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EPFL

Nathaniel Harms
EPFL

Valentin Imbach
EPFL

Dmitry Sokolov
EPFL

May 6, 2025

Abstract

We prove that the sign-rank of the k-Hamming Distance matrix on n bits is 2O(k), independent of
the number of bits n. This strongly refutes the conjecture of Hatami, Hatami, Pires, Tao, and Zhao
(RANDOM 2022), and Hatami, Hosseini, and Meng (STOC 2023), repeated in several other papers, that
the sign-rank should depend on n. This conjecture would have qualitatively separated margin from sign-
rank (or, equivalently, bounded-error from unbounded-error randomized communication). In fact, our
technique gives constant sign-rank upper bounds for all matrices which reduce to k-Hamming Distance,
as well as large-margin matrices recently shown to be irreducible to k-Hamming Distance.
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1 Introduction

A boolean matrix M ∈ {0, 1}N×N can always be represented as a point–halfspace arrangement. For example,
in Figure 1, the identity and a lower triangular matrix are represented with rows assigned to points on the
unit sphere and columns assigned to halfspaces with boundary through the origin, such that point xi belongs
to a halfspace hj if and only if the entry i, j of the matrix is 1.
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Figure 1: Sign-rank representations of the identity matrix and lower triangular matrix.

The smallest dimension d in which M can be represented in this way, with rows assigned to points
and columns assigned to halfspaces through the origin, is called the sign-rank of M , denoted rank±(M)
(also called dimension complexity in learning theory). We may equivalently define sign-rank of a boolean
matrix M as the smallest rank d of a matrix A ∈ RN×N which satisfies M±(i, j) = sign(A(i, j)) for all i, j,
where M±(i, j) = 2M(i, j)− 1 is a representation of M as a sign matrix M± ∈ {±1}N×N .

In this paper we prove that the k-Hamming Distance matrices have sign-rank at most 2O(k). These
are the matrices HDn

k : {0, 1}n × {0, 1}n → {0, 1} where HDn
k (x, y) = 1 if and only if the Hamming distance

dist(x, y) between row index x ∈ {0, 1}n and column index y ∈ {0, 1}n is exactly k.

Theorem 1.1. For all n, k ∈ N, rank±(HDn
k ) = 2O(k).

For k = 0, HDn
k is the identity matrix in Figure 1, but for k ≥ 1 our theorem improves on the best

known (and trivial) bound of poly(n), and refutes the conjecture that for some constant k the sign-rank
must depend on n. This was a conjecture of Hatami, Hatami, Pires, Tao, and Zhao [HHP+22], Hatami,
Hosseini, and Meng [HHM23], the basis for a question of Harms and Zamaraev [HZ24], and an open problem
in [FHHH24, HH24, HR24, FGHH25]. The goal of this conjecture was to separate the class of matrices with
large margin, i.e., those which can be represented as point–halfspace arrangements with a large (constant)
margin between any hyperplane and any point; from those of constant sign-rank, i.e., the ones which can
be represented as point–halfspace arrangements whose dimension is independent of matrix size. This is a
question of Linial, Mendelson, Schechtman, and Shraibman [LMSS07] with consequences for communication
complexity, learning theory, circuit complexity, distributed computing, privacy, and other areas of computer
science [FKL+01, BES02, For02, LS09, FX14, BNS19, HWZ22, HHP+22, HZ24, AN25]. We explain this
question in more detail in Section 1.1.

Generalization. Surprisingly, our simple technique applies not only to k-Hamming Distance but to all
large-margin matrices obtained from it by reductions (i.e., boolean combinations), as well as large-margin
matrices which are irreducible to k-Hamming Distance [FGHH25]. While new large-margin matrices can
be created by reductions, it is a well-known open problem whether reductions preserve sign-rank [BMT21,
HHP+22], so reductions to k-Hamming Distance are not handled a priori by Theorem 1.1. Furthermore,
[FGHH25] proved that there exist large-margin matrices which are irreducible to k-Hamming Distance.
These can be obtained from k-Hamming Distance by “distance-r compositions”. [FGHH25] observed that
all large-margin matrices known prior to their work could be obtained from k-Hamming Distance by
compositions and reductions. We show that none of these examples can separate margin from sign-rank:
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Theorem 1.2 (Generalization of Theorem 1.1, Informal). Any boolean matrix M that is obtained
from k-Hamming Distance by reductions and “compositions” has rank±(M) = O(1).

Subsequent to [FGHH25] and concurrent with the present study, recent work of Sherstov and Storozhenko
[SS24] introduces a new class of large-margin matrices, which are now the only remaining candidates that
we are aware of for separating large margin from constant sign-rank.

The proofs of Theorems 1.1 and 1.2 involve new techniques (a focused study of support-rank) that we
outline in Section 2. These techniques in turn lead us to define some useful new complexity classes, which
we describe in Section 5 along with some open problems. For the remainder of this introduction, we discuss
the implications of our main results.

1.1 Context and Consequences for Sign-Rank vs. Margin

Sign-rank and margin. Given a boolean matrix M , we can ask to minimize the dimension of its point–
halfspace representation, which leads to the definition of sign-rank. But another way to optimize the point–
halfspace representation is to ignore the dimension and maximize the margin, so that no point is too close
to the boundary of any halfspace. For a boolean matrix M ∈ {0, 1}N×N , we write

mar(M) := sup
u,v

min
i,j∈[N ]

|⟨ui, vj⟩|

where the supremum is over all assignments u, v : [N ] → Rd of the rows and columns to unit vectors in any
dimension d such that the signed matrix is M±(i, j) = sign(⟨ui, vj⟩).

It is not well understood how these two types of representations relate to one another. Small sign-rank
does not imply large margin: the triangular matrix in Figure 1 has sign-rank 2 but small (sub-constant) mar-
gin [BW16, Vio15, SY23], while matrices of sign-rank 3 can have margin (equivalently, discrepancy [LS09])
as small as (poly(N))−1 [HHL20, ACHS24]. A basic open question is the converse:

Open Problem 1.3 ([LMSS07, HHP+22]). Is there a function η such that any boolean matrix M
satisfies rank±(M) ≤ η(mar(M)−1)? That is, do matrices of large (constant) margin also have
constant sign-rank?

Contrary to conjectures in earlier work, our Theorem 1.2 shows that all large-margin matrices covered in
[FGHH25] also have constant sign-rank. Sign-rank and margin are important in several areas of computer
science, leading to several equivalent formulations of this question, for example:

• The margin determines the performance of the perceptron algorithm. Are there hypothesis classes of
dimension (sign-rank) ω(1) that the perceptron algorithm can learn with only O(1) mistakes?

• Via a relationship to randomized communication complexity, hypothesis classesH with constant margin
are exactly those which are PAC learnable under pure differential privacy [FX14, BNS19]. Is any super-
constant dimensional problem learnable under pure differential privacy?

• Is every hereditary graph class with constant size adjacency sketches (e.g., [FK09, Har20, HWZ22,
EHK22, NP24, AN25]) a point–halfspace incidence graph in constant dimension?

We next focus on communication complexity, where, as we explain below, the equivalent question is:

Open Problem 1.4. Is there any communication problem with constant bounded-error randomized
cost, but super-constant unbounded-error cost?

Sign-rank in communication. One of the main goals in communication complexity is to understand the
power of randomness. When allowing randomness in a communication protocol, there are a few choices we
can make about what to demand from our protocol:
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1. Is the source of randomness public-coin (both parties share the source of randomness), or private-coin
(each party has their own source of randomness that the other doesn’t see)?

2. Should our protocol have bounded error (the probability of error is at most, say 1/4) or are we satisfied
with unbounded error (the probability of error is strictly less than 1/2)?

The most interesting choices to compare are bounded-error, public-coin and unbounded-error, private-coin,
because, unlike the other choices, these are not obviously weaker or stronger than the other. For a boolean
matrix M ∈ {0, 1}N×N , we write R(M) for the least cost of a bounded error, public-coin protocol comput-
ing M , and U(M) for the least cost of an unbounded error, private-coin protocol.

Moreover, Newman’s theorem [New91] says that any bounded-error randomized protocol requires at most
O(log logN) bits of randomness. One player can privately generate these bits and send them to the other
player, giving

U(M) ≤ R(M) +O(log logN). (1)

Is this the best we can do in general, or can we remove the dependence on N? In other words, if we fix
R(M) to be constant (i.e., independent of the matrix size N), does this imply U(M) is also constant? This
is equivalent to Open Problem 1.3, by the following argument. Paturi and Simon [PS86] showed

U(M) = log(rank±(M))± 2. (2)

This means that constant U(M) is equivalent to constant sign-rank. Linial and Shraibman [LS09] showed
that margin is equivalent to discrepancy, and therefore

Ω(log(mar(M)−1)) ≤ R(M) ≤ O(mar(M)−2), (3)

so that constant R(M) is equivalent to constant margin. We may therefore rephrase Open Problem 1.3 as:
If R(M) = O(1), is U(M) = O(1)?

The classes of communication problems with R(M) = O(1) have been well studied [HHH23, HWZ22,
HHH22, DHP+22, EHK22, CHZZ24, FHHH24, HR24, FGHH25, Tom25], and several papers [HHP+22,
HHM23, HH24, HZ24] have conjectured a negative answer to Open Problem 1.3:

Conjecture 1.5. There exists a communication problem M with R(M) = O(1) but U(M) = ω(1).

The most obvious candidates for this conjecture are the k-Hamming Distance problems, which have
R(HDn

k ) = Θ(k log k) for k <
√
n [HSZZ06, Sağ18]. Any problem which reduces to HD0 (i.e., Equality)

has constant sign-rank [HHP+22], but the question remained open for problems which do not reduce to
Equality, including 1-Hamming Distance and its generalizations [HHH23, HWZ22, FHHH24, FGHH25].
Several papers [HHP+22, HHM23, HZ24] worked towards the conjecture that for constant k ≥ 1, these
problems should satisfy Conjecture 1.5:

Conjecture 1.6 (Now false). For some constant k ≥ 1, rank±(HD
n
k ) = ω(1).

In particular, [HHP+22] showed that all known lower bound techniques fail to prove this conjecture;
[HZ24] suggested a (now false) characterization of the problems with both R(M) = O(1) and U(M) = O(1)
as exactly those which reduce to Equality (which for XOR functions would follow from Conjecture 1.6 for
k = 1, due to the result of [CHZZ24]); and [HHM23] settled Conjecture 1.5 for partial matrices by an elegant
application of the Borsuk–Ulam theorem to the Gap Hamming Distance problem (where two parties given
x, y ∈ {0, 1}n must decide if the Hamming distance is either at most αn or at least (1−α)n for some constant
α > 0). Another approach to solving Conjecture 1.5 is to find a completion M of Gap Hamming Distance
which has R(M) = O(1); this was proven impossible in concurrent (independent) work [BHH+25].

Theorem 1.1 gives an upper bound of U(HDn
k ) = O(k) on the unbounded-error communication cost,

showing that it is always smaller than the bounded-error cost Θ(k log k), whereas Conjecture 1.6 posits an
arbitrarily large gap in the other direction. However, the conjecture was sensible for several reasons:

• It was not known whether any other fundamentally different candidates exist; [FGHH25] only recently
showed that there are candidates which are irreducible to k-Hamming Distance.
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• Earlier work on symmetric XOR problems, of which k-Hamming Distance is the simplest example,
have not witnessed any upper bounds superior to O(n) [HQ17] and this is tight for Gap Hamming
Distance [HHM23].

• The Borsuk–Ulam technique can be used to give a lower bound of Ω(n) for a continuous version of the
problem, 1-Hamming Distance on strings in [0, 1]n.

• Problems reducing to Equality satisfy many nice properties that 1-Hamming Distance does not, see
e.g., the close relationship between Equality and the γ2-norm (see Definition 5.3) [HHH22, CHHS23,
PSS23, CHZZ24, CHH+25, Tom25], and four different proofs that 1-Hamming Distance does not
reduce to Equality [HHH22, HWZ22, FHHH24, HR24]. Equality is “special” among the Hamming
distance problems, so one may expect it to be special with respect to sign-rank as well.

Owing partly to the latter reason, [HHP+22, HHM23, HZ24] stated the strongest form of Conjecture 1.6, for
k = 1 rather than an arbitrary constant k. The stronger conjecture is easier to refute than Conjecture 1.6
(see Section 2.3), but the easier refutation does not generalize to k = 2.

The main contribution of this paper is the more general technique allowing to go beyond k = 1, including
the candidates for Conjecture 1.5 which [FGHH25] showed cannot be reduce to k-Hamming Distance.

2 Technique: Support-Rank

The main conceptual idea allowing for our upper bounds is to switch from sign-rank to support-rank.

Definition 2.1 (Support-Rank). Let M ∈ {0, 1}N×N be a boolean matrix. Its support-rank
rank0(M) is the minimal r for which there exists some A ∈ RN×N with rank r, satisfying

∀i, j ∈ [N ] : M(i, j) = 0 ⇐⇒ A(i, j) = 0.

That is, the matrices A and M have the same support.

Support-rank has been studied previously in the context of tensor rank [CU13, BCZ17, BCZ18]. In
quantum communication complexity, it has been called nondeterministic rank [dW03], in circuit complexity,
equality rank [HP10], and, in graph theory, minimum rank [FH07]. It is also closely related to unit-distance
graphs [EHT65, AK14]; see our discussion in Section 2.3.

Why support-rank? A basic fact is that any boolean matrix of support-rank r has sign-rank O(r2);
see Section 2.1. The converse is false: we have rank0(IN ) = N but rank±(IN ) = 3 for the N × N identity
matrix. Thus, proving upper bounds on support-rank is a more difficult task. Nevertheless, what is conve-
nient about support-rank is that it behaves better than sign-rank under boolean combinations (or reductions).
To explain this, recall that our goal is to give a sign-rank upper bound for

HDn
k = HDn

≤k ∧ ¬HDn
≤k−1,

where ∧ and ¬ are understood entry-wise and HDn
≤k(x, y) = 1 if and only if dist(x, y) ≤ k. The challenge

with sign-rank is that it is not known whether the sign-rank of A ∧ B can be bounded in terms of the
sign-ranks of A and B [BMT21, HHP+22]. So even if we can prove, say, rank±(HD≤k) = O(1), this would
not imply any bound on rank±(HDk). By contrast, we show the following useful properties of support-rank:

• (Section 2.1): We show that any matrix reducible to matrices with bounded support-rank has bounded
sign-rank. All of our arguments for sign-rank upper bounds will rely on this fact.

• (Section 2.2): We explain how to transform polynomial identities P (x, y) = 0 into linear identities
⟨x′, y′⟩ = 0. This is useful for giving upper bounds on support-rank via polynomials.
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2.1 From Support-Rank to Sign-Rank via Reductions

Reductions for constant-cost randomized communication are defined similarly to standard oracle reductions
in communication complexity (e.g., [BFS86, CLV19]) except that there is no bound on the size of the oracle
query inputs. For any communication problem Q (i.e., a family of boolean matrices), and any boolean
matrix P , we write DQ(P ) for the minimum cost of a deterministic communication protocol computing P
with access to a unit-cost oracle that computes Q. We say problem P reduces to Q if there is a constant c
such that for every P ∈ P, DQ(P ) ≤ c. More formally:

Definition 2.2 (Oracle Protocols). Let Q be a communication problem. For any matrix P ∈ {0, 1}N×N ,
we write DQ(P ) for the smallest depth of a communication tree T , where each inner node v is labelled by
a matrix Qv ∈ Q and two functions av, bv; and each leaf ℓ is labelled with an output value. On inputs
i, j ∈ [N ] the protocol at node v proceeds by computing Qv(av(i), bv(j)) and descending to the left or right
child depending on the result. At a leaf ℓ the protocol outputs the value of ℓ, which must be equal to P (i, j).

Since we are concerned only with constant vs. non-constant costs, one may equivalently say that P
reduces to Q if there is a constant c such that every P ∈ P can be written as

P = Γ(Q1, . . . , Qc)

for some choice of Qi ∈ Q and boolean function Γ: {0, 1}c → {0, 1} which is applied entry-wise to Q1, . . . , Qc

to produce P ; see e.g., [CLV19, FHHH24, FGHH25] for more details on these reductions and [ABSZ24]
for applications in graph theory. It is not hard to see that reductions preserve constant-cost randomized
communication in the bounded-error model: if R(Q) = O(1) and DQ(P) = O(1) then R(P) = O(1), because
we may replace each query Q ∈ Q with a randomized subroutine computing Q using standard majority-vote
error boosting to bring the total error down to 1/4.

The most important property of support rank is that it allows to upper bound rank±(M) in terms of the
number of queries DQ(M) required to compute M with an oracle Q that has bounded support-rank. This
lemma generalizes a theorem of [HHP+22] which held for queries to the Equality oracle.

Lemma 2.3. Let Q be a family of boolean matrices with rank0(Q) ≤ r. Then, for any boolean P ,

rank±(P ) ≤ O(r2)D
Q(P ).

Proof. (Generalization of [HHP+22, Theorem 3.8].) Let T be a decision tree for P of depth q = DQ(M),
which queries problems in Q. We prove that rank±(P ) ≤

(
1 + r2

)q
by induction on q. The base case q = 0

is immediate. For q ≥ 1, let R ∈ Q be the problem queried at the root of T . Let A0 and A1 be the sign
matrices corresponding to the two sub-problems computed by T after R returns 0 and 1, respectively. Thus,

P± = R ◦A1 + (¬R) ◦A0,

where A ◦ B is the entry-wise (or Hadamard) product defined by (A ◦B)ij = AijBij . By the inductive
hypothesis, there are real matrices Ã0 and Ã1 with rank at most

(
1 + r2

)q−1
and with the same sign pattern

as A0 and A1, respectively. Similarly, let R̃ be a real matrix with the same support as R and rank at most r.
Note that for a sufficiently large γ > 0, the real matrix Ã1 + γ

(
R̃ ◦ R̃ ◦ Ã0

)
has the same sign pattern as P±.

This is because on the support of R̃, the second term will dominate, whilst the first term dictates the sign
wherever R̃ is zero. Using the fact1 that rank(A ◦B) ≤ rank(A) rank(B), we conclude

rank±(P ) ≤ rank
(
Ã1 + λ

(
R̃ ◦ R̃ ◦ Ã0

))
≤ rank

(
Ã1

)
+ rank

(
R̃
)2

rank
(
Ã0

)
≤
(
1 + r2

)q
. ■

1Write A =
∑r

i=1 aiu
T
i and B =

∑s
j=1 bjv

T
j . Then, we have A ◦ B =

(∑
i aiu

T
i

)
◦
(∑

j biv
T
j

)
=

∑
i,j(aiu

T
i ) ◦ (bjv

T
j ) =∑

i,j(ai ◦ bj)(ui ◦ vj)
T . This shows that A ◦B can be written as the sum of rs many rank-1 matrices.
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2.2 From Polynomials to Support-Rank via Veronese Maps

Note that the support-rank of M ∈ {0, 1}N×N is at most r if and only if there are vectors u1, u2, . . . , uN ∈ Rr

and v1, v2, . . . , vN ∈ Rr such that

∀i, j ∈ [n] : Mij = 0 ⇐⇒ ⟨ui, vj⟩ = 0. (4)

It is more convenient to work with polynomial equations P (ui, vj) = 0. For example, suppose we have

∀i, j ∈ [n] : Mij = 0 ⇐⇒ P (ui, vj) = 0 (5)

where, say, ui, vj ∈ R2 and P (a, b) is a polynomial on 4 variables, say P (a, b) = a21+ b21− a1b1+3a2b2. Then
we can write P as an inner product of two vectors, each depending only on a or only on b, by grouping each
monomial into its own dimension:

P (a, b) =
〈
(a21, 1,−a1, 3a2), (1, b

2
1, b1, b2)

〉
.

In this way we transform equations like Equation (5) into the equations like Equation (4) required for the
definition of support-rank, where the dimension is at most the number of monomials in P . In general we
have the following proposition (whose proof simply generalizes the above discussion and is hence omitted).

Proposition 2.4 (Veronese Map). Let M ∈ {0, 1}n×n and let P be a real polynomial in 2m variables.
Assume that there are functions αt : [n] → R and βt : [n] → R for t ∈ [m] that satisfy

∀i, j ∈ [n] : Mij = 0 ⇐⇒ P
(
α1(i), . . . , αm(i), β1(j), . . . , βm(j)

)
= 0.

Then, rank0(M) is at most the number of monomials in P with non-zero coefficients.

2.3 Support-Rank and Unit-Distance Graphs

A (faithful) unit-distance graph [EHT65, AK14] in dimension d is a graph G = (V,E) whose vertices x ∈ V
can be identified with points ux ∈ Rd such that

{x, y} ∈ E ⇐⇒ ∥ux − uy∥2 = 1.

We claim that the complement of the adjacency matrix of a unit-distance graph in dimension d has support-
rank at most O(d). Indeed, we have ∥ux − uy∥2 = 1 ⇔ P (ux, uy) = 0 for the 2d-variate polynomial
P (a, b) :=

∑d
i=1(ai − bi)

2 − 1 with O(d) monomials, and the claim follows from Proposition 2.4. Conversely,
it is easy to show that that any boolean matrix M with rank0(M) = d is the complement of the bi-adjacency
matrix of a bipartite unit-distance graph in dimension d (indeed, normalize all ui, vj to have length 1/

√
2).

It is a classic fact [EHT65] that the hypercube graph (the bipartite graph with bi-adjacency matrix HDn
1 )

is a unit-distance graph in dimension 2. By the above discussion, we have rank0(¬HDn
1 ) ≤ O(1), which

implies rank±(HD
n
1 ) ≤ O(1) via Lemma 2.3. This already proves Theorem 1.1 in the special case k = 1.

However, this argument does not generalize to k = 2, because ¬HDn
2 (and also HDn

2 ) contains an unbounded-
size identity submatrix, which shows that its support-rank is unbounded.

3 Sign-Rank of k-Hamming Distance

In this section, we prove Theorem 1.1. We have HDn
k = HDn

≥k∧¬HDn
≥k+1 and hence by Lemma 2.3 it suffices

to prove an upper bound on the support-rank of HDn
≥k.

Theorem 3.1. We have 2k ≤ rank0(HD
n
≥k) ≤ 4k for all k ≤ n.

It is important here to consider HDn
≥k rather than HDn

≤k, as the latter contains an identity submatrix
of size Ω(2n) and therefore its support-rank depends on n. We also note that this theorem, together with
Lemma 2.3, implies more generally that any matrix reducible to HDn

k has constant sign-rank.
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Corollary 3.2. For all boolean matrices M , rank±(M) = 2O(k·DHDk (M)) and U(M) = O(k · DHDk(M)).

The lower bound in Theorem 3.1 follows directly from the fact that HD≥k contains an identity submatrix
of size 2k, induced by the set of all strings ending in n− k zeros.

The upper bound uses the following method (which we further generalize in Section 4). We show that
there exists a map A : {0, 1}n → Rk×k assigning to each binary string x ∈ {0, 1}n a k × k matrix A(x) with
the property that

∀x, y ∈ {0, 1}n : HDn
≥k(x, y) = 1 ⇐⇒ rank

(
A(x)−A(y)

)
= k. (6)

In other words, the output of the communication problem depends only on whether the matrix A(x)−A(y)
has full rank. This can be verified by testing if its determinant is 0. Since the determinant is given by a
polynomial in the entries of the matrix, we can then use a Veronese map to obtain a support-rank upper
bound. Figure 2 illustrates the proof that follows.

Diag(x− y) =

n

compress

Π

k

test

det
Poly(x, y)

?
= 0

dist(x, y) ≥ k ⇔ rank
(
Diag(x− y)

)
≥ k ⇔ rank

(
Π
(
Diag(x− y)

))
= k ⇔ det

(
Π
(
Diag(x− y)

))
̸= 0

Figure 2: A sketch of the argument: We reduce HD≥k to checking whether a polynomial vanishes.

As a first step, observe that if we view {0, 1}n as a subset of Rn, then

∀x, y ∈ {0, 1}n : HDn
≥k(x, y) = 1 ⇐⇒ x− y has ≥ k non-zero entries ⇐⇒ rank(Diag(x− y)) ≥ k. (7)

The matrices Diag(x−y) are of size n×n and the next step is to reduce their size to k×k, without changing
the rank, provided it is at most k. Informally, this can be accomplished by applying a random projection
which has probability 1 of preserving ranks. Formally, we have the following lemma.

Lemma 3.3 (Rank Compression). Let M be a finite set of matrices in Ra×b. For any a′ and b′,
there exists a linear map Π: Ra×b → Ra′×b′ which satisfies

∀M ∈ M : rank
(
Π(M)

)
= min

(
rank(M), a′, b′

)
.

Proof. It suffices to prove the statement with b = b′, since the general result is recovered by applying this
case twice, transposing in between. We can further assume a′ < a, as otherwise we can just take any injective
linear map for Π. For each M ∈ M, pick a subspace VM ⊆ image(M) ⊆ Ra of dimension min(rank(M), a′).
Since M is finite, there is a subspace V ⊆ Ra of dimension a− a′ such that

V ∩
⋃

M∈M
VM = {0}.

We now let Π(x) = Px where P ∈ Ra′×a is the projection with kernel V . Thus, for all M ∈ M we have

rank
(
Π(M)

)
= rank(PM) = a′ − dim

(
V ∩ image(M)

)
≥ dim(VM ) = min

(
rank(M), a′

)
.

The converse inequality clearly holds as well. ■
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In particular, using M = {Diag(x − y) | x, y ∈ {0, 1}n} and the fact that k ≤ n, we obtain a linear
map Π: Rn×n → Rk×k with the desired property

∀x, y ∈ {0, 1}n : rank
(
Π
(
Diag(x− y)

))
= k ⇐⇒ rank

(
Diag(x− y)

)
≥ k ⇐⇒ dist(x, y) ≥ k. (8)

Thus, setting A(x) = Π(Diag(x)) for all x ∈ {0, 1}n, we obtain the desired characterisation of Equation (6).
It remains to express the rank bound of this k × k matrix in terms of a polynomial suitable for the

Veronese map. Writing Sk for the set of permutations on [k], we further have

∀x, y ∈ {0, 1}n : det
(
A(x)−A(y)

))
=
∑
π∈Sk

sign(π)

k∏
i=1

(
A(x)iπ(i) −A(y)iπ(i)

)
.

Expanding the right side of the above, we obtain a polynomial over 2k variables, corresponding to the entries
of A(x) and A(y), with at most 2k ·k! many monomials. Thus, using the Veronese map from Proposition 2.4,
we conclude that

rank0(HD
n
≥k) ≤ k! · 2k.

This bound is already independent of n, but for Theorem 3.1 we claim an even better upper bound of 4k.
To achieve this, we can be smarter when constructing the Veronese map. In the following section, we prove
the following fact, which gives an improved Veronese map, concluding the proof of Theorem 3.1.

Proposition 3.4. For matrices A,B ∈ Rk×k, we can write det(A−B) as a sum of at most 4k many terms,
each of the form ±det(A′) det(B′) where A′ and B′ denote some square submatrices of A and B, respectively.

Remark 3.5. The above proof works for k-Hamming Distance over any finite alphabet, not only for {0, 1}.
One simply has to identify the alphabet with some subset of R to satisfy Equation (7).

3.1 Proof of Proposition 3.4

We use the following lemma from [Mar90], whose proof we include for completeness. Note that, in this lemma,

the right side of the equation contains
∑n

k=0

(
n
k

)2
=
(
2n
n

)
≤ 4n many terms, which proves Proposition 3.4.

Lemma 3.6. Let n ∈ N and let A,B ∈ Rn×n. Then,

det(A+B) =
∑

α,β⊆[n]

|α|=|β|

(−1)s(α)+s(β) det(A|α×β) det(B|ᾱ×β̄),

where s(·) denotes the sum of a set, and A|α×β denotes the submatrix of A indexed by sets α and β.

Proof. Let Sn denote the set of all permutations on the set [n]. We have

det(A+B) =
∑
π∈Sn

sign(π)

n∏
i=1

(A+B)iπ(i) =
∑
α⊆[n]

∑
π∈Sn

sign(π)
∏
i∈α

Aiπ(i)

∏
i∈ᾱ

Biπ(i).

Given a choice of α ⊆ [n], any permutation π ∈ Sn can be uniquely decomposed as π = τ ◦ πα ◦ πᾱ where

πα(x) = x for all x ∈ ᾱ and πᾱ(x) = x for all x ∈ α,

and τ ∈ Sn is the unique permutation with τ(α) = π(α) that is order preserving on both α and ᾱ. Note
that τ only depends on π(α), which we now call β. Moreover, after fixing β, the correspondence between
pairs (πα, πᾱ) and π is bijective. Thus,

det(A+B) =
∑

α,β⊆[n]

|α|=|β|

∑
πα

∑
πᾱ

sign(τ ◦ πα ◦ πᾱ)
∏
i∈α

Ai(τ◦πα)(i)

∏
i∈ᾱ

Bi(τ◦πᾱ)(i)

8



B61

A32

A23

A44

B15

B56

α

β

B61

A42

A33

A24

B15

B56

α

β

B15A23A32A44B56B61 +B15A24A33A42B56B61 = (A23A32A44 +A24A33A42)(B15B56B61)

Figure 3: Two terms in the expansion of det(A+B) that only differ on the square given by α×β and

can thus be factored. Doing this for all like terms of each square, we arrive at Lemma 3.6.

=
∑

α,β⊆[n]

|α|=|β|

sign(τ)

[∑
πα

sign(πα)
∏
i∈α

Ai(τ◦πα)(i)

][∑
πᾱ

sign(πᾱ)
∏
i∈ᾱ

Bi(τ◦πᾱ)(i)

]

=
∑

α,β⊆[n]

|α|=|β|

sign(τ) det(A|α×β) det(B|ᾱ×β̄).

Finally, note that the number of inversions of τ is given by
∑

i∈α |π(i) − i|, which has the same parity as∑
i∈α(π(i) + i) = s(β) + s(α). Thus, sign(τ) = (−1)s(α)+s(β), just as desired. ■

4 Rank Problems and Generalizations of k-Hamming Distance

Corollary 3.2 showed that every problem that reduces in q queries to k-Hamming Distance has sign-
rank 2O(qk). But [FGHH25] recently showed that there exist problems with R(M) = O(1) that do not
reduce to k-Hamming Distance. At first, this provides some hope of using these problems to separate
constant margin from constant sign-rank, but we shall crush this hope, using another new idea.

The problems of [FGHH25] were constructed via distance-r compositions. The simplest example, which
was the main focus of their paper, is the {4, 4}-Hamming Distance problem. We will discuss only this
example here and leave the formal definition of distance-r compositions for Section 4.3.

Example 4.1 ({4, 4}-Hamming Distance). Alice and Bob receive matrices X,Y ∈ {0, 1}n×n respec-
tively. Write Xi for the ith row of X, and similar for Y . The players should output 1 if and only if
the following conditions are satisfied:

1. There are at most 2 rows i, j ∈ [n] such that Xi ̸= Yi and Xj ̸= Yj ; and

2. For each row i where Xi ̸= Yi, it holds that dist(Xi, Yi) ≤ 4.

In essence, the reason that {4, 4}-Hamming Distance does not reduce to k-Hamming Distance for
any constant k is that a k-Hamming Distance query is not capable of distinguishing between two rows
each of distance 4 (where the correct output should be 1), and two rows of distance 6 and 2 (where the
correct output should be 0). This poses a challenge for sign-rank as well, since a näıve application of our
method for k-Hamming Distance encounters the same issue.

To handle this type of problem, we define a class of problems called rank problems. A rank problem is
any problem which can be expressed as a function of the rank of the difference between matrices held by
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Alice and Bob; in other words, any problem that can put in the form similar to Equation (6) in our upper
bound of k-Hamming Distance. This notion of a rank problem resembles the problems defined in [SS24],
but concerning matrices over R instead of a finite field F. This difference is crucial in our argument.

Definition 4.2 (Rank Problem). A boolean matrix P ∈ {0, 1}N×N is a rank problem of order k if
for some a, b and every x ∈ [N ], there exist real matrices A(x) and B(x) in Ra×b, satisfying

∀x, y ∈ [N ] : P (x, y) = g
(
rank

(
A(x) +B(y)

))
,

where g : {0, 1, 2, . . . } → {0, 1} is a function which is constant for inputs ≥ k. We say that a family
P of boolean matrices is family of rank problems of order k if there is some function g such that each
P ∈ P is a rank problem of order k with associated function g. Moreover, we call the rank problem
symmetric if A(x) +B(x) = 0 for all x ∈ [N ].

Remark 4.3. In the above definition, we can equivalently take a = b = k. This is because we can
always embed A and B in larger matrices, or compress them using Lemma 3.3 without changing the ranks
pertinently. We also note that it suffices to define g on the domain {0, 1, . . . , k}.

Example 4.4. In the proof of Theorem 3.1, we showed in Equation (8) that HD≥k is a symmetric rank
problem of order k, with associated function g(t) = 1 [t ≥ k].

We prove the following three properties of rank problems.

Theorem 4.5. Rank problems satisfy the following three properties:

1. Rank problems of constant order have constant sign rank.

2. Rank problems of constant order are closed under reductions.

3. Symmetric rank problems of constant order are closed under distance-r compositions.

Since k-Hamming Distance is a rank problem of constant order, the above 3 properties guarantee
that any problem obtained by reductions and compositions of it will have constant sign-rank. As explained
in [FGHH25], this covers all known examples of problems with R(M) = O(1), apart from the remaining
separation candidates from [SS24].

In the following three subsections, we will give proofs of each of the three parts in the above theorem,
with quantitative bounds.

4.1 Rank Problems have Bounded Sign-Rank

Lemma 4.6 (Theorem 4.5, Part 1). If P is a rank problem of order k, then

rank±(P ) = 2O(k log k).

We first deal with a special class of simple rank problems, and then reduce general rank problems to this
case. Let g : {0, 1, . . . } → {0, 1} be some function as in the definition of rank problems. We write ∂g for the
number of times g changes value. If ∂g ≤ 1, then we say that the associated rank problem is monotone.

Lemma 4.7. If P is a monotone rank problem of order k, then

min
(
rank0(P ), rank0(¬P )

)
≤ 4k.

Proof. Let P ∈ {0, 1}N×N be a monotone rank problem of order k. Without loss of generality, replacing P
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with ¬P if necessary, there are functions A,B : [N ] → Ra×b and some r ≤ min(k, a, b) that satisfy

∀x, y ∈ [N ] : P (x, y) = 1 ⇐⇒ rank
(
A(x) +B(y)

)
≥ r.

But now, we finish just like in the proof of Theorem 3.1 using rank compression and the Veronese map: By
Lemma 3.3, there is a rank-preserving linear map Π : Ra×b → Rr×r such that

∀x, y ∈ [N ] : P (x, y) = 1 ⇐⇒ rank
(
A(x) +B(y)

)
≥ r

⇐⇒ rank
(
Π(A(x)) + Π(B(y))

)
= r

⇐⇒ det
(
Π(A(x)) + Π(B(y))

)
̸= 0.

The determinant can be expanded using Lemma 3.6 to obtain a polynomial. Using the Veronese map from
Proposition 2.4 together with Proposition 3.4, we conclude that rank0(P ) ≤ 4r ≤ 4k. ■

We now show that any rank problem reduces to a bounded number of monotone rank problems.

Lemma 4.8. If P is a rank problem of order k, then there exists a family Q of monotone rank problems of
order k, such that

DQ(P ) = O(log k).

Proof. For P ∈ {0, 1}N×N , let A,B : [N ] → Ra×b, and g : {0, 1, 2, . . . } → {0, 1} constant on [k,∞), such
that

∀x, y ∈ [N ] : P (x, y) = g
(
rank

(
A(x) +B(y)

))
.

Using binary search, rank(A(x) +B(y)) can be determined exactly by a decision tree of depth O(log k) that
makes queries to the family of monotone rank problems of order k, given by the same maps A and B. Since
P only depends on this rank, we conclude that DQ(P ) = O(log k).

We note that this bound can be improved to DQ(P ) = O(log ∂g), since we do not need to determine
rank(A(x) +B(y)) exactly, but only need to determine whether or not it lies in the support of g. ■

The proof of Lemma 4.6 is now a simple application of Lemma 4.7 and Lemma 2.3.

4.2 Rank Problems are Closed under Reductions

Lemma 4.9 (Theorem 4.5, Part 2). If the problem P is a boolean combination of q rank problems of
order k each, then P is a rank problem of order O(k)q.

Proof. Let P ∈ {0, 1}N×N be a problem that is the combination of rank problem instances Q1, Q2, . . . , Qq

of order k each. For each i ∈ [q], if Qi ∈ {0, 1}Ni×Ni , then by Remark 4.3, there are Ai, Bi : [Ni] → Rk×k

and gi : {0, 1, . . . , k} → {0, 1}, such that

∀x, y ∈ [Ni] : Qi(x, y) = gi

(
rank

(
Ai(x) +Bi(y)

))
.

For each x ∈ [N ], we now define the diagonal block matrix A(x) with q blocks as follows. For each i ∈ [q],
let xi denote the input to Qi corresponding to input x of P . We now construct the i-th block of A(x) by
aligning (k + 1)i−1 many copies of Ai(xi) side by side, as illustrated in Figure 4:
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A =

A1

A2 A2 · · · A2

k + 1 copies
· · ·

Aq Aq Aq Aq Aq Aq Aq Aq · · · Aq

(k + 1)q−1 copies qk

(k + 1)q − 1

Figure 4: Construction of the matrix A(x) from the matrices Ai(xi) with i ∈ [q].

We similarly define the diagonal block matrix B(x). Now, we have

∀x, y ∈ [N ] : rank
(
A(x) +B(y)

)
=

q∑
i=1

(k + 1)i−1 rank
(
Ai(xi) +Bi(yi)

)
.

Since rank(Ai(x) +Bi(y)) ≤ k for all i ∈ [q],

∀x, y ∈ [N ] : Qi(x, y) = gi

(
rank

(
Ai(xi) +Bi(yi)

))
= gi

(⌊
rank

(
A(x) +B(y)

)
(k + 1)i−1

⌋
modulo k + 1

)
.

Thus, rank(A(x) +B(y)) encodes the answer to every query required to compute P (x, y) as the digits in its
base k + 1 expansion. We conclude that there is some function g : {0, 1, . . . } → {0, 1} that is constant for
inputs at least (k + 1)q − 1 and such that

∀x, y ∈ [N ] : P (x, y) = g
(
rank

(
A(x) +B(y)

))
.

Thus, P is a rank problem of order (k + 1)q − 1 = O(k)q. ■

Remark 4.10. Since the construction in the above proof preserves symmetry, we also find that symmetric
rank problems of constant order are closed under reductions.

Example 4.11. Let S ⊆ N be a finite set. Consider the problem P ∈ {0, 1}2n×2n of deciding whether two
strings x, y ∈ {0, 1}n satisfy dist(x, y) ∈ S. Note that P can be computed by O(|S|) many queries to HD≥k

with k ≤ 1 +maxS. By Example 4.4, all of these problems are rank problems of order O(maxS). Thus, by
Lemma 4.9, it follows that P is a rank problem of order O(maxS)O(|S|).

4.3 Rank Problems are Closed under Distance-r Compositions

We now define the distance-r compositions of [FGHH25]. For simplicity, we present a definition in which each
inner problem Pi is boolean-valued, although [FGHH25] allows an arbitrary constant-size range of values. It
is not difficult to show that the latter can be reduced to queries of the former.

Definition 4.12. Fix any r and an outer function h : {0, . . . , r} → {0, 1}. For boolean matrices
P1, . . . , Pm ∈ {0, 1}N×N , we define their distance-r composition h[[P1, . . . , Pm]] : [N ]m×[N ]m → {0, 1}
as follows. For any x, y ∈ [N ]m, write ∆(x, y) := {i ∈ [m] | xi ̸= yi}. Then,

h[[P1, . . . , Pm]](x, y) =

{
0 if |∆(x, y)| > r,

h
(∑

i∈∆(x,y) Pi(xi, yi)
)

otherwise.

Example 4.13. The problem HDn
k is the distance-k composition where we take h(t) = 1 [t = k] and take

each Pi to be ¬I2,2, the negation of the 2× 2 identity matrix.
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Example 4.14. The {4, 4}-Hamming Distance problem (Example 4.1) is the distance-2 composition where
we take h(t) = 1 [t ≤ 2] and take each Pi to be HDn

≤4.

Lemma 4.15 (Theorem 4.5, Part 3). Let P be a family of symmetric rank problems of order k and
let P1, . . . , Pn ∈ P. Then, for any h : {0, . . . , r} → {0, 1}, the distance-r composition

P = h[[P1, . . . , Pn]]

is a symmetric rank problem of order O(rk)O(rk2).

Proof. We may assume without loss of generality that each Pi is an N ×N matrix. The goal is to write P
as a boolean combination of O(rk2) many rank problems, each of order O(rk); from there, the conclusion
holds by Lemma 4.9. First consider the case where h = 1 is the constant 1 function. In this case

∀x, y ∈ [N ]n : P (x, y) = 1[[P1, . . . , Pn]](x, y) = 1 ⇐⇒ |{i ∈ [n] | xi ̸= yi}| ≤ r.

This is just the Hamming distance problem ¬HDn
≥r+1 over the alphabet Σ = {0, 1}N , which is a rank problem

of order k + 1 (see Remark 3.5). We now prove the statement for general h. Let g : {0, 1, 2, . . . } → {0, 1}
and Ai(x) ∈ Rai×bi for i ∈ [M ] be such that g is constant on inputs at least k, and

∀xi, yi ∈ [N ] : Pi(xi, yi) = g
(
rank

(
Ai(xi)−Ai(yi)

))
.

We wish to recover the multiset
{
rank

(
Ai(xi)− Ai(yi)

)
| i ∈ [n], xi ̸= yi

}
. Due to the simple fact stated

below, it suffices to determine the values

∀t ∈ [k] :

n∑
i=1

min
(
rank

(
Ai(xi)−Ai(yi)

)
, t
)
. (9)

Fact 4.16. Let U and V be two multisets whose elements are integers from {0, . . . , s}. If for all t ∈ [s] we
have

∑
u∈U min(u, t) =

∑
v∈V min(v, t), then necessarily U = V .

Now fix any t ∈ [k]. We determine the value of Equation (9) by constructing a diagonal block matrix
whose blocks are compressions of the matrices Ai(xi) for i ∈ [n], capping their ranks at t, as follows.

For every i ∈ [n], by Lemma 3.3, there is a linear map Π
(t)
i : Rai×bi → Rt×t such that

∀xi, yi ∈ [N ] : rank
(
Π

(t)
i

(
Ai(xi)−Ai(yi)

))
= min

(
rank

(
Ai(xi)−Ai(yi)

)
, t
)
.

For every x ∈ [N ]n and all i ∈ [n], define B
(t)
i (xi) = Π

(t)
i (Ai(xi)) ∈ Rt×t and construct the diagonal block

matrix B(t)(x) ∈ Rnt×nt whose blocks are given by B
(t)
i (xi), illustrated in Figure 5. By Lemma 3.3, there is

a linear map Π(t) : Rnt×nt → Rrt×rt that satisfies

∀x, y ∈ [N ]n : rank
(
Π(t)

(
B(t)(x)−B(t)(y)

))
= min

(
rank

(
B(t)(x)−B(t)(y)

)
, rt

)
.

Now set A(t)(x) = Π(t)(B(t)(x)) for all x ∈ [N ]n. We claim that P (x, y) is a function of

1[[P1, . . . , Pn]](x, y) and rank
(
A(t)(x)−A(t)(y)

)
for 1 ≤ t ≤ k.

If 1[[P1, . . . , Pn]](x, y) = 0, then P (x, y) = 0. Else, we must have |{i ∈ [M ] | xi ̸= yi}| ≤ r which implies that
for all t ∈ [k], rank(B(t)(x)−B(t)(y)) ≤ rt and thus

∀x, y ∈ [N ]n : rank
(
A(t)(x)−A(t)(y)

)
= rank

(
B(t)(x)−B(t)(y)

)
=

n∑
i=1

min
(
rank

(
Ai(x)−Ai(y)

)
, t
)
.

Now for fixed x, y ∈ [N ]m, the above expression is a function of all the O(rk) many possible monotone
rank problems that correspond to the map A(t), each of order rt. Doing this for all t ∈ [k] and using
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B
(t)
1 (x1)

B
(t)
2 (x2)

. . .

B
(t)
n (xn)

B(t)(x) =

nt

nt

Figure 5: Construction of B(t)(x) from the B
(t)
i (xi) for i ∈ [n].

Fact 4.16, we deduce that the multiset {rank(Ai(x)− Ai(y)) | i ∈ [M ]} is a boolean combination of O(rk2)
many rank problems of order rk each. But then the same is true for the value of

P (x, y) = h

 ∑
i∈∆(x,y)

Pi(xi, yi)

 = h

 ∑
i∈∆(x,y)

g
(
rank

(
Ai(x)−Ai(y)

)) .

Thus, we have expressed P as a boolean combination of the rank problem 1[[P1, . . . , Pn]] of order k + 1,
together with O(rk2) many symmetric rank problems of order rk each. By Lemma 4.9 and Remark 4.10, we

conclude that P is a symmetric rank problem of order O(rk)O(rk2). ■

5 What’s SUPP? Complexity Classes and their Relations

5.1 New Classes

One of the main ideas that allowed us to get general upper bounds on sign-rank was the use of support-rank as
an intermediate step, and we have shown that all known communication problems P with R(P) = O(1) can be
computed by queries to matrices of constant support-rank. This suggests the following new communication
complexity classes:

SUPP: The class of communication problems P with constant support-rank, rank0(P) = O(1).

coSUPP: The class of communication problems P whose negation is in SUPP.

PSUPP: The class of communication problems P which can be computed by a constant-cost deterministic
protocol with access to an oracle Q ∈ SUPP.

We note that several recent works [CLV19, CHHS23, CHH+25, Tom25] have implicitly studied problems
in SUPP: the Integer Inner Product functions, which belong to SUPP by definition (the problem asks
to decide if integer vectors u, v ∈ [−M,M ]d are orthogonal in fixed dimension d). For example, [CLV19]
proved that these problems form an infinite hierarchy and have efficient (but still super-constant) randomized
protocols.

In terms of these complexity classes, we may state non-quantitative versions of our results as:

1. For all constant k, HD≥k ∈ SUPP (Theorem 3.1).
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2. PSUPP ⊆ UPP0, the class of problems with constant sign-rank, i.e., constant unbounded-error commu-
nication cost (Lemma 2.3)

3. Therefore for all constant k, PHDk ∈ UPP0.

4. Constant-order rank problems, including all BPP0 (constant-cost bounded-error randomized commu-
nication) problems from [FGHH25], are in PSUPP ⊆ UPP0 (Section 4).

These new classes might informally be described as “one-sided” versions of UPP0. By analogy, one might
consider similar “one-sided” versions of constant margin, which we call “support margin”:

SMAR: The class of communication problems P for which there exists a constant γ > 0 such that for all
P ∈ P, there exist vectors u1, . . . , uN , v1, . . . , vN (in arbitrary dimension) such that

P (i, j) = 0 =⇒ ⟨ui, vj⟩ = 0,

P (i, j) = 1 =⇒ |⟨ui, vj⟩| > γ.
(10)

coSMAR: The class of communication problems P whose negation is in SMAR.

It is not immediately obvious whether these classes are as interesting as SUPP, but we will see below that they
are non-trivial classes which contain interesting problems, in particular the problems of constant γ2-norm.

5.2 Relations Between Classes

SUPP∩ coSUPP = P = RP∩ coRP

SUPP coSUPP

PSUPP

UPP

RP coRP

SMAR coSMAR

BPP

PEQ

PRP

SMAR∩ coSMAR

Γ2

̸=
?

?

?

Proposition 5.1 Proposition 5.2 Proposition 5.5

Proposition 5.6 The three open problems stated in Section 5.3

Figure 6: Hierarchy of constant-cost communication classes (with typical subscript 0 dropped).

New classes are shaded, and the relations we discuss in this paper are highlighted in color.
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Let us discuss how these classes fit within the relevant landscape of constant-cost communication complexity
classes, as described in [HH24]. Communication complexity classes are sometimes written with the super-
script cc, e.g., BPPcc, but we drop this superscript for simplicity. The emerging convention is to write
constant-cost communication classes with the subscript 0, e.g., BPP0, by analogy to constant-depth circuit
complexity classes like TC0 or AC0, but we will also drop this subscript since we are only concerned with the
constant-cost classes. Some standard classes are as follows, and are shown with their relations in Figure 6.

BPP: The class of communication problems P with R(P) = O(1), i.e., problems with constant-cost
randomized public-coin bounded-error protocols, or equivalently families of boolean matrices with
constant margin.

RP: The class of communication problems P with R1(P) = O(1), where R1(P ) denotes the optimal
cost of a public-coin randomized protocol with bounded one-sided error (i.e., its output is correct
with probability 1 on inputs x, y with P (x, y) = 0).

UPP: The class of communication problems P with U(P) = O(1), i.e., problems with constant-cost
randomized private-coin unbounded-error protocols, or equivalently families of boolean matrices
with constant sign-rank.

P: The class of communication problems P with D(P) = O(1), i.e., problems with constant-cost
deterministic protocols.

PEQ: The class of communication problems P with DEQ(P) = O(1), i.e., problems with constant-cost
deterministic protocols that have access to an Equality oracle.

PRP: The class of communication problems P with DQ(P) = O(1) for some Q ∈ RP.

Γ2: The class of communication problems P with constant γ2-norm (Definition 5.3).

Below, we establish some relationships between classes to fill in Figure 6.

5.2.1 The Classes SUPP, coSUPP, and UPP

Proposition 5.1. PSUPP ⊊ UPP.

The proof follows a similar Ramsey-theoretic strategy as in [FHHH24].

Proof. We show that the Greater-Than problem (which has sign-rank 2 as in Figure 1) does not belong
to the class PSUPP. Suppose for the sake of contradiction that there exist constants q, s such that for all N ,
the N ×N Greater-Than matrix GTN ∈ {0, 1}N×N can be written as

GTN = Γ(Q1, . . . , Qq)

where Γ: {0, 1}q → {0, 1} is applied entry-wise to the matrices Qi ∈ {0, 1}N×N , and each Qi satisfies

rank0(Qi) ≤ s. Consider an auxiliary complete graph G on vertices [N ] where each edge {x, y} ∈
(
[N ]
2

)
with

x < y is assigned the color
col({x, y}) := (Qi(x, y), Qi(y, x))i∈[q] .

In other words, the color of {x, y} is the vector in {0, 1}2q, made up of entries in Qi for row x and column
y, as well as row y and column x. Ramsey’s theorem guarantees that for any n ∈ N there exists sufficiently
large N such that there is a set T ⊆ [N ] of size |T | = n such that all edges {x, y} ∈

(
T
2

)
have the same color.

Therefore, all x, y ∈ T with x < y share the same matrix entries Qi(x, y) and Qi(y, x). In particular, for
each i ∈ [q] there are bi, b

′
i ∈ {0, 1} such that

∀x, y ∈ T such that x < y : Qi(x, y) = bi and Qi(y, x) = b′i.
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We argue that there must exist some i ∈ [q] such that bi ̸= b′i. If this were not the case, then for every
x, y ∈ T with x < y, we have

GTN (x, y) = Γ(Q1(x, y), . . . , Qq(x, y)) = Γ(Q1(y, x), . . . , Qq(y, x)) = GTN (y, x),

a contradiction. Therefore, we have Qi such that

Qi(x, y) =

{
bi if x < y

¬bi if x > y.

Then, Qi contains an n× n submatrix on the rows and columns in T , which has all 1s in the upper triangle
and all 0s in the lower triangle, or vice versa. This submatrix therefore has support-rank at least n − 1.
Since this can be found for all values of n, we reach a contradiction. ■

Proposition 5.2. SUPP ∩ coSUPP = P.

Proof. It is well-known that the class P consists of exactly the communication problems with constant rank.
Then, P ⊆ SUPP∩ coSUPP, so we must only show that SUPP∩ coSUPP ⊆ P. Let P be any communica-
tion problem in SUPP∩ coSUPP. There exists a constant s such that for all P ∈ P, rank0(P ) ≤ s and
rank0(¬P ) ≤ s. Lemma 3.6 of [HHH23] shows that for each N there is some r such that every boolean
matrix M ∈ {0, 1}N×N with rank(M) ≥ r contains an N ×N submatrix isomorphic to one of

EQN , ¬EQN , GTN , ¬GTN . (11)

Suppose for the sake of contradiction that P /∈ P, so that for every r there exists P ∈ P with rank(P ) ≥ r.
Then for every N > s there exists P ∈ P containing one of the matrices in Equation (11) as a submatrix. But
for each of these matrices, either it or its complement has support-rank at least N > s, contradiction. ■

5.2.2 The Classes SMAR, coSMAR, and Γ2

It is now necessary to define the γ2-norm and the class Γ2.

Definition 5.3 (γ2-Norm and Γ2). Let M ∈ RN×N . The γ2-norm is defined as

γ2(M) := min
UV=M

∥U∥row∥V ∥col,

where the minimum is over matrices U, V with UV = M , and ∥U∥row is the maximum ℓ2-norm of any row of
U , while ∥V ∥col is the maximum ℓ2-norm of any column of V . In other words, γ2(M) is the smallest λ > 0
for which there exist real vectors ui, vj satisfying ∥ui∥2, ∥vj∥2 ≤ λ and

∀i, j ∈ [N ] : M(i, j) = ⟨ui, vj⟩

We will write Γ2 for the class of all communication problems P with γ2(P ) ≤ λ for all P ∈ P, where λ is
some constant only depending on P.

In Figure 6 we have shown that PEQ ⊆ Γ2, which was proved by [HHH22]. We will require the fact that
Γ2 is closed under negation:

Fact 5.4. If P ∈ Γ2 then ¬P ∈ Γ2.

Proof. Fix a constant λ > 0 such that γ2(P ) ≤ λ for all P ∈ P. Take any P ∈ P and write P = UV where
∥U∥row, ∥V ∥col ≤ λ. Now, ¬P = J − UV , where J is the all-1s matrix. Writing ui for the ith row of U and
vj for the jth column of V , we have

∀i, j : ¬P (i, j) = 1− ⟨ui, vj⟩ = ⟨(1, ui), (1,−vj)⟩,

where ∥(1, ui)∥22, ∥(1,−vj∥22 ≤ 1 + λ2. We conclude that γ2(¬P ) ≤
√
1 + λ2 for all P ∈ P. ■
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Proposition 5.5. Γ2 ⊆ SMAR∩ coSMAR.

Proof. Since Γ2 is closed under negation, it suffices to show Γ2 ⊆ SMAR. Let P ∈ Γ2 and let λ > 0 be a
constant with γ2(P ) ≤ λ for all P ∈ P. For any P ∈ P, write P = UV with ∥U∥row, ∥V ∥col ≤ λ, and write
ui and vj for the ith row of U and jth column of V , respectively. Then, we have

P (i, j) = 0 =⇒ ⟨ui, vj⟩
∥ui∥2∥vj∥2

= 0 and P (i, j) = 1 =⇒ |⟨ui, vj⟩|
∥ui∥2∥vj∥2

≥ 1

λ2
.

Thus, the normalized vectors witness that P ∈ SMAR with constant λ−2. ■

Proposition 5.6. RP ⊆ SMAR and coRP ⊆ coSMAR.

Proof. It suffices to show that RP ⊆ SMAR. Let P ∈ RP, so that for some constant c > 0, every P ∈ P
has a one-sided error randomized protocol with cost c. We may assume without loss of generality that the
protocol succeeds with probability at least 1/2, and also that the protocol is one-way, i.e., Alice sends a
single message to Bob, who then produces the output (this assumption holds because we are interested only
in constant cost; see e.g., [HWZ22]).

For each random seed r and inputs x, y, let ar(x) ∈ {0, 1}c be the message which Alice would send given
input x and random seed r and let Br(y) ⊆ {0, 1}c be the subset of messages on which Bob would output 1.
Since the protocol has one-sided error, for random r, we have

P (x, y) = 0 =⇒ P [ar(x) ∈ Br(y)] = 0,

P (x, y) = 1 =⇒ P [ar(x) ∈ Br(y)] ≥ 1/2.

We may assume that r is drawn uniformly from a finite universe {0, 1}R. For a subset S ⊆ {0, 1}c of
messages, let χS ∈ {0, 1}2c be the vector indicating membership in S. Now for each x, y, we may construct

vectors ux, vy ∈ {0, 1}2c+r

as the concatenations

ux :=
(
χ{ar(x)}

)
r∈{0,1}R and vy :=

(
χBr(y)

)
r∈{0,1}R .

They have the property that

⟨ux, vy⟩ = 2R · P
r
[1 [ar(x) ∈ Br(y)]]

{
= 0 if P (x, y) = 0

≥ 1
22

R if P (x, y) = 1.

Moreover, the vectors have ℓ2-norm at most
√
2R+c, so normalizing these vectors gives a margin of at least

2−c−1 in the case P (x, y) = 1. ■

Proposition 5.7. PSMAR∩ coSMAR = SMAR∩ coSMAR.

Proof. Since SMAR∩ coSMAR is closed under negations, it suffices to show that SMAR is closed under OR,
so that coSMAR is closed under AND and their intersection is closed under all boolean operations. We now
let P,Q ∈ SMAR so that there exists a constant γ > 0 such that all P and Q satisfy Equation (10) with
constant γ. For any N ×N matrices P ∈ PN and Q ∈ QN and each i, j ∈ [N ], let ui, vj be the unit vectors
witnessing Equation (10) for P , and define u′

i, v
′
j similarly for Q.

The normalized concatenations
(√

γ√
2
ui, u

′
i

)
and

(√
γ√
2
vj , v

′
j

)
, both with ℓ2-norm

√
1 + γ/2, satisfy

(P ∨Q)(i, j) = 0 =⇒ ⟨
(√

γ
2ui, u

′
i

)
,
(√

γ
2 vj , v

′
j

)
⟩ = 0,

(P ∨Q)(i, j) = 1 =⇒
∣∣∣⟨(√γ

2ui, u
′
i

)
,
(√

γ
2 vj , v

′
j

)
⟩
∣∣∣ = ∣∣γ2 ⟨ui, vj⟩+ ⟨u′

i, v
′
j⟩
∣∣ ≥ min

(
γ2

2
,
γ(1− γ)

2

)
,

where the last inequality holds because |⟨ui, vj⟩| ≥ γ or |⟨u′
i, v

′
j⟩| ≥ γ. Therefore, P ∨Q ∈ SMAR. ■
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5.3 Open Problems

We have added some classes to the hierarchy in Figure 6, which suggests some new open problems. Recall
that Conjecture 1.5 asks to separate BPP0 from UPP0 (i.e., show BPP0 \UPP0 ̸= ∅). The introduction of
support-rank suggests an intermediate problem:

Open Problem 5.8. Is BPP0 \PSUPP
0 ̸= ∅? (Is there a problem with constant bounded-error randomized

cost, which cannot be reduced to any problem of constant support-rank?)

Our results show that all examples in BPP0 known up to [FGHH25] are also contained in PSUPP
0 . This

leaves the recent examples of [SS24] as promising candidates for proving this separation.
Another question suggested by new classes in Figure 6 is whether SMAR∩ coSMAR = Γ2. We refer to

[HH24] for many other open problems regarding the complexity classes in Figure 6, and more. Let us repeat
two of the most interesting, originally from [HHH22]:

Open Problem 5.9. Is BPP0 = PRP
0 ?

Open Problem 5.10. Is PEQ
0 = Γ2?
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