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Abstract

Motivated by questions concerning the multilinear and homogeneous complexity of the elementary
symmetric polynomials, we prove the following results:

We first show that by making small modifications to the nonzero coefficients of the degree-K, N-variate
elementary symmetric polynomial σN,K, one obtains a polynomial that can be computed by a monotone
formula of size KO(logK) ·N.

As a corollary, we show that a result of Raz [Raz13] concerning the homogenization of algebraic multi-
linear or monotone formulas is tight.

Another corollary is that the monotone bounded rigidity of the inclusion matrix between K-subsets and
N− K subsets of a universe of size N is small.
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1 Introduction

This work is motivated by questions concerning the homogenization of algebraic formulas and the mul-
tilinear homogeneous formula complexity of elementary symmetric polynomials. Results related to the
homogenization and multilinearization of these polynomials, as well as generalized symmetric polynomi-
als, have played a crucial role in recent lower bound proofs for small-depth circuits [LST24]. Understanding
their complexity is therefore of significant importance.

The first nontrivial result on the homogenization of algebraic formulas was established by Raz [Raz13].

Theorem 1.1 ([Raz13]). Let Φ be a formula of size s over a field F, computing an N-variate homogeneous polynomial
f ∈ F[x] of degree K. Then there exists a homogeneous formula Φ ′ over F computing f, of size poly

(
s,
(
K+logs

logs

))
.

An analysis of the proof of Theorem 1.1 reveals that if the original formula is multilinear (and/or mono-
tone) then the resulting homogeneous formula is multilinear (and/or monotone) as well.

Theorem 1.2 (Implicit in [Raz13]). Let F be a field.1 Let Φ be a multilinear (monotone) formula of size s computing
an N-variate homogeneous multilinear (monotone) polynomial f of degree K over F. Then, there is a homogeneous
multilinear (monotone) formula Φ ′ computing f of size poly

(
s,
(
K+logs

logs

))
over F.

In [FLST24] Fournier, Limaye, Srinivasan and Tavenas obtained the following improvement to Theo-
rem 1.1, for a certain parameter’s regime.

Theorem 1.3 (Theorem 5 in [FLST24]). Let F be a field of characteristic zero or of large enough characteristic.
Assume that Φ is an algebraic formula (with unbounded fan-in) of size s and depth ∆ computing a homogeneous
polynomial f of degree K over F. Then f is also computed by a homogeneous formula Φ ′ of size s · KO(∆+logK).

This improves upon Theorem 1.1 when ∆ = o(log s) and K = so(1). However, we note that the proof
technique of [FLST24] is inherently non-multilinear and non-monotone, even when starting from a mono-
tone multilinear formula.

The following questions regarding the tightness of Theorem 1.1, 1.2 and 1.3 are still open.

Question 1.4. Can the homogenization bounds of Raz or Fournier et al. be improved when the original formula is
multilinear or monotone?

Question 1.5. Are there nontrivial cases where the bounds in Theorem 1.1, Theorem 1.2, or Theorem 1.3 are tight?

Another motivation comes from trying to understand the complexity of multilinear homogeneous for-
mulas for the elementary symmetric polynomials. The breakthrough result of Limaye, Srinivasan and
Tavenas [LST24] relies on efficient set-multilinearization and homogenization, in small depth, of (extended)
elementary symmetric polynomials. Hrubeš and Yehudayoff obtained the following results.

Theorem 1.6 ([HY11]). Let σN,K(x) =
∑

T∈([N]
K )

∏
i∈T xi.

1. Over any field F, such that char(F) > K, σN,K has a homogeneous formula of size KO(logK) ·N.

2. Over any field F, every homogeneous multilinear formula computing σN,K has size at least KΩ(logK) ·N.

3. Over F = Q, , for K = O(logN), σN,K can be computed by a monotone formula of size poly(N).

Note that the lower bound on the multilinear homogeneous size is essentially the same as the upper
bound on the homogeneous formula size. This motivated Hrubeš and Yehudayoff to ask whether σN,K has
a homogeneous multilinear formula of size poly(N)KO(logK). An even stricter restriction than homogeneity
and multilinearity is monotonicity.

Question 1.7. Can the monotone formula complexity of the elementary symmetric polynomial σN,K be upper bounded
by poly(N)KO(logK)?

1When speaking of monotone formulae we only consider subfields of R.
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Hrubeš and Yehudayoff say that two polynomials are weakly equivalent if they have the same support.
They mention that the proof of the lower bound in Theorem 1.6(2) actually holds for every polynomial
which is weakly equivalent to σN,K. In other words, every polynomial that contains exactly all the multi-
linear monomials of degree K, cannot be computed by a homogeneous multilinear formula of size smaller
than KO(logK) ·N.

Theorem 1.8 ( [HY11]). Let f =
∑

T∈([N]
K ) cT ·

∏
i∈T xi, where cT ̸= 0 for all T , be a polynomial in F[x]. Then,

every homogeneous multilinear formula computing f has size at least KΩ(logK) ·N.

1.1 Results
We construct a polynomial fN,K with the same support as σN,K, whose nonzero coefficients lie in the interval
[0.99, 1]. We prove that fN,K can be computed by a multilinear formula of size poly(N,K). Since the lower
bound of [HY11] applies to fN,K, it follows that the homogenization technique of Raz [Raz13] is tight for
multilinear formula homogenization.

This result provides a negative answer to Question 1.4 and a positive answer to Question 1.5. Moreover,
the monotone formula complexity of fN,K matches (up to polynomial blowup) the homogeneous formula
complexity of σN,K. This implies that in order to disprove Question 1.7, one would need to prove lower
bounds that fundamentally rely on all coefficients being 1.

In [Yeh19], Yehudayoff proved a monotone lower bound that depends on the actual coefficients, rather
than just the support of the polynomial. This was later improved by Srinivasan [Sri20]. As both results are
in the monotone setting, they offer hope for resolving Question 1.7, either negatively (via a lower bound) or
positively (via an explicit construction). We are unaware of any other lower bound techniques that depend
on the actual coefficients rather than the support.

We begin by showing the existence of such a polynomial fN,K that can be computed as the degree-K
homogeneous component of a small depth-3 formula.

Theorem 1.9. There is a polynomial fN,K with the same support as σN,K, and whose nonzero coefficients are in
[1 − 1/K, 1], that can be computed as the degree-K homogeneous component of a depth-3 formula, using only 0 and c

as coefficients (for some 0 < c < 1), with top fan-in O(K7 log2 N) and total degree O(K5 logN).

Applying Raz’s result (Theorem 1.1) to each multiplication gate yields, for K = Ω(logN), a homoge-
neous (and in fact monotone) formula of size N · KO(logK). This matches the lower bound of Hrubeš and
Yehudayoff (Theorem 1.8) up to constants in the exponent, thereby demonstrating the tightness of Theo-
rem 1.2. Furthermore, this implies that Theorem 1.3 cannot be improved under the additional requirement
of multilinearity, even if the original formula is multilinear.

Theorem 1.10. The polynomial fN,K from Theorem 1.9 can be computed by a monotone formula of size:

• N · KO(logK), for K ⩾ logN,

• N ·
(

1 + K
log logN

)O(log logN)

, for log logN < K < logN,

• N · poly(logN), for K < log logN.

Corollary 1.11. Theorem 1.2 is tight when K = sΩ(1). Moreover, Theorem 1.3 cannot be improved for multilinear
formulas: for K = Ω(log s) and ∆ = 3, there exists a multilinear formula Φ such that any homogeneous multilinear
formula Φ ′ computing the same polynomial must have size s · KΩ(logK).

Recall that Hrubeš and Yehudayoff asked whether σN,K can be computed by a homogeneous multilinear
formula of size poly(N) · KO(logK). Since any monotone formula for this polynomial is also homogeneous
and multilinear, Theorem 1.10 shows that resolving this question negatively would require a lower bound
that depends on the actual coefficients, not merely on the support.

By expanding each multiplication gate of the formula in Theorem 1.9 as a sum over
(
O(K5 logN)

K

)
(mono-

tone) multiplication gates of exact degree K, we obtain a monotone depth-3 formula for fN,K with (K logN)O(K)

multiplication gates. We note that an even more efficient construction is possible if we restrict to depth-3
formulas for a slightly modified polynomial:
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Theorem 1.12. There exists a polynomial gN,K with the same support as σN,K, such that each of its nonzero co-
efficients is in [0.99, 1], and that can be computed by a monotone depth-3 formula with 2O(K) logN multiplication
gates.

1.1.1 Bounded monotone rigidity

Another outcome of our results is that while the partial derivative matrix of σN,K has full rank, this is not
the case for fN,K or gN,K. As a consequence, since the coefficients of these polynomials are close to each
other, we conclude that the partial derivative matrix of σN,K has low bounded monotone rigidity. In other
words, we can change each of its entries by a small amount and reduce its rank considerably.

Definition 1.13 (Rigidity). The rigidity R(r)(A) of a matrix A is defined as

R(r)(A) = min
B

{|B|0 | rank(A− B) ⩽ r} .

In words, R(r)(A) equals the minimal number of entries of A that must be changed in order to reduce the
rank of A to r.

Definition 1.14 (Bounded Rigidity). The bounded rigidity R(θ, r)(A) of a matrix A is defined as

R(θ, r)(A) = min
B

{|B|0 | rank(A− B) ⩽ r, ∥B∥∞ ⩽ θ} .

That is, R(θ, r)(A) is the minimal number of entries of A that must be changed, by at most θ each, so that
the rank of A drops to r.

Definition 1.15 (Bounded Monotone Rigidity). The bounded monotone rigidity R(M)(θ, r)(A) of a non-
negative matrix A is defined as

R(M)(θ, r)(A) = min
B

{|B|0 | rank(A− B) ⩽ r, ∥B∥∞ ⩽ θ, support(B) ⊆ support(A)} .

In other words, R(M)(θ, r)(A) is the minimal number of nonzero entries of A that must be changed, by at
most θ each, so that the rank of A drops to r.

It is clear from the above definitions that

R(r)(A) ⩽ R(θ, r)(A) ⩽ R(M)(θ, r)(A).

Bounded rigidity has been studied in [KR98, Lok01, dW06, Ras16], primarily focusing on the bounded
rigidity of the Walsh-Hadamard matrix.2 Recall that for N a power of 2, N = 2n, the Walsh-Hadamard
matrix of order N is defined by HS,T = (−1)|S∩T | for rows and columns indexed by subsets S, T ⊂ [N].

Theorem 1.16 ([dW06]). The bounded rigidity of the Walsh-Hadamard matrix H satisfies

R(θ, r)(H) ⩾
N2(N− r)

2θN+ r(θ2 + 2θ)
.

For example, for r = N/2 and θ = 1/10, Theorem 1.16 implies that more than N2 entries must be
changed. In other words, it is not possible to reduce the rank of H to N/2 by perturbing each entry by at
most 0.1. However, Alman and Williams [AW17] showed that without the restriction on bounded changes,
the rank can drop significantly, demonstrating that H does not exhibit full rigidity.

Theorem 1.17 ([AW17]). For every ε ∈ (0, 1/2),

R
(
N1−Θ(ε2 log(1/ε))

)
(H) ⩽ N(1+ε).

2We can also discuss the monotone bounded rigidity of H + J, where J is the all-1 matrix, but the lower bounds in the bounded
case are already very strong.
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For a survey of recent results on rigidity, see [Ram20, Xie22].

Next, we consider the bounded monotone rigidity of the partial derivative matrix of σN,2K. Observe
that it is actually the inclusion matrix AN,K, defined as follows: The rows and columns of AN,K are indexed
by all subsets of [N] of size K,

(
[N]
K

)
. For two such subsets S and T , the (S, T) entry of AN,K is 1 if and only if

S ∩ T = ∅ (equivalently, if S ⊂ [N] \ T ). It is known that this matrix has full rank [Got66]. We show that by
making small changes to each nonzero entry of AN,K, we can reduce its rank to 2O(K) · logN.

Theorem 1.18. The partial derivative matrix of the polynomial gN,2K from Theorem 1.12, denoted BN,K, satisfies the
following two properties:

1. rank(BN,K) = 2O(K) · logN.

2. For every two K-sets S, T , it holds that

0 ⩽ (AN,K − BN,K)S,T <
1

100
.

Thus, for K = o(N), we can reduce the rank of AN,K to |AN,K|
o(1) by changing each nonzero coordinate

by at most 1/100.

1.2 Proof idea
Our proof is based on an idea similar to color coding. We begin by hashing the variables into M buckets
using a condenser (though random functions also work). For a fixed hash function, we sum the variables
assigned to each bucket, yielding M linear forms ℓ1, . . . , ℓM, each with 0–1 coefficients and disjoint variable
supports. Consider now the polynomial

∏M
i=1(ℓi + 1). Its degree-K homogeneous component collects

all multilinear monomials corresponding to K-tuples of variables that are hashed injectively into distinct
buckets.

Repeating this process across all seeds of the condenser ensures that each K-subset is mapped injectively
by approximately the same number of seeds. This results in a monotone depth-3 ΣΠΣ formula whose
degree-K homogeneous component coefficient-wise approximates σN,K.

Finally, we apply Raz’s homogenization theorem (Theorem 1.2) to each multiplication gate in the for-
mula. This yields a monotone formula for a multilinear polynomial that approximates σN,K.

1.3 Related work
In addition to the work of Raz [Raz13] and Fournier et al. [FLST24] discussed earlier, a related line of
research concerns the minimal Waring rank of polynomials that have the same support as σN,K [Pra19].

Recall that a degree-K homogeneous polynomial f ∈ F[x1, . . . , xn] is said to have Waring rank at most r
if it can be written as a sum of K-th powers of r linear forms

f = ℓK1 + . . . + ℓKr .

In [Pra19], Pratt demonstrated that several techniques from parameterized algorithms—including color-
coding [AYZ95, AG10], the group-algebra/determinant-sum method [Kou08, Wil09, Bjö14], and inclusion-
exclusion—can be leveraged to reduce certain algorithmic problems to the task of upper bounding the
Waring rank of a specific family of polynomials. As a result, obtaining tighter explicit upper bounds on the
Waring rank of these polynomials directly translates into faster algorithms.

Pratt focused in particular on polynomials over the reals that share the same support as σN,K. He
considered three natural settings: (1) polynomials with arbitrary coefficients, (2) polynomials with positive
coefficients (over fields of characteristic zero), and (3) polynomials whose nonzero coefficients lie in the
interval [1 ± ε].
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Pratt’s construction closely resembles our approach. He begins by mapping the variables into buckets
using a family of functions that constitute a δ-balanced (N,K,M)-splitter.3 Informally, such a splitter is a
collection of hash functions from [N] to [M] with the guarantee that, for any K-subset T ⊆ [N], the number
of functions in the family that are injective on T lies within the range [δ · c, c/δ] (with δ close to 1).

For each hash function in the family, Pratt constructs the same linear forms that we do—namely, sum-
ming all variables mapped to the same bucket. He then applies a Waring rank decomposition to the polyno-
mial σM,K(ℓ1, . . . , ℓM) formed from these linear functions. Averaging the resulting polynomials (one from
each hash function) and normalizing by 1/c, he obtains a Waring rank decomposition of a polynomial that
has the same support as σN,K, with all nonzero coefficients lying in the interval [1 − ε, 1].

The key difference between Pratt’s construction and ours lies in the choice of the universe size M into
which the variables are hashed. Since Pratt’s goal was to upper bound the Waring rank—and given that the
Waring rank of a degree-K multilinear monomial is already 2K−1—he hashed the variables into a relatively
small number of buckets, roughly M = 1.55 · K. Approximating σN,K in this way requires Ω(exp(K))
hash functions, corresponding to the size of the balanced splitter family. In contrast, our primary concern
was to keep the dependence on K subexponential—ideally polynomial. To achieve this, before applying
Theorem 1.1, we hashed the variables into significantly more buckets (M = 4K5 logN), which allowed us
to substantially reduce the number of required hash functions.

In the non-monotone setting Pratt obtained the following variant of Theorem 1.12.

Theorem 1.19 (Theorem 58 in [Pra19]). There exists a polynomial with the same support as σN,K and nonzero
coefficients in the range [1 ± ε], which has a Waring rank at most 4.075K/ε2 · logN.

In comparison to Theorem 1.12, this result provides a Waring rank decomposition rather than a ΣΠΣ
formula. However, a Waring rank decomposition of a multilinear polynomial cannot be monotone, which
means this approach does not yield a monotone depth-3 formula. Theorem 1.19 gives a polynomial that
slightly improves upon the guarantee in Theorem 1.18, though we did not attempt to optimize the 2O(K)

term.
Finally, we observe that Pratt’s upper bound on the Waring rank of a polynomial with non-negative

coefficients and the same support as σN,K depends solely on K.

Theorem 1.20 (Theorem 41 in [Pra19]). There exists a polynomial with non-negative coefficients and the same
support as σN,K, whose Waring rank is at most 6.75K.

As a corollary, we obtain the following version of Theorem 1.18:

Theorem 1.21. The partial derivative matrix of the degree 2K polynomial given in Theorem 1.20, denoted PN,K,
satisfies:

1. rank(PN,K) = 2O(K).

2. For every two K-sets S, T , it holds that

0 ⩽ (AN,K − PN,K)S,T < 1.

2 Preliminaries

We denote [N] ≜ 1, . . . ,N. For a polynomial f, Supp(f) denotes the set of monomials in f with nonzero
coefficients, and |f|0 represents the size of Supp(f).

For a distribution X on 0, 1N, we denote by H∞(X) the min-entropy of X, i.e., H∞(X) = − log(maxx Pr[X =
x]). We say that X is a k-source if H∞(X) ⩾ k.

For an N-variate homogeneous polynomial f of degree K, its partial derivative matrix for order d deriva-
tives is an

(
N+d−1

d

)
×

(
N+K−d−1

K−d

)
matrix. The rows correspond to N-variate monomials of degree d, and

the columns correspond to N-variate monomials of degree K − d. The (m1,m2) entry in the matrix is the
coefficient of the monomial m2 in ∂df

∂m1
, where m1 and m2 are monomials of appropriate degrees.

3For our parameter regime, a condenser also satisfies the properties of a δ-balanced (N,K,M)-splitter.
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3 Proofs

The construction of fN,K relies on finding a family of hash functions such that every set of size K is hashed
without collisions for most functions of the family. As in [RS22], we construct such hash family using
condensers.

Definition 3.1. A function C : {0, 1}n × {0, 1}d → {0, 1}m is called a (k, ε, t) condenser if, for every distribu-
tions X on {0, 1}n such that H∞(X) ⩾ k, the distribution C(X,Ud) is ε-close (in L1 norm) to some distribution
Z on {0, 1}m that satisfies H∞(Z) ⩾ t.

A simple counting argument gives the following result.

Fact 3.2. For any k ⩽ n there exists a (k, ε, t) condenser C : {0, 1}n × {0, 1}d → {0, 1}m with parameters:

d = ⌈log(n) + log(1/ε)⌉, m = ⌈t+ log(1/ε)⌉, and t = k+ d.

Let C be the condenser from Fact 3.2 with parameters n = logN, k = logK, and ε = 1/2K2.4 With this
choice of parameters we have that

2d = n/ε = 2K2 logN and 2m = 2k+d/ε = 4K5 logN.

Claim 3.3 ([RS22, Claim 2.4]). Let X ⊆ {0, 1}n be a k-source. Then, for all but
√
ε of the seeds y ∈ {0, 1}d, it holds

that Cy(X) is
√
ε-close to a k-source.

Proof. The proof is an easy application of Markov’s inequality.

Corollary 3.4 ([RS22, Corollary 2.5]). Let I ⊆ [N] = {0, 1}n be a set of size |I| ⩽ 2k = K. Then, with probability at
least 1 −

√
ε over y ∈ {0, 1}d, the map Cy is injective on I.

Proof. Let X be a random variable uniformly distributed over a set of size exactly 2k that contains I. Let y
be such that Cy(X) is

√
ε-close to a k-source Z. Then, for all z ∈ {0, 1}m we have

Pr[Cy(X) = z] ⩽ Pr[Z = z] +
√
ε ⩽ 2−k +

√
ε < 2 · 2−k ,

where the third inequality follows from the choice of ε. In particular, this implies that no two elements of I
were mapped to the same element z.

Construction of fN,K. In what follows, for N = 2n, we identify the set [N] with {0, 1}n.
Let C be the condenser guaranteed by Fact 3.2. Fix a seed a ∈ {0, 1}d. For every z ∈ {0, 1}m, define the

set
Sa,z = {i ∈ [N] = {0, 1}n | C(i,a) = z}

and the linear function
ℓa,z =

∑
i∈Sa,z

xi.

We then define fN,K as

fN,K(x) =
1

2d
∑

a∈{0,1}d
σ2m,K (ℓa,z(x) | z ∈ {0, 1}m) .

The next claim summarizes the properties of our construction.

Claim 3.5 (Properties of fN,K). 1. Sa,z ∩ Sa,z′ = ∅ for z ̸= z ′ .

2. fN,K is a homogeneous multilinear polynomial of degree K.

3. The support of fN,K contains all the multilinear monomials of degree K, and only these. Moreover, each such
monomial has a coefficient in the interval [1 − 1/K, 1].

4To avoid the use of ceilings and floors we assume for simplicity that both N and K are powers of 2.
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4. fN,K can be computed by a depth-3 formula with 2d · (2m + 1) < 9K7 log2 N multiplication gates, each of
degree 2m = 4K5 logN.

5. fN,K can be computed by a monotone depth-3 formula with 2d ·
(2m
K

)
= (K logN)O(K) multiplication gates.

6. For K ⩾ logN, fN,K can be computed by a monotone formula of size

K2 logN ·N ·poly
(

4K5 logN,
(
K+ log(4K5 logN)

log(4K5 logN)

))
=


N · KO(logK) K > logN

N · poly (logN) K ⩽ log logN

N ·
(

1 + K
log logN

)O(log logN)

otherwise

Proof. 1. The first claim follows directly from the fact that for every fixed a, C(·,a) is a map.

2. Since the sets Sa,z are disjoint, the support of σ2m,K (ℓa,z(x) | z ∈ {0, 1}m) contains only multilinear
monomials of degree K. Therefore, fN,K is multilinear and homogeneous of degree K.

3. Let I ⊂ N = {0, 1}n be of size K. Think of I as a k-source for k = logK. By Claim 3.3, for 1 −√
ε of a ∈ {0, 1}d, the map C(·,a) is injective on I. For such a, the monomial

∏
i∈I xi appears in

σ2m,K (ℓa,z(x) | z ∈ {0, 1}m) with coefficient 1. Thus, the coefficient of each multilinear monomial is at
most 1 (since we divide by 2d) and at least (1 −

√
ε) > 1 − 1/K.

4. Ben-Or’s trick (see e.g. [SW01]) gives a depth-3 multilinear formula with (2m+1) multiplication gates
computing σ2m,K(y1, . . . ,y2m). Substituting ℓa,z for yz, we obtain depth-3 multilinear formula with
(2m + 1) multiplication gates computing σ2m,K (ℓa,z(x) | z ∈ {0, 1}m), proving the claim.

5. Since each σ2m,K (ℓa,z(x) | z ∈ {0, 1}m) has a trivial monotone depth-3 formula with
(2m
K

)
multiplication

gates, the claim follows.

6. Note that σ2m,K (ℓa,z(x) | z ∈ {0, 1}m) is the degree-K homogeneous component of
∏

z(1 + ℓa,z(x)). By
Theorem 1.2, the degree-K homogeneous component of

∏
z(1 + yz) has a monotone formula of size

poly
(

2m,
(
K+m
m

))
. A simple calculation gives

(
K+m

m

)
=

(
K+ log(4K5 logN)

log(4K5 logN)

)
=


KO(logK) logN ⩽ K(

1 + K
log logN

)O(log logN)

log logN < K < logN

poly (logN) K ⩽ log logN

.

Substituting ℓa,z for yz, we obtain a monotone formula for σ2m,K (ℓa,z(x) | z ∈ {0, 1}m) of size

N · poly
(
K, logN,

(
K+m

m

))
=


N · KO(logK) logN ⩽ K

N ·
(

1 + K
log logN

)O(log logN)

log logN < K < logN

N · poly (logN) K ⩽ log logN

. (1)

The result follows as there are 2d = O(K2 logN) different seeds a, each contributes according to
(1).

Remark 3.6. A tighter construction could be obtained by recursively approximating each σ2m,K (ℓa,z(x) | z ∈ {0, 1}m),
but as this would not alter the main message of the result, have not attempted to get the optimal construc-
tion.

Remark 3.7. Instead of using a condenser we could have employed a random map. However, since this
would not affect the overall result, we chose to use condensers to emphasize the explicitness of the con-
struction.

The proofs of Theorems 1.9, 1.10 and 1.18 follow directly from Claim 3.5.
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Proof of Theorem 1.9. This is exactly Claim 3.5(4).

Proof of Theorem 1.10. This is a consequence of Claim 3.5(3) and Claim 3.5(6).

Proof of Corollary 1.11. The proof of Claim 3.5(6) relies on applying Theorem 1.2 to each of the polynomials
σ2m,K (ℓa,z(x) | z ∈ {0, 1}m). Each such polynomial is derived through a linear substitution to σ2m,K (y1, . . . ,y2m),
which can be computed by a multilinear depth-3 formula of degree 2m and top fan-in 2m+1 = poly (K, logN).
Therefore, if the result in Theorem 1.2 could be improved when applied to the multilinear depth-3 for-
mula computing σ2m,K(y), it would yield a homogeneous multilinear formula for fN,K of size smaller than
N · KO(logK), contradicting the lower bound given in Theorem 1.8.

To demonstrate that the statement of Theorem 1.3 cannot be strengthened if we insist on obtaining a
homogeneous and multilinear formula, we again consider fN,K. Suppose that Theorem 1.3 also holds in the
multilinear case. Applying it to the multilinear depth-3 formula derived in Claim 3.5(4) would produce a
homogeneous multilinear formula for fN,K of size N · KO(3+logK). Up to the constant hidden in the big-O
notation, this size is asymptotically optimal, as shown by the lower bound in Theorem 1.8.

To prove Theorem 1.12, we construct a slightly different polynomial gN,K, though the approach follows
the same general framework as that for fN,K. The construction is probabilistic in nature: we sample 2O(K) ·
logN random maps forming a family F ⊂ {f : [N] → [K]}, and show that there exists a choice of such a
family F of size |F| = 2O(K) · logN with the property that every K-set is mapped injectively by at least 0.99
of the functions in F.We then define gN,K in a way analogous to the definition of fN,K.

Claim 3.8. Let I ⊂ [N] be of size |I| = K. Let f : [N] → [K] be chosen uniformly at random among all such maps.
Then

Pr[|f(I)| = K] =
K!
KK

= 2−O(K).

Chernoff’s inequality (see e.g., [AS16, Appendix A]) implies that if we choose many such maps f in-
dependently at random, then for any fixed K-set I, the probability that I is not mapped injectively by
(1 ± 0.001) K!

KK of them, is exponentially small.

Claim 3.9. Let I ⊂ [N] be of size |I| = K. Let f1, . . . , ft : [N] → [K] be chosen uniformly and independently at
random among all maps from [N] to [K]. Denote the event that fi mapped I injectively by Ei(I). Then

Pr

[∣∣∣∣∣
t∑

i=1

1Ei
(I) − t

K!
KK

∣∣∣∣∣ > 0.001t · K!
KK

]
< e−2t K!

KK /106
.

Corollary 3.10. For t = O
(

KK

K! · K logN
)
= 2O(K) · logN there exist f1, . . . , ft such that every K-set I is mapped

injectively by (1 ± 0.001)t of them.

Let t be as in Claim 3.9 and f1, . . . , ft be as in Corollary 3.10. For each fi let Ti =
∏K

j=1
∑

ℓ:fi(ℓ)=j xℓ. Set

gN,K = KK

1.001t·K!

∑t
i=1 Ti. By definition, gN,K has a monotone depth-3 formula with t = O

(
KK

K! · K logN
)
=

2O(K) · logN multiplication gates.

Claim 3.11. The polynomial gN,K has the same support as σN,K and each of its coefficients lies in the interval [0.99, 1].

Proof. This follows directly from the selection of f1, . . . , ft as guaranteed by Corollary 3.10, and from the
fact that if fi mapped a K-set I injectively, then the coefficient of the multilinear monomial

∏
j∈I xj in Ti, is

1.

Proof of Theorem 1.12. The result follows immediately from the construction of of gN,K and Claim 3.11.

Proof of Theorem 1.18. By Theorem 1.12, the partial derivative space of order K derivatives of gN,2K has di-
mension 2O(K) logN ·

(2K
K

)
= 2O(K) logN.

Proof of Theorem 1.21. Theorem 1.20 implies that the partial derivative space of order K derivatives of the
polynomial given in the theorem has dimension exp(K).
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4 Discussion

This paper demonstrates that the analysis of Raz’s homogenization result (Theorem 1.1) is tight. It further
shows that the the statement of Theorem 1.3 cannot be strengthened for small depth multilinear formulas,
assuming we require the resulting formula to be both multilinear and homogeneous. Additionally, we
obtain that the proof method of Theorem 1.6 yields asymptotically tight bounds.

A somewhat surprising result is that a slight perturbation of the coefficients of σN,K produces a poly-
nomial, whose partial derivative space has significantly smaller dimension (Theorem 1.18). Moreover, this
polynomial has monotone formula complexity roughly equivalent to its homogeneous formula complexity.

In his seminal work [Kal89], Kaltofen showed that the factors of polynomial size algebraic circuit can
themselves be computed by polynomial sized circuits. Similarly, Sinhababu and Thierauf [ST21] obtained
an analogous result for algebraic branching programs. However, whether an equivalent result holds for al-
gebraic formulas remains an open question (see the survey[FS15] for further discussion on related questions
and results in factorization). Another related question that also seems to be open is the following.

Question 4.1. What is the homogeneous formula complexity of factors of homogeneous formulas?

We note that if the lower bound in Theorem 1.6(2) could be extended to general homogeneous formulas
(without the requirement of multilinearity), it would imply that the polynomial zN−K ·σN,K admits a homo-
geneous depth-3 formula, of size O(N2), while its factor σN,K requires super-polynomial size homogeneous

formulas (for K = 2ω(
√

logN)). Alternatively, if the answer to Question 4.1 is affirmative, i.e., homogeneous
formulas are closed under factorization, then this would immediately yield a polynomial-size homoge-
neous formula for σN,K.

Another interesting question is to establish lower bounds on the Waring rank of an approximation to
σN,K. Pratt showed that the Waring rank of an ε approximation is at most 4.075Kε−2 logn (Theorem 1.19),
while the trivial lower bound is 2K−1.
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