkn satisfying Q(c) ̸= 0.
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The (closed) points of V correspond bijectively to the maximal ideals of F[V ]. For a point
p ∈ V , the set of regular functions vanishing at p is precisely the maximal ideal corresponding to p.

Any radical ideal I of F[X] = F[X1, . . . , Xn] defines an affine variety in An
F, which we denote by

V (I). The coordinate ring of V (I) is simply F[X]/I. A regular function f on An
F can be restricted

to the variety V (I), yielding the regular function f |V (I) := f + I ∈ F[X]/I on V (I).
Define V (S) := V (

√
⟨S⟩) for a set S and V (f1, . . . , fk) := V (

√
⟨f1, . . . , fk⟩) for f1, . . . , fk ∈ F[X].

Affine varieties of the form V (f) with a single polynomial f are called (affine) hypersurfaces.
A projective space Pn

F has n + 1 homogeneous coordinates X0, . . . , Xn. A projective variety in
Pn
F is defined by a set of homogeneous polynomials in F[X0, . . . , Xn]. If the variety is defined by a

single homogeneous polynomial, it is called a (projective) hypersurface.
The space Pn

F can be covered by n+1 standard affine open subsets U0, . . . , Un, where Ui is defined
as the complement of the projective hyperplane defined by Xi = 0, and each Ui is isomorphic to
An
F. The coordinate ring of Ui is F

[
X0
Xi
, . . . , Xi−1

Xi
, Xi+1

Xi
, . . . , Xn

Xi

]
. More generally, a projective variety

V ⊆ Pn
F can be covered by the affine varieties U0 ∩ V, . . . , Un ∩ V .

A rational function on Pn
F is an expression of the form F = P

Q , where P and Q are homogeneous
polynomials of the same degree in X0, . . . , Xn, with Q ̸= 0. Such a function can be restricted to
the affine chart Ui by substituting Xj 7→ Xj

Xi
for all j = 0, . . . , n, which yields a rational function

on Ui
∼= An

F.

Irreducibility. An (affine or projective) variety is said to be irreducible if it cannot be written
as the union of two proper closed subvarieties. Otherwise, it is reducible. Every variety V can
be uniquely expressed as a finite union of maximal irreducible subvarieties, called the irreducible
components of V .

Suppose V is an irreducible affine variety. Then F[V ] is an integral domain. In this case, the
field of fractions Frac(F[V ]) is called the function field of V , and is denoted by F(V ).

Given an irreducible projective variety V ⊆ Pn
F, we can restrict a rational function F = P

Q on Pn
F

to V , provided that Q does not vanish identically on V . In fact, such a restriction can be computed
locally on any nonempty open subset of V , such as V ∩ Ui for some i [Vak24, Exercise 5.2.I].

Let p ∈ V correspond to a maximal ideal m ⊂ F[V ]. A rational function f ∈ F(V ) is said to be
regular at p if f lies in the local ring F[V ]m. Intuitively, this means f is well-defined at (and near)
the point p.

Indeed, we can evaluate f ∈ F[V ]m at p via the natural quotient map

f 7→ f + mm ∈ κm := F[V ]m/mm
∼= F[V ]/m.

This value lies in the field κm, called the residue field of the point p (or of the ideal m). It is a finite
field extension of F.

Normality. An irreducible affine variety is said to be normal if its coordinate ring is an integrally
closed domain.3 An irreducible projective variety V ⊆ Pn

F is normal if each of the affine pieces
V ∩ U0, . . . , V ∩ Un is a normal affine variety.

3More generally, a (possibly reducible) affine variety is normal if its coordinate ring is a finite product of integrally
closed domains [Sta25, Tag 030C].
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Dimension. Let V be an (affine or projective) variety over an algebraically closed field F. The
dimension of V , denoted dimV , is the largest integer d such that there exists a chain of irreducible
closed subvarieties Z0 ⊊ Z1 ⊊ · · · ⊊ Zd ⊆ V , where each Zi is a proper irreducible subvariety of
Zi+1. In other words, the dimension of V is the length of the longest strictly increasing chain of
irreducible closed subsets in V .

If V is a variety over a field F that is not algebraically closed, its dimension is defined as
dimV := dimVF, where VF denotes the base change of V to the algebraic closure F of F.

In the case of an affine variety V ⊆ An
F, the dimension of V coincides with the Krull dimension

of its coordinate ring F[V ].
Varieties of dimension one are called curves.

Degree. Suppose V ⊆ An
F is an affine variety over an algebraically closed field F. The degree

of V , denoted deg(V ), is defined as the number of isolated points in the intersection of V with a
general affine linear subspace of codimension d, where d = dimV .

Now suppose V ⊆ Pn
F is a projective variety over an algebraically closed field F. The degree of

V is defined as the number of points in the intersection of V with a general linear subspace L ⊆ Pn
F

of codimension d, where d = dimV .
If F is not algebraically closed, we define deg(V ) := deg(VF), where VF denotes the base change

of V to the algebraic closure F.4
It can be shown that the degree of a point p (corresponding to a maximal ideal m) equals the

degree of its residue field extension, that is, [κm : F].

Bézout’s inequality. We need the following version of Bézout’s inequality.

Lemma 2.13 (Bézout’s inequality [HS80, Hei83]). Let V and V ′ be closed affine subvarieties of
An
F. Then deg(V ) ∩ deg(V ′) ≤ deg(V ) · deg(V ′).

The following statement follows from [BM93, Proposition 3.5].

Lemma 2.14. Let I = ⟨f1, . . . , fk⟩ be a zero-dimensional ideal of F[X1, . . . , Xn], and let d =
max(deg(f1), . . . ,deg(fk)). Then dimF(F[X]/I) ≤ dn. In particular, [κm : F] ≤ dn for any maximal
ideal m containing I.

3 Computational Tools
In this section, we develop various computational tools, with a focus on Gröbner bases, and establish
bounds of the form Os1,...,sr (1), where s1, . . . , sr are parameters. While such bounds obscure the
specific dependence on s1, . . . , sr, they suffice for our purposes, as these parameters will be treated
as constants in our application. Although it is theoretically possible to make these bounds explicit,
doing so would be tedious and distracting, as it involves repeated composition of intermediate
results.

That said, one can verify that all bounds in this section are at most constant-height towers of
exponentials in the degrees and the number of variables. In most cases, the bounds are at least

4The base change VF is not necessarily a variety and must be interpreted as a scheme [Mum88, Vak24] to correctly
define the degree. For example, consider the affine variety defined by Xp − T in A1

Fp(T ). After base change to Fp(T ),
it becomes a “point of multiplicity p,” since Xp − T = (X − T 1/p)p.
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doubly exponential due to the use of Gröbner bases. As mentioned, this is acceptable since the
degrees and number of variables will eventually be fixed constants depending only on the bottom
fan-in δ.

Throughout this section, let K = F(Y) = F(Y1, . . . , Yℓ), where F is an infinite field.
We define the following complexity measures on rational functions in F(Y) and polynomials

over F(Y).

Definition 3.1. For an integer d ≥ 0, define C(d) to be the set of a ∈ K such that a = c
c′ for some

c ∈ F[Y] and c′ ∈ F[Y] \ {0} satisfying degY(c),degY(c′) ≤ d.
For integers n, d, d′ ≥ 0 and variables X = (X1, . . . , Xn), define PX(d, d′) or simply P (d, d′) to

be the set of polynomials f ∈ K[X] of degree at most d such that the coefficients of f are all in
C(d′).

Lemma 3.2. The following hold:

(1) ca ∈ C(d) for a ∈ C(d) and c ∈ F.

(2) a+ b, ab ∈ C(d+ d′) for a ∈ C(d) and b ∈ C(d′).

(3) 1/a ∈ C(d) for a ∈ C(d) \ {0}.

Proof. The claims follow straightforwardly by definition.

Lemma 3.3. Suppose f, g ∈ K[X1, ..., Xn] are polynomials in P (d1, d) and P (d2, d), respectively.
Then fg ∈ P (d1 + d2, d

′) for some d′ = Od1+d2,d,n(1).

Proof. Each coefficient of fg is the sum of Od1+d2,n(1) terms of the form coefff (m1) · coeffg(m2),
where m1 is a monomial of f and m2 is a monomial of g. The claims follows by Lemma 3.2 (2).

To address the issue of inseparable extensions, we introduce the following definitions.

Definition 3.4. Let p = char(F), and let e ≥ 0. We use the shorthand

F(Y1/pe) := F(Y 1/pe

1 , . . . , Y
1/pe

ℓ ) and F[Y1/pe ] := F[Y 1/pe

1 , . . . , Y
1/pe

ℓ ].

For convenience, if char(F) = 0, we interpret pe = 1, even though this is not formally correct.
Define K(e) := F(Y1/pe). Let C(e)(d) be the set of elements a ∈ K(e) such that a = c

c′ for
some c ∈ F[Y1/pe ], c′ ∈ F[Y1/pe ] \ {0}, and degY1/pe (c),degY1/pe (c′) ≤ d. That is, the degrees of
both the numerator and the denominator of c and those of c′ are bounded by d as polynomials in
Y

1/pe

1 , . . . , Y
1/pe

ℓ .
For integers n, d, d′ ≥ 0 and variables X = (X1, . . . , Xn), define P (e)

X (d, d′) (or simply P (e)(d, d′))
to be the set of polynomials f ∈ K(e)[X] of degree at most d, whose coefficients are all in C(e)(d′).

Note that the map Yi 7→ Y pe

i induces a bijection

P (e)(d, d′)→ P (d, d′).

In this way, statements about polynomials in P (d, d′) apply to those in P (e)(d, d′) via this trans-
formation. On the other hand, there is also a natural inclusion

P (d, d′) ↪→ P (e)(d, ped′)

given by the identity map f 7→ f .
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Solving a system of linear equations. The following lemma bounds the complexity of a
solution of a system of linear equations.

Lemma 3.5. Let A = (ai,j)i∈[N ],j∈[M ] ∈ KN×M and b = (b1, . . . , bN ) ∈ KN such that all entries
of A and those of b are in C(d). Suppose the system of linear equations Ax = b has a solution.
Then it has a solution x ∈ KM whose entries are all in C(d′), where d′ = ON,M,d(1).

Proof. Suppose A has rank k, and without loss of generality, we may assume the top-leftmost k×k
minor B of A has full rank. Let Ã = (ai,j)i∈[k],j∈[M ] and b̃ = (b1, . . . , bk). As Ax = b has a solution
and the first k rows of A span the others, we know x = (x1, . . . , xM ) is a solution of Ax = b if and
only if it is a solution of Ãx = b̃. By Cramer’s rule, the latter has a solution given by

xi =


det(Bi)
det(B) 1 ≤ i ≤ k
0 k < i ≤M,

(2)

where Bi is the matrix formed by replacing the i-th column of B by b̃. As the entries of B and Bi

are in C(d), by Lemma 3.2, the entries xi given by (2) are in C(d′) for some d′ = ON,M,d(1).

The following lemma bounds the complexity of the coefficients of a factor of a univariate poly-
nomial f in terms of its degree and the complexity of its coefficients.

Lemma 3.6. Let f ∈ K[X1, . . . , Xn] be a nonzero polynomial in P (d, d′). Let g be a factor of f .
Then there exist c ∈ K× such that cg ∈ P (d, d′′) for some d′′ = Od,d′,n(1).

The proof of Lemma 3.6 is deferred to Appendix A.

Gröbner bases. For X = {X1, . . . , Xn}, denote by MX the set of monomials in X.
Let⪯ be a total order onMX. We say⪯ is a monomial order if (1)m1 ⪯ m2 =⇒ m1m ⪯ m2m,

and (2) 1 ⪯ m for all m ∈MX. Write m1 ≺ m2 if m1 ⪯ m2 and m1 ̸= m2.
A monomial order is degree-compatible if m1 ⪯ m2 =⇒ deg(m1) ≤ deg(m2). Examples of

degree-compatible monomial orders include graded lexicographic and graded reverse lexicographic
orders.

Fix a monomial order ⪯, for 0 ̸= f ∈ K[X], the leading monomial of f , denoted by LM(f), is the
monomial appearing in f that is greatest under ⪯. Its coefficient is called the leading coefficient of
f and denoted LC(f). The term LC(f) ·LM(f) is called the leading term of f and denoted LT(f).
Define LM(0) = LC(0) = LT(0) = 0.

For a set S ⊆ K[X], denote by LT(S) the ideal of K[X] generated by the set {LT(f) : f ∈ S}.
It is called ideal of leading terms of S, also known as the initial ideal of S.

Definition 3.7 (Gröbner basis). A finite generating set G of an ideal I of K[X] is said to be a
Gröbner basis for I if LT(G) = LT(I).

Degree bounds for Gröbner bases. We have the following degree bound on Gröbner bases.

Theorem 3.8 ([Dub90, Corollary 8.3]). Let K = F(Y). Let I be an ideal of K[X] = K[X1, . . . , Xn]
generated by polynomials of degree at most d. Then for any monomial order ⪯, I has a Gröbner
basis with respect to ⪯ consisting only of polynomials of degree at most 2

(
d2

2 + d
)2n−1

.
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We also need the following degree bound for the ideal membership problem. For a proof, see
[MM82, Appendix].

Lemma 3.9 ([Her26, MM82]). Let f1, . . . , fk ∈ K[X] = K[X1, . . . , Xn] be polynomials of degree at
most d. Let f ∈ ⟨f1, . . . , fk⟩ be a polynomial of degree at most d′. Then f =

∑k
i=1 hifi for some

h1, . . . , hk ∈ K[X] of degree at most d′ + (kd)2n.

We now strengthen Theorem 3.8 and Lemma 3.9 in the case where K = F(Y) by establishing
degree bounds on the coefficients.

Lemma 3.10. Suppose K = F(Y). Let I be an ideal of K[X] = K[X1, . . . , Xn] generated by
polynomials f1, . . . , fk in P (d, d′). Then for any monomial order ⪯, I has a Gröbner basis with
respect to ⪯ consisting only of polynomials in P (D, d′′), where D = 2

(
d2

2 + d
)2n−1

and d′′ =
Od,d′,n(1).

Proof. Note that k ≤
(n+d

d

)
= Od,n(1). By Theorem 3.8, I has a Gröbner basis G consisting of

polynomials of degree at most D. Consider nonzero g ∈ G and let mg = LM(g). By replacing
g with 1

LC(g)g, we may assume LT(g) = mg. By Lemma 3.9, we have g =
∑k

i=1 hifi for some
h1, . . . , hk of degree at most D′ := D + (kd)2n = Od,n(1).

For every integer a ∈ N, let Sa be the set of monomials of degree at most a. For each monomial
m′, as g =

∑k
i=1 hifi, we have

coeffg(m′) =
k∑

i=1

∑
m∈SD′ :m|m′

coeffhi
(m)coefffi

(m′/m). (3)

The condition that LT(g) = mg is equivalent to that coeffg(mg) = 1 and coeffg(m′) = 0 for all
m′ ∈ Sd+D′ strictly greater than mg with respect to ⪯. (Here, we only need to consider monomials
m′ ∈ Sd+D′ since deg(fi) ≤ d and deg(hi) ≤ D′ for i ∈ [k].) We formulate this condition as a
system of linear equations as follows. Let S be the set of m′ ∈ Sd+D′ satisfying mg ⪯ m′. Let
T = [k]× SD′ . Define a matrix A ∈ KS×T by

A[m′, (i,m)] =
{

coefffi
(m′/m) m|m′

0 otherwise.

And define the column vector b ∈ KS by

b[m′] =
{

1 m′ = mg

0 otherwise.

Then the condition that LT(g) = mg is equivalent to that the column vector x = (coeffhi
(m))(i,m)∈T

satisfies Ax = b. By assumption, we have A[m′, (i,m)],b[m′] ∈ C(d′) for all (m′, (i,m)) ∈ S × T .
By Lemma 3.5, the system of linear equations Ax = b has a solution (ci,m)(i,m)∈T whose entries
are all in C(d′′) for some

d′′ = O|S|,|T |,d′(1) = Od,d′,n(1),

where the last equality holds since S = |Sd+D′ | =
(n+d+D′

d+D′
)

= Od,n(1) and |T | = k|SD′ | = k
(n+D′

D′
)

=
Od,n(1).

18



Replacing hi by h̃i :=
∑

m∈SD′ ci,mm for i ∈ [k], and replacing g by
∑k

i=1 h̃ifi, do not change
the leading term of g. Performing this replacement for each g ∈ G preserves the fact that G is
a Gröbner basis for I, since LT(G) remains unchanged. After the replacement, the new Gröbner
basis satisfies the requirement of the lemma.

Lemma 3.11. Let f1, . . . , fk ∈ K[X] = K[X1, . . . , Xn] be polynomials in P (d,D). Let f ∈
⟨f1, . . . , fk⟩ be a polynomial in P (d′, D′). Then f =

∑k
i=1 hifi for some h1, . . . , hk ∈ P (d′′, D′′)

where d′′ := d′ + (kd)2n and D′′ = On,d,d′,D,D′(1).

Proof. We may assume k ≤
(n+d

d

)
. By Lemma 3.9, there exist polynomials h1, . . . , hk of degree

at most d′′ such that f =
∑k

i=1 hifi. Viewing the coefficients of h1, . . . , hk as variables, we may
build a system of linear equations over K that expresses the relation f =

∑k
i=1 hifi. It has at most

k ·
(n+d′′

d′′
)

= On,d,d′(1) variables and at most
(n+d′

d′
)

= On,d′(1) linear equations. The coefficients of
these linear equations live in C(max{D,D′}). So by Lemma 3.5, we may choose h1, . . . , hk such
that they live in P (d′′, D′′) for some D′′ = On,d,d′,D,D′(1).

Elimination of variables. Let ⪯X and ⪯Z be monomial orders on MX and MZ, respectively.
Denote by ⪯= (⪯X,⪯Z) the following monomial order on the monomials in both X and Z:

m1m2 ≺ m′
1m

′
2 ⇐⇒


m1 ≺ m′

1
or
m1 = m′

1 and m2 ≺ m′
2

for m1,m
′
1 ∈MX and m2,m

′
2 ∈MZ.

Call ⪯ an elimination order for X.
The following is a well-known fact about eliminating variables using an elimination order. See,

e.g., [AL94, Theorem 2.3.4].

Lemma 3.12 (Elimination of variables). Let ⪯X and ⪯Z be monomial orders on MX and MZ,
respectively. Let ⪯= (⪯X,⪯Z). Let I be an ideal of K[X,Z]. Let G be a Gröbner basis for the ideal
I with respect to ⪯. Then G ∩ K[Z] is a Gröbner basis for the ideal I ∩ K[Z] of K[Z] with respect
to ⪯Z.

Combining Lemma 3.10 and Lemma 3.12 yields the following statement.

Lemma 3.13. Let I be an ideal of K[X,Z] = K[X1, . . . , Xn, Z1, . . . , Zm] generated by polynomials
f1, . . . , fk ∈ P (d, d′). Then for any monomial order ⪯Z on MZ, I ∩ K[Z] has a Gröbner basis
with respect to ⪯Z consisting only of polynomials in P (D,D′), where D = Od,n+m(1) and D′ =
Od,d′,n+m(1).

Proof. Let ⪯X be a monomial order on MX and let ⪯= (⪯X,⪯Z). Let G be a Gröbner basis
for I with respect to ⪯. By Lemma 3.10, we may assume that G consists only of polynomials
in P (D,D′), where D = 2

(
d2

2 + d
)2n+m−1

= Od,n+m(1) and D′ = Od,d′,n+m(1). By Lemma 3.12,
G ∩K[Z] is a Gröbner basis for I ∩K[Z] with respect to ⪯Z. The lemma follows.
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Reduction algorithm. The reduction algorithm, also known as the division algorithm, gen-
eralizes both row reduction in Gaussian elimination and long division of univariate polynomials.
Running this algorithm on a polynomial f with respect to a Gröbner basis yields a unique “remain-
der” of f .

Definition 3.14. Let G be a subset of K[X]. f ∈ K[X] is said to be reducible modulo G if f has
a nonzero term that is in LT(G). Otherwise, we say f is reduced modulo G.

Lemma 3.15. Let f ∈ K[X] = K[X1, . . . , Xn] and let G = {g1, . . . , gk} be a Gröbner basis for an
ideal I of K[X] with respect to a monomial order ⪯. Then:

(1) There exists unique fG ∈ K[X] such that fG is reduced mod G and f − fG =
∑k

i=1 higi ∈ I,
where h1, . . . , hk ∈ K[X].

(2) Suppose f, g1, . . . , gk ∈ P (d, d′). Further assume that for i ∈ [k], deg(LT(gi)) = deg(gi), which
holds if ⪯ is degree-compatible. Then in Item 1, fG ∈ P (d, d′′) and h1, . . . , hk may be chosen
in P (d, d′′) as well, where d′′ = Od,d′,n(1).

The reduction algorithm outputting fG and h1, . . . , hk is given as follows.

Algorithm 1 The reduction algorithm
Input: f , G = {g1, . . . , gk}
Output: fG, h1, . . . , hk

fG ← f ; h1, . . . , hk ← 0
while fG has a term T divisible by LT(gi) for some i ∈ [k] do

fG ← fG − T
LT(gi)gi

hi ← hi + T
LT(gi)

end while
return fG, h1, . . . , hk

Algorithm 1 terminates in general, even without the assumption that deg(LT(gi)) = deg(gi) for
i ∈ [k]. This fact follows from Hilbert’s basis theorem or Dickson’s lemma [BW98]. We make the
additional assumption that deg(LT(gi)) = deg(gi) for i ∈ [k], which leads to a simpler proof that
bounds the complexity of the coefficients of fG, h1, . . . , hk.

Proof of Lemma 3.15. Item 1 is standard (see, e.g., [AL94]).
We claim deg(fG) ≤ deg(f) and deg(higi) ≤ deg(f) for i ∈ [k]. This follows from the following

induction: At the beginning of the algorithm, these bounds hold since fG = f and h1, . . . , hk = 0. In
each iteration, the degree of ∆ := T

LT(gi)gi is deg(T )−deg(LT(gi)) + deg(gi) = deg(T ) ≤ deg(fG) ≤
deg(f). We subtract ∆ from fG, which does not increase the degree of fG since the degrees of the
newly added monomials are bounded by deg(∆) ≤ deg(fG). Similarly, we add ∆/gi to hi, which
preserves the property that deg(higi) ≤ deg(f) since deg((∆/gi) · gi) = deg(∆) ≤ deg(f). So the
degree bounds hold during and at the end of the algorithm.

Now we prove Item 2. By Item 1, we already know deg(fG), deg(h1), . . . ,deg(hk) ≤ deg(f) ≤ d.
We have

fG = f −
k∑

i=1
higi = f −

k∑
i=1

∑
m∈Si

coeffhi
(m)mgi,
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where Si is the set of monomials m such that deg(m · gi) ≤ deg(f). Therefore, for each monomial
m′ of degree at most deg(f), we have

coefffG
(m′) = coefff (m′)−

k∑
i=1

∑
m∈Si:m|m′

coeffhi
(m)coeffgi(m′/m). (4)

Let S be the set of monomials of degree at most deg(f) ≤ d, and let T = {(i,m) : m ∈ Si}.
Note that k, |S| ≤

(n+d
d

)
and |T | =

∑k
i=1 |Si| ≤

(n+d
d

)2. By definition, a polynomial g satisfying
deg(g) ≤ deg(f) is reduced mod G if and only if coeffg(m′) = 0 for all m′ ∈ S. So the polynomial
fG = f −

∑k
i=1 higi with hi =

∑
m∈Si

coeffhi
(m)m is reduced mod G if and only if the column

vectors x = (coeffhi
(m))(i,m)∈T and b = (coefff (m′))m′∈S satisfies Ax = b, where the matrix

A ∈ KS×T is given by

A[m′, (i,m)] =
{

coeffgi(m′/m) m|m′

0 otherwise.

By assumption, we have A[m′, (i,m)],b[m′] ∈ C(d′) for all (m′, (i,m)) ∈ S×T . By Lemma 3.5, we
may choose the coefficients of h1, . . . , hk to be in C(d0) for some d0 = O|S|,|T |,d′(1) = Od,d′,n(1).

By (4) and Lemma 3.2, for such h1, . . . , hk, the coefficients of fG are all in C(d1), where d1 =
Od,d′,n(1). Choose d′′ := max(d0, d1) = Od,d′,n(1). Then fG, h1, . . . , hk ∈ P (d, d′′) by definition.

Definition 3.16. fG in Lemma 3.15 is called the remainder of f modulo G with respect to ⪯.

We also need the following variant of Lemma 3.15 for elimination orders.

Lemma 3.17. Let f ∈ K[X,Z] = K[X1, . . . , Xn, Z1, . . . , Zm]. Let ⪯X and ⪯Z be degree-compatible
monomial orders on MX and on MZ, respectively, and let ⪯= (⪯X,⪯Z). Let G = {g1, . . . , gk} be
a Gröbner basis for an ideal I of K[X,Z] with respect to ⪯. Suppose f, g1, . . . , gk ∈ P (d, d′). Then
the remainder fG of f is in P (d1, d2) for some d1 ∈ Od,n(1) and d2 = Od,d′,n(1).

Proof. We modify the proof of Lemma 3.15 as follows. Let W = max{degZ(g1), . . . ,degZ(gk)}+1 ≤
d+ 1. Define the weighted degree of a monomial m by wdeg(m) = W · degX(m) + degZ(m). For a
polynomial P ∈ K[X,Z], define its weighted degree wdeg(P ) to be the maximum weighted degree
among the monomials appearing in P , or −∞ if P = 0. Note that wdeg(·) is multiplicative. Also
note that the choice of W guarantees that wdeg(gi) = wdeg(LT(gi)) for i ∈ [k].

We claim wdeg(fG) ≤ wdeg(f) and wdeg(higi) ≤ wdeg(f) for i ∈ [k]. This follows from
the following induction: At the beginning of the algorithm, these bounds hold since fG = f and
h1, . . . , hk = 0. In each iteration, the weighted degree of ∆ := T

LT(gi)gi is wdeg(T )−wdeg(LT(gi))+
wdeg(gi) = wdeg(T ) ≤ wdeg(fG) ≤ wdeg(f). We subtract ∆ from fG, which does not increase the
weighted degree of fG since the weighted degrees of the newly added monomials are bounded by
wdeg(∆) ≤ wdeg(fG). Similarly, we add ∆/gi to hi, which preserves the property that wdeg(higi) ≤
wdeg(f) since wdeg((∆/gi) · gi) = wdeg(∆) ≤ wdeg(f). The claim follows by induction.

The rest of the proof follows that of Lemma 3.15, except that we use the weighted degree
in place of the standard degree. Note that for any polynomial P ∈ K[X,Z], we have deg(P ) ≤
wdeg(P ) ≤ W · wdeg(P ), where W ≤ d+ 1. Using this fact, we can still show that fG ∈ P (d1, d2)
where d1 = Od,n(1) and d2 = Od,d′,n(1).
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Ring homomorphisms. The following lemma gives degree bounds about the data describing a
ring homomorphism between quotients of polynomial rings.

Lemma 3.18. Let f1, . . . , fk, g1, . . . , gm ∈ K[X] = K[X1, . . . , Xn] be polynomials in PX(d, d′). Let
I = ⟨f1, . . . , fk⟩ ⊆ K[X]. Let ϕ be the K-linear ring homomorphism

ϕ : K[Z] = K[Z1, . . . , Zm]→ K[X]/I
Zi 7→ gi + I, i = 1, 2, . . . ,m.

Let A be the image of ϕ, i.e., A is the subring of K[X]/I generated by g1 + I, . . . , gm + I. Then:

(1) ϕ induces an isomorphism K[Z1, . . . , Zm]/ ker(ϕ) ∼= A.

(2) For any monomial order ⪯Z on MZ, ker(ϕ) has a Gröbner basis with respect to ⪯Z consisting
only of polynomials in PZ(D,D′), where D = Od,n+m(1) and D′ = Od,d′,n+m(1).

(3) Let f ∈ K[X] such that f + I ∈ A and f ∈ PX(d1, d2). Then there exists h ∈ K[Z] such that
ϕ(h) = f + I and h ∈ PZ(d3, d4), where d3 = Od,d1,n+m(1) and d4 = Od,d′,d1,d2,n+m(1).

Proof. Item 1 holds by the first isomorphism theorem. Let J = ⟨f1, . . . , fk, Z1 − g1, . . . , Zm − gm⟩ ⊆
K[X,Z]. Then ker(ϕ) = J ∩K[Z] [AL94, Theorem 2.4.10]. Item 2 then follows from Lemma 3.13.

It remains to prove Item 3. Let ⪯X and ⪯Z be degree-compatible monomial orders on MX
and onMZ, respectively. Let ⪯= (⪯X,⪯Z). Let G be a Gröbner basis of J with respect to ⪯. By
Lemma 3.10, we may assume that G consists only of polynomials in P (d5, d6), where d5 = Od,n+m(1)
and d6 = Od,d′,n+m(1).

By assumption, f+I is in A and hence in the image of ϕ. Let h be the remainder of f modulo G
with respect to ⪯. Then ϕ(h) = f+I by [AL94, Theorem 2.4.11]. Moreover, h ∈ PZ(d3, d4) for some
d3 = Omax(d1,d5),n+m(1) = Od,d1,n+m(1) and d4 = Omax(d1,d5),max(d2,d6),n+m(1) = Od,d′,d1,d2,n+m(1)
by Lemma 3.17.

Primitive element theorem. We now prove a quantitative form of the primitive element the-
orem, modifying an argument in [ZS75].

Theorem 3.19 (Primitive element theorem, quantitative form). Let f1, f2, . . . , fk ∈ K[X] =
K[X1, . . . , Xn] be polynomials in P (d, d′) that generate a zero-dimensional ideal I. Suppose m is
a maximal ideal of K[X] containing I and L := K[X]/m is a finite separable extension of K. Let
αi := Xi + m ∈ L for i ∈ [n], so that L = K(α1, . . . , αn). Then there exists a nonzero polynomial
Q ∈ L[Z] = L[Z1, . . . , Zn] such that for every nonzero c = (c1, . . . , cn) ∈ Fn satisfying Q(c) ̸= 0,
there exist P c

0 , P
c
1 , . . . , P

c
n ∈ K[T ] such that the following hold:

(1) Let βc =
∑n

i=1 ciαi ∈ L. Then P c
0 (βc) ̸= 0 and αi = P c

i (βc)
P c

0 (βc) for i ∈ [n]. In particular,
L = K(βc).

(2) P c
0 , . . . , P

c
n ∈ P (dn, d0) for some d0 = Od,d′,n(1).

In particular, the above hold for almost all c ∈ Fn.
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Proof. Let K∗ = K(Z) = K(Z1, . . . , Zn) and L∗ = L(Z) = L(Z1, . . . , Zn) = K∗(α1, . . . , αn). By
assumption, α1, . . . , αn are separable over K. So they are also separable over K∗. It follows that
L∗ is a finite separable extension of K∗.

Let α̂i = Xi + I ∈ K[X]/I for i ∈ [n]. Let β̂(Z) = Z1α̂1 + Z2α̂2 + · · · + Znα̂n ∈ (K[X]/I)(Z).
We have dimK(K[X]/I) ≤ dn by Lemma 2.14. So dimK∗((K[X]/I)(Z)) ≤ dn. Therefore, β̂(Z) has
a minimal polynomial over K∗, which we denote by F̂ , and its degree is at most dn.

We may construct F̂ as follows. Let ⪯T,Z be an elimination order for T on MT,Z, and let
⪯= (⪯X,⪯T,Z) be an elimination order for X on MX,T,Z. Let J be the ideal

J = ⟨f1, . . . , fk, T − (Z1X1 + · · ·+ ZnXn)⟩

of K[X, T,Z]. The ideal J is the preimage of the ideal
〈
T − β̂(Z)

〉
of (K[X]/I)[T,Z] under the

natural quotient map K[X, T,Z] → (K[X]/I)[T,Z]. Let G be a Gröbner basis for J with respect
to ⪯. Then G ∩ K[T,Z] is a Gröbner basis for J ∩ K[T,Z] with respect to ⪯T,Z by Lemma 3.12.
Choose ĝ ∈ G∩K[T,Z] such that LM(ĝ) has the form mT e, where m ∈MZ and e is minimized. By
the choice of ⪯, we have ĝ ∈ K[T,Z]. Note that such ĝ exists since it can be obtained by clearing
the denominators of the coefficients of F̂ (T ). By Lemma 3.10, we may assume deg(ĝ) ∈ P (D, d1)
with D = Od,n(1) and d1 = Od,d′,n(1).

Write ĝ =
∑e

i=0 hiT
i with hi ∈ K[Z] for i = 0, 1, . . . , e. Then he ̸= 0. As e is minimized and

J is the preimage of
〈
T − β̂(Z)

〉
in K[X, T,Z], ĝ/he =

∑e
i=0(hi/he)T i is precisely the minimal

polynomial F̂ (T ) of β̂(Z) over K∗.
Consider

β(Z) := Z1α1 + Z2α2 + · · ·+ Znαn ∈ L[Z] ⊆ L∗.

Let F (T ) ∈ K∗[T ] be the minimal polynomial of β(Z) over K∗. As m ⊇ I, F is a factor of F̂ . In
particular, deg(F ) ≤ deg(F̂ ) ≤ dn. As ĝ/F̂ ∈ (K∗)×, F is a factor of ĝ, both viewed as polynomials
over K∗. So ĝ has a factor g ∈ K[T,Z] such that g/F ∈ (K∗)×. Moreover, by Lemma 3.6, we may
assume g ∈ P (D, d2) where d2 = OD,d1,n(1) = Od,d′,n(1).

As g/F ∈ (K∗)×, we have

g(Z1α1 + Z2α2 + · · ·+ Znαn, Z1, . . . , Zn) = g(β(Z),Z) = 0. (5)

Taking the partial derivatives of (5) with respect to Z1, . . . , Zn and applying the chain rule for
multivariate polynomials, we obtain

αig0(β(Z),Z) + gi(β(Z),Z) = 0, i = 1, 2, . . . , n, (6)

where g0(T,Z) := ∂g(T,Z)
∂T and gi(T,Z) := ∂g(T,Z)

∂Zi
for i ∈ [n].

As F (X) is the minimal polynomial of β(Z) ∈ L∗ over K∗ and L∗ is a finite separable extension
of K∗, we have F ′(β(Z)) ̸= 0. And as g0(T,Z) = ∂g(T,Z)

∂T and g/F ∈ (K∗)×, we have

g0(β(Z),Z) = (g/F ) · F ′(β(Z)) ̸= 0.

Define Q(Z) = g0(β(Z),Z) ∈ L[Z]. For every c = (c1, . . . , cn) ∈ Fn, define P c
0 (T ) = g0(T, c) ∈ K[T ]

and P c
i (T ) = −gi(T, c) ∈ K[T ] for i ∈ [n].

Consider c ∈ Fn such that Q(c) ̸= 0. Note that β(c) =
∑n

i=1 ciαi = βc and P c
0 (βc) =

g0(β(c), c) = Q(c) ̸= 0. We have by (6) that

αi = − gi(β(c), c)
g0(β(c), c) = P c

i (βc)
P c

0 (βc) , i = 1, 2, . . . , n,
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By definition, P c
0 (T ) = g0(T, c) and P c

i (T ) = −gi(T, c) for i ∈ [n]. So we have deg(P c
i ) ≤

degT (gi) ≤ degT (g) = e ≤ dn for i ∈ 0, 1, . . . , n. As already noted above, deg(g) ∈ P (D, d2), so
the coefficients of g are all in C(d2). For i = 0, 1 . . . , n and j = 0, 1, . . . ,deg(P c

i ), the coefficient
of T j in P c

i is a linear combination of the coefficients of the monomials of degree j in T of gi

over F, and gi has at most
(n+D

D

)
such monomials since deg(gi) ≤ deg(g) ≤ D. Therefore, by

Lemma 3.2, the coefficients of P c
0 , . . . , P

c
n are in C(d0), where d0 =

(n+D
D

)
d2 = Od,d′,n(1). It follows

that P c
0 , . . . , P

c
n ∈ P (dn, d0).

Extracting a maximal ideal. Let I be a zero-dimensional ideal of K[X], whose generators are
given. We need to solve the problem of finding the generators of a maximal ideal m containing
I or, more precisely, to bound the complexity of these generators. This problem is a special case
of finding the radical and the primary decomposition of a zero-dimensional ideal, with coefficient
bounds. The following lemma provides a direct solution.

Lemma 3.20. Let f1, . . . , fk ∈ K[X] = K[X1, . . . , Xn] be polynomials in P (d, d′). Suppose I =
⟨f1, . . . , fk⟩ is a zero-dimensional ideal of K[X]. Let m be a maximal ideal of K[X] containing I
such that K[X]/m is a finite separable extension of K. Then m is generated by polynomials in
P (dn + 1, d′′), where d′′ = Od,d′,n(1).

Proof. We follow the approach of [GTZ88]. Let αi = Xi+m ∈ K[X]/m for i ∈ [n]. By Theorem 3.19,
there exist c = (c1, . . . , cn) ∈ Fn and P c

0 , P
c
1 , . . . , P

c
n ∈ K[T ] such that βc =

∑n
i=1 ciαi satisfies

P c
0 (βc) ̸= 0 and αi = P c

i (βc)
P c

0 (βc) for i ∈ [n]. Moreover, P c
0 , . . . , P

c
n ∈ P (dn, d0) for some d0 = Od,d′,n(1).

Let T =
∑n

i=1 ciXi ∈ K[X]. Let m0 = m∩K[T ], which is a prime ideal of K[T ]. Let I0 = I∩K[T ].
As K[T ] is a PID, m0 and I0 are generated by polynomials g, h ∈ K[T ] over K, respectively, and
g|h. The inclusion K[T ] ↪→ K[X] induces an inclusion K[T ]/I0 ↪→ K[X]/I. So we have

deg(g) ≤ deg(h) = dimK(K[T ]/I0) ≤ dimK(K[X]/I) ≤ dn,

where the last inequality holds by Lemma 2.14. By Lemma 3.13 and the fact that I0 = ⟨h⟩, we
may assume that h ∈ P (dn, d1) for some d1 = Od,d′,n(1).5 As g|h, by Lemma 3.6, we may assume
that g ∈ P (dn, d2) for some d2 = Od,d′,n(1).

For i ∈ [n], let gi = P c
0 (T )Xi−P c

i (T ) ∈ K[X], whose degree is at most dn+1. And the coefficients
of each gi are in C(d0) since the same holds for P c

0 and P c
i . So g1, . . . , gn ∈ P (dn + 1, d0). Let

d′′ = max(d0, d2). The g, g1, . . . , gn ∈ P (dn + 1, d′′).
For i ∈ [n], the image of gi in K[X]/m is P c

0 (βc)αi−P c
i (βc), which is zero since αi = P c

i (βc)
P c

0 (βc) . So
g1, . . . , gn ∈ m.

Note that K[X]/ ⟨g, g1, . . . , gn⟩ ∼= K[T ]/ ⟨g⟩ = K[T ]/m0. This follows by noting that P c
0 (T ) ∈

K[T ] is invertible modulo ⟨g⟩ = m0 (since P c
0 (βc) ̸= 0 and m0 = m ∩ K[T ]), and therefore, we can

use the relations gi = P c
0 (T )Xi − P c

i (T ) = 0, i = 1, . . . , n, to eliminate X1, . . . , Xn. As K[T ]/m0
is a field, ⟨g, g1, . . . , gn⟩ is a maximal ideal of K[X]. As g, g1, . . . , gn ∈ m and m is also a maximal
ideal of K[X], we have m = ⟨g, g1, . . . , gn⟩. The lemma follows.

5We may view h as a polynomial in T and another n − 1 variables by performing an F-linear transformation on
the system of coordinates, which does not affect the degrees of the numerators and denominators of the coefficients.
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Idealizer. Let A be an integral domain and J be an ideal of A. The idealizer of J is defined as

IdA(J) := {a ∈ Frac(A) : aJ ⊆ J}.

It is the largest subring of Frac(A) in which J is still an ideal.
A closely related notion is the ideal quotient of two ideals. For ideals I and J of a ring R, define

the ideal quotient (I : J) := {a ∈ R : aJ ⊆ I}, which is an ideal of R.

Lemma 3.21. Let f1, . . . , fk, g1, . . . , gm ∈ K[X] = K[X1, . . . , Xn] be polynomials in P (d, d′). Sup-
pose I := ⟨f1, . . . , fk⟩ is a prime ideal of K[X], or equivalently, A := K[X]/I is an integral domain.
Let J be the ideal ⟨g1 + I, . . . , gm + I⟩ of A.

Assume that c·IdA(J) ⊆ A, where c = f+I ∈ A\{0} and f ∈ P (d, d′). Then with respect to any
monomial order, the preimage of c·IdA(J) in K[X] under the natural quotient map K[X]→ A has a
Gröbner basis consisting only of polynomials in P (D,D′), where D = Od,n(1) and D′ = Od,d′,n(1).

Proof. For any ideal I0 of A, denote by Î0 the preimage of I0 in K[X] under the natural quotient
map, i.e., Î0 = {a ∈ K[X] : a+ I ∈ I0}.

As c ̸= 0 and A is an integral domain, we know c is a non-zero-divisor of A. As c · IdA(J) ⊆ A,
we know

c · IdA(J) = {b ∈ A : b = ca, aJ ⊆ J} = {b ∈ A : bJ ⊆ cJ} = (cJ : J),

where the second equality uses the fact that c is a non-zero-divisor. It follows that

̂c · IdA(J) = ̂(cJ : J) = (ĉJ : Ĵ). (7)

By definition, Ĵ = ⟨f1, . . . , fk, g1, . . . , gm⟩ and ĉJ = ⟨f1, . . . , fk, fg1, . . . , fgm⟩. It follows from
[AL94, Lemmas 2.3.10 and 2.3.11] that

(ĉJ : Ĵ) =
⋂

h∈{f1,...,fk,g1,...,gm}

1
h

(⟨f1, . . . , fk, fg1, . . . , fgm⟩ ∩ ⟨h⟩)

=
m⋂

i=1

1
gi

(⟨f1, . . . , fk, fg1, . . . , fgm⟩ ∩ ⟨gi⟩)

=
m⋂

i=1

1
gi
Ii,

(8)

where Ii := ⟨f1, . . . , fk, fg1, . . . , fgm⟩ ∩ ⟨gi⟩ for i ∈ [m]. By [AL94, Proposition 2.3.5], we can
compute this intersection by introducing a new variable T and then eliminating it:

Ii = (T · ⟨f1, . . . , fk, fg1, . . . , fgm⟩+ (1− T ) · ⟨gi⟩) ∩K[X]
= ⟨Tf1, . . . , T fk, T fg1, . . . , T fgm, (1− T )gi⟩ ∩K[X].

(9)

As f, f1, . . . , fk, g1, . . . , gm ∈ P (d, d′), we have by Lemma 3.3 that Tf1, . . . , T fk, T fg1, . . . , T fgm, (1−
T )g1, . . . , (1 − T )gm are in P (2d + 1, d0) for some d0 = Od,d′,n(1). By (9) and Lemma 3.13, for
i ∈ [m], Ii has a Gröbner basis Gi ⊆ P (d1, d2) with d1 = Od,n(1) and d2 = Od,d′,n(1).

Consider i ∈ [m]. The polynomials in Gi are all divisible by gi since Ii ⊆ ⟨gi⟩. Let 1
gi
Gi = { g

gi
:

g ∈ Gi}. Note that LT( 1
gi
Gi) = LT( 1

gi
Ii) since LT(Gi) = LT(Ii). So 1

gi
Gi is a Gröbner basis of the

ideal 1
gi
Ii. By Lemma 3.6, 1

gi
Gi ⊆ P (d1, d3) for some d3 = Od,d′,n(1).
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By [AL94, Exercise 2.3.8], we have

m⋂
i=1

1
gi
Ii = I∗ ∩K[X] (10)

where
I∗ :=

〈
1−

m∑
i=1

Ti

〉
+ T1 ·

1
g1
I1 + · · ·+ Tm ·

1
gm

Im ⊆ K[X, T1, . . . , Tm].

The ideal I∗ has the set of generators {1−
∑m

i=1 Ti} ∪ {Ti · g : g ∈ 1
gi
Gi, i ∈ [m]}. These generators

are in P (d1 + 1, d3) as 1
gi
Gi ⊆ P (d1, d3). By (10) and Lemma 3.13,

⋂m
i=1

1
gi
Ii has a Gröbner basis

contained in P (D,D′), where D = Od,n(1) and D′ = Od,d′,n(1). Finally, by (7) and (8), we know
that

⋂m
i=1

1
gi

is the preimage ̂c · IdA(J) of c · IdA(J) under the natural quotient map K[X] → A,
concluding the proof.

4 Normalization of Curves
In this section, we essentially present a constructive normalization procedure for affine curves,
following the framework of Trager [Tra84], which itself is a function field analog of an algorithm by
Ford and Zassenhaus [For78]. The core idea is to start with a subring of the coordinate ring of the
curve and iteratively adjoin elements until the ring becomes integrally closed. These elements are
identified by computing the idealizer of certain ideals.

We revisit these arguments primarily because the bounds on coefficient complexity that we
need are not provided in Trager [Tra84] or other literature. Moreover, our treatment differs in
several respects from that of Trager. In particular, Trager uses a different method for computing
the idealizer, which imposes restrictions on the characteristic of the base field. In contrast, our
method uses Gröbner bases and is characteristic-free.

Throughout this section, let K = F(Y) = F(Y1, . . . , Yℓ), where F is an infinite field.

4.1 Orders, Integral Bases, and Discriminants

In this subsection, let L be a finite separable extension of K(X) of degree s. Denote by OL the
integral closure of K[X] in L.

Orders. A subring O ⊆ OL is said to be a (K[X],L)-order if it is a finite K[X]-module and
O ⊗K[X] K(X) = L (i.e., the elements in O span L over K(X)).

Integral bases. It is known that every (K[X],L)-order is a free K[X]-module of rank [L : K(X)] =
s. For a (K[X],L)-order O, we say b = (b1, . . . , bs) ∈ Os is an integral basis of O if b1, . . . , bs form
a basis of O over K[X].

Discriminants. Let b = (b1, . . . , bs) ∈ Ls. As L/K(X) is separable, by Galois theory, L has s
distinct embeddings σ1, . . . , σs into the Galois closure of L over K(X). The discrminiant of b is
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defined to be

disc(b) = det


σ1(b1) σ1(b2) · · · σ1(bs)
σ2(b1) σ2(b2) · · · σ2(bs)

...
... . . . ...

σs(b1) σd(b2) · · · σs(bs)


2

.

It is fixed by the Galois group of L over K(X), and hence is an element of K(X).
We also need the definition of the discriminant of a univariate polynomial. For simplicity, we

only give the definition for univariate monic polynomials. Let f(T ) =
∑d

i=0 aiT
i ∈ R[T ] be a

univariate monic (i.e., ad = 1) polynomial of degree d over a ring R. The discriminant disc(f)
of f is defined to be (−1)d(d−1)/2Res(f, f ′) ∈ R, where Res(f, f ′) denotes the resultant of f and
f ′ =

∑d−1
i=0 (i+ 1)ai+1T

i, given by

Res(f, f ′) = det



ad ad−1 ad−2 · · · a0 0 · · · 0
0 ad ad−1 · · · a1 a0 · · · 0
...

...
... . . . ...

... . . . ...
0 · · · 0 ad ad−1 ad−2 · · · a0
dad (d− 1)ad−1 (d− 2)ad−2 · · · a1 0 · · · 0
0 dad (d− 1)ad−1 · · · 2a2 a1 · · · 0
...

...
... . . . ...

... . . . ...
0 · · · 0 dad (d− 1)ad−1 (d− 2)ad−2 · · · a1


.

The following lemma follows straightforwardly from the definition of disc(f) and Lemma 3.2.

Lemma 4.1. Let R = K[X]. Suppose f ∈ R[T ] is in PX,T (d, d′) when viewed as a polynomial in
both X and T over K. Then disc(f) ∈ PX(D,D′) for some D = Od(1) and D′ = Od,d′(1).

We now list some facts about the discriminant of a tuple, the discriminant of a polynomial, and
their relations. These facts can be found in, e.g., [Tra84].

Lemma 4.2. We have the following facts:

(1) Let b = (b1, . . . , bs) ∈ Ls. Then disc(b) ̸= 0 if and only if b1, . . . , bs are linearly independent
over K(X).

(2) Let b = (b1, . . . , bs) ∈ Ls such that b1, . . . , bs are integral over K[X]. Then disc(b) ∈ K[X].

(3) Let b,b′ ∈ Ls. Suppose b = A · b′ for some A ∈ K[X]s×s, then disc(b) = det(A)2 · disc(b′).
And b and b′ generate the same K[X]-module if and only if A is invertible as a matrix over
K[X], i.e., det(A) ∈ K[X]× = K×.

(4) Suppose L = K(X)(α) and α ∈ L is integral over K[X]. Let f be the minimal polynomial of α
over K(X), which is a monic polynomial with all coefficients in K[X] [Mat89, Theorem 9.2].
Then disc(1, α, . . . , αs−1) = ±disc(f).

Recall that OL denotes the integral closure of K[X] in L. We have the following statement,
whose proof can be found in, e.g., [Eis95, Proof of Proposition 13.14].
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Lemma 4.3. Let O ⊆ OL be a (K[X],L)-order with an integral basis b. Then

OL ⊆
1

disc(b)O ⊆
1

disc(b)OL.

Definition 4.4 (Discriminant ideal). Let O ⊆ OL be a (K[X],L)-order with an integral basis b.
Define DO/K[X] to be the ideal of K[X] generated by disc(b), called the discriminant ideal of O. By
Lemma 4.2 (3), DO/K[X] is well-defined and does not depend on the choice of b.

The following theorem gives a criterion for O being integrally closed.

Theorem 4.5 ([Tra84]). O is integrally closed if and only if the idealizer IdO(m) of every maximal
ideal m of O containing DO/K[X] equals O.

The next lemma states that taking the idealizer does not introduce non-integral elements.

Lemma 4.6 ([Tra84]). The idealizer IdO(I) is contained in the integral closure of O for any nonzero
ideal I of O.

4.2 Finding the Integral Closure

The main result of this section is the following theorem.

Theorem 4.7. Let f1, . . . , fk ∈ K[X] = K[X1, . . . , Xn] be polynomials in P (d, d′). Let α be an
element in the F-linear span of X1, . . . , Xn such that the natural ring homomorphism K[α]→ A :=
K[X]/ ⟨f1, . . . , fk⟩ sending α to α + ⟨f1, . . . , fk⟩ is injective and makes A a finite K[α]-module.
Moreover, suppose the following hold:

(1) For any algebraic extension L of K, AL := L[X]/ ⟨f1, . . . , fk⟩ is an integral domain of Krull
dimension one.

(2) Frac(A) is a finite separable extension of K(α).

Then there exist D,D′,m, k′, e ∈ N and g1, . . . , gn, h1, . . . , hk′ ∈ K(e)[Z] = K(e)[Z1, . . . , Zm] such
that D,D′,m, k′, pe = Od,d′,n(1) and the following hold:

(1) g1, . . . , gn, h1, . . . , hk′ ∈ P (e)(D,D′).

(2) The map

ϕ : AK(e) → K(e)[Z]/ ⟨h1, . . . , hk′⟩
Xi + ⟨f1, . . . , fk⟩ 7→ gi + ⟨h1, . . . , hk′⟩ , i = 1, 2, . . . , n.

defines an injective K(e)-linear ring homomorphism.

(3) K(e)[Z]/ ⟨h1, . . . , hk′⟩ is isomorphic to the integral closure of AK(e), and this isomorphism com-
posed with ϕ is the natural inclusion of AK(e) in its integral closure.

Remark 1. The subring K[α] in Theorem 4.7 can be obtained via Noether normalization, though
we defer this step to the next section.
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Remark 2. The assumptions that AL is an integral domain and that Frac(A) is separable over
K(α) are imposed for simplicity; they hold in our setting. It may be possible to eliminate these
assumptions, but doing so could require additional tools, such as primary decomposition.

In the following, we adopt the notations and assumptions of Theorem 4.7.
By assumption, Frac(A) is a finite separable extension of K(α). We view α as a variable as it

is transcendental over K. By the primitive element theorem [ZS75, §II.9, Theorem 19], we can fix
X =

∑n
i=1 ciXi with ci ∈ F such that X := X + ⟨f1, . . . , fk⟩ generates the field Frac(A) over K(α).

Let s := [Frac(A) : K(α)] and b0 = (1, X, . . . ,Xs−1).
To prove Theorem 4.7, we first prove several lemmas. First, the following lemma bounds the

complexity of the discriminant of b0.

Lemma 4.8. disc(b0) ∈ Pα(d1, d2) for some d1 = Od,n(1) and d2 = Od,d′,n(1).

Proof. By assumption, A is a finite K[α]-module. So by Lemma 2.9, it is integral over K[α].
Therefore, by Lemma 4.2 (4), the minimal polynomial F of X over K(α) is a monic polynomial
over K[α], and disc(b0) = ±disc(F ).

We first find F as follows: Introduce new variables T and Z. Let ⪯T,Z be the elimination
order for T on MT,Z . Let ⪯= (⪯X,⪯T,Z) be an elimination order for X on MX,T,Z . Let G
be a Gröbner basis for the ideal I =

〈
f1, . . . , fk, T −X,Z − α

〉
of K[X, T, Z] with respect to ⪯.

By Lemma 3.10, we may assume G ⊆ P (d3, d4) for some d3 = Od,n(1) and d4 = Od,d′,n(1). By
Lemma 3.12, G ∩ K[T,Z] is a Gröbner basis for I ∩ K[T,Z] with respect to ⪯T,Z . Choose some
g ∈ G ∩ K[T,Z] such that LM(g) has the form mT e, where m ∈ MZ and e is minimized. We
actually have m = 1 since F is monic over K[α]. Let u ∈ K× be the leading coefficient of g.
Then u−1g(T, α) ∈ (K[α])[T ] equals the minimal polynomial F of X over K[α]. By Lemma 3.2,
F ∈ PT,α(d3, d5) for some d5 = Od,d′,n(1). Finally, by Lemma 4.1, we have disc(b0) = ±disc(F ) ∈
Pα(d1, d2), where d1 = Od,n(1) and d2 = Od,d′,n(1).

For an algebraic extension L of K, we denote by IL the ideal ⟨f1, . . . , fk⟩ of L[X]. The following
lemma shows how to use a ring homomorphism to describe an order.

Lemma 4.9. Let L be an algebraic extension of K. Let a1, . . . , at ∈ L[X]. Assume that the elements
a1+IL

disc(b0) , . . . ,
at+IL

disc(b0) ∈ (AL)disc(b0) generate an algebra O over L[α] that is a (L[α],Frac(AL))-order.
Also assume a1, . . . , at ∈ P (d1, d2). Then there exist r1, . . . , rt+1 ∈ L[X, U ] and h1, . . . , hk′ ∈
L[Z] = L[Z1, . . . , Zt+1], where k′ = Od,d1,n(1), such that the following hold:

(1) r1, . . . , rt+1 ∈ PX,U (d1 + 1, d2) and h1, . . . , hk′ ∈ PZ(d3, d4) for some d3 = Od,d1,n(1) and
d4 = Od,d′,d1,d2,n(1). Moreover, rt+1 = α.

(2) The map

ψ : L[Z]/ ⟨h1, . . . , hk′⟩ → L[X, U ]/ ⟨f1, . . . , fk, disc(b0) · U − 1⟩ ∼= AL[U ]/ ⟨disc(b0) · U − 1⟩
Zi + ⟨h1, . . . , hk′⟩ 7→ ri + ⟨f1, . . . , fk,disc(b0) · U − 1⟩ , i = 1, 2, . . . , t+ 1.

defines an injective L-linear ring homomorphism.

(3) Let
θ : AL[U ]/ ⟨disc(b0) · U − 1⟩ → (AL)disc(b0)

be the AL-linear ring isomorphism sending U+⟨disc(b0) · U − 1⟩ to 1/disc(b0) given by Fact 2.5.
Then the image of θ ◦ ψ is O.
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Proof. By assumption, a1+IL
disc(b0) , . . . ,

at+IL
disc(b0) and α generate the algebra O over L. Let ri = ai ·U for

i ∈ [t] and rt+1 = α. Then r1, . . . , rt+1 ∈ PX,U (d1 + 1, d2).
Identifying L[X, U ]/ ⟨f1, . . . , fk, disc(b0) · U − 1⟩ with (AL)disc(b0) via θ, we see that the image of

the map L[Z]→ L[X, U ]/ ⟨f1, . . . , fk,disc(b0) · U − 1⟩ sending Zi to ri+⟨f1, . . . , fk,disc(b0) · U − 1⟩
for i ∈ [t + 1] is precisely O. The kernel of this map is generated by a collection of polynomials
h1, . . . , hk′ ∈ L[Z]. Note that we may assume t ≤

(n+d1
d1

)
. By Lemma 3.18 and Lemma 4.8, we may

choose h1, . . . , hk′ to be in PZ(d3, d4) for sufficiently large d3 = Od,d1,n(1) and d4 = Od,d′,d1,d2,n(1).
We may also assume k′ ≤

(n+d3
d3

)
= Od,d1,n(1).

The next lemma constructively identifies integral elements that can be adjoined to a non-
integrally closed order O to obtain a larger one.

Lemma 4.10. Let e ≥ 0 be an integer and let L = K(e). Let a1, . . . , at ∈ L[X]. Assume
a1+IL

disc(b0) , . . . ,
at+IL

disc(b0) generate an algebra O over L[α] that is a (L[α],Frac(AL))-order. Also assume
a1, . . . , at ∈ P (e)(d1, d2). Then there exist d3, d4, and e′ ≥ e such that pe′

, d3, d4 = Od,d′,d1,d2,n,pe(1),
and one of the following is true:

(1) O is integrally closed.

(2) There exists at+1 ∈ P (e′)(d3, d4) such that a1+IL′
disc(b0) , . . . ,

at+1+IL′
disc(b0) generate an algebra O′ over

L′[α] that is a (L′[α],Frac(AL′))-order strictly larger than O ⊗L L′, where L′ = K(e′).

Proof. Assume that O is not integrally closed. We will prove that Item 2 holds.
By Lemma 4.9, there exist r1, . . . , rt+1 ∈ P (e)

X,U (d5, d6) and h1, . . . , hk′ ∈ P (e)
Z (d5, d6) for some

d5 = Od,d1,n(1) and d6 = Od,d′,d1,d2,n(1) such that rt+1 = α, the ring homomorphism

ψ : L[Z]/ ⟨h1, . . . , hk′⟩ → L[X, U ]/ ⟨f1, . . . , fk, disc(b0) · U − 1⟩
Zi + ⟨h1, . . . , hk′⟩ 7→ ri + ⟨f1, . . . , fk, disc(b0) · U − 1⟩ , i = 1, 2, . . . , t+ 1.

is injective, and the image of ψ equals O if we identify L[X, U ]/ ⟨f1, . . . , fk, disc(b0) · U − 1⟩ with
(AL)disc(b0).

By Lemma 4.2 (3), the discriminant ideal DO/L[α] is generated by some factor Q(α) ∈ L[α] of
disc(b0) and is not the unital ideal. So by Lemma 4.8 and Lemma 3.3, Q ∈ P (e)(d7, d8) for some d7 =
Od,n(1) and d8 = Od,d′,n,pe(1). Identify L[Z]/ ⟨h1, . . . , hk′⟩ with O. Then Q(Zt+1) + ⟨h1, . . . , hk′⟩
is identified with Q(α) since rt+1 = α. As O is an integral domain of Krull dimension one and
DO/L[α] is not the unital ideal, we know DO/L[α] = ⟨Q(α)⟩ is a zero-dimensional ideal of O.

For each maximal ideal m of O containing Q(α), let em be the largest nonnegative integer
such that pem divides [O/m : L]. Let e0 be the maximum of em over all maximal ideals m of O
containing Q(α). By Lemma 2.14, we have pe0 ≤ max(deg(Q), deg(h1), . . . ,deg(hk′))t+1, where t
may be assumed to be at most

(n+d1
d1

)
. So pe0 = Od,d1,n,pe(1). Let e′ = e+ e0 and L′ = K(e′). Then

pe′ = Od,d1,n,pe(1).
By Lemma 2.2, the fact that F is algebraically closed, and the discussion in the previous

paragraph, for any maximal ideal m of O ⊗L L′ containing Q(α), we know (O ⊗L L′)/m is a finite
separable extension over L′. As O is not integrally closed, neither is O ⊗L L′. This follows from
Lemma 2.7 and the fact that O ⊗L L′ is integral over O. Then by Theorem 4.5 and Lemma 4.6,
O⊗LL′ has a maximal ideal m containing Q(α) whose idealizer IdO⊗LL′(m) is integral over O⊗LL′

and strictly larger than it. Fix such m.
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We now find an element in IdO⊗LL′(m) \ (O ⊗L L′). Let c = Q(Zt+1) + ⟨h1, . . . , hk′⟩ ∈
L′[Z]/ ⟨h1, . . . , hk′⟩. View m as a maximal ideal of L′[Z]/ ⟨h1, . . . , hk′⟩ containing c. Let m̃ be
the preimage of m in L′[Z] under the natural quotient map, which is also maximal. As (O⊗LL′)/m
is separable, by Lemma 3.20, m̃ is generated by polynomials in P (e′)(d9, d10) where d9 = Od,d1,n(1)
and d10 = Od,d′,d1,d2,n,pe(1).

As Q(α) generates DO/L[α], identifying L′[Z]/ ⟨h1, . . . , hk′⟩ withO⊗LL′ and applying Lemma 4.3
and Lemma 4.6 shows that c · IdL′[Z]/⟨h1,...,hk′ ⟩(m) ⊆ L′[Z]/ ⟨h1, . . . , hk′⟩. Let J ⊆ L′[Z] be the
preimage of c · IdL′[Z]/⟨h1,...,hk′ ⟩(m) under the natural quotient map L′[Z]→ L′[Z]/ ⟨h1, . . . , hk′⟩. By
Lemma 3.21, J has a Gröbner basis G1 contained in P (e′)(d11, d12), where d11 = Od,d1,n(1) and
d12 = Od,d′,d1,d2,n,pe(1).

As IdO⊗LL′(m) is strictly larger than O ⊗L L′, G1 contains an element γ ∈ L′[Z] such that
the image of γ + ⟨h1, . . . , hk′⟩ in (AL′)b0

∼= L′[X, U ]/ ⟨f1, . . . , fk,disc(b0) · U − 1⟩ is the desired
at+1 + IL′ . However, to find at+1, we cannot simply map each Zi to ri and let at+1 = γ(r1, . . . , rt1),
as the variable U may appear in at+1. Instead, we choose a Gröbner basis G2 of the ideal
⟨f1, . . . , fk,disc(b0) · U − 1⟩ of L′[X, U ] with respect to ⪯, where ⪯ is an elimination order for
U onMX,U that is degree-compatible in the X variables. Then we choose at+1 to be the remainder
of γ(r1, . . . , rt1) modulo G2 with respect to ⪯. The resulting at+1 is in L′[X] and also in P (e′)(d3, d4)
for some d3 = Od,d1,n(1) and d4 = Od,d′,d1,d2,n,pe(1) by Lemma 3.13 and Lemma 3.17.

Now we are ready to prove Theorem 4.7.

Proof of Theorem 4.7. We start from the order O0 generated by X over K[α]. In the i-th step,
we use Lemma 4.10 to add a generator, replacing an (K(ei−1)[α],Frac(AKei−1 ))-order Oi−1 by a
(K(ei)[α],Frac(AKei ))-order Oi, until we obtain an order that is integrally closed. Suppose this
process terminates after τ steps. So Oτ is integrally closed. For i = 0, 1, . . . , τ , the generators of
Oi are represented by elements α1, . . . , αi+1 ∈ K(ei)[X] that are in P (ei)(di, d

′
i).

By Lemma 4.10, the parameters di, d
′
i, p

ei satisfies

d0, d
′
0, p

e0 = Od,d′,n(1)

and
di, d

′
i, p

ei ≤ Fd,d′,n(di−1, d
′
i−1, p

ei−1) for i > 0.

where Fd,d′,n is some non-decreasing function depending only on d, d′, and n. Define F (0) =
max(d0, d

′
0, p

e0) and F (i) = Fd,d′,n(F (i− 1), F (i− 1), F (i− 1)). Then di, d
′
i, p

ei ≤ F (i).
By Lemma 4.2 (3), replacingOi−1 byOi decreases the degree of the generator of the discriminant

ideal by at least two. So by Lemma 4.8, it takes τ ≤ degα(disc(b0))/2 = Od,n(1) steps before an
integrally closed order is found. Therefore, the final parameters dτ , d′

τ , and peτ are bounded by
F (τ) = Od,d′,n(1).

Note that Oτ equals the integral closure of AK(eτ ) . This follows from Corollary 2.8 and the fact
that AK(eτ ) is integral over K[α].

To find the polynomials gi, use the map ψ associated with Oτ given by Lemma 4.9, and then
use Lemma 3.18 (3) to compute the inverse of Xi + ⟨f1, . . . , fk,disc(b0) · U − 1⟩ under ψ for i ∈ [n].

Finally, the parameter m in Theorem 4.7 equals t + 1 = τ + 2, where t = τ + 1 is the the
number of elements a1, . . . , at corresponding to the generators of Oτ as an algebra over K(eτ )[α].
As a1, . . . , at ∈ P (eτ )(dτ , d

′
τ ) with dτ = Od,d′,n(1), we may assume m = Od,d′,n(1).

31



5 PIT via Normalization
In this section, let F be a field and let K = F(Y) = F(Y0,1, . . . Y0,n, Y1,1, . . . , Y1,n, Y2,1, . . . , Y2,n).

5.1 Restricting to a Generic Affine Plane

We start by discussing the algebra resulting from restricting to a generic affine plane.

Definition 5.1 (Restriction to a generic affine plane). For f ∈ F[X] = F[X1, . . . , Xn] be a polyno-
mial over a field F, define res(f) to be the polynomial

f (Y0,1 + Y1,1Z1 + Y2,1Z2, . . . , Y0,n + Y1,nZ1 + Y2,nZ2) ∈ F[Y][Z1, Z2] ⊆ K[Z1, Z2]. (11)

Lemma 5.2. Let n ≥ 2. Suppose F is algebraically closed and f ∈ F[X] = F[X1, . . . , Xn] is
irreducible over F. Then res(f) ∈ K[Z] is absolutely irreducible over K = F(Y).

For a proof of Lemma 5.2, see [Kal95, Lemma 7].6

Lemma 5.3. Let n ≥ 2. Suppose F is algebraically closed and f ∈ F[X] = F[X1, . . . , Xn] is an
irreducible polynomial over F of degree d > 0. Let L be an algebraic extension of K = F(Y).
Then L[Z1, Z2]/ ⟨res(f)⟩ is an integral domain. Moreover, for every (c1, c2) ∈ (F×)2, the field
of fractions E of L[Z1, Z2]/ ⟨res(f)⟩ is a finite separable extension of L(Xc1,c2), where Xc1,c2 :=
c1Z1 + c2Z2 + ⟨res(f)⟩ ∈ L[Z1, Z2]/ ⟨res(f)⟩ ⊆ E.

Proof. By Lemma 5.2, res(f) is absolutely irreducible over K. So it is irreducible over L. Therefore,
L[Z1, Z2]/res(f) is an integral domain.

Consider (c1, c2) ∈ (F×)2 and let Xc1,c2 := c1Z1 + c2Z2. Then Z2 = c−1
2 (Xc1,c2 − c1Z1). So

L[Z1, Z2] = L[Z1, Xc1,c2 ]. Performing the substitution Z2 = c−1
2 (Xc1,c2 − c1Z1) in (11), we have

res(f) = f(T1, . . . , Tn),

where
Ti := Y0,i + Y1,iZ1 + c−1

2 Y2,i(Xc1,c2 − c1Z1), i = 1, 2, . . . , n (12)

View res(f) as a univariate polynomial in Z1 over L[Xc1,c2 ] (which is fine as Z1 and Xc1,c2 are
algebraically independent). Its derivative, which we denote by Dres(f), can be determined by the
chain rule:

Dres(f) =
n∑

i=1

∂f

∂Xi
(T1, . . . , Tn) ∂Ti

∂Z1
=

n∑
i=1

∂f

∂Xi
(T1, . . . , Tn) · (Y1,i − c−1

2 c1Y2,i). (13)

As F is algebraically closed (and hence a perfect field) and f is irreducible over F, we know
∂f

∂Xi
̸= 0 for some i ∈ [n]. Choose i0 ∈ [n] and a monomial m =

∏n
i=1X

ei
i that appears in ∂f

∂Xi0
such

that degX(m) is maximized over all choices of i0 and m. Then by (12) and (13), Dres(f), viewed as a
6The statement [Kal95, Lemma 7] is slightly different, where the expression Y0,1+Y1,1Z1+Y2,1Z2 in (11) is replaced

by Y0,1 +Z1, resulting another polynomial φ2. However, the proof can be adapted to prove Lemma 5.2. Alternatively,
we can recover (11) from φ2 by performing the invertible K-linear variable substitution Z1 7→ Y1,1Z1 +Y2,1Z2, followed
by applying the field automorphism of K that maps Y1,i 7→ Y1,i/Y1,1 and Y2,i 7→ Y2,i − Y2,1Y1,i/Y1,1 for i ∈ [n] \ {1}.
Both transformations preserve absolute irreducibility.
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polynomial in Y, Z1, and Xc1,c2 over F, has a monomial XdegX(m)
c1,c2

(∏n
i=1 Y

ei
2,i

)
Y1,i0 that comes from

the term ∂f
∂Xi0

(T1, . . . , Tn) · Y1,i0 in (13) and is not canceled by other monomials. So Dres(f) ̸= 0.
As the degree of Dres(f) is smaller than that of res(f), both viewed as univariate polynomials

in Z1 over L[Xc1,c2 ], we have Dres(f) ̸∈ ⟨res(f)⟩.
Let fd = fd(X1, . . . , Xn) be the homogeneous degree-d component of f , where d = deg(f). View

res(f) as a univariate polynomial in Z1 over L[Xc1,c2 ]. Then we can write res(f) =
∑d

i=0 aiZ
i
1, where

ai ∈ L[Xc1,c2 ]. By (12), we have

ad = fd(Y1,1 − c−1
2 c1Y2,1, . . . , Y1,n − c−1

2 c1Y2,n) ̸= 0

We also have ad ̸∈ ⟨res(f)⟩ as d > 0 and ad is independent of Z1.
Note that L[Xc1,c2 ] ∩ ⟨res(f)⟩ = 0 since d > 0. So we have an inclusion

L[Xc1,c2 ] ∼= L[Xc1,c2 ]/(L[Xc1,c2 ] ∩ ⟨res(f)⟩) ↪→ L[Z1, Z2]/ ⟨res(f)⟩

Taking the fields of fractions, we see that L(Xc1,c2) may be identified with L(Xc1,c2) ⊆ E. And
the minimal polynomial of Z1 over L(Xc1,c2) is F (T ) :=

∑d
i=1(ai/ad)T d ∈ L(Xc1,c2)[T ]. We also

have F ′(Z1 + ⟨res(f)⟩) = (Dres(f) + ⟨res(f)⟩)/(ad + ⟨res(f)⟩) ̸= 0 since ad, Dres(f) ̸∈ ⟨res(f)⟩. It
follows that Z1 + ⟨res(f)⟩ ∈ E is separable over L(Xc1,c2). A symmetric argument shows that
Z2 + ⟨res(f)⟩ ∈ E is separable over L(Xc1,c2). As E is generated by Z1 + ⟨res(f)⟩ and Z2 + ⟨res(f)⟩,
we conclude that that E is a finite separable extension of L(Xc1,c2).

5.2 Proof of the Main Theorem

For convenience, we state our main theorem again.

Theorem 5.4 (Main theorem, homogeneous version). Let Cn,d,k,δ,F be the set of polynomials F ∈
F[X] = F[X1, . . . , Xn] over a field F satisfying the following conditions:

(1) F can be expressed as a sum F =
∑k0−1

i=0 Fi, where k0 ≤ k, Fi =
∏mi

j=1 fi,j for i ∈ {0, 1, . . . , k0−
1}, and each fi,j ∈ F[X] is a nonzero homogeneous polynomial of degree at most δ.

(2) deg(Fi) = d0 for some d0 ≤ d and all i ∈ {0, 1, . . . , k0 − 1}.

(3) Fi is squarefree for some i ∈ {0, 1, . . . , k0 − 1}, meaning that the irreducible factors of Fi over
F are distinct.

Then there exists an explicit (nd)Oδ(1)-sized hitting set H ⊆ Fn for Cn,d,3,δ,F.

Assumptions. We make some further assumptions to simplify the discussion, and briefly justify
them:

(1) F is non-constant. Otherwise, any set will be a hitting set for F by definition.

(2) F is algebraically closed. This can be guaranteed by extending F to F.

(3) k0 = 3. This is because Theorem 5.4 is known to hold when k0 = 1 or k0 = 2 even without the
condition of squarefreeness. So F = F0 + F1 + F2.
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(4) n ≥ 3. This is because there exists an explicit hitting set of size dO(1) for constant-variate
polynomials of degree at most d. This follows from either Kronecker substitutions or explicit
hitting set constructions for sparse polynomials [KS01].

(5) F0 is squarefree. Item 3 of Theorem 5.4 states that some Fi is squarefree. So this assumption
can be guaranteed by permuting the summands Fi.

(6) The GCD of F0, F1, and F2 is 1. This is because we can take out the GCD of F0, F1, and F2,
if it is nontrivial, from each Fi. See [Gup14] for a more detailed discussion.

(7) fi,j is an irreducible non-constant polynomial for i = 0, 1, 2 and j ∈ [mi]. This can be guaran-
teed by replacing fi,j with its irreducible factors over F, and absorbing the constant fi,j into
other factors.

(8) There exists j0 ∈ [m0] such that f0,j0 does not divide any polynomial in {F1, F2, F1 + F2}. By
permuting the factors of F0, we may assume, without loss of generality, that j0 = 1.

Assumption (8) is justified by the following lemma.

Lemma 5.5. There exists an explicit (nd)Oδ(1)-sized hitting set for all F ∈ Cn,d,3,δ,F satisfying
Assumptions (1)–(7) and the additional assumption that F0 has factor f0,j dividing some polynomial
in {F1, F2, F1 + F2}.

Proof. If F1 + F2 = cF0 for some c ∈ F, then F = F0 + F1 + F2 = (c+ 1)F0, which is a product of
polynomials of degree at most δ. This is the case where k0 = 1, which is already solved as mentioned.
So we assume this is not the case. In particular, F1 +F2 ̸= 0. Then, deg(F1 +F2) = deg(F0) = d0.
As F1 +F2 is not of the form cF0 with c ∈ F but has degree d0 = deg(F0), we see that F0 does not
divide F1 +F2. As F0 =

∏m0
j=1 f0,j is squarefree, we conclude that for some j ∈ [m0], the factor f0,j

does not divide F1 + F2. Fix such j.
By assumption, f0,j divides F1 or F2, but not both since it does not divide F1 + F2. By

symmetry, we may assume f0,j divides F1 but not F2. By Assumption (7), V (f0,j) is an irreducible
hypersurface of An. As f0 divides F1, we have V (f0,j , F1) = V (f0,j) and therefore its codimension
in An equals one. On the other hand, as f0 does not divide F2 =

∏m2
i=1 f2,i, the codimension of

V (f0,j , f2,i) in An equals two for all i ∈ [m2]. We also have deg(V (f0,j)) = deg(f0,j) ≤ δ and
deg(V (f0,j , f2,i)) ≤ δ2 for i ∈ [m2] by Bézout’s inequality.

Guo [Guo24, Theorem 1.6] showed how to explicitly construct a set H of affine planes in An

of size at most nO(δ2)dO(1) such that for at least one P ∈ H, we have dim(V (f0,j) ∩ P ) = 1 and
dim(V (f0,j , f2,i) ∩ P )) = 0 for all i ∈ [m2]. Fix such P . Then

dim(V (f0,j , F1) ∩ P ) = dim(V (f0,j) ∩ P ) = 1

and

dim(V (f0,j , F2) ∩ P ) = dim
(

m2⋃
i=1

(V (f0,j , f2,i) ∩ P )
)

= max
i∈[m2]

(dim(V (f0,j , V2,i) ∩ P )) = 0.

Note that this implies that F1 +F2 is not identically zero when restricting to V (f0,j)∩P , since
otherwise we would have

V (f0,j , F1) ∩ P = V (f0,j) ∩ P ∩ V (F1) = V (f0,j) ∩ P ∩ V (−F2) = V (f0,j , F2) ∩ P,
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contradicting the fact that dim(V (f0,j , F1) ∩ P ) ̸= dim(V (f0,j , F2) ∩ P ).
As f0,j divides F0, we have F = F0 + F1 + F2 ≡ F1 + F2 ̸≡ 0 when restricting to V (f0,j) ∩ P .

So F is not identically zero on P . As F restricted to P is a bivariate polynomial of degree
deg(F ) = d0 ≤ d, we know how to construct an explicit hitting set of size dO(1) on P for F . Finally,
while we do not know which affine plane P ∈ H works, we could construct an explicit hitting set
for each affine plane in H and then take their union as the final hitting set, whose size is at most
|H| · dO(1) ≤ nO(δ2)dO(1).

From now on, we assume Assumptions (1)–(8). Next, we introduce the projective analogue of
Definition 5.1.

Definition 5.6 (Restriction to a generic projective plane). f ∈ F[X] = F[X1, . . . , Xn] be a homo-
geneous polynomial. Define proj.res(f) to be the homogeneous polynomial

f
(
Y0,1Ẑ0 + Y1,1Ẑ1 + Y2,1Ẑ2, . . . , Y0,nẐ0 + Y1,nẐ1 + Y2,nẐ2

)
∈ F[Y][Ẑ0, Ẑ1, Ẑ2] ⊆ K[Ẑ0, Ẑ1, Ẑ2].

(14)

Consider the projective space P2
K over K = F(Y0,1, Y1,1, Y2,1, . . . , Y0,n, Y1,n, Y2,n) with homoge-

neous coordinates Ẑ0, Ẑ1, and Ẑ2. For i = 0, 1, 2, let Ui
∼= A2

K be the affine open chart of P2
K defined

by Ẑi ̸= 0.
The homogeneous polynomial proj.res(f0,1) defines a projective hypersurface C ⊆ P2

K, which
is also a projective curve. Identify U0 with A2

K and let Z1 = Ẑ1/Ẑ0 and Z2 = Ẑ2/Ẑ0 be the
coordinates of U0. By Definition 5.1 and Definition 5.6, C ∩ U0 ⊆ U0 is defined precisely by the
polynomial res(f0,1). By Assumption (7), f0,1 is irreducible over F. So by Lemma 5.3, res(f0,1) is
absolutely irreducible. Thus, the affine curve C∩U0 and the projective curve C are both absolutely
irreducible.

Let g = proj.res(F1)/proj.res(F2), which is a homogeneous rational function of degree deg(F1)−
deg(F2) = 0 on the projective space P2

K. By Assumption (8), f0,1 divides neither F1 nor F2. So
proj.res(f0,1) divides neither proj.res(F1) nor proj.res(F2). This follows from the fact that for any
homogeneous polynomial P ∈ F[X], we can recover P from proj.res(P ) via

P (X1, . . . , Xn) = (proj.res(P ))|
Y0,i=Xi,Y1,i=Y2,i=0,Ẑ0=Ẑ1=Ẑ2=1 for i∈[n]

So g restricts to a nonzero rational function g|C ∈ K(C)× on the projective curve C.
We start with the easy case:

Lemma 5.7. There exists an explicit set S ⊆ Fn of size nO(δ2)dO(1) independent of F such that,
if the restriction7 of g = proj.res(F1)/proj.res(F2) to the normalization C̃ ∩ Ui of C ∩ Ui is regular
for i = 0, 1, 2, then S is a hitting set for F .

Proof. Suppose the restriction of g = proj.res(F1)/proj.res(F2) to C̃ ∩ Ui is regular for i = 0, 1, 2.
These normalizations C̃ ∩ Ui with i = 0, 1, 2 glue together to form the normalization C̃ of C; see
[Eis95, Proposition 4.13] and the discussion thereafter. Then g|C is a regular function on C̃.

By Lemma 5.2, even after changing the base field K to K, the coordinate ring K[C ∩ Ui] is an
integral domain, and so is its integral closure ˜K[C ∩ Ui]. This means C̃ is geometrically integral

7The restriction of g to C̃ ∩ Ui means first restricting g to C ∩ Ui, and then viewing it as a (rational) function on
C̃ ∩ Ui. Note that C ∩ Ui and C̃ ∩ Ui share the same function field, Frac(K[C ∩ Ui]).
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[Sta25, Tag 05DW, Tag 0366]. Moreover, C̃ is projective and hence proper over K.8 Any regular
function on a geometrically integral and proper variety lives in the base field [Sta25, Tag 0BUG].
So g|

C̃
∈ K. It follows that g|C ∈ K = F(Y).

View F0, F1, F2 as polynomials on An
F. Let H be the irreducible hypersurface in An

F defined
by f0,1. As f0,1 divides neither F1 nor F2, we know F1/F2 restricts to a nonzero rational function
(F1/F2)|H ∈ F(H) on H.

Assume (F1/F2)|H ̸∈ F. Then for a general point x = (a,b, c) ∈ F3n, we have

1. a,b, c ∈ Fn are linearly independent.

2. g|C is regular at x.

3. The affine line passing through a and b intersects H at some point u.

4. The affine line passing through a and c intersects H at some point v.

5. F1/F2 is regular at u and v but (F1/F2)(u) ̸= (F1/F2)(v).

Fix such x = (a,b, c). We may write u = αa + (1− α)b and v = βa + (1− β)c for some α, β ∈ F.
By definition, as g|C(x) ∈ K does not depend on (Ẑ0, Ẑ1, Ẑ2), we have

(F1/F2)(u) = proj.res(F1)
proj.res(F2)

∣∣∣∣
Y=x,(Ẑ0,Ẑ1,Ẑ2)=(α,1−α,0)

= g|C(x),

and similarly,
(F1/F2)(v) = proj.res(F1)

proj.res(F2)

∣∣∣∣
Y=x,(Ẑ0,Ẑ1,Ẑ2)=(β,0,1−β)

= g|C(x).

So (F1/F2)(u) = (F1/F2)(v), contradicting the fact that (F1/F2)(u) ̸= (F1/F2)(v).
Therefore, (F1/F2)|H ∈ F. Denote (F1/F2)|H by γ. The facts that (F1/F2)|H = γ, H is defined

by f0,1, and f0,1 divides F0 imply that

F = F0 + F1 + F2 ≡ F1 + F2 ≡ (1 + γ)F2 = (1 + γ)
m2∏
i=1

f2,i (mod f0,1). (15)

If 1 + γ = 0, then by (15), F1 + F2 would be divisible by f0,1, contradicting Assumption (8). So
1 + γ ̸= 0. Therefore, by (15),

V (f0,1, F1 + F2) =
m2⋃
i=1

V (f0,1, f2,i),

where the degree of each V (f0,1, f2,i) in An
F is bounded by δ2 by Bézout’s inequality.

As f0,1 does not divide F2, the codimension of each V (f0,1, f2,i) is exactly two. By [Guo24,
Theorem 1.6], there exists an explicit set H of affine planes in An

F of size at most nO(δ2)dO(1) such
that for at least one affine plane P ∈ H, dim(V (f0,1, f2,i) ∩ P )) = 0 for all i ∈ [m2]. This implies
that

∏m2
i=1 f2,i is nonzero when restricted to V (f0,1) ∩ P . Combining this with (15) and the fact

that 1 + γ ̸= 0, we have F ≡ (1 + γ)
∏m2

i=1 f2,i ̸≡ 0 when restricted to V (f0,1) ∩ P . In particular, F
is nonzero when restricted to P .

8Properness is a version of compactness in algebraic geometry. See [Vak24, §11.4].
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The rest of the proof is the same as the last part of the proof of Lemma 5.5: As F restricted
to P is a bivariate polynomial of degree deg(F ) = d0 ≤ d, we know how to construct an explicit
hitting set of size dO(1) on P for F . While we do not know which affine plane P ∈ H works, we
could construct an explicit hitting set for each affine plane in H and then take their union as the
final hitting set, whose size is at most |H| · dO(1) ≤ nO(δ2)dO(1).

Next, we address the harder case, where normalization is needed.

Lemma 5.8. For i = 0, 1, 2, there exists an explicit set Hi ⊆ Fn of size at most (nd)Oδ(1) indepen-
dent of F such that, if the restriction of g = proj.res(F1)/proj.res(F2) to the normalization C̃ ∩ Ui

of C ∩ Ui is not regular, then Hi is a hitting set for F .

Proof. By symmetry, it suffices to explicitly construct H0 and prove that this set satisfies the
lemma. Let C0 = C ∩ U0. Suppose the restriction of g to C̃0 is not regular. Identifying U0 with
the affine plane A2

K using the coordinates Z1 = Ẑ1/Ẑ0 and Z2 = Ẑ2/Ẑ0, one can see that the affine
curve C0 is defined by res(f0,1) in A2

K, and g = proj.res(F1)/proj.res(F2) restricted to A2
K becomes

the rational function res(F1)/res(F2). So (res(F1)/res(F2))|
C̃0

is not regular.
The coordinate ring of C0 is the integral domain A := K[Z1, Z2]/ ⟨res(f0,1)⟩. Define

g0 := res(F1) + ⟨res(f0,1)⟩
res(F2) + ⟨res(f0,1)⟩ ∈ Frac(A). (16)

As mentioned above, (res(F1)/res(F2))|
C̃0

is not regular. Algebraically, this means g0 is not in the
integral closure Ã of A.

By Lemma 2.12, there exist c1, c2 ∈ F× such that for α = c1Z1 + c2Z2, the natural ring
homomorphism K[α] → A sending α to α + ⟨res(f0,1)⟩ is injective and makes A a finite K[α]-
module. Moreover, by Lemma 5.2, for any algebraic extension L of K, AL := L[Z1, Z2]/ ⟨res(f0,1)⟩
is an integral domain of Krull dimension one. And by Lemma 5.3, Frac(A) is a finite separable
extension of K(α). By Definition 5.1 and the fact that deg(f0,1) ≤ δ, we have res(f0,1) ∈ P (δ, δ).
(Similarly, res(fi,j) ∈ P (δ, δ) for all i = 0, 1, 2 and j ∈ [mi].) So, by Theorem 4.7, there exist integers
D,D′,m, k′, e satisfying D,D′,m, k′, pe = Oδ(1), and g1, g2, h1, . . . , hk′ ∈ K(e)[T] = K(e)[T1, . . . , Tm]
such that the following hold:

(1) g1, g2, h1, . . . , hk′ ∈ P (e)(D,D′).

(2) The map

ϕ : AK(e) → K(e)[T]/ ⟨h1, . . . , hk′⟩
Zi + ⟨res(f0,1)⟩ 7→ gi + ⟨h1, . . . , hk′⟩ , i = 1, 2.

defines an injective K(e)-linear ring homomorphism.

(3) K(e)[T]/ ⟨h1, . . . , hk′⟩ is isomorphic to the integral closure ÃK(e) of AK(e) , and this isomorphm
composed with ϕ is the natural inclusion of AK(e) in its integral closure.

We claim that g0 is not in the integral closure ÃK(e) of AK(e) either. To see this, assume to the
contrary that g0 ∈ ÃK(e) . Then it is integral over AK(e) . And AK(e) = A⊗K K(e) is integral over A.
So by Lemma 2.7. g0 is integral over A, contradicting the fact that g0 ̸∈ Ã. Therefore, g0 ̸∈ ÃK(e) .
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By Lemma 2.6, we have

ÃK(e) =
⋂

maximal ideal m⊆ÃK(e)

(ÃK(e))m.9 (17)

By (17), for some maximal ideal m of ÃK(e) , we have g0 ̸∈ (ÃK(e))m. Fix such m. As ÃK(e)

is integrally closed, the one-dimensional local ring (ÃK(e))m is a discrete valuation ring and is
equipped with a normalized valuation ordm(·). An element f ∈ Frac(AK(e)) is in (ÃK(e))m if and
only if ordm(f) ≥ 0.

By (16) and the fact that g0 ̸∈ (ÃK(e))m, we have

0 ≤ ordm(res(F1) + ⟨res(f0,1)⟩) < ordm(res(F2) + ⟨res(f0,1)⟩). (18)

For i = 1, 2 and j ∈ [mi], let ki,j = ordm(res(fi,j) + ⟨res(f0,1)⟩). Then for i = 1, 2, since Fi =∏mi
j=1 fi,j , we have

ordm(res(Fi) + ⟨res(f0,1)⟩) =
∑

j∈[mi]
ordm(res(fi,j) + ⟨res(f0,1)⟩) =

∑
j∈[mi]

ki,j . (19)

We know that ÃK(e) may be identified with K(e)[T]/ ⟨h1, . . . , hk′⟩ such that ϕ becomes the
inclusion AK(e) ↪→ ÃK(e) . We now consider the latter ring K(e)[T]/ ⟨h1, . . . , hk′⟩ for computational
purposes. Let m̂ the the maximal ideal of K(e)[T] such that m̂/ ⟨h1, . . . , hk′⟩ corresponds to the
maximal ideal m of ÃK(e) .

Consider i ∈ {0, 1, 2} and j ∈ [mi]. By definition, we have ϕ(res(fi,j)) = res(fi,j)(g1, g2) +
⟨h1, . . . , hk′⟩. As res(fi,j) ∈ P (δ, δ) and g1, g2 ∈ P (e)(D,D′), where D,D′, pe = Oδ(1), we have
res(fi,j)(g1, g2) ∈ P (e)(d1, d2) for some d1, d2 = Oδ(1).

By (18) and (19), there exists j0 ∈ [m2] such that k2,j0 > 0, implying that res(f2,j0) ∈ m. So
ϕ(res(f2,j0)) ∈ m̂/ ⟨h1, . . . , hk′⟩, or equivalently, res(fi,j)(g1, g2) ∈ m̂ + ⟨h1, . . . , hk′⟩. Therefore, m̂
contains the zero-dimensional ideal I := ⟨h1, . . . , hk′ , res(fi,j)(g1, g2)⟩. By increasing e if necessary
as in the proof of Lemma 4.10, we may assume that the K(e)[T]/m̂ is a finite separable extension
over K(e). By Lemma 3.20, m̂ admits a Gröbner basis G ⊆ P (e)(d3, d4) for some d3, d4 ∈ Oδ(1).

Let m = m̂/ ⟨h1, . . . , hk′⟩. The normalized valuation ordm of (ÃK(e))m corresponds to a normal-
ized valuation of the discrete valuation ring

B := (K(e)[T]/ ⟨h1, . . . , hk′⟩)m,

which we again denote by ordm by a slight abuse of notation. As ordm is normalized and G generates
the ideal m̂, there exists u ∈ G such that u := u+ ⟨h1, . . . , hk′⟩ satisfies ordm(u) = 1.

Consider i ∈ {1, 2} and j ∈ [mi]. By the structure of discrete valuation rings, the element

ϕ(res(fi,j) + ⟨res(f0,1)⟩) = res(fi,j)(g1, g2) + ⟨h1, . . . , hk′⟩

equals uki,j multiplied by a unit of B. Combining this with the fact that any element of K(e)[T]
not in m̂ is invertible modulo m̂ (since m̂ is a maximal ideal), shows that there exists ti,j ∈ K(e)[T]
that is invertible modulo m̂ such that

ti,j(res(fi,j)(g1, g2))− uki,j ∈ uki,j m̂ + ⟨h1, . . . , hk′⟩ . (20)
9Alternatively, (17) follows from Algebraic Hartogs’s Lemma [Vak24, 13.5.19], which extends to higher-dimensional

normal varieties.
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We can find ti,j from (20) by applying Lemma 3.15 with f = uki,j . Note that by Lemma 2.14, we
have ki,j = Oδ(1). Given that the complexity of the data describing the other terms in (20) also
only depends on δ, we see that ti,j ∈ P (e)(d5, d6) for some d5, d6 ∈ Oδ(1).

Recall that G ⊆ P (e)(d3, d4) is a Gröbner basis of m̂. By Lemma 3.11 and (20), we may write

ti,j(res(fi,j)(g1, g2)) = uki,j

1 +
∑
g∈G

ai,j,gg

+
k′∑

ℓ=1
bi,j,ℓhℓ, (21)

with ai,j,g, bi,j,ℓ ∈ P (e)(d7, d8) for g ∈ G and ℓ ∈ [k′], where d7, d8 ∈ Od(1).
Recall that ti,j is invertible modulo m̂. By applying Lemma 3.15 with f = 1, we may find

si,j ∈ K(e)[T] such that
si,jti,j = 1 +

∑
g∈G

ci,j,gg. (22)

with si,j , ci,j,g ∈ P (e)(d9, d10) for all g ∈ G, where d9, d10 ∈ Od(1).
Similarly, as u ∈ m̂ and ⟨h1, . . . , hk′⟩ ⊆ m̂, by Lemma 3.11, we can write

u =
∑
g∈G

dgg and hℓ =
∑
g∈G

eℓ,gg for ℓ ∈ [k′] (23)

with dg, eℓ,g ∈ P (e)(d11, d12) for all g ∈ G and ℓ ∈ [k′], where d11, d12 ∈ Od(1).
Suppose Q is a polynomial over K(e), and a ∈ F3n is a point such that none of the denominators

of the coefficients of Q, which are polynomials in Y1/pe , vanishes after assigning a to Y1/pe . Then
the resulting polynomial after the assignment Y1/pe ← a is a well-defined polynomial over F.
Denote this polynomial by Q|a.

For convenience, for a set S ⊆ F[Y1/pe ] and a ∈ F3n, we say a is a common non-root of S if
every Q ∈ S is non-vanishing at a.

We will construct a set S∗ ⊆ F[Y1/pe ] of size Oδ(d), where d = deg(F ), such that res(F1+F2)|a ̸≡
0 (mod res(f0,1)|a) for any common non-root a of S∗.

First, we construct a subset S0 of S∗ of size Oδ(d) as follows: For all i = 1, 2, j ∈ [mi], and
all polynomials over K(e) that appear in (21), (22), or (23), add the denominators of all their
coefficients to S0. Define the ideal

m̂|a := ⟨{g|a : g ∈ G}⟩

of F[T]. Then by (21), (22), and (23), for a common non-root a of S0, we have

(ti,j(res(fi,j)(g1, g2))) |a =

uki,j

1 +
∑
g∈G

agg

+
k′∑

ℓ=1
bℓhℓ

∣∣∣∣∣∣
a

, (24)

(si,jti,j)|a =

1 +
∑
g∈G

cgg

∣∣∣∣∣∣
a

, (25)

and
u|a ∈ m̂|a and ⟨h1|a, . . . , hk′ |a⟩ ⊆ m̂|a. (26)
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Let ni = ordm(res(Fi) + ⟨res(f0,1)⟩) for i = 1, 2. Then n1 < n2 by (18) and ni =
∑mi

j=1 ki,j for
i = 1, 2 by (19). Taking the product of (24) over all j ∈ [mi], we have that for i = 1, 2, ∏

j∈[mi]
ti,j

 res(Fi)(g1, g2)

∣∣∣∣∣∣
a

− uni |a ∈ uni |a · m̂|a + ⟨h1|a, . . . , hk′ |a⟩ . (27)

We also need the following two claims, with a proof for one and a proof sketch for the other
provided later.

Claim 5.9. There exists a set S1 ⊆ F[Y1/pe ] ∩ C(e)(D1) of size Oδ(1), where D1 = Oδ(1), such
that for any common non-root a ∈ F3n of S0 ∪ S1, it holds that 1 ̸∈ m̂|a.

Claim 5.10. There exists a set S2 ⊆ F[Y1/pe ]∩C(e)(D2) of size Oδ(1), where D2 = Oδ(1), such that
for any common non-root a ∈ F3n of S0∪S2, the element u|a +⟨h1|a, . . . , hk′ |a⟩ is a non-zero-divisor
of F[T]/ ⟨h1|a, . . . , hk′ |a⟩.

Let S∗∗ = S0 ∪ S1 ∪ S2. Consider any common non-root a ∈ F3n of S∗∗. Let

m|a := m̂|a/ ⟨h1|a, . . . , hk′ |a⟩ ,

which is an ideal of Ra := F[T]/ ⟨h1|a, . . . , hk′ |a⟩. By Claim 5.9, we have 1 ̸∈ m|a, i.e., m|a ⊊ Ra.
Let u|a := u|a + ⟨h1|a, . . . , hk′ |a⟩ ∈ Ra. By Claim 5.10, u|a is a non-zero-divisor of Ra, and so

are its powers. Therefore, for any integer r ≥ 0, we have an isomorphism between the (Ra/m|a)-
modules

×(u|a)r : Ra/m|a → ⟨(u|a)r⟩ /((u|a)rm|a)
x+ m|a 7→ (u|a)rx+ (u|a)rm|a.

As 1 ̸∈ m|a, using the above isomorphism, we see that (u|a)r is in ⟨(u|a)r⟩ but not in (u|a)r ·m|a
for r ≥ 0.

Let U ⊆ Ra be the set of all finite products of elements in {t2,j |a + ⟨h1|a, . . . , hk′ |a⟩ : j ∈
[m2]}. By (25), elements in U are already invertible modulo m|a. So localizing Ra/m|a and
⟨(u|a)r⟩ /((u|a)rm|a) with respect to the multiplicatively closed set U does not change these two
modules. The argument in the previous two paragraphs then shows that (u|a)r is not in the
localization U−1((u|a)rm|a) for r ≥ 0.

In particular, by (27), we have ∏
j∈[m1]

t1,j

 res(F1)(g1, g2)

∣∣∣∣∣∣
a

+ ⟨h1|a, . . . , hk′ |a⟩ ̸∈ U−1((u|a)n1 ·m|a).

It follows that
res(F1)(g1, g2)|a + ⟨h1|a, . . . , hk′ |a⟩ ̸∈ U−1((u|a)n1 ·m|a). (28)

As n2 > n1 and u|a ∈ m|a (which holds by (26)), it also follows from (27) that ∏
j∈[m2]

t2,j

 res(F2)(g1, g2)

∣∣∣∣∣∣
a

+ ⟨h1|a, . . . , hk′ |a⟩ ∈ ⟨(u|a)n2⟩ ⊆ (u|a)n1 ·m|a.
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Localizing with respect to U makes
(∏

j∈[m2] t2,j

)
+ ⟨h1|a, . . . , hk′ |a⟩ invertible. Therefore,

res(F2)(g1, g2)|a + ⟨h1|a, . . . , hk′ |a⟩ ∈ U−1((u|a)n1 ·m|a). (29)

It follows from (28) and (29) that

res(F1 + F2)(g1, g2)|a ̸∈ ⟨h1|a, . . . , hk′ |a⟩ . (30)

Finally, we need the following claim, whose proof is given later.

Claim 5.11. There exists a set S3 ⊆ F[Y1/pe ] ∩ C(e)(D3) of size Oδ(d), where D3 = Oδ(1),
such that for any common non-root a ∈ F3n of S0 ∪ S3, the polynomial res(fi,j)|a ∈ F[Z1, Z2] is
well-defined for all i ∈ {0, 1, 2} and j ∈ [mi], and the kernel of the F-linear ring homomorphism
F[Z1, Z2]→ F[T]/ ⟨h1|a, . . . , hk′ |a⟩ sending Zi to gi|a + ⟨h1|a, . . . , hk′ |a⟩ contains ⟨res(f0,1)|a⟩.

We define S∗ := S∗∗ ∪ S3. Then for any common non-root a of S∗, we have that res(F0)|a,
res(F1)|a, and res(F2)|a are well-defined by Claim 5.11. Morever, by (30) and Claim 5.11, res(F1 +
F2)|a ̸≡ 0 (mod ⟨res(f0,1)|a⟩). So

res(F )|a = res(F0 + F1 + F2)|a ≡ res(F1 + F2)|a ̸≡ 0 (mod ⟨res(f0,1)|a⟩)

It follows that res(F )|a ̸= 0. In other words, F is not identically zero when restricted to Pa,
which is the affine plane A2

F ⊆ An
F determined by the parameters a = (a0,1, . . . , a2,n) via the map

(z1, z2) 7→ (a0,1 + a1,1z1 + a2,1z2, . . . , a0,n + a1,nz1 + a2,nz2).
As F restricted to Pa is a bivariate polynomial of degree at most d, we can construct a hitting

set Ha ⊆ Pa ⊆ An
F of size dO(1) independent of F , assuming a common non-root a of S∗ is given.

We need a to be a common non-root of all the elements in S∗, where |S∗| = Oδ(d). Note that the
elements in S∗ are 3n-variate polynomials of degree Oδ(1) in Y1/pe . Using the deterministic black-
box PIT algorithm for sparse polynomials in [KS01], even without knowing F , we may construct
an ε-hitting set H of size at most dO(1)nOδ(1) for the polynomials in S∗, where ε < 1/|S∗|. By the
union bound, H is guaranteed to contain a common non-root of S∗. The final hitting set H0 is
then

⋃
a∈HHa. Its size is dO(1)nOδ(1) ≤ (nd)Oδ(1).

Proof of Theorem 5.4. The theorem follows by combining Lemma 5.7 and Lemma 5.8.

Finally, we prove Claim 5.9, Claim 5.10, and Claim 5.11.

Proof of Claim 5.9. Consider a ∈ S0, so that g|a is well-defined for g ∈ G. Note that if 1 ∈ m̂|a,
by Lemma 3.9, we can write 1 as an F-linear combination of polynomials in

U := {mg|a : g ∈ G,m is a monomial of degree at most d0}

for some sufficiently large d0 = Oδ(1). View 1 and the polynomials in U as (row) vectors of
coefficients. These vectors then form a matrix M |a. The statement that 1 ̸∈ m̂|a is equivalent to
the statement that the row of M |a corresponding to 1 is not in the span of the other rows over F.

The same argument works over K(e) with mg|a replaced by mg, allowing us to form a matrix
M over K(e). Then 1 ̸∈ m̂ is equivalent to the statement that the row of M corresponding to 1 is
not in the span of the other rows over K(e).

As we do know that 1 ̸∈ m̂, over K(e), we can find a nonsingular minor M0 of maximal size, and
it involves the row corresponding to 1. Note that det(M0) ∈ K(e) is a nonzero rational function
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in Y1/pe whose denominators P and numerators Q have degree Oδ(1). Suppose P (a), Q(a) ̸= 0.
Then the determinant of the corresponding minor M0|a of M |a is nonzero too, which, combined
with Lemma 3.9, implies that 1 ̸∈ m̂|a.

Therefore, we can let S1 = {P,Q}.

Proof sketch of Claim 5.10. u|a + ⟨h1|a, . . . , hk′ |a⟩ is a zero-divisor of F[T]/ ⟨h1|a, . . . , hk′ |a⟩ if and
only if there exists v ∈ F[T ] such that

u|a · v ∈ ⟨h1|a, . . . , hk′ |a⟩ but v ̸∈ ⟨h1|a, . . . , hk′ |a⟩ . (31)

The ideal of v ∈ F[T] satisfying u|a · v ∈ ⟨h1|a, . . . , hk′ |a⟩ is the ideal quotient (⟨h1|a, . . . , hk′ |a⟩ :
⟨u|a⟩), and a Gröbner basis of it can be computed via [AL94, Lemma 2.3.10 and Lemma 2.3.11].
Using arguments based on Gröbner bases, one can see that if v satisfying (31) exists, it exists with
degT(v) ≤ d0 for some d0 ∈ Oδ(1).

Let W (resp. W |a) be the Oδ(1)-dimensional space of polynomials in K(e)[T] (resp. F[T]) of
degree at most d0. Let W1 ⊆ W (resp. W1|a ⊆ W |a) be the subspace of v satisfying u · v ∈
⟨h1, . . . , hk′⟩ (resp. u|a · v ∈ ⟨h1|a, . . . , hk′ |a⟩). Let W2 ⊆ W (resp. W2|a ⊆ W |a) be the subspace
of v satisfying v ∈ ⟨h1, . . . , hk′⟩ (resp. v ∈ ⟨h1|a, . . . , hk′ |a⟩).

For v ∈W1, we have u · v =
∑k′

i=1wihi for some polynomial wi of degree at most d1 = Oδ(1) by
Lemma 3.9. Viewing the coefficients of v and w1, . . . , wk′ as unknowns, we can construct a matrix
M1 representing the system of linear equations u · v =

∑k′
i=1wihi. Solve it to find a basis of W1. Its

elements, viewed as row vectors, form a matrix B1 over K(e). Similarly, we can construct a matrix
M2 representing the system of linear equations v =

∑k′
i=1wihi. Solve it to find a basis of W2. Its

elements, viewed as row vectors, form a matrix B2 over K(e).
As we know u+ ⟨h1, . . . , hk′⟩ is a non-zero-divisor of the integral domain K(e)[T]/ ⟨h1, . . . , hk′⟩,

we know W1 ⊆ W2. Add the denominators of the entries of M1,M2, B1, B2 to S2. Further add
the determinants of certain nonsingular minors of M1,M2, B2 to S2. This would guarantee that
if a is a common non-root of S0 ∩ S2, then B1|a is a basis of W1|a, B2|a is a basis of W2|a, and
W1|a ⊆ W2|a, implying that u|a + ⟨h1|a, . . . , hk′ |a⟩ is a non-zero-divisor of F[T]/ ⟨h1|a, . . . , hk′ |a⟩.
Details are omitted.

Proof of Claim 5.11. First, for all i ∈ {0, 1, 2} and j ∈ [mi], add the denominators of all the
coefficients of res(fi,j) to S3.

As res(f0,1)(g1, g2) ∈ ⟨h1, . . . , hk′⟩, by Lemma 3.11, we may write

res(f0,1)(g1, g2) =
k′∑

i=1
qihi,

where qi ∈ P (d0, d
′
0) for some d0, d

′
0 ∈ Oδ(1). Add the denominators of all the coefficients of

q1, . . . , qk′ to S3. Then res(f0,1)(g1, g2)|a =
∑k′

i=1 qi|ahi|a. So res(f0,1)(g1, g2)|a ∈ ⟨h1|a, . . . , hk′ |a⟩.
It follows that the F-linear ring homomorphism F[Z1, Z2] → F[T]/ ⟨h1|a, . . . , hk′ |a⟩ sending Zi to
gi|a + ⟨h1|a, . . . , hk′ |a⟩ maps res(f0,1)|a to zero, as desired.

6 Conclusions and Future Directions
In this paper, we present deterministic polynomial-time black-box PIT algorithms for Σ[3]ΠΣΠ[δ]

circuits over arbitrary fields, under a squarefreeness assumption. Along the way, we introduce new
techniques and establish a novel connection between PIT and normalization.
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We emphasize that our approach should not be viewed as entirely disjoint from the Sylvester–
Gallai-based line of work. Rather, we see it as complementary and potentially opening up new
directions.

A natural and important question is whether the squarefreeness condition can be removed. We
suspect that normalization alone is insufficient for this purpose and may need to be combined with
other advanced tools, such as those developed in [OS24, GOS25c]. Nevertheless, we believe our
approach is both valuable and promising. In particular, to the best of our knowledge, no prior
deterministic PIT algorithms, even partial results, were known for Σ[k]ΠΣΠ[δ] circuits in small
positive characteristic before our work.

Another interesting direction is to identify special cases in which some of the algebraic com-
putation tasks involved in our method can be performed more efficiently. A recent result in this
vein was obtained by Garg, Oliveira, and Saxena [GOS25a], who showed that certain instances
of primality testing lie in PSPACE or the polynomial hierarchy (some conditionally, assuming the
Generalized Riemann Hypothesis).
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A Proof of Lemma 3.6
We now prove Lemma 3.6. First, we introduce some notation. Let R = F[Y] ⊆ K = F(Y). For an
irreducible polynomial a ∈ R and b ∈ K×, define orda(b) to be the unique integer r such that b can be
written as b = ar s

t , where s ∈ R and t ∈ R \{0} are not divisible by a. For a univariate polynomial
f ∈ K[X] \ {0} and an irreducible polynomial a ∈ R in Y, define orda(f) := minc(orda(c)), where
c ranges over the nonzero coefficients of f . Finally, denote by cont(f) the content of f , defined as

cont(f) :=
∏
a

aorda(f)

with the product taken over the irreducible polynomials a ∈ R such that orda(f) ̸= 0. If two such
polynomials differ by a unit factor, only one representative is included in the product. Note that
cont(f) is well-defined up to multiplication by a unit of R. Also note that by definition, f ∈ R[X]
as long as cont(f) ∈ R.

We need the following version of Gauss’s lemma, which holds more generally when R is a UFD
[Lan93, Theorem 2.1].

Lemma A.1 (Gauss’s lemma). cont(gh) = cont(g)cont(h) for nonzero univariate polynomials
g, h ∈ K[X].

Proof of Lemma 3.6. Consider the Kronecker map ϕ : K[X1, . . . , Xn]→ K[X], which is the K-linear
ring homomorphism sending Xi to X(d+1)i for i. We have ϕ(f) = ϕ(g) · ϕ(f/g). The terms of f
(resp. g) correspond one-to-one to the terms of ϕ(f) (resp. ϕ(g)), preserving coefficients. And the
degree of ϕ(f) is at most (d+ 1)n = Od,n(1). This reduces the problem to the univariate case.

Now we prove the lemma for the univariate case. Let f ∈ K[X] be a nonzero polynomial in
P (d, d′). Let g be a factor of f . Recall that R = F[Y]. Let s be the least common multiple of all
the denominators of the nonzero coefficients of f , so that sf ∈ R[X]. Let t = cont(sf) ∈ R \ {0}.
Then cont( s

t f) = 1. Note that the coefficients of s
t f are polynomials in F[Y] of degree at most

d′′ := (d + 1)d′. Let c = 1
cont(g) ∈ K×. Then cont(cg) = 1. Let h = s

ct ·
f
g , so that s

t f = (cg)h. As
cont( s

t f) = 1 and cont(cg) = 1, we have cont(h) = 1 by Lemma A.1. In particular, s
t f , cg, and h

are all in R[X].
Write cg =

∑deg(cg)
i=0 aiX

i and h =
∑deg(h)

j=0 bjX
i with ai, bj ∈ R. LetD = max0≤i≤deg(cg) degY(ai)

and D′ = max0≤j≤deg(h) degY(bj). Choose the maximal i0 ∈ {0, 1, . . . ,deg(cg)} such that ai0 has a
nonzero degree-D homogeneous component, and let H be this homogeneous component. Similarly,
choose the maximal j0 ∈ {0, 1, . . . ,deg(h)} such that bj0 has a nonzero degree-D′ homogeneous
component, and let H ′ be this homogeneous component. By the maximality of D, D′, i0, and j0,
the degree-(D+D′) homogeneous component of the coefficient of Xi0+j0 in (cg) ·h = s

t f is exactly
H ·H ′ ̸= 0. However, we know that the coefficients of s

t f all have degrees at most d′′. So

D +D′ ≤ d′′.

Therefore, the coefficients of cg are all polynomials in F[Y] of degree at most D ≤ d′′. In particular,
cg ∈ P (d, d′′), where d′′ = (d+ 1)d′ ∈ Od,d′(1).
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