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Abstract

We prove several results concerning the communication complexity of a collision-finding problem, each
of which has applications to the complexity of cutting-plane proofs, which make inferences based on integer
linear inequalities.

In particular, we prove an Ω(n1−1/k log k /2k) lower bound on the k-party number-in-hand communica-
tion complexity of collision-finding. This implies a 2n1−o(1)

lower bound on the size of tree-like cutting-planes
refutations of the bit pigeonhole principle CNFs, which are compact and natural propositional encodings of
the negation of the pigeonhole principle, improving on the best previous lower bound of 2Ω(

√
n). Using

the method of density-restoring partitions, we also extend that previous lower bound to the full range of
pigeonhole parameters.

Finally, using a refinement of a bottleneck-counting framework of Haken and Cook and Sokolov for
DAG-like communication protocols, we give a 2Ω(n1/4) lower bound on the size of fully general (not
necessarily tree-like) cutting planes refutations of the same bit pigeonhole principle formulas, improving on
the best previous lower bound of 2Ω(n1/8).

1 Introduction

The pigeonhole principle, which asserts that there is no injective function f : [m] → [n] for m > n, is a
cornerstone problem in the study of proof complexity. It is typically encoded as unsatisfiable conjunctive
normal form formula (CNF), henceforth denoted PHPm

n , on the variables yi,j, each of which is an indicator
that “pigeon” i is mapped to “hole” j.

It is well known that any refutation of PHPn+1
n using resolution proofs requires size 2Ω(n) [13] and the

same asymptotic bound holds for all m that are O(n) [6]. On the other hand, if we allow our proof system to
reason about linear inequalities (for example using cutting-planes proofs), then it is easy to see that refuting
PHPn+1

n becomes easy – indeed, there exist polynomial size refutations of PHPn+1
n .

Despite the pigeonhole principle having short cutting-planes refutations, the related clique-coloring
formulas, which state that a graph cannot have both k-cliques and k− 1-colorings, requires exponential-size
cutting-planes refutation [26].1 The clique-coloring formula can be viewed as a kind of indirect pigeonhole
principle: The k nodes of the clique correspond to the pigeons and k− 1 colors correspond to the holes, but
the representation of possible mappings is quite indirect.

It is natural to wonder about the extent to which indirection is required for the pigeonhole principle
to be hard for cutting-planes reasoning. As part of studying techniques for cutting-planes proofs, Hrubeš

*A preliminary version containing one of these results appears in [3]. An extended abstract of the current paper will appear in the
proceedings of ICALP 2025.

†Research supported by NSF grants CCF-2006359 and CCF-2422205
1Lower bounds for restricted cutting-planes refutations of these formulas were earlier shown in [18, 4]
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and Pudlák [17] considered a very natural compact and direct way of expressing the pigeonhole principle,
known as the bit or binary pigeonhole principle2. The bit pigeonhole principle analog of PHPm

n (henceforth
denoted BPHPm

n ) has m log n variables xi,j for i ∈ [m], j ∈ [log n] and the principle asserts that, when we
organize these variables as an m× [log n] matrix, the rows of the matrix all have distinct values. BPHPm

n is
the following CNF formula: for each i ̸= j ∈ [m], include the clauses of a CNF encoding that xi ̸= xj. One
can achieve this by including a clause for each α ∈ {0, 1}log n expressing that xi ̸= α ∨ xj ̸= α. The end result
is a CNF with (m

2 )n clauses of size 2 log n.
Using techniques related to those of [26], Hrubeš and Pudlák [17] showed that BPHPm

n requires cutting-
planes refutations of size 2Ω(n1/8) for any m > n, proving that even a very direct representation of the
pigeonhole principle is hard for cutting-planes proofs. Their arguments, like those of Pudlák, also apply
to any proof system that has proof lines consisting of integer linear inequalities with two antecedents per
inference that are sound with respect to 01-valued variables; such proofs are known alternatively as semantic
cutting-planes proofs or Th(1) proofs [2].

Recently, Dantchev, Galesi, Ghani, and Martin [8] exhibited a 2Ω(n/ log n) lower bound on the size of any
general resolution refutation of BPHPm

n for all m > n. In fact, they showed that BPHPm
n requires proofs

of size 2Ω(n1−ε) for a more powerful class of proof systems that extend resolution by operating on k-DNFs
(known as Res(k) proofs) for k ≤ log1/2−ε′ n. (Note that any sound proof system operating on DNFs requires
size at least 2nΩ(1)

to refute PHPn+1
n [25, 21, 15].) In addition, [8] showed that BPHPm

n has no refutations in the
Sherali-Adams proof system [29] of size smaller than 2Ω(n/ log2 n). Finally, just as PHPm

n has polynomial-size
Sum-of-Squares refutations [12], Dantchev et al. showed that BPHPm

n has polynomial-sized Sum-of-Squares
refutations.

Given the large lower bounds for resolution, Res(k), and Sherali-Adams refutations of BPHPm
n , it is

natural to ask the extent to which the sub-exponential lower bounds can be improved for cutting-planes
proofs; how close to a 2Ω(n) lower bound is possible?

1.1 Tree-like Proofs and Multiparty Communication

In prior work there has been progress towards this question for the restricted class of tree-like refutations.
Tree-like proofs require that any time an inequality is used, it must be re-derived (i.e., the underlying graph
of deductions is a tree); the polynomial-size cutting-planes refutations of PHPn+1

n can be made tree-like. In
contrast, Itsykson and Riazanov [19] showed that BPHPm

n requires tree-like cutting-planes refutations of size
2Ω(
√

n) when m ≤ n +
√

n.
Our first result pushes this bound almost to its limit. Specifically, we prove that any tree-like semantic

cutting-planes refutation of BPHPm
n requires size 2n1−o(1)

whenever m ≤ n + 22
√

log n−2.
In order to show this, we utilize a well-known connection between tree-like refutations and communica-

tion complexity. While the results of [19] for cutting planes rely on two-party communication complexity
(and number-on-forehead multiparty communication for other results that we mention below), our stronger
results are based on multiparty number-in-hand communication. In particular they are based on a similar
natural collision-finding communication problem Collkm,ℓ, in which each player p ∈ [k] in the number-in-hand
model receives an input in x(p) ∈ [ℓ]m, and their goal is to communicate and find a pair i ̸= j ∈ [m] such that
x(p)

i = x(p)
j for all players p ∈ [k]. Such a communication problem is well-defined (in the sense that such a

pair i, j always exists) when m > ℓk.
This collision-finding problem is intimately related to the unsatisfiable BPHPm

n formula via the following
natural search problem associated with any unsatisfiable CNF formula: Given unsatisfiable CNF φ, the
associated search problem Searchφ takes as input a truth assignment α to the variables of φ and requires the
output of the index of a clause of φ that is falsified by α. In particular the connection follows by considering a
natural k-party number-in-hand communication game that we denote by Searchk

φ wherein the assignment α
to the variables of φ is evenly distributed among the k players. and the players must communicate to find an

2This encoding of the pigeonhole principle was introduced in [1].
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answer for Searchφ(α). It is not hard to see that if we have a communication protocol solving Searchk
BPHPm

n
(α)

then such a protocol also solves Collkm,n1/k on input α.

Our first result is a lower bound on Collkm,n1/k that holds even when we allow randomized protocols.

Theorem 1.1. The randomized number-in-hand communication complexity of Collkm,n1/k is Ω(n1−1/k log k /2k)

whenever n + 1 ≤ m ≤ n + 2k−2n1/k.

We pause here to note that this bound is nearly tight. There is a deterministic protocol wherein the first
player sends a subset of coordinates of size ⌈m/n1/k⌉ in which their inputs are all equal. This requires
log ( m

m/n1/k) ≲ (m/n1/k) log(m/n1/k) bits; when m ≈ n, this is O(n1−1/k log(n1/k)) = O(n1−1/k log n /k)
bits of communication. Player two then announces a subset of these coordinates on which they are equal
of size ⌈m/n2/k⌉. The players can continue in this manner until they have found a collision (which is
guaranteed by the pigeonhole principle). Note that the amount of communication is bounded by a geometric
series, and is dominated by the first term, which results in communication O(n1−1/k log n /k). This shows
that up to logarithmic factors and a factor of 2k, Theorem 1.1 is tight.

We state here a simplified corollary3 of Theorem 1.1 which formalizes our lower bounds for cutting-planes
refutations of BPHPm

n .

Theorem 1.2. Any tree-like semantic cutting-planes refutation of BPHPm
n requires size 2n1−2/

√
log n−o(1/

√
log n)

when

m ≤ n + 22
√

log n−2.

We remark that Itsykson and Riazanov [19] utilized the same connection between communication and
proof complexity to achieve their results. They were also interested in a k-party number-on-forehead version
of Collkm,ℓ (in particular, in their version, the matrices are added rather than concatenated), which leads
to weaker lower bounds in stronger proof systems Th(k − 1) that manipulate degree k − 1 polynomial
inequalities.

Itsykson and Riazanov also left as an open problem whether their bounds for SearchBPHPm
n

could be
extended to the regime of the “weak" pigeonhole principle when m = n + Ω(n). Göös and Jain [10] first
answered this in the affirmative, giving an Ω(n1/12) lower bound on the randomized communication
complexity of Coll22n,n1/2 . Yang and Zhang [34] subsequently improved this to an Ω(n1/4) bound, which
is tight for randomized computation. Because of the connection between communication protocols and
tree-like communication, Yang and Zhang’s bound showed that any tree-like cutting planes refutation of
BPHPm

n requires size 2Ω(n1/4). We extend the lower bounds of Yang and Zhang for all k ≥ 2 as follows:

Theorem 1.3. For all m > n and 2 ≤ k ≤ log n /4, the randomized number-in-hand communication complexity of
Collkm,n1/k is Ω(n1/2−1/(2k)/k).

This bound, whose proof combines techniques of Yang, Zhang, and Wang [33, 34], is much weaker
than that of Theorem 1.1 when m is close to n but it is tight, up to an O(log n) factor, for randomized
protocols when m is n + Ω(n). For k = Ω(log n), it also implies the following proof complexity bound which
asymptotically matches the bound of [19], but applies for all m > n.

Corollary 1.4. For all m > n, any tree-like semantic cutting-planes refutation of BPHPm
n requires size 2Ω(

√
n).

1.2 General Proofs and DAG-like Protocols

Our second result improves on the 2Ω(n1/8) lower bound on the size of cutting-planes refutations of BPHPm
n

(for all m > n) of Hrubeš and Pudlák [17], and subsumes the 2Ω(n1/4) lower bound for tree-like proofs of Yang
and Zhang [34]. Hrubeš and Pudlák used the method of interpolation involving a version of the method
of approximation due to Jukna [20]. On the other hand, we use a bottleneck-counting method inspired by
recent work of Sokolov [31] that refines a method introduced by Haken and Cook [14].

3When m is somewhat larger, we can obtain somewhat weaker lower bounds.
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Theorem 1.5. Any semantic cutting planes refutation of BPHPm
n requires size at least 2n1/4/

√
2−2, for any m > n.

We prove Theorem 1.5 via a connection between cutting-planes refutations and certain types of DAG-
like communication protocols [16, 30]. Specifically, we prove a lower bound on the size of any two party
triangle-DAG protocol computing SearchBPHPm

n
. We define such protocols formally in Section 2.3.

For now, we state the connection as the following proposition, originally due to Sokolov and Hrubeš and
Pudlák [30, 16]. Its proof can be found in Section 2.3 for completeness.

Proposition 1.6. [30, 16] Given a semantic cutting planes refutation for CNF formula φ of size s and any partition
of the variables of φ into two sets, there is a size s triangle-DAG computing Searchφ.

In our setting, for BPHPm
n , there is a natural partition of the variables such that each clause has exactly half

of its variables coming from Vx and half of its variables coming from Vy. This can be achieved, for example,
by letting Vx be the set of variables corresponding to the first 1

2 log n columns of the matrix associated with
BPHPm

n . In light of Proposition 1.6, we derive Theorem 1.5 by proving the following.

Theorem 1.7. For the natural partition of variables Vx ⊔Vy = [m log n], any triangle-DAG computing SearchBPHPm
n

requires size 2n1/4/
√

2−2.

2 Preliminaries

2.1 Proof Complexity

Proof complexity studies how the size required for refutations of unsatisfiable formulas depends on the size
of the formulas themselves. The size of a refutation in general depends on the allowable structure (lines,
derivation rules, etc.) of a proof. In general, a proof system corresponds to a polynomial-time verifier that
can check proofs of a certain format. It generally suffices to derive refutations of unsatisfiable CNF formulas;
so it is usual to focus solely on inputs of this form.

For most proof systems, a sequence of deductions can be thought of as a directed graph, where two (or
possibly more) lines (whether given or derived) are combined soundly to create a new line. The underlying
graph then has edges pointing from the derived inequality to its antecedents.4 We say that a proof is tree-like
if every inequality is used as an antecedent at most once in the proof – that is, if we want to use an inequality
twice, we must derive it twice.

For example, in the resolution proof system the lines are clauses, and we have the derivation rule
(A ∨ x) ∧ (B ∨ ¬x) ⊢ A ∨ B.

A more powerful proof system is the cutting planes proof system5, denoted CP, where lines are linear
inequalities. Clauses can be trivially converted into linear inequalities6 but, more generally, cutting planes
can start with any system of inequalities Ax ≤ b where A is a matrix with integer entries. We say that
the system is unsatisfiable iff it is unsatisfiable for any x ∈ {0, 1}n. The most basic form of the cutting
planes proof system consists of three rules: addition of inequalities, multiplication of inequalities by positive
integers, and most crucially, the rounded division rule, also known as the Gomory-Chvátal rule. The rounded
division rule is the simple but powerful observation that if a1, . . . , an are all integers with a common factor c,
and we have the inequality aTx ≤ b, then we can derive that 1

c aTx ≤ ⌊ b
c ⌋.

In general, there are many more sound derivation rules for integer/linear inequalities than just rounded
division (such as saturation [9] for example), and even more generally, one may allow any sound derivation
rule for linear inequalities, which yields what is known as semantic cutting planes or Th(1) – we use the two
names interchangeably.

There is a well-known connection between communication complexity and tree-like proofs, which we
will now detail. Given any unsatisfiable formula φ, an assignment α to the variables can be distributed

4The direction of arrows in this digraph may seem counterintuitive, but it is convenient when thinking of the graph as a search
problem for a violated axiom. In this case, we can follow a path in the graph to find such a a violated axiom on one of the leaves/sources.

5Cutting planes proofs can simulate resolution proofs, see e.g. [20, 27].
6For example, x ∨ y ∨ z could be converted to the inequality x + y + z ≥ 1.
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among k players, who must then communicate in order to find a a violated clause in φ. This is a search
problem, and is denoted Searchφ(α). Short tree-like proofs of the unsatisfiability of φ can often be converted
into short protocols for Searchφ using standard techniques.

For example, a short tree-like proof of unsatisfiability of φ using the resolution rule naturally corresponds
to a decision tree for finding a violated clause of φ in the following way. For every derivation of the form
(A ∨ x) ∧ (B ∨ ¬x) ⊢ (A ∨ B) where A ∨ B is known to be false, we query x in order see whether A ∨ x or
B ∨ ¬x is necessarily false. We can continue in this manner, from the root of the tree-like refutation, until we
hit an unsatisfied clause in the original formula.

On the other hand, tree-like semantic cutting planes refutations naturally correspond to threshold decision
trees, which we now define.

Definition 2.1 (Threshold Decision Tree). A threshold decision tree is a tree whose vertices are labeled with
inequalities of the form a1x1 + · · · anxn ≤ b where a1, . . . , an, b are integers. Edges are labelled with 0 or 1, and leaves
are axioms of a system of inequalities Ax ≤ b.

We traverse a threshold decision tree by computing the threshold function at the root, following the
corresponding edge, and continuing in this manner until we hit a leaf. We say that a threshold decision tree
computes the search problem for a formula φ if this process leads to a leaf corresponding to a violated clause
in φ.

First, we have the following well-known lemma, which states that one can derive a low-depth threshold
decision tree from a small Th(1) refutation.7

Proposition 2.2. Given a size S tree-like Th(1) refutation of an unsatisfiable system Ax ≤ b, there is a depth O(log S)
threshold decision tree finding a violated axiom.

Proposition 2.2 goes back to the work of Impagliazzo, Pitassi, and Urquhart [18], and can also be found
for instance in [20]. We omit the proof, but the idea is a common one: find a node in the tree with roughly
half (between 1/3 and 2/3) of the leaves as its descendants, make that the root of the threshold decision tree,
and recurse.

2.2 Communication Complexity

We mainly focus on k-party number-in-hand communication, wherein each player p receives an input x(p),
and the players’ goal is to communicate as little as possible in order to compute a known function or relation
involving their collective inputs. In general, players may have access to shared randomness, and we allow
incorrect answers with probability 1/3.

An important function for us is the number-in-hand disjointness problem with k players and input size n,
henceforth denoted DISJk

n. This is the communication problem wherein each player and input in {0, 1}n,
and they must decide if there exists a coordinate i for which they all have a 1 in that coordinate. Disjointness
in general is an extremely well-studied problem [7, 27], and for the specific case of the NIH model, we have
the following lower bound due to Braverman and Oshman.

Theorem 2.3 ([5]). The randomized communication complexity of DISJk
n is Ω(n log k).

Our results rely on the following connection between threshold decision trees for finding violated clauses
and k-party NIH communication. It is closely related to previous work.

Lemma 2.4. For x ∈ {0, 1}n, if an unsatisfiable system Ax ≤ b on has a threshold decision tree of depth d ≤ n
finding a violated axiom, then for any partition of the input variables into k parts there is a randomized protocol for
Searchk

NIH(Ax ≤ b) using O(dk log k log n) bits of communication.

7As noted in [20], there is no meaningful converse to this statement, since if there are m inequalities in our unsatisfiable system, there
exists a trivial depth m threshold decision tree finding one that is violated.
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Lemma 2.4 is similar for example to Lemma 5 in [18] or Lemma 19.11 in [20], but is slightly stronger,
so we include a proof. The idea is that the players can use the given threshold decision tree to construct a
protocol. Without loss of generality, using a well-known theorem of Muroga [23] without communication
the players can replace each of the inequalities in the decision tree with an equivalent one over the Boolean
hypercube with coefficients that are not too large.

The players then start at the root and evaluate each associated inequality using an efficient randomized
protocol to evaluate each threshold function with high probability and moving to the appropriate child node
until it reaches a leaf. Such a protocol dates back to Nisan [24] and was tightened by Viola [32].

We first state the results of Muroga and Viola required to formalize this construction.

Proposition 2.5 ([22, 23]). Consider a threshold function f : {0, 1}n → {0, 1} of the form f (x) = 1{a1x1 + · · ·+
anxn ≤ b}. Then f is equivalent to another threshold function f ′(x) = 1{a′1x1 + · · ·+ a′nxn ≤ b′} where each
a′1, . . . a′n, b′ is at most 2−n(n + 1)(n+1)/2 in magnitude.

In particular, Proposition 2.5 implies that we may assume in a Th(1) proof that, up to a factor of two in
the size, every derived inequality has coefficients of magnitude at most O(nn).

Proposition 2.6 ([32]). Suppose that each player p ∈ [k] receives an input x(p) ∈ [−2n, 2n]. Then there is a
randomized number-in-hand protocol with error at most ε that determines whether ∑p x(p) > s and communicates
O(k log k log(n/ε)) bits.

Corollary 2.7. Suppose that each player p ∈ [k] receives an input x(p) ∈ [2t]. Then they can execute a randomized
number-in-hand protocol to determine whether ∑p apx(p) ≤ b, where each |ap| ≤ 2w with error at most ε using at
most O(k log k log((w + t)/ε)) bits of communication.

Proof of Lemma 2.4. Given a threshold decision tree of depth d, we simply traverse it from the root. For
each inequality, if the magnitudes of its weights are not bounded by 2O(n log n), then we replace it with an
equivalent threshold function whose weights are bounded using Proposition 2.5. Then, using Corollary 2.7,
the players communicate O(k log((n log n)/ε) log k) bits to compute the threshold function with error
probability ε. Setting ε = Θ(1/d) and continuing in this manner, by a union bound the threshold functions
are all computed correctly with constant probability.

Using the assumption that d ≤ n, this yields a protocol communicating O(dk log k log n) bits.

Given a system of unsatisfiable inequalities Ax ≤ b, and a partition of an assignment α ∈ {0, 1}n between
k players, there is a natural (number-in-hand) communication game wherein players must communicate to a
find an axiom violated by α. Lemma 2.4 implies the following result connecting communication complexity
and proof complexity.

Lemma 2.8. For any partition of n variables into k parts, if Searchk
NIH(Ax ≤ b) requires t bits of communication,

then any tree-like Th(1) refutation of Ax ≤ b requires size 2Ω(t/(k log k log n)).

Proof. By Proposition 2.2, given a size S tree-like Th(1) proof, we get a depth d = O(log S) threshold decision
tree finding a violated axiom. By Lemma 2.4, there exists a communication protocol finding a violated axiom
using O(log S k log k log n) bits of communication. This implies that log(S)k log k log n ≥ ct for constant c,
which in turn implies S is 2Ω(t/(k log k log n), as desired.

2.3 Triangle-DAGs

Given a bipartite domain X×Y, a triangle T ⊆ X×Y is any set that can be written as T = {(x, y) : aT(x) <
bT(y)} for some labelling aT : X → R and bT : Y → R.

A triangle-DAG computing a search problem Search ⊆ (X × Y ×O) is a directed acyclic graph D of
fan-out at most 2 where each node u ∈ D is associated with a triangle Tu ⊆ X×Y satisfying the following:

• there is a distinguished root node r with fan-in zero, and Tr = X×Y, and

• for each non-sink node u with children v, v′ we have Tu ⊆ Tv ∪ Tv′ , and
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• each sink node u is labeled with an output o such that Tu ⊆ Search−1(o).

Given these definitions, we restate Proposition 1.6 and include its proof for completeness.

Proposition 1.6. [30, 16] Given a semantic cutting planes refutation for CNF formula φ of size s and any partition
of the variables of φ into two sets, there is a size s triangle-DAG computing Searchφ.

Proof. Let D be the DAG associated with the semantic CP refutation of φ. As we usually do, we orient the
edges so that the last line of the proof, 0 ≥ 1, is the root of D. Each node u ∈ D is associated with some linear
inequality of the form f (x) + g(y) ≥ c. If we then let aTh(x) = f (x)− c and bTh(y) = −g(y), then we have
that (x, y) ∈ Tu iff f (x) + g(y) < c, i.e iff (x, y) does not satisfy the inequality associated with u.

By definition, the root of D is associated with X×Y. Since the inequalities corresponding to the children
v and v′ of node u imply the inequality associated with u, at least one of the children must not be satisfied
by (x, y), i.e. we have that Tu ⊆ Tv ∪ Tv′ . Finally, each leaf ℓ ∈ D is associated with a clause o of φ that is
falsified by (x, y), so Tℓ ⊆ Search−1

φ (o), as desired.

2.4 Min-Entropy and Deficiency

Definition 2.9. For a distribution X defined on space Ω, define its min-entropy to be H∞(X) := min
α

log
1

Pr[X = α]
.

Conversely, define the deficiency of X to be D∞(X) := log |Ω| − H∞(X). For a rectangle R = X1 × . . .× Xk ⊆
Ω1 × · · · ×Ωk, define its deficiency to be ∑i∈[k] D∞(Xi).

3 Multiparty Communication Lower Bounds for m ≤ n +
√

n

In this section we prove Theorem 1.1, which we now recall.

Theorem 1.1. The randomized number-in-hand communication complexity of Collkm,n1/k is Ω(n1−1/k log k /2k)

whenever n + 1 ≤ m ≤ n + 2k−2n1/k.

The idea for the proof is to exhibit a random reduction from the decision problem DISJk
mk−1 to the

collision problem. This is analogous to the approach of Itsykson and Riazanov [19] for number-on-forehead
communication complexity which used lower bounds for disjointness in that model and a randomized
decision-to-search reduction paradigm introduced by Raz and Wigderson [28] to prove lower bounds on the
monotone depth complexity of matching. The details and parameters of our reduction are necessarily quite
different.

In our setting, we embed k players’ inputs to a disjointness problem into k matrices such that, when
these matrices are concatenated, the resulting matrix has distinct rows if and only if the players’ inputs were
disjoint. We can then add a few “fake" rows to this matrix and run our algorithm for Collkm,n1/k , and see if the
collisions it finds involve the fake rows or not. If so, we conclude that the inputs were disjoint and if not, we
know that they were not disjoint.

The following key combinatorial lemma allows us to carry out the first step of this process.

Lemma 3.1. For all integers k ≥ 1 there exist matrices M1
k ∈ {0, 1}2k×k and M0

k ∈ {0, 1}2k×k such that

1. M1
k has 2k−1 unique pairs of identical rows.

2. For any string b ∈ {0, 1}k, define the matrix Mk(b1, . . . bk) as the matrix formed by making its i-th column
equal to the i-th column of M0

k if bi = 0, and equal to the i-th column of M1
k if bi = 1. Then Mk(b) has unique

rows for all b ̸= 1⃗.

We defer the proof of Lemma 3.1 to Section 3.1.
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Proof of Theorem 1.1 using Lemma 3.1. As alluded to, we will reduce the NIH disjointness problem to our
bit-pigeonhole problem. Namely, we will reduce DISJk

mk−1 to a Collk
m̃,̃ℓ

communication game, where m̃ =

mk2k + 2k−1m, and ℓ̃ = 2m.
The players get x(1), . . . , x(k) ⊆ [mk−1] (viewed as bit strings of length mk−1), and need to determine

whether x(1) ∩ · · · ∩ x(k) = ∅.
First, we define

Bmk (j) :=

binmk (j)
...

binmk (j)

 ∈ {0, 1}2k×k log m,

where we have repeated the same row 2k times.
For each i ∈ [mk−1], consider the matrix Mk(x(1)i , . . . , x(k)i ) from Lemma 3.1. Note that each player p

knows the p-th column of Mk(x(1)i , . . . , x(k)i ) for all i, but without communication the other players do not
know this column.

Then we can define

M̃ :=



Mk(x(1)1 , . . . , x(k)1 ) Bmk (0)
Mk(x(1)1 , . . . , x(k)1 ) Bmk (1)

...
...

Mk(x(1)1 , . . . , x(k)1 ) Bmk (m− 1)
Mk(x(1)2 , . . . , x(k)2 ) Bmk (m)

Mk(x(1)2 , . . . , x(k)2 ) Bmk (m + 1)
...

...
Mk(x(1)2 , . . . , x(k)2 ) Bmk (2m− 1)

...
...

...
...

Mk(x(1)mk−1 , . . . , x(k)mk−1) Bmk (mk − 1)



∈ {0, 1}mk ·2k×(k log m+k).

Observe that each player p can construct their “part" of this matrix without communicating by construct-
ing the p-th column of every MSi

k matrix (which only depends on x(p)), and then taking the the p-th part of
each of the Bmk (j) matrices.

Lemma 3.1 lets us connect the distinctness property of this matrix with the disjointness property of the
players’ inputs.

Claim 3.2. If (x(1), . . . , x(k)) are disjoint, then M̃ has distinct rows.

Proof. The only possible collisions happen in every group of 2k rows, since Bmk (j) has every row different
from Bmk (i) for all i ̸= j. Within these groups, by Lemma 3.1, if the inputs are disjoint then there are no
collisions.

Claim 3.3. If X is not disjoint, then there are at least 2k−1m pairs of colliding rows in M̃.

Proof. Any coordinate i for which x(p)
i = 1 for all p generates Si = ∅, which by Lemma 3.1 generates 2k−1m

such pairs, since input i was repeated m times.

We cannot run any collision protocol for M̃ yet, as there are not guaranteed collisions. To address this,
the players use shared randomness to put an additional 2k−1m rows at the bottom of M̃. These rows will be
chosen randomly with the following two properties:

1. Each fake row will be distinct.
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2. Each player’s “part" of the matrix (which consists of log m + 1 columns) when restricted to these rows
will repeat the 2m unique possible bit strings an addition 2k−1m/(2m) = 2k−2 times.8

Denote this new matrix M. M now has “fake" collisions which involve any of the last 2k−1m rows.
Let A denote the randomized protocol solving the Collk

(2m)k+2k−1m,2m problem.
Observe that if the inputs are disjoint, then the only collisions in M involve fake rows. The players would

like to feed their parts of this matrix into A and conclude that their inputs are disjoint if the output involves
a fake row, and conclude that they were not disjoint if the output involves two non-fake rows. However, this
is problematic, as we have no guarantees over how A behaves, and it could always find a collision involving
one of the last 2m rows (which it knows are fake), regardless of if there are other collisions.

This necessitates the following random shuffling.

1. Each player applies (the same) random permutation π : [2kmk + 2k−1m] → [2kmk + 2k−1m] which
shuffles the rows of M.

2. Each player applies an individual random permutation π(p) : [2m]→ [2m] to each of their rows. Note
that this preserves collisions/distinctness in the concatenation.

Denote π⃗ := (π, π(1), . . . , π(k)), and call this final matrix Mπ⃗ .

Algorithm: The algorithm for disjointness is as follows: the players use their inputs and shared ran-
domness to compute (without communication) their respective parts of 5 independent copies of an Mπ⃗

constructed in the above manner, and run A using these as inputs. The players then examine the outputs
(i1, j1), . . . (i5, j5) of the algorithm on these five inputs. They then exchange an additional O(k log m) bits to
determine if each claimed collision actually was a collision. Finally, if any of the claimed collisions were
actually collisions on rows that were not fake (under the appropriate permutation), then the players can
conclude with certainty that their inputs were not disjoint. Otherwise, if A only ever finds colliding pairs
that involve a row the players know is fake (or otherwise fail to find any collisions), then players guess that
(x(1), . . . , x(k)) were disjoint.

Analysis: We analyze one iteration of the algorithm. Suppose A has error probability at most 1/3 – that
is, with probability at least 2/3, it outputs two rows i, j that are equal.

Suppose (x(1), . . . , x(k)) are disjoint. Then by assumption, A finds a collision with probability at least 2/3,
and we know this collision will always involve a fake row by Claim 3.2. Therefore the players will correctly
output that their inputs were distinct with probability at least 2/3, and this is only improved by the five-fold
repetition.

Otherwise, suppose that the players’ inputs were not disjoint. Suppose further that A successfully finds a
collision – this happens with probability at least 2/3. Recall that by Claim 3.3 Mπ⃗ will have at least 2k−1m
distinct pairs of real collisions. Adding the 2k−1m fake rows produced additional “fake" collisions. These
fake rows could have created up to 2k−1m additional unique pairs of fake collisions, or could have “joined"
the real collisions, creating up to 2k−1m groups of 3 equal rows in Mπ⃗ .

If A outputs a collision from one of the groups of three, then because we applied random permutations
to the rows, it is equally likely to have chosen any of the 3 possible pairs. Therefore, with probability at least
1/3, it outputs a real collision, and the players successfully discover that they are not disjoint. Otherwise, if
A outputs one of the unique collision pairs, then (again because we have applied random permutations to
the rows), any such unique collision is equally likely to be output. If t of the fake rows formed a group of
three with real collisions, then that leaves at most 2k−1m− t fake rows to collide with a different unique row.
It also leaves 2k−1m− t untouched real collisions, so A outputs a real collision with probability at least 1/2.
Either way, the probability that A outputs a real collision is at least 2/3 · 1/3 = 2/9.

Therefore, after repeating this 5 times independently, the probability of seeing at least one real collision is
at least 1− (7/9)5 > 2/3.

8This is important because if we bias and have a certain fake row appear more often in the input for player p, then A could potentially
detect and use this to its advantage.
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Let n := (2m)k. We have shown that if Collk
m̃,̃ℓ

with input size m̃ = 2kmk + 2k−1m = n + 2k−2n1/k can be

solved with o(n1−1/k log k/2k) communication, then we can solve the decision disjointness problem with
o(n1−1/k log k/2k) +O(k log m) which is at most o(mk−1 log k), contradicting the Ω(mk−1 log k) lower bound
from Theorem 2.3.

3.1 Proof of Lemma 3.1

We first recall Lemma 3.1.

Lemma 3.1. For all integers k ≥ 1 there exist matrices M1
k ∈ {0, 1}2k×k and M0

k ∈ {0, 1}2k×k such that

1. M1
k has 2k−1 unique pairs of identical rows.

2. For any string b ∈ {0, 1}k, define the matrix Mk(b1, . . . bk) as the matrix formed by making its i-th column
equal to the i-th column of M0

k if bi = 0, and equal to the i-th column of M1
k if bi = 1. Then Mk(b) has unique

rows for all b ̸= 1⃗.

Proof. Let Ek ⊆ {0, . . . , k− 1} be the set of integers with an even number of 1s in their binary representation.
Define

M1
k =



bink(y1)
bink(y1)
bink(y2)
bink(y2)

...
bink(y2k−1)
bink(y2k−1)


∈ {0, 1}2k×k,

where yi is the i-th smallest number in Ek.
We pause here to note that each of the columns of M1

k are actually each the truth table of a linear function.
Let f1 : {0, 1}k → {0, 1} be the linear function f1(x) = ⟨x, e1⟩, where e1 is the first standard basis vector.
Then we can describe the first column of M1

k as the truth table of f1. More generally, we have that for
i < k the i-th column of M1

k is the truth table of fi(x) = ⟨x, ei⟩, and the last column is the truth table of
fk(x) = ⟨x, e1 + · · ·+ ek−1⟩.

If we define F1
k to be the matrix whose column i is the vector whose inner product we are taking with x

in fi, and Bk ∈ F2k×k
2 whose rows are the binary strings written in order, then we have that

M1
k =


bink(0)
bink(1)

...
bink(2k − 1)





1 0 0 · · · 1
0 1 0 · · · 1

0 0 1
. . . 1

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0


=: BkF1

k

where all operations are over F2. M1
k has repeated rows precisely because F1

k has linearly dependent columns.
With this perspective in mind, if we can find a k× k matrix F0

k over F2 such that replacing any (nonzero)
number of columns of F1

k with corresponding columns in F0
k produces a matrix with linearly independent

columns, then we are done, as we can let M0
k := BkF0

k .
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We define F0
k to be the following lower triangular matrix:

F0
k :=



1 0 0 · · · 0
1 1 0 · · · 0

1 1 1
. . . 0

...
...

...
. . .

...
1 1 1 · · · 1

 ,

Clearly F0
k is full rank.

We claim that replacing any set nonempty set S of columns of F1
k with the corresponding columns in F0

k
produces a matrix FS

k with linearly independent columns. Consider arbitrary k, and arbitrary nonempty
S ⊆ [k].

Case 1: Suppose k ∈ S, that is, the last column of FS
k is ek. Then our matrix is lower triangular with 1s on

the diagonal, and so has linearly independent columns.
Case 2: Suppose k ̸∈ S, that is, the last column of FS

k is e1 + · · ·+ ek−1. In this case, the first k− 1 columns
are lower triangular with 1s on the diagonal, and therefore their span is equal to span{e1, . . . , ek−1}. It suffices
then to show that also ek is in the column span. Towards this goal, take the minimal 0 < i < k such that i ∈ S,
and observe that summing the first i columns of FS

k equals 1⃗, the all 1s vector. Adding this to the last column
produces ek, so we are done.

4 Tree-like Proof Complexity Lower Bounds

In this section, we prove the following more detailed version of Theorem 1.2.

Theorem 4.1. When m ≤ n + 2k−2n1/k, any tree-like semantic cuttings planes refutation of BPHPm
n must have size

at least 2Ω(n1−1/k2−k/(k log n)).

Proof. The theorem follows quite readily from Lemma 2.8 and the fact that Searchk
BPHPm

n
reduces to Collkm,n1/k .

If we translate BPHPm
n to a system of inequalities, then there are O(nm2) = O(n3) inequalities on m log n

variables.
Lemma 2.8 then says that any tree-like semantic cutting planes proof of the unsatisfiability of BPHPm

n
must have size at least 2Ω(t/(k log k log n). By Theorem 1.1, t = Ω(n1−1/k2−k log k). Plugging this in yields that
the tree-like size must be at least 2Ω(n1−1/k2−k/(k log n).

From Theorem 4.1 we achieve Theorem 1.2, which we restate now.

Corollary 4.2. Any tree-like semantic cutting planes refutation of BPHPm
n requires size 2n1−2/

√
log n−o(1/

√
log n)

when

m ≤ n + 22
√

log n−2.

Proof. Let k =
√

log n. Plugging this into the bound from Theorem 4.1, we get that m ≤ n +

2
√

log n−2n1/
√

log n = 22
√

log n−2. In this regime, Theorem 4.1 gives the size lower bound

2Ω(n1−1/
√

log nn−1/
√

log n/(log3/2 n)) = 2cn1−2/
√

log n−1.5 log log n/ log n
,

for appropriate constant c. Using the fact that c = nlog c/ log n, the bound becomes

2n1−2/
√

log n−o(1/
√

log n)
.
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5 Triangle-DAG Lower Bounds

In this section, we prove Theorem 1.7, which we restate here for convenience.

Theorem 1.7. For the natural partition of variables Vx ⊔Vy = [m log n], any triangle-DAG computing SearchBPHPm
n

requires size 2n1/4/
√

2−2.

Before proving Theorem 1.7, we need the following notion of triangle slices. For a triangle T ⊆ X× Y
and a given x ∈ X, we define the slice Tx to be T ∩ ({x} × Y), and define the slice Ty analogously. Note
that for any triangle T defined by functions a and b there is a natural total pre-order on X where x ⪯ x′ iff
a(x′) ≤ a(x) and hence Tx ⊆ Tx′ ; similarly, there is an total pre-order on Y where y ⪯ y′ iff b(y) ≤ b(y′) and
hence Ty ⊆ Ty′ . This immediately implies the following.

Proposition 5.1. Given a triangle T, if y ∈ Y is such that |Ty| is maximized, then for all (x, y′) ∈ T we have
(x, y) ∈ T.

We will have the following proposition.

Proposition 5.2. For any triangle T and rectangle R, T ∩ R is a triangle.

Proof. By definition, T = {(x, y) : a(x) < b(y)} for some a, b. If R = X′ × Y′, simply modify a(x) = ∞ for
all x ̸∈ X′ and b(y) = −∞ for all y ̸∈ Y′.

The proof of Theorem 1.7 uses the bottleneck counting method of Haken and Cook for cutting planes
proofs [14] as adapted for direct use on triangle-DAGs by Sokolov [31].

Let V(D) denote the nodes of a triangle-DAG D computing SearchBPHPm
n

under the natural partition of
variables. At a high level, to prove Theorem 1.7, we will construct a partial function µ : X ∪Y → V(D) such
that

(a) (Lemma 5.5) most x ∈ X and y ∈ Y are mapped by µ to a node of D, and

(b) (Lemma 5.6) there is no node of D with too many x or y assigned to it by µ.

It will then be trivial to combine these two properties and conclude that |V(D)|must be large9.

For any i ̸= j ∈ [m], there is an associated rectangle Ri,j ⊆ X×Y of inputs that violate at least one of the
n clauses enforcing an inequality between coordinates i and j given by

Ri,j = {(x, y) ∈ X×Y | xi = xj, yi = yj}.

Observe that the set of all rectangles {Ri,j : i ̸= j ∈ [m]} covers the entire space X × Y as long as m > n.
(That is, X×Y =

⋃
i ̸=j∈[m] Ri,j.) Note that in order for a triangle-DAG to correctly compute SearchBPHPm

n
, it

must, at the very least, have each sink be contained in a single Ri,j.

Definition 5.3. For a node u ∈ V(D), let Tu denote the triangle associated with that node. Define the width w(T, z)
of z in triangle T to be the minimal size of any subset S ⊆ {Ri,j : i ̸= j ∈ [m]} such that Tz ⊆ ⋃R∈S R.

With this definition in hand, we can define our µ : X ∪Y → V(D) using Algorithm 1 which depends on
a parameter k that we will eventually set to

√
n/4.

Intuitively, in using Algorithm 1 we are going backwards through our DAG D, and whenever the protocol
had too many options for what clause to output when the protocol was at a node u for a fixed z ∈ X ∪ Y

9The name bottleneck counting came from its original version due to Haken [13] in which a class of full input assignments was
mapped by a function µ to nodes in a proof DAG and each input assignment could be viewed as ‘flowing’ from the root to a particular
sink node (defined by the assignment). In that case, µ identified a node on such a path, a bottleneck node, that did not permit many
assignments to flow through it. Since there were many assignments, only few of which could pass through any bottleneck node
identified by µ, there must be many bottleneck nodes in the DAG. In the modified form for cutting planes/triangle-DAGs, while the
full assignment is flowing through the triangle-DAG, the mapping µ is based on half of the input assignment, either the x or y portion,
and the sink node is not unique; not all assignments are assigned in this way, but many are.
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Algorithm 1: Defining the partial map µ : X ∪Y → V(D)

Input: triangle-DAG D on input set X×Y with node set V(D)
Output: a partial map µ : X ∪Y → V(D)

1 Let X′ := X and Y′ := Y be the remaining coordinates we have not yet assigned by µ
2 for u in some topological ordering of V(D), starting from the sinks do
3 T̃u := Tu ∩ (X′ ×Y′)
4 for x ∈ X′ do
5 if w(T̃u, x) ≥ k then
6 Let µ(x) := u and delete x from X′.

7 T̃u := Tu ∩ (X′ ×Y′)

8 for y ∈ Y′ do
9 if w(T̃u, y) ≥ k then

10 Let µ(y) := u and delete y from Y′.

11 T̃u := Tu ∩ (X′ ×Y′)

12 return µ

(which corresponds to large width), we assign z to u. Arguing that |µ−1(u)| is not too large is thus arguing
that a protocol cannot make huge strides in learning about which clause to output for too many z ∈ X ∪Y
suddenly in one single node u.

We now make some basic observations about our definition of µ. First, note that no z ∈ X ∪Y is assigned
to any sink node of D, since every sink node s ∈ V(D) is wholly contained in an Ri,j, and therefore we have
that w(Ts, z) = 1 for all z. The following observation will be of critical importance in our analysis.

Claim 5.4. During the execution of Algorithm 1, for every u in triangle-DAG D and every z ∈ X′ ∪Y′, w(T̃u, z) ≤
2k.

Proof of Claim. By definition in a triangle-DAG, if v and v′ are children of node u, then we have that
Tu ⊆ Tv ∪ Tv′ . In particular, we know that if z ∈ X ∪Y was not assigned to nodes v or v′, then w(T̃u, z) ≤ 2k,
since we can take the union of the coverings for T̃z

v and T̃z
v′ . □

Finally, we note that at the end of Algorithm 1 at the root r, for all z ∈ X′ ∪Y′, we have that w(T̃r, z) < k.

Lemma 5.5. Let k ≤
√

n/2. For µ constructed using Algorithm 1, at least |X|/2 elements of X are assigned by µ or
at least |Y|/2 elements of Y are assigned by µ.

Proof. At the end of Algorithm 1 after processing the root r of D, since Tr = X × Y, we have T̃r = X′ × Y′

which is the rectangle of unassigned inputs. If |X′| ≤ |X|/2 then we are done; otherwise, let x ∈ X′. Since
w(T̃r, x) < k, there exists a set S, |S| < k, such that for all y ∈ Y′, yi = yj for at least one (i, j) ∈ S.

So, we obtain

Pr
y∼Y

[y ∈ Y′] ≤ Pr[∃(i, j) ∈ S s.t. yi = yj] ≤ |S| max
(i,j)∈S

Pr[yi = yj] < k/
√

n ≤ 1/2.

Hence, |Y′| < |Y|/2, as desired.

This shows that a large number of elements of X ∪ Y are assigned by µ. It remains to show that each
node in the protocol D only has a bounded number of elements of X ∪Y assigned by µ.

Lemma 5.6. Let µ be defined by Algorithm 1 with k =
√

n/4. For all all u ∈ V(D), µ maps at most |X| · 2−n1/4/
√

2+1

elements of X to u; the analogous bound also holds for Y.
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Algorithm 2: Defining tree T , which encodes a set of potential coverings of T̃x for all x ∈ X.

Input: A triangle T̃ ⊆ X×Y such that w(T̃, y) ≤ 2k for all y ∈ Y
Output: A tree T of potential coverings of T̃x for all x ∈ X.

1 Initialize T as a tree with a single node labelled T̃
2 Let Leaves := {T̃}
3 while Leaves ̸= ∅ do
4 Choose some T from Leaves, and remove it from Leaves
5 Choose a y ∈ Y such that |Ty| is maximized

/* For all x ∈ X if Tx ̸= ∅ then (x, y) ∈ T by Proposition 5.1. */
6 Let {Ri1,j1 , . . . , Riℓ,jℓ} ⊆ {Ri,j : i ̸= j ∈ [m]} be a minimal covering for Ty.

/* Note that ℓ ≤ 2k; see Fig. 1 for a visualization of this step. */
7 for m = 1, . . . , ℓ do
8 Let R := Rim ,jm = XR ×YR
9 Let TR := T ∩ (XR × (Y \YR))

/* This is still a triangle by Proposition 5.2. */
10 Add edge to T labelled by (im, jm) from the leaf of T labelled T to new node labelled by TR
11 if TR ̸= ∅ then
12 Add TR to Leaves.

13 return T

Figure 1: A single iteration of Algorithm 2.

Proof. We fix any u ∈ V(D) and focus on the number of elements x ∈ X that µ maps to u; the bound for
the number of such y ∈ Y is identical. In particular, consider the values of X′ and Y′ and T̃u in Algorithm 1
immediately before processing node u; any x ∈ X that µ maps to u must be in X′.

Our strategy will be to construct a set of potential coverings for the slices {T̃x
u : x ∈ X′} by monochromatic

rectangles. We will then aim to show that most x ∈ X′ have width < k even when restricted to this set of
potential coverings, thereby limiting how many x ∈ X′ could be assigned by µ to u.

We now describe this potential covering in detail. Intuitively, our strategy will be to construct a tree T ,
each of whose nodes is labelled by a triangle of inputs that are not yet covered, where each edge of the tree is
labelled with a pair i ̸= j ∈ [m]. We say that x ∈ X′ is consistent with a node t ∈ T iff for all (i, j) labels on
the edges of the unique path to t in T , we have that xi = xj. Furthermore, T will be constructed so that if
x ∈ X′ is consistent with a leaf t of T , then T̃x

u is covered by {Ri,j : (i, j) is on the path to t}. We produce the
tree T of potential coverings of of T̃x

u for all x ∈ X′ using Algorithm 2 applied with T̃ = T̃u, X = X′, and
Y = Y′ which satisfy the preconditions by Claim 5.4.

First, observe that any x ∈ X′ such that T̃x ̸= ∅ is consistent with at least one leaf in T , by the choice of y
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in Algorithm 2 along with Proposition 5.1. We define the set of equality constraints of a leaf t ∈ T to be the
set E(t) := {i ̸= j ∈ [m] : (i, j) is on the unique path to t in T }. Observe that we have the desired property
that if x is consistent with a leaf t of T , then T̃x

u is covered by {Ri,j : (i, j) ∈ E(t)}, thereby ensuring that
w(T̃u, x) ≤ depthT (t).

Therefore, if µ maps x ∈ X′ to u then x must be consistent with a leaf of T of depth at least k. Let T ′
denote tree T truncated at depth k. Thus, the total number of x ∈ X′ that µ maps to u is at most

∑
t∈Leaves(T ′)
depthT ′ (t)=k

|{x ∈ X : x is consistent with t}|. (1)

Remark 5.7. Before explaining the details of our analysis, it is useful to discuss a naive bound on (1) that does
not suffice to yield our bounds: Naively, there could be (2k)k leaves in T ′ at depth k, and each such leaf t
could have the property that E(t) forms a clique on ℓ = O(

√
k) coordinates when viewed as a graph. In this

case, the fraction of x ∈ X that could be consistent with the intersection Ri1,j1 ∩ · · · ∩ Rik ,jk is (1/
√

n)ℓ. If we
simply take a union bound over all (2k)k paths, the upper bound we would get on (1) is (2k)k · (1/

√
n)ℓ

which, since ℓ is only O(
√

k), is larger than 1 unless k
√

k is at most polynomial in n, which requires that k is
o(log2 n).

In light of Remark 5.7, we need to be more careful about how we bound (1). For t ∈ V(T ′), we define
its equality graph G(t) to be a graph with vertex set [m] and edge set E(t). We use this name because if x is
consistent with t, then xi = xj for all (i, j) ∈ E(t). We say that an edge (i, j) denoting xi = xj is implied by
equality graph G(t) if adding it completes a cycle in G(t).

The key observation is the following.

Claim 5.8. Let t be a node in T ′, and G(t) its associated equality graph. If t has out-degree strictly larger than 1 in
T ′, then none of the outgoing edges can be labelled by an (i, j) that is implied by G(t).

Proof of Claim. We prove the contrapositive. Consider any x consistent with the path to t in T ′ (meaning
xi = xj for all (i, j) ∈ E(t)). Let T be the triangle labelling node t and consider the y that we choose when
processing T in Algorithm 2. If there is some outgoing edge from t labelled (i, j) that is implied by G(t), then
Ri,j ∩ Ty ̸= ∅ and hence yi = yj. Since we know that xi = xj is already implied in T, the single rectangle Ri,j
covers all of Ty, so t will have out-degree 1 in T . □

Claim 5.8 implies that every path in T ′ goes through a node that branches at least
√

2k times, since k
edges must imply equality constraints on at least

√
2k coordinates (the worst case is a clique). We simplify

T ′ further by collapsing nodes of T ′ with out-degree 1. Then we are left with T ′′, which is a tree with every
path of length between

√
2k and k. Since, the input distribution on X is uniform and none of the out-degree

1 edges of T ′ involve new constraints by Claim 5.8, the probability that x is consistent with any leaf t ∈ T ′′ is
precisely (1/

√
n)depthT ′′ (t). Then we can bound (1) as follows:

∑
t∈T ′

depthT ′ (t)=k

|{x ∈ X : x is consistent with t}|

= ∑
t∈Leaves(T ′′)

|{x ∈ X : x is consistent with t}|

=
k

∑
i=
√

2k
∑

t∈Leaves(T ′′)
depthT ′′ (t)=i

|{x ∈ X : x is consistent with t}|

≤
k

∑
i=
√

2k

(2k)i(1/
√

n)i since T and hence T ′′ has out-degree at most 2k by construction

15



≤ |X| ·
k

∑
i=
√

2k

(1/2)i since k =
√

n/4

≤ 2−
√

2k+1|X|.

This implies that the number of x ∈ X that get assigned to u by µ is at most |X| · 2−
√

2k+1 ≤ |X|2−n1/4/
√

2+1

as required. The analogous bound holds for the number of y assigned to u by µ.

We now have all we need to prove our main theorem.

Proof of Theorem 1.5. Let k =
√

n/4. By Lemma 5.5, µ given by Algorithm 1 maps at least 1/2 of the elements
of x or elements of Y to vertices of D. Choose the applicable X or Y. By Lemma 5.6, at most a 2−n1/4/

√
2+1

fraction of these can map to a single vertex of D. Therefore D has at least 2n1/4/
√

2−2 vertices.

Remark 5.9. Hrubeš and Pudlák [17] proved their lower bound using the interpolation method combined
with a modified form of a general monotone switching lemma of Jukna [20]. The construction of Algorithm 2
has some flavor of the monotone switching lemma arguments, but the overall argument here seems fairly
different. It would not be surprising that if one could modify this method to yield a similar lower bound to
the one we give here, but exactly how to do that is not clear. In any case, we find the form of the bottleneck
counting argument appealing.

6 Multiparty Communication Lower Bounds for all m > n

In this section, we prove:

Theorem 1.3. For all m > n and 2 ≤ k ≤ log n /4, the randomized number-in-hand communication complexity of
Collkm,n1/k is Ω(n1/2−1/(2k)/k).

Before proving Theorem 1.3, we show that it is essentially optimal by a showing a simple protocol nearly
matches our lower bound.

Proposition 6.1. For m ≥ n + n1−1/k and k ≤ log n /4, there is a randomized k-party number-in-hand protocol for
Collkm,n1/k with complexity O(n1/2−1/(2k) log n).

Proof Sketch. Without loss of generality, m = n + n1−1/k, since we can always ignore the remaining coordi-
nates. By the pigeonhole principle there must exist a subset of at least ℓ = m/n1/k coordinates on which
Player 1’s input is the same. The protocol is as follows. Player 1 first announces a random subset S of these
coordinates of size t = 16n1/2−1/(2k). Players 2 through k− 1 send vectors of length t giving their values on
each element of S. Player k announces a collision among the pairs of elements of S, if there is one. Player 1’s
announcement requires O(n1/2−1/(2k) log n) bits, while the remaining k− 1 announcements require at most
O(n1/2−1/(2k) log(n1/k)) bits each. The total bound on the communication is therefore O(n1/2−1/(2k) log n),
as desired. It suffices to now argue that player k will have a collision to announce with good probability.

For any input x, it will be convenient to think of of a graph Gx whose vertices are coordinates i ∈ [m],
and where an edge (i, j) exists iff xi = xj. Observe that, for any input, Gx is a collection of non-trivial cliques,
where the sum of the number of vertices in the cliques is at least r = m− n. This implies that there are at
least r/2 vertex-disjoint edges in Gx.

When viewed in this way, Player 1’s announcement is equivalent to them outputting a random clique
on t vertices (out of ℓ possible vertices). In order for the players to succeed, it is sufficient for this clique to
contain one of the r/2 vertex-disjoint edges.

Consider sampling our random clique by first sampling t/2 random vertices of the t vertices that Player 1
samples. Of our r/2 vertex-disjoint edges, in expectation q = (r/2)(t/2)/ℓ = rt/(4ℓ) of them have a vertex
we sampled in this first phase. By Hoeffding’s bound on the tail of the hypergeometric distribution, with
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probability at least 1− 2−q/2 we see at least q/4 vertices. If any have both endpoints already sampled, then
we are done, so assume this is not the case.

We then sample the remaining t/2 disjoint vertices to include in Player 1’s clique. In order to succeed,
one of these t/2 additional vertices must complete one of our q/4 edges. The probability that this does not
happen is at most

(1− t/2
ℓ

)q/4 ≤ e−tq/(8ℓ) = e−(t/ℓ)
2·r/32.

Now, plugging in (t/ℓ)2 = (16n1/2+1/2k/m)2 = 162n1+1/k/m2, we see that since m = n + n1−1/k, we have
r = n1−1/k and hence, conditioned on finding sampling at least q/4 vertices for the first set, the probability
of failure is at most

e−162n1+1/k/m2·n1−1/k/32 ≤ e−8n2/(2n)2 ≤ e−2.

There the total failure probability is at most 2−q/2 + e−2 ≤ 1/4.

For the proof of Theorem 1.3 we simplify and generalize ideas of Yang, Zhang, and Wang [34, 33] to the
k > 2-party setting for Collkm,n1/k .

Suppose that we have a randomized protocol Π solving Collkm,n1/k . We follow [33] and decompose each
rectangle in protocol tree further into “structured” subrectangles for which we need the following definition.

Definition 6.2 (Pseudorandomness/density). For a random variable X supported on ΩJ , we say it is (1− δ)-
dense if for all I ⊆ J, H∞(X(I)) ≥ (1− δ) |I| log |Ω|, where X(I) denotes the random variable marginalized to the
coordinates in I.

For Collkm,n1/k we have supp(Xi) = Ωm for Ω = [n1/k] and we will choose δ = 1
log n .

Definition 6.3 (Structured rectangle). Given a rectangle R = X1 × . . .× Xk, where each Xi ⊆ Ωm, we say that R
is structured iff there exist J1, . . . , Jk ⊆ [m] and τ1, . . . , τk where each τi : [m] \ Ji → Ω such that

• Xi is (1− δ)-dense on the coordinates in Ji and

• Xi is fixed to τi on the coordinates in Ji := [m] \ Ji.

The high level idea in [34, 33] is to recursively partition each rectangle in the protocol into structured
subrectangles so that, if the players have not communicated much, then the average number of fixed
coordinates in a random leaf subrectangle is small.

Let us now detail this algorithm. It is similar to the algorithm in [34], but crucially different in that we do
not keep track of error sets/subrectangles as we go.10

We shall need one important tool from [11], which decomposes an arbitrary random variable into
structured subparts.

Lemma 6.4 (Density-restoring partition from [11]). Given X on ΩJ , we can partition it as X =
⋃

i Xi such that

1. Xi has an associated Ii and τi so that for all x ∈ Xi, x(Ii) = τi,

2. Xi(J \ Ii) is (1− δ)-dense, and

3. D∞(Xi(J \ Ii) ≤ D∞(X(J))− δ|Ii| log |Ω|+ log |X|
|∪j≥iXj |

.
10Keeping track of the errors as we go seems to lead to cylinder intersections when k > 2 and more complicated analyses when k = 2.

For that reason, our decomposition algorithm and analysis is more similar in spirit to what can be found in [33].
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Algorithm 3: Decomposition/Sampling Process producing distributionRleaf (as in [33])

Input: Deterministic k-party NIH protocol Π with inputs in (Ωm)k

Output: A randomly sampled structured subrectangle R from a leaf node of Π
1 Let V = X1

V × . . .× Xk
V be the current rectangle of the protocol, which is initialized to the root.

2 Let R = X1 × . . .× Xk be the current subrectangle, which is initialized to the entire root.
3 Initialize Ji = [m] for all i ∈ [k]
4 while v is not a leaf of Π do
5 Let i be the speaker at v, and let Xi

v = Xi
v0
∪ Xi

v1
be induced by the communicated bit.

6 Let X0
i = Xi

v0
∩ Xi and X1

i = Xi
v1
∩ Xi

7 w.p. |X
0
i |
|Xi |

set v← v0 and Xi ← X0
i , and otherwise set Xi ← X1

i and v← v1

8 if Xi is not (1− δ)-dense then
9 Decompose Xi using Lemma 6.4 into X1, . . . , Xr

10 Set Xi ← X j and Ji ← Ji \ Ij w.p. |X
j |

|Xi |
11 Let R← X1 × . . .× Xk

12 return R

LetRleaf denote the distribution over subrectangles at the leaf level obtained via this sampling process.
Note that each subrectangle is sampled uniformly according to its size. Each R has associated with it
J1 = J1(R), . . . , Jk = Jk(R) and τ1 = τ1(R), . . . , τk = τk(R).

Implicit in the work of [33] (see the proof of their Lemma 3.2) is the following lemma.

Lemma 6.5. Let Π be a deterministic k-party number-in-hand protocol solving any search problem over (Ωm)k. For
the distributionRleaf given by Algorithm 3,

E
R∼Rleaf

∑
i
|Ji| ≤ 2 · CC(Π)/(δ log |Ω|).

In particular, Lemma 6.5 yields the following corollary.

Corollary 6.6. Let Π be a deterministic k-party number-in-hand protocol solving any search problem over ([n1/k]m)k.
For the distributionRleaf given by Algorithm 3 with δ = 1/ log n,

Pr
R∼Rleaf

[
∑

i
|Ji|2 ≥ 400 (k · CC(Π))2] ≤ 1/10.

Proof. We observe that in this case the expectation bound on ∑i |Ji| in Lemma 6.5 is simply 2k · CC(Π).
Applying Markov’s inequality we have Pr[∑i |Ji| ≥ 20k · CC(Π)] ≤ 1/10. Therefore

Pr
R∼Rleaf

[
∑

i
|Ji|2 ≥ 400 (k · CC(Π))2] ≤ Pr

[(
∑

i
|Ji|
)2 ≥ 400 · (k · CC(Π))2] ≤ 1/10.

We will need the following claim about dense independent random variables.

Proposition 6.7. Suppose that X1, . . . , Xℓ are independent (1− δ)-dense random variables where each Xi is supported
on [n1/k]Ji and δ = 1/ log n. Then for any fixed s ̸= t ∈ [m] such that {s, t} ∩ Ji ̸= ∅ for all i ∈ [ℓ], the probability
that Xi(s) = Xi(t) for all i ∈ [ℓ] is at most 2n−ℓ/k.

Proof. Suppose without loss of generality that t ∈ Ji. Let α = Xi(s). Using the definition of the (1− δ)-density
Xi on [n1/k]Ji with the set I = {t} we have

log
1

Pr[Xi(t) = α]
≥ (1− δ) log(n1/k) = (1− 1

log n
)

log n
k

=
log n− 1

k

Therefore Pr[Xi(t) = α] ≤ (2/n)1/k. The final bound follows by independence and the fact that ℓ ≤ k.

18



We now focus on errors in protocols Π specifically for Collkm,n1/k .

Definition 6.8. Let R be a subrectangle in the support ofRleaf. Call R bad if either

• there exists a pair s ̸= t ∈ [m] such that s, t ∈ ⋂i Ji and τi(s) = τi(t) for all i ∈ [k], or

• ∑i |Ji|2 ≥ 400 (k · CC(Π))2.

Otherwise call R good.

Note that, since we are focussed on proving a lower bound, our definition labels subrectangles as bad if
they correspond to confirmed successes of Π.

Lemma 6.9. If CC(Π) ≤ 0.01n1/2−1/2k/k, then PrR∼Rleaf [R is bad] < 1/6.

Proof. First, we observe that the probability in question, PrR∼Rleaf [R is bad], is equivalent to the probability
over a uniformly random input x that x ends up in a bad subrectangle, since our sampling is always
proportional to the size of the subrectangles.

For simplicity we assume without loss of generality that Π is a full binary tree. Define Rℓ to be the
support of subrectangles at the ℓ-th layer of the protocol tree in Algorithm 3, and let Rℓ(x) (which has
corresponding J1, . . . , Jk and τ1, . . . , τk) be the subrectangle containing x inRℓ.

Define Gℓ ⊆ Rℓ to be the set of R ∈ Rℓ such that ∑i |Ji|2 < 400 (k · CC(Π))2 ≤ 0.04n1−1/k and let

Bℓ(x) = 1{Rℓ(x) ̸∈ Gℓ or ∃ s ̸= t ∈ [m] and j ∈ [k] s.t. τj(s) = τj(t) and xj′(s) = xj′(t) for all j′ ̸= j}.

We shall prove by induction on the layers of the sampling process given by Algorithm 3 that

∑
x

Bℓ(x) ≤ ∑
R∈Gℓ

2
n1−1/k ∑

i∈[k]

(
|Ji|
2

)
· |R|+ 1.04 ∑

R ̸∈Gℓ

|R|. (2)

The base case is clearly true, since at the root we have ∑x B0(x) = 0. Assume that (2) is true up to level ℓ.
For every R ̸∈ Gℓ, none of its subrectangles will be in Gℓ+1 since we only ever increase the size of |Ji| in our
sampling process.

For the R ∈ Gℓ, suppose that player i speaks on R at level ℓ. We give convenient names to some of the
objects produced during the sampling process. Algorithm 3 first partitions R into Rb for b ∈ {0, 1}, and then
further partitions Rb using the density restoring partition into Rb

1, . . . , Rb
r , where each Rb

t has corresponding
Ib
t new fixed coordinates for player i. In this way, for every R ∈ Rℓ we have that |R| = ∑b∈{0,1} ∑r

t=1 |Rb
t |,

since these form a partition.
Its possible that some of these subrectangles are no longer in Gℓ+1. We bound the size of these trivially.

For those in Gℓ+1, using Proposition 6.7 we can bound the probability that the fixed variables for player i up
level ℓ+ 1 include a collision on s ̸= t ∈ [m] that extends to a collision for all players. Fixing the coordinates

in Ib
t creates at most (|Ji∪Ib

t |
2 )− (|Ji |

2 ) fixed colliding pairs for player i that have not previously been fixed
collisions for other players. By Proposition 6.7 and a union bound over these (s, t) pairs, the fraction of
inputs in Rb

t that have collisions involving these pairs that have not previously been accounted for is at most

2
n1−1/k

((
|Ji ∪ Ib

t |
2

)
−
(
|Ji|
2

))
.

Thus, we have that

∑
x

Bℓ+1(x) ≤∑
x

Bℓ(x) + ∑
R∈Gℓ

∑
b∈{0,1}

∑
t:Rb

t∈Gℓ+1

2
n1−1/k

((
|Ji ∪ Ib

t |
2

)
−
(
|Ji|
2

))
|Rb

t |+ ∑
t:Rb

t ̸∈Gℓ+1

|Rb
t |

≤ ∑
R∈Gℓ

2
n1−1/k ∑

i∈[k]

(
|Ji(R)|

2

)
·∑

b
∑

t
|Rb

t |+ 1.04 ∑
R ̸∈Gℓ

|R|
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+ ∑
R∈Gℓ

∑
b∈{0,1}

∑
t:Rb

t∈Gℓ+1

2
n1−1/k

((
|Ji(R) ∪ Ib

t |
2

)
−
(
|Ji(R)|

2

))
|Rb

t |+ ∑
t:Rb

t ̸∈Gℓ+1

|Rb
t |

= ∑
R∈Gℓ

∑
b

∑
t:Rb

t∈Gℓ+1

|Rb
t |

2
n1−1/k ∑

i∈[k]

(
|Ji(Rb

t )|
2

)
+ 1.04 ∑

R ̸∈Gℓ
∑
b

∑
t
|Rb

t |

+ ∑
R∈Gℓ

∑
b

∑
t:Rb

t ̸∈Gℓ+1

1 +
2

n1−1/k ∑
i∈[k]

(
|Ji(R)|

2

) |Rb
t |

≤ ∑
R∈Gℓ+1

2
n1−1/k ∑

i∈[k]

(
|Ji(R)|

2

)
|R|+ 1.04 ∑

R ̸∈Gℓ+1

|R|,

as desired. The first inequality used a union bound and Proposition 6.7, as described above, and the second
inequality used the inductive hypothesis. The third line recollected terms, while the last inequality used the
fact that

2
n1−1/k ∑

i∈[k]

(
|Ji(R)|

2

)
≤ 0.04,

since R ∈ Gℓ.
Finally, we let ℓ = CC(Π). By Corollary 6.6, we can bound 1.04 ∑R ̸∈GCC(Π) |R| ≤ 0.104 ∑R∈Rleaf |R| =

0.104nm. We can also bound

∑
R∈GCC(Π)

2
n1−1/k ∑

i∈[k]

(
|Ji(R)|

2

)
|R| ≤ 0.04 ∑

R∈Rleaf

|R| = 0.04nm.

Combining, we get that the probability over uniformly random input of landing in a bad rectangle is at most
0.144 < 1/6.

Next, we have a simple lemma which says that the probability of producing a correct answer in any good
leaf subrectangle is small.

Lemma 6.10. Suppose that k ≤ log n /4. For any fixed s ̸= t ∈ [m] and good subrectangle R, the probability
Prx∈R[xi(s) = xi(t) for all i ∈ [k]] ≤ 1/8.

Proof. We use Proposition 6.7 with ℓ = 1. In a good rectangle, for any pair s, t ∈ [m], there must be some Ji
such that {s, t} ̸⊆ Ji, in which case we can apply Proposition 6.7 with ℓ = 1 to say that the probability that
xi(s) = xi(t) ≤ 2n−1/k ≤ 2n−4/ log n = 1/8.

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Suppose that the protocol Π communicated fewer than 0.01n1/2−1/2k/k bits. Then the
probability of correctly outputting a collision is at most the probability of ending up in a bad subrectangle,
plus the probability of outputting a correct collision given the input falls in a good subrectangle. We
can thus bound the success probability of the protocol using Lemma 6.9 and Lemma 6.10 as at most
1/6 + 1/8 < 1/3.

7 Discussion

We end by discussing some related problems and directions for future study. In particular, we highlight
three possible directions.

1. Multiparty DAG-like communication lower bounds. In general, it would be interesting to see if
the 2Ω(n1/4) we give can be further improved, or if any nontrivial (size 2o(n)) cutting planes refutation
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of BPHPn+1
n exists. One possible way to improve the lower bound could be to study a multiparty

(k > 2) version of DAG-like protocols. Concretely, could one can prove DAG-like communication
lower bounds for the k-player analog Searchk

BPHPm
n

? We have shown that generalizing to k players helps
in the tree-like case, and perhaps this holds true in the DAG-like setting as well.

2. Stronger bounds for tree-like cutting-planes proof complexity of the weak bit pigeonhole principle
When m = n + Ω(n), we only obtain the weaker 2Ω(

√
n) size lower bound for BPHPm

n , rather than the
2n−o(1) size lower bound we obtain for values of m closer to n. Can we extend the range of our strong
lower bound to all values of m > n? To do so we must use a technique that does not use randomized
communication complexity.

3. Finally, we highlight that for m close to n, the loss of 2k in the denominator of Theorem 1.1 could
potentially be improved when m ≤ n + n1/k. Indeed, we do not suspect that it should be present at
all, and we conjecture that Searchk

BPHPm
n

should remain hard for k all the way up to log n. However,
it seems unlikely that any reduction from k-party disjointness would be able to achieve this since an
additional input bit per player seems essential in implementing the reduction.
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