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Abstract

We design the first efficient polynomial identity testing algorithms over the nonas-
sociative polynomial algebra. In particular, multiplication among the formal variables
is commutative but it is not associative. This complements the strong lower bound
results obtained over this algebra by Hrubeš, Yehudayoff, and Wigderson [19] and Fi-
jalkow, Lagarde, Ohlmann, and Serre [29] from the identity testing perspective. Our
main results are the following:

• We construct nonassociative algebras (both commutative and noncommutative)
which have no low degree identities. As a result, we obtain the first Amitsur-
Levitzki type theorems [1] over nonassociative polynomial algebras. As a direct
consequence, we obtain randomized polynomial-time black-box PIT algorithms
for nonassociative polynomials which allow evaluation over such algebras.

• On the derandomization side, we give a deterministic polynomial-time identity
testing algorithm for nonassociative polynomials given by arithmetic circuits in the
white-box setting. Previously, such an algorithm was known with the additional
restriction of noncommutativity [25].

• In the black-box setting, we construct a hitting set of quasipolynomial-size for
nonassociative polynomials computed by arithmetic circuits of small depth. Un-
derstanding the black-box complexity of identity testing, even in the randomized
setting, was open prior to our work.
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1 Introduction
The goal of algebraic complexity is to study the complexity of computing multivariate poly-
nomials using basic arithmetic operations, such as addition and multiplication. Arithmetic
circuits and formulas are among the well-studied models in this area. In particular, arith-
metic circuits are directed acyclic graphs whose leaves are labeled by variables or constants,
and whose internal nodes (called gates) are labeled with either ` or ˆ. Formulas are circuits
whose underlying graph is a tree. Each gate in a circuit computes a polynomial in the natu-
ral way and the output of a circuit is said to be the polynomial computed at a distinguished
output gate.

There are two central problems studied in algebraic complexity: one is the question of
proving size lower bounds for circuits computing explicit polynomials, and the other is the
question of derandomizing polynomial identity testing (PIT for short). The PIT problem
comes in two variants. First is the black-box setting, where we are given evaluation access to
a circuit (given as a black box), and we must decide whether the polynomial it computes is
identically zero. The second, seemingly easier is the white-box setting, where we are explicitly
given the circuit as a graph to determine whether it computes the zero polynomial.

Baur and Strassen [7] proved that any circuit computing
řn

i“0 x
n
i requires size Ωpn log nq.

This is the strongest known lower bound for arithmetic circuits. On the other hand, the PIT
problem admits a randomized polynomial-time black-box algorithm over the usual polyno-
mial ring Frx1, . . . , xns, thanks to the Polynomial Identity Lemma [4–6] (see Lemma 6 for
the exact statement). Here, F can be any field of sufficient size, and the variables x1, . . . , xn

commute under multiplication. For the black-box case, the derandomization problem is es-
sentially equivalent to the efficient construction of small hitting sets. Despite intense efforts
over many years, proving strong lower bounds for circuits and derandomizing PIT for cir-
cuits have both remained elusive goals. For more on these problems, the reader is referred
to the excellent surveys by Shpilka and Yehudayoff [20] and Saxena [22]. In general, the
problems of proving lower bounds and derandomizing PIT are closely related and, in fact,
nearly equivalent due to an influential result of Impagliazzo and Kabanets [15]. For example,
very recently, a subexponential-size hitting set for PIT of low-depth arithmetic circuits was
obtained via a breakthrough lower bound result by Limaye, Srinivasan, and Tavenas [30].

The limitation in our understanding of PIT and lower bounds stems from the difficulty
of analyzing how a monomial gets canceled at an intermediate step in an arithmetic cir-
cuit computation. In the setting of the usual polynomial ring Frx1, . . . , xns, multiplication
is commutative and associative. In other words, for all xi, xj, xk we have xixj “ xjxi and
pxipxjxkqq “ ppxixjqxkq. A central line of investigation studies arithmetic circuits by restrict-
ing the relations satisfied by the multiplication rule. The hope is that, in the absence of such
relations, we can better understand cancellations of monomials and gain insight into general
circuits. For example, we can drop commutativity while preserving associativity.

If we drop commutativity, we obtain the noncommutative polynomial ring Fxx1, . . . , xny

(which remains associative), and noncommutative circuits compute polynomials in the ring
Fxx1, . . . , xny. In his pioneering work [11], Nisan proved that the noncommutative Permanent
and Determinant polynomials require exponential-size noncommutative algebraic branching
programs (ABPs for short). ABPs are a subclass of circuits. Up to polynomial blowup, they
simulate formulas and are simulated by circuits. In the noncommutative setting, exponential

2



separations are known between ABPs and circuits [11]. On the PIT side, Raz and Shpilka [16]
developed a white-box deterministic polynomial-time algorithm for polynomials computed
by noncommutative ABPs. In fact, a quasipolynomial time black-box PIT algorithm has
also been designed for the same problem by Forbes and Shpilka [21].

However, if we look at general noncommutative circuits (instead of ABPs), again we see
that progress on the questions of lower bounds and derandomizing PIT has remained elusive.
In fact, for general circuits, the best lower bound and PIT results over Fxx1, . . . , xny match
those over Frx1 . . . , xns.

Henceforth, we use X to denote the set tx1, . . . , xnu. FA,CrXs and FA,C̄rXs stand for
the rings FrXs and FxXy, respectively. Instead of dropping commutativity, we may choose
to drop associativity. This leads us to the algebra FĀ,CrXs, the polynomial algebra where
multiplication is commutative but nonassociative1 2. If we drop both commutativity and
associativity, we obtain the polynomial algebra FĀ,C̄rXs. On the lower bounds side, very im-
pressive progress has been made in the algebra FĀ,CrXs. Hrubeš, Yehudayoff, and Wigderson
[19] proved the first exponential-size lower bounds for circuits computing explicit polynomi-
als in FĀ,CrXs. Subsequently, Fijalkow, Lagarde, Ohlmann, and Serre [29] strengthened this
result by providing an exact characterization of the size of a minimal circuit computing a
polynomial f P FĀ,CrXs in terms of the rank of a certain matrix of coefficients.

On the other hand, in the context of PIT, it is imperative to note that no efficient al-
gorithm is known over the algebra FĀ,CrXs, not even a randomized white-box algorithm.
This is surprising given the intimate connections between lower bounds and PIT in vari-
ous settings. Over the algebra FĀ,C̄rXs, Arvind et al. designed a deterministic white-box
polynomial-time algorithm for PIT of arithmetic circuits [25]. Furthermore, as mentioned
by the authors in [25], a black-box algorithm is not known even over FĀ,C̄rXs. Notably, over
the algebra FxXy, such a randomized PIT algorithm is known due to the Amitsur-Levitzki
Theorem [1, 18] (see Theorem 7 for a formal statement).

We note that nonassociative computations are fundamental even beyond algebraic com-
plexity. For example, the composition of operations in computer programs is typically nonas-
sociative. As a concrete algorithmic example, in a seminal work, Valiant designed a sub-cubic
algorithm for recognizing Context Free Languages (CFL) [3]. In particular, Valiant devel-
oped an algorithm to compute the transitive closure of upper triangular matrices whose
entries are elements of a nonassociative monoid [3]. In algebraic complexity, lower bounds
for nonassociative circuits have been used prove lower bounds for related associative models
of computation [29].

The main technical contributions of this paper are as follows. Over the polynomial alge-
bra FĀ,CrXs, we design a white-box deterministic polynomial-time algorithm for the PIT of
arithmetic circuits. In the black-box setting, we develop the first randomized polynomial-
time PIT algorithm for nonassociative arithmetic circuits (over both FĀ,CrXs and FĀ,C̄rXs).
This is achieved by proving analogues of the Amitsur-Levitzki theorem over the nonassocia-
tive polynomial algebras FĀ,C̄rXs and FĀ,CrXs. Moreover, for the classes of circuits over the
algebras FĀ,CrXs and FĀ,C̄rXs with polylogarithmic depth, we construct quasipolynomial-
size hitting sets over nonassociative algebras of small dimension. To the best of our knowl-

1Formally, an algebra A over a field F is a vector space equipped with a bilinear product.
2In FĀ,CrXs, pxipxjxkqq ‰ ppxixjqxkq even in the case when xi “ xj “ xk.
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edge, this is the first black-box derandomization result for a well-studied circuit class over a
nonassociative polynomial algebra. We elaborate on our results and techniques in the next
section.

1.1 Our Results

In this paper, we complement the strong lower bounds results obtained over the algebra
FĀ,CrXs ([19, 29]) by designing efficient PIT algorithms. Our results work over all fields of
sufficiently large size.

1.1.1 Black-box randomized nonassociative PIT (Section 3)

Our first result is a black-box randomized polynomial-time identity testing algorithm for
polynomials in FĀ,CrXs. Of course, to capture nonassociativity, the natural idea is to evaluate
the given polynomial over nonassociative algebras.

In mathematics, nonassociative algebras are very well-studied. For example, one can see
the classic work of Albert [12]. In particular, there are various specific algebras of interest
which are nonassociative but commutative. The most important such algebras are, perhaps,
the Jordan Algebras. Unfortunately, every Jordan Algebra J satisfies the Jordan Identity :
@a, b P J, we have pabqpaaq ´ papbpaaqqq “ 0. This means that performing PIT using Jordan
Algebras is not possible. To see why, suppose we are given a circuit computing a non-zero
polynomial in the ideal of FĀ,CrXs generated by tpxixjqpxixiq ´ pxipxjpxixiqqq | xi, xj P Xu.
On any input from J, the circuit will evaluate to 0, whereas the circuit computes a non-
zero polynomial. Even over FĀ,C̄rXs, we have a similar difficulty. For example, Matrix Lie
algebras are well studied algebras that are nonassociative and noncommutative, but they
satisfy the Jacobi Identity [10].

Thus, in order to obtain a fast black-box algorithm, we need to construct a suitable
nonassociative algebra that does not satisfy low (in terms of its dimension) degree identi-
ties. We should remark that over the noncommutative polynomial ring FxXy (equivalently,
FA,C̄rXs), the Amitsur-Levitzki theorem allows us to do black-box randomized PIT for poly-
nomials of degree ď d, using random matrices of dimension prd{2s ` 1q ˆ prd{2 ` 1sq [1, 18].
In our setting of polynomials in FĀ,CrXs, we construct a unital nonassociative, commutative
algebra Cd of dimension dpd ` 1q2 ` 1 which does not satisfies any identity of degree ď d.

Lemma 1. Let f P FĀ,CrXs be a non-zero polynomial of total degree ď d. Then f is not a
polynomial identity (PI) for Cd.

To the best of our knowledge, this is the first Amitsur-Levitzki type theorem in the
nonassociative setting. As an immediate consequence, we obtain a nonassociative analogue
of the Polynomial Identity Lemma.

Theorem 2. Let F be a field with |F| ą d, and S Ă F. Let f P FĀ,CrXs be a non-zero
polynomial of degree ď d given as a black-box with query access to evaluations of f on
elements of Cd. Let S Ď F with |S| ą d. Sample b1, . . . , bn P Cd as follows: Pick each of the
dpd ` 1q2 ` 1 entries of each of the bi’s uniformly and independently from S. Then

Pr
b1,...,bnPCd

rfpb1, . . . , bnq “ 0s ď d{|S|.
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We construct Cd in two stages. First, we construct a noncommutative, nonassociative
algebra Ad (see Section 3.1 for the precise definition) and show that Ad does not satisfy
identities of degree ď d. Note that this also gives us a noncommutative, nonassociative
analogue of Theorem 2 (see Theorem 12 for exact statement). We prove this by showing
that monomials in FĀ,C̄rXs can be isolated using substitutions from pAdqn. Each monomial
m P FĀ,C̄rXs can be viewed as a rooted, ordered binary tree whose leaves are labeled by
variables (see Figure 2 for examples). To each occurrence of a variable x in m, we may
associate a level which indicates the depth at which it appears in the monomial m (when
viewed as a tree). Noncommutativity of FĀ,C̄rXs also induces a left to right order in which
the variables appear in m. We show that given the left to right order and the corresponding
sequence of levels, we can fully reconstruct m (Lemma 8). Using this lemma and a three
dimensional version of the set-multilinearization procedure introduced by Forbes and Shpilka
[21] in the context of PIT for noncommutative ABPs, we show that Ad does not satisfy
identities of degree ď d. The third dimension “keeps track" of the level at which each leaf
appears in a monomial. After this, we define the commutative algebra Cd as follows: the
Cd product of x, y is the anticommutator 3 of x, y with respect to the Ad product. In Cd,
there is no unique left to right order of the variables that we can associate with a monomial.
But there is a set of orders that we can associate with each monomial. This set, together
with the corresponding sequence of levels, determines the monomial uniquely. Using this,
we show that Cd also does not satisfy identities of degree ď d.

1.1.2 White-box deterministic PIT over FĀ,CrXs (Section 4.1)

Next, we consider the white-box identity testing problem over FĀ,CrXs. Raz and Shpilka
[16] give a white-box linear algebraic algorithm for identity testing of noncommutative al-
gebraic branching programs. Subsequently, their algorithm has been adapted to obtain PIT
algorithms in various settings, for example, for Read-Once Algebraic Branching Programs
(ROABPs) [21], noncommutative Unique Parse Tree Circuits [27] and circuits over FĀ,C̄rXs

[25]. In this work, we show that an adaption of the Raz-Shpilka algorithm can be used to
do PIT for circuits over FĀ,CrXs:

Theorem 3. Let Ψ be a nonassociative arithmetic circuit of size s computing an n vari-
ate, degree ď d polynomial f P FĀ,CrXs. Given Ψ as input, we can check whether f ” 0
deterministically in time polyps, n, dq.

The main difference in the application of the Raz-Shpilka algorithm in our setting is that
in all previous works (that we are aware of), if a monomial m is generated at a product gate
g “ g1ˆg2 in the circuit, then there is a unique way it could have been generated: there exist
monomials m1, m2 such that coeffmpgq “ coeffm1pg1q ˆ coeffm2pg2q. On the other hand since
we are working in the commutative setting of FĀ,CrXs, there are two ways of generating m
at g. Either m1 could be contributed by g1 and m2 by g2, or m2 could be contributed by g1
and m1 by g2. We show (somewhat surprisingly) that the Raz-Shpilka algorithm, suitably
modified, works even in this setting.

3The anticommutator of x, y with respect to a product operation ¨ is defined as x ¨ y ` y ¨ x.
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1.1.3 Black-box deterministic nonassociative PIT (Section 4.2)

We consider next the question of derandomizing black-box PIT for circuits over FĀ,CrXs.
Towards this, we provide a hitting set (consisting of elements of pCdqn) for such circuits. A
hitting set H for a class C of circuits is a set of points such that for any non-zero circuit
Ψ P C, there exists an a P H such that Ψ evaluated at a is not 0.

Theorem 4. There exists a set Hn,s,d,∆ Ď pCdqn of size pnsdqOp∆q of points in pCdqn such
that for every nonassociative, commutative circuit Ψ of size ď s and product depth ď ∆
computing a non-zero polynomial f P FĀ,CrXs of degree ď d, there is a point in Hn,s,d,∆

at which f is non-zero. Furthermore, we can compute Hn,s,d,∆ deterministically in time
pnsdqOp∆q.

Recall that the product depth of a circuit is the maximum number of product gates
encountered on any leaf to root path in the circuit. Theorem 4 gives a non-trivial hitting
set when the product depth ∆ “ opdq. In particular, when ∆ is polylogarithmic, we obtain
a quasipolynomial size hitting set.

The result of Kabanets and Impagliazzo [15] shows that explicit lower bound results can
give subexponential-time black-box PIT algorithms over the usual commutative polynomial
ring FrXs. The main ingredients in their proof are the combinatorial design of Nisan and
Wigderson [13] and the factorization algorithm of Kaltofen [9]. Although we have strong
and explicit lower bounds over the algebra FĀ,CrXs, it is unclear how to use them for PIT
algorithms. Note that such a connection is not known even over FxXy.

We prove Theorem 4 in two stages. In the first stage, we reduce PIT for circuits over
FĀ,CrXs to PIT for unambiguous circuits over FrZs (where Z is a fresh set of variables
and FrZs is the usual polynomial ring) via a set-multilinearization argument. We say that
a circuit Ψ over is FrZs is unambiguous if for any monomial m P FrZs, there exists a
reduced parse tree45 Tm such that any reduced parse tree computing m at any gate of Ψ
is isomorphic to Tm as a labeled, rooted binary tree. These are the natural associative
analogues of nonassociative circuits. We also observe that a similar reduction works over
FĀ,C̄rXs, which gives us an analogue of Theorem 4 over the algebra Ad.

In the second stage, we suitably adapt the machinery of basis isolating weight assignments
developed by Agrawal et al. [23] to construct hitting sets for unambiguous circuits.

Theorem 5. There exists a set Hs,n,d,∆ Ď Fn such that for any unambiguous circuit Ψ of
size s and product depth ∆ computing a non-zero polynomial f P Frz1, . . . , zns of degree ď d,
f is non-zero on some point of Hs,n,d,∆. Furthermore, |Hs,n,d,∆| “ pndsqOp∆q and Hs,n,d,∆ can
be constructed in time pndsqOp∆q.

Informally, given a polynomial f with coefficients coming from a vector space, a basis
isolating weight assignment for f is a function from the underlying set of variables to N that
isolates a minimum weight basis (among the coefficients) for the space spanned by the coeffi-
cients of f . Basis isolating weight assignments were used in [23] to construct quasipolynomial
size hitting-sets for ROABPs (these are commutative analogues of noncommutative ABPs).

4See 5 for a definition.
5The term unambiguous circuit has been used in different contexts in earlier works [24, 28].
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Subsequently, they were also used to construct hitting sets for set-multilinear Unique Parse
Tree circuits (UPT circuits for short) [26]. UPT set-multilinear circuits generalize ROABPs.
In a UPT set-multilinear circuit, every parse tree (see 4 for the definition) at the output has
exactly the same shape as a rooted, ordered binary tree. In particular this implies that there
is a universal parse tree shape at the root that induces a unique parse tree for each monomial.
In unambiguous circuits, this is no longer true. In particular, there is a unique reduced parse
tree for each monomial, but two different monomials could have different parse tree shapes.
Also, note that unambiguous circuits need not be set-multilinear. On the other hand, we
require that for any monomial m, there is a unique parse tree computing it independent of
the gate at which m is being computed.

Suppose we have an unambiguous circuit of product depth ∆. We construct a basis
isolating weight assignment w for it in multiple stages (as in [23]). At each stage we handle
monomials of increasing depths. The proof that w is a basis isolating weight assignment
involves isolation of a set Mi of monomials for each depth i P r∆s such that the coefficient of
every other monomial of depth i is spanned by coefficients of Mi. The construction of Mi and
the proof that its coefficients indeed span coefficients of other monomials is the main technical
content of the proof and uses the fact that the circuit is unambiguous. Combining these Mi’s
we get the isolated set M of monomials. Identity testing follows from the construction of a
basis isolating weight assignment.

The result of Valiant, Skyum, Berkowitz and Rackoff [8] shows that arithmetic circuits
can be depth reduced to depth polylogarithmic in the size and degree of the original circuit
while incurring only a polynomial blowup in size. Unfortunately, we do not know if such a
depth reduction is possible while preserving unambiguousness.

Organization

The paper is organized as follows. In Section 2, we provide the necessary background. Section
3 contains the randomized polynomial-time PIT algorithms over nonassociative algebras.
The deterministic PIT algorithms (white-box and black-box) are presented in Section 4. We
state a few questions for further research in Section 5.

2 Preliminaries
Definition 1 (Algebra over a field). Let F be a field. An algebra A over F is an F-vector space
together with a product operation on the elements of the vector space that is bilinear. The
dimension of A is defined to be the dimension of the underlying vector space. In particular,
if the underlying vector space is finite (say n) dimensional and identified with Fn after choice
of a basis, an algebra A is uniquely defined by n matrices L1, . . . , Ln P Fnˆn as follows: for
x,y P Fn, their A-product is precisely

x ¨ y “ px1, . . . , xnq ¨ py1, . . . , ynq “
`

xTL1y, . . . ,x
TLny

˘

.

An algebra A is called unital if it contains a multiplicative identity i such that @x P A, x ¨ i “

i ¨ x “ x. We define the following four different polynomial algebras, depending on the
relations the variables satisfy:
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(1) FA,CrXs: This is the polynomial ring FrXs. The product operation is both commuta-
tive and associative.

(2) FA, sCrXs is the noncommutative polynomial ring FxXy. The product operation is non-
commutative but associative.

(3) FĀ,CrXs is the F-vector space generated by commutative, nonassociative monomials
in the variables X. This vector space becomes an F-algebra with the commutative,
nonassociative product of monomials extended to all of FĀ,CrXs by bilinearity.

(4) FĀ,C̄rXs is the F-vector space generated by noncommutative, nonassociative monomials
in the variables X. This vector space becomes an F-algebra with the noncommutative,
nonassociative product of monomials extended to all elements of FĀ,C̄rXs by bilinearity.

Definition 2 (Polynomial Identities). A Polynomial Identity (PI for short) for an algebra A
is a polynomial fpx1, . . . , xnq in a set of variables tx1, . . . , xnu such that for all A1, . . . , An P A,
fpA1, . . . , Anq “ 0 where the multiplication is according to the product operation in A. An
algebra that satisfies nontrivial identities is called a PI-algebra.

The study of polynomial identities is a classical and very rich subject in mathematics.
For a comprehensive details, see [17].

Definition 3 (Arithmetic Circuit). An Arithmetic Circuit Ψ over a field F is a directed
acyclic graph whose leaves (called input gates) are labeled by either variables (say X “

tx1, . . . , xnu) or field elements and whose internal vertices (called gates) are labeled by either
a sum (`) or a product pˆq. In our case the product operation will often be nonassociative,
and we will assume that the fan-in of each product gate is 2. If in addition we are working in
FĀ,C̄rXs, the product will also be noncommutative: each product gate will have designated
left and and right child. Each gate in a circuit naturally computes a polynomial. The circuit
Ψ has a designated output gate and Ψ is said to compute the polynomial computed at the
output gate. The size of a circuit is the number of gates in it and the depth of a circuit is
the length of the longest leaf-to-root path.

Next we define the concept of a parse tree, that depicts the generation of a particular
monomial in the circuit.

Definition 4 (Parse trees). Let X “ tx1, . . . , xnu be a set of variables, F be a field and Ψ
be an arithmetic circuit computing a polynomial f P FrXs. The set of parse trees for Ψ will
be defined by induction on the size of Ψ as follows:

• If Ψ is just a leaf labeled by either a variable or a constant, then it has only one parse
tree, itself.

• If the root g of Ψ is a sum gate with subcircuits Ψ1 and Ψ2 as children, the set of parse
trees for Ψ is the set of all trees obtained by taking the root g, and attaching to it a
parse tree of either Ψ1 or Ψ2.

• If the root g of Ψ is a product gate with subcircuits Ψ1 and Ψ2, we define the set of
parse trees for Ψ to be the set of all trees T obtained by taking a parse tree T1 for Ψ1,
a parse tree T2 for a disjoint copy of Ψ2 and making T1, T2 the children of g.
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ˆ

`

ˆ

x1 x1

`

x2 3

`

ˆ

x3 x4

ˆ

6 x5

(a) A circuit Ψ

ˆ

`

ˆ

x1 x1

`

ˆ

6 x5

(b) A parse tree T for Ψ

ˆ

ˆ

x1 x1

x5

(c) Reduced parse tree T 1

Note that each parse tree T for Ψ computes a monomial (with coefficient).

Definition 5 (Reduced Parse Trees). From each parse tree T of a circuit Ψ, we may obtain a
reduced parse tree T 1 by short-circuiting the sum gates, removing leaves labeled by constants
and restructuring the tree in the natural way. T 1 is a full binary tree all of whose leaves are
labeled by a variable and all of whose gates are product gates. T 1 captures the multiplicative
structure of T . The set of reduced parse trees for Ψ is defined as tT 1 | T is a parse tree for Ψu.
See Figure 1c for an illustrative example.

We also recall the following standard result over FA,CrXs:

Lemma 6 (Polynomial Identity Lemma [4–6]). Suppose fpxq P FrXs is an n-variate poly-
nomial of degree d, and let S Ď F be a finite set of size strictly larger than d. Then fpāq ‰ 0

for at least
´

1 ´ d
|S|

¯

fraction of ā’s in Sn.

Over the algebra FA,C̄rXs, the following is a well-known result of Amitsur and Levitzki
[1].

Theorem 7 (Amitsur-Levitzki Theorem [1]). Over any field F, the matrix algebra Fkˆk

satisfies no PI of (total) degree less than 2k, and satisfies exactly one (up to constant factor)
PI of degree 2k.

2.1 A structural lemma about nonassociative monomials

2.1.1 Over the algebra FĀ,C̄rXs

Let F be a field and X “ tx1, . . . , xnu be a set of variables. There is a natural correspondence
between rooted binary trees with leaves labeled by elements of X and monomials in FĀ,C̄rXs.
The nonassociativity introduces a unique product structure which may be interpreted as a
binary tree: Let m P FĀ,C̄rXs be a monomial. Then there is a unique rooted binary tree
Tm whose the leaves (labeled by elements of X) represent the variables, and whose internal
nodes compute the product their two children. The root computes the monomial m. For
instance, the binary trees in Figure 2(a) and 2(b) compute monomials m “ ppxi1xi2qxi3q

and m1 “ pxi1pxi2xi3qq respectively. Noncommutativity implies that each internal node has
designated left and right children, and swapping this order changes the monomial.
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ˆ

ˆ

xi1 xi2

xi3

(a) m “ ppxi1xi2qxi3q

ˆ

xi1 ˆ

xi2 xi3

(b) m1 “ pxi1pxi2xi3qq

ˆ

ˆ

xi2 xi1

xi3

(c) m2 “ ppxi2xi1qxi3q

Figure 2: Examples of nonassociative, noncommutative monomials

Suppose m has degree d. Noncommutativity gives us a unique string σm “ pi1, . . . , idq P

rnsd which is the unique left to right order xi1 , xi2 . . . xid in which the variables appear in m.
We will think of σm : rds Ñ rns as a function defined as σmpjq “ ij for all j P rds. Note that
σm does not uniquely define a monomial. For instance, for the monomials m,m1 P FĀ,C̄rXs

shown in Figure 2, σm “ σm1 but m ‰ m1. Given a monomial m P FĀ,C̄rXs as a binary
tree Tm, we assign level numbers to the nodes of Tm. Define the level of a node v in Tm to
be 1 ` dproot, vq, where dp¨, ¨q is the distance function. That is, the root is at level 1, the
children of the root are at level 2 and so on. For each j P rds, let lmj denote the level at which
the jth variable (in the left to right order) appears in m.

For monomials m “ ppxi1xi2qxi3q and m1 “ pxi1pxi2xi3qq shown in Figure 2, lm1 “ 3, lm2 “

3, lm3 “ 2 and lm
1

1 “ 2, lm
1

2 “ 3, lm
1

3 “ 3. In general, the variable order σm and the level
numbers plm1 , . . . , l

m
d q together uniquely determine the monomial m.

We state this formally in the following lemma:

Lemma 8. Let m,m1 be distinct monomials in FĀ,C̄rXs. Let degpmq “ d and degpm1q “ d1.
Then the tuples pσm, l

m
1 , . . . , l

m
d q and pσm1 , lm

1

1 , . . . , lm
1

d1 q are distinct.

Proof. We assume that σm “ σm1 , for otherwise the statement is evidently true. In particular,
assume that the degrees of m and m1 are both equal to d. Next, we simply observe that it is
possible to iteratively reconstruct m uniquely, given the sequence lm1 , . . . , l

m
d of levels. Start

with just the root. To it, add a path of length lm1 ´ 1 consisting entirely of left edges (every
node is a left child of it’s parent). Label the ultimate node (leaf) on the path by xσmp1q. Now
suppose we already have a leaf for the i-th variable, xσmpiq. To generate the leaf labeled by
xσmpi`1q, find the ancestor v of xσmpiq closest to xσmpiq that only has a left child. Let the level
of v be l. Add a right v1 to child to v. If v1 is at level lσmpi`1q, label it by xσmpi`1q. Otherwise,
add to it a path of length lσmpi`1q ´ l ´ 1 consisting only of left edges and label the ultimate
node on this path by xσmpiq. This process recovers m. The key property of trees representing
nonassociative monomials that is used in the procedure above is that they are full binary
trees, that is, each node either has exactly two children or none at all. This justifies our
choice of going back to the the closest ancestor v of xσmpiq that only has a left child and no
right child.
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2.1.2 Over the algebra FĀ,CrXs

Next, we consider the case of monomials in FĀ,CrXs. One may partition the set of all
monomials in FĀ,C̄rXs into equivalence classes under commutativity: For all monomials
m,m1 P FĀ,C̄rXs, m „ m1 if and only if m and m1 are equal up commutativity. For example
the monomials shown in Figure 2(a) and Figure 2(b) belong to different equivalence classes.
On the other hand, monomials in Figure 2(a) and Figure 2(c) belong to the same equivalence
class.

Each equivalence class may be identified with a monomial in FĀ,CrXs. Looking at it from
the other direction, suppose m,m1 are monomials in FĀ,CrXs and suppose Mm, Mm1 are the
equivalence classes of monomials in FĀ,C̄rXs they represent. Since „ as defined above is an
equivalence relation, we have the following simple observation:

Observation 9. For any two distinct monomials m,m1 P FĀ,CrXs we have Mm XMm1 “ H.

3 Randomized Black-box PIT for Nonassociative circuits
Let F be a field and let X “ tx1, . . . , xnu. In this section, we work with both the nonassocia-
tive, noncommutative polynomial algebra FĀ,C̄rXs as well as the commutative FĀ,CrXs. In
subsection 3.1, we give a randomized, polynomial time black-box algorithms to test whether
a nonassociative, noncommutative circuit Φ over F computes the identically zero polynomial.
The algorithm assumes that we have access to evaluations of Φ on a suitable k dimensional F-
algebra A, and that the cost of one A-query is polypsizepΦq, kq. That is, the cost is polynomial
in the size of the circuit and the dimension of the algebra. To the best of our knowledge, this
gives the first Amitsur-Levitzki type theorem [1] over nonassociative polynomial algebras.

3.1 Nonassociative, Noncommutative Randomized Black-box PIT
The key idea is to construct a noncommutative, nonassociative F-algebra and show that it
does not satisfy low degree polynomial identities. This will imply that a random non-zero
substitution from this algebra will make a non-zero circuit Φ evaluate to something non-zero,
with high probability.

We will query noncommutative, nonassociative circuits computing a polynomial f P

FĀ,C̄rXs of degree ď d on a particular dpd ` 1q2 ` 1 dimensional algebra Ad that we now
describe. First, we construct an algebra A1

d of dimension dpd ` 1q2 and then construct the
desired algebra Ad by adjoining an identity element to A1

d. Additively, A1
d is an F-vector

space of dimension dpd ` 1q2. We will think of an element of A1
d as a set of d matrices each

of dimension pd ` 1q ˆ pd ` 1q:
Let x, y P Fdpd`1q2 . We index x, y as xri, j, ks and yri, j, ks for 1 ď i, j ď d ` 1 and

1 ď k ď d. Here, k can be thought of as indexing the set of d matrices and for a fixed k,
i and j index respectively the rows and columns of the k-th matrix. Next, we define the
bilinear A1

d-product of x, y as follows: z fi x ˝ y such that

11



∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
...

...
...

...
...

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

k ∈ [d]

i ∈ [d+ 1]

j
∈
[d

+
1]

Figure 3: 3-dimensional view of an element of A1
d

zri, j, ks “

$

’

&

’

%

0 k “ d
d`1
ÿ

l“1

xri, l, k ` 1syrl, j, k ` 1s 1 ď k ď d ´ 1

Clearly, A1
d is an F-algebra. From the proof of Lemma 10, it will be evident that A1

d is a
nonassociative algebra.

We require the algebra A1
d to be unital to make sense of A1

d-evaluations of polynomials
with a non-zero constant term: For any f P FĀ,C̄rXs, fp0, . . . , 0q “ c ¨1 where f has constant
term c P F and 1 is the identity element of A1

d. However, A1
d is non-unital. To construct

the unital algebra Ad (from A1
d), we use a standard procedure of adjoining an identity to an

algebra:

The Algebra Ad: Define the algebra Ad to be the vector space Fdpd`1q2`1 “ tpa, αq | a P

A1
d, α P Fu together with the bilinear product ¨ defined as follows:

pa1, α1q ¨ pa2, α2q “ pa1 ˝ a2 ` α1a2 ` α2a1, α1α2q

We will refer to this newly added index as the last index. It is easy to verify that Ad is
indeed a nonassociative algebra with p0, 1q being the multiplicative identity, and that A1

d is
isomorphic to the sub-algebra tpa, 0q | a P A1

du of Ad.

Now, we show that Ad cannot have polynomial identities of degree ď d.

Lemma 10. Let f P FĀ,C̄rXs be a non-zero polynomial of total degree ď d. Then f is not a
PI for Ad.

12



0 z1,1,d 0 0 0

0 0 z1,2,d 0 0

0 0 0 z1,3,d 0

...
...

...
...

...

0 0 0 0 z1,d,d

0 0 0 0 0

0 z1,1,2 0 0 0

0 0 z1,2,2 0 0

0 0 0 z1,3,2 0

...
...

...
...

...

0 0 0 0 z1,d,2

0 0 0 0 0

0 z1,1,1 0 0 0

0 0 z1,2,1 0 0

0 0 0 z1,3,1 0

...
...

...
...

...

0 0 0 0 z1,d,1

0 0 0 0 0

k ∈ [d]

i ∈ [d+ 1]

j
∈
[d

+
1]

Figure 4: Z1 “ Φpx1q visualized as an element of A1
d

Proof. It suffices to consider polynomials that do not have a constant term, since a poly-
nomial with a non zero constant term evaluates to a non-zero value at the all zeroes input.
Also, it suffices to prove Lemma 10 for the algebra A1

d instead of Ad, since A1
d is a subalgebra

of Ad. In order to prove the lemma, we reduce the problem to the associative, commutative
setting.

For each xi, we introduce an associative, commutative set of variables tzi,j,k | 1 ď j, k ď

du. For convenience, denote the vector pzi,j,kqj,kPrds by zi. Extend the ground field F to the
function field F1 “ Fpz1, . . . , znq. We define the algebra A1

d over the field F1 as described
earlier. Eventually, the z variables will be fixed suitably from the base field F.

Next, consider the evaluation map Φ : FĀ,C̄rXs Ñ A1
d that sends xi to Zi where for each

1 ď j, k ď d, the pj, j ` 1, kq-th entry of Zi is zi,j,k and the rest of the entries are zero. For
an illustration, we describe Z1 explicitly in Figure 4.

Let us look at the image of a monomial m P FĀ,C̄rXs (of degree at most d) under Φ. Let
d1 ď d be the degree of m. We interpret m as a binary tree with leaves labeled by variables.
Since we are in the noncommutative setting, there is a unique function σm : rd1s Ñ rns that
describes the left-to-right order in which the variables appear in m. We will level the nodes
(including leaves) of m as described in Section 2.1. Let lmt denote the level at which the t-th
variable in σm (i.e., variable xσmptq) appears in m. Let the depth of m (i.e., maxitliu) be l.

Claim 11. Let m be as above. For each k1 P rd ´ d1 ` 1s and each k2 P rd ´ l ` 1s, the
pk1, k1 ` d1, k2q-th entry of Φpmq is the monomial

śd1

t“1 zσmptq,t`k1´1,lmt `k2´1, and every other
entry is zero.

Proof. We prove this by induction on the degree d1 of m. For degpmq “ 1, the claim follows
from the definition of Zi’s. Now suppose d1 ą 1 and m is uniquely written as m1m2 such
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that degpm1q “ d1, degpm2q “ d2 and d1 ` d2 “ d1. Then,

Φpmqrk1, k1 ` d1, k2s “

d`1
ÿ

i“1

Φpm1qrk1, i, k2 ` 1sΦpm2qri, k1 ` d1, k2 ` 1s

By induction, we see that exactly one term in this sum is non zero, the one corresponding
to i “ k1 ` d1 and the sum is therefore equal to

˜

d1
ź

t“1

zσm1 ptq,t`k1´1,l
m1
t `k2

¸ ˜

d2
ź

t“1

zσm2 ptq,t`d1`k1´1,l
m2
t `k2

¸

(1)

Notice that

σmptq “

#

σm1ptq 1 ď t ď d1

σm2pt ´ d1q d1 ` 1 ď t ď d1

and that

lmt “

#

lm1
t ` 1 1 ď t ď d1

lm2
t´d1

` 1 d1 ` 1 ď t ď d1

Using these observations, we find that (1) is exactly equal to
śd1

t“1 zσmptq,t`k1´1,lm
σmptq

`k2´1.

Now let us look at Φpmqri1, i2, i3s such that i2 ‰ i1 ` d1 and i3 P rd ´ 1s (if i3 “ d,
Φpmqri1, i2, i3s “ 0 by definition of the Ad product).

Φpmqri1, i2, i3s “

d`1
ÿ

i“1

Φpm1qri1, i, i3 ` 1sΦpm2qri, i2, i3 ` 1s

Using the induction hypothesis, we see that each summand in the sum above is actually
zero, and therefore so is Φpmqri1, i2, i3s.

Let us also look at Φpmqri1, i2, i3s with i3 ą d ´ l ` 1. If d1 “ 2 then all such entries of
Φpmq are easily seen to be zero. Now suppose d1 ą 2 and assume, without loss of generality,
that the depth of m1 is l ´ 1. Then by induction, all entries Φpm1qri1, i2, i3s of Φpm1q with
i3 ą d´l are zero and therefore so are all the entries Φpmqri1, i2, i3s of Φpmq with i3 ą d´l`1.

This concludes the proof of Claim 11.

Now, by setting k1, k2 “ 1 in the statement of Claim 11 we see that for a monomial m of
degree d1, the p1, d1 ` 1, 1q-th entry of Φpmq is

śd1

t“1 zσmptq,t,lt . For any monomial of degree
‰ d1, this entry is zero. This observation combined with Lemma 8 gives us Lemma 10.

Using Lemma 10, we exhibit a randomized black-box identity testing algorithm for nonas-
sociative, noncommutative circuits.

Theorem 12. Let F be a field with |F| ą d, and S Ă F. Let f P FĀ,C̄rXs be a non-
zero polynomial of degree ď d given as a black-box with query access to evaluations of f on
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elements of Ad. Let S Ď F with |S| ą d. Sample b1, . . . , bn P Ad as follows: Pick each of the
dpd ` 1q2 ` 1 entries of each of the bi’s uniformly and independently from S. Then

Pr
b1,...,bnPAd

rfpb1, . . . , bnq “ 0s ď d{|S|.

Proof. From Lemma 10, it follows that f is not a PI for Ad. By slight abuse of notation,
define Ad over the field FpY q where Y is a commutative, associative set of variables and
|Y | “ ndpd ` 1q2 ` 1. Replace each xi by Yi P Ad defined as follows: Yi has dimension
dpd ` 1q2 ` 1 and each entry of each Yi is a fresh variable from Y . Since f is not a PI for
Ad, fpY1, . . . , Ynq ı 0 and so at least one entry of fpY1, . . . , Ynq is a non-zero polynomial in
FrY s. By the Polynomial Identity Lemma (Lemma 6), under a random S-substitution, the
probability that that entry of fpY1, . . . , Ynq evaluates to zero is ď d{|S|.

Theorem 12 can be thought of as a version of Theorem 7 over FĀ,C̄ . It immediately gives
us the desired black-box PIT algorithm.

3.2 Nonassociative, Commutative Randomized Black-box PIT
Next, we construct a nonassociative, commutative algebra Cd that does not satisfy low
degree identities in FĀ,CrXs. Cd is constructed using the algebra Ad from the previous
section (Section 3.1). Recall that ¨ denotes the Ad-product.

The Algebra Cd: Cd is isomorphic to Ad as a vector space, and the Cd product of a, b
(denoted by d) is simply the anticommutator of a, b with respect to the Ad product “ ¨ ”.
That is, a d b “ a ¨ b ` b ¨ a. Let C1

d denote the sub-algebra of Cd obtained by setting the
last index to 0. It is easily verified that C1

d is isomorphic to the algebra whose product is the
anticommutator with respect to the A1

d product ˝. For convenience, in the sequel, we will
drop the last index of elements of C1

d.

Lemma 1. Let f P FĀ,CrXs be a non-zero polynomial of total degree ď d. Then f is not a
polynomial identity (PI) for Cd.

Proof. The proof of Lemma 1 is similar to the proof of Lemma 10. As before, we note that
it suffices to prove the lemma for constant free polynomials and that it suffices to prove the
claim for C1

d instead of Cd, because any identity of Cd is also an identity of C1
d.

For each xi, we introduce the same associative, commutative set of variables tzi,j,k | 1 ď

j, k ď du as before. Denote the vector pzi,j,kqj,kPrds by zi. As in the proof of Lemma 10,
we consider the extended field F1 “ Fpz1, . . . , znq and define C1

d over F1. We consider the
evaluation map Φ : FĀ,CrXs Ñ C1

d that sends xi to Zi where for each 1 ď j, k ď d, the
pj, j ` 1, kq-th entry of Zi is zi,j,k and the rest of the entries are zero. Again, we would like
to inspect the image of a monomial m P FĀ,CrXs of degree d1 ď d under Φ. As before, we
interpret m as a binary tree. Without loss of generality, let the variables appearing in m
be x1, . . . , xd1 . Unlike in the noncommutative case, there is no unique left to right order of
variables that one can associate with the monomial m.

There is, however, a set of orders that one can associate with m: For each internal node
in the tree representing m, arbitrarily designate one of the children to be the left child and

15



the other to be the right child. This procedure induces an order σ on the variables of m.
Furthermore, every distinct way of designating left and right children at the internal nodes
of m induces a unique order. Consider the union of all these orders and denote this set by
Σm. Each σ P Σm corresponds to a unique monomial from FĀ,C̄rXs in the equivalence class
Mm corresponding to the monomial m (see Section 2.1, the commutative case). Also, for a
fixed σ P Σm, let lm,σ

t denote the level at which the t-th variable in the order σ (i.e., variable
xσptq) appears in m. Let the depth of m (i.e., maxitliu) be l.

Claim 13. Let m be as above. For each k1 P rd ´ d1 ` 1s and each k2 P rd ´ l ` 1s, the

pk1, k1 ` d1, k2q-th entry of Φpmq is the polynomial
ÿ

σPΣm

d1
ź

t“1

zσptq,t`k1´1,lm,σ
t `k2´1, and every

other entry is zero.

Proof. We prove this by induction on the degree d1 of m. For degpmq “ 1, |Σm| “ 1 and the
claim follows from the definition of Zi’s. Now suppose d1 ą 1 and m is uniquely written as
m1m2 such that degpm1q “ d1, degpm2q “ d2 and d1 ` d2 “ d1. Then,

Φpmqrk1, k1 ` d1, k2s “

d`1
ÿ

i“1

Φpm1qrk1, i, k2 ` 1sΦpm2qri, k1 ` d1, k2 ` 1s

`

d`1
ÿ

i“1

Φpm2qrk1, i, k2 ` 1sΦpm1qri, k1 ` d1, k2 ` 1s

By induction, we see that the first sum
d`1
ÿ

i“1

Φpm1qrk1, i, k2 `1sΦpm2qri, k1 `d1, k2 `1s is equal

to
¨

˝

ÿ

πPΣm1

d1
ź

t“1

zπptq,t`k1´1,l
m1,π
t `k2

˛

‚

¨

˝

ÿ

τPΣm2

d2
ź

t“1

zτptq,t`d1`k1´1,l
m2,τ
t `k2

˛

‚

while the second sum
řd`1

i“1 Φpm2qrk1, i, k2 ` 1sΦpm1qri, k1 ` d1, k2 ` 1s is equal to
¨

˝

ÿ

τPΣm2

d2
ź

t“1

zτptq,t`k1´1,l
m2,τ
t `k2

˛

‚

¨

˝

ÿ

πPΣm1

d1
ź

t“1

zπptq,t`d2`k1´1,l
m1,π
t `k2

˛

‚

Expanding the products, we see that the first sum generates the monomials in the poly-

nomial
ÿ

σPΣm

d1
ź

t“1

zσptq,t`k1´1,lm,σ
t `k2´1 corresponding to the σ P Σm that make m1 the left child

of the root of m and m2 the right, and the second term generates the rest of the monomials.

Also, note that the same argument as in the proof of Lemma 10 tells us that if we have
i1, i2, i3 such that i2 ‰ i1 ` d1 and i3 P rds then Φpmqri1, i2, i3s “ 0 and that if i3 ą d ´ l ` 1
then again Φpmqri1, i2, i3s “ 0.
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In particular, by setting k1, k2 “ 1 in the statement of Claim 13 we see that for a monomial

m of degree d1, the p1, d1 ` 1, 1q-th entry of Φpmq is
ÿ

σPΣm

d1
ź

t“1

zσptq,t,lm,σ
t

. For a monomial of

degree ‰ d1, this entry is zero.
Therefore, Combining Claim 13, Lemma 8 and Observation 9, we see that f cannot be

an a PI for C1
d (and therefore for Cd).

The proof of Theorem 2 follows from Lemma 1, in a way similar to the proof of Theorem
12. We record the statement here for completeness

Theorem 2. Let F be a field with |F| ą d, and S Ă F. Let f P FĀ,CrXs be a non-zero
polynomial of degree ď d given as a black-box with query access to evaluations of f on
elements of Cd. Let S Ď F with |S| ą d. Sample b1, . . . , bn P Cd as follows: Pick each of the
dpd ` 1q2 ` 1 entries of each of the bi’s uniformly and independently from S. Then

Pr
b1,...,bnPCd

rfpb1, . . . , bnq “ 0s ď d{|S|.

4 Deterministic PIT Algorithms Over FĀ,CrXs

In this section, we develop efficient deterministic PIT algorithms over the algebra FĀ,CrXs.
First, we present the white-box algorithm and then the black-box algorithm.

4.1 White-box Deterministic PIT over FĀ,CrXs

We give a polynomial time white-box PIT algorithm for commutative, nonassociative cir-
cuits. We use linear algebraic ideas from the PIT algorithm by Raz and Shpilka [16] for
noncommutative algebraic branching programs. These ideas have later been used to give
polynomial time white-box PIT algorithms for various models, such as nonassociative, non-
commutative circuits [25] and noncommutative unique parse tree circuits [27].

Theorem 3. Let Ψ be a nonassociative arithmetic circuit of size s computing an n vari-
ate, degree ď d polynomial f P FĀ,CrXs. Given Ψ as input, we can check whether f ” 0
deterministically in time polyps, n, dq.

Proof. For each monomial m of degree ď d, we may associate a vector vm P Fs where
s is the number of gates in Ψ. The vector vm is indexed by the gates of Ψ such that
vmpgq “ coeffmpgq. For each i P t0u Y rds, we wish to maintain a polynomially bounded set
Mi of monomials of degree i and a corresponding set Bi “ tvm | m P Miu of vectors such
that spantBiu “ spantvm | degpmq “ iu, and we build these sets inductively, starting from
i “ 0, 1. For i “ 0, 1, we set Mi to be the set of all monomials of degree i and populate the
vectors in Bi in a brute force manner.

Next, suppose we have the sets Mi, Bi for 0 ď i ă j and we want to construct Mj and
Bj (j ě 2). We set

M 1
j “

ď

i`k“j
i,kě1

tm ˆ m1
| m P Mi and m1

P Mku
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For all m “ m1m2 P M 1
j we do the following: we sort the gates of Ψ in topological order and

fill the entries of vm in that order as follows:

• If g is a leaf, we set vmpgq “ 0 (since j “ degpmq ě 2).

• If g “ g1 ˆ g2 is a product gate, set vmpgq “ vm1pg1qvm2pg2q ` vm2pg1qvm1pg2q `

vmpg1qv1pg2q ` v1pg1qvmpg2q. We can do this since we know the vectors vm1 , vm2 by
induction on the degree, and we know vmpg1q, vmpg2q as g1, g2 appear before g in the
topological order.

• If g “ g1`g2 is a sum gate, set vmpgq “ vmpg1q`vmpg2q. Again, we know vmpg1q, vmpg2q
as g1, g2 appear before g.

Finally, we select a maximal linearly independent subset Bj (using Gaussian elimination)
from the set of vectors tvm | m P M 1

ju and call the corresponding set of monomials Mj.
Clearly, |Mj| ď s.

Claim 14. For any monomial m such that degpmq “ j, vm P spantBju.

Proof. The proof is by induction on the degree j. For j “ 0, 1, the claim is trivially true, so
assume j ě 2. Now suppose m is uniquely decomposed (up to commutativity) as m “ m1m2

such that degpm1q “ i and degpm2q “ k (with i, k ě 1). By induction on degree, we assume
that

vm1 “
ÿ

m1PMi

αm1vm1 and vm2 “
ÿ

m2PMk

βm2vm2 (2)

for constants tαm1 | m1 P Miu and tβm2 | m2 P Mku. We will prove that for each gate g of Ψ

vmpgq “
ÿ

m1PMi
m2PMk

αm1βm2vm1m2pgq (3)

This puts vm in spantBju by construction. We prove (3) gate by gate, by induction on
the depth of the gate.

• For a leaf g, g is labeled by a variable or a constant, so vmpgq “ 0 (recall that j ě 2)
and vm1m2pgq for each m1 P Bi,m

2 P Bk is also all zero by construction, so (3) is true
in this case.

• For a product gate g “ g1 ˆ g2,

vmpgq “ vm1pg1qvm2pg2q ` vm2pg1qvm1pg2q ` vmpg1qv1pg2q ` v1pg1qvmpg2q.

After substituting (2) for vm1 and vm2 using the (degree) induction hypothesis, substi-
tuting (3) for vmpg1q, vmpg2q using induction on the depth of g1, g2 and simplifying, we
get that

18



vmpgq “
ÿ

m1PMi
m2PMk

αm1βm2

¨

˝

ÿ

pr,tqPtp1,2q,p2,1qu

vm1pgrqvm2pgtq ` vm1m2pgrqv1pgtq

˛

‚

Note that the inner expression is nothing but vm1m2pgq (by construction), and therefore
(3) is true when g is a product gate.

• For a sum gate g “ g1 ` g2, we have

vmpgq “ vmpg1q ` vmpg2q

“
ÿ

m1PMi
m2PMk

αm1βm2vm1m2pg1q `
ÿ

m1PMi
m2PMk

αm1βm2vm1m2pg2q

“
ÿ

m1PMi
m2PMk

αm1βm2pvm1m2pg1q ` vm1m2pg2qq

“
ÿ

m1PMi
m2PMk

αm1βm2vm1m2pgq

where the second step follows by induction on depth and the fourth by construction of
vm1m2 . This verifies (3) when g is a sum gate.

These three cases together prove the claim.

Clearly, this procedure of constructing Bj’s and Mj’s takes polynomial time since |Bj| ď

maxts, n, 1u for each 0 ď j ď d. To check whether Ψ ” 0, we simply check whether there
exists an i P t0, . . . , du such that there exists a monomial m P Mi such that vmpgsq ‰ 0,
where gs is the output gate of Ψ. If yes, we say Ψ ı 0, otherwise we say Ψ ” 0.

4.2 Deterministic Nonassociative Black-box PIT
In this section, we design black-box PIT algorithms for polynomials in FĀ,CrXs and FĀ,C̄rXs

computed by low depth circuits. Our algorithms run in quasipolynomial time as long as
the input circuit Ψ has depth polylogarithmic in the size of Ψ and the degree of the poly-
nomial computed by it. The algorithms query Ψ on elements of the algebra Ad in the non-
commutative case and on elements of Cd in the commutative case, defined in sections 3.1
and 3.2 respectively. In particular, we construct hitting sets of quasipolynomial size in both
the commutative and noncommutative setting, for circuits that have depth polylogarithmic
in its size and degree.

Theorem 4. There exists a set Hn,s,d,∆ Ď pCdqn of size pnsdqOp∆q of points in pCdqn such
that for every nonassociative, commutative circuit Ψ of size ď s and product depth ď ∆
computing a non-zero polynomial f P FĀ,CrXs of degree ď d, there is a point in Hn,s,d,∆

at which f is non-zero. Furthermore, we can compute Hn,s,d,∆ deterministically in time
pnsdqOp∆q.
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Over the algebra FĀ,C̄rXs, we have the following analogous result.

Theorem 15. There exists a set Hn,s,d,∆ Ď pAdqn of size pnsdqOp∆q of points in pAdqn such
that for every nonassociative, noncommutative circuit Ψ of size ď s and product depth ď ∆
computing a non-zero polynomial f P FĀ,C̄rXs of degree ď d, there is a point in Hn,s,d,∆ at
which f is non-zero. Furthermore, we can compute Hn,s,d,∆ in time pnsdqOp∆q.

We prove Theorem 4 and Theorem 15 in the next two subsections. The idea is to reduce
PIT for nonassociative circuits to PIT for associative, unambiguous circuits (see below for a
formal definition) and then give hitting sets for unambiguous circuits.

Definition 6 (Unambiguous Circuits). Let Z “ tz1. . . . , znu be a commutative, associative
set of variables and let monspZq denote the set of monomials in the variables in Z. We say
that a circuit Ψ computing a polynomial f P FrZs is unambiguous if for each monomial m
in f there is a unique reduced parse tree Tm in Ψ generating m. That is, if another reduced
parse tree T generates m at any gate in Ψ, then the trees T and Tm are identical as labeled
rooted binary trees.

4.2.1 Reduction from non-associative to associative, unambiguous circuits

The first, fairly straightforward step is to reduce PIT for nonassociative circuits to PIT for
associative, unambiguous circuits. We do this via a set-multilinearization argument. This
type of reduction is commonplace in noncommutative PIT literature (see for example [21],
[26])

We first describe the reduction in the nonassociative, commutative setting. The proof is
along exactly the same lines in the noncommutative setting as well (in fact it is simpler).

Let tx1, . . . , xnu be a set of variables. Let Ψ be a circuit computing a polynomial f P

FĀ,CrXs of degree d1 ď d. For each variable xi, i P rns, we introduce a set tzi,j,k | 1 ď j, k ď

du. Let Z “
Ťn

i“1tzi,j,k | 1 ď j, k ď du and define the algebras Cd and C1
d over the field

FpZq. We consider the evaluation map Φ : FĀ,CrXs Ñ C1
d defined in Section 3.2. Let us

recall the definition of Φ: Φ maps xi to Zi where for each 1 ď j, k ď d, the entry pj, j ` 1, kq

of Zi is zi,j,k and the rest of the entries are zero.
We will examine the image of the circuit Ψ under Φ. To this end, we define another

map ϕ : FĀ,CrXs Ñ FrZs. Let m be a monomial in tx1, . . . , xnu of degree d1. Recall that in
Section 3.2, we associated to m a set Σm of “orders" and for each σ P Σm, we had lm,σ

t (for
each 1 ď t ď d1), the level at which the t-th variable in the order σ appears in m. For a
monomial m in FĀ,CrXs define

ϕpmq fi
ÿ

σPΣm

d1
ź

t“1

zσptq,t,lm,σ
t

and extend ϕ linearly to all of FĀ,CrXs.

Lemma 16. Let f P FĀ,CrXs be a homogeneous polynomial of degree d1 ď d. The p1, d1`1, 1q-
th entry of Φpfq is equal to ϕpfd1q where fd1 is the homogeneous degree d1 component of f .
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Proof. This is a simple corollary of Claim 13. Setting k1, k2 “ 1 in the statement of Claim
13, we see that for a monomial m of degree d1, the p1, d1 ` 1, 1q-th entry of Φpmq is ϕpmq.
On the other hand, for a monomial m of degree ‰ d1, we get that the p1, d1 ` 1, 1q-th entry
of Φpmq is 0. Therefore, Lemma 16 follows by summing over monomials of f .

Lemma 17. Let Ψ be a nonassociative, commutative arithmetic circuit of size s and product
depth ∆ computing a polynomial f P FĀ,CrXs of degree d1 ď d. Then, there exists an
unambiguous circuit Ψ1 computing ϕpfd1q where fd1 is the homogeneous degree d1 component
of f . Furthermore, the size of Ψ1 is at most 3d4s and product depth at most ∆.

Proof. We assume without loss of generality that we have a homogeneous circuit Ψd1 for
computing fd1 , with size at most d2s and product depth at most ∆. We can do this since
nonassociative circuits can be homogenized using a standard technique [20] with a multiplica-
tive blowup of d2 in size. This has also been observed by the authors in [19]. Furthermore,
we may also assume (without loss of generality) that Ψd1 does not have gates (including
leaves) computing constants from F.

We will build Ψ1 using Ψd1 , in a bottom up fashion such that Ψ1 computes the non-zero
entries of Φpfd1q. First, for each leaf labeled by xi in Ψd1 , introduce d2 leaves in Ψ1, each
labeled by one of the d2 nonzero entries (tzi,j,k | j, k P rdsu) of Zi. Recall that zi,j,k appears
as the pj, j ` 1, kq-th entry of Φpxiq “ Zi. Next, suppose we are at an internal gate g of Ψd1

with children g1, g2. Let f g denote the polynomial computed at gate g in Ψd1 and let the
degree of f g be d2 ď d1.

• g is a sum gate in Ψd1 . In this case, degpf g1q “ degpf g2q “ d2 since Ψd2 is homogeneous.
For each k1 P rd ´ d2 ` 1s and k2 P rds, we compute in Ψ1 the pk1, k1 ` d2, k2q-th entry
of Φpf gq by summing the corresponding entries of Φpf g1q and Φpf g2q, since sum in C1

is pointwise. Note that these are the only entries of Φpf gq that can be nonzero, by
Claim 13.

• g is a product gate in Ψd1 with children g1, g2: Let the degrees of f g1 , f g2 be d1, d2
respectively with d1 ` d2 “ d2. For each k1 P rd ´ d2 ` 1s and k2 P rds, we compute in
Ψ1 the pk1, k1 ` d2, k2q-th entry of Φpf gq as follows:

Φpf g
qrk1, k1 ` d2, k2s “Φpf g1qrk1, k1 ` d1, k2 ` 1sΦpf g2qrk1 ` d1, k1 ` d2, k2 ` 1s`

Φpf g2qrk1, k1 ` d2, k2 ` 1sΦpf g1qrk1 ` d2, k1 ` d2, k2 ` 1s

Again, this is justified by Claim 13. The entries we have computed are the only entries
of Φpf gq that can be nonzero.

By Lemma 16, the gate in Ψ1 computing the p1, d1 ` 1, 1q-th entry of Φpfd1q computes
ϕpfd1q. By construction, Ψ1 has size 3d4s and product depth at most ∆.

Claim 18. Ψ1 is unambiguous.

Proof. This follows from the fact that Ψd1 is nonassociative. In particular, owing to Claim
13, we have that for every monomial m P FrZs (with degree d2 ď d’) computed by Ψ1, there
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exists a unique monomial m̂ P FĀ,CrXs with degree d2 and depth l, an order σ P Σm̂, a
k1 P rd ´ d2 ` 1s and a k2 P rd ´ l ` 1s such that

m “

d1
ź

t“1

zσptq,t`k1´1,lσ,m̂t `k2´1

Furthermore, if the reduced parse tree for m decomposes m as m “ m1m2 then m̂ “ m̂1m̂2.
This property ensures that Ψ1 is indeed unambiguous

This finishes the proof of Lemma 17.

In the non-commutative setting, let tx1, . . . , xnu be a set of variables and let the set Z
of variables be as before. We consider the map Φ : FĀ,C̄rXs Ñ A1

d from Section 3.1 (where
A1

d is an algebra over the field FpZq). In this case, Φ sends xi to Zi P A1
d where for each

1 ď j, k ď d the pj, j ` 1, kq-th entry of Zi is zi,j,k and every other entry is zero.
Recall that for any monomial m P FĀ,C̄rXs of degree d1 there is a unique left to right

order σm : rd1s Ñ rns of variables associated to m. To study the image of a polynomial under
Φ, we need the auxiliary map ϕ : FĀ,C̄rXs Ñ FrZs defined as follows: for a monomial m as
above,

ϕpmq “

d1
ź

t“1

zσmptq,t,lmt

Using these definitions of Φ and ϕ, and along the same lines as the proofs of Lemmas 16
and 17, we obtain the following:

Lemma 19. Let f P FĀ,C̄rXs be a homogeneous polynomial of degree d1 ď d. The p1, d1`1, 1q-
th entry of Φpfq is equal to ϕpfd1q where fd1 is the homogeneous degree d1 component of f .

Lemma 20. Let Ψ be a nonassociative, noncommutative arithmetic circuit computing a
polynomial f P FĀ,C̄rXs of degree d1 ď d. Then, there exists an unambiguous circuit Ψ1

computing ϕpfd1q (where fd1 is the homogeneous degree d1 component of f). Furthermore, the
size of Ψ1 is at most 3d4s and product depth at most ∆.

4.2.2 Hitting sets for low-depth associative, unambiguous circuits

In this section, we construct hitting sets for low-depth unambiguous circuits in the commuta-
tive, associative setting. We first define the most important tool in the design of hitting sets
for unambiguous circuits: basis isolating weight assignments. Agrawal et al. [23] defined basis
isolating weight assignments and used them to construct hitting sets for Read-Once oblivious
ABPs. These weight assignements were subsequently also used in a work of Saptharishi and
Tengse [26] for PIT of noncommutative unique parse tree circuits.

Let Z “ tz1, . . . , znu and let Ψ an unambiguous circuit with s gates computing a polyno-
mial f P FrZs of degree d. Define fΨ P FsrZs to be the polynomial

ř

mPmonspZq

vmm where for

each monomial m, vm, the coefficient of m in fΨ, is (as before) an s dimensional vector whose
entries are indexed by gates of Ψ and for each gate g in Ψ, vmpgq fi coeffmpgq. Let w : Z Ñ N
be a weight function that assigns weights to variables in Z. w extends to monspZq naturally
as follows: wpzi11 z

i2
2 . . . zinn q “

řn
j“1 ijwpzjq.
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Definition 7 (Basis Isolating Weight Assignment). A weight function w : Z Ñ N is said
to be a basis isolating weight assignment for fΨ P FsrZs if there exists a set M of isolated
monomials in monspZq such that the following conditions hold:

1. B “ tvm | m P Mu forms a basis for spantvm | m P monspZqu

2. For m,m1 P M such that m ‰ m1, we have that wpmq ‰ wpm1q

3. For each m R M , vm P spantvm1 | m1 P M,wpm1q ă wpmqu.

In order to build basis isolating weight assignments, we need an efficient version of the
Kronecker map described in [14], [23] that we now state.

Lemma 21 (Efficient Kronecker map, [14]). Let Z “ tz1, . . . , znu be a set of commutative,
associative variables. For each k ě 1, there is a set Wk of N ď n

`

k
2

˘

logpd ` 1q weight
functions w : Z Ñ r2N logN s such that for any set A of monomials in Z of individual degree
ď d satisfying |A| ď k, there exists a w P Wk that separates A, that is, @m ‰ m1 P A,
wpmq ‰ wpm1q. Furthermore, the set Wk is constructible in polynomial time.

For convenience, we say that a set W of weight assignments to Z separates a set A of
monomials if there exists a w P W that separates A. In what follows, we will construct a
basis isolating weight assignment w for fΨ.

Theorem 22. Let Ψ be an unambiguous circuit with s gates and product depth ∆ computing
f P FrZs of degree d. Let fΨ “

ř

mPmonspZq
vmm be as above. Then, we can construct a basis

isolating weight assignment w : Z Ñ N for fΨ such that wpziq “ pndsqOp∆q, for each i P rns.
Furthermore, we can construct w in time pndsqOp∆q.

Proof. For any monomial m, the depth of m (with degree ě 1) in Ψ is the depth of Tm,
the unique reduced parse tree in Ψ computing the monomial m. Since the product depth
of Ψ is at most ∆, we have that for each monomial m, the depth of Tm is also ď ∆. Let
fΨ “

ř

mPmonspZq

vmm where vm P Fs is as defined before. The basis isolating weight assignment

w for fΨ is obtained by taking a carefully chosen linear combination of ∆ ` 1 many weight
functions. That is, the ∆ ` 1 many weight functions are chosen and scaled appropriately to
obtain the final basis isolating weight function as in Agrawal et al. [23]. Recall that Wk is the
set of weight assignments from Lemma 21 that separates every set of at most k monomials
of degree ď d.

Claim 23. There exist w2, . . . , w∆`1 P Ws2∆ such that

w fi

∆
ÿ

i“0

B∆´iwi`1

is a basis isolating weight assignment for fΨ, where w1 sends each zi to the value i, and
B “ 1 ` maxtwipmqu where the max is over all monomials m of degree ď d in Z, and all i
belonging to r∆ ` 1s.
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Proof. We construct the weight function w by iteratively constructing w1, . . . , w∆. For this,
we will need the following function:

wj fi

j´1
ÿ

i“0

Bj´1´iwi`1 (4)

First, we sort the variables in Z in ascending order of their weight with respect to w1 and
pick a basis B1 for spantvzi | i P rnsu greedily starting from the lowest weight variable. Let
the corresponding set of monomials (variables) be M1. Clearly, |M1| ď s and w1 “ w1.
Further, by construction of B1 and M1 and as w1 “ w1, we have that for every monomial
m of depth 1, vm P spantvm1 | m1 P M1, w

1pm1q ă w1pmqu. Now, we extend this idea to
monomials of depth j P t2, . . . ,∆u. More precisely, we show the following:

For each 2 ď i ď ∆, there exists wi P Ws2∆ such that for each j “ 1, . . . ,∆ there exists a sub-
set Mj of monomials of depth j and a corresponding set Bj “ tvm | m P Mju of coefficients
of fΨ such that for every monomial m of depth j, vm P spantvm1 | m1 P Mj, w

jpm1q ă wjpmqu.
Furthermore, |Mj| ď s for each j P r∆s, and wj separates Mj.

We will prove this by induction on j. Observe that the base case j “ 1 has already been dis-
cussed above. Suppose we already have weight functions w1, . . . , wj´1 (with w2, . . . , wj´1 P

Ws2∆) satisfying our requirements. Then we know that there exist corresponding sets
M1, . . . ,Mj´1 and B1, . . . , Bj´1 also satisfying the above mentioned conditions. Define M 1

j

and B1
j as follows:

M 1
j fi

ď

kďj´1

#

m1
¨ m2

ˇ

ˇ

ˇ

ˇ

ˇ

m1
P Mj´1,m

2
P Mk, depthpTm1m2q “ j,

Tm1m2 decomposes m1
¨ m2 as m1

ˆ m2

+

B1
j fi tvm | m P M 1

ju

where we say that a parse tree T for a monomial m “ m1 ¨ m2 decomposes m as m1 ˆ m2 if
one of the children of the root of T computes m1 and the other computes m2.

Let m be any monomial of depth j with reduced parse tree Tm such that Tm decomposes
m as m “ m1 ˆ m2 with depthpm1q “ j ´ 1 and depthpm2q “ k ď j ´ 1. Let us define Mm1

and Mm2 as follows:

Mm1 fi tm1
P Mj´1 | wj´1

pm1
q ă wj´1

pm1qu Ď Mj´1

Mm2 fi tm2
P Mk | wk

pm2
q ă wk

pm2qu Ď Mk

Let us also define the set Mm1m2 Ď M 1
j as follows:

Mm1m2 fi

#

m1
¨ m2

ˇ

ˇ

ˇ

ˇ

ˇ

m1
P Mm1 ,m

2
P Mm2 , depthpTm1m2q “ j,

Tm1m2 decomposes m1
¨ m2 as m1

ˆ m2

+

We will show that for each monomial m as defined above, we have

vm P spantvm1m2 | m1
¨ m2

P Mm1m2u (5)
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The proof of Equation 5 is similar to the proof of Claim 14, although in this case we will
need to be careful about the depth of the monomials involved. By the induction hypothesis,
we have that vm1 P spantvm1 | m1 P Mm1u and vm2 P spantvm2 | m2 P Mm2u. That is,

vm1 “
ř

m1PMm1

αm1vm1 (6)

vm2 “
ř

m2PMm2

βm2vm2 (7)

where the αm1 ’s and βm2 ’s are scalars in F. In order to prove Equation 5, we will show
that for each gate g in Ψ,

vm1m2pgq “
ÿ

m1PMm1 ,m
2PMm2

m1m2PMm1m2

αm1βm2vm1m2pgq (8)

We do this, as in the proof of Claim 14, by induction on the depth of the gate g in Ψ.

1. If g is a leaf, then both the LHS and RHS in Equation 8 are 0 (since j ě 2). Therefore,
Equation 8 is true in this case.

2. If g “ g1 ` g2 is a sum gate, we have

vm1m2pgq “ vm1m2pg1q ` vm1m2pg2q

By induction on the depth of the gates g1, g2, Equation 8 is true for vm1m2pg1q and
vm1m2pg2q and therefore it is also true for vm1m2pgq.

3. The interesting case is when g “ g1 ˆ g2 is a product gate. In this case,

vm1m2pgq “ vm1pg1qvm2pg2q ` vm1pg2qvm2pg1q ` vm1m2pg1qv1pg2q ` v1pg1qvm1m2pg2q

Substituting (6) for vm1 and (7) for vm2 we get

vm1pg1qvm2pg2q ` vm1pg2qvm2pg1q “
ÿ

m1PMm1
m2PMm2

αm1βm2pvm1pg1qvm2pg2q ` vm1pg2qvm2pg1qq

(9)

The key observation here is that if for some m1 P Mm1 and m2 P Mm2 it is the case
that m1m2 R Mm1m2 , then vm1pg1qvm2pg2q “ 0 and vm1pg2qvm2pg1q “ 0, for otherwise
Tm1m2 it would decompose m1m2 as m1 ˆ m2 and it would have depth j (because
depthpTm1q “ j ´ 1 and depthpTm2q “ k ď j ´ 1).

Therefore, we have that the only surviving terms in the RHS of Equation 9 are those
corresponding to the m1 P Mm1 and m2 P Mm2 such that m1m2 P Mm1m2 . Also, by
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induction on the depth of the gates g1 and g2, Equation 8 is true for g1 and g2. Combing
these observations, we see that vm1m2pgq is equal to

ÿ

m1PMm1 ,m
2PMm2

m1m2PMm1m2

αm1βm2pvm1pg1qvm2pg2q ` vm1pg2qvm2pg1q ` vmpg1qv1pg2q ` v1pg1qvmpg2qq

This quantity is exactly equal the RHS of Equation 8.

These three cases together prove Equation 8, and therefore, Equation 5. Note that Equation
5 puts vm in the span of B1

j by definition of M 1
j.

Furthermore, observe the following:

• For any m2 P Mm2 , wkpm2q ă wkpm2q, by the definition of set Mm2 .

• For any two monomials m̃1, m̃2 and any 1 ď l ď t ď ∆, wlpm̃1q ă wlpm̃2q ùñ

wtpm̃1q ă wtpm̃2q. This is by the choice of B: wtpm̃1q “ Bt´lwlpm̃1q`Bt´l´1wl`1pm̃1q`

. . . ` wtpm̃1q ď Bt´lwlpm̃1q ` Bt´l ´ 1 ă Bt´lwlpm̃2q ď wtpm̃2q.

• Therefore we have that for any m2 P Mm2 , wj´1pm2q ă wj´1pm2q (since k ď j ´ 1).

From the observations above, we see that for any m1 P Mm1 ,m
2 P Mm2 we have:

wj´1
pmq “ wj

pm1¨m2q “ wj´1
pm1q`wj´1

pm2q ą wj´1
pm1

q`wj´1
pm2

q “ wj´1
pm1

¨m2
q (10)

Hence, from Equations (5) and (10), for any monomial m of depth j we have that vm P

spantvm1 | m1 P M 1
j, w

j´1pm1q ă wj´1pmqu. To complete the induction step, pick a wj P Ws2∆

that separates M 1
j (this fixes wj as well). By the way wj is defined, wj also separates M 1

j. Sort
the elements of M 1

j (and therefore B1
j) in ascending order of weight with respect to wj and

pick a greedy basis for spantB1
ju, going over vectors in B1

j from left to right starting with the
lowest weight monomial. Set that basis to be Bj and the corresponding set of monomials to
be Mj. Clearly, for all monomials m of depth j, vm P spantvm1 | m1 P Mj, w

jpm1q ă wjpmqu,
and |Mj| ď s. Also, wj separates Mj by construction. This completes the inductive step.

At j “ ∆, we will have constructed w∆ with the following properties:

(a) w∆ separates Mj for all 1 ď j ď ∆. This is because wj separates Mj and therefore so
do all wk for j ď k ď ∆.

(b) For all j P r∆s and every monomial m of depth j, vm P spantvm1 | w∆pm1q ă w∆pmqu.
Again, this is because wjpm1q ă wjpmq implies wkpm1q ă wkpmq for all j ď k ď ∆.

Consider the set M 1 “
∆
Ť

j“1

Mj (note that |M 1| ď s∆). Pick a w∆`1 P Ws2∆ that separates

M 1. Consider the weight assignment w “ w∆`1 fi Bw∆ `w∆`1. It is not hard to see that w
is a basis isolating weight assignment for fΨ. Sort the monomials in M 1 in ascending order of
weight with respect to w∆`1, and pick a greedy basis for spantvm | m P M 1u, as before. Call
this set B and the corresponding set of monomials M . M is the set of monomials isolated
by w∆`1:
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1. w∆`1 separates M .

2. Let m be any monomial. Let depth of m be j. Then by observation (b) above, know
that vm P tvm1 | m1 P Mj, w

∆pm1q ă w∆pmqu. This implies that vm P tvm1 | m1 P

Mj, w
∆`1pm1q ă w∆`1pmqu. But for each m1 P Mj Ď M 1, vm1 P spantvm2 | m2 P

M,w∆`1pm2q ă w∆`1pm1qu. Therefore, for each monomial m, we have vm P spantvm2 |

m2 P M,w∆`1pm2q ă w∆`1pmqu.

3. Since the vectors in B are linearly independent, B is in fact a basis for tvm|m P

monspZqu.

This finishes the proof of Claim 23.

Now, having proved existence, in order to construct the basis isolating weight assignment
from Claim 23, simply try all tuples pw2, . . . , w∆`1q in pWs2∆q∆. At least one of them is sure
to work. The cost of doing this is polypn, s, dq∆, and the weight assignments arising from
these tuples give at most polypn, s, dq∆ weight to any variable.

Next, we will show that a basis isolating weight assignment is useful for PIT.

Lemma 24. Let Ψ be a circuit computing fpz1, . . . , znq P FrZs and fΨ “
ÿ

mPmonspZq

vmm be

as defined earlier. Suppose w is a basis isolating weight assignment for fΨ. Let ϕ be the
polynomial map that sends zi to twpziq where t is a new variable. Then ϕpfq ı 0 ðñ f ı 0.

Proof. Clearly, f ” 0 ùñ ϕpfq ” 0. For the other direction, first notice that ϕpmq “ twpmq

for any monomial m. Let M Ď monspZq be the set of monomials isolated by w. Let
B “ tvm | m P Mu. Let g be the output gate of Ψ which computes f . If f ı 0 then
f must contain a monomial from M with non-zero coefficient, because B is a basis for
spantvm | m P monspZqu. Let M 1 Ď M be the monomials from M that occur in f with
non-zero coefficient. Let m fi argminmPM 1twpmqu. m is the unique minimizer, since w
separates M . Now suppose for m1 R M , we have that wpm1q “ wpmq. We know that
vm1 P spantvm2 | m2 P M,wpm2q ă wpm1qu. But for all such m2, vm2pgq “ 0 by minimality
of m. Therefore, vm1pgq “ 0. Therefore, m is the only non-zero monomial in f that receives
weight wpmq, and so it survives ϕ.

PIT for unambiguous circuits of low depth follows easily from Lemmas 22 and 24, just
by noting that the degree of the univariate polynomial ϕpfq (as above) is polypn, d, sq∆. To
check if a univariate is identically zero, we can query it on degree` 1 points in F (recall that
a non-zero univariate has at most degree many roots). If ∆ is polylogarithmic in n, d, s, we
get the quasipolyomial running time bound. We record this as our next theorem.

Theorem 5. There exists a set Hs,n,d,∆ Ď Fn such that for any unambiguous circuit Ψ of
size s and product depth ∆ computing a non-zero polynomial f P Frz1, . . . , zns of degree ď d,
f is non-zero on some point of Hs,n,d,∆. Furthermore, |Hs,n,d,∆| “ pndsqOp∆q and Hs,n,d,∆ can
be constructed in time pndsqOp∆q.

Theorems 4 and 15 are a direct consequence of combining the reduction from nonasso-
ciative circuits to commutative, associative, unambiguous circuits and the hitting set for
unambiguous circuits.
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Proof of Theorem 4. To embed the hitting set from Theorem 5 into the algebra Cd, we let
Z “ tzi,j,k | i P rns, j P rdsu as in Section 3.2. Let Cd and C1 be the algebras defined in Section
3.2, over the extension field FpZq. Recall the map Φ : FĀ,CrXs Ñ C1

d as defined in Section
4.2.1. Φ sends xi to Zi P C1

d for each i P rns and each j, k P rds, the pj, j ` 1, kq-th entry
of Zi is one and all other entries are zero. We will embed Φ into a map Φ1 : FĀ,CrXs Ñ Cd

defined as follows: we let Φ1 map xi to pZi, 0q, Zi P C1
d, c P F to p0, cq (where 0 P C1

d) and
extend it to all of Cd by linearity. Note that for a polynomial f P FĀ,CrXs with constant
term c we have that Φ1pfq “ pΦpf ´ cq, cq.

Let Ψ be a commutative, nonassociative circuit of size s and product depth ∆ computing a
polynomial f P FĀ,CrXs, with degreepfq “ d1 ď d. Consider the image Φ1pfq “ pΦpf ´ cq, cq
of f under Φ1, where c is the constant term in f . We know from Lemma 16 that the
p1, d1 ` 1, 1q-th entry of Φpf ´ cq is ϕpfd1q (see Section 4.2.1 for details). By Lemma 17,
ϕpfd1q has an unambiguous circuit Ψ1 of size ď 3d4s and depth ď ∆. Note that Φpfd1q is a
polynomial in the d2n many Z variables. Therefore, embedding the hitting set H3d4s,d2n,d,∆

on the Z variables into the map Φ1 gives us the theorem.

The proof of Theorem 15 is also exactly the same as above, except in this case we will
obtain a hitting set with elements in pAdqn.

5 Discussion
Two interesting question that stem from our work are the following:

1. Depth reduction for unambiguous circuits: As briefly mentioned in the introduction,
we leave open the question of whether unambiguous circuits can be depth reduced
without too much blowup in size. More precisely, suppose we have an unambiguous
circuit Ψ of size s, computing a polynomial f P Frz1, . . . , zns of degree d. Does there
exist another unambiguous circuit Ψ1 computing f , with size quasipolynomial in n, s, d
and depth polylogarithmic in n, s, d? A positive answer to this question would imply
that the size of the hitting sets from Theorem 4 and Theorem 15 can be improved to
quasipolynomial, irrespective of the depth of the circuit. As far as we know, standard
depth reduction techniques due to Valiant et al. [8] and Brent [2] do not preserve
unambiguity of circuits, even if we allow quasipolynomial blowup in size.

2. Tightness of the dimension of Cd and Ad: Consider the following, purely mathematical
question: What is the smallest possible dimension kpdq of a unital algebra that does
not satisfy any identity f P FĀ,CrXs of degree ď d? We show kpdq ď dpd ` 1q2 ` 1.
One could also ask the analogous question over the algebra FĀ,C̄rXs. The Amitsur-
Levitzki Theorem (Theorem 7) gives such a tight characterization over FxXy, for matrix
algebras.
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