
Catalytic Computing and Register Programs Beyond Log-Depth

Yaroslav Alekseev∗

Technion Israel Institute of Technology
tolstreg@gmail.com

Yuval Filmus∗

Technion Israel Institute of Technology
yuvalfi@cs.technion.ac.il

Ian Mertz †

Charles University
iwmertz@iuuk.mff.cuni.cz

Alexander Smal
JetBrains Research
avsmal@gmail.com

Antoine Vinciguerra∗

Technion Israel Institute of Technology
antoine.v@campus.technion.ac.il

April 24, 2025

Abstract

In a seminal work, Buhrman et al. (STOC 2014) defined the class CSPACEps, cq of problems solvable in
space s with an additional catalytic tape of size c, which is a tape whose initial content must be restored
at the end of the computation. They showed that uniform TC1 circuits are computable in catalytic
logspace, i.e., CL “ CSPACEpOplognq, 2Oplognq

q, thus giving strong evidence that catalytic space gives L
strict additional power. Their study focuses on an arithmetic model called register programs, which has
been a focal point in development since then.

Understanding CL remains a major open problem, as TC1 remains the most powerful containment to
date. In this work, we study the power of catalytic space and register programs to compute circuits of
larger depth. Using register programs, we show that for every ϵ ą 0,

SAC2
Ď CSPACE

ˆ

O

ˆ

log2 n

log log n

˙

, 2Oplog1`ϵ nq

˙

This is an Oplog log nq factor improvement on the free space needed to compute SAC2, which can be
accomplished with near-polynomial catalytic space.

We also exhibit non-trivial register programs for matrix powering, which is a further step towards
showing e.g. NC2

Ď CL.

∗Supported by ISF grant 507/24.
†Supported by the Grant Agency of the Czech Republic under the grant agreement no. 24-10306S and by the Center for

Foundations of Contemporary Computer Science (Charles Univ. project UNCE 24/SCI/008).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 55 (2025)

1 Introduction

1.1 Catalytic Computation

In the realm of space-bounded computation, the catalytic computing framework, first introduced by Buhrman
et al. [BCK`14], investigates the power of having additional storage which has to be restored to its original
value at the end of computation. A catalytic Turing machine is a space-bounded Turing machine with
two read-write tapes: a standard work tape of size s and an additional, dedicated catalytic tape of size c.
However, the catalytic tape begins completely filled in with some memory τ , and despite being available for
use as work space, the catalytic tape must be restored to its initial state τ at the end of the computation.

While CSPACEps, cq, the class of functions solvable with work space s and catalytic space c, clearly sits
between SPACEpsq and SPACEps`cq, näıvely it might seem that catalytic space should not improve the power
of machines, as was conjectured in many previous works [CMW`12, Liu13, EMP18, IN18]. Unexpectedly,
[BCK`14] showed that catalytic logspace (CL “ CSPACEplog n, 2Oplognqq), the catalytic analogue of the
complexity class L, contains the circuit class TC1, which contains non-deterministic and randomized logspace
(NL and BPL, respectively) as well as functions, such as determinant, widely believed to be outside both.
Thus they gave a strong case for the power of catalytic memory as a resource.

Building on this result, the catalytic approach and methods has seen growing interest. Many follow-
up works have sought to understand variants and properties of catalytic space have been studied, such
as non-deterministic and randomized analogues [BKLS18, DGJ`20, CLMP24, KMPS25], non-uniform cat-
alytic models [Pot16, RZ22, CM22, CM23], robustness to errors in catalytic resetting [GJST24, FMST24],
catalytic communication protocols [PSW25], and other variants [GJST19,BDS22, BDRS24] (see surveys by
Koucký [K`16] and Mertz [Mer23] for more discussion of these and other works).

Furthermore, applying catalytic tools to other complexity theoretic questions has seen successful results
in recent years. Two of the most successful approaches have been 1) approaches to derandomizating non-
catalytic space-bounded classes [Pyn24,DPT24,LPT24]; and 2) space-bounded algorithms for function com-
position [CM20,CM21,CM23], which recently culminated in a breakthrough simulation by Williams [Wil25]
of time with quadratically less space.

Nevertheless, the exact strength of catalytic space remains open. In their first work, [BCK`14] showed
TC1 Ď CL Ď ZPP, with the key open problem being the relationship of CL to P. Further work has shown
slight progress on both ends; Cook et al. [CLMP24] showed that CL reduces to the lossy coding problem,
which itself is in ZPP, while Agarwala and Mertz [AM25] showed that bipartite matching, a function not
known to be anywhere in the NC hierarchy, can be solved in CL.

The key open question in this work is whether or not CL contains higher levels of the NC hierarchy.
Mertz [Mer23] posed a concrete approach to showing NC2 Ď CL via register programs, which we turn to now.

1.2 Register Programs

Register programs were first introduced by Coppersmith and Grossmann [CG75], and revived later by Ben-
Or and Cleve to generalize Barrington’s theorem to arithmetic circuits [Cle88, Cle90]. A register program
over a ring R and a set of inputs x1, . . . , xn P R is defined as a sequence of instructions I1, . . . , In : Rs ÞÑ Rs

applied to a set of registers tR1, . . . , Rsu.
The key technique of Buhrman et al. [BCK`14] was based on register programs, which they showed

can be directly simulated on a catalytic machine. They constructed a register program computing the kth
power of some value x with k registers and Op1q accesses to the value x; using some extensions and other
works, they thus showing that CL contains the circuit class TC1. This was also the driving force behind the
result of Cook and Mertz [CM23], and by extension the work of Williams [Wil25], who showed that the Tree
Evaluation problem, which was suggested as a function which would separate L from P [CMW`12], can be
computed in space Oplog n log log nq.

As with catalytic space more generally, the power of register programs are still a mystery, and deserves to
be investigated thoroughly. The approach suggested in [Mer23] for CL versus NC2 is to find a register program
computing the kth power of a matrix with a register program matching the initial result of [BCK`14] in

1

the non-commutative setting. More generally, it was proposed that further algebraic extension of these and
other works could be the goal to improving the strength of CL.

1.3 Our Results

In this work, we investigate the complexity of computing polynomials in the register program framework,
and make the first progress towards catalytic algorithms for circuit classes beyond TC1. We present register
programs for different kinds of polynomials (such as symmetric polynomials and polynomials representing
Boolean functions), as well as more efficient programs for evaluating non-constant depth d boolean circuits
with a constant number of recursive calls.

From this, we deduce that the class SAC2 of Boolean circuits of polynomial size and depth Oplog2 nq,
with bounded fan-in AND gates and unbounded fan-in OR gates, can be computed with oplog2 nq work
space when given access to nearly polynomial catalytic space.

Theorem 1.1. For all ϵ ą 0,

SAC2 Ď CSPACE

ˆ

O

ˆ

log2 n

log log n

˙

, 2Oplog1`ϵ nq

˙

Our technique also gives such an improvement for NC2 with only polynomial catalytic space, although this
can be derived more directly from the results of [BCK`14]. It also extends to #SAC2, the arithmetic variant
of SAC2.

Second, we show sublinear register programs to compute matrix powering, thus making initial progress
towards the program of [Mer20]:

Theorem 1.2. Let d, n, p P N, where p is prime. Let M PMnpFpq. For all ϵ ą 0 there is a register program
that computes Md with

• Oϵpd
ϵ log dq recursive calls to M

• Oϵ

`

nexpp1{ϵq
˘

basic instructions, and

• Oϵ

`

nexpp1{ϵq
˘

registers over FOppnpqexpp1{ϵqq.

2 Preliminaries

2.1 Circuits

A Boolean circuit is a directed acyclic graph C with 0, 1-valued inputs and outputs. Internal nodes (gates)
are labeled with Boolean operations from a given set B. The circuit size spCq is the number of nodes, and its
depth dpCq is the longest input-output path. While Boolean circuits had been studied earlier [Sha49], their
importance for parallel computing gained significant attention in the late 1970s [Bor77,Pip79,Ruz81,BCP83].

Definition 2.1. We define the following circuit families over input literals
x1, . . . , xn,␣x1, . . . ,␣xn:

• NC circuits: fan-in 2 AND and OR gates

• SAC circuits: fan-in 2 AND gates and unbounded fan-in OR gates1

• AC circuits: unbounded fan-in AND and OR gates

• TC circuits: unbounded fan-in threshold gates

1Since SACi is closed under complement for all i ě 1 (see [BCD`89]), these fan-ins can also be reversed, but for our argument
we specifically use this version.

2

We denote by NCi (SACi, ACi, TCi) the family of functions computable by NC (SAC, AC, TC) circuits of
polynomial size and Oplogi nq depth. By NC we denote

Ť

iPN NCi and similarly for SAC, AC, and TC.

The relations between these different classes has been extensively studied [Ruz81,Vol99]. For all i, we have
the following relations:

NCi
Ď SACi

Ď ACi
Ď TCi

Ď NCi`1

As a consequence, we have that
NC “ SAC “ AC “ TC

Furthermore, other lines of research [Bor77,Coo83,Ven92] have established other relationships:

NC1 Ď L Ď NL Ď SAC1 Ď AC1 Ď TC1 Ď NC2 Ď SAC2 Ď ¨ ¨ ¨ Ď NC Ď P

While all containments are widely conjectured to be strict, no separations are known.

2.2 Catalytic Computation

Central to this work is the notion, introduced by Buhrman et al. [BCK`14], of catalytic space.

Definition 2.2. A catalytic Turing machine with work space s :“ spnq and catalytic space c :“ cpnq is a
space-bounded Turing machine M with access to two read-write tapes: a standard work tape of size s, and a
catalytic tape of size c. The catalytic tape has the additional restriction that for every τ P t0, 1uc, if we run
M on any input x with the catalytic tape in initial configuration τ , the catalytic tape has final configuration
τ as well.

This definition gives rise to natural complexity classes:

Definition 2.3. We define CSPACEps, cq as the class of problems solvable by a catalytic Turing machine
with a work tape of size s and a catalytic tape of size c. Furthermore, we denote catalytic logspace to be
CL “ CSPACEpOplog nq, 2Oplognqq.

2.3 Register Programs

Inspired by Ben-Or and Cleve’s work on straight-line programs [BC92, Cle88], Buhrman et al. [BCK`14]
investigated the potential for optimization, examining a more generic type of computational model due to
Coppersmith and Grossman [CG75].

Definition 2.4. Let R be a ring. An R-register program over input x1, . . . , xn with space s is defined as a
sequence of instructions I1, . . . , It applied to a set of registers R1, . . . , Rs, where each instruction Ik has one
of the following two forms:

• Basic instruction: updating a register Ri with a polynomial pk over the other registers:

Ik : Ri Ð Ri ` pkpR1, . . . , Ri´1, Ri`1, . . . , Rnq

• Input access/Recursive call : adds the input (scaled by some λ P R) to one register Ri:

Ik : Ri Ð Ri ` λxj

The time t of the register program is the number of instructions Ik.

We note that we use the term input access when we are given direct access to the input x, while we use the
term recursive call when we are designing a subroutine whose input is being received not from the global
function but rather from some preceding intermediate computation. We will make this distinction clear
where necessary.

With regards to such subroutines, it will be important to restrict our register programs to be of a form
amenable to composition:

3

Definition 2.5. A register program is called clean if, assuming all registers are initialized to some initial
value, τi P R, applying the sequence of instructions has the following effect:

• There is a subset of registers S such that for all register Ri P S, Ri “ τi ` δi.

• For every other register Rj , Rj “ τj .

The total time and space usage of such composed programs can thus be directly analyzed:

Lemma 2.1 (Composition Lemma). Let f : R Ñ R and g : R Ñ R be functions. Let Rf and Rg be clean
register programs computing f and g with tf and tg recursive calls, sf and sg basic instructions, and rf and
rg registers, respectively. Then there exists a register program Rf˝g that computes f ˝ g with

• tf tg recursive calls,

• sf ` tfsg basic instructions, and

• max trf , rgu registers.

Proof. Let x P R and let y “ gpxq, so fpgpxqq “ fpyq. We can cleanly compute fpyq using Rf , with tf
recursive calls to y, sf basic instructions, an input register and rf ´ 1 additional registers. On the other
hand, we can cleanly compute y “ gpxq into the input register of Rf using tg recursive calls and sg basic
instructions for each of the tf recursive calls made to g.

There are now two cases:

• If rg ´ 1 ă rf ´ 1, since Rg cleanly computes g, we can use the additional registers of Rf to compute
y.

• If rg ´ 1 ą rf ´ 1, we add rg ´ rf registers and compute y using the latter registers as well as the
additional registers of Rf .

Thus we can compute fpgpxqq with tf tg recursive calls to x and max trf , rgu registers.

Lastly we connect clean register programs to catalytic computation:

Lemma 2.2 (Lemma 15 in [BCK`14]). Any (uniform) clean register program of time t, space s, and with
n inputs over a finite ring R can be simulated by a catalytic Turing machine in pure space Oplog t` log n`
log |R|q and catalytic space Ops log |R|q.

2.4 Polynomial Representation

The question of representing Boolean functions as multivariate polynomials over a ring has been intensively
studied and has proven to be a useful tool in circuit complexity (see [Bei93] for a survey). We will consider two
kinds of representation: one that we will call the representation of f , and the other the weak representation
of f .

Definition 2.6. Let P be a polynomial on n variables over a ring R, and let f be a Boolean function with
n inputs. We say P represents f if for all inputs x P t0, 1un, we have P pxq “ 0 if and only if fpxq “ 0. We
say P weakly represents f if there exist two disjoint sets S0, S1 Ă R such that for all inputs x P t0, 1un, we
have fpxq “ b if and only if P pxq P Sb, for b P t0, 1u.

Let us underline the difference between these two definitions of representation with an example. Let us
consider the n-ary AND function. Observe that the polynomial P pX1, . . . , Xnq “

řn
i“1 Xi over any Zm,

where m ą n, weakly computes AND. Indeed, we can take S0 “ t1, . . . , n´ 1u and S1 “ tnu. On the other
hand, P does not represent AND, and in general, it is known that AND cannot be represented by a degree
1 polynomial.

Definition 2.7. We will say that a Boolean function f has a (weak) pR, dq-representation if there is a degree
d polynomial which (weakly) represents it. We also define pR, d, sq-representation, where additionally the
polynomial is required to have at most s monomials.

4

3 Register Programs for Polynomials

3.1 Computing Univariate Polynomials

In order to prove TC1
Ď CL, [BCK`14] design a register program to compute xn for any element x in a

commutative field. We state a straightforward generalization of their lemma and corresponding program to
compute arbitrary univariate polynomials:

Lemma 3.1. Let p P N be a prime number, and let P P FprXs be a univariate polynomial of degree at most
n. For all x P Fp, there is a register program that computes P pxq with

• 4 recursive calls to x,

• 2n` 2 basic instructions, and

• n` 2 registers.

Proof. Let P “
řn

i“0 aiX
i for some coefficients ai. Let Rin be the input register initially equal to τin. It is

straightforward to show, by writing x as pτin ` xq ´ τin, that

P pxq “
n

ÿ

i“0

ai

n
ÿ

j“0

ˆ

i

j

˙

pτin ` xqjp´τinq
i´j

We will use this equation as well as the register program to compute xn in Lemma 4 of [BCK`14], to
construct a register program to compute P pxq, given in Figure 1.

As discussed in [BCK`14,CM23], this program can be adapted to compute a set of polynomials tP1, . . . , Pℓu

with similar parameters:

Lemma 3.2. Let p P N be a prime number, and let P1 . . . Pℓ P FprXs be univariates polynomial of degree at
most n. For all x P Fp, there is a register program UPP1,...,Pℓ

that computes P1pxq . . . Pℓpxq with

• 4 recursive calls to x,

• 2n` 2ℓ basic instructions, and

• n` 1` ℓ registers.

Proof. The program is the same as that of Lemma 3.1, but with each instruction involving Rout replaced by
ℓ instructions of the same form, where each involves a different output register Rout,j and the corresponding
polynomial Pjpxq.

3.2 Computing Multivariate Polynomials

In the last section we showed that computing powers of elements in a commutative ring can be done with a
constant number of recursive calls. Moreover, it should be clear that computing the sum of variables is an
easy operation: we simply add each variable to a fixed output register in turn (see [BCK`14]).

Thus our goal is to represent our polynomial in such a way that we only have to perform addition and
powering operations. Here our discussion of representations in Section 2.4 comes into play:

Theorem 3.3 ([Sch02, BBS08]). Let P P Fprx1, . . . , xns be a homogeneous polynomial of degree d ă p.
There exist m P N, m elements αi and nm elements βi,j such that:

P px1, . . . , xnq “

m
ÿ

i“1

αi

˜

n
ÿ

j“1

βi,jxj

¸d

.

Moreover, m ď
`

n`d´1
d´1

˘

.

5

1 Registers:

2 Rin “ τin
3 R1 “ τ1, . . . , Rn “ τn
4 Rout “ τout
5

6 Rin Ð Rin ` x // Rin “ τin ` x
7

8 For 1 ď i ď n
9 Ri Ð Ri `Ri

in // Ri “ τi ` pτin ` xqi

10

11 Rin Ð Rin ´ x // Rin “ τin
12

13 For 1 ď i ď n

14 Rout Ð Rout ` ai

´

p´1q
i
Ri

in `
ři

j“1

`

i
j

˘

p´1q
i´j

RjR
i´j
in

¯

15 // Rout “ τout ` P pxq ´ a0 `
řn

i“1 ai
ři

j“1

`

i
j

˘

p´1qi´jτjτ
i´j
in

16

17 Rin Ð Rin ` x // Rin “ τin ` x
18 Ri Ð Ri ´Ri

in // Ri “ τi
19 Rin Ð Rin ´ x // Rin “ τin
20

21 For 1 ď i ď n

22 Rout Ð Rout ´ ai
ři

j“1

`

i
j

˘

p´1qi´jRjR
i´j
in

23 // Rout “ τout ` P pxq ´ a0
24

25 Rout Ð Rout ` a0 // Rout “ τout ` P pxq

Figure 1: Program for computing a polynomial P pxq of degree n using 4 recursive calls to x, 2n ` 2 basic
instructions, and n` 2 registers

6

This new representation does not involve any multiplication. We can thus describe a register program
that computes a polynomial in Op1q recursive calls:

Lemma 3.4. Let P be a homogeneous degree d ă p polynomial P px1, . . . , xnq over Fp. There is a register
program FP that cleanly computes P with

• 4 recursive calls to each xi,

• Opd
`

n`d
d

˘

q basic instructions, and

• Opd
`

n`d
d

˘

q registers over Fp.

Proof. We use Theorem 3.3 and write P as:

P px1, . . . , xnq “

m
ÿ

i“1

αi

˜

n
ÿ

j“1

βi,jxj

¸d

.

Let fipx1, . . . , xnq “
řn

j“1 βi,jxj and g “ xd. Then by the above discussion:

• fi can be cleanly computed with 1 recursive call to each xi, 0 basic instructions, and 1 register.

• g can be cleanly computed with 4 recursive calls, 2d ` 2 basic instructions, and d ` 2 registers using
the register program from Lemma 3.1.

Hence by Lemma 2.1, there exists a register program Ri that cleanly computes

gpfipx1, . . . , xnqq “ p
řn

j“1 βi,jxjq
d

with 4 recursive calls, 2d` 2 basic instructions, and d` 2 registers.
We can compute all these programs Ri in parallel, only sharing the output register Rout. This leaves us

with a register program that cleanly computes P in Rout with:

• 4 recursive calls to each xi,

• mp2d` 2q ď p2d` 2q
`

n`d´1
d´1

˘

` 1 basic instructions, and

• mpd` 1q ` 1 ď pd` 1q
`

n`d´1
d´1

˘

` 1 registers,

as required in the statement of the lemma.

This register program immediately generalizes to a non-homogeneous polynomial P by considering the
decomposition P “

řd
i“0 Pi, where each Pi is a homogeneous degree i polynomial.

Corollary 3.4.1. Let P be a degree d ă p polynomial P px1, . . . , xnq over Fp. There is a register program
FP that cleanly computes P with

• 4 recursive calls to each xi,

• Opd2
`

n`d
d

˘

q basic instructions, and

• Opd2
`

n`d
d

˘

q registers over Fp.

This register program has the advantage of employing a constant number of recursive calls. However, this
method has two caveats. First, the cost in the number of registers is superpolynomial when d is non-constant.
Second, the degree d is upper bounded by the field size.

Concerning the field issue, we will instead consider the field Fq for some q ą d, such that pP mod qq mod
p “ P mod p. Observe that for any degree d polynomial over Z where the coefficients are smaller than p,
the polynomial evaluation for x “ px1, . . . , xnq, where 0 ď xi ď p, is upper bounded by

P pxq ď p
d

ÿ

i“0

ˆ

n

i

˙

pi ď 2npd`1

Hence, we can first evaluate P pxq over a field of size q ě 2npd`1. This yields the most general register
program, leaving yet the problem with the number of registers unresolved.

7

Corollary 3.4.2. Let P be a degree d polynomial P px1, . . . , xnq over Fp. There is a register program that
cleanly computes P with

• 4 recursive calls to each xi,

• Opd2
`

n`d
d

˘

q basic instructions,

• Opd2
`

n`d
d

˘

q registers over Fq, where q “ Op2npd`1q, and

• 1 register over Fp.

We also note one register program of orthogonal strength, namely greater in recursive calls but much
lesser in space. In order to prove that Tree Evaluation is in SPACEplog n log log nq (later improved by Stoeckl,
see [Gol24]), Cook and Mertz [CM23] present a register program to compute multivariate polynomials, which
we will also use later:

Lemma 3.5. Let P px1, . . . , xnq be a polynomial of degree d ă p over a prime field Fp. There exists a register
program that computes P with:

• n input registers

• 1 output register

• Opdq basic instructions

• d` 1 instructions of the type Iλ,all or its inverse I´1
λ,all, where:

Iλ,all : For 1 ď i ď δ,

Rin,ℓ Ð Rin,ℓ ` λxi.

3.3 Computing Boolean functions

In the preceding section we presented a register program to compute polynomials over any finite field.
However, for the case of polynomials over F2, i.e. Boolean functions, there are specific properties that we
can exploit to make them simpler to compute, the most important being that any polynomial over F2 is
multilinear since x2

i “ xi.
Since any Boolean function f is uniquely represented by a polynomial P over Z2, we will directly consider

Boolean functions in this section. Let us present a register program that computes any Boolean function f
given a representation of f .

Let us first consider the case of symmetric functions. Given a symmetric function f in n variables, there
is some univariate polynomial g : rns ÞÑ N such that fpx1, . . . , xnq “ gpx1 ` ¨ ¨ ¨ ` xnq. We can compute g
using Lemma 3.1, which yields the following register program:

Lemma 3.6. Let n P N, and let f be a symmetric polynomial function. Let p P N be a prime number such
that p ą n. There is a register program that computes f with:

• 4 recursive calls to each xi,

• Opnq basic instructions, and

• Oppq registers over Zp.

From this we deduce the following lemma for polynomials in general:

Lemma 3.7. Let f : t0, 1un ÞÑ t0, 1u be a boolean function which is pZ, d, tq-represented, and let p be a prime
number such that p ą maxtd, tu. There is a register program which cleanly computes f with:

• 64 recursive calls to each xi,

8

• Optp2 log pq basic instructions, and

• Optpq registers over Zp.

Proof. Let P be the polynomial which represents f , which we write as a sum of terms

P “
t

ÿ

j“1

uk

where each term uk has the form

uk “

d
ź

j“1

xij , i1, . . . , id P rns

Observe that each uk is symmetric, and so using the register program given by Lemma 3.6, we deduce that
we can compute all the terms in parallel with

• 4 recursive calls to each xi,

• Optpq basic instructions, and

• Optpq registers over Zp.

To compute
řt

k“1 uk, we can again use the register program of Lemma 3.6. This yields a register program
with

• 4 recursive calls to each uj ,

• Oppq basic instructions, and

• Oppq registers over Zp.

Composing the two register programs using Lemma 2.1, we have a register program Rf which computes P
with

• 16 recursive calls to each xi,

• Optp2q basic instructions, and

• Optpq registers over Zp.

Lastly, we convert the computation of P into a computation of f . Note that our final output register for
P is over Zp, which we represent in binary with Oplog pq bits. We now apply the register program for the
OR function from Lemma 3.1 which uses 4 recursive calls, Oplog pq basic instructions, and Oplog pq registers.
Composing this with the rest of the program gives us a final program for computing f with

• 64 recursive calls to each xi,

• Optp2 log pq basic instructions, and

• Optpq registers over Zp.

which completes the lemma.

9

3.4 Circuits via Merging Layers

In this section, we will find efficient register programs for circuits, and from it efficient catalytic algorithms,
by a strategy of merging layers and directly computing the “super-functions” that emerge. Our starting
point is the following lemma, used in [Cle88,BCK`14].

Lemma 3.8. Let B be a set of Boolean functions such that for any function g P B we have a register program
Pg with at most t recursive calls, b basic instructions, and r registers computing g. Let C be a depth d, size
s circuit whose gates are functions in B. Then C can be computed by a register program PC with

• Optdq recursive calls,

• Opsb ¨ tdq instructions, and

• Oprsq registers.

Proof. We will perform the operations of each layer of the circuit in parallel. Each layer uses t recursive calls
to the previous layer and sb basic instructions; hence for a depth d circuit, applying Lemma 2.1 iteratively
gives Optdq recursive calls to the last layer and sb ¨ Optdq total basic instructions. Since each layer has at
most s gates, we will need at most rs registers at each layer, and so again by Lemma 2.1 this gives 2rs
registers in total.

Our strategy will be as follows: instead of computing a height h circuit C with AND and OR gates
layer by layer, we will show that we can compute d layers at a time by an efficient register program, and
thus consider the circuit C 1 of height h{d whose gates are themselves depth d circuits. We do this using
polynomial representations of such circuits, which we then combine with Lemma 3.7 to obtain the register
programs in question. Our main statement is the following:

Lemma 3.9. Let C be a polynomial size depth d circuit with fan-in 2 AND gates and fan-in ℓ OR gates for

some ℓ. Then C can be represented by a degree k ď 2d polynomial with t ď ℓ2
d

terms over Z.

Proof. The proof is by induction. The claim for d “ 0 follows immediately since this is in this case the
circuit computes one of the inputs.

We now assume that the claim holds for depth d ´ 1, and let C be a depth d circuit. We apply the
induction hypothesis to the children of the top gate g, and have two cases for g itself:

If the top gate is an OR gate: We can find a polynomial P “
řℓ

i“1 Pi representing the circuit C, where
Pi is the polynomial for each input of the OR gate. Using the induction hypothesis

degP “ max
i

degPi ď 2d´1 ă 2d.

Moreover, if we let ti be the number of terms of each Pi, the number of terms of P is

t “
ÿ

i

ti ď ℓ ¨ ℓ2
d´1

ď ℓ2
d

If the output gate is a binary AND gate: Let Pl and Pr respectively be the polynomials representing
the left and right children. The polynomial P “ PlPr represents the circuit C, and

degP “ degPl ` degPr ď 2d´1 ` 2d´1 “ 2d.

On the other hand,

t “ tltr ď
´

ℓ2
d´1

¯2

“ ℓ2
d

which completes the proof.

10

Combining Lemma 3.9 for ℓ “ nOp1q with our register program for representations in Lemma 3.7, we
immediately obtain the following corollary.

Corollary 3.9.1. Let C be a size s depth d circuit on n inputs with unbounded fan-in OR gates and fan-in

2 AND gates, and let p P N be a prime number such that p ą s2
d

. There is a register program which cleanly
computes C with:

• 64 recursive calls to each xi,

• sOp2dq basic instructions, and

• s2
d

registers over Zp.

Our main result follows for the right choice of d.

Proof of Theorem 1.1. Let d P N be such that d ď ϵ log logn. Corollary 3.9.1 provides a register program
cleanly computing any size nOp1q depth d bounded fan-in OR fan-in 2 AND circuit with

• 64 recursive calls to each xi,

• 2Oplog1`ϵ nq basic instructions, and

• 2Oplog1`ϵ nq registers over Zp, where p “ 2Oplog1`ϵ nq.

Given an SAC2 circuit C of size nOp1q and depth Oplog2 nq, we will rewrite it as a circuit C 1 of size at most

nOp1q and depth Op log
2 n
d q, where each gate is a size nOp1q depth d circuit with unbounded fan-in OR and

fan-in 2 AND gates. Hence using Lemma 3.8, for p “ 2Oplog1`ϵ nq we have a register program for C with

• 64
O

´

log2 n
ϵ log log n

¯

“ 2
O

´

log2 n
log log n

¯

recursive calls to each xi,

• nOp1q2Oplog1`ϵ nq ¨ 2
O

´

log2 n
log log n

¯

“ 2
O

´

log2 n
log log n

¯

basic instructions, and

• nOp1q ¨ 2Oplog1`ϵ nq “ 2Oplog1`ϵ nq registers over Zp.

At the end these recursive calls translate into basic instructions reading the input, giving a total time of

2
O

´

log2 n
log log n

¯

. We can thus translate this register program to a catalytic machine using Lemma 2.2, and we
deduce that:

C P CSPACE

ˆ

log2 n

log log n
, 2Oplog1`ϵ nq

˙

as claimed.

3.5 Matrix Powering via Decomposition

We now move to register programs for computing powers of a matrix M P MnpZpq. A first attempt can be
given by simply applying Lemma 3.4, as computing Md is equivalent to computing n2 degree d polynomial

in the n2 coefficients; namely, if we denote by m
pdq

i,j the coefficient of Md, we have:

m
pdq

i,j “
ÿ

1ďk1,...,kd´1ďn

mi,k1

˜

d´2
ź

i“1

mki,ki`1

¸

mkd´1,j .

We can therefore use Lemma 3.4 to compute Md for d ă p:

Lemma 3.10. Let M PMnpFpq. There is a register program that computes Md for d ă p with:

• 4 recursive calls to M ,

11

• Opdn2
`

n`d
d

˘

q basic instructions, and

• O
´

dn2
`

n2
`d
d

˘

¯

registers over Fp.

The register program from Lemma 3.10 is a first step towards a more generic program for matrix powering,
but it has two major issues:

• it works only to compute powers up to p´ 1.

• the number of registers grows exponentially with d.

We address these issues independently to get a register program which can handle all the cases.

Computing any power d Let M PMnpFpq and let L PMnpZq be the natural extension of M to integers.

Observe that the coefficients ℓ
pdq

i,j of Ld are evaluations of degree d polynomials with nd´1 terms, and hence

ℓ
pdq

i,j ď pdnd´1.

Let us consider the first prime number q greater than pdnd´1 ě d. In this case, we have
´

ℓ
pdq

i,j mod q
¯

mod

p “ ℓ
pdq

i,j mod p “ m
pdq

i,j . Hence we can use the register program of Lemma 3.10 for d ă q and have an output
register over Fp for each coefficient. This yields the following:

Lemma 3.11. Let M PMnpFpq. There is a register program that computes Md with:

• 4 recursive calls to M ,

• O
´

dn2
`

n2
`d
d

˘

¯

basic instructions,

• O
´

dn2
`

n2
`d
d

˘

¯

registers over FOppdnd´1q, and

• Opn2q registers over Fp.

Reducing the Number of Registers The latter register program works for all d and has a constant
number of recursive calls. However, the number of registers is still exponential in d, and therefore it is not
usable as is. To fix this issue, let us observe that, if we let fd be the powering function fdpMq “Md, we have

fdk “ pfdq
˝
k

, where ˝k means composing k times the same function. An iterated application of Lemma 2.1
gives the following:

Lemma 3.12. Let R be a ring, x P R and δ P N. Suppose that for all k ď δ there is a clean register program
Pk computing xk with at most t recursive calls, s basic instructions and r registers. Then, there exists a
register program P that computes xd with

• at most prlogδ ds` 2q t
t´1 t

rlogδ ds recursive calls,

• Oplogδ dq
t`spt`1q

rlogδ ds

t basic instructions, and

• 1` rptlogδ du` 1q registers over R.

Proof. Let fk : RÑ R be the functions that computes xk for all k ď d. Observe that

d “

tlogδ du
ÿ

i“0

αiδ
i

where αi are non-negative integers smaller than δ. Therefore

xd “

tlogδ du
ź

i“0

pxδiqαi

12

Note that pxδiqαi “ fαi ˝ pfδq
i
pxq. We can apply Lemma 2.1 to obtain a register program Ri that cleanly

computes pxδiqαi with ti`1 recursive calls, pt`1qis basic instructions, and r registers. Then, using Lemma 3.5

for P “
ś

ipx
δiqαi , we can compute xd by calling tlogδ du ` 2 ď rlogδ ds ` 2 times each program Ri, and

using a single additional register. In total, we require

• at most prlogδ ds` 2q
řtlogδ du

i“0 ti`1 ď prlogδ ds` 2q t
t´1 t

rlogδ ds recursive calls to x,

• Oplogδ dq
´

1` s
řtlogδ du

i“0 pt` 1qi
¯

ď Oplogδ dq
t`spt`1q

rlogδ ds

t basic instructions, and

• 1`
řtlogδ du

i“0 r “ 1` rptlogδ du` 1q registers.

Hence, we fix some δ P N, and we can compute Md for all d based on the register program for δ. This yields
our register program for Theorem 1.2.

Proof of Theorem 1.2. Let δ P N. Combining Lemma 3.11 and Lemma 3.12, we get that for all d P N, there
exists a register program that computes Md with:

• Op log d
log δ d

3
log δ q recursive calls to M ,

• O

ˆ

δn2d
3

log δ log d
log δ

`

n2
`δ
δ

˘

˙

basic instructions,

• Opn
2 log d
log δ q registers over Fp.

Replacing by ϵ “ 3
log δ , yields a program with

• Opϵdϵ log dq recursive calls to M ,

• O

ˆ

ϵn
2
3
ϵ

`1

2
3
ϵ

´1
dϵ log d

˙

basic instructions,

• O

ˆ

ϵn
2
3
ϵ

`1

2
3
ϵ

´1
log d

˙

registers over Fq for q “ O

ˆ

pnpq
2

3
ϵ

˙

, and

• Opϵn2 log dq registers over Fp.

which completes the proof.

References

[AM25] Aryan Agarwala and Ian Mertz. Bipartite matching is in catalytic logspace. In Electron. Collo-
quium Comput. Complex, volume 48, 2025.

[BBS08] Andrzej Bia lynicki-Birula and Andrzej Schinzel. Representations of multivariate polynomials by
sums of univariate polynomials in linear forms. In Colloquium Mathematicum, volume 2, pages
201–233, 2008.

[BC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number of
registers. SIAM J. Comput., 21(1):54–58, 1992.

[BCD`89] Allan Borodin, Stephen A. Cook, Patrick W. Dymond, Walter L. Ruzzo, and Martin Tompa.
Two applications of inductive counting for complementation problems. SIAM J. Comput.,
18(3):559–578, 1989.

13

[BCK`14] Harry Buhrman, Richard Cleve, Michal Kouckỳ, Bruno Loff, and Florian Speelman. Computing
with a full memory: catalytic space. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing, pages 857–866, 2014.

[BCP83] Allan Borodin, Stephen Cook, and Nicholas Pippenger. Parallel computation for well-endowed
rings and space-bounded probabilistic machines. Information and control, 58(1-3):113–136, 1983.

[BDRS24] Sagar Bisoyi, Krishnamoorthy Dinesh, Bhabya Deep Rai, and Jayalal Sarma. Almost-catalytic
computation. arXiv preprint arXiv:2409.07208, 2024.

[BDS22] Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. On pure space vs catalytic space.
Theoretical Computer Science, 921:112–126, 2022.

[Bei93] Richard Beigel. The polynomial method in circuit complexity. In [1993] Proceedings of the Eigth
Annual Structure in Complexity Theory Conference, pages 82–95. IEEE, 1993.

[BKLS18] Harry Buhrman, Michal Kouckỳ, Bruno Loff, and Florian Speelman. Catalytic space: Non-
determinism and hierarchy. Theory of Computing Systems, 62:116–135, 2018.

[Bor77] Allan Borodin. On relating time and space to size and depth. SIAM journal on computing,
6(4):733–744, 1977.

[CG75] Don Coppersmith and Edna Grossman. Generators for certain alternating groups with applica-
tions to cryptography. SIAM Journal on Applied Mathematics, 29(4):624–627, 1975.

[Cle88] Richard Cleve. Computing algebraic formulas with a constant number of registers. In Proceedings
of the twentieth annual ACM symposium on Theory of computing, pages 254–257, 1988.

[Cle90] Richard Erwin Cleve. Methodologies for designing block ciphers and cryptographic protocols.
PhD thesis, University of Toronto, 1990.

[CLMP24] James Cook, Jiatu Li, Ian Mertz, and Edward Pyne. The structure of catalytic space: Capturing
randomness and time via compression. ECCC TR24-106, 2024.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 752–760, 2020.

[CM21] James Cook and Ian Mertz. Encodings and the tree evaluation problem. In Electron. Colloquium
Comput. Complex, volume 54, 2021.

[CM22] James Cook and Ian Mertz. Trading time and space in catalytic branching programs. In
37th Computational Complexity Conference (CCC 2022). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2022.

[CM23] James Cook and Ian Mertz. Tree evaluation is in space o (log n· log log n). In Electron.
Colloquium Comput. Complex., 2023.

[CMW`12] Stephen Cook, Pierre McKenzie, Dustin Wehr, Mark Braverman, and Rahul Santhanam. Peb-
bles and branching programs for tree evaluation. ACM Transactions on Computation Theory
(TOCT), 3(2):1–43, 2012.

[Coo83] Stephen A Cook. The classification of problems which have fast parallel algorithms. In Inter-
national Conference on Fundamentals of Computation Theory, pages 78–93. Springer, 1983.

[DGJ`20] Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Random-
ized and symmetric catalytic computation. In International Computer Science Symposium in
Russia, pages 211–223. Springer, 2020.

14

[DPT24] Dean Doron, Edward Pyne, and Roei Tell. Opening up the distinguisher: A hardness to ran-
domness approach for bpl= l that uses properties of bpl. In Proceedings of the 56th Annual
ACM Symposium on Theory of Computing, pages 2039–2049, 2024.

[EMP18] Jeff Edmonds, Venkatesh Medabalimi, and Toniann Pitassi. Hardness of function composition
for semantic read once branching programs. In 33rd Computational Complexity Conference
(CCC 2018). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2018.

[FMST24] Marten Folkertsma, Ian Mertz, Florian Speelman, and Quinten Tupker. Fully characterizing
lossy catalytic computation. arXiv preprint arXiv:2409.05046, 2024.

[GJST19] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unambiguous cat-
alytic computation. In 39th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS 2019). Schloss-Dagstuhl-Leibniz Zentrum für In-
formatik, 2019.

[GJST24] Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Lossy catalytic compu-
tation. arXiv preprint arXiv:2408.14670, 2024.

[Gol24] Oded Goldreich. Solving tree evaluation in o (log n· log log n) space. ECCC, TR24-124, 2024.

[IN18] Kazuo Iwama and Atsuki Nagao. Read-once branching programs for tree evaluation problems.
ACM Transactions on Computation Theory (TOCT), 11(1):1–12, 2018.

[K`16] Michal Kouckỳ et al. Catalytic computation. Bulletin of EATCS, 1(118), 2016.

[KMPS25] Michal Koucký, Ian Mertz, Ted Pyne, and Sasha Sami. Collapsing catalytic classes. In Electron.
Colloquium Comput. Complex, volume 19, 2025.

[Liu13] David Liu. Pebbling arguments for tree evaluation. arXiv preprint arXiv:1311.0293, 2013.

[LPT24] Jiatu Li, Edward Pyne, and Roei Tell. Distinguishing, predicting, and certifying: On the
long reach of partial notions of pseudorandomness. In 2024 IEEE 65th Annual Symposium on
Foundations of Computer Science (FOCS), pages 1–13. IEEE, 2024.

[Mer20] Ian Mertz. Catalytic computing, tree evaluation, & clean computation, 2020.

[Mer23] Ian Mertz. Reusing space: Techniques and open problems. Bulletin of EATCS, 141(3), 2023.

[Pip79] Nicholas Pippenger. On simultaneous resource bounds. In 20th Annual Symposium on Founda-
tions of Computer Science (sfcs 1979), pages 307–311. IEEE, 1979.

[Pot16] Aaron Potechin. A note on amortized branching program complexity. arXiv preprint
arXiv:1611.06632, 2016.

[PSW25] Edward Pyne, Nathan S. Sheffield, and William Wang. Catalytic Communication. In Raghu
Meka, editor, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025),
volume 325 of Leibniz International Proceedings in Informatics (LIPIcs), pages 79:1–79:24,
Dagstuhl, Germany, 2025. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Pyn24] Edward Pyne. Derandomizing logspace with a small shared hard drive. In 39th Computational
Complexity Conference (CCC 2024). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2024.

[Ruz81] Walter L Ruzzo. On uniform circuit complexity. Journal of Computer and System Sciences,
22(3):365–383, 1981.

[RZ22] Robert Robere and Jeroen Zuiddam. Amortized circuit complexity, formal complexity measures,
and catalytic algorithms. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 759–769. IEEE, 2022.

15

[Sch02] Andrzej Schinzel. On a decomposition of polynomials in several variables. Journal de théorie
des nombres de Bordeaux, 14(2):647–666, 2002.

[Sha49] Claude E Shannon. The synthesis of two-terminal switching circuits. The Bell System Technical
Journal, 28(1):59–98, 1949.

[Ven92] H Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM Journal on
Computing, 21(4):655–670, 1992.

[Vol99] Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer Science &
Business Media, 1999.

[Wil25] Ryan Williams. Simulating time with square-root space. In Proceedings of the nineteenth annual
ACM symposium on Theory of computing, 2025.

16

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

