
Lower Bounds from Succinct Hitting Sets

Prerona Chatterjee * Anamay Tengse †

Abstract

We investigate the consequences of the existence of “efficiently describable” hitting sets for
polynomial sized algebraic circuit (VP), in particular, VP-succinct hitting sets. Existence of such
hitting sets is known to be equivalent to a “natural-proofs-barrier” towards algebraic circuit
lower bounds, from the works that introduced this concept [FSV18, GKSS17]. We show that
the existence of VP-succinct hitting sets for VP would either imply that VP ̸= VNP, or yield a
fairly strong lower bound against TC0 circuits, assuming the Generalized Riemann Hypothesis
(GRH).

This result is a consequence of showing that designing efficiently describable (VP-explicit)
hitting set generators for a class C, is essentially the same as proving a separation between C
and VPSPACE: the algebraic analogue of PSPACE. More formally, we prove an upper bound
on equations for polynomial sized algebraic circuits (VP), in terms of VPSPACE.

Using the same upper bound, we also show that even sub-polynomially explicit hitting sets
for VP — much weaker than VP-succinct hitting sets that are almost polylog-explicit — would
imply that either VP ̸= VNP or that P ̸= PSPACE. This motivates us to define the concept of
cryptographic hitting sets, which we believe is interesting on its own.

*Department of Mathematics, IIT Madras. Parts of this work were supported by the Azrieli International Postdoc-
toral Fellowship, the Israel Science Foundation (grant number 514/20), the Len Blavatnik and the Blavatnik Family
foundation, and a fellowship of the DAE, India for TIFR Mumbai. Email: prerona.ch@gmail.com.

†School of Computer Sciences, NISER, Bhubaneswar. Parts of this work were supported by the Israel Science Foun-
dation (grant No. 716/20 and grant No. 843/23), and a fellowship of the DAE, India for TIFR Mumbai. Email:
anamay.tengse@gmail.com.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 62 (2025)



1 Introduction

Proving lower bounds against boolean circuits is extremely hard. This is not news to anyone in
the area, and perhaps, coming to terms with this reality is a rite of passage for all complexity theo-
rists. More concretely, the famous work of Razborov and Rudich [RR97] rules out most “natural”
strategies for proving lower bounds against any boolean circuit class that is rich enough to do
strong-enough cryptography.

Every boolean function can be seen as a multilinear polynomial, and it is therefore quite natural
to try and understand the complexity of computing these polynomials syntactically (using sum
and product gates). Computing a function syntactically can only be a harder task, since any such
implementation must compute the same function. This suggests that proving algebraic circuit
lower bounds should only be easier.

Take the case of the #SAT function, whose syntactic counterpart is the Permanent polyno-
mial [Val79b]. The latter captures the algebraic counterpart of NP, called VNP [Val79a], and it is
known that showing VP = VNP (“algebraic P = NP”) would immediately give efficient boolean
circuits for SAT, barring some unlikely issues due to field constants [Bür00]. It can further be
shown that any algebraic circuit computing a degree d polynomial does not benefit much from
having intermediate computations of degree more than d [Str73]. Algebraic circuit complexity
therefore focusses on studying the complexity of syntactically computing low-degree polynomials
using algebraic operations of sums and products as gates. The reader may refer to some compre-
hensive surveys [SY10, CKW11, Sap15] for an overview of the area.

Despite this supposed advantage towards proving hardness, almost all interesting algebraic
circuit classes have been doing a pretty good impression of their boolean counterparts as they
continue to resist some promising attacks (like shifted partials: [AV08, GKKS14, FLMS15], set-
multilinearization: [BDS24, CKSS24]). As a result, the one-line summary of the best known lower
bounds does not read much better than the boolean world: Ω(n log n) for circuits [BS83, Smo97],
Ω(n2) for ABPs [CKSV22], Ω(n2) for formulas [Kal85, CKSV22].

Algebraic Natural Proofs

This state of affairs has inspired studies in search of a formal barrier towards proving strong alge-
braic circuit lower bounds using the conventional methods, along the lines of the aforementioned
work of Razborov and Rudich [RR97]. The analogous notion that captures almost all known alge-
braic circuit lower bounds, is the framework of algebraic(ally) natural proofs. This framework was
jointly proposed in the works of Forbes, Shpilka and Volk [FSV18], and Grochow, Kumar, Saks
and Saraf [GKSS17] achieves this well1. This framework is obtained essentially by “algebraizing”
the framework of natural proofs from [RR97].

Intuitively, say we wish to prove a lower bound of s on the size of any circuit computing a
polynomial f . This can be viewed as a task of proving non-membership in a set: the set C that
contains all polynomials computable with size less than s, and we want to show f ̸∈ C. What
would help here is a polynomial D that can certify this fact. In particular, if D were to evaluate
to zero on all members of C, and to some nonzero value on f , then D would act as a proof of
f ̸∈ C. Further, for D to be a non-trivial proof, its complexity needs to be significantly better than
just enumerating over all circuits of size less than s. It turns out that most known lower-bounds

1These build on the works of Aaronson and Drucker [AD08], and Grochow [Gro15].

1



against algebraic models yield such “distinguishers” D that are themselves computable efficiently,
and hence they form the basis for algebraic natural proofs.

More formally, a D-natural proof for C is a polynomial P ∈ D that vanishes on the coefficient
vectors of all polynomial in C (see Section 2.1 for details). Motivated from algebraic geometry,
sometimes such polynomials are also called equations for C. Stated in these terms, almost every
known algebraic circuit lower bound against a class C gives a VP-natural proof for C. Here VP is
the class of polynomials2 whose degree and circuit size grows polynomially with their arity. Thus,
asking whether natural techniques could prove a super-polynomial algebraic circuit lower bound,
translates to asking: does VP have any VP-natural proofs?

In this context, a work of Kumar, Ramya, Saptharishi and Tengse [KRST22] shows that if the
Permanent is exponentially hard3, then there are no VP-natural proofs for VNP. In particular,
as the Permanent is widely believed to be exponentially hard, if one believes that VP has VP-
natural proofs, then they should expect VP ̸= VNP to be provable using natural techniques. A natural
question is therefore, what are the consequences of VP not admitting any VP-natural proofs?

Succinct Hitting Sets

Suppose that the polynomials in C (their coefficient vectors, rather) form a hitting set for the class
VP: low-degree polynomials with efficient circuits. Just by definition, this means that no poly-
nomial in VP can vanish over the entire class C. Stated simply, this would mean that the above
natural lower bound strategy is ineffective for the class C.

Specifically, if C were to be the class of n-variate, multilinear polynomials with circuits of size
poly(n), then the coefficient vectors have length N = 2n. If C forms a hitting set for VP(N), then
it means that VP(N) has a hitting set that has an extremely succinct description: as the set of
coefficient vectors of circuits of size about poly(n) = poly(log N). Such a hitting set is therefore
said to be a C-succinct hitting set for VP. As argued above, the existence of VP-succinct hitting sets
for VP is equivalent to the non-existence of VP-natural proofs for VP. This is the core observation
in the works of Forbes, Shpilka and Volk [FSV18], and Grochow, Kumar, Saks and Saraf [GKSS17]
(see Section 2.1 for formal statements).

Therefore, VP does not have VP-natural proofs if and only if algebraic circuits of size and degree
poly(N) have hitting sets that can be described by circuits of size about poly(log N). It is not
hard to see that non-trivial hitting sets for a class almost immediately yield polynomials that hard
for that class (see, for example, [HS80]). So what sort of hardness results do we get from these
polylog(N)-succinct hitting sets? We show that existence of such hitting sets would imply that
either VP ̸= VNP or that NC1 is separate from TC0 in a very strong sense (Theorem 1.2).

Cryptographic Hitting Sets. On our way to proving this statement, we encounter an object that
is weaker than (polylog(N)) succinct hitting sets, but which we strongly believe is equally inter-
esting on its own. We call these objects cryptographic hitting sets.

Informally, we say that a hitting set H for a class C is cryptographic, if H can be generated or
described by a circuit in a class C′, where C′ is seemingly weaker than C. For example, if C is the
class of algebraic circuits of size s, then the class of algebraic formulas of size poly(s), or even the
class of circuits of size t = so(1) would be valid choices for C′. We define this concept formally as

2Technically, the classes VP, VNP contain polynomial families. We ignore this distinction for now for simplicity.
3Here exponential hardness means 2nε

-hardness for some constant ε > 0.

2



Definition 1.8. The term cryptographic here is chosen because this setting of parameters — where a
weaker class is required to fool a stronger class — is prevalent in cryptography.

We then show an exciting consequence of cryptographic hitting set generators, that have a
super-polynomial “stretch”. In particular, we prove that for the correct setting of parameters, if
VP-cryptographic HSGs exist for VP then either VP ̸= VNP or NC1 ̸⊆ TC0 (Theorem 1.9).

Note that we do not even know of a well-founded hardness assumption which implies the
existence of cryptographic hitting sets for algebraic circuits. The only example is a construction
due to Kayal [Kay09], whose setting of parameters is rather unwieldy for algebraic circuit com-
plexity. The work gives a polynomial map M : FN → FN+1 that can be described by constant
depth formulas, such that any polynomial P that vanishes on it: P ◦M ≡ 0, has degree 2Ω(N). The
map is therefore a hitting set generator for N-variate polynomials of degree poly(N). This setting
of parameters is unwieldy for two reasons: (1) the “stretch” of the generator is linear (can be made
N → N + N1+ε for any ε > 0), and (2) we would ideally like a map that is hard to annihilate, de-
spite the existence of low-degree annihilators; this comes from the motivation to study “syntactic”
algebraic computation, as outlined earlier.

1.1 Our contributions

The main contribution of this paper are some interesting connections between lower bounds, iden-
tity testing and algebraic natural proofs.

Lower Bounds from Succinct Hitting Set Generators

Before stating our theorem, let us recall that a family of polynomial maps
{

Hn : Cn → CN(n)
}

is a hitting set generator for a class of N-variate polynomials of degree-D(N), if any family{
AN : AN ∈ F[x1, . . . , xN(n)]

}
that annihilates {Hn} is outside the class.

Succinct hitting set generators [FSV18, GKSS17] are then defined as follows .
Definition 1.1 (C-Succinct HSG for D). For functions d, D : N→N, let

• Cd be a class of n-variate polynomial families of degree d(n), and

• DD be a class of N-variate polynomial families of degree D(N) with N = (n+d(n)
n ).

We say that
{

Hn : Cn → CN} is a family of Cd-succinct hitting set generators for DD, if the following
are true.

1. {Hn} ∈ Cd.

2. For infinitely many n ∈N, Hn is a hitting set generator for DD(N). ♢

Our main result shows that the existence of VP-succinct hitting sets for VP (or equivalently, the
existence of a barrier in proving VP ̸= VNP via natural techniques) imply strong lower bounds.

Theorem 1.2 (Hardness from Succinct Hitting Sets). Assuming the Generalized Riemann Hypothesis,
if VP-succinct hitting set generators exist for VP, then at least one of the following must be true.

1. VP ̸= VNP.

3



2. For any ℓ(m) = o(1), there is a family of functions {hm} in uniform NC1 such that any uni-
form constant-depth threshold circuit computing it must have size larger than exp(exp(logℓ(m) m)),
where the uniformity is DLOGTIME (in terms of the respective sizes).

Further, if VP does not admit VNP-natural proofs then P ̸= SPACE(loglog∗(n)(n)).

Remark 1.3. A couple of remarks about Theorem 1.2 are in order.

1. Comparing this result with that of Kabanets and Impagliazzo [KI04], the (second) conclusion here is
seemingly much stronger than NEXP ̸⊆ P/poly. This is to be expected, given that the hypothesis here
demands a much more explicit derandomization of identity testing.

2. Note that any function on n variables in uniform NC1 is trivially computable by uniform constant-
depth threshold circuits of size exp(poly(n)) = exp(exp(O(log n))); the statement in Theorem 1.2
says that only a polynomial improvement in the second exponent is possible over this trivial bound.
For comparison, exp(exp(logΩ(1) n)) grows faster than a “half-exponential” function4. ♢

Theorem 1.2 essentially follows from the following upper bound on equations for evaluation
vectors (similar to truth tables) of VP(n).

Theorem 1.4 (Equations for VP). For an arbitrary d(n) ∈ poly(n), let N(n) = (n+d(n)
n ). Then, for

t(n) := nlog∗ n, there is a family of N(n)-variate, multilinear polynomials {PN} that depends only on the
first t(n) variables, satisfying the following.

• The family {PN} is a family of equations for the evaluation vectors of VPd(n).

• The coefficient functions of {PN} are computable in (uniform) space t(n) = nlog∗ n.

Remark 1.5. We make a few remarks about Theorem 1.4.

1. A VP(N)5 upper bound on the equations of VP(n) would rule out a barrier in proving that VP ̸=
VNP via natural proof strategies. The bound we show is incomparable to VP(N).

2. The function log∗(n) can be replaced by any growing function in n.

3. Even though ‘algebraic natural proofs’ are defined in terms of coefficient vectors instead of evaluation
vectors, these notions are more or less equivalent. This is formalized as follows.

Proposition 1.6 (Informal version of Proposition 4.6). For any d(n) and N = (n+d
n ), equations

for coefficient vectors of VPd are computable in VP(N) (or VNP(N)), if and only if, equations for
evaluation vectors of VPd are computable in VP(N) (or VNP(N)). ♢

Defining Cryptographic Hitting Set Generators

As mentioned earlier, our proof for Theorem 1.2 goes via studying objects that are seemingly much
weaker than succinct hitting sets. We now define them formally.

Firstly, we define explicit polynomial maps as follows.
Definition 1.7. For a family

{
Hn : Cn → CN} of maps and a class C, we say that a circuit C(z, y)

encodes H if there are assignments a1, a2, . . . , aN to y, such that for each i ∈ [N], C(x, ai) = hi(x).
Analogously, we say that {Hn} is C-explicit if there is a family {Cn} ∈ C such that, for every n, Cn

encodes Hn. ♢
4The half-exponential function h(n) is defined so that h(h(n)) = 2n. For example, 2nε ≫ h(n)≫ quasipoly(n).
5Here C(n) and D(N) mean that the complexities are polynomial in the parameters n and N ≈ 2n, respectively.

4



Cryptographic HSGs We are now ready to define cryptographic hitting set generators.
Recall that a polynomial map H(x1, . . . , xn) = (h1(x), . . . , hN(x)) is said to have degree d if

hi(x) has degree at most d for every i ∈ [N].
Definition 1.8 (C-Cryptographic HSG for D). For functions d, D : N→N, let

• Cd be a class of n-variate polynomial families of degree d(n), and

• DD be a class of N-variate polynomial families of degree D(N).

Further, let
{

Hn : Cn → CN(n)
}

be a family of polynomial maps with N(n) > n. We say that {Hn} is a
family of Cd-cryptographic hitting set generators for DD, if the following are true.

1. Cd ⊊ DD.

2. {Hn} is Cd-explicit.

3. For infinitely many n ∈N, Hn is a hitting set generator for DD(N). ♢

Lower Bounds from Cryptographic HSGs

We focus on VP-explicit families of polynomial maps {Hn}, where the degree and size of encoding
circuits increases polynomially in the number of parameters n, and show that hitting set gener-
ators for algebraic circuits that have a super-polynomial stretch would have similar (but slightly
weaker) consequences as the ones in Theorem 1.2.

Theorem 1.9 (Lower Bounds from Cryptographic HSGs). Let
{

Hn : Cn → CN} be a family of poly-
nomial maps of degree d = n8 with N ≥ 2n, and let D(N) = N10.

Assuming the Generalized Riemann Hypothesis, if the family {Hn} is a VPd-cryptographic hitting set
generator for VPD, at least one of the following must be true.

1. VP ̸= VNP.

2. Uniform NC1 ̸⊆ uniform TC0, where the uniformity is DLOGTIME.

Further, if the family {Hn} is a hitting set generator for VNPd, then P ̸= PSPACE.

Remark 1.10. In Theorem 1.9, by “{Hn} is a VPd-cryptographic hitting set generator for VPD” we mean
that there is a fixed constant e such that {Hn} can be encoded using a size ne circuit, but {Hn} hits circuits
of size Na for all constants a. This is what makes {Hn} a cryptographic HSG. ♢

Annihilators of explicit polynomials maps

All of our results follow from an upper bound that we are able to show on annihilators of explicit
polynomial maps. The formal statement requires the notion of special evaluation gates, called
projection gates (see Definition 2.19), and is stated as Theorem 3.1.

Projection gates characterize a class called VPSPACE in the same way as (usual) algebraic cir-
cuits characterize VP. A detailed discussion on this class can be found in Section 2.2. But over any
fixed finite field, in particular, it coincides with the class of polynomials whose bits of coefficients
can be computed in non-uniform PSPACE. In particular, a slightly weaker version of Theorem 1.4
can be restated using this vocabulary as follows.

5



Theorem 1.11 (Upper bound for annihilators of VP). Let d(m) be an arbitrary polynomial function of
m. For any VPd-explicit family of maps {Gm}, where each Gm has n outputs with n ≥ 2m, there is a family
{Am} in VPSPACEb of degree O(m2d) such that Am annihilates Gm for all large enough m.

In fact, the upper bound in this statement holds even when the encoding circuit uses projec-
tion gates (see Theorem 3.6). That is, VPSPACE even annihilates (low-degree) VPSPACE-explicit
maps6. Using this, the hypothesis of Theorem 1.9 can also be weakened to a family of VNP or
even VPSPACEb-explicit HSGs (see Theorem 4.1). It is therefore believable that Theorem 1.4 can
be improved; we expand on this in Section 1.3. That said, as we have already seen, it is strong
enough to have some very interesting consequences (Theorem 1.2, Theorem 1.9).

1.2 Proof Overview

The main ideas behind our proofs are a combination of elementary techniques, and we will there-
fore try to give a nearly complete outline of our proofs.

Upper bound on the annihilators

We begin with an overview of the proof of Theorem 1.11 and then discuss how Theorem 1.4 fol-
lows from it.

Let G = (g1(z), . . . , gn(z)) be an arbitrary tuple of degree-d polynomials in m < n/2 variables,
that is VPd-explicit. The explicitness of g will be used later in the proof.

Observe that an annihilator A(x1, . . . , xn) ∈ C[x] of individual degree (D − 1) for this tuple
is precisely a (non-trivial) C-linear dependency between products of g1, . . . , gn of total degree at
most n(D− 1), where each gi is multiplied at most (D− 1) times. Now, any such product is itself
a polynomial in m variables of individual degree less than d′ := (nD · d), and hence belongs to a
vector space of dimension less than d′m over C. On the other hand, there are at least Dn of these
products, so if D is large enough to ensure Dn ≥ d′m = (ndD)m then we are guaranteed some
non-trivial linear dependency. For n ≥ 2m, this happens for a D ≤ nd.

Now we turn to finding the coefficients of this dependency, which are going to be the coeffi-
cients of our annihilator. For this, consider a matrix M with rows labelled by monomials in z of
individual degree at most (d′− 1), and columns labelled by monomials in x of individual degree at
most (D− 1). Order both the rows and columns lexicographically. For a monomial xe = xe1

1 · · · x
en
n ,

the eth column of M is the coefficient vector of ge. In this language, any column-dependency of M
is the coefficient vector of an annihilator of (g1, . . . , gn).

Since we are chasing an annihilator with as efficient a description as possible, it makes sense
to pick the “lexicographically first” one. That is, let e be the “smallest” exponent such that ge is
dependent on the set of ge′s where all e′s are “smaller than” e. Our annihilator will precisely be
this unique dependency (up to scaling by C).

Given a linear system of equations, Ax = 0, with a unique (up to scaling) solution, Cramer’s
rule describes the solution in terms of determinants of submatrices of A. We will fix the ‘last
coefficient’ to be (−det(A′)), where A′ is the submatrix that has all but the last column. This is
done to ensure that all the coefficients are integers (and minors of A). In fact, it turns out that
stated this way, the annihilator itself can be written as a single determinant just by inserting all the

6This can be phrased as ‘VPSPACE is closed under taking annihilators’, in the same way as ‘VP is closed under
taking homogenous components’ and ‘VNP is closed under taking arbitrary coefficients’.

6



(symbolic) monomials xe as the (new) last row! We will call this ‘special Cramer’s rule’ for the
remainder of this overview.

At this point, note that there is a minor issue. For all we know, the “first” dependency that
we have chosen gives us a submatrix (all columns up to e) that has more rows than columns,
and hence we cannot apply Cramer’s rule. Further, it is not even clear if the basis of rows has
a small description (smaller than just its characteristic vector). We get around this by using a
rank extractor, in particular the construction used by Forbes and Shpilka [FS12] (see Lemma 2.8),
because it fits snugly with the structure of the matrix M. The arguments up to this point have been
formalized in Lemma 3.2.

Now that we are in the setting of ‘special Cramer’s rule’: we have an (r + 1)× (r + 1) matrix
M̃ whose determinant is the annihilator. Since r ≤ (md)O(m) this structure is not enough on its
own to guarantee a non-trivial upper bound. But we have even more structure in M̃, owing to the
explicitness of g. Specifically we have that, for all i ≤ r, the (i, ej)

th entry of M̃ is the evaluation of
gej at a point, β(i−1) ∈ Zm and this can be calculated efficiently by a constant-free algebraic circuit
when i is given in its binary representation. Since computing a circuit for gej given the binary
encoding of ej is also doable efficiently, we say that the matrix M̃ is efficiently encodable using
algebraic circuits. More formally, there is a size poly(log r) = poly(m, d, s) algebraic circuit which,
when given bit-vectors corresponding to i, j ∈ [r + 1], outputs M̃[i, j]. Note that this output can
sometimes be a monomial in x. The formal argument can be found in the proof of Lemma 3.5.

Finally, we use the fact that the determinant of an explicit matrix can itself be computed in
a “memory-efficient” way. More formally, we use the elegant construction due to Mahajan and
Vinay [MV97], of an algebraic branching program (see Definition 2.3) for the determinant polyno-
mial, along with repeated squaring using projection gates (see Definition 2.19). Here, the fact that
projection gates let us evaluate a polynomial at constant cost proves to be crucial. Quantitatively,
given any matrix that is encoded by a circuit of size s′, we can compute the determinant of this ma-
trix using a circuit with projection gates of size poly(s′). In fact, Malod [Mal11] uses this to give an
alternative characterization of VPSPACE. This argument has been formalized in Proposition 2.30.

Putting all the pieces together (see Figure 1), we get a circuit with projection gates, of size
poly(m, d, s) that computes the annihilator of the map G = (g1, . . . , gn) as required. A complete
proof of Theorem 1.11 is given in Section 3.

The observation that allows us to move from Theorem 1.11 to Theorem 1.4 is that we can work
with evaluation vectors instead of coefficient vectors, especially when dealing with VP-natural or
VNP-natural proofs (due to Proposition 1.6). This means that a family of equations can be con-
structed to vanish on the evaluation vector of the universal circuit of a slightly super-polynomial
size, say nO(log∗ n). Clearly, this evaluation vector is a size(nO(log∗ n))-explicit map. Applying The-
orem 1.11, we get a family of equations that can be computed by circuits with projection gates, of
size nO(log∗ n). Finally applying the characterization of VPSPACE in terms of the computability of
its coefficients (Definition 2.18) gives us the required statement. A formal proof of Theorem 1.4
can be found in Section 4.2.
Remark 1.12. Perhaps the first approach that one would take for proving Theorem 1.4 would be to avoid
using the notion of VPSPACE. A sketch of this alternate proof is as follows.

• Given an N×N matrix with integer entries of bit-complexity b, there is an algorithm that uses space
at most poly(log N, b), and simulates bit-access to its determinant [Ber84, Csa76].

• It can be shown that the definition of “bit-complexity of the entries” in the above result can be taken

7



as “space complexity of an algorithm that provides bit-access to the entries”.

• This when combined with the use of explicit rank-extractors [GR05], which makes the matrix A have
rank that is one less than full as well as have entries that have small “bit-complexity”, essentially
finishes the proof with an application of Cramer’s Rule.

We believe that this alternate proof is relatively less clean, as it requires multiple switches between non-
uniform algebraic computation and uniform boolean computation when one tries to formalize it fully. For
instance, in the second step, the bound on the space complexity of the entries only holds when the map G
itself is encoded by a constant-free algebraic circuit, and showing that requires using the definition of VP
as a projection of the class7 VP0.

In comparison, our proof only uses non-uniform algebraic computation with the use of projection
gates and then uses the characterization of VPSPACE0 as (families of) polynomials whose coefficients are
computable in non-uniform PSPACE (see Definition 2.18) only once at the the end. ♢

Lower bounds from Hitting Set Generators

Cryptographic HSGs An overview of how Theorem 1.9 follows from Theorem 1.11 is the fol-
lowing. Suppose, for contradiction, that VP = VNP and uniform NC1 ⊆ uniform TC0. Further, let
us assume that the Generalized Reimann Hypothesis is true.

It can be shown, using a padding argument (see, for example, Complexity Zoo), that if uniform
NC1 ⊆ uniform TC0 then the counting hierarchy (CH) is the same as PSPACE. This would then
imply that CH/poly = PSPACE/poly. On the other hand, since VP = VNP, CH/poly = P/poly. Thus,
we get that P/poly = PSPACE/poly, which would imply that VNP = VPSPACEb due to Valiant’s
Criterion and the definition of VPSPACEb. Reusing the assumption that VP = VNP, we get that
VP = VPSPACEb. For formal statements, see Proposition 2.26 and Proposition 2.27.

This means that any circuit with projection gates can be efficiently simulated by a circuit without
projection gates. In particular, this implies that the circuits which compute the family of annihilators
of the hitting set generator {Hm} can be converted to “usual” algebraic circuits of polynomially
larger size. Finally, since the degree function d(n) is large enough for the annihilators ensured
by Theorem 1.11, we get that there is annihilator for {Hm} in VPd. This contradicts its ‘hitting
property’ in the hypothesis, thus completing the proof.

To prove the second statement, we assume for contradiction that P = PSPACE. Thus, P/poly =
PSPACE/poly and therefore it must that VNP = VPSPACEb. An argument similar to the previous
case then completes the proof. Theorem 1.9 is proved formally in Section 4.1.

Succinct HSGs The only difference between Succinct HSGs and Cryptographic HSGs is the com-
plexity of the circuit that encodes the generator. Since the parameters are much better in the case
of succinct HSGs — barely super-polylogarithmic vs sub-polynomial in the number of outputs
— it allows us to extract much better lower bounds against constant-depth theshold circuits. A
formal proof of Theorem 1.2 is given in Section 4.3.

7The class of polynomial families that are computable efficiently by constant-free algebraic circuits.

8

https://complexityzoo.net/Complexity_Zoo:C#ch


1.3 Open directions

• An intriguing takeaway from our results, is the case that it makes for studying ‘crypto-
graphic HSGs’ as in Theorem 1.9 and the more general Theorem 4.1. Specifically, we ask
whether the arguments of Heintz and Schnorr [HS80] can be derandomized within space
that is sub-polynomial in the parameters n, d and s. As this would satisfy the hypothesis
of Theorem 4.1, achieving this even under a hardness assumption that is weaker than (or
incomparable to) P ̸= PSPACE would be interesting.

Along the same lines, under what hardness assumptions do ‘sub-exponentially strong cryp-
tographic HSGs’ corresponding to Theorem 1.2 exist? There are some caveats8 due to which
boolean cryptographic primitives do not directly translate to HSGs. In particular, and specif-
ically in the context of natural proofs, what would be an appropriate analogue for the work
of Håstad, Impagliazzo, Levin and Luby [HILL99]?

• Another interesting thread is to improve the upper bound in this paper on annihilators of
explicit polynomial maps (Theorem 1.11). Since we expect VPSPACEb to be exponentially
stronger than VP (and VNP), any bound that is better than exponential, say e.g. 2o(s(n))

for size-s(n)-explicit maps, in terms of VP(2n) (or VNP(2n)) would be interesting, even if it
requires assuming some standard hypotheses.

Annihilators from the ‘minimal dependency’, as in Lemma 3.2, are perhaps unlikely to im-
ply such a bound without observing some structure of VP. This is mainly because such an
approach gives coefficients that are determinants of matrices of dimension 2poly(s) and one
has to argue that all these coefficients can somehow be “compressed” into a smaller circuit.

Note that Theorem 3.6 implies that the bound from Theorem 1.4 extends to equations for
VNP. So, can we prove a better bound just for VP? Certainly, deriving any property of VP
that does not hold for VNP should probably assume hardness of VNP (e.g. [KRST22]).

1.4 Organisation of the paper

The rest of our paper is organized as follows.
We first formalize some relevant concepts in Section 2. This section also includes some sim-

ple propositions (see Section 2.2, Section 2.4) that will be important for the proof of our main
theorems. We then prove the VPSPACE upper bound on annihilators for VP (Theorem 1.11) in
Section 3 and our main theorems (Theorem 1.9, Theorem 1.4, Theorem 1.2) in Section 4. For com-
pleteness, in Appendix A, we include a somewhat detailed proof sketch of the equivalence of the
two definitions of VPSPACE that we use.

8This discussion is beyond the scope of this paper. We encourage the reader to refer to the literature on algebraic
natural proofs (e.g. [AD08],[FSV18]) for some details.

9



x u v

z
w

(1− z)u + zw (1− z)w + zv

Ci

prodz

sumw

Di+1[x, u, v]

Ci+1

(1)

x i j

α

vα,i

CG

CG(vα,i)

MG [i, j]

C̃G

(3)

C̃G

x ℓu iu ju
u

ℓv iv jv
v

C̃G

AG [u, v]

C′G = C0

(2)

Figure 1: The annihilator is computed by using (1) repeatedly to get Clog N , if N is the length of the
ABP described by (2) (Claim 2.32); (2) describes the ABP computing det(M̃) using (3) (Claim 2.31);
(3) describes the matrix M̃, such that det(M̃) ◦ G ≡ 0, in terms of the generator G (Lemma 3.5).

10



2 Preliminaries

• We use [n] to denote the set {1, . . . , n}.

• We use boldface letters such as x, y to denote tuples, typically of variables. When necessary,
we adorn them with a subscript such as y[n] to denote the length of the tuple. We also use xe

to denote the monomial ∏ xei
i .

• We use { fn}n∈N to denote families of polynomials. We drop the index set whenever it is clear
from context. For a given polynomial f we denote by deg( f ) its degree. For a polynomial
f (x, y, . . .) on multiple sets of variables, we use degx( f ), degy( f ), etc., to denote the degree
in the variables from the respective sets.

• For a given n-variate polynomial f (x) of degree d, and a monomial m, we use coeffm( f ) to
refer to the coefficient of m in f . We further use coeff( f ) to denote the vector9 of coefficients
of f .

• For a matrix M, we use M[i, j] to refer to its (i, j)th entry. We commonly start our indices from
1, but sometimes start them from 0 when it helps the exposition. Whenever this is done, we
make it clear.

Models of Algebraic Computation

We now formally define the models of algebraic computation that we need for this work.
We first define algebraic circuits and their constant-free version.

Definition 2.1 (Algebraic Circuits). An algebraic circuit is specified by a directed acyclic graph, with
leaves (nodes with in-degree zero, called inputs) labelled by field constants or variables, and internal nodes
labelled by + or ×. The nodes with out-degree zero are called the outputs of the circuit. Computation
proceeds in the natural way, where inductively each + gate computes the sum of its children and each ×
gate computes the product of its children.

The size of the circuit is defined as the number of edges (or wires) in the underlying graph. ♢

Definition 2.2 (Constant-free Algebraic Circuits). An algebraic circuit is said to be “constant-free”, if
the only field constants that appear in it are 1 and −1. In order that the circuit is able to compute rational
numbers, we allow it to have division gates, where both the inputs are field constants. ♢

We also formally define algebraic branching programs.
Definition 2.3 (Algebraic Branching Programs (ABPs)). An algebraic branching program is speci-
fied by a layered graph where each edge is labelled by an affine linear form and the first and the last layer
have one vertex each, called the “source” and the “sink” vertex respectively. The polynomial computed by
an ABP is equal to the sum of the weights of all paths from the start vertex to the end vertex in the ABP,
where the weight of a path is equal to the product of the labels of all the edges on it.

The width of a layer in an ABP is the number of vertices in it and the width of an ABP is the width of
the layer that has the maximum number of vertices in it.

The size of an ABP is the number of edges in it. ♢
9We do not explicitly mention the monomial ordering used for this vector representation, since all our statements

work for any monomial ordering.

11



Remark 2.4. We will use ABPs to mean ABPs that have been defined as above, but with edge labels also
being allowed to be monomials of degree that is at most the size of the ABP. ♢

Algebraic Complexity Classes

We now define the basic algebraic complexity classes.
Definition 2.5 (VP). A family { fn}n of polynomials is said to be in VP, if there exists a constant c ∈ N

such that for all large n, fn depends on at most nc variables, has degree at most nc, and is computable by an
algebraic circuit of size at most nc. ♢

Definition 2.6 (VNP). A family { fn}n of polynomials is said to be in VNP, if there exists a constant c ∈N,
and an m-variate family {gm} ∈ VP with m, size(gm) ≤ nc, such that for all large enough n, fn satisfies
the following.

fn(x) = ∑
a∈{0,1}|y|

gm(x, y = a) ♢

We will also be needing the following subclass of VP, especially in the context of algebraic
natural proofs.
Definition 2.7 (VPd). For a function d(n) ∈ poly(n), we define VPd to be the class of all degree-d families
that belong to VP. Equivalently, a family { fn} ∈ VP is said to be in VPd if for all large enough n,
deg( fn) ≤ d(n).

We also define VNPd to contain all the degree-d families from VNP. ♢

Rank Extractor We will also need the concept of rank extractors. A rank extractor is a family of
maps which have rank preserving properties. The following lemma shows the existence of such a
family in the setting that we will need.
Lemma 2.8 ([FS12]). Let 1 ≤ r ≤ n and let M ∈ Cn×r be of rank r. Define Aα ∈ Cr×n by Aα[i, j] = αij.
Then there exists α ∈ [nr] such that rank(Aα ·M) = r.

Polynomials for boolean operations Finally we note that there are computationally simple poly-
nomials which capture certain boolean operations. Since this is easy to check, we omit the proof.

Observation 2.9. Given vectors a, b ∈ {0, 1}ℓ, the following polynomials (or vectors of polynomials) have
constant-free circuits of size O(ℓ2).

• EQ(a, b): outputs 1 if a = b, 0 otherwise.

• GT(a, b): outputs 1 if a > b when seen as binary encodings of positive integers, 0 otherwise.

• LT(a, b): outputs 1 if a < b when seen as binary encodings of positive integers, 0 otherwise.

• INC(a): outputs a vector b such that b = a + 1, when seen as positive integers.

2.1 Universal Circuits and Natural Proofs

A circuit is said to be universal for circuits of size s if every such circuit is a simple projection of it.
Definition 2.10 (Universal Circuit [SY10]). A circuit U is called universal for n-input circuits of size s,
that compute polynomials of degree d, if the following holds.

12



For any polynomial f (x1, . . . , xn) of degree d that can be computed by a circuit of size s, there
exists a circuit φ computing f as well, such that the computation graph of U is the same as the
graph of φ. ♢

The following lemma due to Raz [Raz10] shows the existence of such circuits. For a proof
sketch that yields the exact statement given below, please refer to [CKR+20].
Lemma 2.11 (Existence of Universal Circuits [Raz10]). Let F be any field and n, s ≥ 1 and d ≥ 0. Then
there exists an algebraic circuit U of size poly(n, d, s) computing a polynomial in F[x1, . . . , xn, y1, . . . , yr]
with r ≤ poly(n, d, s) such that:

• degx(U (x, y)), degy(U (x, y)) ≤ poly(d);

• for any f ∈ F[x1, . . . , xn] with degx( f ) ≤ d that is computable by an algebraic circuit of size s, there
exists an a ∈ Fr such that f (x) = U (x, a).

Algebraic Natural Proofs

We now define the concepts around natural proofs that we will need [FSV18, GKSS17].
Definition 2.12 (Degree-d families). For any function d : N → N, we denote by Pd the class of all
degree-d polynomial families. That is, a family { fn} of n-variate polynomials belongs to Pd if deg( fn) ≤
d(n) for all large enough n. ♢

Definition 2.13 (D-Natural Proofs for C). Let d(n), D(N) be polynomially growing functions, and let
C ∈ Pd andD ∈ PD be any classes of polynomial families. For N(n) = (n+d(n)

n ), we say that an N-variate
family {AN} ∈ D is a D-natural proof for C if for any family { fn} ∈ C we have that the polynomial
AN(n) vanishes on the coefficient vector of fn, for all large enough n. ♢

Definition 2.14 (VP, VNP, and natural proofs). For a fixed d(n) ∈ poly(n), we say that VP-natural
proofs exist for VPd if for some D(N) ∈ poly(N), there exists a family {AN} that is a VPD-natural
proof for VPd. We say that VP-natural proofs exist for VP if for every d(n) ∈ poly(n), there is some
VP-natural proof for VPd.

Similarly, we say that there are VNP-natural proofs for VP, if for each d(n) ∈ poly(n), there is some
VNP-natural proof. ♢

Succinct Hitting Sets

For classes of polynomial families C,D, we have already defined C-succinct hitting set generators
for D (Definition 1.1). We now define VP-succinct hitting set generators for VP. Note that they
directly contradict VP-natural proofs for VP [FSV18, GKSS17].
Definition 2.15 (Succinct hitting sets for VP). For fixed d(n) ∈ poly(n), we say that VPd-succinct
hitting sets exist for VP if for every D(N), S(N) ∈ poly(N), there is some family {hn} that is a VPd-
succinct hitting set generator (as in Definition 1.1) for size-s(N) families in VPD.

We say that VP-succinct hitting sets exist for VP if for some d(n) ∈ poly(n), there are VPd-succinct
hitting sets for VP. Finally, we say that there are VNP-succinct hitting sets for VP, if for some d(n) ∈
poly(n), there are VNPd-succinct hitting sets for VP. ♢

We refer the reader to the full version (on arxiv) of [CKR+20] for detailed definitions of succinct
HSGs and natural proofs.

13



2.2 Algebraic analogues of bounded-space computation: VPSPACE

The upper bound on the annihilator that we show is in terms of space complexity.
Definition 2.16 (SPACE). We use SPACE(s(n)) to denote the class of languages that can be decided by
deterministic Turing Machines in space s(n) for all inputs of length n. ♢

Defining the class

One way to define the algebraic analogue of PSPACE is using the space needed to compute coeffi-
cients of the polynomial, which was the route taken by Koiran and Perifel [KP09].
Definition 2.17 (Coefficient function). Suppose f (x1, . . . , xn) is a polynomial of individual degree d,
and each of its coefficient is an integer of absolute value < 2ℓ.

Then, for M = n · ⌈log(d + 1)⌉+(ℓ+ 1), we define the coefficient function of f to be the M-bit boolean
function Φ f such that Φ f (e1, . . . , en, i) outputs the ith bit of the coefficient of the monomial xe1

1 · · · x
en
n ,

where the 0th bit encodes the sign.
A family { fn} of integer polynomials naturally defines a family {Φn} of coefficient functions. ♢

Definition 2.18 (VPSPACE0 from coefficient functions [KP09]). A family {PN} of integer polynomials
is said to be in VPSPACE0 if, for all large N, the polynomial PN has poly(N) variables, degree 2poly(N), each
coefficient of PN has at most 2poly(N) bits, and if the family of coefficient functions of {PN} is computable
in PSPACE/poly. ♢

Poizat [Poi08] on the other hand defined VPSPACE without going into boolean computation,
using a new type of gate called projection gate, defined below. He showed10 that this definition is
equivalent to that of Koiran and Perifel.
Definition 2.19 (Projection gates). A projection gate is labelled by a variable, say w, and a constant
b ∈ {0, 1}. We denote such a gate by fixw=b. The gate fixw=b “projects” w to b in the input polynomial.
That is, fixw=b f (w, x) = f (b, x). ♢

Definition 2.20 (Circuits with projections [Poi08]). A family {PN} of integer polynomials is said to be
in VPPROJ0 if for all large N, there is a constant-free algebraic circuit, say C, that additionally have access
to projection gates such that C has size poly(N) and PN is the polynomial computed by C. ♢

Proposition 2.21 ([Poi08, Mal11]). VPSPACE0 = VPPROJ0.

We believe that this statement is not entirely obvious, so we give a fairly detailed proof sketch
of this in Appendix A. Finally, for polynomials with arbitrary constants, VPSPACE is defined
using VPSPACE0 as follows.
Definition 2.22 (VPSPACE). Let F be the field of rationals, reals or complexes. A family {PN} of poly-
nomials over F is in VPSPACE, if there exists an M = poly(N) and a family {QM} ∈ VPSPACE0, such
that for all N, PN is obtained from QM by setting some variables to constants from F. ♢

For convenience, we also define two new types of gates: summation and production gates.
Definition 2.23 (Summations and Productions). The summation and production operations are defined,
using the operation of projection as defined in Definition 2.19, as follows.

• sumz f (z, x) := fixz=0 f (z, x) + fixz=1 f (z, x)

10Poizat’s paper (written in French) includes a rough sketch of this proof. Malod’s paper [Mal11] (in English) quotes
his result but does not provide a proof.

14



• prodz f (z, x) := fixz=0 f (z, x)× fixz=1 f (z, x) ♢

It is easy to see that, by definition, these gates can be simulated using projection gates and the
usual sum, product gates.

Before moving on, it is important to note that there are (at least) two more equivalent charac-
terizations of VPSPACE due to Malod [Mal11], and Mahajan and Rao [MR13]. We omit the details
of these definitions as we do not directly use them.

Comparison with VP

Given that VPSPACE corresponds to a class as powerful as PSPACE, it is worth checking that
the known “hard polynomial families” are outside VPSPACE as well. In this context, it makes
sense to define a bounded degree analogue of VPSPACE written as VPSPACEb. As Koiran and
Perifel [KP09] showed, the degree bound is inconsequential when comparing VP and VPSPACE.
Proposition 2.24 (Restatement of [KP09, Lemma 4]). Let VPSPACEb be the polynomial families of
degree poly(n) that belong to VPSPACE, and similarly, let VPnb be the class of polynomial families of
unbounded degree that have algebraic circuits of size poly(n).

Then, VP = VPSPACEb if and only if VPnb = VPSPACE.
We can now summarize the relationship of VPSPACEb with known hard polynomials as fol-

lows, essentially by using the arguments in the well-known book by Bürgisser [Bür00].

• Since a random polynomial does not have small circuits with projection gates with high prob-
ability, random polynomial families are outside VPSPACEb.

• Any construction that involves exponentially many “independent irrational numbers”, e.g.
hc(x) = ∑e

√
pe · xe for distinct primes {pe}, also works against VPSPACEb. This is because

the coefficients of polynomials in VPSPACEb can always be written as integer polynomials
that depend on at most polynomially many scalars from the underlying field.

• Finally, Strassen’s multilinear polynomial, defined11 as hs(x) = ∑0≤i<2n 22i
xi has coefficients

that are triply exponential in the number of variables n. This means that we will need dou-
bly exponentially many bits to even index into the bits of the coefficients, which puts the
(corresponding family of) coefficient functions outside PSPACE.

Consequences of Separating VP and VPSPACE

Koiran and Perifel [KP09] showed that separating VP and VPSPACEb would imply interesting
lower bounds.
Proposition 2.25 ([KP09, Proposition 3]). If VP ̸= VPSPACEb, then either VP ̸= VNP or P/poly ̸=
PSPACE/poly.

Assuming the Generalized Riemann Hypothesis (GRH), the converse is also true. That is, if VP ̸= VNP
or P/poly ̸= PSPACE/poly then VP ̸= VPSPACEb.

On the other hand, it can be shown via a padding argument that if TC0 = NC1 then the count-
ing hierarchy (CH) is the same as PSPACE (see, for example, [CMTV98] or Complexity Zoo) imply-
ing that CH/poly = PSPACE/poly as well. Further, the proof can be modified to show the following.

11Here i is the vector corresponding to the binary representation of i.

15

https://complexityzoo.net/Complexity_Zoo:C#ch


Proposition 2.26. There exists a constant a for which the following holds.
For any function m(n) = Ω(log n), suppose that every DTIME(m(n))-uniform NC1 circuit on 2a·m(n)

inputs, can be simulated by a DTIME(nc)-uniform constant depth threshold circuit of size 2nc
for some

constant c. Then SPACE(m(n)) ⊆ CH, both defined for input length n.
At the same time, the proof of Proposition 2.25 can be generalized to extract the following

statement when we additionally assume the GRH. Here CH(t(n)), VP(t(n)), VPSPACE(t(n)) refer
to these classes defined with respect to the input length being t(n).

Proposition 2.27. Assuming the Generalized Riemann Hypothesis, for any function m(n) = Ω(log n),
if VPSPACEb(m(n)) ̸⊆ VP(n), then either VP ̸= VNP or SPACE(m(n)) ̸⊆ CH(n).

Sketch. The argument is easier for the contrapositive. We assume the GRH throughout.
If VP = VNP, then from a work of Bürgisser [Bür09], we know that CH collapses to P/poly. Also,
by Valiant’s criterion [Val79a], we have that any polynomial family whose coefficient function
(family) is in P/poly is in VNP.

Putting these together, we get that if VP = VNP, then any polynomial family whose coefficient
function belongs to CH/poly must belong to VP. However, if additionally SPACE(m(n)) ⊆ CH(n),
then all the polynomial families whose coefficient functions can be computed in (non-uniform)
space O(m(n)) belong to VP, which means that VPSPACEb(m(n)) ⊆ VP(n).

2.3 Explicit Objects

Next, along the same lines as explicit polynomial maps (Definition 1.7), we define explicit matrices
and explicit ABPs. As before, we use the word explicit to mean encodable by efficient circuits.
Definition 2.28 (Explicit matrices). A circuit C(x, a, b) is said to encode a matrix M ∈ Fr×c if |a| =
⌈log r⌉, |b| = ⌈log c⌉ and for i, j being binary representations of i, j respectively, C(x, i, j) = M[i, j].

Analogously, for a family of matrices {Mr,c : Mr,c has r rows and c columns} and a class C, we say
that {Mr,c} is C-explicit if there is a family {Cr,c} ∈ C such that, for every r, c, Cr,c encodes Mr,c. ♢

Definition 2.29 (Explicit ABPs). A circuit CA(x, (a, b), (a′, b′)) is said to encode an algebraic branching
program A, of width w and d layers, if |a| = |a′| = ⌈log d⌉, |b| = |b′| = ⌈log w⌉ and

∀i, i′ ∈ {0, 1}⌈log d⌉ ∀j, j′ ∈ {0, 1}⌈log w⌉ ,
CA(x, (i, j), (i′, j′)) is the label on the edge ((i, j), (i′, j′)) in A.

Here i, j, i′, j′ are the binary representations of i, j, i′, j′ respectively and ((i, j), (i′, j′)) denotes the edge
between the j-th vertex in layer i and the j′-th vertex in layer i′.

Analogously, for a family of algebraic branching programs {Aw,d : Aw,d has width w and d layers}
and a class C, we say that {Aw,d} is C-explicit if there is a family {Cw,d} ∈ C such that, for every w, d,
Cw,d encodes Mw,d. ♢

2.4 Computing determinants of explicit matrices in VPSPACE

We now show that given a matrix that is encoded by a small circuit, its determinant can be com-
puted using a small circuit with projection gates. A similar result already appears in a work by
Malod [Mal11] and we provide a proof here for completeness.

16



Proposition 2.30 (Computing determinant of explicit matrices). Let M ∈ CN×N be a matrix that is
encoded by a circuit C(x, a, b) with |a| = |b| = ⌈log N⌉.

Then det(M) can be computed by a circuit C′ with projection gates, of size O(size(C) + log2 N).
Moreover, if C is constant-free, then so is C′.

Proof. The proof has two parts. First we show that det(M) can be computed by an explicit Alge-
braic Branching Program (ABP) and then show that the polynomial computed by an explicit ABP
can also be efficiently computed by circuits with projection gates.

The first step is easy to deduce from the well-known elegant construction due to Mahajan and
Vinay [MV97] and the second step is just a careful application of “repeated squaring” for matrices.
We now prove these formally.

Claim 2.31. There is an explicit ABP, say A(x), encoded by a circuit of size poly(size(C), log N) that
computes det(M).

Proof. We just describe the ABP computing det(M) here and also the circuit that encodes it. For
a crisp proof of why this ABP computes the determinant, we direct the reader to Saptharishi’s
survey [Sap15, Section 3.3.3].

The ABP has N + 1 layers of vertices and, except for the first and the last layer, each layer has
O(N2) vertices. Vertices of the ABP are labelled by (ℓ, (i, j)) where ℓ ∈ [N + 1] denotes the layer
and (i, j) ∈ [N]× [N] indexes a particular vertex in that layer. The edges are given as below.

• For each vertex (ℓ, (i, j)) with ℓ ∈ [N − 1], there is an edge to each (ℓ+ 1, (i, k)) where k > i.
The label of the edge is M[j, k].

• For each vertex (ℓ, (i, j)) with ℓ ∈ [N − 1], there is an edge to each (ℓ+ 1, (k, k)) where k > i.
The label of the edge is −M[j, i].

• All vertices (N, (i, j)) have an edge to the sink (N + 1, (1, 1)), with the label −M[j, i].

We now describe the circuit C̃ that encodes the above ABP, using the circuit C. Each vertex
of the ABP is a vector of 3 ⌈log N⌉ bits: ⌈log N⌉ each for ℓ, i and j as described in the above
construction. In the circuit, the two input vertices are u ≡ (ℓu, (iu, ju)) and v ≡ (ℓv, (iv, jv))12.
Using the polynomials defined in Observation 2.9, we get the following expression for C̃.

Let G(x, u, v) = EQ(ℓv, INC(ℓu)) · EQ(iu, iv) ·GT(jv, iu) · C(x, ju, jv)
+ EQ(ℓv, INC(ℓu)) ·GT(iv, iu) · EQ(iv, jv) · (−1 · C(x, iu, ju))
+ EQ(ℓv, INC(ℓu)) · EQ(ℓu, n) · EQ(0 . . . 01, iv) · EQ(iv, jv) · (−1 · C(x, iu, ju)) ,

and valid(u) = LT(0 . . . 00, ℓu) · LT(ℓu, INC(INC(n))) · int(iu) · int(ju),
where int(a) = LT(0 . . . 00, a) · LT(a, INC(n)).

Then C̃(x, u, v) = valid(u) · valid(v) · g(x, u, v).

Here each ‘product term’ in the definition of G corresponds to one type of edge in the description
above, and n, 0 . . . 00 and 0 . . . 01 are the bit-vectors corresponding to the numbers N, 0 and 1
respectively. We use the polynomial “valid” to ensure that C̃ outputs 0 whenever it is given a pair
of labels that is of a ‘non-edge’.

12Here ℓ,i,j for both u and v are bit-vectors. We have used plain lowercase symbols since we think of them as numbers.

17



The correctness of this expression is easy to check using the description of the ABP. Also, C̃ has
size O(size(C) + log2 N) and is a constant-free algebraic circuit (without projection gates) if C is
constant free.

Claim 2.32. There is a circuit C′ with projection gates, of size poly(size(C̃), log N) that computes the
polynomial computed by the above ABP.

Proof. Let A be the adjacency matrix of the graph that underlies the branching program. The
polynomial computed by the ABP is just the (s, t)-th entry of the matrix AN , where s = (1, (1, 1))
and t = (N + 1, (1, 1)) are the tuples corresponding to the source and the sink. Since C̃ encodes A,
we only need to figure out how to encode A2, which we can then use recursively to obtain access
to the entries of A2k

for any k. Note that this becomes much easier when N is a power of 2.
So we modify the ABP by adding layers N + 2, . . . , N′ + 1, to ensure that N′ is a power of 2.

Each of the new layers have a single vertex with the label (ℓ, (1, 1)) where ℓ is the layer. We also
add an edge from (ℓ, 1, 1) to (ℓ+ 1, 1, 1), labelled with the scalar 1, for every N < ℓ ≤ N′. This
new ABP is explicit since we can add the term

EQ(ℓv, INC(ℓu)) ·GT(ℓu, n) · EQ(0 . . . 01, iu) · EQ(iu, ju) · EQ(0 . . . 01, iv) · EQ(iv, jv) · 1

to the polynomial G defined above, and also modify valid(u) appropriately, to obtain a circuit that
encodes the new ABP.

Now note that the (s, t)-th entry of AN′ is the same as the (s, t)-th entry of AN , and therefore is
the polynomial we are looking for. Further, we can now easily compute the (s, t)-th entry of AN′

using recursion, as described earlier. We now describe a circuit using projection gates that carries
out this operation.

Consider the following circuits defined using projections (Definition 2.19) and summations
(Definition 2.23).

P1(x, u, w, v, z) := C̃ (x, ((1− z)u + zw), ((1− z)w + zv))
D1(x, u, v) := sumw1sumw2 · · · sumwL (fixz=0 P1(x, u, w, v, z) · fixz=1 P1(x, u, w, v, z))

Note that D1 encodes the adjacency matrix A2 when C̃ encodes A and L = O(log N) is the length
of the vertex labels of A.

Now for every 2 ≤ i ≤ k = ⌈log(N + 1)⌉, we define Pi+1 by using Di in place of C̃, and Di+1
by using Pi+1 in place of P1, in the definitions of P1 and D1 above.

As each of the Pi+1s and Di+1s have circuits (with projection gates) of size poly(log N) with
exactly one use of Di and Pi+1 respectively, all these increases are additive. So, finally, C′(x) =
Dk(x, s, t) has a circuit of size O(size(C̃)+ log2 N) and computes the polynomial we need. Further,
C′ is constant-free if C̃ is constant free.

Combining both the above claims, we get that size(C′) = O(size(C) + log2 N), and also that
C′ is constant-free whenever C is constant-free.

3 VPSPACE Upper Bounds for Annihilators

In this section we prove Theorem 1.11. In fact we will prove the following, more general, state-
ment.

18



Theorem 3.1 (Annihilators of explicit maps). Let m be large enough, and let G : Fm → Fn be a
polynomial map given by (g1(z), . . . , gn(z)) of degree d, with n ≥ 2m.

There exists a constant c such that, if there is a circuit with projection gates CG(z, y) of size s that
encodes G as per Definition 1.7, then there is a circuit with projection gates C′(x) of size (m · d · s)c

computing a nonzero polynomial A(x) of individual degree at most 3 · m · d that annihilates G (that is,
A ◦ Gm = A (g1(z), . . . , gn(z)) ≡ 0).

To prove this, we will first show that there is an explicit matrix whose determinant is the anni-
hilator, and then show that in this case the annihilator has a small circuit with projection gates.

3.1 Annihilator as determinant of a matrix

Lemma 3.2 (Annihilator as a determinant). Let G be a polynomial map as given in Theorem 3.1. Further,
let CG(z, y) be a circuit that generates G.

Then for D =
⌈
(nd)m/(n−m)

⌉
+ 1, there exists a K× K matrix M̃ with K ≤ Dn such that det(M̃) is

an annihilator of G that has individual degree at most D− 1. Moreover, M̃ can be described as follows.
There is some positive integer α < D2n such that, for i ∈ {0, . . . , K− 1} and j ∈ [K],

M̃[i, e(j)] =

{
(G(vα,i))

e(j)
if i ≤ K− 2

(−1)K−1 · xe(j)
if i = K− 1,

where vα,i = (αi, αi·ndD, . . . , αi·(ndD)m−1
).

Proof. First we see how linear dependencies of specific polynomials in terms of G give us anni-
hilators of the map G. Suppose A(x) is an annihilator of G, and let A(x) = ∑e fexe be its sparse
representation. Then 0 = A(G) = ∑e feGe. In other words, the coefficient vector of A is a linear
dependency in the set of polynomials of the form Ge, as we range over all the exponent vectors
e. Clearly, the converse is also true: for any polynomial A(x) = ∑e fexe, if the coefficients { fe}
represent a linear dependency in the polynomials {Ge}, then F(G) = 0.

Now, for a parameter D to be fixed later, consider the following matrix M.

• Columns of M are indexed by monomials in x = {x1, . . . , xn} of individual degree at most
D− 1, ordered lexicographically.

• Rows of M are indexed by monomials in z = {z1, . . . , zm} of individual degree at most
(ndD)− 1, ordered lexicographically.

• For any valid e ∈ Nn, the eth column of M is the coefficient vector of the product Ge =
g1(z)

e1 · · · gn(z)
en . Note that this product is an m-variate polynomial of individual degree at

most |e| ≤ (n · (D− 1)) · d < (ndD)− 1.

From the previous discussion, we can see that any nonzero dependency in the columns of M is
the coefficient vector of some annihilator of G. Now observe that M has fewer rows than columns
whenever D > (nd)m/(n−m), since (ndD)m < Dn in this case. Therefore, there is a non-trivial
dependency in its columns if we set D =

⌈
(nd)m/(n−m)

⌉
+ 1.

In order to ensure a unique dependency (up to scaling), we restrict M to its first K columns,
where K− 1 is the largest number for which the first K− 1 columns are linearly independent. So
now M has the following properties.

19



• M has K ≤ Dn columns and each column is labelled by a monomial in {x1, . . . , xn} of indi-
vidual degree ≤ D− 1. Let

{
e(j)
}

j∈[K]
be the labels of the columns.

• Each row is labelled by a monomial in {z1, . . . , zm} of individual degree ≤ (ndD)− 1 and
so, if the number of rows in M is R, then

R ≤ (ndD)m < Dn

• The (ze, e(j))-th entry of M is the coefficient of ze in Ge(j)
.

• The first K− 1 columns are linearly independent and the last column is a linear combination
of the previous columns.

• A(x) = xe(K) −∑K−1
j=1 fe(j) · xe(j)

is an annihilator of G ,if M[e(K)] = ∑K−1
j=1 fe(j) ·M[e(j)].

We now construct a matrix M′, with (K− 1) rows and K columns, such that M′ has rank exactly
(K− 1). In fact, the columns of M′ will share the same dependencies as the columns of M.

Claim 3.3. Define for α ∈ N, the matrix Eα ∈ C(K−1)×R such that Eα[i, j] = αij for each 0 ≤ i < K− 1
and 0 ≤ j < R. For some α ≤ D2n, the matrix product M′ := Eα ·M has rank exactly K− 1. Further, M′

has the same dependencies in its columns as M.

Proof. By Lemma 2.8, we immediately have that there exists α ≤ R · (K − 1) < D2n such that
rank(Eα · M) = K − 1. Let M′ = Eα · M. To show that M′ has the same dependencies in its
columns as M, let us first assume that Mu = 0 for some u ∈ CK. Clearly this implies that M′u =
Eα ·Mu = 0.

Conversely, let v ∈ CK be such that M′v = 0 but Mv ̸= 0. Then, clearly, v ̸= βu for any β ∈ C.
This shows that dim(ker(M′)) ≥ 2, contradicting the rank-nullity theorem since rank(M′) =
K− 1. Therefore, no such v can exist, proving that for any v ∈ CK, M′v = 0 =⇒ Mv = 0.

For M′ defined as in the claim above, we clearly have that M′[e(K)] = ∑K−1
j=1 fe(j) · M′[e(j)].

Also, note that the rows of M′ are labelled by {0, . . . , K− 2} and the columns are labelled by{
e(j) : j ∈ [K]

}
. We now define M̃, a K × K matrix with rows labelled by {0, . . . , K− 1} and

columns labelled by
{

e(j) : j ∈ [K]
}

, as follows.

M̃[i, e(j)] =

{
M′[i, e(j)] if i ≤ K− 2
(−1)i · xe(j)

if i = K− 1

First, we show that the determinant of M̃ is an annihilator of G. In particular, we show that
det(M̃) is a scalar multiple of A(x). We use M′[∗, e(j)] to denote the e(j)th column of the matrix
M′, and M′ \M′[∗, e(j)] to denote the submatrix of M′ obtained by deleting the e(j)th column.

Claim 3.4. det(M̃) = det(M′ \M′[∗, e(K)]) · A(x).

Proof. Note that, by expanding with respect to the last row,

det(M̃) =
K

∑
j=1

(−1)j−1 · det(M′ \M′[∗, e(j)]) · (−1)K−1 · xe(j)
.

20



This can be re-written as

det(M̃)

det(M′ \M′[∗, e(K)])
= xe(K) +

K−1

∑
j=1

(−1)K−j · det(M′ \M′[∗, e(j)])

det(M′ \M′[∗, e(K)])
· xe(j)

.

Since M′[e(K)] = ∑K−1
j=1 fe(j) ·M′[e(j)], it is now easy to check the following using Cramer’s Rule.

det(M̃)

det(M′ \M′[∗, e(K)])
= xe(K) −

K−1

∑
j=1

fe(j) · xe(j)
= A(x).

Since det(M′ \ M′[∗, e(K)]) is a fixed, nonzero scalar, det(M̃) is an annihilator of G. Further,
since every monomial in

{
xe(j)

: j ∈ [K]
}

has individual degree at most D − 1, det(M̃) also has
individual degree at most D− 1.

We now show that M̃ can be described as claimed. To show that, we note that M′ has a very
special structure. For any ℓ ∈ {0, . . . , R− 1}, let vℓ ∈ [ndD− 1]m be the unique vector such that

ℓ =
m

∑
b=1

vℓ(b) · (ndD)b−1.

Then, for i ∈ {0, . . . , K− 2} and j ∈ [K],

M′[i, e(j)] =
R−1

∑
ℓ=0

αiℓ · coeffzvℓ (Ge(j)
) =

R−1

∑
ℓ=0

coeffzvℓ (G(e
j)) · αi·(∑m

b=1 vℓ(b)·(ndD)b−1)

=
R−1

∑
ℓ=0

(
coeffzvℓ (Ge(j)

)
m

∏
b=1

α(i·(ndD)b−1)vℓ(b)

)
=

R−1

∑
ℓ=0

(
coeffzvℓ (Ge(j)

) · vvℓ
α,i

)
where vα,i = (αi, αi·ndD, . . . , αi·(ndD)m−1

). That is,

M′[i, e(j)] = (G(vα,i))
e(j)

.

We can therefore re-write M̃ as claimed.

3.2 Annihilator as determinant of an explicit matrix

We now show that the matrix described in the last section is explicit in the sense of Definition 2.28.

Lemma 3.5 (Annihilator as determinant of an explicit matrix). Let G be a polynomial map as given in
Theorem 3.1. Let CG(z, y) be a circuit that encodes G. Further, for D =

⌈
(nd)m/(n−m)

⌉
+ 1, α < D2n and

K ≤ Dn , let M̃ be defined as follows.
For i ∈ {0, . . . , K− 1} and j ∈ [K],

M̃[i, e(j)] =

{
(G(vα,i))

e(j)
if 0 ≤ i ≤ K− 2

(−1)K−1 · xe(j)
if i = K− 1.

where vα,i = (αi, αi·ndD, . . . , αi·(ndD)m−1
).

Then, given access to a CG gate, there is a purely algebraic circuit13 C̃G that encodes M̃. Further, C̃G
uses only a single CG gate and has overall size O((nd)3 + n · size(CG)).

13Algebraic circuit without projection gates.

21



Proof. Let j be a bit-vector of length n · δ, for δ := ⌈log D⌉, which we interpret as the tuple
(j(1), . . . , j(n)) where j(ℓ) is the bit-vector encoding the ℓ-th co-ordinate of e(j). Further, let the
bit-vector i encode the integer i. We want to construct a circuit C̃G such that C̃G(x, i, j) = M̃[i, e(j)].

Firstly, it is easy to see that there is a constant-free multi-output circuit C′, of size O(log2 K),
such that C′(j) = (j(1), . . . , j(n)) as described above. We will use C′k,b(j) to denote the output gate
of C′(j) which outputs the b-th bit of j(k).

Let ∆ = ndD and vα := (α, α∆, . . . , α∆m−1
). We start by computing L = ⌈log K⌉ many dis-

tinct powers of the vector vα, namely, vα, v2
α, v4

α, . . ., v2L−1

α . Here vr
α is used to denote the vector

(αr, αr·∆, . . . , αr·∆m−1
). Since α can be computed by a constant-free circuit of size O(n log(nd)),

each of these L vectors can be computed by a constant-free circuit of size O(L · n log(nd)) =
O(log K · n log(nd)). Let these multi-output circuits be C0(α), . . . , CL−1(α) with Cℓ,k(α) denoting
the k-th output gate in Cℓ(α) for k ∈ {0, . . . , m− 1}. That is, Cℓ,k(α) = αr·∆k

for k ∈ {0, . . . , m− 1}.
We now describe some intermediate circuits, and then finally C̃G . For i = (i0, . . . , iL−1),

pow(i) :=

(
L−1

∏
ℓ=0

(iℓ · Cℓ,0(α) + (1− iℓ) · 1) , . . . ,
L−1

∏
ℓ=0

(iℓ · Cℓ,m−1(α) + (1− iℓ) · 1)
)

ROW(i) := LT(i, k) · CG(pow(i)) + EQ(i, k) · x

C̃G(i, j) := ∏
a∈[n]

(
δ−1

∏
b=0

(
C′a,b(j) · (ROW(i)a)

2b
+ (1− C′a,b(j)) · 1

))

Here pow(i) computes the vector vα,i, and the polynomials LT(·, ·) and EQ(·, ·) are as defined
in Observation 2.9. Further, k is the binary encoding of the integer K − 1 and ROW(i)a denotes
the a-th output gate of ROW(i). That is, ROW(i)a = LT(i, k) · ga(pow(i)) + EQ(i, k) · xa if G =
(g1, . . . , gn).

Note that C̃G uses the sub-circuit CG exactly once, in ROW, as claimed. Also, all the three
expressions described above are constant-free, algebraic expressions. Finally, note that the size of
C̃G is O(L · n log(nd) + L + L2 + nd + n · size(CG)), which is O(n3 · d2 + n · size(CG)).

3.3 Completing the proof

We now have all the components necessary to complete the proof of Theorem 3.1.

Theorem 3.1 (Annihilators of explicit maps). Let m be large enough, and let G : Fm → Fn be a
polynomial map given by (g1(z), . . . , gn(z)) of degree d, with n ≥ 2m.

There exists a constant c such that, if there is a circuit with projection gates CG(z, y) of size s that
encodes G as per Definition 1.7, then there is a circuit with projection gates C′(x) of size (m · d · s)c

computing a nonzero polynomial A(x) of individual degree at most 3 · m · d that annihilates G (that is,
A ◦ Gm = A (g1(z), . . . , gn(z)) ≡ 0).

Proof. Let G ′ = (g1(z), . . . , g2m(z)), the first 2m co-ordinates. Clearly, CG encodes G ′ as well.
Lemma 3.2 tells us that there is a K × K matrix, M̃, such that 0 ̸≡ A′(x) = det(M̃) is an

annihilator for the map G ′ (that is, A′ ◦ G ′ ≡ 0). Here K = (2md + 1)2m and A′(x) has individual
degree at most

⌈
(2md)m/(2m−m)

⌉
+ 1 = 2md + 1.

Using the fact that the entries of M̃ are either evaluations of G ′ or monomials, Lemma 3.5
provides a circuit C̃ that encodes the matrix M̃ where C̃ has size O((2md)3 + (2m) · size(CG)).

22



Further C̃ is a purely algebraic circuit14 and also constant-free, assuming we have access to a
gate computing CGm . Finally, we use Proposition 2.30 to obtain a circuit with projections C′ that
computes A′(x). The circuit C′ has size O((2md)3 +(4m) · size(CG)+ log2 K) = O((2md)3 +(4m) ·
size(CG)) = (m · d · s)4 for s = size(CG).

Finally, we note that for A(x1, . . . , xn) := A′(x1, . . . , x2m), 0 ̸≡ A(x) and A ◦ Gm ≡ 0. This
completes the proof, since C′ also computes A.

Clearly Theorem 1.11 is a special cases of Theorem 3.1 and therefore follows as a corollary. We
restate it here for convenience.

Theorem 1.11 (Upper bound for annihilators of VP). Let d(m) be an arbitrary polynomial function of
m. For any VPd-explicit family of maps {Gm}, where each Gm has n outputs with n ≥ 2m, there is a family
{Am} in VPSPACEb of degree O(m2d) such that Am annihilates Gm for all large enough m.

In fact, since the proof allows for the encoding circuit to use projection gates, we additionally
have the following statement as a special case.

Theorem 3.6 (Upper bound for annihilators of VPSPACE). For any VPSPACEb-explicit family of maps
{Gm}, where each Gm has more than 2m outputs, there is a family {Am} in VPSPACEb such that Am
annihilates Gm for all large enough m.

4 Lower Bounds from Hitting Set Generators

We are now ready to formally prove our main results about the consequences of succinct and
cryptographic hitting sets. As mentioned before, these consequences follow by constructing anni-
hilators for such hitting sets by applying Theorem 3.1 with appropriate choices of parameters.

4.1 Lower Bounds from Cryptographic Hitting Set Generators

We begin by proving Theorem 1.9, which we first restate.

Theorem 1.9 (Lower Bounds from Cryptographic HSGs). Let
{

Hn : Cn → CN} be a family of poly-
nomial maps of degree d = n8 with N ≥ 2n, and let D(N) = N10.

Assuming the Generalized Riemann Hypothesis, if the family {Hn} is a VPd-cryptographic hitting set
generator for VPD, at least one of the following must be true.

1. VP ̸= VNP.

2. Uniform NC1 ̸⊆ uniform TC0, where the uniformity is DLOGTIME.

Further, if the family {Hn} is a hitting set generator for VNPd, then P ̸= PSPACE.

Proof. We shall prove the statement via contradiction. Suppose that VP = VNP, and that uniform
NC1 ⊆ uniform TC0. Invoking the padding argument in Proposition 2.26, we get that for any
m(n) = poly(n), SPACE(m(n)) ⊆ CH, which means PSPACE ⊆ CH. Thus, using Proposition 2.27,
we get that VPSPACEb = VP.

14Algebraic circuit without projection gates.

23



This means that any family {AN} in VPSPACEb of degree d′(N) ∈ poly(N) belongs to VPd′ .
For the specific parameters of the generator family {Hn} in the hypothesis, Theorem 3.1 implies a
family {AN} ∈ VPSPACEb of annihilators of individual degree at most (2n · n8) ≤ N · (N/2)8 ≤
N9, and thus total degree at most N10 =: d(N). Now from our assumption, {AN} ∈ VPd, which
contradicts the HSG property of {Hn}.

So it must be the case that either VP ̸= VNP, or that uniform NC1 ̸⊆ uniform TC0.

One can weaken the hypothesis of Theorem 1.9 to a family of VNP or even VPSPACEb-explicit
HSGs because of Theorem 3.6, as follows.
Theorem 4.1. Let {Hm} be a VPSPACEb-explicit family of m-variate polynomial maps with n(m) > 2m
outputs of degree d0(m) ∈ poly(m), and let d(n) ∈ poly(n) be such that d(n(m)) > 2m · d0(m), for all
large m.

If the family {Hm} is a hitting set generator for VPd, then VP ̸= VPSPACEb. As a consequence, either
VP ̸= VNP or DLOGTIME-uniform NC1 ̸⊆ DLOGTIME-uniform TC0.
Remark 4.2 (Known “PSPACE constructions”). Note that the PSPACE-construction of hitting sets for
algebraic circuits by Mulmuley [Mul12] (see also Forbes and Shpilka [FS18]), does not satisfy the hypothesis
of Theorem 4.1. This is essentially the same reason as why the arguments of Heintz and Schnorr [HS80]
do not give a “cryptographic” generator as required in Theorem 1.9. These constructions ([Mul12, FS18])
yield a (possibly) different family of generators constructible in space poly(n, d, s) for each size s. On the
other hand, Theorem 4.1 requires a single family that works for all sizes s(n) ∈ poly(n). ♢

4.2 Upper Bound on Annihilators for Evaluation Vectors of VP

Next we prove Theorem 1.4. Before moving on to the formal statement, we state some definitions
and observations.
Definition 4.3 (Interpolating set). For a set of polynomials P, a set of evaluation points I is called an
interpolating set for P, if there is a linear transformation M such that for any polynomial f ∈ P, the
coefficients of f can be obtained from the evaluations of f on the set I by an application of M. ♢

Proposition 4.4 (Restatement of [BP20, Theorem 10]). Let S := {0, 1, 2, . . . , d}, then the set of evalua-
tion points In,d := {(a1, a2, . . . , an) ∈ Sn|a1 + a2 + · · ·+ an ≤ d} forms an interpolating set for the set of
all n-variate polynomials of total degree at most d.
Definition 4.5 (Evaluation vector). For any n-variate polynomial f (x) of total degree-d, its evaluation
vector is simply the vector15 formed by evaluations of f on the set In,d from Proposition 4.4. ♢

Proposition 4.6 (Equations for evaluation vectors and natural proofs). Let C and D be either VP or
VNP. For any d(n), there are D-natural proofs for Cd if and only if there is a family {AN} ∈ D such that
for each { fn} ∈ Cd, AN vanishes on the evaluation vector of fn for all large enough n.

Proof Sketch. These statements essentially follow from the fact that for any n-variate, degree-d
polynomial, we can move between its coefficient vector and evaluation vector using linear trans-
formations. Clearly, both these transformations have (constant-free) algebraic circuits of size
poly(N). Since both VP and VNP are rich enough to implement the above circuits, we get all
the required statements.

We now state the upper bound on equations for evaluation vectors of VP.

15The order can be picked arbitrarily.

24



Lemma 4.7. There exists a constant c, such that for all large enough n, d, s ∈ N, a multilinear equation
for the evaluation vectors of the set of n-variate, degree-d polynomials computable by circuits of size s, is
computable by constant-free circuits with projection gates of size at most (nds)c.

Proof. For the given parameters n, d, s, let N = (n+d
n ) and consider the universal circuit U (x[n], y[r])

as given in Lemma 2.11. Let I ⊆ Cn be an interpolating set of size N given by Proposition 4.4.
Define a polynomial map Un,d,s : Cr → CN such that each co-ordinate of Un,d,s is exactly U (x = a, y)
for a unique point a ∈ I. We also know from Lemma 2.11 that Un,d,s can be encoded by a constant-
free circuit of size poly(n, d, s), and has individual degree at most poly(n, d, s).

Since any n-variate, degree-d polynomial that is computable by circuits of size s can be ob-
tained by fixing the y variables to some scalars in U (x, y), we have that any annihilator of Un,d,s
vanishes on the evaluation vector of every such polynomial.

Now, using the proof of Theorem 3.1, we can construct a multilinear, poly(n, d, s)-variate an-
nihilator A for Un,d,s, that is computable by constant-free circuits with projections, of size at most
(nds)c for some constant c. That the annihilator A can be multilinear is guaranteed by the bound
on the individual degree from Lemma 3.2.

Theorem 1.4 then follows as a simple corollary. Observe that the log∗ n in the exponent can be
replaced by any growing function of n.

Theorem 1.4 (Equations for VP). For an arbitrary d(n) ∈ poly(n), let N(n) = (n+d(n)
n ). Then, for

t(n) := nlog∗ n, there is a family of N(n)-variate, multilinear polynomials {PN} that depends only on the
first t(n) variables, satisfying the following.

• The family {PN} is a family of equations for the evaluation vectors of VPd(n).

• The coefficient functions of {PN} are computable in (uniform) space t(n) = nlog∗ n.

Proof. Let c be a constant as chosen in the proof of Lemma 4.7, β > 2 be a constant to be fixed later
and let s = s(n) = nlog∗ n/(β·c). Using Lemma 4.7, define a multilinear polynomial family {PN}
such that, for each n, PN(Z1, . . . , ZN) is an annihilator for the set of n-variate, degree-d, size-s
polynomials and depends only on the first (nds)2c ≤ nlog∗ n = t(n) variables. As each PN is com-
putable using constant-free algebraic circuits with projections, of size s3c ≤ t(n), the family {PN}
is in VPSPACE0. Further, since the family of universal circuits {Un,d,s} is DTIME(poly(n, d, s))-
uniform, using the characterization of VPSPACE0 due to Koiran and Perifel (Definition 2.18), the
coefficient functions of {PN} can be computed by a Turing machine that uses space s(n)3c·β′ for
some constant β′. We now fix β = 3β′ so that s(n)3c·β′ ≤ t(n).

Let { fn} ∈ VPd be arbitrary. We know that for all large enough n, size( fn) = na for some
constant a. Thus, there is a finite n0 ∈ N such that size( fn) ≤ s(n) for all n > n0. Therefore, for
all large enough n, the evaluation vectors of fn are zeroes of the polynomial PN(Z1, . . . , ZN) and
so {PN} is a family of equations whose coefficients are computable in (uniform) space t(n).

4.3 Lower Bounds from Succinct Hitting Set Generators

Finally, we prove Theorem 1.2 by combining the observations in the proofs of Theorem 1.4 and
Theorem 1.9. We start by proving the following consequence of a separation between VPSPACEb
and VP. Here, by VPSPACEb(m) we mean the class of m-variate polynomial families in VPSPACEb;

25



when comparing this with VP(N), we treat them as N-variate families that depend only on the
first m inputs.

Proposition 4.8. Assuming the Generalized Riemann Hypothesis, suppose that for every growing function
f (n), and m(n) := log f (n) n, we have that VPSPACEb(m) ̸⊆ VP(n).

Then either VP ̸= VNP, or for every g(N) = ω(1) there is a boolean function family {hN} that
depends only on its first M = exp((log log N)g(N))-inputs, such that:
(a) {hN} has DLOGTIME-uniform, O(log M)-depth, poly(M)-sized, fan-in 2 boolean circuits, and
(b) {hN} ̸∈ DLOGTIME-uniform TC0.
Here the uniformity is in terms of the circuit size, in both cases.

Proof. Firstly, note that the point (a) above is the same as saying:
{

h̃M
}
∈ DLOGTIME-uniform

NC1, for the family
{

h̃M
}

defined so that h̃M = hN for all N large enough. We now prove the
statement by contradiction.

So suppose that the hypothesis holds, but not the conclusion. Therefore, VP = VNP and for
some g(N) = ω(1), every

{
h̃M
}

in DLOGTIME-uniform NC1, has a DLOGTIME-uniform constant-
depth threshold circuit of size N, where N is such that M = exp((log log N)g(N)).

Now define f (n) = g(2n); note that f (n) = ω(1). Thus, from the hypothesis, we have that
VPSPACE(log f (n) n) ̸⊆ VP(n). Now using Proposition 2.27, we get that SPACE(log f (n) n) ̸⊆ CH.

So, by instantiating Proposition 2.26 for m(n) = log f (n) n
a (where a is the absolute constant), we get

that there is a function family {pL} on L = 2log f (n) n inputs, which has DLOGTIME-uniform NC1

circuits, but requires DLOGTIME-uniform constant depth threshold circuits of size 2nω(1)
.

However, from our previous observation, taking N = 2n, we have L = 2m(n) = 2(log log N)g(N)
,

and therefore {pL} should have DLOGTIME-uniform constant-depth threshold circuit of size N.
This is a contradiction.

Theorem 1.2 (Hardness from Succinct Hitting Sets). Assuming the Generalized Riemann Hypothesis,
if VP-succinct hitting set generators exist for VP, then at least one of the following must be true.

1. VP ̸= VNP.

2. For any ℓ(m) = o(1), there is a family of functions {hm} in uniform NC1 such that any uni-
form constant-depth threshold circuit computing it must have size larger than exp(exp(logℓ(m) m)),
where the uniformity is DLOGTIME (in terms of the respective sizes).

Further, if VP does not admit VNP-natural proofs then P ̸= SPACE(loglog∗(n)(n)).

Proof. Suppose we have VPd-succinct hitting sets for VP, which means that for any D(N), S(N) ∈
poly(N), there is some family

{
g(D,S)

n

}
∈ VPd that is a succinct hitting set generator for size-S(N)

families in VPD (see Definition 2.15). Notice that over all choices of D, S, the family
{

g(D,S)
n

}
is a

degree-d(n) family; the different
{

g(D,S)
n

}
s could potentially have different sizes s(n) ∈ poly(n).

Now consider the universal circuit family
{
Un,d(n),t(n)(x, y)

}
(Definition 2.10) with a slightly

super-polynomial size parameter, say t(n) = n f (n) for f (n) = ω(1). Observe that for every{
g(D,S)

n

}
∈ VPd above, there exists a large enough value of n, where g(D,S)

n (x) = U (x, y = a)

26



for some a in the field. As a result, the family
{
Un,d(n),t(n)(x, y)

}
is a succinct hitting set generator

for all of VP. That is, for N := (n+d(n)
d(n) ), for any family {PN} ∈ VP(N), there are infinitely many

values of N where PN will not vanish on the coefficient vector of U (which is a vector of polyno-
mials over the parameter variables y). Using Proposition 4.6, this means that the same property
holds even for the evaluation vectors of U . Therefore, the family {U} is a family of degree-d(n)
polynomial maps that are encoded by circuits of size t(n), such that any family of annihilators for
these maps is outside VP(N).

We can now apply Theorem 3.1 to obtain a family of annihilators for {U}, say {Am} in the
class VPSPACEb, with m = 2t(n), and degree at most t(n)5 for all large enough n. Due to the
hitting property of {U}, {Am} ̸∈ VP(N), and thus, VPSPACE(t(n)) ̸⊆ VP(N). Since this works
for t(n) = n f (n) for any f (n) = ω(1), we are in the setting of Proposition 4.8.

Therefore, either VP ̸= VNP, or for any γ(N) = ω(1) there is a family {hN} depending only
on its first M = exp((log log N)γ(N)) inputs with the respective properties. We can then view this
family as an M-variate family

{
h̃M
}

in uniform NC1 — as in the proof of Proposition 4.8 — that
requires uniform constant-depth threshold circuits of size strictly larger than N.

Finally, since M is a growing function of N, there is some λ(M) = ω(1) such that N ≤
exp(exp(log1/λ(M) M)), and we can then let g(M) = 1/λ(M) = o(1) to derive the second conclu-
sion. Again, as the guarantee from Proposition 4.8 holds for any growing γ(N), the conclusion
also holds for any g(M) = o(1) as required.

VP-succinct hitting sets for VNP. In this case, we get that the universal circuit family {U} is a
hitting set generator for all of VNP, using the exact same argument as above. As a result, the an-
nihilator family {Am} ̸∈ VNP. Therefore, if it were the case that SPACE(loglog∗ N N) ⊆ P, then the
coefficient function of {Am}— taking m = n log∗ n/c = loglog∗ N N for some constant c — would be
computable in DTIME(poly(N)), thus putting it in VNP using Valiant’s criterion [Val79a], leading
to a contradiction. This finishes the proof.

Acknowledgements

We thank C. Ramya and Ramprasad Saptharishi for discussions about this problem during its
early stages. We are grateful to Mrinal Kumar, Ramprasad Saptharishi and Amir Shpilka for nu-
merous informative discussions on algebraic natural proofs, and algebraic complexity in general.

We thank Robert Andrews, Vishwas Bhargava, Christian Ikenmeyer, Meena Mahajan and
Nitin Saxena for their helpful comments on a presentation of these results at the Worskhop on
Algebra and Computation (WAC 2023); we also thank the organizers of this workshop for this
opportunity. Finally, we would like to acknowledge the workshop on Proof Complexity and
Meta-mathematics at the Simons institute, which facilitated various discussions regarding natural
proofs with many experts in theoretical CS. These interactions motivated this work and hence we
thank the organizers of the workshop for inviting us.

We thank Robert Andrews for his comments on an earlier version of the paper that helped us
improve the presentation.

27

https://sites.google.com/view/wac2023/home
https://sites.google.com/view/wac2023/home
https://simons.berkeley.edu/workshops/proof-complexity-meta-mathematics
https://simons.berkeley.edu/workshops/proof-complexity-meta-mathematics


References

[AD08] Scott Aaronson and Andrew Drucker. Arithmetic natural proofs theory is sought.
Shtetl Optimized: Scott Aaronson’s Blog, 2008. [Cited on pages 1 and 9.]

[AV08] Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In
Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2008), pages 67–75, 2008. eccc:TR08-062. [Cited on page 1.]

[BDS24] C. S. Bhargav, Prateek Dwivedi, and Nitin Saxena. Lower Bounds for the Sum of
Small-Size Algebraic Branching Programs. In Theory and Applications of Models of Com-
putation - 18th Annual Conference, TAMC 2024, Hong Kong, China, May 13-15, 2024, Pro-
ceedings, volume 14637 of Lecture Notes in Computer Science, pages 355–366. Springer,
2024. [Cited on page 1.]

[Ber84] Stuart J. Berkowitz. On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters, 18(3):147 – 150, 1984. [Cited on
page 7.]

[BP20] Markus Bläser and Anurag Pandey. Polynomial Identity Testing for Low Degree Poly-
nomials with Optimal Randomness. In Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-
19, 2020, Virtual Conference, volume 176 of LIPIcs, pages 8:1–8:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. [Cited on page 24.]

[BS83] Walter Baur and Volker Strassen. The Complexity of Partial Derivatives. Theoretical
Computer Science, 22:317–330, 1983. [Cited on page 1.]

[Bür00] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity Theory, volume 7
of Algorithms and Computation in Mathematics. Springer, 2000. [Cited on pages 1
and 15.]

[Bür09] Peter Bürgisser. On Defining Integers And Proving Arithmetic Circuit Lower Bounds.
Computational Complexity, 18(1):81–103, 2009. [Cited on page 16.]

[CKR+20] Prerona Chatterjee, Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and Anamay
Tengse. On the Existence of Algebraically Natural Proofs. In 61st IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020, pages 870–880. IEEE, 2020. Pre-print available at arXiv:2004.14147. [Cited on
page 13.]

[CKSS24] Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower
Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity
Conference, CCC 2024, July 22-25, 2024, Ann Arbor, MI, USA, volume 300 of LIPIcs,
pages 20:1–20:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. [Cited
on page 1.]

[CKSV22] Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. Quadratic Lower
Bounds for Algebraic Branching Programs and Formulas. Comput. Complex., 31(2):8,
2022. [Cited on page 1.]

28

https://www.scottaaronson.com/blog/?p=336
http://dx.doi.org/10.1109/FOCS.2008.32
http://eccc.hpi-web.de/report/2008/062/
http://dx.doi.org/10.1007/978-981-97-2340-9_30
http://dx.doi.org/10.1007/978-981-97-2340-9_30
http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.1016/0020-0190(84)90018-8
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.8
http://dx.doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.8
http://dx.doi.org/10.1016/0304-3975(83)90110-X
http://dx.doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.1007/s00037-009-0260-x
http://dx.doi.org/10.1109/FOCS46700.2020.00085
http://arxiv.org/abs/2004.14147
http://dx.doi.org/10.4230/LIPICS.CCC.2024.20
http://dx.doi.org/10.4230/LIPICS.CCC.2024.20
http://dx.doi.org/10.1007/S00037-022-00223-8
http://dx.doi.org/10.1007/S00037-022-00223-8


[CKW11] Xi Chen, Neeraj Kayal, and Avi Wigderson. Partial Derivatives in Arithmetic Com-
plexity. Foundations and Trends in Theoretical Computer Science, 2011. [Cited on
page 1.]

[CMTV98] Hervé Caussinus, Pierre McKenzie, Denis Thérien, and Heribert Vollmer. Nonde-
terministic NC1 Computation. J. Comput. Syst. Sci., 57(2):200–212, 1998. [Cited on
page 15.]

[Csa76] L. Csanky. Fast Parallel Matrix Inversion Algorithms. SIAM J. Comput., 5(4):618–623,
1976. [Cited on page 7.]

[FLMS15] Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower
Bounds for Depth-4 Formulas Computing Iterated Matrix Multiplication. SIAM Jour-
nal of Computing, 44(5):1173–1201, 2015. Preliminary version in the 46th Annual ACM
Symposium on Theory of Computing (STOC 2014). eccc:TR13-100. [Cited on page 1.]

[FS12] Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery
and compressed sensing. In Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 163–172. ACM,
2012. Pre-print available at eccc:TR11-147. [Cited on pages 7 and 12.]

[FS18] Michael A. Forbes and Amir Shpilka. A PSPACE construction of a hitting set for the
closure of small algebraic circuits. In Proceedings of the 50th Annual ACM Symposium
on Theory of Computing (STOC 2018), pages 1180–1192. ACM, 2018. arXiv:1712.09967.
[Cited on page 24.]

[FSV18] Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct Hitting Sets and Barriers
to Proving Lower Bounds for Algebraic Circuits. Theory of Computing, 14(1):1–45, 2018.
Preliminary version in the 49th Annual ACM Symposium on Theory of Computing (STOC
2017). arXiv:1701.05328. [Cited on pages , 1, 2, 3, 9, and 13.]

[GKKS14] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching
the Chasm at Depth Four. Journal of the ACM, 61(6):33:1–33:16, 2014. Preliminary
version in the 28th Annual IEEE Conference on Computational Complexity (CCC 2013).
Pre-print available at eccc:TR12-098. [Cited on page 1.]

[GKSS17] Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. To-
wards an algebraic natural proofs barrier via polynomial identity testing. CoRR,
abs/1701.01717, 2017. Pre-print available at arXiv:1701.01717. [Cited on pages ,
1, 2, 3, and 13.]

[GR05] Ariel Gabizon and Ran Raz. Deterministic Extractors for Affine Sources over Large
Fields. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), pages 407–418, 2005. [Cited on page 8.]

[Gro15] Joshua A. Grochow. Unifying Known Lower Bounds via Geometric Complexity The-
ory. Computational Complexity, 24(2):393–475, 2015. [Cited on page 1.]

29

http://dx.doi.org/10.1006/JCSS.1998.1588
http://dx.doi.org/10.1006/JCSS.1998.1588
http://dx.doi.org/10.1137/0205040
http://dx.doi.org/10.1137/140990280
http://dx.doi.org/10.1137/140990280
http://eccc.hpi-web.de/report/2013/100/
http://dx.doi.org/10.1145/2213977.2213995
http://dx.doi.org/10.1145/2213977.2213995
http://eccc.hpi-web.de/report/2011/147/
http://dx.doi.org/10.1145/3188745.3188792
http://dx.doi.org/10.1145/3188745.3188792
http://arxiv.org/abs/1712.09967
http://dx.doi.org/10.4086/toc.2018.v014a018
http://dx.doi.org/10.4086/toc.2018.v014a018
http://arxiv.org/abs/1701.05328
http://dx.doi.org/10.1145/2629541
http://dx.doi.org/10.1145/2629541
http://eccc.hpi-web.de/report/2012/098/
http://arxiv.org/abs/1701.01717
http://arxiv.org/abs/1701.01717
http://arxiv.org/abs/1701.01717
http://dx.doi.org/10.1007/s00037-015-0103-x
http://dx.doi.org/10.1007/s00037-015-0103-x


[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A Pseudoran-
dom Generator from any One-way Function. SIAM J. Comput., 28(4):1364–1396, 1999.
[Cited on page 9.]

[HS80] Joos Heintz and Claus-Peter Schnorr. Testing Polynomials which Are Easy to Compute
(Extended Abstract). In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing (STOC 1980), pages 262–272, 1980. [Cited on pages 2, 9, and 24.]

[Kal85] Kyriakos Kalorkoti. A Lower Bound for the Formula Size of Rational Functions. SIAM
Journal of Computing, 14(3):678–687, 1985. [Cited on page 1.]

[Kay09] Neeraj Kayal. The Complexity of the Annihilating Polynomial. In Proceedings of the
24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-
18 July 2009, pages 184–193, 2009. [Cited on page 3.]

[KI04] Valentine Kabanets and Russell Impagliazzo. Derandomizing Polynomial Identity
Tests Means Proving Circuit Lower Bounds. Computational Complexity, 13(1-2):1–46,
2004. Preliminary version in the 35th Annual ACM Symposium on Theory of Computing
(STOC 2003). [Cited on page 4.]

[KP09] Pascal Koiran and Sylvain Perifel. VPSPACE and a Transfer Theorem over the Reals.
Computational Complexity, 18(4):551–575, 2009. [Cited on pages 14 and 15.]

[KRST22] Mrinal Kumar, C. Ramya, Ramprasad Saptharishi, and Anamay Tengse. If VNP Is
Hard, Then so Are Equations for It. In 39th International Symposium on Theoretical As-
pects of Computer Science, STACS 2022, March 15-18, 2022, Marseille, France (Virtual Con-
ference), volume 219 of LIPIcs, pages 44:1–44:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022. arXiv:2012.07056. [Cited on pages 2 and 9.]

[Mal11] Guillaume Malod. Succinct Algebraic Branching Programs Characterizing Non-
uniform Complexity Classes. In Fundamentals of Computation Theory - 18th International
Symposium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings, pages 205–216,
2011. [Cited on pages 7, 14, 15, 16, 31, and 32.]

[MR13] Meena Mahajan and B. V. Raghavendra Rao. Small Space Analogues of Valiant’s
Classes and the Limitations of Skew Formulas. Computational Complexity, 22(1):1–38,
2013. [Cited on page 15.]

[Mul12] Ketan Mulmuley. Geometric Complexity Theory V: Equivalence between Blackbox
Derandomization of Polynomial Identity Testing and Derandomization of Noether’s
Normalization Lemma. In Proceedings of the 53rd Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2012), pages 629–638, 2012. [Cited on page 24.]

[MV97] Meena Mahajan and V. Vinay. A Combinatorial Algorithm for the Determinant. In Pro-
ceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1997),
pages 730–738, 1997. Available on citeseer:10.1.1.31.1673. [Cited on pages 7
and 17.]

30

http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1137/S0097539793244708
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1137/0214050
http://dx.doi.org/10.1109/CCC.2009.37
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-009-0269-1
http://dx.doi.org/10.4230/LIPIcs.STACS.2022.44
http://dx.doi.org/10.4230/LIPIcs.STACS.2022.44
http://arxiv.org/abs/2012.07056
http://dx.doi.org/10.1007/978-3-642-22953-4_18
http://dx.doi.org/10.1007/978-3-642-22953-4_18
http://dx.doi.org/10.1007/s00037-011-0024-2
http://dx.doi.org/10.1007/s00037-011-0024-2
http://dx.doi.org/10.1109/FOCS.2012.15
http://dx.doi.org/10.1109/FOCS.2012.15
http://dx.doi.org/10.1109/FOCS.2012.15
http://dx.doi.org/10.1.1.31.1673
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.1673


[Poi08] Bruno Poizat. A la recherche de la definition de la complexite d’espace pour le calcul
des polynomes a la maniere de Valiant. J. Symb. Log., 73(4):1179–1201, 2008. [Cited on
pages 14, 31, and 32.]

[Raz10] Ran Raz. Elusive Functions and Lower Bounds for Arithmetic Circuits. Theory of
Computing, 6(1):135–177, 2010. [Cited on page 13.]

[RR97] Alexander A. Razborov and Steven Rudich. Natural Proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997. Preliminary version in the 26th Annual ACM Sym-
posium on Theory of Computing (STOC 1994). [Cited on page 1.]

[Sap15] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
Github survey, 2015. [Cited on pages 1 and 17.]

[Smo97] Roman Smolensky. Easy Lower Bound for a Strange Computational Model. Comput.
Complex., 6(3):213–216, 1997. [Cited on page 1.]

[Str73] Volker Strassen. Die Berechnungskomplexität Von Elementarsymmetrischen Funktio-
nen Und Von Interpolationskoeffizienten. Numerische Mathematik, 20(3):238–251, 1973.
[Cited on page 1.]

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results
and open questions. Foundations and Trends in Theoretical Computer Science, 5:207–388,
March 2010. [Cited on pages 1 and 12.]

[Val79a] Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11th Annual
ACM Symposium on Theory of Computing (STOC 1979), pages 249–261, 1979. [Cited on
pages 1, 16, and 27.]

[Val79b] Leslie G. Valiant. The Complexity of Computing the Permanent. Theor. Comput. Sci.,
8:189–201, 1979. [Cited on page 1.]

A Equivalence of the definitions of VPSPACE

This section is devoted to proving Proposition 2.21, restated below.

Proposition 2.21 ([Poi08, Mal11]). VPSPACE0 = VPPROJ0.

Throughout this section, whenever a bit-string corresponds to an integer, the 0th bit refers to
the sign-bit, the first bit to the most significant bit (MSB) and the last bit to the least significant bit
(LSB).

Before moving to Proposition 2.21, we sketch the proofs of a few basic facts that will be needed.

Observation A.1 (Adding in small space). Let A, B be positive integers such that A + B is at most 22s
.

Assuming bit-access to A and B, any bit of the sum A + B can be computed in space at most O(s).

Sketch. Let i ∈ [s] be the index of the bit of A + B that we wish to compute. This will be done in i
iterations, starting from the LSB to the ith bit. We maintain a counter j (using s bits) to keep track
of the current iteration. We also use 4 additional bits: a, b, r and c, for A, B, the result and the carry,
respectively, all initialized to 0.

31

http://dx.doi.org/10.2178/jsl/1230396913
http://dx.doi.org/10.2178/jsl/1230396913
http://dx.doi.org/10.4086/toc.2010.v006a007
http://dx.doi.org/10.1006/jcss.1997.1494
https://github.com/dasarpmar/lowerbounds-survey/releases/
http://dx.doi.org/10.1007/BF01294255
http://dx.doi.org/10.1007/BF01436566
http://dx.doi.org/10.1007/BF01436566
http://dx.doi.org/http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1145/800135.804419
http://dx.doi.org/10.1016/0304-3975(79)90044-6


In iteration j, we get the jth bits of A and B in a and b, respectively. We then set r ← a⊕ b⊕ c,
and c← (a ∧ b) ∨ (b ∧ c) ∨ (a ∧ c), in that order. At the end of iteration i, we output r as the ith bit
of A + B.

The total space used is, clearly, at most O(s) for all large s.

Observation A.2 (Subtracting in small space). Let A, B be integers of absolute value at most 22s
such

that the absolute value of A− B is at most 22s
. Assuming bit-access to A and B, any bit of the difference

A− B can be computed in space at most O(s).

Sketch. As an initial step, we query the sign-bits (0th bits) of A and B, to decide whether the abso-
lute value of A− B is the sum of the difference of their absolute values.

The rest of the algorithm is the same as that for Observation A.1, but with the correct expres-
sions for computing r and c in each of the iterations. In order to compute the sign-bit of A− B, we
need to check the sign-bits of A and B, and check if there is a carry from iteration 1.

Observation A.3 (Summing a list in small space). Let A1, A2, . . . , AL be positive integers such that
their sum T := A1 + A2 + · · ·+ AL is at most 22s

. Assuming bit-access to each of the Ais, any bit of the
sum T can be computed in space at most O(⌈log L⌉ · s).

Sketch. We prove this using Observation A.1, and induction on the size of the list, L. Assuming
bit-access to the sums T1 = A1 + · · · + AL/2, and T2 = AL/2+1 + · · · + AL, we can compute the
sum T in space 2s. In order to simulate bit-access to T1 and T2, we recursively run the algorithm
of the two smaller lists. The key observation is that we can reuse the same 2 · (⌈log L⌉ − 1) · s bits
of space for both these computations. The total space used is thus, at most O(⌈log L⌉ · s).

Observation A.4 (Multiplying in small space). Let A, B be positive integers such that A× B is at most
22s

. Assuming bit-access to A and B, any bit of the product A× B can be computed in space at most O(s3).

Sketch. Using the “school method” the product A× B can be calculated as the sum of L = ⌈log B⌉
many numbers, each of which is either 0, or a shift of A.

Therefore, we can use Observation A.3 by simulating bit-access to each of the shifts mentioned
above. Here, the jth bit in the kth shift of A, is either 0 (if the kth bit of B is 0), or the (j + k− 1)th bit
of A. So we just need an additional space of at most 2s bits for this simulation.

The total space used is therefore O(s2) + O(s) ≤ O(s3), for all large enough s.

We are now ready to prove Proposition 2.21, which we restate once more.

Proposition 2.21 ([Poi08, Mal11]). VPSPACE0 = VPPROJ0.

The statement clearly follows from the following lemmas, namely Lemma A.5 and Lemma A.6.

Lemma A.5. Let s be large enough, and suppose f (x) ∈ Z[x] is computable by a constant-free, algebraic
circuit with projections gates, of size s.

Then, the coefficient function16 Φ of f , is computable by a Turing machine that uses space at most
O(s4), and takes as advice a string of length at most O(s2).

16Definition 2.17.

32



Proof. Let C be the constant-free circuit with projection gates that computes f . The advice to the
Turing machine is going to be an encoding of the graph of C.

We can assume that C(x) = C1(x)− C2(x), with C1, C2 being monotone (that is, they only use
the positive constant 1, and addition and multiplication gates). We shall therefore assume that C
itself is monotone, and show that its coefficient function can be computed in small space, and then
just use Observation A.2 to finish the proof.

For each gate g ∈ C, let Φg be its coefficient function.

• If g is a leaf, then its coefficient function is trivial.

• If g = u + v, then Φg can be decided in space O(s) using Observation A.1, by using an
additional space of at most O((s− 1)4) bits, to simulate Φu and Φv whenever required.

• If g = fixz=0 u(z, x), then Φg is essentially Φu with the exponent for z fixed to zero.
When g = fixz=1 u(z, x), for any monomial xe, coeffg(xe) = ∑0≤a≤degz(u)

coeffu(xe · za).
Therefore, we can calculate Φg using Φu and Observation A.3.

• If g = u× v, then the coefficient of a monomial xe in g is given by ∑e′ coeffu(xe′) coeffv(xe−e′).
The degree of f is at most 2s, and hence there are at most 2ns ≤ 2s2

terms in the above sum.
Therefore, if we can simulate bit-access to each of the product terms, then we can compute
any bit of the sum in additional space O(s3) using Observation A.3. Since we can inductively
compute the coefficient functions of both u and vin space O((s− 1)4), Observation A.4 gives
us bit-access to each of the terms in the sum, using an additional space of at most O(s3) bits.
Putting all the pieces together, Φg can be decided in space at most O((s− 1)4 + s3).

Thus, the total space used is at most O((s− 1)4 + s3) ≤ O(s4), for all large s.

Lemma A.6. Let f (x) ∈ Z[x] be an n-variate, degree d polynomial such that its coefficient function can
be computed in space s. Then there is a constant-free circuit with projection gates of size poly(s, n, log d)
that can compute f (x).

Proof. We prove this in two steps. First we show that the coefficient function can be efficiently
computed by a constant-free algebraic circuit with projection gates. We then show that if the
coefficient function of a polynomial can be efficiently computed by a constant-free algebraic circuit
with projection gates, then the polynomial itself can be efficiently computed by a constant-free
algebraic circuit with projection gates.

Claim A.7. Let f (x) ∈ Z[x] be an n-variate, degree d polynomial such that its coefficient function
can be computed in space s. Then there is a constant-free algebraic circuit with projection gates of size
poly(s, n, log d) that computes the coefficient function of f .

Proof. Using the fact that totally quantified boolean expressions capture PSPACE, since the coef-
ficient function of f can be computed using space s, we note that the coefficient function can be
written as a quantified boolean formula of size poly(s).

We now arithmetize the boolean expression in the usual way to get an algebraic circuit. Addi-
tionally, we use projection gates to simulate the quantifiers using constant sized gadgets:

• ∀yΨ(y) ≡ fixy=0 p(y)× fixy=1 p(y),

• ∃yΨ(y) ≡ 1− (1− fixy=0 p(y))× (1− fixy=1 p(y)).

33



We therefore get an algebraic circuit with projection gates, of size poly(s, n, log d) that computes
the coefficient function of f .

Claim A.8. Let f (x) ∈ Z[x] be an n-variate, degree d polynomial such that its coefficient function can be
computed by a constant-free algebraic circuit with projection gates of size s′. Then there is a constant-free
algebraic circuit with projection gates of size poly(s′, n, log d) that computes f .

Proof. It is easy to see that projection gates can efficiently simulate exponential sums. So it suffices
to provide an exponential sum that computes f (x) given access to a circuit, say CF(ye, i), comput-
ing the coefficient function, as follows. Here m = n · ⌈log d⌉ is the length of the bit-vectors for
exponents, and b is the base-2-logarithm of the bit complexity of the coefficients of f .

f (x) = ∑
ye∈{0,1}m

 ∑
i∈{0,1}b

pow(i) ·CF(ye, i)

 · check(ye) ·mon(x, ye)

The polynomials pow computes the ith power of two, check outputs 1 when the exponent e is
valid, and zero otherwise, and mon computes the eth monomial in x. All these polynomials have
easy constructions in size poly(m, b) = poly(n, log d, s).

The required statement clearly follows from the above two claims.

34

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


