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Abstract

Aaronson (STOC 2010) conjectured that almost k-wise independence fools constant-depth cir-
cuits; he called this the generalised Linial–Nisan conjecture. Aaronson himself later found a
counterexample for depth-3 circuits. We give here an improved counterexample for depth-2
circuits (DNFs). This shows, for instance, that Bazzi’s celebrated result (k-wise independence
fools DNFs) cannot be generalised in a natural way. We also propose a way to circumvent our
counterexample: We define a new notion of pseudorandomness called local couplings and show
that it fools DNFs and even decision lists.

1 Introduction

Linial and Nisan [LN90] conjectured that “k-wise independent” distributions fool constant-depth
circuits (class AC0). More specifically, a distribution D over {0, 1}n is called k-independent if the
marginal distribution on every k-sized subset of bits is uniform. We say that D δ-fools a circuit C
if the circuit cannot distinguish D from the uniform distribution on {0, 1}n:∣∣∣ Pr

x∼D
[C(x) = 1]− Pr

x∼{0,1}n
[C(x) = 1]

∣∣∣ ≤ δ.

The Linial–Nisan conjecture was first proved for depth-2 circuits (DNFs and CNFs) by Bazzi [Baz09]
(with a simplification by Razborov [Raz09]) and then for every AC0-circuit by Braverman [Bra11].
Indeed, Braverman showed that every size-s AC0-circuit is o(1)-fooled by poly(log s)-independence.

Aaronson [Aar10] asked whether the Linial–Nisan conjecture could be strengthened to hold also
for “almost k-wise independence,” a seemingly modest generalisation. We say that a distribution D
over {0, 1}n is (ε, k)-independent if for every subset I ⊆ [n], |I| = k, the marginal distribution on
the bits in I is multiplicatively close to uniform in the sense that for every α ∈ {0, 1}I ,

(1− ε)2−k ≤ Pr
x∼D

[xI = α] ≤ (1 + ε)2−k.

Generalised Linial–Nisan Conjecture (GLN). Let D be a (1/nΩ(1), nΩ(1))-independent distri-

bution over {0, 1}n. Then D o(1)-fools every AC0-circuit of size 2n
o(1)

.
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Aaronson’s original motivation for this conjecture was to resolve a problem in quantum com-
plexity theory. He showed that a positive resolution of GLN would imply the separation BQP ⊈ PH
relative to an oracle. (This separation was subsequently proved by Raz and Tal [RT19] by a different
approach.) Later, Aaronson himself found a counterexample to GLN for depth-3 circuits [Aar11],
but he still re-posed the conjecture (and thought it “plausible”) for depth-2 circuits. Our main
result here is to refute the GLN conjecture in this remaining case.

Theorem 1 (Main result). There exists a (1/nΩ(1), nΩ(1))-independent distribution D over {0, 1}n
and a O(log3 n)-width DNF formula F such that

Pr
x∼D

[F (x) = 1]− Pr
x∼{0,1}n

[F (x) = 1] ≥ Ω(1).

Let us make two notes about the parameters here. First, our formula F will have quasi-
polynomial size, whereas Aaronson’s depth-3 counterexample has only polynomial size; hence his
example achieves slightly better parameters (at the cost of larger depth). Second, our construction
can be varied to produce the following tradeoff: by increasing the DNF width to any w ≤ no(1), we
can make the distribution (exp(−wΩ(1)), nΩ(1))-independent (see Section 2.5).

1.1 Implications and related work

One consequence of the failure of the GLN conjecture is to the construction of pseudorandom
generators (PRGs) for DNFs. It is known that for k ≥ Ω(log n) there exist (o(1), k)-independent
distributions with support size 2O(k) [NN93, AGHP92], which is smaller than nΩ(k) that is required
for truly k-wise independent distributions [CGH+85]. Thus Theorem 1 rules out a natural approach
(“output an almost k-wise independent distribution”) to improving the seed length of PRGs. For the
current state-of-the-art PRGs for DNFs, see [DETT10, Tal17, Lyu22]; see also the survey [HH24].

Another lesson from Theorem 1 is to the further development of circuit lower bound methods.
We find it important to seek alternative proofs of central theorems such as Bazzi’s [Baz09, Raz09]
and its extensions [Bra11]. The existing proofs use the polynomial method to approximate a DNF
with a low-degree polynomial. Is there a more “combinatorial” proof of Bazzi’s theorem? One such
more combinatorial approach is the top-down lower bound method [HJP93, GRSS23], which often
uses entropy-based arguments to analyse circuits. We interpret the failure of GLN as a challenge
to such top-down methods. While the method is in a formal sense complete (it can prove any
lower bound that is true), the typical entropy counting arguments have a hard time distinguishing
almost k-wise independent distributions from truly k-wise independent ones, suggesting that any
top-down proof of Bazzi’s theorem would require substantially new ideas.

Finally, we mention that—besides (almost) k-wise independence—several other notions of pseu-
dorandomness have been considered in the literature [BIVW16, BDF+22, Hoz25].

1.2 Workaround: Local couplings

To complement our main result, we also propose a way to circumvent the failure of GLN by
proposing a new notion of pseudorandomness called local couplings. This notion is useful for fooling
depth-2 circuit models, but not depth-3 models; in particular, we show the following claims:

(C1) Local couplings fool DNFs (query complexity analogue of NP).
(C2) Local couplings fool decision lists (query complexity analogue of PNP).
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(C3) Local couplings do not fool depth-3 circuits (query complexity analogue of Σ2P).

Definition 2 (Local couplings). A pair of jointly distributed random variables (x,y) ∈ ({0, 1}n)2
is an ε-semi-coupling if for every y ∈ supp(y) and i ∈ [n],

Pr[xi ̸= yi | y = y] ≤ ε.

We say that (x,y) is an ε-coupling if both (x,y) and (y,x) are ε-semi-couplings.

The notion of a local coupling was somewhat implicit in Aaronson’s analysis [Aar11] of his
depth-3 counterexample. Local couplings are also a stronger variant of a notion proposed by
Zhandry [Zha25] that he called “substitution distance.”

Claims (C1)–(C2). A width-k decision list is a sequence of pairs {(Ti, ai)}i∈[m] where Ti are
k-terms (conjunctions of at most k literals) and ai ∈ {0, 1} are output values. A decision list defines
f : {0, 1}n → {0, 1} as follows: f(x) = ai where i = min{i ∈ [m] | Ti(x) = 1}. The decision list
width of a function is polynomially equivalent to the number of DNF queries necessary to compute
the function [GKPW19, Appendix A]. In other words it is indeed a query complexity analogue
of PNP. The following theorem (Section 3.1) formalises (C1)–(C2) when y is uniformly distributed.

Theorem 3. Let f be computed by a width-k decision list. For any ε-coupling (x,y),

Pr[f(x) ̸= f(y)] ≤ 2kε.

Claim (C3). Aaronson’s [Aar11] original counterexample involved a distribution D related to
a certain surjectivity function, which can be computed by a small depth-3 circuit. We observe
(Section 3.2) that Aaronson’s distribution D can indeed be locally coupled with the uniform dis-
tribution, which implies that local couplings do not fool depth-3 circuits (Claim (C3)). We can
furthermore conclude (using Theorem 3) that D fools decision lists—this claim was already made
earlier by Aaronson [Aar11, Theorem 3], but his proof contained a mistake,1 which we can now fix
with the notion of local couplings. Finally, we also show (Section 3.3) that an ε-semi-coupling is
not enough by itself to fool DNFs—one truly needs the two-sided condition of an ε-coupling.

2 Counterexample

In this section, we prove Theorem 1 by constructing a DNF formula F and an associated almost k-
independent distribution D that F can distinguish from uniform. We first (Section 2.1) construct a
weak example that distinguishes D from uniform with advantage 1/poly(log n). Then (Section 2.4)
we amplify this advantage to Ω(1) by using a standard majority trick.

1The mistake is acknowledged on the author’s homepage. An implication of this result would have been to show
the separation Π2P ̸= PNP relative to a random oracle. That result however follows (using a function different from
surjectivity) from the more recent result that PH is infinite in the random oracle model [HRST17].
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2.1 Construction

Our starting point is the address functionAddr : {0, 1}m×{0, 1}2m → {0, 1} defined asAddr(a, p) :=
pa. Here we write pa to mean pint(a) where int(a) ∈ [2m] is the integer corresponding naturally to the

bitstring a. Let us first observe that Addr together with the uniform distribution over Addr−1(1)
“almost works” as the counterexample in Theorem 1. For (a,p) ∼ Addr−1(1) the distribution of p
is already (o(1), 2Ω(m))-independent. The reason the whole (a,p) does not have the same property
is that for example, fixing all bits of a to some a forces pa = 1, so for some I ⊆ [m+2m] containing
all bits describing a and the bit pa the settings of (a,p)I with pa = 0 have probability zero.

To avoid this issue we hide the bits of the address using the usual tribes function:

Tribes(A) :=
∨
j∈[r]

∧
k∈[m]

Ak,j .

The input here is an m × r boolean matrix and the function returns 1 iff the matrix contains an
all-1 column. It is well-known [O’D14, §4.2] that if we choose r := ⌈2m ln 2⌉, the function becomes
balanced, meaning that PrA∼{0,1}m×r [Tribes(A)] = 1/2 + o(1).

A natural attempt to define a counterexample would be to consider the distinguishing function
Addr((Tribes(A1), . . . ,Tribes(Am)), p). This does not work since this function requires poly-
nomial DNF width as the negation of Tribes reduces to it. We fix this by replacing the Addr
function by its monotone version: mAddr : {0, 1}m × {0, 1}2m → {0, 1} is defined as

mAddr(a, p) :=


0 if |a| < m/2

pa if |a| = m/2

1 if |a| > m/2

, where |a| is the Hamming weight of a.

We are now ready to define our function f : ({0, 1}m×r)m×{0, 1}2m → {0, 1} by (see also Figure 1)

f(A1, . . . , Am, p) := mAddr((Tribes(A1), . . . ,Tribes(Am)), p), (1)

Note that input size of f is n := m2r + 2m. The following constructs a narrow DNF for f .

Claim 4. There exists a DNF F of width O(log2 n) that computes f .

Proof. A DNF is commonly viewed as a collection of 1-certificates: f is computable by a k-DNF iff
for each point x ∈ f−1(1) there exists a certificate comprised of a subset of input bits I ⊆ [n] of size
k and α ∈ {0, 1}I such that x′I = α implies f(x′) = 1. Hence it is enough to provide a certificate
of width O(m2) = O(log2 n) for each 1-input of f . Consider a 1-input x = (A1, . . . , Am, p) and
let a := (Tribes(A1), . . . ,Tribes(Am)). If |a| > m/2, a 1-certificate is simply a set of matrices
H ⊆ [m] of size |H| = m/2+1 together with a 1m-column in each of those matrices. Such certificates
fix (m/2+1) ·m variables. A similar idea can certify 1-inputs with |a| = m/2, at the cost of adding
the corresponding bit pa.

We now define D as a distribution of the random variable x defined below.

Definition 5. Let x = (A1,A2, . . . ,Am,p) over {0, 1}n be sampled as follows:

1. Sample Ai ∼ {0, 1}m×r uniformly and independently for each i ∈ [m].
2. Sample p ∼ {0, 1}2m uniformly and independently.
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A1 Tribes 0

A2 Tribes 1

A3 Tribes 0

A4 Tribes 1

a

p

Figure 1: Illustration of mAddr(Tribes(A1), . . . ,Tribes(A4), p). Blue cells correspond to 1-
input bits, white cells correspond to 0-input bits. The address a = (Tribes(A1), . . . ,Tribes(A4))
is (0, 1, 0, 1), so it satisfies |a| = 4/2. Hence the function outputs pint(a) = p11 = 1.

3. Let a =
(
Tribes(A1), . . . ,Tribes(Am)

)
; If |a| = m/2, fix pa = 1.

We show that D is (n−1/5, n1/5)-independent, yet f distinguishes D from the uniform distribu-
tion, which together with Claim 4 implies the following weaker version of Theorem 1:

Lemma 6. The distribution D as in Definition 5 is (n−1/5, n1/5)-independent, but there is an
O(log2 n)-DNF F such that Prx∼D[F (x) = 1]− Prx∼{0,1}n [F (x) = 1] = Ω(log−1/2 n).

We reduce the proof of Lemma 6 to the following two lemmas:

Lemma 7. Prx∼D[f(x) = 1]− Prx∼{0,1}n [f(x) = 1] = Ω
(
1/
√
m
)
, where m is as in Definition 5.

Lemma 8. The distribution D as in Definition 5 is (ε, k)-independent for k ≤ 2m, ε ≤ k2−m/2+1.

Proof of Lemma 6. D is distributed over {0, 1}n where n := m2⌈2m ln 2⌉ + 2m. Apply Lemma 8
with k = n1/5 and ε = n1/52−m/2+1 ≪ n−1/5. Then by Lemma 7 and Claim 4 there exists
O(m2) = O(log2 n)-DNF that Ω(1/

√
m) = Ω(1/

√
log n)-distinguishes D from U , where the latter

is uniformly distributed over {0, 1}n.

2.2 Proof of Lemma 7

Let x := (A1, . . . ,Am,p) ∼ D and y ∼ {0, 1}n. Since the matrices Ai are uniformly generated, it
is possible to couple x and y by defining y := (A1, . . . ,Am,p′) where p′ ∼ {0, 1}2m . Note that the
address part of each input coincides and in particular, they share the event E := “|a| = m/2”.

Observe that Pr[f(x) = 1 | ¬E] = Pr[f(y) = 1 | ¬E] by the definition of D: if |a| ≠ m/2
then Step (3) is not reached in the definition of D and p is uniform. On the other hand we have
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Pr[F (x) = 1 | E] = 1. Indeed, if E holds, we have F (x) = pa = 1 by the definition of f and D.

Pr[F (y) = 1 | E] = Pr[p′
a = 1 | E]

=
∑

a∈{0,1}m
Pr[p′

a = 1 | E ∧ a = a] Pr[a = a | E]

=
∑

a∈{0,1}m
Pr[p′

a = 1]Pr[a = a | E] =
1

2
.

Thus, Pr[f(x) = 1]−Pr[f(y) = 1] = Pr[E]/2 and so it remains to bound Pr[E]. For that, we need
the following simple fact:

Lemma 9. Let x distributed over {0, 1}n according to a product distribution such that |Pr[xi =
1]− 1/2| ≤ ε. Then ∆(x,u) := maxE⊆{0,1}n

∣∣Pr[x ∈ E]− Pr[u ∈ E]
∣∣ ≤ 2nε, where u ∼ {0, 1}n.

Proof. Let us couple x with u as follows: suppose Pr[xi = 1] = 1/2 + p. We then set ui := xi

with probability 1/(1 + 2|p|) and ui := Jp > 0K := (1 if p > 0 otherwise 0) with probability
1−1/(1+2|p|) ≤ 2|p| ≤ 2ε. Then Pr[Ui = 1] = (1/2+p)/(1+2|p|)+Jp > 0K(1−1/(1+2|p|)) = 1/2,
so u is indeed uniformly distributed. Then Pr[x ̸= u] ≤ 2nε, so ∆(x,u) ≤ 2nε.

Note that each bit ai is close to being balanced:

Pr[ai = 1] = 1− (1− 2−m)r = 1− (1/e+Θ(2−m))ln 2 = 1/2 + Θ(2−m).

As all ai are independent, we can use Lemma 9 to get sharp bounds on their sum being exactly
m/2: Pr[E] ≥ Prx∼{0,1}m [|x| = m/2]−Θ(m · 2−m) = Ω(1/

√
m).

2.3 Proof of Lemma 8

We need to show that for every I ⊆ [n] of size k and for every α ∈ {0, 1}I we have (1− ε) · 2−k ≤
Pr[xI = α] ≤ (1+ ε) · 2−k. We now classify the bits of I and α. Let Ii ⊆ [m]× [r] for i ∈ [m] be the
set of bits of Ai in I. Let J ⊆ {0, 1}m be the set of bit indices of p that belong to I (we identify
the indices with their bit representations). Let αi ∈ {0, 1}Ii and β ∈ {0, 1}J be the corresponding
parts of α.

Since A1, . . . ,Am are uniformly distributed it suffices to show that

(1− ε)2−|J | ≤ Pr[pJ = β | ∀i ∈ [m] : Ai
Ii = αi] ≤ (1 + ε)2−|J |.

Let Jm/2 := {s ∈ J | |s| = m/2}. Intuitively the only non-uniformity in xI is introduced when
a ∈ Jm/2 as this is the only case where p is changed from uniform. We make this intuition precise
in the following claim.

Claim 10. For any event E that is a function of A1, . . . ,Am we have

(1− Pr[a ∈ Jm/2 | E])2−|J | ≤ Pr[pJ = β | E] ≤ (1 + Pr[a ∈ Jm/2 | E])2−|J |.

Proof. Let Ji := {j ∈ Jm/2 | βj = i} for i ∈ {0, 1}. By the total probability law we get

Pr[pJ = β | E] = Pr[pJ = β | E ∧ a ∈ J0] Pr[a ∈ J0 | E]

+ Pr[pJ = β | E ∧ a ∈ J1] Pr[a ∈ J1 | E]

+ 2−|J | Pr[a ̸∈ Jm/2 | E] (2)

= 0 + 2−(|J |−1) Pr[a ∈ J1 | E] + 2−|J | Pr[a ̸∈ Jm/2 | E] (3)

= 2−|J |(Pr[a ̸∈ Jm/2 | E] + 2Pr[a ∈ J1 | E]). (4)
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In (2) and (3) we use that given a the event E is independent from p. Since (4) is minimized when
J1 = ∅ and maximized when J1 = Jm/2, we have the claim.

Now let E be the event “∀i ∈ [m] : Ai
Ii

= αi”. Let us compute Pr[a = s | E] for s ∈ {0, 1}m.

Since s ∈ Jm/2 we have |s| = m/2, wlog let s = 0m/21m/2. Since the bits of a denoted by a1, . . . ,am

are independent and E is a conjunction of independent events we have

Pr[a = s | E] =
∏

ℓ∈[m/2]

Pr[aℓ = 0 | E] ·
∏

ℓ∈[m]∖[m/2]

Pr[aℓ = 1 | E]

≤
∏

ℓ∈[m/2]

Pr[aℓ = 0 | Aℓ
Iℓ
= αℓ]

Let us fix ℓ ∈ [m/2] and bound Pr[aℓ = 0 | Aℓ
Iℓ
= αℓ]. By definition aℓ = Tribes(Aℓ), so it equals

0 iff no column of Aℓ is all-1, in particular all columns that do not contain bits of Iℓ must not be
all-1. For each of these columns the probability that it is not all-1 is 1 − 2−m. Since there are at
least ⌈2m ln 2⌉ − |Iℓ| such columns we get

Pr[a = s | E] ≤
∏

ℓ∈[m/2]

(1− 2−m)⌈2
m ln 2⌉−|Iℓ|

= (1− 2−m)m/2·⌈2m ln 2⌉(1− 2−m)−
∑

ℓ∈[m/2] |Iℓ|

≤ 2−m/2(1− 2−m)−k

≤ 2−m/2+1

Thus, Pr[a ̸∈ Jm/2 | E] ≤ |J |2−m/2+1 = k2−m/2+1, so we conclude the proof by Claim 10.

2.4 Amplification

In this section we reduce Theorem 1 to Lemma 6. The construction is a simple variation of
the majority vote of several instances of f . We prove that our construction indeed amplifies the
distinguishing probability in the following lemma.

Lemma 11. Suppose x is distributed over {0, 1}n and there exists a function g : {0, 1}n → {0, 1}
such that

Pr[g(x) = 1]− Pr
u∼{0,1}n

[g(u) = 1] ≥ δ,

for some δ depending on n. Let α = (Pr[g(x) = 1] + Pr[g(u) = 1])/2. Then for t = 2/δ2 we have

Pr

[∑
i∈[t]

g(xi) ≥ t · α

]
− Pr

[∑
i∈[t]

g(ui) ≥ t · α

]
≥ Ω(1),

where x1, . . . ,xt are independent samples of x and u1, . . . ,ut ∼ {0, 1}n.

Proof. Let px = E[g(x)]. Since E [
∑

i∈[t] g(xi)] = t · px, we have by Hoeffding inequality,

Pr

[∑
i∈[t]

g(xi) ≥ αt

]
= 1− Pr

[∑
i∈[t]

g(xi) < αt

]
≥ 1− e−2t2(px−α)2/t ≥ 1− e−(tδ)2/2t.
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Similarly, we can conclude that Pr [
∑

i∈[t] g(ui) ≥ αt] ≤ e−(tδ)2/2t, hence,

Pr

[∑
i∈[t]

g(xi) ≥ αt

]
− Pr

[∑
i∈[t]

g(ui) ≥ αt

]
≥ 1− 2e−tδ2/2

With t = 2/δ2, we conclude the proof.

We now need to show that a narrow DNF can check whether
∑

i∈[t] f(xi) ≥ αt. In fact, this is
true for any monotone function composed with a narrow DNF:

Lemma 12. Let f : {0, 1}n → {0, 1} be a function that can be computed by a ℓ-DNF D. Let
g : {0, 1}t → {0, 1} be a monotone function. Then g ◦ f t(x1, . . . , xt) := g(f(x1), . . . , f(xt)) can be
computed by a tℓ-DNF.

Proof. Since f can be computed by a ℓ-DNF, a 1-certificate of f is a satisfying assignment for one
term of D, which has size at most ℓ. Since g is monotone we can certify that g ◦ f t(x1, . . . , xt) = 1
by giving a 1-certificate that D(xi) = 1 for every i ∈ [t] where that is the case. Such certificate has
size at most tℓ, which implies that g ◦ f t can be computed by a tℓ-DNF.

Finally, we need to show that independent copies of an (ε, k)-independent distribution comprise
an (O(εt), k)-independent distribution:

Lemma 13. If D is (ε, k)-independent, then the product distribution Dt is (O(εt), k)-independent.

Proof. Suppose x ∼ D. Let xt ∼ Dt be t independent copies of x. Fix I ∈
([n·t]

k

)
and α ∈ {0, 1}I .

For every i ∈ [t], we define Ii and αi to be the positions of I and α respectively in xi. Then,

Pr[xt
I = α] =

∏
i∈[t]

Pr[(xi)Ii = αi] =
∏
i∈[t]

Pr[xIi = αi].

Since x is (ε, k)-independent, for every i ∈ [t], (1− ε) ·2−|Ii| ≤ Pr[xIi = αi] ≤ (1+ ε) ·2−|Ii|. Hence,
for small enough ε:

(1− 2tε) · 2−k ≤ 2−
∑

i∈[t] |Ii| · (1− ε)t ≤ Pr[xt
I = α] ≤ 2−

∑
i∈[t] |Ii| · (1 + ε)t ≤ 2−k · (1 + 2tε).

Proof of Theorem 1. Let s be a natural number to be fixed later. Let D be the (s−1/5, s1/5)-
independent distribution in Lemma 6. Let D be the O(log2 s)-DNF such that

Pr
x∼D

[D(x) = 1]− Pr
u∼{0,1}s

[D(u) = 1] = Ω(1/
√

logm).

From Lemma 13, for every t, Dt is (O(t·s−1/5), s1/5)-independent. By Lemma 11 for φ(x1, . . . , xt) :=
J
∑t

i=1D(xi) ≥ αtK := (1 if
∑t

i=1D(xi) ≥ αt, otherwise 0), when t = O(log s),

Pr
xt∼Dt

[
φ(xt)

]
− Pr

ut∼{0,1}st

[
φ(ut)

]
= Ω(1).

Moreover, φ can be computed by a O(t · log2 s)-DNF from Lemma 12. Choosing t = O(log s) and
t · s = n we get that there exists a (O(log n · n−1/5),Ω(n/ log n)1/5)-independent distribution Dt

over {0, 1}n that can be Ω(1)-distinguished from the uniform by a O(log3 n)-DNF, which implies
the claim.
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2.5 Variation: Tradeoff between width and error

We finally sketch an extension of our construction that gives a tradeoff between DNF width and ε.

Theorem 14. For any w ≥ Ω(log n) there exists a function fw : {0, 1}n → {0, 1} computable by a
wO(1)-DNF and an (n−Ω(w), nΩ(1))-independent distribution D over {0, 1}n such that

Pr
x∼D

[fw(x)]− Pr
x∼{0,1}n

[fw(x)] ≥ Ω(1).

Proof sketch. We define a “monotone xor” of the functions Addr as follows: g : ({0, 1}m)w ×
({0, 1}2m)w → {0, 1} where g(a1, . . . , aw, p1, . . . , pw) := p1a1 ⊕· · ·⊕ pwaw if |a| = wm/2, if |a| ≠ wm/2
the value of g is 1 iff |a| > wm/2. The distinguisher fw is then defined by hiding the bits of a in
Tribes instances:

fw(A
1, . . . , Amw, p1, . . . , pw) := g(Tribes(A1), . . . ,Tribes(Amw), p1, . . . , pw).

We sample x from the distribution D in two steps: (1) Sample x = (A1, . . . ,Amw,p1, . . . ,pw)
uniformly at random. (2) If for a = Tribesmw(A) it happens that |a| = wm/2 and g(a,p) = 0,
we flip a random bit among p1

a1 , . . . ,p
w
aw .

The Ω(1/
√
mw)-distinguishability of D from the uniform distribution by fw is shown analo-

gously to Lemma 7. Then according to Section 2.4 we increase the width of the DNF by the factor
O(mw) to get a Ω(1)-distinguisher. The result then follows by choosing the appropriate constants
in Ω and big-O.

Now we show the (n−Ω(w), nΩ(1))-independence for fw: analogously to Claim 10 one can show
that to establish that D is (O(ε), k)-independent it suffices to bound Pr[a1 ∈ J1 ∧ · · · ∧ aw ∈
Jw | AI = α] as O(ε) for J1, . . . , Jw ⊆ [2m] and I ⊆ ([m] × [⌈2m ln 2⌉])mw such that |J1| + · · · +
|Jw| + |I| ≤ k. Now for every j = (j1, . . . , jw) ∈ J1 × · · · × Jw such that |j| = mw/2 we have
analogously to Lemma 8 Pr[a = j | AI = α] ≤ 2−mw/2+w as long as |I| ≤ ⌈2m ln 2⌉. Assuming that
|J | ≤ k ≤ 2m/4 = nΩ(1) we get that

∏
i∈[w] |Ji| ≤ 2mw/4 and therefore ε ≤ 2−mw/4+w = n−Ω(w).

3 Local couplings

3.1 Couplings fool decision lists: Proof of Theorem 3

Let T1, . . . , TM be the k-terms in the decision list defining f . It is sufficient to show that for
L(x) := min{i ∈ [M ] | Ti(x) = 1} we have Pr[L(x) ̸= L(y)] ≤ 2kε. We show that Pr[L(x) ≤ L(y)]
and Pr[L(y) ≤ L(x)] are both high and conclude the statement from that. Let us show Pr[L(x) ≤
L(y)] ≥ 1 − kε using that (x,y) is an ε-semi-coupling. Denoting supp(Ti) ⊆ [n] the set of input
bits mentioned in the term Ti we write

Pr[L(x) ≤ L(y)] =
∑
i∈[N ]

Pr[L(x) ≤ i | L(y) = i] Pr[L(y) = i]

≥
∑
i∈[N ]

Pr[Ti(x) = 1 | L(y) = i] Pr[L(y) = i]

≥
∑
i∈[N ]

Pr[xsupp(Ti) = ysupp(Ti) | L(y) = i] Pr[L(y) = i]

≥
∑
i∈[N ]

Pr[L(y) = i]

(
1−

∑
j∈supp(Ti)

Pr[xj ̸= yj | L(y) = i]

)

9



In order to conclude that Pr[L(x) ≤ L(y)] ≥ 1 − kε it suffices to show that Pr[xj ̸= yj | L(y) =
i] ≤ ε. This follows from the total probability law:

Pr[xj ̸= yj | L(y) = i] =
∑

y : L(y)=i

Pr[y = y] Pr[xj ̸= yj | y = y] ≤ ε.

Now the same argument shows that since (y,x) is an ε-semi-coupling we have Pr[L(x) ≥ L(y)] ≥
1− kε. We conclude Theorem 3 by the union bound.

3.2 Surjectivity fools decision lists

Aaronson [Aar11] refuted the GLN conjecture by considering the following distribution:

Definition 15. For every n = m22m, let N = m2m. Define Dn (or simply D when n is clear from
the context) as the distribution of x = (x1, . . . ,xN ) ∈ ({0, 1}m)N generated as follows:

1. Sample x′ = (x′
1, . . . ,x

′
N ) ∼ ({0, 1}m)N .

2. Sample y ∼ {0, 1}m.
3. For each i ∈ [N ], let xi := x′

i if x
′
i ̸= y, otherwise xi is sampled uniformly from {0, 1}m∖{y}.

Aaronson proved the following.

Theorem 16 ([Aar11]). For every n = m22m, D is (k·2−m+1, k)-wise independent for all k ≤ 2m−1.
Moreover, there is a depth-3 AC0 circuit C : {0, 1}n → {0, 1} of size O(n2) such that∣∣∣ Pr

u∼{0,1}n
[C(u) = 1]− Pr

x∼D
[C(x) = 1]

∣∣∣ ≥ Ω(1).

We prove that Aaronson’s counterexample, however, cannot refute GLN conjecture for more
restricted models, even decision lists.

Lemma 17. For every n = m22m and decision list L : {0, 1}n → {0, 1} of width k,∣∣∣ Pr
u∼{0,1}n

[L(u) = 1]− Pr
x∼D

[L(x) = 1]
∣∣∣ ≤ 2k log2 n/n.

Proof. Let x,x′ be as in Definition 15. Note that x ∼ D,x′ ∼ {0, 1}n. By Theorem 3, it suffices
to show x is log2 n/n = 2−m-coupled with x′.

By definition, we need to show (x,x′) and (x′,x) are 2−m-semi-couplings. The former directly
follows from Definition 15: for every x′ ∈ {0, 1}n and i ∈ [N ],

Pr[xi ̸= x′
i | x′ = x′] = Pr[x′

i = y | x′ = x′] = 2−m.

Regarding the latter, fix any x ∈ supp(D), i ∈ [N ]. For each y ∈ {0, 1}m ∖ Im(x) we have

Pr[x′
i ̸= xi | x = x ∧ y = y] = Pr[x′

i = y | x = x ∧ y = y]

= Pr[x′
i = y | xi = xi ∧ y = y] (5)

=
Pr[x′

i = y ∧ xi = xi | y = y]

Pr[xi = xi | y = y]

=
(2m − 1)−12−m

(2m − 1)−1
= 2−m.

Crucially (5) holds since given y = y random variables {(xj ,x
′
j)}j∈[N ] are independent from each

other. We conclude by the total probability law:

Pr[x′
i ̸= xi | x = x] =

∑
y∈{0,1}m∖Im(x)

Pr[y = y | x = x] · Pr[x′
i ̸= xi | x = x,y = y] = 2−m.

10



3.3 Semi-couplings do not fool DNFs

In this section we give an example of a semi-coupling (x,u) where u ∼ {0, 1}n such that x can
be distinguished from u by a polylogarithmic-width DNF. First, observe that we can interpret the
definition of x in Definition 5 as a coupling with the uniform distribution: we sample A1, . . . ,Am,p
uniformly and then modify p in the location a = Tribes(A1), . . . ,Tribes(Am). With p′ being the
state of p before the change, that defines some coupling between x and the uniformly distributed
A1, . . . ,Am,p′. This, however, is not a semi-coupling, since if we fix A1, . . . ,Am to some value
such that |a| = m/2 and fix p′ such that p′

a = 0, then 0 = p′
a ̸= pa = 1 with probability 1.

We modify the distribution from Definition 5 by replacing each bit of p with an instance of
Tribes.

Lemma 18. There exists a n−0.6-semi-coupling (x,u) with u ∼ {0, 1}n and an O(log2 n)-DNF
that Ω(log−1/2 n)-distinguishes x from u.

Proof. Consider the smallest m such that m2⌈2m ln 2⌉+ 2m⌈22m ln 2⌉ ≥ n. We define the coupling
as follows:

1. Sample A = A1, . . . ,Am ∼ ({0, 1}m×⌈2m ln 2⌉)m uniformly.
2. Sample P = P 1, . . . ,P 2m ∼ ({0, 1}2m×⌈22m ln 2⌉)2

m
uniformly.

3. Take Q = P .
4. Define a ∈ {0, 1}m by ai = Tribes(Ai) for each i ∈ [m].
5. If |a| = m/2, choose j ∼ [⌈22m ln 2⌉] and force Qa

ℓ,j := 1 for each ℓ ∈ [2m].

Local coupling. We claim that x := (A,Q) is 2−2m-semi-coupled with u := (A,P ). Fix some
A ∈ supp(A) and P ∈ supp(P ). Then for bits of x that correspond to A the coupling condition is
trivially satisfied as these bits are shared with u. The remaining bits are indexed by a ∈ {0, 1}m,
i ∈ [2m], j ∈ [⌈22m ln 2⌉], we need to bound the probability:

Pr[P a
i,j ̸= Qa

i,j | A = A ∧ P = P ] = Pr[Qa
i,j ̸= P a

i,j | A = A ∧ P = P ]

If |a| ≠ m/2 or a ̸= (Tribes(A1), . . . ,Tribes(Am)), then this probability is 0 since (5) is not
invoked and P = Q. If |a| = m/2 and a = (Tribes(A1), . . . ,Tribes(Am)) we have

Pr[Qa
i,j ̸= P a

i,j | A = A ∧ P = P ] ≤ Pr[j = j] = 1/⌈22m ln 2⌉ ≤ 2−2m ≪ n−0.6.

Distinguishability. We take the distinguishing function F from Lemma 7 and define the new
distinguisher F ′ : supp(A)× supp(P ) → {0, 1} as

F ′(A1, . . . , Am, P 1, . . . , P 2m) := F (A1, . . . , Am,Tribes(P 1), . . . ,Tribes(P 2m)).

Let E be the event “|a| = m/2”. As in Lemma 7 we observe that Pr[P = Q | ¬E] = 1, so
Pr[F ′(A,P ) = 1 | ¬E] = Pr[F ′(A,Q) = 1 | ¬E]. By the construction of Q and F ′ we have
Pr[F ′(A,Q) = 1 | E] = 1. On the other hand

Pr[F ′(A,P ) = 1 | E] = Pr[F (A, (Tribes(P 1), . . . ,Tribes(P 2m))) = 1 | E]

(by Lemma 9) ≤ Pr
x∼{0,1}2m

[F (A,x) = 1 | E] +O(2−2m · 2m)

(analogous to Lemma 7) ≤ 1/2 +O(2−m) ≤ 2/3.
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Formally, to show the last inequality, we will do the following:

Pr
x∼{0,1}2m

[F (A,x) = 1 | E] = Pr
x∼{0,1}2m

[xa = 1 | E]

=
∑

a∈{0,1}m
Pr[xa = 1 | E ∧ a = a] Pr[a = a | E]

=
∑

a∈{0,1}m
Pr[xa = 1]Pr[a = a | E] =

1

2
.

Then as shown in Lemma 7 Pr[E] = Ω(1/
√
m). All together this gives us that F ′ Ω(1/

√
m)-

distinguishes x and u.
It remains to observe that the 1-certificate complexity of F ′ is at mostO(m2): to the certificate of

F in Claim 4 we add the certificate thatTribes(P j) = 1 where j = (Tribes(A1), . . . ,Tribes(Am)).
Thus there exists a DNF of width O(m2) that computes F .

In order to get the Ω(1)-distinguishability we follow the amplification in Section 2.4:

Theorem 19. There exists a 1/
√
n-semi-coupling (x,u) where u ∼ {0, 1}n and a O(log3 n)-width

DNF that Ω(1)-distinguishes x from u.

Proof. The proof is identical to the one of Theorem 1. Take x′ over {0, 1}s that is s−0.6-semi-
coupled with u′ ∼ {0, 1}s, then the random variable x comprised of t = O(log s) independent
copies of x′, x = x′

1, . . . ,x
′
t is s

−0.6-semi-coupled with t independent copies of u′, u = u′
1, . . . ,u

′
t.

On the other hand by Lemma 12 and Lemma 11 there exists an O(t log2 s) = O(log3 n)-DNF that
Ω(1)-distinguishes x and u. Since s−0.6 ≪ n−1/2 we get the claim.
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