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Abstract

Trevisan and Vadhan (FOCS 2000) introduced the notion of (seedless) extractors for samplable dis-
tributions. They showed that under a very strong complexity theoretic hardness assumption (specifically,
that there exists a problem in E = DTIME(2O(n)) that cannot be computed by size 2Ω(n) circuits that have
an oracle to ΣP

6 ) there are extractors for samplable distributions with large min-entropy of k = (1− γ) ·n,
for some small constant γ > 0. Recently, Ball, Shaltiel and Silbak (STOC 2025) were able to reduce the
min-entropy threshold to k = n1−γ . Ball et al., point out that their approach does not work for k <

√
n

(and this holds even for stronger hardness assumptions, in which 6 is replaced with any other constant).
In this paper, we show how to further reduce the min-entropy threshold to k = n0.34 <

√
n under

the same hardness assumption used by Trevisan and Vadhan. More generally, for every positive integer
i ≥ 2, and every α > 1

i , we construct an extractor for samplable distributions with min-entropy k = nα,
under a hardness assumption in which 6 is replaced with i+ 3 (the aforementioned result is a obtained for
i = 3). We also provide a multiplicative version of our extractors (under a stronger hardness assumption)
addressing an open problem of Ball et al.

Our work builds on the approach of Ball et al., who reduced the task of constructing extractors for
samplable distributions with min-entropy k, to the task of constructing errorless condensers for samplable
distributions with min-entropy k. Our main technical contribution is a new construction of errorless con-
densers for samplable distributions with k = nα under the hardness assumption stated above, improving
upon the min-entropy threshold achieved in Ball et al. (which cannot achieve k <

√
n).

Our insight is that the technique used by Ball et al. to reduce the task of constructing extractors to that
of constructing errorless condensers, can itself be used to construct errorless condensers for polynomially
small min-entropy when combined with “win-win analysis” approaches that are inspired by some early
work on seeded extractors and dispersers. In order to do this, we adapt these approaches from the infor-
mation theoretic scenario of seeded extractors and dispersers to the computational scenario of errorless
condensers for samplable distributions.
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1 Introduction

An influential paper by Trevisan and Vadhan [TV00] introduced the notion of (seedless) extractors for sam-
plable distributions.

Definition 1.1 (Seedless extractor). A function Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-extractor for a class D of
distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k, Ext(X) is ϵ-close
to Um.1

The goal of Trevisan and Vadhan was to identify a class of distributions that contains sources of random-
ness that are “available to computers”, and allows seedless extractors that run in poly-time.

Definition 1.2 (Sampling procedures and samplable distributions). For a function A : {0, 1}r → {0, 1}n, we
use Z ← A to denote the experiment in which W ← Ur, and Z = A(W ), and say that Z is sampled by A.
We say that the distribution Z is samplable by a class C of functions, if there exists A ∈ C that samples Z.

Trevisan and Vadhan considered extractors for distributions that are samplable by poly-size circuits,
namely distributions samplable by circuits of size nc for some constant parameter c. They showed that such
extractors cannot run in time smaller than nc, and considered extractors that run in time nd for a constant
d > c. They showed that such extractors imply circuit lower bounds, and so, motivated by the hardness vs.
randomness paradigm, they gave a conditional construction based on hardness assumptions.

Hardness assumptions against various types of nondeterministic circuits. We say that “E is hard for
exponential size circuits of some type”, if there exists a problem L ∈ E = DTIME(2O(n)) and a constant
β > 0, such that for every sufficiently large n, circuits of size 2β·n (of the specified type) fail to compute the
characteristic function of L on inputs of length n. (See Section 2.5 for a more formal definition).

The assumptions that E is hard for exponential size (deterministic) circuits was used by the celebrated
paper of Impagliazzo and Wigderson [IW97] to imply that BPP = P. The stronger assumption that E is hard
for exponential size nondeterministic circuits2, originated in works on hardness versus randomness for AM,
and is used in many results [AK02, KvM02, MV05, SU05, BOV07, GW02, GST03, SU06, SU09, Dru13,
AASY15, BV17, AIKS16, HNY17, DMOZ22, BDL22, CT22, BGDM23, BSS24, SS24, Sha24]. It can be
viewed as a scaled, nonuniform version of the widely believed assumption that EXP ̸= NP.

In their seminal paper on extractors for samplable distributions, Trevisan and Vadhan [TV00] introduced a
version of the assumption for a stronger circuit class. A Σi-circuit, is a circuit that in addition to the standard
gates, is also allowed to use a special gate (with large fan-in) that solves the canonical complete language
for the class ΣP

i (the i’th level of the polynomial time hierarchy).3 The extractor of Trevisan and Vadhan
[TV00] relies on the strong assumption that E is hard for exponential size Σ6-circuits (which can be viewed as
a scaled, nonuniform version of the widely believed assumption that EXP ̸= ΣP

6 ). We remark that following
[TV00] there is some later work that relies on hardness for Σi-circuits for i > 1 [GW02, AS14, AASY15,
AIKS16, BDL22, BSS25].

Previous work on extractors for samplable distributions. The main result of Trevisan and Vadhan [TV00]
is that under a hardness assumption for Σ6-circuits, there is an extractor for distributions samplable by poly-
size circuits with k = (1− γ) · n, for some small constant γ > 0. Below is a precise statement.4

1See Section 2 for the standard definitions of min-entropy and statistical distance.
2A precise definition of nondeterministic circuits appears in Section 2.1.
3A Σi-circuit is a nonuniform analogue of the class PΣP

i that contains ΣP
i , and recall that P = ΣP

0 and NP = ΣP
1 . See Section 2.1

for a formal definition.
4The statement of Theorem 1.3 given here is taken from the conference version [TV00]. In a later unpublished version, Trevisan

and Vadhan notice that the assumption can be weakened to assume hardness for Σ5-circuits.
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Theorem 1.3 ([TV00]). If E is hard for exponential size Σ6-circuits then for every sufficiently small constant
γ > 0, and every constant c > 1, there is a constant d such that for every sufficiently large n, there is a
function Ext : {0, 1}n → {0, 1}(1−O(γ))·n that is a ((1 − γ) · n, ϵ)-extractor for distributions samplable by
circuits of size nc, where ϵ = n−c. Furthermore, Ext is computable in time nd.

Recent work on extractors for samplable distributions improved Theorem 1.3 in two respects:

• Ball, Goldin, Dachman-Soled and Mutreja [BGDM23] achieved the conclusion of Theorem 1.3 under
the weaker, and more standard assumption that E is hard for exponential size nondeterministic circuits.

• Ball, Shaltiel and Silbak [BSS25] showed how to reduce the min-entropy threshold in Theorem 1.3
from k = (1 − γ) · n to k = n1−γ , where in both results γ > 0 is some unspecified constant. This is
achieved under a hardness assumption against Σ5-circuits.

1.1 Our Results

In this paper we construct extractors for samplable distributions with polynomially small min-entropy thresh-
old k = nα, where α > 0 is an arbitrary constant. More specifically, for every positive integer constant
i ≥ 2, and for every constant α > 1

i , we obtain extractors for samplable distributions for min-entropy thresh-
old k ≥ nα which extract almost all the randomness present in the source distribution, under the hardness
assumption that E is hard for exponential size Σi+3-circuits. The precise result is stated below.

Theorem 1.4 (Extractor for samplable distributions polynomially small min-entropy). For every positive
integer constant i ≥ 2, and every constant α > 1

i , if E is hard for exponential size Σi+3-circuits, then for
every constants c > 1, and λ > 0, there exists a constant d, such that for every sufficiently large n, and every
k ≥ nα, there is a (k, ϵ)-extractor Ext : {0, 1}n → {0, 1}(1−λ)·k for distributions samplable by circuits of
size nc, where ϵ = n−c. Furthermore, Ext can be computed in time nd.

Comparison to previous work on extractors for samplable distributions.

• For i = 2, the hardness assumption in Theorem 1.4 is against Σ5-circuits. This is precisely the hardness
assumption used by Ball, Shaltiel and Silbak [BSS25], and the statement of Theorem 1.4 is identical
to their result, with the sole difference that the min-entropy threshold is improved from k ≥ n1−γ for
some unspecified constant γ > 0, to k ≥ n

1
2
+γ .

• For i = 3, the hardness assumption in Theorem 1.4 is against Σ6-circuits. This is precisely the hard-
ness assumption used by Trevisan and Vadhan [TV00] in Theorem 1.3, and we achieve min-entropy
threshold k ≥ n

1
3
+γ , for any constant γ > 0. Note that already for i = 3, this min-entropy threshold is

smaller than
√
n. As explained in detail in [BSS25], the technique of [BSS25] cannot give extractors for

k <
√
n, and this holds even when assuming hardness against Σi-circuits, for an arbitrary constant i.

• Theorem 1.4 is incomparable to the extractor of Ball, Goldin, Dachman-Soled and Mutreja [BGDM23].
On the one hand the extractor of [BGDM23] only works for very large min-entropy (specifically, for
k = (1 − γ) · n for some unspecified constant γ > 0) but on the other hand, the assumption used is
weaker than what we assume, and only assumes hardness for nondeterministic circuits.

Samplable distributions with postselection. Ball, Goldin, Dachman-Soled and Mutreja [BGDM23] intro-
duced a generalization of samplable distributions, and showed that their extractor applies for this more general
class. More specifically, they considered distributions that are samplable with postselection.

Definition 1.5 (Samplable distributions with postselection). For functions A : {0, 1}r → {0, 1}n, and P :
{0, 1}r → {0, 1}, we use X ← A | P to denote the experiment in which W ← Ur, and X = (A(W ) |
P (W ) = 1), and say that X is sampled by A with postselection by P .

2



Theorem 1.4 (as well as our other results below in Theorems 1.6 and Theorem 1.8) hold also when
replacing “distributions samplable by circuits of size nc” by “distributions samplable by circuits of size nc

with postselection by size nc circuits”. A precise definition is given in Definition 2.5.

Extractors with larger output length and higher error. As is the case in the construction of Ball, Shaltiel
and Silbak [BSS25], our approach is to first construct an extractor that outputs m = O(log n) bits, and then
use a transformation of Shaltiel [Sha08] to increase the output length. When using this transformation, one
can also obtain extractors with m = (1−o(1)) ·k, at the cost of having larger error (as done in [BSS25]). The
precise result is stated below, and is identical to a corresponding result in [BSS25], except for the modifications
in the min-entropy threshold, and the hardness assumption.

Theorem 1.6 (Extractor for samplable distributions with larger output length, and higher error). For every
positive integer constant i ≥ 2, and every constant α > 1

i , if E is hard for exponential size Σi+3-circuits,
then for every constants c > 1, every constant 0 < η < 1, and every constant b > 1, there exists a constant
d, such that for every sufficiently large n, and every k ≥ nα, there is a (k, ϵ)-extractor Ext : {0, 1}n →
{0, 1}(1−

1

logb n
)k

for distributions samplable by circuits of size nc, where ϵ = 1
2log

η n . Furthermore, Ext can
be computed in time nd.

In Theorem 1.6, the improved output length comes with a cost of a larger error ϵ. We remark that our
techniques can potentially achieve output length m = (1 − o(1)) · k with error ϵ = n−c (which is the error
achieved in Theorem 1.3 and Theorem 1.4) and the missing component is a seeded extractor that achieves
m = (1− o(1)) · k for ϵ = n−c with seed length O(log n).

1.2 Multiplicative Extractors for Samplable Distributions

A signature application of seedless extractors is choosing keys for cryptographic protocols by extracting
randomness from weak random sources. (Indeed, this was the original motivation of Trevisan and Vadhan
[TV00] for introducing extractors for samplable distributions). More specifically, consider a cryptographic
protocol which is known to be secure when the key of an honest party is chosen according to Um. That is, the
probability that an adversary can steal the honest party’s money is smaller than some “negligible” η > 0.

If the key is chosen using the output of an extractor (which is only ϵ-close to uniform) then we are only
guaranteed that the adversary’s probability to cheat is smaller than η + ϵ, which may be unacceptable if ϵ is
“large” compared to η.

Applebaum, Artemenko, Shaltiel and Yang [AASY15] showed that “current techniques” cannot yield
extractors for samplable distributions with error ϵ = n−ω(1), under a hardness assumption against Σi-circuits,
and this holds for every constant i. (See [AASY15] for a precise formulation). This means that with current
extractors for samplable distributions (which only achieve ϵ = n−c) we cannot expect cryptographic protocols
to maintain negligible probability of cheating, when selecting the key with an extractor.

In order to address this problem, Applebaum et al. [AASY15], and later Shaltiel [Sha24], introduced a
notion of “multiplicative extractors” which are designed to maintain negligible probability of cheating in cryp-
tograhic protocols. Below, we use the definition of [Sha24] which is inspired by choices made in definitions
in differential privacy [DMNS06].

Definition 1.7 (Multiplicative seedless extractor [Sha24]). A function Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-
multiplicative extractor for a class D of distributions, if for every distribution X in D, that is over {0, 1}n,
such that H∞(X) ≥ k, and every event A ⊆ {0, 1}m

Pr[Ext(X) ∈ A] ≤ eϵ · Pr[Um ∈ A].

3



It is easy to see that every multiplicative extractor is also a (regular) extractor (see Proposition 2.8).
However, unlike regular extractors, multiplicative extractors apply for the application of selecting keys for
cryptographic protocols, even if ϵ > 0 is a small constant. This is because such extractors give that the
adversary’s probability to cheat is at most eϵ · η ≤ (1 +O(ϵ)) · η.5

Shaltiel [Sha24] constructed a (k, ϵ)-multiplicative extractor for samplable distributions, with k ≥ (1 −
γ) · n for some constant γ > 0, ϵ = n−c, and m = Ω(k), under a hardness assumption for nondeterministic
circuits.

The aforementioned extractor achieved by Ball, Shaltiel and Silbak [BSS25] is not multiplicative. As
explained in [BSS25] (and as we also explain in Section 1.3.6) this is because current constructions of 2-
source extractors for low min-entropy [CZ16, Li16] do not achieve low error (this is a well known open
problem).

In this paper, we are able to circumvent this difficulty, and construct multiplicative extractors for samplable
distributions for polynomially small min-entropy threshold of k = nα, for every constant α > 0. As is the
case in our Theorem 1.4, our result gives a tradeoff between α and the hardness assumption used. At this
point, we have not tried to optimize this tradeoff, and only show that for every constant α > 0, there is a
constant j ≥ 1 such that a hardness assumption is against Σj-circuits suffices. A precise statement is given
below. (A more general formulation appears in Theorem 4.8).

Theorem 1.8 (multiplicative extractor for samplable distributions). For every constants α > 0, there exist
constants j ≥ 1, and β > 0 such that if E is hard for exponential size Σj-circuits, then for every constant c >
1, there exists a constant d, such that for every sufficiently large n, there is a function Ext : {0, 1}n → {0, 1}nβ

that is an (nα, 1
nc )-multiplicative extractor for distributions samplable by circuits of size nc. Furthermore,

Ext can be computed in time poly(nd).

A closer inspection of the argument reveals that j = c0 + ⌈ 1α⌉ for some universal constant c0. However,
bounding the constant c0 will require computing unspecified constants in some components that we use.

Perspective. Trevisan and Vadhan made the philosophical argument that every weak source of random-
ness from nature is necessarily efficiently samplable. If one agrees with this argument, then extractors for
samplable distributions capture all natural weak sources of randomness that are available to computers. Our
extractors extend the usefulness of extractors for samplable distributions to sources with polynomially small
min-entropy.

1.3 Technique

In this section, we give a detailed informal overview of the main ideas that we use. The later technical sections
contain full definitions, statements and proofs and do not build on the informal explanation of this section.
The readers can skip to the technical section if they wish.

1.3.1 Errorless Condensers are Sufficient for Constructing Extractors

Ball, Shaltiel and Silbak [BSS25] extended the techniques of Trevisan and Vadhan [TV00] and showed that
the task of constructing extractors for samplable distributions can be reduced to that of constructing errorless
condensers for samplable distributions. We start with a definition of errorless condensers.

5This argument applies to “unpredictability security games” where one bounds the probability that the adversary can cheat, but
not necessarily to “indistinguishability security games” where one bounds the probability that the adversary can distinguish between
two distributions. See e.g. [DY13] for a discussion.
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Definition 1.9 (Errorless condenser). A function Cnd : {0, 1}n → {0, 1}n1 is a (k, kout)-errorless condenser
for a class D of distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k,
H∞(Cnd(X)) ≥ kout.

More specifically, following the work of [BSS25] (which we will explain in detail below) for every α > 0,
in order to construct extractors for samplable distributions with min-entropy threshold k = nα, it is sufficient
to construct a (k = nα, kout = nδ)-errorless condenser Cnd : {0, 1}n → {0, 1}k/10 for samplable distribu-
tions, for some constant δ > 0 that may depend on α. We remark that in this reduction, it is not necessary for
the output distribution Cnd(X) to be “more condensed” than X , and it is allowed that δ is tiny compared to
α. What is important is that the output length is smaller than k.

Having established this reduction, Ball, Shaltiel and Silbak [BSS25] proceed to show how to construct an
errorless condenser for samplable distributions, under a hardness assumption. Their condenser construction
achieves min-entropy threshold k = n1−γ for some γ > 0, and this threshold is inherited by their extractor
construction. As explained in [BSS25], the errorless condenser construction of Ball, Shaltiel and Silbak
[BSS25] (which relies on “hard to sample functions” [SS24] and “seeded dispersers with short seed and large
error” [Zuc07]) cannot work for k <

√
n (regardless of the hardness assumption that is used).

1.3.2 A New Construction of Errorless Condensers

In this paper, we give a new (and different) construction of errorless condensers that achieves a lower min-
entropy threshold, and is used to derive our extractors using the aforementioned reduction of Ball, Shaltiel and
Silbak [BSS25]. Our condenser can achieve k ≈ n1/i, under hardness for Σi+3-circuits, and this min-entropy
threshold and hardness assumption is inherited by our extractors, as stated in Theorem 1.4 and Theorem 1.6.
Our main result on errorless condenser is stated below (a more general statement appears in Theorem 3.1).

Theorem 1.10. For every positive integer constant i ≥ 2, and every constant α > 1
i , there exist constants

0 < δ1 < δ2 ≤ α
10 , such that if E is hard for exponential size Σi+3-circuits, then for every constants c > 1,

there exists a constant d, such that for every sufficiently large n, and every k ≥ nα, there is a (k, nδ2)-errorless
condenser FCnd : {0, 1}n → {0, 1}nδ1 . Furthermore, Ext can be computed in time nd.

The condenser above is termed FCnd for “final condenser”, and it will be constructed in two steps: We
will first construct a “basic condenser” BCnd with large output length of roughly n1−α bits, and then use
BCnd to construct FCnd. We will explain both these constructions in detail in Sections 1.3.4 and 1.3.5.

The important thing to notice is that the min-entropy threshold in Theorem 1.10 is k = nα for an arbitrarily
small α > 0, and that the output length is indeed smaller than k

10 , meaning that FCnd is suitable for the
reduction, and implies extractors.

We will now focus on explaining our new construction of errorless condensers. At a high level, our insight
to try and use the argument that constructs extractors for samplable distributions from errorless condensers
for samplable distributions, in order to directly construct errorless condensers. We will start by explaining the
reduction of [BSS25], which relies on, and extends the argument of Trevisan and Vadhan [TV00].

1.3.3 A Review of the Technique of [TV00, BSS25]

We will now explain how Ball, Shaltiel and Silbak [BSS25] used errorless condensers to construct extractors.
We will later extend these ideas in order to directly construct errorless condensers. The construction of
[BSS25] uses 2-source extractors.

Definition 1.11 (Two-source extractor). A function TExt : {0, 1}n1 × {0, 1}n2 → {0, 1}m is a (k1, k2, ϵ)-2-
source extractor if for every two independent distributions X1, X2 with H∞(X1) ≥ k1 and H∞(X2) ≥ k2,
TExt(X1, X2) is ϵ-close to Um.
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The construction of [BSS25] (that we now describe) produces an extractor which only outputs m =
O(log n) output bits. The output length can later be increased using a result of Shaltiel [Sha08]. We will only
describe the first part.

For every α > 0, in order to construct an extractor Ext : {0, 1}n → {0, 1}m=O(logn) for samplable
distributions X with min-entropy threshold k = nα, and error ϵ > 0 one requires:

• An explicit (k = nα, kout = nδ)-errorless condenser Cnd : {0, 1}n → {0, 1}
k
10 . (Here it is sufficient

that kout = nδ for some (possibly very small) constant δ > 0 that depends on α.

• A function g : {0, 1}n → {0, 1}n, such that for Y = Cnd(X), and every Σ2-circuit C of size slightly
larger than the circuit size of Cnd, we have that: Pr[C(Y ) = g(Y )] ≤ 2−Ω(kout).

Ball, Shaltiel and Silbak [BSS25] showed how to construct such a function under a hardness assumption
for Σ4-circuits. See precise definition and statement in Section 2.6.6

• A (k′, k′, ϵ′)-2-source extractor TExt : {0, 1}n × {0, 1}n → {0, 1}m set up for min-entropy threshold
k′ that is slightly smaller than kout (say k′ =

√
kout) and ϵ′ = O(ϵ/2m). Explicit constructions

of such 2-source extractors were given by Chattopadhyay and Zuckerman [CZ16], and Li [Li16] for
m = O(log n) (see Section 2.4.4 for precise statements).

Given these components, the extractor Ext : {0, 1}n → {0, 1}m is defined by:7

Ext(X) = TExt(g(Cnd(X)), X).

As we already have explicit constructions of the function g, and the 2-source extractor TExt, this is
indeed a reduction, showing that errorless condensers suffice for extractors. We now survey the argument
used to prove the correctness of this construction.

Recall that we are assuming that H∞(X) ≥ k, whereas the output length of Cnd is k/10. This intu-
itively means that X has min-entropy even conditioned on Cnd(X). More precisely, it can be argued that
(Cnd(X), X) is (close to) a block-wise source.

Definition 1.12 (block-wise sources). A distribution (W1,W2) is a (k1, k2)-block-wise source if H∞(W1) ≥
k1, and for every w1 ∈ Supp(W1), H∞(W2 |W1 = w1) ≥ k2.

Indeed, we can argue that (Cnd(X), X) is (close to) an (nδ, nδ)-block-wise source. The correctness of
the extractor follows by showing that if the output distribution Ext(X) is not close to uniform, then one can
use the sampling circuit A of the samplable distribution X , to construct a Σ2-circuit C (of slightly larger size)
that breaks the security guarantee of the function g.

More specifically, if Ext(X) is not ϵ-close to uniform, then there exists an element z ∈ {0, 1}m, such that
Pr[Ext(X) = z] > (1 + ϵ) · 2−m. By an averaging argument, it can be shown that with probability at least
say ϵ · 2−m/4 over choosing y ← Y = Cnd(X), we have that y is “useful”, meaning that:

Pr[TExt(g(y), X) = z | Y = y] = Pr[Ext(X) = z | Y = y] > (1 +
ϵ

2
) · 2−m = 2−m +

ϵ · 2−m

2
.

6In fact, the construction of [BSS25] gives that the function g (which they termed HOS for “Hard on Samplable distributions”) is
hard on average, not just on Y = Cnd(X), but on any distribution Y with H∞(Y ) ≥ kout that is samplable by circuits of the same
size as Cnd (and Y = Cnd(X) is such a distribution as one can efficiently sample X , and then apply Cnd).

7We remark that in the HOS construction of [BSS25], the output length of g is na0 for some universal constant a0 > 1 rather
than n. See precise formulation in Theorem 2.22. This means that TExt should work for source length na0 rather than n, and that
some inputs need to be padded with zeros. We ignore these technicalities in this high level overview, and the precise details appear in
Section 2.6.
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We will set the error parameter ϵ′ of the 2-source extractor to be ϵ′ = ϵ·2−m

2 .8 This gives that for a useful
y ∈ {0, 1}n, g(y) is an element in the set

Ty =
{
v : Pr[TExt(v, (X | Y = y)) = z] > 2−m + ϵ′

}
.

We have that (X | FCnd(X) = y) meets the entropy threshold k′ of the 2-source extractor. This can be used to
conclude that for a useful y, |Ty| ≤ 2k

′
. (This follows as otherwise the distribution Vy that is uniform over Ty,

and the distribution Wy = (X | FCnd(X) = y) are independent distributions on which Pr[Ext(Vy,Wy) =
z] > 2−m + ϵ′, violating the guarantee of 2-source extractors, as Pr[Um = z] = 2−m).

Trevisan and Vadhan [TV00] showed that this observation can be used to construct a small Σ2-circuit C
which given Y = Cnd(X) computes g(Y ) with not too small probability, violating the guarantee of g.9

Summing up, we see that in the specified construction, the requirement that the output length of Cnd is
smaller than k, can be removed if we can guarantee that the distribution (Cnd(X), X) is an (nδ, nδ)-block-
wise source. A formal statement of this observation is given in Lemma 3.2 in Section 3.

1.3.4 The Basic Condenser

We will now explain how to use the approach presented above in order to construct a “basic condenser” BCnd
which will be designed for min-entropy threshold k = nα (which is what we want) but will output strings of
length ≈ n1−α (and recall that for the reduction we need output length k/10 < nα). This condenser is stated
below, a stronger, and more general formulation appears in Theorem 3.9.

Theorem 1.13. If E is hard for exponential size Σ5-circuits, then for every constants c ≥ 1, 0 < α < 1, and
0 < γ < α/4, there exist constants δ > 0 and d ≥ 1 such that for every sufficiently large n, there is a function
BCnd : {0, 1}n → {0, 1}O(n1−α+γ) that is an (nα, nδ)-errorless condenser for distributions samplable by
size nc circuits. Furthermore, BCnd can be computed in time nd.

The output length of BCnd is roughly n1−α, and this is shorter than k = nα if α > 1
2 . This means that

BCnd is a suitable errorless condenser for the reduction that converts errorless condenser into extractors, if
k ≥ nα for α > 1

2 (and this already gives the result mentioned for this min-entropy threshold in Section 1.1).
While this is suitable for k >

√
n, this is not suitable for k <

√
n, an indeed, later on, in Section 1.3.5,

we will explain how to prove Theorem 1.10, and construct FCnd using BCnd.
We now focus on explaining how to construct the basic condenser BCnd (using the ideas outlined in

Section 1.3.3). Our approach is also inspired by some of the first constructions of seeded extractors and
dispersers due to Saks, Srinivasan and Zuckerman [SSZ98] and Ta-Shma [Ta-96].

In order to outline the idea, it will be useful to cheat and assume an unjustified simplifying assumption:

Simplifying assumption: For every function B, if H∞(X) ≥ k, and t1 ≤ H∞(B(X)) ≤ t2, then (B(X), X)
is a (t1, k − t2)-block-wise source.

This unjustified assumption would have held if min-entropy had a chain rule. In that case, it would indeed
follow that if H∞(X) ≤ t2, then the remaining k − t2 bits of entropy must remain in X , conditioned on
B(X).10 (We will later explain how to remove this unjustified assumption).

8Current constructions of 2-source extractors for low min-entropy [CZ16, Li16] can only achieve ϵ′ = n−O(1), and this is why
we need to set m = O(logn), so that ϵ′ = ϵ·2−m

2
is n−O(1), and recall that we are shooting for ϵ = n−c.

9For completeness, we survey this argument. Trevisan and Vadhan [TV00] first show that there is a Σ1-circuit that given y, v, is
able to check whether v ∈ Ty . This is done by approximating Pr[TExt(v,X) = z | FCnd(X) = y] = Pr[TExt(v,X)=z∧Cnd(X)=y]

Pr[Cnd(X)=y]

(which can be done by using classical results on “approximate counting of NP witnesses” [Sto83, Sip83, JVV86]). They then use
classical results on “uniform sampling of NP witnesses” [JVV86, BGP00] to construct a Σ2-circuit C which for every good y, is able
to sample a uniform output from Ty . Overall, this gives a small Σ2-circuit C that computes g(y) with probability 2−k′

on any useful
y. This means that for Y = Cnd(X), Pr[C(Y ) = g(Y )] > 2−Ω(kout), violating the security guarantee of g.

10This does not hold as it could be the case for example that B(X) outputs the first n/2 bits of X , and X is a convex combination
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The construction of BCnd (under an unjustified simplifying assumption). Recall that we aim to con-
struct an errorless condenser for k = nα. Following a seeded disperser construction of Saks, Srinivasan
and Zhou [SSZ98], we will divide the n bit long input source X into ℓ = 10 · n1−α blocks of length
b = n/ℓ = nα/10. Let Bi(X) = X[1, . . . , i] denote the first i blocks of X and let ki = H∞(Bi(X)).
Let i∗ be the first index such that ki∗ ≥ k/2, and note that such an i∗ exists. Furthermore, because the length
of blocks is less than k/10, we can hope to get that H(Bi∗(X)) ≤ k/2 + 2k/10 ≤ 3k/4, and therefore (by
the unjustified assumption) that (Bi∗(X), X) is a (k/4, k/4)-block-wise source.

This means that if we apply the construction of Section 1.3.3 using the function Bi∗ instead of Cnd
(namely set Ext(X) = TExt(g(Bi∗(X)), X)) then as we explained in Section 1.3.3, the analysis given there
shows that Ext(X) is close to uniform.

We do not know how to find i∗, and cannot get an extractor for samplable distributions. Instead, we will
try all possible i ∈ [ℓ], which is good enough when constructing a condenser. More precisely, we define:

BCnd(X) = TExt(g(B1(X)), X), . . . ,TExt(g(Bℓ(X)), X),

and can indeed conclude that as one of the substrings in BCnd(X) is (close to) uniform, the distribution
BCnd(X) is (close to) having high min-entropy.

Note that even with the unjustified assumption, this is not what we wanted, as the condenser BCnd has
error (inherited from the error of TExt) and is not errorless. Moreover, as explained in Section 1.3.3, the
analysis using 2-source extractors, can at best produce individual outputs of length m = O(log n) whereas
we want a much larger m, as we want the condenser to output significantly more bits of min-entropy.

We address both problems by noting that when constructing condensers for samplable distributions, we
can replace the 2-source extractor TExt, by a 2-source condenser TCnd. Fortunately, there are explicit con-
structions of 2-source condensers due to Ben-Aroya et al. [BCDT19] which for min-entropy threshold k = nα

are able to output m = nγ bits, with min-entropy kout = nΩ(γ), for some constant γ > 0. Moreover, we
observe that the error parameter of these 2-source condensers is sufficiently low, so that by decreasing the
constant hidden in the Ω(·) notation above, we can “swallow the error” and obtain that these 2-source con-
densers are errorless. (A precise statement of the result of Ben-Aroya et al. [BCDT19] and its interpretation as
an errorless 2-source errorless condenser is stated in Section 2.4.5). This gives that by replacing the 2-source
extractor TExt with the 2-source errorless condenser TCnd, and taking:

BCnd(X) = TCnd(g(B1(X)), X), . . . ,TCnd(g(Bℓ(X)), X),

we obtain an errorless condenser for samplable distributions with output length ℓ ·m = O(n1−α+γ) (as
required). We also have that BCnd(X) has min-entropy at least nΩ(γ), which is good enough for our purposes.

Removing the unjustified assumption. We would like to remove the unjustified assumption. This is often
done by proving a structural result on distributions X with H∞(X) ≥ k, showing that X can be written as
a convex combination of distributions

{
Xi

}
where each for Xi, the index i satisfies that (Bi(X

i), Xi) is a
block-wise source. This approach was used by Ta-Shma [Ta-96] and is sufficient assuming the analysis can
be done separately for each component Xi.

In our setting, this is more difficult, as we will need to decompose X into a convex combination of
distributions

{
Xi

}
where in addition to the aforementioned condition, we will need that each Xi is efficiently

samplable.
Following Ta-Shma [Ta-96] we would like to design a “selector function” S : {0, 1}n → [ℓ], that assigns

each x ∈ Supp(X) to an i ∈ [ℓ], such that for every i ∈ [ℓ]:

X = 1
2
X1 + 1

2
X2, where X1 is a distribution in which H∞(B1(X

1)) = k, and the last n/2 bits of X1 are fixed, and X2 is a
distribution where H∞(B(X2)) = k − t1, and the last n/2 bits of X2 are independent of B(X2) and have min-entropy k − t1.
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• the distribution Xi = (X | S(X) = i) is efficiently samplable.
• (B(Xi), Xi) is a block-wise source.

This would be sufficient for our purposes, as the aforementioned analysis can now be applied on each Xi

separately.
Following Ta-Shma [Ta-96], we show that a suitable selector function S that satisfies the second condition

exists. Furthermore, we show that S can be computed by a Σ1-circuit of size slightly larger than that of the
circuit A that samples X . This is not sufficient to achieve the first item as stated, as this does not imply that
Xi = (X | S(X) = i) is efficiently samplable by deterministic circuits. However, it does follow (directly
from the definition) that Xi is samplable by deterministic circuits with postselection by the Σ1-circuit Si.

This turns out to be sufficient for implementing the analysis, with the cost of “pushing the hardness
assumption one level up the polynomial time hierarchy” and assuming hardness for Σ5-circuits, rather than
Σ4-circuits (so that the function g will be hard not only on samplable distributions, but also on samplable
distributions with postselection by Σ1-circuits). Indeed, this is why the assumption in Theorem 1.13 is stated
with Σ5-circuits, rather than Σ4-circuits.

We implement the selector function using ideas from [SSZ98, Ta-96] together with classical results on
“approximate counting of NP witnesses” [Sto83, Sip83, JVV86]. These classical results (stated precisely
in Section 2.7) imply that for a samplable distribution X , and for every i ∈ [ℓ], a small Σ1-circuit can
approximate ki(x) = − log Pr[Bi(X) = Bi(x)]. Loosely speaking, this can be viewed as the amount of
“entropy” in the (fixed) string Bi(x), and the high level idea is that the selector function S(x) will output the
smallest i, such that ki(x) ≥ k/2. (We are hiding many details here, and the reader is referred to Section 3.2
for the precise argument).

1.3.5 The Final Condenser

We will now continue to implement our plan and show how the “final condenser” FCnd of Theorem 1.10 is
constructed from the “basic condenser” BCnd of Theorem 1.13.

Our goal is to prove Theorem 1.10. We will first focus on the case where i = 3, meaning that we are
shooting to construct an errorless FCnd that for α > 1/3, and min-entropy threshold k ≥ nα, outputs a
distribution over significantly less than n1/3 bits with min-entropy nΩ(1). For this choice of α slightly larger
than 1/3, BCnd outputs roughly n1−α ≈ n2/3 bits, where the output min-entropy is nδ for some very small
constant δ > 0. Our goal is to make the output length shorter, and in particular significantly shorter than n1/3.
(Recall that such a short output length is required to transform the condenser into an extractor, as explained
in Section 1.3.1).

One natural approach to improve a given condenser is composition (or “repeated condensing”). However,
in our scenario, as δ may be very small, the “entropy rate” of the output distribution of BCnd may be inferior
to that of the input distribution, and we cannot hope to make progress by straightforward composition.

Instead, we use a “win-win approach” that is inspired by a seeded extractor constriction of Reingold,
Shaltiel and Wigderson [RSW06]. Once again, we will start by assuming the unjustified assumption of the
previous section regarding block-wise sources. Given a samplable distribution X with H∞(X) ≥ k, we are
guaranteed that H∞(BCnd(X)) ≥ nδ. We will consider two scenarios:

• If H∞(BCnd(X)) ≤ k − nδ, then (by the unjustified assumption, taking B = BCnd) we have that
(BCnd(X), X) is an (nδ, nδ)-block-wise source. In this case, if we use BCnd as the function B from
Section 1.3.4 (and replace TExt with TCnd as we did in the previous section) we can obtain that
TCnd(g(BCnd(X)), X) is significantly shorter than n1/3 and has nΩ(1) bits of min-entropy.

• If H∞(BCnd(X)) > k − nδ then we have made progress as H∞(BCnd(X)) > n1/2, and now we can
hope to apply another instantiation BCnd2 of the basic condenser (set up for min-entropy threshold nα2
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where α2 > 1
2 ) and the distribution BCnd2(BCnd(X)) has length significantly shorter than nα, while

having nΩ(1) bits of min-entropy.

Overall, this leads to the following construction:

FCnd(X) = TCnd(g(BCnd(X)), X),BCnd2(BCnd(X)),

and by the case analysis above, there exists a substring of FCnd(X) that has min-entropy nΩ(1), implying
that FCnd is an errorless condenser for min-entropy threshold k that is slightly larger than n1/3, and output
length significantly less than n1/3 bits, with the guarantee that FCnd(X) outputs nΩ(1) bits of min-entropy
(as guaranteed for i = 3 in Theorem 1.10).

There are technical difficulties in implementing this approach. More specifically, the two different instan-
tiations of BCnd need to be set up for distributions that are samplable by two different circuit sizes. This
is because, BCnd2 should be set up to work on the distribution BCnd(X), which is efficiently samplable in
roughly the time it takes to compute BCnd (which in turn is larger than the time it takes to sample X). Never-
theless, this complexity leveraging can be done (and a complexity leveraging argument with a similar flavor
already appears in [BSS25]).

For i > 3, we can apply the approach above recursively. At each step either we obtain a block-wise
source and can output a string with high min-entropy, or we obtain a more condensed distribution (and our
task becomes easier). Repeating this roughly i times, we eventually output a string with high min-entropy.

There is however significant difficulty in making this argument work without the simplifying assumption.
This is because (as we previously did when removing the simplifying assumption in the construction of BCnd)
at each step, we will need to design a selector circuit, which “divides” the inputs x in the support of X between
the two scenarios.

The precise argument (which we will not describe here) is quite technical, and appears in Section 3.3.
Additional complication is that (at least the way we are able to do it) each time we define a selector function
for a recursive step, we use “approximate-counting of NP witnesses” to show that the new selector circuit is
computed by a Σ1-circuit that uses the selector circuit of the previous iteration as oracle. This means that we
“pick up more levels of the polynomial time hierarchy” in each recursive step. To account for that, we need to
strengthen the hardness assumption for each recursive step, and this is why Theorem 1.10 (and consequently
Theorems 1.4 and Theorem 1.6) are stated under a hardness assumption for Σj circuits where j = i + 3
is a constant that increases with i. We do not know whether this loss is necessary, and it may be possible
to analyze the suggested construction without this loss. (For example, no such loss is incurred under the
unjustified assumption).

1.3.6 Constructing a Multiplicative Extractor

In this section we explain how to prove Theorem 1.8 and obtain a multiplicative extractor for samplable
distributions. We would like to extend the argument of Ball et al. [BSS25] that we described in Section 1.3.3
and show how to use our errorless condenser FCnd from Theorem 1.10 to get an extractor that is multiplicative.

The difficulty in obtaining a multiplicative extractor. It should be noted that (as can be seen from our de-
scription in Section 1.3.3) the approach of [BSS25] does indeed give a multiplicative extractor Ext(x) =
TExt(g(FCnd(x)), x) that outputs m bits, if the 2-source extractor TExt has error ϵ′ that is sufficiently
smaller than 2−m. This follows because we start from the assumption that there exists z ∈ {0, 1}m such
that Pr[Ext(X) = z] > (1 + ϵ) · 2−m (namely that Ext is not a multiplicative extractor) and obtain a contra-
diction by showing that TExt is not an extractor with error ϵ′ ≈ ϵ · 2−m.

Unfortunately, the best known current constructions of 2-source extractors [CZ16, Li16] (as well as sub-
sequent work) have running time that is poly(1/ϵ′) for error ϵ′. This means that as we want these 2-source
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extractors to run in time poly(n), we must have that ϵ′ = n−O(1), and as the argument requires that ϵ′ < 2−m,
one can at best set m = O(log n) and obtain an extractor for samplable distributions with output length
m = O(log n). (For this output length, and ϵ = n−c, the distinction between multiplicative extractors and
regular extractors is immaterial).

In order to obtain a large output length (as stated in final results) Ball, Shaltiel and Silbak [BSS25] use
a result by Shaltiel [Sha08] that shows that one can use the output Ext(X), as a seed to a seeded extractor,
and extract almost all the randomness from X . (Note that as X and Ext(X) are correlated, this is far from
obvious). The crucial point is that using this transformation, one loses multiplicativity, and the final extractor
is not multiplicative.

Modifying the extractor construction to get a multiplicative extractor. We would like to modify the
technique of Ball, Shaltiel and Silbak [BSS25], so that given our final condenser FCnd, we can directly
transform it into an extractor for samplable distributions with large output length that is multiplicative (without
relying on the composition of [Sha08]).

We would therefore like to replace the 2-source extractor TExt used in Section 1.3.3 with a different
extractor that does has large output length m and error ϵ′ < 2−m, in a way that will still enable us to perform
the argument of [BSS25, TV00].

Fortunately, Li [Li15] gave a construction of an extractor IExt which for k′ = nΩ(1) has m = (k′)Ω(1) and
exponentially small error ϵ′ < 2−m. This extractor is designed for two independent sources, with the caveat
that the second source needs to be a (k′, k′)-block-wise source. (See Theorem 2.15 for a precise formulation).

We will adapt the approach of [BSS25] to work with this extractor. More specifically, for min-entropy
threshold k = nα, we define:

Ext(X) = IExt(g(FCnd2(FCnd1(X))),FCnd1(X), X).

Here, FCnd1 will be an instantiation of Theorem 1.10 set up to output nα1 bits of min-entropy from X (for
some α1 > 0), and FCnd2 will be yet another instantiation of Theorem 1.10 set up to output nα2 bits of
min-entropy from FCnd1(X) (for some α2 > 0). Note that we can indeed obtain the errorless condenser
FCnd2, as FCnd1(X) is guaranteed to have min-entropy nα1 and is efficienly samplable by the composition
of the circuit A that samples X and FCnd1.

The idea is that when analyzing the construction of Ext(X) = TExt(g(Cnd(X)), X) in Section 1.3.3,
we first fixed the first input of TExt by fixing Y = Cnd(X) to some fixed useful y, and then considered the
distribution of the second input conditioned on the first input being y, and it turned out to be sufficient for the
argument that the second source (X | Y = y) meets the requirement that TExt makes from its second source.

Similarly, in the analysis of the modified construction (that appears in Section 4.3) we will fix the first
input by fixing Y = FCnd2(FCnd1(X)) to some fixed useful y, and then consider the distribution of the
second input conditioned on the first input being y, namely ((FCnd1(X), X) | Y = y). We will be able
to show that this distribution is a block-wise source, and so meets the requirement that IExt makes from its
second source. Loosely speaking, this intuition will allow us to prove the correctness of the construction. We
will not go into additional details here, and the construction and proof appear in Section 4.3.

This enables us to use IExt instead of TExt, and as we explained earlier, the fact that the error of IExt is
exponentially smaller, will translate to give that Ext which outputs m = nΩ(1) bits, and is a multiplicative
extractor, proving Theorem 1.8.

We stress that for this argument, it is crucial that our errorless condenser FCnd of Theorem 1.10 works for
any polynomial small min-entropy. This is because even if the initial threshold α is relatively large, we end
up needing to apply FCnd2 for threshold α1 that may be very small. (Consequently, this approach would not
have worked with the errorless condenser of [BSS25]). Note also that having to set up FCnd2 for low (and in
fact unspecified) threshold α1 > 0, means that we need to set up the hardness assumption for this task, and
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this is why we need a stronger hardness assumption in Theorem 1.8 than that in Theorem 1.4. One obvious
way to reduce this hardness assumption is to argue that one can perform the argument with α1 that is not
much smaller than α. This may be doable by figuring out the precise constants in previous work that we use.

Organization of the paper

In Section 2 we give some preliminaries, as well as definitions, and past results that we use. In Section 3 we
present our new constructions of errorless condensers. In Section 4 we prove our main theorems and construct
extractors for samplable distributions using the errorless condenser of Section 3. Finally, in Section 5 we give
some open problems.

2 Preliminaries

In this section, we present notation, definitions, and past work that we use. For completeness, we will also
repeat definitions from the introduction.

2.1 Definition of Circuits of Various Types

We formally define the circuit types that will be used in this paper.

Definition 2.1 (randomized circuits, nondeterministic circuits, oracle circuits and Σi-circuits). A randomized
circuit C has additional wires that are instantiated with uniform and independent bits.

A nondeterministic circuit C has additional “nondeterministic input wires”. We say that the circuit C
evaluates to 1 on x iff there exists an assignment to the nondeterministic input wires that makes C output 1
on x.

Given a boolean function A(x), an A-circuit is a circuit that is allowed to use A gates (in addition to the
standard gates).

An NP-circuit is a SAT-circuit (where SAT is the satisfiability function) a Σi-circuit is an A-circuit where
A is the canonical ΣP

i -complete language. The size of all circuits is the total number of wires and gates.11

2.2 Probabilistic Notation

For a distribution D, we use the notation X ← D to denote the experiment in which X is chosen according to
D. For a set A, we use X ← A to denote the experiment in which X is chosen uniformly from the set A. We
often also identify a distribution X , with the random variable X chosen from this distributions. For a random
variable X and an event A we use (X | A) to denote the distribution which chooses an element according to
X , conditioned on A. We use Un to be the uniform distribution on n elements.

Two distributions X,Y over the same finite domain S are ϵ-close if for every A ⊆ S, |Pr[X ∈ A] −
Pr[Y ∈ A] ≤ ϵ.

The min-entropy of a distribution X over a finite set S, is defined by H∞(X) := minx log
1

Pr[X=x] , where
the minimum is taken over all strings x in the support of X .

We repeat the standard definition of block-wise sources, that appeared in Section 1 as Definition 1.12.
11An alternative approach to defining these circuit classes is using the Karp-Lipton notation for Turing machines with advice. For

s ≥ n, a size sΘ(1) deterministic circuit is equivalent to DTIME(sΘ(1))/sΘ(1), a size sΘ(1) nondeterministic circuit is equivalent to
NTIME(sΘ(1))/sΘ(1), a size sΘ(1) NP-circuit is equivalent to DTIMENP(sΘ(1))/sΘ(1), and a size sΘ(1) Σi-circuit is equivalent to
DTIMEΣP

i (sΘ(1))/sΘ(1).
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Definition 2.2 (block-wise sources). A distribution (W1,W2) is a (k1, k2)-block-wise source if H∞(W1) ≥
k1, and for every w1 ∈ Supp(W1), H∞(W2 |W1 = w1) ≥ k2.

We use the following standard lemma.

Lemma 2.3. Let X,Y be random variables, such that H∞(X) ≥ k and Y is over {0, 1}m. For every η > 0,
with probability at least 1− η over choosing y ← Y , we have that H∞(X | Y = y) ≥ k −m− log 1

η .

2.3 Samplable Distributions

We repeat the standard definition of samplable distributions, that appeared in Section 1 as Definition 1.2.

Definition 2.4 (Sampling procedures and samplable distributions). For a function A : {0, 1}r → {0, 1}n, we
use Z ← A to denote the experiment in which W ← Ur, and Z = A(W ), and say that Z is sampled by A.
We say that the distribution Z is samplable by a class C of functions, if there exists A ∈ C that samples Z.

We now give a more general definition of samplable distributions with postselection which generalizes
Definition 1.5.

Definition 2.5 (Samplable distributions with postselection by Σi-circuits). For functions A : {0, 1}r →
{0, 1}n, and P : {0, 1}r → {0, 1}, we use Z ← A | P to denote the experiment in which W ← Ur, and
Z = (A(W ) | P (W ) = 1), and say that Z is sampled by A with postselection by P (or that Z is sampled by
A | P for brevity).

We say that the distribution Z is (s, i)-samplable, if there exists circuit A of size s and a Σi-circuit of size
s such that Z is sampled by A | P .

We remark that for i = 0, the notion of (s, 0)-samplable distributions captures distributions samplable
by circuits of size s, with postselection by circuits of size s. This is the notion that was considered in the
introduction. We will later also consider cases where i > 0.

2.4 Extractors and Related Objects

We will be interested in several flavors of extractors and related objects.

2.4.1 Seedless Extractors

We repeat the standard definition of seedless extractors, that appeared in Section 1 as Definition 1.1.

Definition 2.6 (Seedless extractor). A function Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-extractor for a class D of
distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k, Ext(X) is ϵ-close
to Um.

We repeat the definition of “multiplicative extractors” given in Section 1 as Definition 1.7

Definition 2.7 (Multiplicative seedless extractor [Sha24]). A function Ext : {0, 1}n → {0, 1}m is a (k, ϵ)-
multiplicative extractor for a class D of distributions, if for every distribution X in D, that is over {0, 1}n,
such that H∞(X) ≥ k, Ext(X), and every event A ⊆ {0, 1}m

Pr[Ext(X) ∈ A] ≤ eϵ · Pr[Um ∈ A].

Using the fact that for 0 < ϵ ≤ 1, eϵ ≤ 1 + 2ϵ, the following proposition immediately follows:
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Proposition 2.8 (Multiplicative extractors imply standard extractors). For every class D and 0 < ϵ ≤ 1, a
(k, ϵ)-multiplicative-extractor for D is a (k, 2ϵ)-extractor for D.

The motivation behind the definition of multiplicative extractors, is that even with large error of say
ϵ = 1/10, multiplicative extractors guarantee that an event A ⊆ {0, 1}m that occurs with probability at most
n−ω(1) under the uniform distribution, occurs with probability n−ω(1) under the distribution Ext(X). This is
beneficial because (as discussed in detail in [AASY15, Sha24] there are barriers for obtaining extractors for
samplable distributions with ϵ = n−ω(1) [AASY15].

2.4.2 Errorless Condensers

We repeat the definition of errorless condensers, that appeared in Section 1 as Definition 1.9.

Definition 2.9 (Errorless condenser). A function Cnd : {0, 1}n → {0, 1}n1 is a (k, kout)-errorless condenser
for a class D of distributions, if for every distribution X in D, that is over {0, 1}n, such that H∞(X) ≥ k,
H∞(Cnd(X)) ≥ kout.

2.4.3 Seeded Extractors

We need the following standard definition of strong seeded extractors.

Definition 2.10 (Strong extractors). A function E : {0, 1}n×{0, 1}d → {0, 1}m is a strong (k, ϵ)-extractor if
for every distribution X over {0, 1}n with H∞(X) ≥ k, the distribution Z = (Y,E(X,Y )) where Y ← Ud

is ϵ close to Um+d.

We now state several explicit constructions of extractors.

Theorem 2.11 (Strong extractors with logarithmic seed and low error [GUV07]). There exists a constant
c1 > 1 such that for every constant α > 0, every sufficiently large n, and every k > c1 log n, there is a
strong (k, ϵ)-extractor E : {0, 1}n × {0, 1}O(log n

ϵ
) → {0, 1}(1−α)·k. Furthermore, E can be computed in

time poly(n).

Theorem 2.12 (Strong extractors with logarithmic seed and larger output length [TU12]). For every constants
0 < η < 1 and b ≥ 1, there exists a constant c1 such that for every sufficiently large n, and every k ≥
2c1·log

η n, there is a strong (k, 2− logη n)-extractor E : {0, 1}n × {0, 1}O(logn) → {0, 1}k−O( k

logb n
+logn)

.
Furthermore, E can be computed in time poly(n).

2.4.4 Two-Source Extractors

We repeat the standard definition of 2-source extractors, that appeared in Section 1 as Definition 1.11.

Definition 2.13 (Two-source extractors). A function TExt : {0, 1}n1 ×{0, 1}n2 → {0, 1}m is a (k1, k2, ϵ)-2-
source extractor if for every two independent distributions X1, X2 with H∞(X1) ≥ k1 and H∞(X2) ≥ k2,
TExt(X1, X2) is ϵ-close to Um.

We use the following explicit construction of 2-source extractors, due to Chattopadhyay and Zuckerman
[CZ16], with a later improvement by Li [Li16].

Theorem 2.14 ([CZ16, Li16]). There exists constant c0 such that for every constant c1, every sufficiently large
n, and every k > log(c0+c1) n there is a (k, k, 1

nc1 )-2-source extractor TExt : {0, 1}n×{0, 1}n → {0, 1}Ω(k).
Furthermore, TExt can be computed in time poly(nc1).

14



Theorem 2.14 was proven by Chattopadhyay and Zuckerman [CZ16] for the case m = 1. This proof
was extended by Li [Li16] to handle larger m. The statement in Li’s paper is weaker than the one we state
here, and only applies for some fixed constant c1 (rather than any constant c1). Nevertheless, Li’s proof can
be extended to yield the statement here by choosing the parameters in the way done by Chattopadhyay and
Zuckerman [CZ16].

We will also use an extractor construction of Li [Li15] which works for “one source, and one block-wise
source”.

Theorem 2.15 ([Li15]). For every sufficiently large n, and every k ≥ log12 n there is a function IExt :
{0, 1}n×{0, 1}n×{0, 1}n → {0, 1}0.9k such that for every three distributions X1, X2, X3 over {0, 1}n such
that X1 is independent of (X2, X3), H∞(X1) ≥ k, and (X2, X3) is a (k, k)-block-wise source, IExt(X1, X2, X3)

is ϵ-close to Um, for ϵ = 2−k
Ω(1)

. Furthermore, IExt can be computed in time poly(n).

2.4.5 Two-Source Condensers

We will also be interested in 2-source condensers, and especially in ones that are errorless.

Definition 2.16 (Two-source condensers). A function TCnd : {0, 1}n1×{0, 1}n2 → {0, 1}m is a (k1, k2, k
′, ϵ)-

2-source condenser if for every two independent distributions X1, X2 with H∞(X1) ≥ k1 and H∞(X2) ≥ k2,
TExt(X1, X2) is ϵ-close to some distribution Z over {0, 1}m with H∞(Z) ≥ k′. We omit ϵ, and say that TCnd
is an errorless (k1, k2, k′)-2-source condenser if it is a (k1, k2, k

′, 0)-2-source condenser.

We use the following explicit construction of 2-source condensers, due to Ben-Aroya, Cohen, Doron and
Ta-Shma [BCDT19].

Theorem 2.17 ([BCDT19]). There exists a constant c ≥ 1, such that for every n ≥ k, and every ϵ > 0
such that k ≥ (log n

ϵ )
c there is a (k, k, k′, ϵ)-2-source condenser TCnd : {0, 1}n × {0, 1}n → {0, 1}m

for m = k − 5 log(1/ϵ) − O(1) and k′ = m − o(log(1/ϵ). Furthermore, TCnd can be computed in time
poly(n, log(1/ϵ)).

For our purposes, it will be more convenient to state the following corollary, which aims for weaker
parameters, but achieves an errorless 2-source condensers.

Corollary 2.18 ([BCDT19]). There exist constants c0 ≥ 1 and δ0 > 0, such that for every sufficiently
large n, k, and every m, such that k ≥ 2m ≥ (log n)c0 , there is a (k, k,mδ0)-errorless 2-source condenser
TCnd : {0, 1}n × {0, 1}n → {0, 1}m that can be computed in time poly(n).

Proof. Let c be the constant from Theorem 2.17. We set α = 1
2c , c0 = 2c and ϵ = 2−m

α
. Given a

sufficiently large n, k,m such that k ≥ 2m ≥ (log n)c0 , we want to apply Theorem 2.17, and need to
verify that k ≥ (log n

ϵ )
c, and this holds because by our choices, k1/2 ≥ (log n)c and

(log
n

ϵ
)c ≤ (log n)c · (log 1

ϵ
)c ≤ (log n)c ·mαc ≤ (log n)c ·m1/2 ≤ (log n)c · k1/2 ≤ k,

giving that the assumption of Theorem 2.17 is satisfied, and we obtain (k, k, k′, ϵ)-2-source condenser TCnd :
{0, 1}n×{0, 1}n → {0, 1}m′

for m′ = k−5 log(1/ϵ)−O(1) = k−5·mα−O(1) ≥ k/2, and k′ = m′−g for
g = o(log(1/ϵ)) = o(mα). We will use the function TCnd′ : {0, 1}n → {0, 1}n → {0, 1}m which is defined
by TCnd′(x1, x2) = TCnd′(x1, x2)1,...,m (namely, the first m output bits). It is standard that if a distribution
Z on m′ bits is ϵ-close to having min-entropy m′− g, then truncating Z to the first m bits, gives a distribution
that is ϵ-close to having min-entropy m − g. It follows that TCnd′ is a (k, k,m − g, ϵ)-2-source condenser,
and this implies that TCnd′ is a (k, k,mδ0)-errorless condenser for δ0 = α

2 = 1
4c , because for every two
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independent distributions X1, X2 such that H∞(X1) ≥ k, and H∞(X2) ≥ k, and every z ∈ {0, 1}m, we
have that:

Pr[TCnd′(X1, X2) = z] ≤ 2−(m−g) + ϵ ≤ 2−(m−m
α) + 2−m

α ≤ 2−m
α/2

= 2−m
δ0
.

which gives that H∞(TCnd′(X1, X2) = z) ≥ mδ0 .

2.5 Impagliazzo-Wigderson Style Hardness Assumptions

We will rely on assumptions of the following form, introduced by Impagliazzo and Wigderson [IW97]

Definition 2.19 (E is hard for exponential size circuits). We say that “E is hard for exponential size circuits
of type X” if there exist constants 0 < β < B, and a language L in E = DTIME(2B·n), such that for every
sufficiently large n, the characteristic function of L on inputs of length n is hard for circuits of size 2βn of
type X.

Remark 2.20 (Ladder Climbing). The assumption that E is hard for exponential size Σi circuits is typically
used to construct functions that are secure (in some sense) against circuits of size nc, and are computable in
larger time poly(nc).

Typically, these proofs allow “ladder climbing”, meaning that they immediately extend to show that for
every j ≥ 0, if E is hard for exponential size Σi+j circuits then the construction gives functions that are secure
against Σj-circuits of size nc, and are computable in time poly(nc).

This immediately follows because the proofs typically use the hardness of the problem in the hardness
assumption to argue that the function is secure (in a relativizing argument) and so prove the statement relative
to a ΣP

j -oracle. On the other hand, the fact that the function is easy to compute, and is computable in time
poly(nc) follows by a separate and independent argument that only relies on the easiness of the problem in
the hardness assumption.

This observation is used in many of the past works, starting with [TV00], and we will use it extensively in
this paper.

2.6 Functions that are Hard on Samplable Distributions with Sufficient Min-Entropy (HOS)

Ball, Shaltiel and Silbak [BSS25] introduced the notion of a function that is hard on average every samplable
distribution with sufficient min-entropy (HOS), which is closely related to a notion of functions that are hard
to sample (HTS) introduced in [SS24].

Definition 2.21 (A function that is hard on samplable distributions (HOS) [BSS25] ). A function g : {0, 1}n →
{0, 1}m is a (k, ρ)-HOS for a classD of distributions, against a class a class C, if for every distribution Y ∈ D
over {0, 1}n that has H∞(Y ) ≥ k, and every function C : {0, 1}n → {0, 1}m in C,

Pr[C(Y ) = g(Y )] ≤ ρ.

The definition below considers a slightly more general scenario than the one considered in [BSS25]. In
[BSS25], the class D was fixed to be the class of distributions samplable by (deterministic) circuits. In this
paper, we consider a more general scenario where the class D is the class of (s, j)-samplable distributions.

We will use the following theorem from [BSS25].

Theorem 2.22 ([BSS25]). There exists a constant a0 > 1 such that for every integer j ≥ 0, if E is hard for
exponential size Σj+4-circuits, then for every constant c > 1, and every constant ν > 0, there is a constant
d > 1 such that every sufficiently large n, and every k ≥ 4nν there is a function g : {0, 1}n → {0, 1}na0 that
is a (k, 2−Ω(k))-HOS for the class of (nc, j+1)-samplable distributions, against the class of Σj+2-circuits of
size nc. Furthermore, f is computable in time nd.
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The statement that we make here of Theorem 2.22 is more general than the one made in [BSS25]. Nev-
ertheless, as we now explain, this more general statement immediately follows from the proof of [BSS25].
More specifically, the statement made in [BSS25] is weaker in two respects:

• In [BSS25] it is stated only for j = 0, whereas here we state it for general j. The more general statement
is achieved by “ladder climbing”, see Remark 2.20.

• In [BSS25] it is stated where the class D is the class of distributions samplable by size nc circuits,
whereas here we state it for the stronger class of (nc, j + 1)-samplable distributions. Nevertheless, the
proof in [BSS25] immediately gives this stronger statement, as we now explain: The proof in [BSS25]
actually constructs a stronger object called a “min-entropy HTS” against Σj+2-circuits of size nc. This
immediately yields an HOS where the class D is the class of distributions samplable by Σj+2-circuits
of size nc, and the class C is the class of Σ2-circuits of size nc.

It is easy to see that every distribution that is (nc, j + 1)-samplable, can be sampled (to within a tiny
statistical error of less than say 2−n) by a Σj+2-circuit of size poly(nc). This immediately gives that
(by choosing the constant c to be a bit larger) an HOS for the classD above is also an HOS for the class
of (nc, j + 1)-samplable distributions.

We remark that while the theorem applies to the class of (nc, j + 1)-samplable distributions, in this paper
it would have been sufficient to state it for (nc, j)-samplable distributions.

2.7 Approximate Counting and Uniform Sampling of NP Witnesses

We use the classical result on approximate counting and uniform sampling of NP-witnesses [Sto83, Sip83,
JVV86, BGP00], which we state below in a way that is convenient for our application.

Definition 2.23 (Relative approximation). We say that a number p is an ϵ-relative approximation to q if
(1− ϵ) · p ≤ q ≤ (1 + ϵ) · p, and an ϵ-additive approximation to q if |p− q| ≤ ϵ.

It is useful to note that if 0 ≤ p ≤ 1 is an ϵ-relative approximation to q, then it is also an additive
approximation to q. For ϵ ≤ 1

2 , we also have the following: If p is an ϵ-relative approximation to q, then q is an
O(ϵ)-relative approximation to p. If p is an ϵ-relative approximation to q and q is an ϵ-relative approximation
to w, then p is an O(ϵ)-relative approximation to w. If p′ is an ϵ-relative approximation to p and q′ is an
ϵ-relative approximation to q, then a p′/q′ is an O(ϵ)-relative approximation to p/q. (The last property does
not hold if we replace relative approximations with additive approximations).

Theorem 2.24 (Approximate counting [Sto83, Sip83, JVV86]). For every i, every sufficiently large s, and
every ϵ > 0, there is a size poly(s/ϵ) Σi+1-circuit that given a size s Σi-circuit C, outputs an ϵ-relative
approximation of | {x : C(x) = 1} |.

Theorem 2.25 (Uniform sampling [JVV86, BGP00]). For every i, every sufficiently large s, and every δ > 0,
there is a size poly(s, log(1/δ)) randomized Σi+1-circuit A that given a size s Σi-circuit C : {0, 1}n →
{0, 1}, outputs a value in {0, 1}n ∪⊥ such that Pr[A(C) = ⊥] ≤ δ and the distribution (A(C) | A(C) ̸= ⊥)
is uniform over {x : C(x) = 1}.

Regarding the formulation of Theorems 2.24 and 2.25. We state Theorems 2.24 and Theorem 2.25 for
general i, whereas typically they are only stated for i = 0.

The formulation in the two theorems only requires that the tasks be achieved by (nonuniform) circuits.
The classical results in this area, are in fact stronger. For i = 0, Theorem 2.25 holds for A that is a randomized
uniform algorithm with an NP oracle (which is stronger than the statement we give here). Similarly, for i = 0,
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Theorem 2.24 holds for a counting procedure that is a randomized uniform algorithm with an NP oracle. Here,
we state it for a circuit (which is nonuniform, and non-randomized). This immediately follows by Adleman’s
proof that BPP ⊆ P/poly which extends to BPPNP ⊆ PNP/poly.

3 A Construction of an Errorless Condenser

In this section we present our constructions of errorless condensers, and prove Theorems 1.10 which we now
restate in a more general way. In Section 4 we will use this errorless condenser to derive our extractors for
samplable distributions.

Theorem 3.1 (Final condenser). For every constants α > 0 and 0 < ξ ≤ α
10 , such that α+ ξ < 1, there exist

constants j = ⌈1−α−ξα−ξ ⌉+4, and 0 < δ1 < δ2 ≤ α
10 such that if E is hard for exponential size Σj-circuits, then

for every constant c ≥ 1, there is a constant d ≥ 1, such that for every sufficiently large n, there is a function
FCnd : {0, 1}n → {0, 1}nδ2 that is an (nα, nδ1)-errorless condenser for (nc, 0)-samplable distributions.
Furthermore, FCnd can be computed in time nd.

Showing that the formulation in Theorem 1.10 follows from Theorem 3.1. Theorem 1.10 follows from
this more general formulation as the function f(x) = 1−x

x is decreasing in (0, 1]. This means that for α > 1
i ,

1−α
α < 1−1/i

1/i = i− 1, and we can take ξ > 0 to be sufficiently small so that 1−α−ξ
α−ξ < i− 1, which gives that

j = ⌈1−α−ξα−ξ ⌉+ 4 ≤ i+ 3, and indeed Theorem 1.10 is stated with j = i+ 3.

Outline for this section. The remainder of this section is devoted to proving Theorem 3.1. In Section 3.1
we state and prove a lemma (Lemma 3.2) that will allow us to construct errorless condensers, whenever we
can “split” a given samplable source into a block-wise source. (We explained the high level intuition of this
argument in Section 1.3.3, and the formulation and proof of Lemma 3.2 below, closely follows this intuition).

In Section 3.2 we will use the “oracle condenser” of Lemma 3.2 to construct a “basic condenser” which
has output length that is longer than what we want in Theorem 3.1. (We explained the high level intuition of
this argument in Section 1.3.4). Finally, in Section 3.3 we will use the “basic condenser” in order to construct
the final condenser and prove Theorem 3.1.

3.1 An Oracle Condenser

In this section we state and prove a lemma that is the formal instantiation of the ideas explained in Section
1.3.3, and will be used in the construction of our basic condenser and final condenser. More specifically, we
devise an oracle procedure OCnd(·) which we call an “oracle condenser”. When given a samplable distribution
X as input, OCnd expects to receive oracle access to a function B : {0, 1}n → {0, 1}t for t ≤ n, such that
B “splits X into a block-wise source” (more formally, that (B(X), X) is a block-wise source). If OCnd is
indeed supplied with such a function B, it acts as an errorless condenser and produces a short output that has
some min-entropy. The precise formulation is given below.

Lemma 3.2. There exist constants c0 ≥ 1 and δ > 0, such that for every constants c ≥ 1, j ≥ 0 and ν > 0,
if E is hard for exponential size Σj+4-circuits, then there exists a constant d such that for every sufficiently
large n, and every (log n)c0 ≤ m ≤ nν/2, there is an oracle procedure OCnd(·) : {0, 1}n → {0, 1}m such
that for every t ≤ n and every function B : {0, 1}n → {0, 1}t, that has a circuit of size nc, OCndB can be
computed in time nd, and is an (nν ,mδ)-errorless condenser for all (nc, j)-samplable distributions X over
{0, 1}n, that have the additional property that (B(X), X) is a (nν , nν)-block-wise source.

We plan to use OCnd as a procedure in our constructions of basic condenser and final condenser (that
appear later in this section). We start with proving Lemma 3.2.
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3.1.1 Proof of Theorem 3.2

Figure 1: Construction of function OCnd

Parameters:

• Let c0 and δ0 be the constants from Corollary 2.18. We choose δ = δ0/2.
• We are given constants c ≥ 1, j ≥ 0, ν > 0.
• Let a ≥ 1 be a constant that will be chosen to be sufficiently large in the proof.
• We are assuming that n is sufficiently large, and receive an additional parameter m, such that (log n)c0 ≤
m ≤ nν/2.

Assumption: We are assuming that E is hard for exponential size Σj+4-circuits.
Ingredients: We will require the following ingredients:

• HOS: By Theorem 2.22, under the hardness assumption, there is a function g : {0, 1}n → {0, 1}na0

(where a0 > 1 is a universal constant) that is an (nν , 2−Ω(nν))-HOS for the class of (nc·a, j)-samplable
distributions, against the class of size nc·a Σj+2-circuits. We have that g can be computed in time ndg for
some constant dg that depends on c, a and ν.

• 2-source errorless condenser: Let k′ = nν

a and let TCnd : {0, 1}na0 × {0, 1}na0 → {0, 1}m be the
(k′, k′,mδ0)-errorless 2-source condenser that is guaranteed by Corollary 2.18. We have TCnd is can be
computed in time poly(n).

Construction: We define OCnd(·) : {0, 1}n → {0, 1}m, as follows: Given oracle access to a function B : {0, 1}n →
{0, 1}t, with t ≤ n, we define:

OCndB(x) = TCnd(g(B(x)), x).

Note that g expects inputs of length n, and TCnd expects inputs of length na0 , and so:

• If t ≤ n, we pad B(x) with n− t zeros, before applying g on B(x).
• We pad x with na0 − n zeros, before giving it as a second input to TCnd.

Note that by construction, there indeed exists a constant d, such that if B can be computed in time nc, then
OCndB can be computed in time nd (where d depends on dg , and c).

The construction of the oracle procedure OCnd appears in Figure 1 and implements the idea explained in
Section 1.3.3.

Let n be sufficiently large, and assume for the purpose of contradiction that there is a function B :
{0, 1}n → {0, 1}t, and an (nc, j) samplable distribution X such that:

1. B has a circuit of size nc.

2. (B(X), X) is an (nν , nν)-block-wise source.

3. There exists a z ∈ {0, 1}m, such that Pr[TCnd(g(B(X)), X) = z] > 2−m
δ
.

Our goal will be to obtain a contradiction by showing that there is a Σj+2-circuit C of size nc·a, and a (nc·a, j)-
samplable distribution Y (we will choose Y = B(X)) with H∞(Y ) ≥ nν , on which Pr[C(Y ) = g(Y )] is
too large, and contradicts the HOS guarantee of g.

We have chosen δ = δ0/2, which gives that the third item above implies that for µ = 2−m
δ0 and some
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constant η > 0,
Pr[TCnd(g(B(X)), X) = z] > (1 + η) · µ.

We will say that y ∈ {0, 1}t is useful if

Pr[TCnd(g(y), X) = z | B(X) = y] > (1 +
η

2
) · µ.

Claim 3.3. Pr[B(X) is useful] > η·µ
4 .

Proof. Let G denote the set of all useful y ∈ {0, 1}t. If the claim does not hold then

Pr[TCnd(g(B(X)), X) = z] ≤ Pr[B(X) ∈ G] + Pr[TCnd(g(B(X)), X) = z ∩B(X) ̸∈ G]

≤ η · µ
4

+
∑
y ̸∈G

Pr[TCnd(g(B(X)), X) = z ∩B(X) = y]

=
η · µ
4

+
∑
y ̸∈G

Pr[TCnd(g(B(X)), X) = z | B(X) = y] · Pr[B(X) = y]

≤ η · µ
4

+
∑
y ̸∈G

(1 +
η

2
) · µ · Pr[B(X) = y]

≤ η · µ
4

+ (1 +
η

2
) · µ

≤ (1 + η) · µ

which is a contradiction.

Let n′ = na0 be the output length of g. For every y ∈ {0, 1}t and every 0 ≤ α ≤ 1, we define:

Ty,α =
{
v ∈ {0, 1}n′

: Pr[TCnd(v,X) = z | B(X) = y] > (1 + α) · µ
}
.

With this definition we immediately have that for every useful y, g(y) ∈ Ty,η/2. We now observe that for
every y and α ≥ 0, Ty,α is a small set.

Claim 3.4. For every y ∈ {0, 1}t, and every α ≥ 0, |Ty,α| < 2k
′
.

Proof. If this does not hold, then there exists a y ∈ {0, 1}t and α ≥ 0, such that |Ty,α| ≥ 2k
′
. We consider the

following two distributions: The first is Vy that is uniform over Ty,α, and the second Wy = (X | B(X) = y).
These two distributions are independent, and have min-entropy at least k′, and therefore, by the guarantee of
TCnd, we have that Pr[TCnd(Vy,Wy) = z] ≤ µ. This is a contradiction as we also have that,

Pr[TCnd(Vy,Wy) = z] = Pr[TCnd(Vy, X) = z | B(X) = y]

= Ev←Ty,α [Pr[TCnd(v,X) = z | B(X) = y]]

> (1 + α) · µ.

We have that X is (nc, j)-samplable which means that X ← A | P , for some circuit A : {0, 1}r →
{0, 1}n of size nc, and some Σj-circuit P : {0, 1}r → {0, 1} of size nc. We now define the following
circuits.

Definition 3.5. For every y ∈ {0, 1}t, and v ∈ {0, 1}n′
we define two Σj circuits C1

y,v : {0, 1}r → {0, 1}
and C2

y : {0, 1}r → {0, 1} of size poly(nc) as follows:
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• C1
y,v(w) answers one iff TCnd(v,A(w)) = z ∧B(A(w)) = y ∧ P (w) = 1.

• C2
y (w) answers one iff B(A(w)) = y ∧ P (w) = 1.

We also define:

• p1y,v = Pr[C1
y,v(Ur) = 1].

• p2y = Pr[C2
y (Ur) = 1].

Claim 3.6. For every y ∈ {0, 1}t and v ∈ {0, 1}n′
, if p2y ̸= 0, then

p1y,v
p2y

= Pr[TCnd(v,X) = z | B(X) = y].

Proof. For every y ∈ {0, 1}t and v ∈ {0, 1}n′
, if p2y ̸= 0 then for W ← Ur, we have that:

p1y,v
p2y

=
Pr[TCnd(v,A(W )) = z ∧B(A(W )) = y ∧ P (W ) = 1]

Pr[B(A(W )) = y ∧ P (W ) = 1]

=
Pr[TCnd(v,A(W )) = z ∧B(A(W )) = y | P (W ) = 1] · Pr[P (W ) = 1]

Pr[B(A(W )) = y | P (W ) = 1] · Pr[P (W ) = 1]

=
Pr[TCnd(v,A(W )) = z ∧B(A(W )) = y | P (W ) = 1]

Pr[B(A(W )) = y | P (W ) = 1]

=
Pr[TCnd(v,X) = z ∧B(X) = y]

Pr[B(X) = y]

= Pr[TCnd(v,X) = z | B(X) = y].

This means that for every y ∈ {0, 1}t and 0 ≤ α ≤ 1, we can decide whether a given v ∈ {0, 1}t is in
Ty,α if we can check whether p2y = 0 and compute p1y,v and p2y. By Theorem 2.7 a small Σj+1-circuit, can
compute relative approximations to p1y,v and p2y. We will now use this idea to prove the following:

Claim 3.7. For every y ∈ {0, 1}t, there is a Σj+1-circuit Cy : {0, 1}n′ → {0, 1} of size poly(nc) such that:

• For every v ∈ {0, 1}n′
such that Cy(v) = 1, we have that v ∈ Ty, η

8
.

• If y is useful, then Cy(g(y)) = 1.

Proof. When given v ∈ {0, 1}n′
, the circuit Cy works as follows:

• Cy checks whether there exists w ∈ {0, 1}r, such that B(A(w)) = y and P (w) = 1. If there does not
exist such a w, it answers zero (as this means that p2y = 0)

• Let λ = η/a′ for a universal constant a′ > 1 to be chosen later. Cy applies Theorem 2.24 to compute
a λ-relative approximations p̂1y,v and p̂2y, of p1y,v and p2y respectively. It can do this by computing
approximations of the number of accepting inputs of the circuits C1

y,v and C2
y , respectively.

• Cy computes p̂y,v =
p̂1y,v
p̂2y

and note that as this is an O(λ)-relative approximation to py,v =
p1y,v
p2y

=

Pr[TCnd(v,X) = z | B(X) = y].

• Cy outputs one if p̂y,v > (1 + η
4 ) · µ and zero otherwise.
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By choosing the constant a′ to be sufficiently large, we can make λ = η/a′ sufficiently small, to guarantee
that checking whether the O(λ) approximation p̂y,v is larger than (1+ η

4 )·µ distinguishes between the case that
py,v > (1+ η

2 )·µ and the case that py,v ≤ (1+ η
8 )·µ. This gives that if Cy(v) = 1 then py,v > (1+ η

8 )·µ which
gives that v ∈ Ty, η

8
. We have that for every useful y, g(y) ∈ Ty, η

2
, which means that py,g(y) > (1 + η

2 ) · µ,
and indeed, Cy(g(y)) = 1.

Finally, by definition Cy is a circuit of size poly(nc, 1
λ) = poly(nc).

We are finally ready to complete the proof, with the next claim.

Claim 3.8. There is a Σj+2-circuit C of size poly(nc) such that for Y = B(X),

Pr[C(Y ) = g(Y )] ≥ 2−k
′ · η · µ

8

Proof. We will first construct a randomized Σj+2-circuit C ′, and then use a standard averaging argument
to convert it to a non-randomized Σj+2-circuit. The randomized circuit C ′ is defined as follows: On input
y ∈ {0, 1}t:

• C ′ constructs the Σj+1-circuit Cy. Note that the circuit Cy is specified precisely in the proof of Claim
3.7, and so, the circuit C ′ (that can be hardwired with A, P , B, z, and the circuit from Theorem 2.24)
can construct the circuit Cy.

• C ′ uses the Σj+2-circuit guaranteed in Theorem 2.25 (choosing i = j + 1 and δ = 1
2 ) to output a

uniform element in {v : Cy(v) = 1}.

By definition, the circuit C ′ is a randomized Σj+2-circuit of size poly(nc). We conclude that:

Pr[C ′(Y ) = g(Y )] ≥ Pr[C ′(Y ) = g(Y ) | Y is useful] · Pr[Y is useful]

≥ Pr[C ′(Y ) = g(Y ) | Y is useful] · η · µ
4

≥ 1

2
· 2−k′ · η · µ

4

= 2−k
′ · η · µ

8
.

where the first inequality follows from Claim 3.3, and the last inequality follows because by Claim 3.7, for
every useful y, g(y) ∈ {v : Cy(v) = 1} which by Claim 3.4, is of size at most 2k

′
, and each element in the

set is obtained with probability 1
2 · 2

−k′ .
Finally, by a standard averaging argument, there exists a (non-randomized) Σj+2-circuit of size poly(nc)

with the same success probability.

We have obtained a Σj+2-circuit C of size poly(nc). We can choose the constant a to be sufficiently large
so that the size of C is bounded by nc·a. We can view the distribution Y = B(X) (which is over {0, 1}t) as a
distribution over {0, 1}n by padding B(X) with zeros (recall that t ≤ n). We have that:

• H∞(Y ) ≥ nν , and

• Y is (nc·a, j)-samplable (it is sampled by (B ◦A) | P ).

We also have that,

Pr[C(Y ) = G(Y )] ≥ 2−k
′ · η

8
· µ

≥ Ω(2−2k
′
)

≥ 2−Ω(n
ν

a
),
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where the first inequality follows because η is constant, and for large enough n, µ = 2−m
δ0 and m ≤ nν/2 ≤

nν/a = k′. Finally, by choosing the constant a to be sufficiently large, we can make sure that the success
probability of C violates the HOS guarantee of g.

3.2 The Basic Condenser

In this section we present our construction of the basic condenser, and prove Theorems 1.13 which we now
restate in a more general way.

Theorem 3.9. There exist constants c0 ≥ 1 and δ0 > 0, such that for every constants c ≥ 1, 0 < α < 1 and
j ≥ 0, if E is hard for exponential size Σj+5-circuits then there exists a constant d ≥ 1, such that for every
sufficiently large n, and every (log n)c0 ≤ m ≤ n

α
4 , there is a function BCnd : {0, 1}n → {0, 1}10n1−α·m that

is an (nα,mδ0)-errorless condenser for (nc, j)-samplable distributions. Furthermore, BCnd can be computed
in time nd.

The basic condenser will be used in our final condenser (that appears later in this section). We first prove
Theorem 3.9.

3.2.1 Proof of Theorem 3.9

The construction and proof of Theorem 3.9 closely follow the high level explanation given in Section 1.3.4.
As explained there, the construction and its analysis use (amongst other things) ideas by Saks, Srinivasan and
Zhou [SSZ98] and Ta-Shma [Ta-96].

We will choose the constants c0 ≥ 1 and δ0 > 0 specified in Theorem 3.9 relying on the choices of c0, δ
in Lemma 3.2. More specifically, c0 will be the same as in Lemma 3.2, and δ0 = δ/2, where δ is the constant
in Lemma 3.2. We are now given constants c ≥ 1, 0 < α < 1 and j ≥ 0. Our goal is to construct an
errorless condenser BCnd for distributions X over {0, 1}n that are (nc, j)-samplable. Before presenting the
construction of the errorless condenser BCnd, we will make some preparations.

Preparation and notation. For a sufficiently large n, let k = nα, b = k/10, ℓ = n/k = 10 · n1−α, and
ϵ = 2−k/100. Given a string x ∈ {0, 1}n, we will partition it into ℓ blocks of length b. For i, i′ ∈ [ℓ], we
will use x[i] to denote the b bits long i’th block of x, and x[i, . . . , i′] to denote the b(i′ − i + 1) bits long
concatenation of the blocks x[i] ◦ . . . ◦ x[i′].

Let X be an (nc, j)-samplable distribution over {0, 1}n. That is, X ← A | P where A : {0, 1}r →
{0, 1}n is a circuit of size nc, and P : {0, 1}r → {0, 1} is a Σj-circuit of size nc.

For i ∈ [ℓ] and v ∈ {0, 1}bi, we define:

ki(v) = − log Pr[X[1, . . . , i] = v].

For 0 ≤ i ≤ ℓ and x ∈ {0, 1}n, we define ki(x) = ki(x[1, . . . , i]). With this notation we have that for every
i ∈ [ℓ] and every x ∈ {0, 1}n, Pr[X[1, . . . , i] = x[1, . . . , i]] = 2−ki(x).

A circuit R that approximates ki(x). We now observe that there is a Σj+1-circuit of size poly(nc) that
computes an approximation of ki(v).

Claim 3.10. There is a Σj+1-circuit R of size poly(nc) which given input 0 ≤ i ≤ ℓ and v ∈ {0, 1}ib, outputs
a number k̂i(v) such that: |k̂i(v)− ki(v)| ≤ 1.
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Proof. If i = 0, then R outputs zero. When the circuit R receives an input i ∈ [ℓ] and v ∈ {0, 1}ib, We first
consider the Σj-circuit A′ : {0, 1}r → {0, 1} defined by A′(w) = 1 iff A(w)[1, . . . , i] = v and P (w) = 1.
Note that:

2−ki(v) = Pr[X[1, . . . , i] = v]

= Pr
W←Ur

[A(W )[1, . . . , i] = v | P (W ) = 1]

=
PrW←Ur [A

′(W ) = 1]

PrW←Ur [P (W ) = 1]
.

By Theorem 2.24, the circuit R (which will be a Σj+1-circuit of size poly(nc)) can compute λ-relative ap-
proximations to both the enumerator and denominator, for say constant λ = 1

100 . R can then compute the
division, which is guaranteed to be a 1/10-relative approximation of 2−ki(v), using this approximation, R can
output the required approximation k̂i(v).

Once again, it will be convenient to allow R to receive an input x ∈ {0, 1}n, rather than v ∈ {0, 1}ib.
More formally, for i ∈ [ℓ] and x ∈ {0, 1}n, we define k̂i(x) = ki(x[1, . . . , i]), and will assume w.l.o.g. that
R(i, x) = k̂i(x).

Partitioning the support of X . In the next definition, we partition Supp(X) into ℓ+ 1 sets, T ′0, . . . , T
′
ℓ+1.

We will later claim that Pr[X ∈ T ′0] is small, and for every i ∈ [ℓ], the distribution (X[1, . . . , i], X) is a
(k/4, k/4)-block-wise source when X is conditioned on the event {X ∈ T ′i}.

Definition 3.11.

• For every x ∈ Supp(x), let i(x) denote the smallest i ∈ [ℓ], such that k̂i ≥ k/2. (Such an i exists
because kℓ(x) ≥ k, and k̂ℓ(x) ≥ kℓ(x) − 1). Furthermore, note that given i ∈ [ℓ] and x ∈ Supp(X),
whether i(x) = i is determined by i and x[1, . . . , i].

• We will say that x ∈ Supp(X) is useful if k̂i(x) ≤ k/2 + b+ 2 log n+ log(1/ϵ).

• For every i ∈ [ℓ], we define Ti = {x ∈ Supp(X) : i(x) = i, and x is useful}.
• We define T0 = {x : x is not useful}
• We define B =

{
i : Pr[X ∈ Ti] ≤ ϵ

n2

}
.

• For every i ∈ [ℓ] we define T ′i =

{
Ti, if i ̸∈ B

∅, if i ∈ B

• We define T ′0 = ∪i∈B∪{0}Ti.

This definition is made so that we obviously have that:

• T ′0 and (T ′i )i ̸∈B are a partition of Supp(X).

• For every i ∈ [ℓ] such that i ̸∈ B, Pr[X ∈ T ′i ] ≥ ϵ
n2 .

• For every x ∈ Supp(X) that is useful, if i(x) ̸∈ B, then x ∈ T ′i(x), and otherwise x ∈ T ′0.

• For every x ∈ Supp(X) that is not useful, x ∈ T ′0.

• For every x ∈ Supp(X) and i ∈ [ℓ], whether or not x ∈ T ′i , is determined by i and x[1, . . . , i]. (It is
sufficient to check whether i ∈ B, and examine k̂1(x), . . . , k̂i(x) which are determined by x[1, . . . , i]).

We start by showing that the probability that X is not useful is small.
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Claim 3.12. Pr[Xis not useful] ≤ ϵ
2

Proof. For every i ∈ [ℓ], we define

Pi = {x ∈ Supp(X) : x is not useful, and i(x) = i} ,

so that {x ∈ Supp(X) : x is not useful} = ∪i∈[ℓ]Pi.
We observe that for every i ∈ [ℓ] and x ∈ Supp(X), whether or not x ∈ Pi is determined by i and

x[1, . . . , i]. This follows because given i and x[1, . . . , i], we can determine whether i(x) = i. If i(x) ̸= i,
then x ̸∈ Pi. If i(x) = i, whether or not x ∈ Pi depends on whether x is useful, which is determined by k̂i(x)
which is determined by x[1, . . . , i].

This means that for every i ∈ [ℓ], we can define a set P ′i ⊆ {0, 1}ib, such that x ∈ Pi if and only if
x[1, . . . , i] ∈ P ′i . This gives that:

Pr[X is not useful] = Pr[X ∈ ∪i∈[ℓ]Pi] ≤
∑
i∈[ℓ]

Pr[X ∈ Pi] =
∑
i∈[ℓ]

Pr[X[1, . . . , i] ∈ P ′i ].

It therefore remains to upper-bound Pr[X[1, . . . , i] ∈ P ′i ]. For this purpose, we fix some i ∈ [ℓ] and note that
for every z ∈ {0, 1}(i−1)b and y ∈ {0, 1}b, such that v = z ◦ y ∈ P ′i , we have that:

2−ki(v) = Pr[X[1, . . . , i] = v]

= Pr[X[1, . . . , i− 1] = z] · Pr[X[i] = y | X[1, . . . , i− 1] = z]

= 2−ki−1(v) · Pr[X[i] = y | X[1, . . . , i− 1] = z].

Recall that we have that |k̂i(v)− ki(v)| ≤ 1, and so, rearranging we get that:

Pr[X[i] = y | X[1, . . . , i− 1] = z] ≤ 2−(ki(v)−ki−1(v)) ≤ 2−(k̂i(v)−k̂i−1(v)−2) ≤ 2−(b+2 logn+log(1/ϵ)−2),

where the last inequality follows because for v ∈ P ′i , we have that k̂i−1(v) < k/2 (as i is the smallest index
such that ki(v) ≥ k/2) and k̂i(v) > k/2+ b+2 log n+ log(1/ϵ) (because v ∈ P ′i and therefore v not useful,
and i(v) = i).

We now proceed with our plan, to upper-bound Pr[X[1, . . . , i] ∈ P ′i ].

Pr[X[1, . . . , i] ∈ P ′i ] =
∑

z∈{0,1}(i−1)b

Pr[X[1, . . . , i] ∈ P ′i | X[1, . . . , i− 1] = z] · Pr[X[1, . . . , i− 1] = z].

Thus, it is sufficent to upper-bound Pr[X[1, . . . , i] ∈ P ′i | X[1, . . . , i − 1] = z] for every z ∈ {0, 1}(i−1)b.
For every z ∈ {0, 1}(i−1)b, we have that:

Pr[X[1, . . . , i] ∈ P ′i | X[1, . . . , i− 1] = z] =
∑

y∈{0,1}b: z◦y∈P ′
i

Pr[X[i] = y | X[1, . . . , i− 1] = z]

≤
∑

y∈{0,1}b: z◦y∈P ′
i

2−(b+2 logn+log(1/ϵ)−2)

≤ 2b · 2−(b+2 logn+log(1/ϵ)−2)

≤ ϵ

2n
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It now remains to put everything together:

Pr[X is not useful] ≤
∑
i∈[ℓ]

Pr[X[1, . . . , i] ∈ P ′i ]

≤ n ·
∑

z∈{0,1}(i−1)b

Pr[X[1, . . . , i] ∈ P ′i | X[1, . . . , i− 1] = z] · Pr[X[1, . . . , i− 1] = z]

≤ n ·maxz∈{0,1}(i−1)b Pr[X[1, . . . , i] ∈ P ′i | X[1, . . . , i− 1] = z]

≤ n · ϵ

2n

≤ ϵ

2
.

A “selector circuit” S. We will now show that there exists a “selector circuit” Σj+1-circuit S of size
poly(nc), which given x ∈ Supp(X) computes the unique 0 ≤ i ≤ ℓ such that x ∈ T ′i . Furthermore,
we will show that Pr[S(X) = 0] is very small, and for every i ∈ [ℓ], the distribution (X[1, . . . , i], X) is a
(k/4, k/4)-block-wise source when X is conditioned on the event {S(X) = i}.

Lemma 3.13. For every distribution X that is (nc, j)-samplable, and has H∞(X) ≥ k, there is a Σj+1-
circuit S of size poly(nc), such that:

• There exists a set B ⊂ [ℓ], such that for every x ∈ Supp(X), S(X) ∈ ([ℓ] \ B) ∪ {0}, and for every
i ̸∈ B, Pr[S(X) = i] > 0.

• Pr[S(X) = 0] ≤ ϵ.

• For every i ∈ [ℓ] \B, the distribution (X | S(X) = i) is (poly(nc), j + 1)-samplable.

• For every i ∈ [ℓ] \B, the distribution ((X[1, . . . , i], X) | S(X) = i) is a (k4 ,
k
4 )-block-wise source.

Proof. The circuit S will be hardwired with the set B from definition 3.11. Given x, the circuit S will do the
following.

• Use the circuit R to compute k̂0(x), . . . , k̂ℓ(x).

• Find i(x) (recall that this is the smallest i such that k̂i ≥ k/2).

• If i(x) ∈ B, output zero (as in this case x ∈ T ′0).

• Check whether x is useful (by checking if k̂i(x) ≤ k/2 + b+ 2 log n+ log(1/ϵ)).

• If x is useful, output i(x), and otherwise output zero.

It is obvious by construction that for x ∈ Supp(X), S(x) = i if and only if x ∈ T ′i . The first item immediately
follows as we have seen that the sets T ′0 and (T ′i )i ̸∈B are a partition of Supp(X).

We now turn our attention to the second item. We have defined T ′0 = ∪i∈B∪{0}Ti. For every i ∈ B, by
definition Pr[X ∈ Ti] ≤ ϵ

n2 , and by Claim 3.12, Pr[X ∈ T0] = Pr[X is not useful] ≤ ϵ
2 . Overall, we have

that by a union bound:
Pr[S(X) = 0] = Pr[X ∈ T ′0] ≤ ℓ · ϵ

n2
+

ϵ

2
≤ ϵ.

The third item follows as for every i ∈ [ℓ], such that Pr[S(X) = i] > 0, the distribution (X | S(X) = i) is
sampled by A|P ′, where P ′(w) is a Σj+1 circuit of size poly(nc), defined by P ′(w) = P (w)∧S(A(w)) = i.
This is because for W ← Ur, (A(W ) | P ′(W ) = 1) is identical to (X | S(X) = i).
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We will now prove the fourth item. Let i ∈ [ℓ] be an index such that Pr[S(X) = i] > 0, and in particular,
i ̸∈ B. Let x ∈ Supp(X), be such that S(x) = i, which means that x ∈ T ′i . We have that:

Pr[X[1, . . . , i] = x[1, . . . , i] | S(X) = i] =
Pr[X[1, . . . , i] = x[1, . . . , i]] ∧ S(X) = i]

Pr[S(X) = i]

≤ Pr[X[1, . . . , i] = x[1, . . . , i]]

Pr[X ∈ T ′i ]

≤ 2−ki(x)

ϵ/n2

≤ 2−(k̂i(x)−1−2 logn−log(1/ϵ))

≤ 2−k/2−1−2 logn−log(1/ϵ))

≤ 2−k/4,

where the third line follows because i ̸∈ B, and so Pr[X ∈ T ′i ] ≥ ϵ/n2. The fourth line follows because
|k̂i(x) − ki(x)| ≤ 1. The fifth line follows because for x ∈ T ′i , we have that ki(x) ≥ k/2. The last line
follows because k = nα and ϵ = 2−k/100. This gives that H∞(X[1, . . . , i] | S(X) = i) ≥ k

4 .
It remains to analyze Hi(X | X[1, . . . , Xi] = x[1, . . . , xi] ∧ S(X) = i). For this purpose, we compute:

Pr[X = x | X[1, . . . , i] = x[1, . . . , i] ∧ S(X) = i] =
Pr[X = x ∧X[1, . . . , i] = x[1, . . . , i] ∧ S(X) = i]

Pr[X[1, . . . , i] = x[1, . . . , i] ∧ S(X) = i]

≤ Pr[X = x]

Pr[X[1, . . . , i] = x[1, . . . , i] ∧X ∈ T ′i ]

=
Pr[X = x]

Pr[X[1, . . . , i] = x[1, . . . , i]]

=
2−k

2−ki(x)

≤ 2−(k−k̂i(x)−1)

≤ 2−(k−(k/2+b+2 logn+log(1/ϵ))−1)

≤ 2−k/4,

where the third line follows because for x ∈ T ′i , {X[1, . . . , i] = x[1, . . . , i]} ⊆ {X ∈ T ′i}. More specifically,
this is because whether or not X ∈ T ′i is determined by X[1, . . . , i] and as X[1, . . . , i] = x[1, . . . , i] for
x ∈ T ′i , it follows that X[1, . . . , i] = x[1, . . . , i] implies X ∈ T ′i . The fourth line follows because |k̂i(x) −
ki(x)| ≤ 1. The fifth line follows because for x in T ′i , i(x) = i, and x is useful, which gives that k̂i ≤
k/2 + b+ 2 log n+ log(1/ϵ). The last line follows because k = nα, b = k/10 and ϵ = 2−k/100.

This gives that H∞(X | X[1, . . . , i] = x[1, . . . , xi] ∧ S(X) = i) ≥ k/4, and overall, we have that
((X[1, . . . , i], X) | S(X) = i) is a (k4 ,

k
4 )-block-wise source.

The construction of BCnd: Let a > 1 be a large constant to be chosen later. We are assuming that E is
hard for exponential size Σj+5-circuits, and will apply Lemma 3.2, with the following choices c(3.2) = a · c,
j(3.2) = j + 1, ν = α/2, and the m specified in Theorem 3.9 (which indeed satisfies that (log n)c0 ≤ m ≤
nν/2, as required by Lemma 3.2). We obtain an oracle procedure OCnd(·) : {0, 1}n → {0, 1}m such that
for every t ≤ n and every function B : {0, 1}n → {0, 1}t that has a circuit of size na·c, OCndB can be
computed in time nd(3.2) (for some constant d(3.2)). Furthermore, setting k′ = mδ0 , we obtain that OCndB

is a (nα/2, k′)-errorless condenser for all (na·c, j + 1)-samplable distributions V over {0, 1}n, that have the
additional property that (B(V ), V ) is a (nα/2, nα/2)-block-wise source.
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For every i ∈ [ℓ], we define the function Bi(x) = x[1, . . . , i]. We now define BCnd : {0, 1}n → {0, 1}ℓm,
by:

BCnd(x) = OCndB1(x), . . . ,OCndBℓ(x).

(Note that the output length of BCnd is ℓm = 10n1−α ·m as promised by Theorem 3.9). In order to prove
Theorem 3.9, we need to show that H∞(BCnd(X)) ≥ mδ. We first observe that:

Claim 3.14. For every i ∈ [ℓ] such that i ̸∈ B, for Vi = (X | S(X) = i) we have that H∞(OCndBi(Vi)) ≥
k′.

Proof. By Claim 3.13 we have that Vi is (poly(nc), j + 1)-samplable, and that (Bi(Vi), Vi) is a (k/4, k/4)-
block-wise source. We can choose the constant a to be sufficiently large so that Vi is (na·c, j + 1)-samplable.
Recall that k/4 = nα/4 ≥ nα/2 and therefore, the function Bi and the distribution Vi meets the guarantee of
OCnd. Therefore by the guarantee of OCnd, we indeed have that H∞(OCndBi(Vi)) ≥ k′.

By Claim 3.13, X can be expressed as a convex combination of (X | S(X) = 0) (which has a coefficient
of at most ϵ = 2−n

η/100) and the distributions (Vi)i ̸∈B .
We obtain that the distribution BCnd(X) is ϵ-close to a distribution with min-entropy at least k′. (This

follows because a convex combination of distributions with min-entropy at least k′, has min-entropy at least
k′).

This is not exactly what is guaranteed in Theorem 3.9, as we wanted BCnd to be errorless. Nevertheless,
the error ϵ is smaller than 2−k

′
and we can “swallow it” at the cost of slightly reducing k′. More precisely, we

have that for every z ∈ {0, 1}ℓ·m,

Pr[BCnd(X) = z] ≤ 2−k
′
+ ϵ ≤ 2−(k

′−1) ≤ mδ,

where the first inequality holds because ϵ = 2−n
α/100 and k′ = mδ0 ≤ m ≤ nα/4, and the second inequality

follows because δ = δ0/2, so that k′ − 1 ≥ mδ. Overall, we conclude that indeed H∞(BCnd(X)) ≥ mδ.
Furthermore, by construction, there exists a constant d (that depends on c, a and d(3.2)) such that BCnd is
computable in time nd.

3.3 Proof of Theorem 3.1

In this section we Prove Theorem 3.1. The construction and proof closely follow the informal explanation
given in Section 1.3.5.

3.3.1 The Construction of the Final Condenser

Setting up instantiations of the basic condenser. We are given constants α > 0 and 0 < ξ ≤ α/10,
such that α + ξ < 1. We will set the constant j as chosen in Theorem 3.1. We are assuming that E is hard
for exponential size Σj-circuits, and given a constant c, we assume that n is sufficiently large, and aim to
construct an errorless condenser for (nc, 0)-samplable distributions X that have H∞(X) ≥ nα.

We will now set up some additional parameters that will be used in the construction: Let k = nα. Let δ0
be the constant from Theorem 3.9, and δ be the constant from Lemma 3.2. We set γ = ξ/2, λ = γ · δ0/2,
ν = λ/2 = γ · δ0/4 and ϵ = 2−n

ν
.

We plan to use the hardness assumption to set up a constant number instantiations (where the constant
will depends on the constant α) of the basic condenser BCnd. For every i ≥ 0, We plan to make each such
instantiation BCndi to be a function BCndi : {0, 1}ni → {0, 1}ni+1 , where n0 = n, and ni+1 ≈ n1−α

i . For
this purpose, we make the following definitions. For every i ≥ 0, we define:
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• n0 = n, and for i ≥ 0, ni+1 = n1−α+2γ
i , which gives that: ni = n1−i·(α−2γ).

• k0 = k, and for i ≥ 0, ki+1 = ki − nλ, which gives that ki = k − i · nλ.

Let ℓ be the smallest integer, such that nℓ+1 ≤ nα−ξ. By the definition of the sequence {ni}, this holds for

ℓ = ⌈1− α− ξ

α− ξ
⌉ − 1.

We set j = ℓ + 5 = ⌈1−α−ξα−ξ ⌉ + 4 (as stated in Theorem 3.1). Using these choices, the construction of
FCnd is specified in Figure 2.

3.3.2 Analysis of the Construction

We start by listing some properties that are maintained as an invariant throughout the iterative construction.
We will then show that Theorem 3.1 directly follows from these properties.

In the lemma below, we will show that for every i there exists a “selector circuit” Si which when given
input x ∈ Supp(X) outputs an element in {E,W,R}. The intuition is that:

• If Si(x) = E, then we think of x as an erroneous element which does not contribute to the success of
FCnd, and our goal will be to maintain that the probability of these elements is small.

• If Si(x) = W , then we think of x as an element on which FCnd already wins in one of the previous
iterations. Here winning, means that conditioned on the event {Si(X) = W} the output of FCnd(X) (in
fact even the first i−1 blocks) contain the required amount of min-entropy. Our hope is that eventually,
we will win on all x ∈ Supp(X), except for the few erroneous ones.

• If Si(X) = R, then we think of x as “remaining”, and we have the property that conditioned on the
event {Si(X) = R}, the distribution Bi(X) (which is the distribution that we are holding in the i’th
step) has min-entropy at least k/2. In every iteration, the length of Bi(x) (which is ni) decreases. This
means that the distribution that we are holding at this step is more condensed than the ones we held in
previous iterations, and so we make progress, and eventually we will have to win.

The precise statement is given below.

Lemma 3.15. Let X over {0, 1}n be an (nc, 0)-samplable distribution, such that H∞(X) ≥ k. For every
0 ≤ i ≤ ℓ+ 1 we have that:

• There exists a circuit Si : {0, 1}n → {E,W,R} such that:

– Si is a Σi-circuit of size nci−1.
– The sets TE

i = {x ∈ Supp(X) : Si(x) = E}, TW
i = {x ∈ Supp(X) : Si(x) = W}, TR

i =
{x ∈ Supp(X) : Si(x) = R} are a partition of Supp(X).

• Pr[Si(X) = E] ≤ i · ϵ.
• If Pr[Si(X) = R] > 0, then H∞(Bi(X) | Si(X) = R) ≥ ki ≥ k/2.

• If Pr[Si(X) = W ] > 0 then the distribution Z = (FCnd(X)0,...,i−1 | Si(X) = W ) has H∞(Z) ≥
(m′)δ.

The proof of Lemma 3.15 appears in Section 3.3.4. Before proving Lemma 3.15 we will show that
Theorem 3.1 follows from Lemma 3.15.
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Figure 2: Construction of function FCnd

Recall that γ = ξ/2, and set m = nγ . Let a ≥ 1 be a sufficiently large universal constant that will be chosen in the
proof. We are assuming that n is sufficiently large, and will construct FCnd by the following iterative process:

Initialization: We define c0 = c+ 1, and a function B0(x) = x.
Iterative step: Assume that for some 0 ≤ i ≤ ℓ we have already defined: c0, . . . , ci and B0, . . . , Bi (and note that this

holds for i = 0). We will continue step i as follows:

Basic condenser: We apply Theorem 3.9, choosing parameters ci and j = i and as we are assuming that E is
hard for Σℓ+5-circuits, and as i ≤ ℓ, we can conclude that there is a function

BCndi : {0, 1}ni → {0, 1}ni+1 ,

such that:

• BCndi is a (k2 ,m
δ0)-errorless condenser for (nci , i)-samplable distributions (and recall that ki ≥ k

2 ).
• Furthermore, there exists a constant di ≥ ci that is determined by ci such that BCndi can be computed

in time ndi .

We now verify that the choices of n0, . . . , nℓ+1 indeed meet the requirements of Theorem 3.9. This follows
because for every 0 ≤ i ≤ ℓ, the output length of BCndi specified in Theorem 3.9 is

10 · ni ·m
nα/2

= 20n1−i·(α−2γ)−α+γ ≤ n1−(i+1)·(α−2γ) = ni+1,

and we can artificially increase the output length of BCndi to ni+1.
Block function: We define the function: Bi+1(x) = BCndi(Bi(x)), and note that Bi+1 : {0, 1}n → {0, 1}ni+1

can be computed in time nd′
i , for some constant d′i ≥ di ≥ ci,

Oracle condenser: We will now apply lemma 3.2. Recall that we are assuming that E is hard for exponential
size Σℓ+5-circuits. We use the constant ν = γ · δ0/4 chosen earlier, and will choose the parameter m from
Lemma 3.2 to be m′ = nν/2. We plan to supply the function Bi+1 : {0, 1}n → {0, 1}ni+1 as oracle to the
oracle condenser. More specifically, we set oi = a · d′i and apply Lemma 3.2 choosing c to be oi, and j to
be i+ 1. We obtain an oracle procedure

OCnd
(·)
i : {0, 1}n → {0, 1}m

′=nν/2

,

such that:

• OCnd
Bi+1

i is an (nν , (m′)δ = n
ν·δ
2 )-errorless condenser for all (na·d′

i , i+ 1)-samplable distributions
Vi such that (Bi+1(Vi), Vi) is an (nν , nν)-block-wise source.

• OCnd
Bi+1

i can be computed in time nd′′
i for some constant d′′i that is determined as a function of d′i

and the universal constant a.

Setting up the next iteration: At this point, we choose ci+1 = a · d′i, and continue to the next iterative step. We
stop this process when we complete step i = ℓ, and note that at the end of step ℓ, Bℓ+1 is defined.

Construction of FCnd: We define FCnd : {0, 1}n → {0, 1}(ℓ+1)·m′
as follows:

FCnd(x) = OCndB1
0 (x), . . . ,OCnd

Bℓ+1

ℓ (x).

By construction, the output length of FCnd is (ℓ+1) ·m′ = (ℓ+1) ·nν/2 ≤ nδ2 for some constant 0 < δ2 ≤ α
10

(as required) and there exists a constant d, such that FCnd can be computed in time nd.
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3.3.3 Showing that Theorem 3.1 Follows from Lemma 3.15

Let X be an (nc, 0)-samplable distribution, such that H∞(X) ≥ k. Our goal is to show that H∞(FCnd(X)) ≥
nδ1 , for some constant δ1 > 0. We will show that after the final step no elements remain.

Claim 3.16. Pr[Sℓ+1(X) = R] = 0.

Proof. This holds because ℓ was chosen so that nℓ+1 (which is the length of the string Bℓ+1(X)) is at most
nα−ξ, which for sufficiently large n is less than nα/4 = k/4.

By Lemma 3.15 (choosing i = ℓ + 1), if Pr[Sℓ+1(X) = R] > 0, then H∞(Bℓ+1(X) | Sℓ+1(X) =
R) ≥ k/2. However, the latter cannot hold because the bit length of Bℓ+1(X) is smaller than k/4 and the
min-entropy of a random variable cannot exceed its length.

By Lemma 3.15 we also have that the sets TE
ℓ+1, TW

ℓ+1, TR
ℓ+1 are a partition of Supp(X), and that

Pr[Sℓ+1(X) = E] ≤ (ℓ+ 1) · ϵ.

We can therefore conclude that Pr[Sℓ+1(X) = W ] ≥ 1− (ℓ+ 1) · ϵ.
Lemma 3.15 (for i = ℓ+ 1) also gives that the distribution

Z = (FCnd(X)0,...,ℓ | Sℓ+1(X) = W ) = (FCnd(X) | Sℓ+1(X) = W )

has H∞(Z) ≥ (m′)δ.
This gives that for every possible output string z ∈ {0, 1}(ℓ+1)·m′

of FCnd,

Pr[FCnd(X) = z] = Pr[FCnd(X) = z | Sℓ+1(X) = W ] · Pr[Sℓ+1(X) = W ]

+ Pr[FCnd(X) = z | Sℓ+1(X) = E] · Pr[Sℓ+1(X) = E]

≤ Pr[FCnd(X) = z | Sℓ+1(X) = W ] + Pr[Sℓ+1(X) = E]

≤ 2−(m
′)δ + (ℓ+ 1) · ϵ.

≤ 2−(m
′)δ/2

where the last inequality follows because m′ = nν/2, ℓ is constant, and ϵ = 2−n
ν
.

Recall that m′ = nν/2 We set δ1 = δ · ν/4, and note that we indeed have that

H∞(FCnd(X)) ≥ (m′)δ/2 = nδ1 ,

as required.

3.3.4 Proof of Lemma 3.15

We have that X is (nc, 0)-samplable. Let A : {0, 1}r → {0, 1}n and P : {0, 1}r → {0, 1} be size nc circuits,
such that X is sampled by A with postselection by P .

We will prove Lemma 3.15 by induction on i. For the base case where i = 0, we define the circuit
S0(x) to be the constant function that answers R. This is indeed a Σ0-circuit of size n. With this choice
(B0(X) | S0(X) = R) is the distribution X , which has H∞(X) ≥ k0 = k and the invariant holds.

We now assume that the invariant holds for some 0 ≤ i ≤ ℓ, and will show that it holds for i+ 1.
If Pr[Si(X) = R] = 0, then we define Si+1 = Si, and we are done. Therefore, we will assume that

Pr[Si(X) = R] > 0.
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Showing that (Bi(X) | Si(X) = R) meets the requirements of BCndi. The distribution (Bi(X) |
Si(X) = R) is (nci , i)-samplable. This is because it is sampled by the circuit Ai(w) = Bi(A(w)) with
postselection by the circuit Pi(w) which answers one iff P (w) = 1 and Si(W ) = R. Note that for i = 0,
A0 has size nc ≤ nc0 , and P0 is a Σ0-circuit of size O(nc) ≤ nc+1 = nc0 . For i ≥ 0, Ai has size
nd′i−1 +nc ≤ nci , where this holds because ci = a · d′i−1 for a sufficiently large constant a ≥ 1. We also have
that Pi is a Σi-circuit of size nc + nci−1 ≤ nci , where this holds because for every i ≥ 0, ci ≥ c+ 1.

By the invariant we have that H∞(Bi(X) | Si(X) = R) ≥ ki ≥ k/2. Therefore, the distribution Vi =
(Bi(X) | Si(X) = R) meets the requirements of BCndi, and we can conclude that H∞(BCndi(Vi)) ≥ mδ0 ,
which gives that:

H∞(Bi+1(X) | Si(X) = R) = H∞(BCndi(Bi(X)) | Si(X) = R) ≥ H∞(BCndi(Vi)) ≥ mδ0 .

Constructing the circuit Si+1. For every x ∈ TR
i , we define:

ki(x) = − log Pr[Bi+1(X) = Bi+1(x) | Si(X) = R],

so that Pr[Bi+1(X) = Bi+1(x) | Si(X) = R] = 2−ki(x). Note that we have just seen that for every x ∈ TR
i ,

H∞(Bi+1(X) | Si(X) = R) ≥ mδ0 , which gives that ki(x) ≥ mδ0 .
Our next step is to show that there is a Σi+1-circuit that approximates ki(x).

Claim 3.17. There is a Σi+1-circuit R of size poly(nd′i) which given input x ∈ TR
i , outputs a number k̂i(x)

such that: |k̂i(x)− ki(x)| ≤ 1.

Proof. We have that (Bi+1(X) | Si(X) = R) is sampled by A′ = Bi+1 ◦ A with postselection by the Σi-
circuit P ′(x) that answers one iff P (x) = 1∧Si(X) = R. When the circuit R receives an input x ∈ {0, 1}n,
it will construct the circuit Ax(w) which answers one iff A′(w) = Bi+1(x) ∧ P ′(w) = 1. Note that:

2−ki(x) = Pr[Bi+1(X) = Bi+1(x) | Si(X) = R]

= Pr
W←Ur

[A′(W ) = Bi+1(x) | P ′(W ) = 1]

=
PrW←Ur [A

′(W ) = Bi+1(x) ∧ P ′(W ) = 1]

PrW←Ur [P
′(W ) = 1]

=
PrW←Ur [Ax(W ) = 1

PrW←Ur [P
′(W ) = 1]

.

By Theorem 2.24, the circuit R (which will be a Σi+1-circuit of size poly(nd′i) can compute β-relative ap-
proximations to both the enumerator and denominator, for say constant β = 1

100 . R can then compute the
division, which is guaranteed to be a 1/10-relative approximation of 2−ki(x), and using this approximation,
R can output the required approximation k̂i(x).

We will partition the set TR
i into two sets as follows:

Mi =

{
x ∈ TR

i : k̂i(x) ≤ ki −
nλ

2

}
Li =

{
x ∈ TR

i : k̂i(x) > ki −
nλ

2

}
We now define the Σi+1 circuit Si+1 that we need to maintain the invariant for i+ 1.

Claim 3.18. There is a Σi+1-circuit Si+1 of size poly(nd′i) which given input x ∈ Supp(X), outputs an
element in {E,W,R} such that:
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• Si is a Σi+1-circuit of size poly(nd′i).

• The sets TE
i+1 = {x ∈ Supp(X) : Si+1(x) = E}, TW

i+1 = {x ∈ Supp(X) : Si+1(x) = W}, TR
i+1 =

{x ∈ Supp(X) : Si+1(x) = R} are a partition of Supp(X).

• If Si(x) ∈ {E,W} then Si+1(x) = Si(x).

• If Si(x) = R then

– If x ∈Mi and Pr[X ∈Mi | Si(X) = R] ≥ ϵ then Si+1(x) = W .
– If x ∈ Li and Pr[X ∈ Li | Si(X) = R] ≥ ϵ then Si+1(x) = R.
– Otherwise, Si+1(x) = E, and in particular Pr[Si+1(X) = E | Si(X) = R] ≤ ϵ.

Proof. The circuit Si+1 will be hardwired with two advice bits M,L, where M = 1 iff Pr[X ∈ Mi |
Si(X) = 1] < ϵ, and L = 1 iff Pr[X ∈ Li | Si(X) = 1] < ϵ. When the circuit Si+1 receives input x, it first
runs Si(x) and answers the same answer if Si(x) ∈ {E,W}. If Si(x) = R, then Si+1 uses the circuit R to
compute k̂i(x) and determine whether x ∈Mi or x ∈ Li. If x ∈Mi and M = 0, Si+1 answers W . If x ∈ Li

and L = 0, Si+1 answers R. Otherwise, Si+1 answers E.
The correctness of Si+1 follows by construction, and by the size guarantees on Si and R, Si+1 is a Σi+1-

circuit of size poly(nd′i , nci−1) = poly(nd′i), where the later follows vecause di ≥ ci−1.

Handling the first item in the invariant. Recall that in Figure 2, we have chosen ci+1 = a · d′i. By
choosing a to to be sufficiently large we can make sure that the size of Si+1, which is npoly(d′i) is smaller than
nci+1−1 = na·d′i−1. This gives that Si+1 is a Σi+1-circuit of size nci+1−1 and the circuit Si+1 indeed meets
the first item in the invariant of Lemma 3.15.

Handling the second item in the invariant. We note that by Claim 3.18,

Pr[Si+1(X) = E] =
∑

y∈{W,R,E}

Pr[Si+1(X) = E | Si(X) = y] · Pr[Si(X) = y]

≤ Pr[Si(X) = E] + Pr[Si+1(X) = E | Si(X) = R]

≤ i · ϵ+ ϵ

= (i+ 1) · ϵ.

Handling the third item in the invariant. We assume that Pr[Si+1(X) = R] > 0. We need to show that
H∞(Bi+1(X) | Si+1(X) = R) ≥ ki+1.

For this purpose, let x ∈ Supp(X) be such that Si+1(x) = R, and observe that:

Pr[Bi+1(X) = Bi+1(x) | Si+1(X) = R] = Pr[Bi+1(X) = Bi+1(x) | Si(X) = R ∧ Si+1(X) = R]

≤ Pr[Bi+1(X) = Bi+1(x) | Si(X) = R]

Pr[Si+1(X) = R | Si(X) = R]

≤ 2−ki(x)

ϵ

≤ 2−(k̂i(x)−1−log(1/ϵ))

≤ 2−(ki−
nλ

2
−1−log(1/ϵ)).

The first line follows because {Si+1(X) = R} ⊆ {Si(X) = R}. The second line follows because for every
events A,B,C, Pr[A | B ∩ C] ≤ Pr[A|B]

Pr[C|B] . The fifth lines follows because we have that Si+1(x) = R, and
this implies that x ∈ Li and Pr[Si+1(X) = R | Si(X) = R] = Pr[X ∈ Li | Si(X) = R] ≥ ϵ.
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Overall, we conclude that the third item holds, as:

H∞(Bi+1(X) | Si+1(X) = R) ≥ ki −
nλ

2
− 1− log(1/ϵ) ≥ ki −

nλ

2
− 1− nν ≥ ki − nλ = ki+1.

This follows because ϵ = 2−n
ν
, ν = γ · δ0/4 and λ = γ · δ0/2.

Handling the fourth item in the invariant. We assume that Pr[Si+1(X) = W ] > 0. We need to show
that the distribution Zi+1 = (FCnd(X)0,...,i | Si+1(X) = W ) has H∞(Zi+1) ≥ (m′)δ. By the invariant,
we have that the distribution Zi = (FCnd(X)0,...,i−1 | Si(X) = W ) has H∞(Zi) ≥ (m′)δ, which implies
that H∞((FCnd(X)0,...,i | Si(X) = W )) ≥ (m′)δ. Therefore, it is sufficient to show that the distribution
Z ′i = (FCnd(X)0,...,i | Si(X) = R ∧ Si+1(X) = W ) has H∞(Z ′i) ≥ (m′)δ. This is because the distribution
Zi+1 is a convex combination of Zi and Z ′i.

In order to prove that H∞(Z ′i) ≥ (m′)δ, using the fact that FCndi(x) = OCndBi+1(x), it is sufficient to
prove that:

H∞(OCnd
Bi+1

i (X) | Si(X) = R ∧ Si+1(X) = W ) ≥ (m′)δ,

as this will imply that:

H∞(FCndi(X) | Si(X) = R ∧ Si+1(X) = W ) ≥ (m′)δ.

We now turn our attention to proving that:

H∞(OCnd
Bi+1

i (X) | Si(X) = R ∧ Si+1(X) = W ) ≥ (m′)δ,

This will immediately follow (by the choices of parameters for OCnd made in Figure 2) if we show that for
Vi = (X | Si(X) = R ∧ Si+1(X) = W ) we have that

• Vi is (na·d′i , i+ 1)-samplable, and

• (Bi+1(Vi), Vi) is an (nν , nν)-block-wise source.

The distribution Vi = (X | Si(X) = R ∧ Si+1(X) = W ) is obviously samplable by the circuit A, with
postelection by a circuit P ′(w) that answers one iff P ′(w) = 1 ∧ Si(w) = R ∧ Si+1(w) = W , and this
gives that it is poly(nd′i , i + 1)-samplable, and by choosing the constant a to be sufficiently large, the first
requirement holds.

Consequently it remains to prove the second requirement. We start by computing H∞(Bi+1(X) |
Si(X) = R∧Si+1(X) = W ). For this purpose, let x ∈ Supp(X) be such that Si(x) = R and Si+1(x) = w.

Pr[Bi+1(X) = Bi+1(x) | Si(X) = R ∧ Si+1(X) = W ] ≤ Pr[Bi+1(X) = Bi+1(x) | Si(X) = R]

Pr[Si+1(X) = W | Si(X) = R]

≤ 2−m
δ0

ϵ

≤ 2−(m
δ0−log(1/ϵ)).

The first line follows because for every events A,B,C, Pr[A | B ∩C] ≤ Pr[A|B]
Pr[C|B] . The second line follows as

we have already seen that H∞(Bi+1(X) | Si(X) = R) ≥ mδ0 . We conclude that:

H∞(Bi(Vi)) = H∞(Bi(X) | Si(X) = R ∧ Si+1(X) = W ) ≥ mδ0 − log(1/ϵ).
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We now compute H∞(X | Bi+1(X) = Bi+1(x) ∧ Si(X) = R ∧ Si+1(X) = W ). For this purpose, let
x ∈ Supp(X) be such that Si(x) = R and Si+1(x) = w. Let

p = Pr[X = x | Bi+1(X) = Bi+1(x) ∧ Si(X) = R ∧ Si+1(X) = W ].

We compute:

p ≤ Pr[X = x | Si(X) = R]

Pr[Bi+1(X) = Bi+1(x) ∧ Si+1(X) = W | Si(X) = R]

=
Pr[X = x | Si(X) = R]

Pr[Bi+1(X) = Bi+1(x) | Si(X) = R]

≤ 2−ki

2−ki(x)

≤ 2−(ki−k̂i(x)−1)

≤ 2−(ki−(ki−
nλ

2
)−1)

≤ 2−(
nλ

2
−1).

The first line follows because for every events A,B,C, Pr[A | B ∩ C] ≤ Pr[A|B]
Pr[C|B] . The second line follows

because conditioned on {Si(X) = R}, {Bi+1(X) = Bi+1(x)} ⊆ {Si+1(X) = w}. More formally, knowing
that Bi+1(X) = Bi+1(x) and Si(X) = R, and that there exists x such that Si(x) = R, and Si+1(x) = W ,
we can conclude that Si+1(X) = W . This is because knowing that Si(X) = R, whether or not X ∈ Mi is
determined by Bi+1(X), and as we have that Bi+1(X) = Bi+1(x), we can conclude that X ∈ Mi. We also
know that there exists x, such that Si(x) = R and Si+1(x) = W , and this implies that every x ∈Mi satisfies
Si+1(x) = W . We can therefore conclude that Si+1(X) = W .

The third line follows because we have that H∞(X | Si(X) = R) ≥ H∞(Bi(X) | Si(X) = R) ≥ ki.
The fifth line follows because Si(x) = R and Si+1(x) = W implies x ∈Mi.

Overall, we conclude that

H∞(X | Bi+1(X) = Bi+1(x) ∧ Si(X) = R ∧ Si+1(X) = W ) ≥ nλ

2
− 1,

and we have that (Bi+1(Vi), Vi) is an (mδ0 − log(1/ϵ), n
λ

2 − 1)-block-wise source. We have that:

mδ0 − log(1/ϵ) = nγ·δ0 − nν = n4ν − nν ≥ nν ,

where this follows because m = nγ and ν = n
γ·δ0
4 . We also have that:

nλ

2
− 1 = n

γ·δ0
2 − 1 ≥ nν .

Overall, we indeed conclude that (Bi+1(Vi), Vi) is an (nν , nν)-block-wise source.

4 A Construction of an Extractor for Samplable Distributions

In this section we use the errorless condenser of Section 3 to construct an extractor for samplable distributions.
This is done by adapting a reduction of Ball, Shaltiel and Silbak [BSS25] (as we explained in Section 1.3.3).
(We cannot use the formal statement of the reduction in [BSS25] as the parameters and components are
somehwat different. However, the argument is essentially the same as the one given in [BSS25]).

The first step is to construct an extractor with small output length m = O(log n). This extractor is stated
in Theorem 4.1 below.
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Theorem 4.1 (extractor for with small output length). For every constants α > 0 and 0 < ξ ≤ α
10 , such that

α + ξ < 1, there exists a constant j = ⌈1−α−ξα−ξ ⌉ + 4, such that if E is hard for exponential size Σj-circuits,
then for every constants c, c′ > 1, there exists a constant d such that for every sufficiently large n, there is
a function Ext : {0, 1}n → {0, 1}c′·logn that is an (nα, 1

nc′ )-extractor for (nc, 0)-samplable distributions.
Furthermore, Ext can be computed in time poly(nd).

By the same calculation made in the beginning of Section 3, for every i ≥ 2, and α > 1
i , the j stated in

Theorem 4.1 satisfies j ≤ i+ 3, matching the choice made in Theorems 1.4 and 1.6.
The proof of Theorem 4.1 is given in Section 4.1. In Section 4.2 we explain how to increase the output

length of the extractor in Theorem 4.1 and prove Theorems 1.4 and 1.6. Finally, in Section 4.3 we show how
to extend the proof of Theorem 4.1, so that it gives the multiplicative extractor of Theorem 1.8

4.1 Proof of Theorem 4.1

The proof of Theorem 4.1 essentially repeats the approach of Ball, Shaltiel, and Silbak [BSS25], using the
specific choices of this paper. The proof is also quite similar to the proof of Lemma 3.2 (which is also based
on the approach of [BSS25], as explained in Section 1.3.3).

The construction of Ext appears in Figure 3. Let n be sufficiently large, let ϵ = n−c
′

and assume for
the purpose of contradiction that there is an (nc, 0)-samplable distribution X such that H∞(X) ≥ nα, and
Ext(X) is not ϵ-close to uniform, and in particular that there exists a set T ⊆ {0, 1}m such that:

Pr[TExt(g(FCnd(X)), X) ∈ T ] >
|T |
2m

+ ϵ.

In a similar manner to the proof of Lemma 3.2, our goal will be to obtain a contradiction by showing that
there is a Σ2-circuit C of size nc̄, and an (nc̄, 0)-samplable distribution Y (we will choose Y = FCnd(X))
with H∞(Y ) ≥ nν , on which Pr[C(Y ) = g(Y )] is too large, and contradicts the HOS guarantee of g.

We have that:

Pr[TExt(g(FCnd(X)), X) ∈ T ] >
|T |
2m

+ ϵ ≥ |T |
2m
· (1 + ϵ).

By an averaging argument, there exists a z ∈ T such that:

Pr[TExt(g(FCnd(X)), X) = z] > (1 + ϵ) · 2−m.

Let t = nδ2 . We will say that y ∈ {0, 1}t is useful if the following two conditions hold:

• Pr[TExt(g(y), X) = z | FCnd(X) = y] > (1 + ϵ
2) · 2

−m.

• H∞(X | FCnd(X) = y) ≥ k′.

The claim below is similar in spirit to Claim 3.3 in the proof of Lemma 3.2.

Claim 4.2. Pr[FCnd(X) is useful] > ϵ·2−m

4 .

Proof. We define:

B1 =
{
y ∈ {0, 1}t : Pr[TExt(g(y), X) = z | FCnd(X) = y] ≤ (1 +

ϵ

2
) · 2−m

}
B2 =

{
y : H∞(X | FCnd(X) = y) < k′

}
This is done so that y is useful iff y ̸∈ B1 ∪ B2. We will proceed to bound Pr[FCnd(X) ∈ B1] and
Pr[FCnd(X) ∈ B2], separately.
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Figure 3: Construction of function Ext

Parameters:

• Given constants α > 0 and 0 < ξ < α
10 , such that α+ ξ < 1, we set j = ⌈ 1−α−ξ

α−ξ ⌉+ 4.

• We are given constants c, c′ > 1.
• Let a ≥ 1 be a sufficiently large constant to be chosen in the proof.
• We are assuming that n is sufficiently large.

Assumption: We are assuming that E is hard for exponential size Σj-circuits.
Ingredients: We will require the following ingredients:

• Errorless condenser: By Theorem 3.1, under the hardness assumption, there exist constants 0 < δ1 <

δ2 ≤ α
10 , and a function FCnd : {0, 1}n → {0, 1}nδ2 that is an (nα, nδ1)-errorless condenser for (nc, 0)-

samplable distributions. Furthermore, there is a constant dFCnd ≥ 1 such that FCnd can be computed in
time ndFCnd .

• HOS: Let c̄ > dFCnd be a sufficently large constant that will be chosen in the proof. By Theorem 2.22,
setting ν = δ1, under the hardness assumption, there is a function g : {0, 1}n → {0, 1}na0 (where a0 > 1
is a universal constant) that is an (nν , 2−Ω(nν))-HOS for the class of (nc̄, 0)-samplable distributions, against
the class of size nc̄ Σ2-circuits. We have that g can be computed in time ndg for some constant dg that
depends on c̄.

• 2-source extractor: Let k′ = nν

a = nδ1

a , ϵ′ = n−2c′

16 , and m = c′ · log n and let TExt : {0, 1}na0 ×
{0, 1}na0 → {0, 1}m be the (k′, k′, ϵ′)-2-source extractor that is guaranteed by Theorem 2.14. We have
that TExt can be computed in time ndTExt for a constant dTExt that depends on c′.

Construction: We define Ext : {0, 1}n → {0, 1}m, as follows:

Ext(x) = TExt(g(FCnd(x)), x).

Note that g expects inputs of length n, and TExt expects inputs of length na0 , and so:

• We pad FCnd(x) with n− nδ2 zeros, before applying g on B(x).
• We pad x with na0 − n zeros, before giving it as a second input to TExt.

Note that by construction, there indeed exists a constant d such that Ext can be computed in time nd.

By Lemma 2.3 with probability at least 1− ϵ·2−m

4 over choosing y ← FCnd(X), we have that

H∞(X | FCnd(X) = y) ≥ nα − nδ2 − log(1/ϵ)−m− 2 ≥ nα − n
α
10 − 2c′ · log n− 2 ≥ n

α
10 ≥ nν ≥ k′,

where this follows because k′ = nν/a and ν = δ1 ≤ α
10 . This gives that Pr[FCnd(X) ∈ B2] ≤ ϵ·2−m

4 .
We claim that Pr[FCnd(X) ∈ B1] ≤ 1− ϵ·2−m

2 . This follows as otherwise, Pr[FCnd(X) ̸∈ B1] ≤ ϵ·2−m

2 ,
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which implies:

Pr[TExt(g(FCnd(X)), X) = z] ≤ Pr[FCnd(X) ̸∈ B1] + Pr[TExt(g(FCnd(X)), X) = z ∩ FCnd(X) ∈ B1]

≤ ϵ · 2−m

2
+

∑
y∈B1

Pr[TExt(g(FCnd(X)), X) = z ∩ FCnd(X) = y]

=
ϵ · 2−m

2
+

∑
y∈B1

Pr[TExt(g(FCnd(X)), X) = z | FCnd(X) = y] · Pr[FCnd(X) = y]

≤ ϵ · 2−m

2
+

∑
y∈B1

(1 +
ϵ

2
) · 2−m · Pr[FCnd(X) = y]

≤ ϵ · 2−m

2
+ (1 +

ϵ

2
) · 2−m

≤ (1 + ϵ) · 2−m

which is a contradiction.
Putting things together, we conclude that:

Pr[FCnd(X) is useful] = Pr[FCnd(X) ̸∈ B1 ∧ FCnd(X) ̸∈ B2]

= 1− Pr[FCnd(X) ∈ B1 ∪B2]

≥ 1− (Pr[FCnd(X) ∈ B1] + Pr[FCnd(X) ∈ B2])

≥ 1− (1− ϵ · 2−m

2
+

ϵ · 2−m

4
)

=
ϵ · 2−m

4

Let n′ = na0 be the output length of g. For every y ∈ {0, 1}t and every 0 ≤ α ≤ 1, we define:

Ty,α =
{
v ∈ {0, 1}n′

: Pr[TExt(v,X) = z | FCnd(X) = y] > (1 + α) · 2−m
}
.

With this definition we immediately have that for every useful y, g(y) ∈ Ty,ϵ/2. We now observe that for
every useful y, Ty, ϵ

8
is a small set. The next Claim is similar to Claim 3.4 in the proof of Lemma 3.2.

Claim 4.3. For every useful y ∈ {0, 1}t, |Ty, ϵ
8
| < 2k

′
.

Proof. If this does not hold, then there exists a useful y ∈ {0, 1}t, such that |Ty, ϵ
8
| ≥ 2k

′
. We consider the

following two distributions: The first is Vy that is uniform over Ty, ϵ
8
, and the second Wy = (X | FCnd(X) =

y). These two distributions are independent, and have min-entropy at least k′, and therefore, by the guarantee
of TExt, we have that Pr[TExt(Vy,Wy) = z] ≤ 2−m + ϵ′. This is a contradiction as we also have that,

Pr[TExt(Vy,Wy) = z] = Pr[TExt(Vy, X) = z | FCnd(X) = y]

= Ev←Ty,α [Pr[TExt(v,X) = z | FCnd(X) = y]]

> (1 +
ϵ

8
) · 2−m

> 2−m +
n−2c

′

16
= 2−m + ϵ′,

where this follows because ϵ = n−c
′
, m = c′ · log n, and ϵ′ = n−2c′

16 .
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The proof will proceed using a similar argument to the proof of Lemma 3.2. We have that X is (nc, 0)-
samplable which means that X ← A | P , for some circuits A : {0, 1}r → {0, 1}n and P : {0, 1}r → {0, 1}
of size nc. We now define the following circuits.

Definition 4.4. For every y ∈ {0, 1}t, and v ∈ {0, 1}n′
we define two circuits C1

y,v : {0, 1}r → {0, 1} and
C2
y : {0, 1}r → {0, 1} of size poly(ndFCnd) as follows:

• C1
y,v(w) answers one iff TExt(v,A(w)) = z ∧ FCnd(A(w)) = y ∧ P (w) = 1.

• C2
y (w) answers one iff FCnd(A(w)) = y ∧ P (w) = 1.

We also define:

• p1y,v = Pr[C1
y,v(Ur) = 1].

• p2y = Pr[C2
y (Ur) = 1].

Claim 4.5. For every y ∈ {0, 1}t and v ∈ {0, 1}n′
, if p2y ̸= 0, then

p1y,v
p2y

= Pr[TExt(v,X) = z | FCnd(X) = y].

Proof. For every y ∈ {0, 1}t and v ∈ {0, 1}n′
, if p2y ̸= 0 then for W ← Ur, we have that:

p1y,v
p2y

=
Pr[TExt(v,A(W )) = z ∧ FCnd(A(W )) = y ∧ P (W ) = 1]

Pr[FCnd(A(W )) = y ∧ P (W ) = 1]

=
Pr[TExt(v,A(W )) = z ∧ FCnd(A(W )) = y | P (W ) = 1] · Pr[P (W ) = 1]

Pr[FCnd(A(W )) = y | P (W ) = 1] · Pr[P (W ) = 1]

=
Pr[TExt(v,A(W )) = z ∧ FCnd(A(W )) = y | P (W ) = 1]

Pr[FCnd(A(W )) = y | P (W ) = 1]

=
Pr[TExt(v,X) = z ∧ FCnd(X) = y]

Pr[FCnd(X) = y]

= Pr[TExt(v,X) = z | FCnd(X) = y].

This means that for every y ∈ {0, 1}t and 0 ≤ α ≤ 1, we can decide whether a given v ∈ {0, 1}t is
in Ty,α if we can check whether p2y = 0 and compute p1y,v and p2y. By Theorem 2.7 a small Σ1-circuit, can
compute relative approximations to p1y,v and p2y. We will now use this idea to prove the following:

Claim 4.6. For every y ∈ {0, 1}t, there is a Σ1-circuit Cy : {0, 1}n′ → {0, 1} of size poly(ndFCnd , 1ϵ ) such
that:

• For every v ∈ {0, 1}n′
such that Cy(v) = 1, we have that v ∈ Ty, ϵ

8
.

• If y is useful, then Cy(g(y)) = 1.

Proof. When given v ∈ {0, 1}n′
, the circuit Cy works as follows:

• Cy checks whether there exists w ∈ {0, 1}r, such that FCnd(A(w)) = y and P (w) = 1. If there does
not exist such a w, it answers zero (as this means that p2y = 0)
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• Let λ = ϵ/a′ for a universal constant a′ > 1 to be chosen later. Cy applies Theorem 2.24 to compute
a λ-relative approximations p̂1y,v and p̂2y, of p1y,v and p2y respectively. It can do this by computing
approximations of the number of accepting inputs of the circuits C1

y,v and C2
y , respectively.

• Cy computes p̂y,v =
p̂1y,v
p̂2y

and note that as this is an O(λ)-relative approximation to py,v =
p1y,v
p2y

=

Pr[TExt(v,X) = z | FCnd(X) = y].

• Cy outputs one if p̂y,v > (1 + ϵ
4) · 2

−m and zero otherwise.

By choosing the constant a′ to be sufficiently large, we can make λ = ϵ/a′ sufficiently small, to guarantee
that checking whether the O(λ) approximation p̂y,v is larger than (1 + ϵ

4) · 2
−m distinguishes between the

case that py,v > (1 + ϵ
2) · 2

−m and the case that py,v ≤ (1 + ϵ
8) · 2

−m. This gives that if Cy(v) = 1 then
py,v > (1 + ϵ

8) · 2
−m which gives that v ∈ Ty, ϵ

8
. We have that for every useful y, g(y) ∈ Ty, ϵ

2
, which means

that py,g(y) > (1 + ϵ
2) · 2

−m, and indeed, Cy(g(y)) = 1.
Finally, by definition Cy is a circuit of size poly(ndFCnd , 1

λ) = poly(ndFCnd , 1ϵ ).

We are finally ready to complete the proof, with the next claim.

Claim 4.7. There is a Σ2-circuit C of size poly(ndFCnd , 1ϵ ) such that for Y = FCnd(X),

Pr[C(Y ) = g(Y )] ≥ 2−k
′ · ϵ · 2

−m

8

Proof. We will first construct a randomized Σ2-circuit C ′, and then use a standard averaging argument to
convert it to a non-randomized Σ2-circuit. The randomized circuit C ′ is defined as follows: On input y ∈
{0, 1}t:

• C ′ constructs the Σ1-circuit Cy. Note that the circuit Cy is specified precisely in the proof of Claim 4.6,
and so, the circuit C ′ (that can be hardwired with A, P , FCnd, z, and the circuit from Theorem 2.24)
can construct the circuit Cy.

• C ′ uses the Σ2-circuit guaranteed in Theorem 2.25 (choosing i = 1 and δ = 1
2 ) to output a uniform

element in {v : Cy(v) = 1}.

By definition, the circuit C ′ is a randomized Σ2-circuit of size poly(ndFCnd , 1ϵ ). We conclude that:

Pr[C ′(Y ) = g(Y )] ≥ Pr[C ′(Y ) = g(Y ) | Y is useful] · Pr[Y is useful]

≥ Pr[C ′(Y ) = g(Y ) | Y is useful] · ϵ · 2
−m

4

≥ 1

2
· 2−k′ · ϵ · 2

−m

4

= 2−k
′ · ϵ · 2

−m

8
.

where the first inequality follows from Claim 4.2, and the last inequality follows because by Claim 4.6, for
every useful y, g(y) ∈ {v : Cy(v) = 1} which by Claim 3.4, is of size at most 2k

′
, and each element in the

set is obtained with probability 1
2 · 2

−k′ .
Finally, by a standard averaging argument, there exists a (non-randomized) Σ2-circuit of size poly(ndFCnd , 1ϵ )

with the same success probability.

We have obtained a Σ2-circuit C of size poly(ndFCnd , 1ϵ ). Recall that ϵ = n−c and so, we can choose the
constant c̄ to be sufficiently large so that the size of C is bounded by nc̄−1. We can view the distribution
Y = FCnd(X) (which is over {0, 1}t) as a distribution over {0, 1}n by padding FCnd(X) with zeros (recall
that t = nδ2 ≤ n). We have that:
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• H∞(Y ) ≥ nδ1 , and

• Y is (nc̄, 0)-samplable (it is sampled by (FCnd ◦A) | P ).

We also have that,

Pr[C(Y ) = G(Y )] ≥ 2−k
′ · ϵ

8
· 2−m

= 2−(k
′+2c′ logn−3)

≥ 2−2k
′

≥ 2−Ω(n
ν

a
),

where the second line follows because ϵ = n−c
′
, and m = c′ log n. The third line follows because k′ = nν/a.

Finally, by choosing the constant a to be sufficiently large, we can make sure that the success probability of
C violates the HOS guarantee of g.

4.2 Obtaining Extractors with Large Output Length

Shaltiel [Sha08] showed how to take an extractor for samplable distributions with small output length, and
transform it into one that has large output length. This transformation works by first extracting t bits (using
the initial extractor Ext : {0, 1}n → {0, 1}t for samplable distributions) and then using the output as a seed to
a seeded strong extractor SExt : {0, 1}n × {0, 1}t → {0, 1}m. Note that the original source X , and the seed
Ext(X) (that is used for the seeded extractor) are correlated, and so, it is not clear that such a transformation
should work. Nevertheless, Shaltiel [Sha08] showed that if the error of the initial extractor Ext is smaller than
2−t, then this transformation does work, assuming Ext can extract from distributions samplable by Σ1-circuits.

An inspection of Shaltiel’s argument shows that it is in fact sufficient that Ext is an extractor for distri-
butions which are (nc, 0)-samplable, that is, it is sufficient that Ext is an extractor for distributions that are
samplable with postselection (rather than samplable by Σ1-circuits).

As the extractor of Theorem 4.1 works for (nc, 0)-samplable, we can increase the output length by com-
posing with the seeded extractors of Theorems 2.22 and Theorem 2.12. This composition gives Theorem 1.4
and Theorem 1.6 respectively.

We omit the precise argument, as an identical argument (with the same choices of seeded extractors)
appears in [BSS25], and the proof is identical to that proof.

4.3 Obtaining a Multiplicative Extractor

In this section we prove Theorem 1.8, which we now restate in a stronger form, in which the extractor applies
to samplable distributions with postselection.

Theorem 4.8 (multiplicative extractor). For every constants α > 0, there exist constants j ≥ 1, and β > 0
such that if E is hard for exponential size Σj-circuits, then for every constant c > 1, there exists a con-
stant d such that for every sufficiently large n, there is a function Ext : {0, 1}n → {0, 1}nβ

that is an
(nα, 1

nc )-multiplicative extractor for (nc, 0)-samplable distributions. Furthermore, Ext can be computed in
time poly(nd).

As explained in Section 1.3.6, the proof of Theorem 1.8 will try to imitate the proof of Theorem 4.1 with
a more complicated construction that relies on the extractor of [Li15] (which is designed for one source and
one block-wise source) instead of standard 2-source extractors. While the overall argument is similar in spirit,
there are additional technical complications. The full proof appears below.
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Figure 4: Construction of function Ext

Parameters:

• Given a constant α > 0, let j be a sufficiently large constant to be determined later, and β > 0 be a
sufficiently small constant to be determined later.

• We are given a constants c > 1.
• We are assuming that n is sufficiently large.

Assumption: We are assuming that E is hard for exponential size Σj-circuits.
Ingredients: We will require the following ingredients:

• First Errorless condenser: Under the hardness assumption, for a sufficiently large j, by Theorem 3.1, there
exist constants 0 < δ11 < δ12 ≤ α

10 , and a function FCnd1 : {0, 1}n → {0, 1}nδ12 that is an (nα, nδ11 )-
errorless condenser for (nc, 0)-samplable distributions. Furthermore, there is a constant dFCnd1 ≥ 1 such
that FCnd1 can be computed in time ndFCnd1 .

• Second Errorless condenser: Under the hardness assumption, for a sufficiently large j, by Theorem 3.1,
there exist constants 0 < δ21 < δ22 ≤

δ11
10 , and a function FCnd2 : {0, 1}n → {0, 1}nδ22 that is an (nδ11 , nδ21 )-

errorless condenser for (ndFCnd1
+1, 0)-samplable distributions. Furthermore, there is a constant dFCnd2 ≥ 1

such that FCnd2 can be computed in time ndFCnd2

• HOS: Let c̄ > dFCnd2 be a sufficiently large constant that will be chosen in the proof. By Theorem 2.22,
setting ν = δ21 , under the hardness assumption, there is a function g : {0, 1}n → {0, 1}na0 (where a0 > 1 is
a universal constant) that is an (nν , 2−Ω(nν))-HOS for the class of (nc̄, 0)-samplable distributions, against
the class of size nc̄ Σ2-circuits. We have that g can be computed in time ndg for some constant dg that
depends on c̄.

• Extractor for one general source and one block-wise source: Let k′ = n
δ21
2 , let m = nβ , let ϵ′ = n−c·2−m

16 ,
and let IExt : {0, 1}na0 × {0, 1}na0 × {0, 1}na0 → {0, 1}m be the extractor from Theorem 2.15, set for
min-entropy threshold k′ and error ϵ′. Note that the error ϵ′ guaranteed in Theorem 2.15 is ϵ′ = 2−(k′)Ω(1)

.
Recall that we have chosen m = nβ , and we can choose the constant β > 0 to be sufficiently small so that
ϵ′ = 2−(k′)Ω(1) ≤ n−c·2−m

16 . We have that IExt can be computed in time ndIExt

Construction: We define Ext : {0, 1}n → {0, 1}m, as follows:

Ext(x) = IExt(g(FCnd2(FCnd1(x))),FCnd1(x), x).

Note that g expects inputs of length n, and IExt expects inputs of length na0 , and so whenever an input is too
short, we pad it with zeros to the appropriate length. Note that by construction, there indeed exists a constant d
such that Ext can be computed in time nd.

4.3.1 Proof of Theorem 4.8

The construction of Ext appears in Figure 4 and closely follows the intuition explained in Section 1.3.6.
Let n be sufficiently large, let ϵ = n−c and assume for the purpose of contradiction Ext is not an (nα, ϵ)-
multiplicative extractor. Specifically, that there is an (nc, 0) samplable distribution X such that H∞(X) ≥ nα,
and a z ∈ {0, 1}m such that:

Pr[IExt(g(FCnd2(FCnd1(X)),FCnd1(X)), X) = z] > (1 + ϵ) · 2−m.

Once again, our goal will be to obtain a contradiction by showing that there is a Σ2-circuit C of size nc̄,
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and a (nc̄, 0)-samplable distribution Y (we will choose Y = FCnd2(FCnd1(X))) with H∞(Y ) ≥ nν , on
which Pr[C(Y ) = g(Y )] is too large, and contradicts the HOS guarantee of g. In order to avoid clutter, we
define F1(x) = FCnd1(x) and F2(x) = FCnd2(FCnd1(x)). Note that we have chosen the parameters so that
H∞(F1(X)) ≥ nδ11 and H∞(F2(X)) ≥ nδ21 .

The proof below will use the same structure as the proof of Theorem 4.1. Let t = nδ22 . We will say that
y ∈ {0, 1}t is useful if the following three conditions hold:

• Pr[IExt(g(y), F1(X), X) = z | F2(X) = y] > (1 + ϵ
2) · 2

−m.

• H∞(F1(X) | F2(X) = y) ≥ k′.

• H∞(X | F2(X) = y) ≥ nα/2.

Claim 4.9. Pr[F2(X) is useful] > ϵ·2−m

4 .

Proof. We define:

B1 =
{
y ∈ {0, 1}t : Pr[IExt(g(y), F1(X), X) = z | F2(X) = y] ≤ (1 +

ϵ

2
) · 2−m

}
B2 =

{
y : H∞(F1(X) | F2(X) = y) < k′

}
B3 = {y : H∞(X | F2(X) = y) < nα/2}

This is done so that y is useful iff y ̸∈ B1∪B2∪B3. We will proceed to bound Pr[F2(X) ∈ B1], Pr[F2(X) ∈
B2] and Pr[F2(X) ∈ B3] separately.

By Lemma 2.3 with probability at least 1− ϵ·2−m

8 over choosing y ← F2(X), we have that

H∞(F1(X) | F2(X) = y) ≥ nδ11 − nδ22 − log(1/ϵ)−m− 3 ≥ nδ11 − nδ22 − c · log n− nβ − 3 ≥ k′,

where this follows because δ11 > δ22 , β > 0 can be chosen to be sufficiently small, and k′ = n
δ21
2 This gives

that Pr[F2(X) ∈ B2] ≤ ϵ·2−m

8 .
By Lemma 2.3, with probability at least 1− ϵ·2−m

8 over choosing y ← F2(X), we have that

H∞(X | F2(X) = y) ≥ nα − nδ12 − log(1/ϵ)−m− 3 ≥ nα − nδ12 − c · log n− nβ − 3 ≥ nα/2,

where this follows because δ12 < α/10, and β > 0 can be chosen to be sufficiently small. This gives that
Pr[F2(X) ∈ B3] ≤ ϵ·2−m

8 .
We claim that Pr[F2(X) ∈ B1] ≤ 1 − ϵ·2−m

2 . This follows as otherwise, Pr[F2(X) ̸∈ B1] ≤ ϵ·2−m

2 ,
which implies that for p = Pr[IExt(g(F2(X)), F1(X), X) = z] we have that:

p = Pr[IExt(g(F2(X)), F1(X), X) = z]

≤ Pr[F2(X) ̸∈ B1] + Pr[IExt(g(F2(X)), F1(X), X) = z ∩ F2(X) ∈ B1]

≤ ϵ · 2−m

2
+

∑
y∈B1

Pr[IExt(g(F2(X)), F1(X), X) = z ∩ F2(X) = y]

=
ϵ · 2−m

2
+

∑
y∈B1

Pr[IExt(g(F2(X)), F1(X), X) = z | F2(X) = y] · Pr[F2(X) = y]

≤ ϵ · 2−m

2
+

∑
y∈B1

(1 +
ϵ

2
) · 2−m · Pr[F2(X) = y]

≤ ϵ · 2−m

2
+ (1 +

ϵ

2
) · 2−m

≤ (1 + ϵ) · 2−m
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which is a contradiction.
Putting things together, we conclude that:

Pr[F2(X) is useful] = Pr[F2(X) ̸∈ B1 ∧ F2(X) ̸∈ B2 ∧ F2(X) ̸∈ B3]

= 1− Pr[F2(X) ∈ B1 ∪B2 ∪B3]

≥ 1− (Pr[F2(X) ∈ B1] + Pr[F2(X) ∈ B2] + Pr[F2(X) ∈ B3])

≥ 1− (1− ϵ · 2−m

2
+

ϵ · 2−m

8
+

ϵ · 2−m

8
)

=
ϵ · 2−m

4

Let n′ = na0 be the output length of g. For every y ∈ {0, 1}t and every 0 ≤ α ≤ 1, we define:

Ty,α =
{
v ∈ {0, 1}n′

: Pr[IExt(v, F1(X), X) = z | F2(X) = y] > (1 + α) · 2−m
}
.

With this definition we immediately have that for every useful y, g(y) ∈ Ty,ϵ/2. We now observe that for
every useful y, Ty, ϵ

8
is a small set.

Claim 4.10. For every useful y ∈ {0, 1}t, |Ty, ϵ
8
| < 2k

′
.

Proof. If this does not hold, then there exists a useful y ∈ {0, 1}t, such that |Ty, ϵ
8
| ≥ 2k

′
. We consider the

following three distributions:

• Vy that is uniform over Ty, ϵ
8
.

• W 2
y = (X | F2(X) = y).

• W 1
y = F1(W

2
y ). This choice is made so that (W 1

y ,W
2
y ) is distributed like ((F1(X), X) | F2(X) = Y ).

Let Wy = (W 1
y ,W

2
y ). By definition, we have that Vy and Wy are independent distributions. We also claim

that Wy = (W 1
y ,W

2
y ) is 2−n

α/10-close to a (k′, k′)-block-wise source. This holds because we have that

H∞(W 2
y ) = H∞(F1(X) | F2(X) = y) ≥ k′,

and by Lemma 2.3 we have that with probability 1− 2−n
α/10 over choosing w1 ←W 1

y , we have that

H∞(W 2
y |W 1

y = w1) ≥ H∞(W 2
y )− nδ12 − nα/10

= H∞(X | F2(X) = y)− nδ12 − nα/10

≥ nα/2− nδ12 − nα/10

≥ k′,

where the third line follows because y is useful, and the fourth line follows because δ12 ≤ α/10, and k′ = n
δ21
2

and δ21 ≤ α/10.
We conclude that the distribution (Vy,Wy) is 2−n

α/10-close to a distribution that satisfies the requirements
of IExt. We therefore have that that Pr[IExt(Vy,Wy) = z] ≤ 2−m + ϵ′ + 2−n

α/10. This is a contradiction as
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we also have that,

Pr[IExt(Vy,Wy) = z] = Pr[IExt(Vy, F1(X), X) = z | F2(X) = y]

= Ev←Ty,α [Pr[IExt(v, F1(X), X) = z | F2(X) = y]]

> (1 +
ϵ

8
) · 2−m

> 2−m + ϵ′ + 2−n
α/10,

where this follows because ϵ′ = ϵ·2−m

16 , and ϵ = n−c.

We have that X is (nc, 0)-samplable which means that X ← A | P , for some circuits A : {0, 1}r →
{0, 1}n and P : {0, 1}r → {0, 1} of size nc. We now define the following circuits.

Definition 4.11. For every y ∈ {0, 1}t, and v ∈ {0, 1}n′
we define two circuits C1

y,v : {0, 1}r → {0, 1} and
C2
y : {0, 1}r → {0, 1} of size poly(ndFCnd) as follows:

• C1
y,v(w) answers one iff IExt(v, F1(A(w)), A(w)) = z ∧ F2(A(w)) = y ∧ P (w) = 1.

• C2
y (w) answers one iff F2(A(w)) = y ∧ P (w) = 1.

We also define:

• p1y,v = Pr[C1
y,v(Ur) = 1].

• p2y = Pr[C2
y (Ur) = 1].

Claim 4.12. For every y ∈ {0, 1}t and v ∈ {0, 1}n′
, if p2y ̸= 0, then

p1y,v
p2y

= Pr[IExt(v, F1(X), X) = z | F2(X) = y].

Proof. For every y ∈ {0, 1}t and v ∈ {0, 1}n′
, if p2y ̸= 0 then for W ← Ur, we have that:

p1y,v
p2y

=
Pr[IExt(v, F1(A(W )), A(W )) = z ∧ F2(A(W )) = y ∧ P (W ) = 1]

Pr[F2(A(W )) = y ∧ P (W ) = 1]

=
Pr[IExt(v, F1(A(W )), A(W )) = z ∧ F2(A(W )) = y | P (W ) = 1] · Pr[P (W ) = 1]

Pr[F2(A(W )) = y | P (W ) = 1] · Pr[P (W ) = 1]

=
Pr[IExt(v, F1(A(W )), A(W )) = z ∧ F2(A(W )) = y | P (W ) = 1]

Pr[F2(A(W )) = y | P (W ) = 1]

=
Pr[IExt(v, F1(X), X) = z ∧ F2(X) = y]

Pr[F2(X) = y]

= Pr[IExt(v, F1(X), X) = z | F2(X) = y].

This means that for every y ∈ {0, 1}t and 0 ≤ α ≤ 1, we can decide whether a given v ∈ {0, 1}t is
in Ty,α if we can check whether p2y = 0 and compute p1y,v and p2y. By Theorem 2.7 a small Σ1-circuit, can
compute relative approximations to p1y,v and p2y. We will now use this idea to prove the following:

Claim 4.13. For every y ∈ {0, 1}t, there is a Σ1-circuit Cy : {0, 1}n′ → {0, 1} of size poly(ndFCnd2 , 1ϵ ) such
that:
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• For every v ∈ {0, 1}n′
such that Cy(v) = 1, we have that v ∈ Ty, ϵ

8
.

• If y is useful, then Cy(g(y)) = 1.

The proof of this claim is essentially identical to the proof of Claim 4.6 in the proof of Theorem 4.1 and
we omit it. We also need the next claim.

Claim 4.14. There is a Σ2-circuit C of size poly(ndFCnd , 1ϵ ) such that for Y = F2(X),

Pr[C(Y ) = g(Y )] ≥ 2−k
′ · ϵ · 2

−m

8

Once again the proof is identical to the proof of Claim 4.7 and we omit it.
We have obtained a Σ2-circuit C of size poly(ndFCnd2 , 1ϵ ). Recall that ϵ = n−c and so, we can choose

the constant c̄ to be sufficiently large so that the size of C is bounded by nc̄−1. We can view the distribution
Y = F2(X) (which is over {0, 1}t) as a distribution over {0, 1}n by padding F2(X) with zeros. We have
that:

• H∞(Y ) ≥ nδ21 , and

• Y is (nc̄, 0)-samplable (it is sampled by (F2 ◦A) | P ).

We also have that,

Pr[C(Y ) = G(Y )] ≥ 2−k
′ · ϵ

8
· 2−m

= 2−(k
′+c logn−3−nβ)

≥ 2−2k
′

≥ 2−Ω(nν),

where the second line follows because ϵ = n−c, and m = nβ . The third line follows because we can choose

β > 0 to be sufficiently small, and k′ = n
δ21
2 , and ν = δ21 . This gives that the success probability of C violates

the HOS guarantee of g.

5 Conclusion and Open Problems

In this paper we construct extractors for samplable distributions with polynomially small min-entropy. There
are several natural open problems.

Using a weaker hardness assumption. The extractors of Theorem 1.4 and Theorem 1.6 use a hardness
assumption for Σj-circuits, where j increases as the min-entropy threshold is reduced. Can this be avoided?
This is even more severe in the case of the multiplicative extractors of Theorem 1.8.

More ambitiously, is it possible to achieve similar extractors under hardness for nondeterministic circuits?

Further reducing the min-entropy threshold. It is interesting to try and construct extractors for min-
entropy threshold k = no(1).

For both aforementioned open problems, a natural direction is to give an improved construction of error-
less condensers (for lower min-entropy threshold and/or weaker hardness assumption).
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Improved multiplicative extractors for low min-entropy. The previous work of Ball, Shaltiel and Sil-
bak [BSS25] gave extractors that are not multiplicative. In this work, we are able to obtain multiplicative
extractors, however, both the assumption used, and the output length are inferior compared to our (standard
extractors) and it is a natural open problem to try and improve them.
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