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Abstract

We study the arithmetic complexity of hitting set generators, which are pseudorandom
objects used for derandomization of the polynomial identity testing problem. We give new
explicit constructions of hitting set generators whose outputs are computable in VNC0, i.e.,
can be computed by arithmetic formulas of constant size. Unconditionally, we construct a
VNC0-computable generator that hits arithmetic circuits of constant depth and polynomial size.
We also give conditional constructions, under strong but plausible hardness assumptions, of
VNC0-computable generators that hit arithmetic formulas and arithmetic branching programs
of polynomial size, respectively. As a corollary of our constructions, we derive lower bounds for
subsystems of the Geometric Ideal Proof System of Grochow and Pitassi.

Constructions of such generators are implicit in prior work of Kayal on lower bounds for the
degree of annihilating polynomials. Our main contribution is a construction whose correctness
relies on circuit complexity lower bounds rather than degree lower bounds.

1 Introduction

1.1 Polynomial Identity Testing

Algebraic complexity is a vibrant subarea of complexity theory that studies computation of polynomial
and rational functions using basic arithmetic operations. Like boolean complexity theory, algebraic
complexity enjoys a rich theory of pseudorandomness, with the polynomial identity testing (PIT)
problem playing a central role. The input to the PIT problem is an arithmetic circuit, and the goal
is to decide whether the circuit computes the identically zero polynomial. This problem can be
efficiently solved with randomness using the Schwartz–Zippel lemma [Sch80; Zip79], which says that
if a degree-d polynomial f is nonzero, then with probability at least 1/2 a randomly-chosen point
from a grid of side-length 2d will lead to a nonzero evaluation of f . A great deal of work has gone
into designing efficient deterministic algorithms for polynomial identity testing, leading to beautiful
constructions and connections to other areas of computer science and mathematics.

Algorithms for PIT are often designed by constructing hitting set generators, which play a role
analogous to pseudorandom generators in boolean complexity. For a complexity class C , a hitting
set generator G for C is a (family of) polynomial map(s) G : Fℓ → Fn such that for every polynomial
f ∈ C , we have f = 0 if and only if f ◦ G = 0.1 Conceptually, one can think of a generator as
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1Formally, we consider families of polynomials (f1, f2, . . .) and families of polynomial maps (G1,G2, . . .), rather
than a single polynomial f and a single map G. We will gloss over this distinction throughout the introduction for the
sake of readability, focusing instead on single elements fn and Gn of the respective families.
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mapping ℓ truly random field elements to n pseudorandom field elements. If the generator G can be
implemented by an efficient algorithm, then we are led to an improved deterministic PIT algorithm
for C -circuits: given a circuit C, test the composition C ◦ G by brute force. The running time of
the naïve brute-force algorithm for PIT has an exponential dependence on the number of variables,
and the generator G improves this exponent from n to the smaller ℓ, a parameter referred to as the
seed length of the generator. The usual aim is to construct generators with seed length that is as
small as possible, since this is the most important parameter for improving the running time of the
deterministic algorithm.

Numerous constructions of hitting set generators are known, both conditional and unconditional.
In this work, we will be interested in designing hitting set generators for strong circuit classes, at or
beyond the frontier of our ability to prove super-polynomial lower bounds for explicit polynomials.2

Starting with Kabanets and Impagliazzo [KI04], who adapted the Nisan–Wigderson [NW94] generator
to the algebraic setting, there has been a successful line of work constructing hitting set generators
for strong circuit classes—including general, unrestricted circuits—under hardness assumptions
[DSY09; CKS19; And20; ST21b; GKSS22]. In fact, some of the lower bounds assumed by these
works have since been proven unconditionally, leading to new deterministic algorithms for PIT!
Specifically, the super-polynomial lower bounds of Limaye, Srinivasan, and Tavenas [LST21] against
constant-depth arithmetic circuits, combined with the hardness-to-randomness theorem of Chou,
Kumar, and Solomon [CKS19], led to the first deterministic sub-exponential time algorithm to test
polynomial identities written as constant-depth circuits.

Recently, Chatterjee and Tengse [CT25] raised a very interesting question about the complexity
of hitting set generators. They asked if it is possible to construct a hitting set generator that is
computable in some small complexity class C , yet appears pseudorandom to a larger complexity
class D ⊋ C . This sort of parameter regime is common throughout cryptography, so they termed
such a generator a cryptographic hitting set generator. The question of constructing cryptographic
hitting set generators is an extremely interesting one, and is the focus of our work. Aside from
this question’s inherent interest, one might expect the techniques underlying the construction of a
cryptographic hitting set generator to have other applications within algebraic complexity theory.
For example, the analogous question of constructing low-complexity pseudorandom generators was
answered in a beautiful work of Applebaum, Ishai, and Kushilevitz [AIK06], and the techniques
therein have found numerous applications within cryptography and complexity, such as to the recent
study of the range avoidance problem [RSW22].

Most known hardness-randomness connections in algebraic complexity cannot hope to produce a
hitting set generator that operates in this cryptographic regime of parameters. Almost all generators
that come from algebraic hardness-randomness are reconstructive, meaning that their correctness
proofs follow a common template. In a reconstructive proof of correctness, the generator G is proven
correct by an argument of the following form: suppose some explicit polynomial f , such as the
n× n permanent, is hard to compute. Given a nonzero circuit C of size s that satisfies C ◦ G = 0,
there is a reconstruction procedure that modifies C into a circuit C ′ of size s + t that computes
the supposedly-hard polynomial f . If s+ t ≪ size(f), where size(f) is the complexity of f , then
we arrive at a contradiction. The upshot of this argument is that if the circuit C is sufficiently
small—in particular, when the circuit C is of size s ≪ size(f)—the hardness of f implies that the
composition C ◦ G must be nonzero, i.e., that G hits small circuits. The bottleneck in this argument
is that the generator G is usually defined using the hard polynomial f (for example, G may be the
Nisan–Wigderson generator applied to f), so the complexity of G is necessarily bounded from below

2For results on polynomial identity testing for weaker circuit classes, we refer the reader to the recent survey of
Dutta and Ghosh [DG24], as well as the surveys of Saxena [Sax09; Sax14].
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by size(f). Because the reconstruction argument only proves that G is pseudorandom against circuits
of size s ≪ size(f) ⩽ size(G), this proof template is doomed to fail in constructing a cryptographic
hitting set generator. To design cryptographic hitting set generators for strong circuit classes, we
need to avoid this reconstructive approach.

One instance where the overhead from reconstruction can be avoided is found in the work
of Andrews and Forbes [AF22]. They gave a subexponential-time algorithm to test polynomial
identities that are written as constant-depth circuits. The same algorithmic result was already
obtained by the previously-mentioned work of Limaye, Srinivasan, and Tavenas [LST21]. However,
these two algorithms differ in the complexity of the hitting set generator underlying the algorithm:
the generator of [LST21] is reconstructive, whereas the generator of [AF22] provably has smaller
complexity than the circuits it hits. Unlike most works in algebraic hardness-randomness, Andrews
and Forbes [AF22] do not design a generator that is based on evaluations of hard functions, but
rather design the generator so that its annihilator ideal consists only of hard polynomials. For a
generator G, its annihilator ideal, denoted by Ann(G), is the set of all polynomials f such that
f ◦ G = 0. In principle, one could show that a generator hits a circuit class C by showing that all
nonzero polynomials in the annihilator ideal are so complex that they lie outside the circuit class
C . Proving a statement like this is necessary for the proof of correctness of a generator, but these
statements are usually not the core thrust of the argument and only arise as a byproduct of the
correctness proof. As we will see, adopting this viewpoint will be useful for constructing further
examples of generators that hit circuits more complex than the generator itself.

1.2 Cryptographic Generators from Degree Bounds for Annihilating Polynomials

Although the question of constructing cryptographic hitting set generators in algebraic complexity is
a recent one, prior work on degree bounds for annihilating polynomials leads, at least implicitly, to
constructions of cryptographic generators. Kayal [Kay09, Theorem 12] showed that over a field of
characteristic zero, any annihilator of the n+ 1 polynomials

g1(x) = xd1 − 1

...

gn(x) = xdn − 1

gn+1(x) = x1 + x2 + · · ·+ xn − n

must have degree at least dn. Equivalently, the corresponding generator G : Fn → Fn+1 given by
G(x) = (g1(x), . . . , gn+1(x)) hits all polynomials of degree less than dn. Because many restricted
forms of arithmetic circuits, such as arithmetic formulas and branching programs, necessarily compute
low-degree polynomials, this generator hits powerful classes of circuits. For example, size-s arithmetic
branching programs cannot compute polynomials of degree greater than s, so this generator hits
all branching programs of size less than dn. This is a bit unusual. The best-known lower bounds
against arithmetic branching programs are only quadratic [CKSV22], so intuition from the hardness
versus randomness paradigm suggests we should only expect to have constructions of generators
that hit branching programs of size up to O(n2).

The preceding example of Kayal [Kay09] fits into the cryptographic regime, as the outputs are
extremely simple to compute. Taking d = 2, we obtain a generator where the first n outputs can be
computed by formulas of constant size, the last output can be computed by a formula of size n and
depth two, and yet the generator hits all branching programs of size less than 2n. Although this
generator only stretches its input by one field element in length, it is possible to improve the stretch
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of the generator by invoking n1−ε copies in parallel, each on a fresh set of nε variables. This results in
a generator G′ : Fn → Fn+n1−ε that stretches its input by n1−ε field elements. Kayal’s construction
can also be modified to obtain a generator with similar parameters where all outputs are computable
by constant-size formulas. To do this, we encode the final output gn+1 with additional variables
y2, . . . , yn−1 via

hn+1(x, y) = x1 + x2 − y2

hn+2(x, y) = y2 + x3 − y3

...

h2n−1(x, y) = yn−1 + xn − n.

Kayal’s lower bound on the degree of the annihilator extends to this variation on his example, so we
already have constructions of generators where each output is computable by a formula of constant
size, yet the generator itself hits polynomials of much higher complexity.

1.3 The Ideal Proof System

Not only is the problem of constructing cryptographic hitting set generators interesting in its own
right, but it is also closely tied to open problems in algebraic proof complexity. The central goal of
propositional proof complexity is to understand the NP versus coNP problem via the complexity of
the coNP-complete unsatisfiability problem: given a boolean formula φ, accept φ if and only if φ
is unsatisfiable. The typical setting is to first fix a proof system, and then try to find families of
boolean formulas (φn)n∈N such that any proof πn of the unsatisfiability of φn requires length that is
super-polynomial in n. Numerous proof systems based on different areas of mathematics, including
logic, algebra, and geometry, have been considered.

Most relevant to our work are proof systems based on algebraic reasoning. Without loss of
generality, we may assume that our unsatisfiable boolean formula φ is in 3CNF form. If φ is an
n-variate 3CNF formula with m clauses, there is a translation of φ to a system F of n+m polynomial
equations such that F is satisfiable if and only if φ is satisfiable. This system F consists of the n
boolean axioms x2i − xi = 0, which force the variables xi to be {0, 1}-valued, and for each clause of
the form (x1 ⊕ b1) ∨ (x2 ⊕ b2) ∨ (x3 ⊕ b3), the trivariate equation

(x1 − (1− b1)) (x2 − (1− b2)) (x3 − (1− b3)) = 0.

It is easy to see that any boolean assignment to the x variables satisfies this equation if and only if
the same assignment satisfies the corresponding clause (x1 ⊕ b1) ∨ (x2 ⊕ b2) ∨ (x3 ⊕ b3). Thus, if we
want to prove that φ is unsatisfiable, we can instead try to prove the unsatisfiability of the resulting
system of polynomial equations F .

How does one prove that a system of polynomial equations is unsatisfiable? The answer comes
from Hilbert’s Nullstellensatz. Over an algebraically closed field F, the system of equations

f1(x) = · · · = fm(x) = 0

is unsatisfiable if and only if there are polynomials g1, . . . , gm ∈ F[x1, . . . , xn] such that
m∑
i=1

fi(x) gi(x) = 1.

We can take the polynomials {g1, . . . , gm} to be our proof of unsatisfiability. Our goal, then, is to
understand the complexity of the simplest refutation {g1, . . . , gm} of the system of equations F .
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The complexity of the proof depends on the choice of proof system. The Nullstellensatz proof
system [BIKPP96; BIK+96] measures the length of the proof by the total number of monomials in
the gi. A slightly stronger system is the Polynomial Calculus [Raz98; IPS99], where we are allowed
to write the derivation of 1 from the fi in a line-by-line manner, but we still pay for the number
of monomials written on every line. Much stronger is the Ideal Proof System (IPS), introduced by
Grochow and Pitassi [GP18], which allows us to write the gi succinctly as arithmetic circuits. Given
that refutations in IPS are written as arithmetic circuits, one would hope that techniques for proving
arithmetic circuit lower bounds will eventually lead to lower bounds for the IPS.

This hope has played out successfully in recent years. Forbes, Shpilka, Tzameret, and Wigderson
[FSTW21] introduced two techniques to infer IPS lower bounds from arithmetic circuit lower bounds,
and applied these techniques for restricted circuit classes to conclude unconditional lower bounds.
The first technique, known as the functional lower bound method, has been further refined and
studied by Govindasamy, Hakoniemi, and Tzameret [GHT22] and Hakoniemi, Limaye, and Tzameret
[HLT24]. Here, the hard system of equations F typically consists of boolean axioms together with a
sparse polynomial that corresponds to an instance of subset sum, possibly lifted with an appropriate
gadget.3 This method is capable of proving strong lower bounds; for example, Hakoniemi, Limaye,
and Tzameret [HLT24] proved super-polynomial lower bounds on the size of constant-depth IPS
refutations for such systems of equations. However, current applications of the functional lower bound
method are only able to prove lower bounds against refutations of individual degree O(log log n).
This is to be expected, as functional lower bounds without the individual degree constraint, even
for depth-four arithmetic circuits, would lead to new lower bounds in boolean complexity theory
[FKS16].

The second technique introduced by Forbes, Shpilka, Tzameret, and Wigderson [FSTW21]
is based on hardness of multiples. This method is also capable of proving strong lower bounds:
later work by Andrews and Forbes [AF22] proved super-polynomial lower bounds on the size of
constant-depth IPS refutations for a system of equations related to matrix rank. Unlike the functional
lower bound method, the lower bounds produced from hardness of multiples do not require the IPS
refutation to be of small individual degree. However, the drawback to this method is that in order
to prove a lower bound against IPS certificates computed by C -circuits, there must be at least one
polynomial f in the hard instance F which itself cannot be computed efficiently by C -circuits. This
limitation is inherent to the method, as the lower bound against IPS is derived from circuit lower
bounds for one (or more) of the polynomials in the hard instance F .

Strong conditional lower bounds for IPS are also known. Alekseev, Grigoriev, Hirsch, and
Tzameret [AGHT24] proved super-polynomial lower bounds on the size of constant-free IPS refutations
of the binary value principle, a system of equations that asserts a natural number n given in binary
is negative. Their lower bound assumes the τ -conjecture of Shub and Smale, which asserts that the
straight-line program complexity of computing (a multiple of) the integer n! is bounded from below
by logω(1) n. Santhanam and Tzameret [ST21a] showed that under the assumption VP ̸= VNP, there
is a sequence of 3CNF formulas that require IPS refutations of super-polynomial size. One drawback
of this result is that the sequence of CNF formulas considered by Santhanam and Tzameret [ST21a]
may be satisfiable; if this were the case, then the lower bound becomes trivial, as the soundness of
IPS implies that it cannot refute a system of satisfiable equations.

Despite the success so far in bringing techniques from arithmetic circuit complexity to bear on
IPS, we still seem far from proving unconditional lower bounds for systems of polynomial equations
that encode unsatisfiable 3CNF formulas, even against weak subsystems of IPS. Current applications

3These hard instances are closely related to the previously-discussed example of Kayal [Kay09] that leads to lower
bounds on the degree of annihilating polynomials.
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of the functional lower bound method are limited to proving lower bounds against refutations of low
individual degree, and some formulations of the method provably cannot lead to lower bounds for
boolean instances [HLT24]. The method of lower bounds for multiples can prove unconditional lower
bounds against fragments of IPS with no restrictions on the individual degree of the refutation, but
the method requires the hard instance to contain polynomials of large circuit complexity, which
precludes its application to systems of equations that encode a 3CNF formula. As a step towards
proving IPS lower bounds for such systems, can we prove IPS lower bounds for any system of
equations where each polynomial in the system can be described by an arithmetic formula of constant
size?

1.4 Hard Families of Simple Polynomials from Nullstellensatz Degree Bounds

Just as prior work on annihilating polynomials led to simple constructions of cryptographic hitting
set generators, existing work on lower bounds for Nullstellensatz degree—in particular, examples
demonstrating the tightness of these bounds—easily leads to families of simple polynomials that
are hard for fragments of IPS. Recall that the Nullstellensatz says that if f1 = · · · = fm = 0 is an
unsatisfiable system of equations, then there are polynomials g1, . . . , gm such that

∑m
i=1 figi = 1. Of

particular relevance to our work are degree bounds for the Nullstellensatz: given the polynomials fi,
what is the smallest possible degree of the polynomials gi that witness the identity

∑n
i=1 figi = 1? A

long line of work [Her26; Bro87; CGH88; Kol88; FG90; Som99; KPS01; Jel05] has established various
bounds on the degrees and heights of such polynomials. For example, we know that such polynomials
gi can always be found with degree deg(gi) ⩽ dn, where d = maxi deg(fi) is the maximum degree of
the fi. An example due to Masser and Philippon (see [Bro87]) shows that bounds of this shape are
tight. In particular, if we take

f1(x) = xd1

f2(x) = x1 − xd2
...

fn−1(x) = xn−2 − xdn−1

fn(x) = 1− xn−1x
d−1
n ,

then in any expression
∑n

i=1 figi = 1, the polynomial g1 must satisfy deg(g1) ⩾ dn − dn−1. This
degree lower bound implies similar lower bounds on the size of IPS refutations of the above system
when the refutation is written as an arithmetic formula or arithmetic branching program. The lower
bound follows from the fact that an arithmetic formula or branching program of size s can only
compute polynomials of degree at most s, so no formula or branching program of size less than
dn − dn−1 can compute a refutation of this system.

At first glance, it appears that we have made progress towards IPS lower bounds for refuting
3CNF formulas. The example of Masser and Philippon above gives us a system of polynomial
equations, each of which can be encoded by a constant-size arithmetic formula, that requires large
refutations in powerful subsystems of IPS. Unfortunately, this line of reasoning cannot lead to IPS
lower bounds for systems of polynomials that encode 3CNF formulas. An unsatisfiable 3CNF formula
on n variables always admits a degree-O(n) refutation [GP18], so degree bounds will not result in
new lower bounds on the complexity of refuting 3CNF formulas. To make progress towards proving
lower bounds for IPS refutations of 3CNF formulas, we need techniques rooted in finer complexity
measures than degree.
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1.5 Our Contributions

We now describe our results. As we have seen in Sections 1.2 and 1.4, prior work on degree bounds
can be used to construct cryptographic hitting set generators and hard instances for the Ideal
Proof System. The main contribution of our work is a new construction of cryptographic hitting
set generators whose correctness is based on arithmetic circuit lower bounds, not degree lower
bounds. As a corollary, we will obtain families of simple polynomials that are hard to refute in
subsystems of the the Geometric Ideal Proof System, itself a restricted form of the Ideal Proof
System [GP18, Appendix B]. Although the theorem statements below already follow from prior
work, the constructions appearing in our proofs do not, and we believe there is value in developing
techniques in algebraic pseudorandomness and proof complexity that go beyond degree lower bounds.

Our first result is an explicit construction of a low-complexity hitting set generator that hits
VAC0, the class of polynomials computed by constant-depth circuits of polynomial size. Each output
of our generator is computable in VNC0, i.e., can be computed by an arithmetic formula of constant
size.

Theorem 1.1 (see Theorem 4.3). Let F be a field of characteristic zero.4 There is a VNC0-computable
hitting set generator with stretch n0.99 that hits VAC0.

Under strong but reasonable hardness assumptions, the same techniques yield VNC0-computable
hitting set generators that hit larger circuit classes. Our first conditional construction yields a
VNC0-computable generator that hits VF, which corresponds to families of polynomials that are
computable by polynomial-size formulas. The correctness of this construction relies on the assumption
that the border formula complexity of the determinant is super-polynomial.

Theorem 1.2 (see Theorem 4.6). Let F be a field of characteristic zero. If the border formula
complexity of the n× n determinant is nω(1), then there is a VNC0-computable hitting set generator
that hits VF.

Although it is commonly conjectured that the formula complexity of the determinant is nω(1), it
is less clear whether we should expect the same lower bound to hold for border formulas, as border
computation is poorly understood even in very weak settings. Despite this gap in our understanding,
we find it conceivable that the determinant does require border formulas of super-polynomial size.
The reason for this is that recent progress on arithmetic circuit lower bounds [LST21; TLS22; KS22;
KS23; FLST24; For24] has relied on the use of complexity measures based on matrix rank. Because
matrix rank is lower semi-continuous, these lower bounds often directly imply lower bounds on border
complexity.5 It is unclear if these methods will prove lower bounds against arithmetic formulas in
the near future, and if they do, the hard polynomial may not be the determinant. However, in light
of the recent success of rank-based methods in proving lower bounds, coupled with the fact that
many of these lower bounds apply to the determinant, it is not out of the question that when we
manage to prove lower bounds against arithmetic formulas, the methods used will be rank-based
and will apply to the determinant. In that case, we will have corresponding lower bounds on the
border formula complexity of the determinant.

Our second conditional construction produces a VNC0-computable generator that hits polynomials
that are computable by polynomial-size arithmetic branching programs, a class commonly known as
VBP. This result assumes there is a family of polynomials that can be computed by polynomial-size
arithmetic circuits but not by polynomial-size arithmetic branching programs.

4For technical reasons, we can only prove that our generator is pseudorandom over fields of characteristic zero or
sufficiently large characteristic. See Section 4 for an explanation of the underlying issue.

5See e.g. [AF22, Section 6.1] for an explanation of how the lower bound of Limaye, Srinivasan, and Tavenas [LST21]
implies a lower bound on border complexity.
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Theorem 1.3 (see Theorem 4.9). Let F be a field of characteristic zero. If there is a family of
polynomials in VP that require arithmetic branching programs of super-polynomial size, then there is
a VNC0-computable hitting set generator that hits VBP.

As a corollary of our generator constructions, we obtain new lower bounds for subsystems of the
Geometric Ideal Proof System of Grochow and Pitassi [GP18, Appendix B], a restricted form of
the Ideal Proof System. An easy observation, already made by Grochow, Kumar, Saks, and Saraf
[GKSS17], shows that hitting set generators immediately yield hard instances for the Geometric
Ideal Proof System. The complexity of the generator upper bounds the complexity of the equations
in the hard instance, and the hitting property of the generator is used to infer the lower bound
against Geometric IPS. Because we construct VNC0-computable generators against VAC0, we obtain
a system of equations where every equation can be written as an arithmetic formula of constant size,
but no Geometric IPS refutation can be computed by a circuit of constant depth and polynomial
size.

Theorem 1.4 (see Theorem 5.2). Let F be a field of characteristic zero. There is an explicit system
of polynomial equations Fn such that (1) each equation in Fn depends on at most 3 variables, (2)
the system Fn can be refuted by Geometric IPS, and (3) any Geometric IPS refutation of Fn cannot
be computed by a circuit of constant depth and polynomial size.

We also prove conditional lower bounds against Geometric IPS refutations computed by arithmetic
formulas (Theorem 5.3) and arithmetic branching programs (Theorem 5.4). The conditions used to
prove these lower bounds are the same ones used to construct VNC0-computable generators that hit
arithmetic formulas and arithmetic branching programs, respectively.

Although our hard instances do not correspond to encodings of 3CNF formulas, we view these
results as progress towards proving lower bounds for refutations of unsatisfiable boolean formulas.
As mentioned in Section 1.4, unsatisfiable 3CNF formulas on n variables can always be refuted in
degree O(n), so any method of proving lower bounds on the complexity of refuting 3CNF’s must
tolerate the existence of low-degree refutations. In all of our lower bounds for Geometric IPS, the
hard systems of equations admit refutations of degree nO(1). To the best of our knowledge, this is
the first example of a system of equations where each equation can be expressed by an arithmetic
formula of constant size, the system admits low-degree refutations, and the system is provably hard
to refute in a nontrivial subsystem of IPS.

1.6 Our Techniques

We obtain our VNC0-computable hitting set generators through a transformation that takes a known
hitting set generator G and compiles it into a related generator G′ that has much lower complexity,
yet retains the hitting property of G. A similar high-level approach was taken by Applebaum, Ishai,
and Kushilevitz [AIK06] to obtain NC0-computable one-way functions and pseudorandom generators
in the boolean setting. There are some superficial similarities between our work and theirs, since
both works obtain the new generator G′ through an encoding of the computation of G.

However, one difference between our work and [AIK06] is the set of requirements placed on
the high-complexity generator G. Applebaum, Ishai, and Kushilevitz [AIK06] require G to be of
sufficiently low complexity (say, NC1-computable), but are agnostic to the particular choice of the
generator G. In contrast, our work does not place a requirement on the complexity of the starting
generator, but we are only able to handle generators G that are of the specific form

G : (x1, . . . , xn) 7→ (x1, . . . , xn, f(x)),
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where f(x) is a polynomial.
We require the starting generator to be of this form because it provides sufficient algebraic

structure to completely analyze the resulting low-complexity generator G′. To every generator
G : Fℓ → Fn, one can associate its annihilator ideal Ann(G), the set of polynomials h ∈ F[z1, . . . , zn]
such that h ◦ G = 0, i.e., the composition of h and G results in the identically zero polynomial. To
prove that a generator G hits a circuit class C , it is both necessary and sufficient to show that every
nonzero polynomial in the annihilator Ann(G) cannot be computed within the resource bounds of C .

For some generators, we can completely characterize the ideal Ann(G), which a useful first step
towards proving lower bounds for Ann(G). In the case where G is of the form G(x) = (x1, . . . , xn, f(x)),
it is easy to show that the annihilator ideal is given by

Ann(G) = ⟨zn+1 − f(z1, . . . , zn)⟩ ⊆ F[z1, . . . , zn+1].

That is, every annihilator of G is a multiple of the polynomial zn+1−f(z1, . . . , zn). Because this ideal
is generated by a single polynomial (i.e., is a principal ideal), we can leverage existing techniques on
polynomial factorization to prove lower bounds for Ann(G). The argument proceeds by contradiction:
if there is a small C -circuit that computes an element of Ann(G), and if C -circuits are polynomially-
closed under factorization, then there is a small C -circuit for zn+1 − f(z1, . . . , zn). Thus, if the
circuit class C is closed under factorization (as are VP [Kal87] and VBP [ST21b]), then to prove
lower bounds for Ann(G), it suffices to prove a lower bound on f(z1, . . . , zn). This is a much easier
task, since we only have to reason about a single polynomial f and not an arbitrary multiple of
f . In some cases, the circuit class C is not known to be polynomially-closed under factorization.
Despite this, we can still make use of results that show for a specific choice of f , lower bounds on
the C -circuit complexity of f imply lower bounds for all multiples of f .

So far, we have seen that it is possible to completely understand generators of the form
G(x1, . . . , xn) = (x1, . . . , xn, f(x)). On its own, this generator has no hope of producing a gen-
erator that is of lower complexity than the circuits it hits, since there is always an annihilator of
complexity comparable to f .

To obtain a generator of lower complexity, we replace the single output f(x) by a sequence of
s+ 1 outputs that encode a size-s circuit Φ that computes f(x).6 For each internal gate of Φ, we
introduce a fresh variable yi, and we include the polynomial

yi − yj ⊙ yk

in the output of the generator, where ⊙ ∈ {+,×} is the operation labeling the ith gate and the
children of the ith gate are gates j and k.7 We also include ys as an output so that the generator
stretches its n+ s inputs to n+ s+1 outputs. It is clear from the definition that each output of this
new generator G′ can be computed by an arithmetic formula of constant size, but it is not obvious
why G′ preserves any pseudorandom properties the original generator G had.

To show that G′ is pseudorandom, we follow the approach suggested above: we determine the
annihilator ideal Ann(G′) and subsequently prove lower bounds on the complexity of all nonzero
polynomials in Ann(G′). As we saw, the annihilator ideal Ann(G) of the starting generator was
generated by zn+1 − f(z1, . . . , zn), so we could infer lower bounds on Ann(G) from lower bounds for
f and its multiples. For G′, the annihilator ideal Ann(G′) is again principal and is generated by a
polynomial of the form

h(z) = zn+s+1 − f(z1, . . . , zn) + g(z),

6This transformation is similar to the reduction of Circuit-SAT to 3CNF-SAT and was recently used by Grochow
[Gro23] to study the PIT instances that arise from verification of IPS refutations.

7If the children of the ith gate are not internal gates, we use a different polynomial, but this is a technical point
that does not meaningfully impact the overview here. See Definition 3.1 for the precise definition.
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where g is a structured polynomial that should be thought of as an error term for the purposes of
this overview. To prove that G′ is pseudorandom, it suffices to prove lower bounds on the complexity
of multiples of h. Because h is close to f , one could hope that lower bounds for multiples of f imply
comparable lower bounds for multiples of h. This is precisely the route we follow to show that G′ is
pseudorandom. By instantiating the construction of G′ with a polynomial f whose multiples are
hard for a circuit class C (possibly under hardness assumptions), we obtain a generator that is
computable in VNC0 yet hits the much larger class C .

We encourage readers who want to see a concrete example of this new generator G′ to skip
ahead to Example 3.3. There, we describe and analyze the generator G′ when the polynomial f
is taken to be f(x1, x2) = x21 − x22. This polynomial is too simple to yield a generator with useful
pseudorandom properties, but its simplicity allows us to explicitly write down the resulting generator
and its annihilator ideal.

1.7 Organization

The rest of this paper is organized as follows. We review preliminary material in Section 2. We
then begin in Section 3, where we describe a general construction of VNC0-computable hitting set
generators. Section 4 gives three concrete instantiations of this generator construction. Section 5 uses
our generators to obtain lower bounds for the Geometric Ideal Proof System. Finally, we conclude
in Section 6 with some open questions.

2 Preliminaries

For a natural number n ∈ N, we write [n] := {1, 2, . . . , n}. We abbreviate a vector of variables
(x1, . . . , xn) as x. For a field F, we write F[x] and F(x) for the polynomial ring and field of
rational functions, respectively, over F in the variables x1, . . . , xn. A polynomial map G is a
tuple of polynomials (g1(x), . . . , gn(x)) ∈ F[x1, . . . , xℓ]n, which defines a map G : Fℓ → Fn via
G(α) = (g1(α), . . . , gn(α)). We often abuse notation and refer to the induced map G : Fℓ → Fn

as a polynomial map; the two objects are equivalent over infinite fields, but when F is finite,
different tuples of polynomials may induce the same map Fℓ → Fn. For a collection of polynomials
f1, . . . , fm ∈ F[x], we write ⟨f1, . . . , fm⟩ for the ideal of F[x] generated by f1, . . . , fm.

2.1 Arithmetic Circuit Complexity

This subsection recalls basic notions of arithmetic circuit complexity. For more on this topic, we
refer the reader to the surveys of Shpilka and Yehudayoff [SY10] and Saptharishi [Sap].

Definition 2.1 (Arithmetic circuits). Let F be a field and let F[x] be the polynomial ring over
F in n variables. An arithmetic circuit Φ is a directed acyclic graph equipped with the following
data. The vertices of in-degree zero are called input gates and are labeled by either a variable xi or
a constant α ∈ F. Vertices of positive in-degree are called internal gates and are labeled by either
addition or multiplication. Each vertex v of Φ computes a polynomial fv(x) ∈ F[x] in the natural
way. If a vertex v has out-degree zero, we call v an output gate and say that the circuit Φ computes
fv(x).

We measure the size of Φ by the number of internal gates in the circuit. The depth of a circuit is
the length of the longest path from any input gate to any output gate. ♢

We will sometimes insist on working with circuits whose internal gates have fan-in two. A circuit
with internal gates of unbounded fan-in can be simulated by a circuit where every internal gate has
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fan-in two by replacing each gate of large fan-in with a binary tree of fan-in two gates. This has the
potential to increase the size of the circuit from s to O(s2), which will be negligible for our purposes.

Next, we define arithmetic formulas, which are arithmetic circuits whose the underlying graph is
a tree.

Definition 2.2 (Arithmetic formulas). An arithmetic formula is an arithmetic circuit whose
underlying graph is a tree. Equivalently, an arithmetic formula is an arithmetic circuit in which
every gate has out-degree at most one. ♢

We also need the notion of arithmetic branching programs, whose expressive power lies somewhere
between that of formulas and circuits.

Definition 2.3 (Arithmetic branching programs). An arithmetic branching program is a layered
directed acyclic graph G = (V,E) with a single source vertex s and a single sink vertex t. The fact
that G is layered means that there is a partition V = V0 ⊔V1 ⊔ · · · ⊔Vd such that V0 = {s}, Vd = {t},
and every edge of G is between vertices in Vi−1 and Vi for some i ∈ [d]. Each edge e of G is labeled
by an affine linear polynomial ℓe(x) ∈ F[x]. The branching program computes the polynomial∑

P :s⇝t

∏
e∈P

ℓe(x),

where the sum is over all (s, t)-paths in G. We measure the size of the branching program by |V |,
the total number of vertices. ♢

Having defined our model of computation, we now define the objects we are interested in
computing. These are families of polynomials whose degree is polynomially-bounded; such families
of polynomials are called p-families.

Definition 2.4 (p-families). Let F be a field and let f = (fn)n∈N be a sequence of polynomials with
coefficients in F. We say that f is a p-family if deg(fn) is polynomially-bounded as a function of
n. ♢

We now define the complexity classes we will be interested in throughout this work. Although
the definitions of these classes depend on the underlying field F, we suppress this dependence for the
sake of readability. The field F will always be clear from context.

Definition 2.5 (Complexity classes). Let F be a field.

1. The class VP consists of all p-families (fn)n∈N over F such that fn can be computed by an
arithmetic circuit of size nO(1).

2. The class VBP consists of all p-families (fn)n∈N over F such that fn can be computed by an
arithmetic branching program of size nO(1).

3. The class VF consists of all p-families (fn)n∈N over F such that fn can be computed by an
arithmetic formula of size nO(1).

4. The class VAC0 consists of all p-families (fn)n∈N over F such that fn can be computed by an
arithmetic circuit of size nO(1) and depth O(1).

5. The class VNC0 consists of all p-families (fn)n∈N over F such that fn can be computed by an
arithmetic circuit of size O(1). ♢
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In addition to the standard notion of computing a polynomial via an arithmetic circuit, we
will occasionally need to refer to border complexity, which corresponds to a notion of approximate
computation using arithmetic circuits.

Definition 2.6 (Border complexity). Let F be a field an ε be an indeterminate. Let f(x) ∈ F[x]
be a polynomial. We say that a circuit Φ over F(ε) approximately computes f(x) if Φ computes a
polynomial of the form

f(x) + ε · g(x, ε),

where g(x, ε) ∈ F[x, ε] is a polynomial in x1, . . . , xn and ε. We will abbreviate this by saying that Φ
computes f(x) +O(ε). If Φ has size s, we say that the border complexity of f is bounded by s. ♢

Over fields of characteristic zero, such as the complex numbers, one should interpret a circuit Φ
that approximately computes f as a circuit that computes f in the limit as ε tends towards zero. A
potentially more general definition of approximate computation over C would be to consider a sequence
of circuits (Φm)m∈N that computes a sequence of polynomials (fm)m∈N such that f = limm→∞ fm,
without requiring a uniform description of the circuits (Φm)m∈N as in Definition 2.6. However, a
result of Alder [Ald84] shows that these two notions of computation coincide over C, so we may
work with Definition 2.6 without any loss in generality.

An alternate description of the limit-based definition is that the target polynomial f lies in the
Euclidean closure of the set of polynomials of complexity s. By replacing the Euclidean topology with
the Zariski topology, one obtains a notion of approximate computation that extends to algebraically
closed fields of arbitrary characteristic. As in the preceding paragraph, Alder [Ald84] showed that
this notion of approximate computation agrees with Definition 2.6.

Naturally, one can define complexity classes in terms of border complexity.

Definition 2.7 (Border complexity classes). Let F be a field and let f = (fn)n∈N be a p-family.
For a complexity class C , we say that f ∈ C if there is a p-family g = (gn)n∈N over F(ε) such that
g ∈ C and for all n, we have gn(x) = fn(x) +O(ε). ♢

For example, a p-family (fn)n∈N is in VP if there is a sequence of circuits of size nO(1) over F(ε)
that compute fn +O(ε).

2.2 Polynomial Identity Testing

Many deterministic algorithms for polynomial identity testing are obtained by explicitly constructing
a hitting set generator. A hitting set generator, defined below, is a pseudorandom object that plays a
role analogous to pseudorandom (and hitting set) generators in boolean derandomization, stretching
a short seed of truly random field elements into a longer string of pseudorandom field elements.

Definition 2.8 (Hitting set generator). Let F be a field and let C and D be classes of p-families over F.
Let G = (Gn : Fℓ(n) → Fn)n∈N be a sequence of polynomial maps, where Gn = (gn,1, . . . , gn,n) ∈ F[y]n.
We say that G is a D-computable hitting set generator for C if the following conditions hold.

1. Every p-family of the form g = (gn,in)n∈N is an element of D .

2. For every p-family f = (fn)n∈N ∈ C and for all sufficiently large n, we have (fn ◦Gm(n))(y) = 0
if and only if fn(x) = 0, where m(n) is the number of variables appearing in the polynomial f .

The seed length of G is ℓ(n). The stretch of G is n−ℓ(n). The degree of G is d(n) := maxi∈[n] deg(gn,i).
♢
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Remark 2.9 (Padding). In Definition 2.8, we adopt the convention that the nth map in the sequence
(Gn : Fℓ(n) → Fn)n∈N has output length n largely as a matter of simplicity. When we construct
generators later in Section 4, our constructions will naturally lead to sequences of maps where the
nth map has output length m(n) for a polynomially-bounded function m(n). To obtain a generator
with output length m(n)+q < m(n+1), we pad the input and output of the generator with q−m(n)
fresh variables. This preserves the VNC0-computability of the generator and does not impact the
pseudorandom properties of the generator. ♢

For the sake of readability, we may refer to a single polynomial map G : Fℓ → Fn as a hitting set
generator. This is done with the understanding that there is an underlying sequence of polynomial
maps (Gn : Fℓ(n) → Fn)n∈N and we have implicitly fixed a choice of n.

An explicit construction of a hitting set generator G for a circuit class C immediately yields
an algorithm to test C -circuits: given a polynomial f ∈ C , test the composed polynomial f ◦ G by
brute force. By the Schwartz–Zippel lemma, testing f ◦ G can be done with (deg(f) deg(G) + 1)ℓ

evaluations. If ℓ is small compared to n and deg(G) is not large, this yields an improvement over the
brute-force identity testing algorithm, which evaluates f at (deg(f) + 1)n points.

One means of studying the pseudorandom properties of a candidate generator G is by studying
its annihilator ideal Ann(G), which we now define.

Definition 2.10 (Annihilator ideal). Let G : Fℓ → Fn be a polynomial map. The annihilator ideal
of G, denoted by Ann(G), is the set of all polynomials that vanish when composed with G. Formally,

Ann(G) := {f ∈ F[x1, . . . , xn] : f(g1(y), . . . , gn(y)) = 0}. ♢

To understand the relation between the pseudorandom properties of a candidate generator G
and its annihilator ideal Ann(G), suppose we want to show that G hits some circuit class C . The
statement “G hits C ” is equivalent to the containment

C ∩Ann(G) ⊆ {0}.

This containment should be interpreted as saying that every nonzero polynomial in Ann(G) is too
complex to be computed within the resource bounds of the circuit class C . Thus, to prove that a
candidate generator G hits a circuit class C , one can instead prove lower bounds on every nonzero
polynomial in Ann(G). This is the route we will take to prove the correctness of our generator.

We formalize the preceding discussion in the following lemma.

Lemma 2.11. Let F be a field and let C be a class of p-families over F. Let G = (Gn : Fℓ(n) → Fn)n∈N
be a sequence of polynomials maps. Then G is a hitting set generator for C if and only if for every
p-family f = (fn)n∈N where fn ∈ Ann(Gn) \ {0}, we have f /∈ C .

2.3 The Ideal Proof System

In this subsection, we recall the Ideal Proof System (IPS) of Grochow and Pitassi [GP18]. This
is a proof system that uses algebraic reasoning to prove that systems of polynomial equations do
not admit a solution. In propositional proof complexity, the boolean axioms x2i − xi = 0 are often
incorporated into the definition of a proof system, as they naturally appear when refuting encodings
of unsatisfiable boolean formulas. We will consider the IPS more generally as a proof system for
arbitrary systems of polynomial equations, and so we adopt a definition that does not include the
boolean axioms by default.
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Definition 2.12 (Ideal Proof System). Let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials such that the
system of equations f1 = · · · = fm = 0 has no solution over F, the algebraic closure of F. An Ideal
Proof System (IPS) refutation of (f1, . . . , fm) is a polynomial r ∈ F[x1, . . . , xn, z1, . . . , zm] such that

1. r(x1, . . . , xn, f1(x), . . . , fm(x)) = 1, and

2. r(x1, . . . , xn, 0, . . . , 0) = 0. ♢

For our purposes, we will be interested in the Geometric Ideal Proof System [GP18, Appendix
B], a natural subsystem of the IPS.

Definition 2.13 (Geometric Ideal Proof System). Let f1, . . . , fm ∈ F[x1, . . . , xn] be polynomials
such that the system of equations f1 = · · · = fm = 0 has no solution over F, the algebraic closure of
F. A Geometric Ideal Proof System refutation of (f1, . . . , fm) is a polynomial r ∈ F[z1, . . . , zm] such
that

1. r(f1(x), . . . , fm(x)) = 0, and

2. r(0, . . . , 0) = 1. ♢

Geometric IPS refutations have a natural interpretation from the viewpoint of algebraic geometry.
Consider the polynomial map f : Fn → Fm given by (x1, . . . , xn) 7→ (f1(x), . . . , fm(x)). Suppose
r ∈ F[z1, . . . , zm] is a Geometric IPS refutation of f . The condition r(f1(x), . . . , fm(x)) = 0 implies
the image of the map f lies in the variety defined by r, denoted V(r), which is the set of all points
α ∈ Fm such that r(α) = 0.

On the other hand, the second condition r(0, . . . , 0) = 1 implies that (0, . . . , 0) is not in the
variety V(r) defined by r. Thus, the hypersurface V(r) serves as a geometric certificate that the
point (0, . . . , 0) lies outside the image im(f) of the map f . One can go further, noting that V(r) is a
certificate that (0, . . . , 0) lies outside the closure of im(f) in the Zariski topology, but we will not
dwell on this.

For a polynomial map f , one can view a Geometric IPS refutation r as an annihilator of f that is
additionally required to have a nonzero constant term. The definition of Geometric IPS specifies that
the constant term is 1, but the precise constant is not important. We further explore the connection
between annihilators and Geometric IPS refutations in Section 5.

Our focus will be on restricted subsystems of IPS and Geometric IPS. For a complexity class C ,
we use C -IPS to refer to IPS with the additional restriction that the refutations are computable in
C , and likewise for Geometric C -IPS. The formal definition appears below.

Definition 2.14 (C -IPS, Geometric C -IPS). Let F = (Fn)n∈N be a family of systems of polynomial
equations. Let C be a complexity class. We say that F can be refuted by C -IPS if there is a p-family
(rn)n∈N ∈ C such that rn is an IPS refutation of Fn. If rn is a Geometric IPS refutation of Fn, we
say that F can be refuted by Geometric C -IPS. ♢

As mentioned in the introduction, we will be particularly interested in proving lower bounds
for C -IPS where the hard system of polynomial equations can be computed in some weaker class
D ⊊ C . We formalize this with the notion of D-equations below.

Definition 2.15 (D-equations). Let F = (Fn)n∈N be a family of systems of polynomial equations,
where

Fn = {fn,1(x) = 0, . . . , fn,m(n)(x) = 0}.

Let D be a complexity class. We say that F is a family of D-equations if every p-family of the form
(fn,in)n∈N is in D . ♢
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2.4 The Jacobian Criterion

We will need to compute the transcendence degree of sets of polynomials, which we can do over
fields of characteristic zero using the Jacobian Criterion. To state the Jacobian Criterion, we first
need to define the Jacobian of a set of polynomials.

Definition 2.16 (Jacobian). Let f1, . . . , fm ∈ F[x1, . . . , xn]. The Jacobian of f1, . . . , fm, denoted
Jac(f1, . . . , fm), is the m× n matrix whose (i, j) entry is given by

Jac(f1, . . . , fm)i,j :=
∂fi
∂xj

. ♢

We now state the Jacobian Criterion, which gives a precise characterization of transcendence
degree over fields of characteristic zero.

Theorem 2.17 (Jacobian Criterion [Jac41], see [ER93]). Let F be a field of characteristic zero. Let
f1, . . . , fm ∈ F[x1, . . . , xn]. Then the transcendence degree of {f1, . . . , fm} satisfies

trdegF(f1, . . . , fm) = rankF(x) Jac(f1, . . . , fm).

As the following proposition shows, the rank of the Jacobian still provides a lower bound on the
transcendence degree of a set of polynomials when working over a field of positive characteristic.

Proposition 2.18 (see [DGW09, Section 3]). Let F be an arbitrary field. Let f1, . . . , fm ∈
F[x1, . . . , xn]. Then the transcendence degree of {f1, . . . , fm} satisfies

trdegF(f1, . . . , fm) ⩾ rankF(x) Jac(f1, . . . , fm).

2.5 The Resultant

We now define the resultant, a useful tool in polynomial factorization and elimination theory.

Definition 2.19 (Resultant). Let F be a field. Let f(x) =
∑n

i=0 fix
i and g(x) =

∑m
i=0 gix

i be
univariate polynomials in F[x] of degrees n and m, respectively. The resultant of f and g, denoted
by res(f, g), is given by

res(f, g) := det



fn gm
fn−1 fn gm−1 gm
...

...
. . .

...
...

. . .
...

... fn g1
... gm

f0
... fn−1 g0

...
...

f0
... g0

...
. . .

...
. . .

...
f0 g0


,

where the matrix above is an (n+m)× (n+m) matrix whose first m columns are formed from the
coefficients of f and whose last n columns are formed from the coefficients of g. ♢

As the following lemma shows, the resultant can be used to check if two polynomials share a
common factor.
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Lemma 2.20 (see, e.g., [vzGG13, Corollary 6.17]). Let F be a field and let f, g ∈ F[x]. Then
res(f, g) = 0 if and only if f and g have a nontrivial common factor in F[x].

We will also make use of resultants of multivariate polynomials. If f, g ∈ F[x1, . . . , xn, y] are
multivariate polynomials, we may regard them instead as univariate polynomials in y with coefficients
that are themselves polynomials in x1, . . . , xn. We write resy(f(x, y), g(x, y)) for the corresponding
resultant, which is a polynomial in x1, . . . , xn. The resultant resy(f, g) can be used to test if f and
g share a common factor. However, this resultant only detects common factors that depend on the
variable y.

Lemma 2.21 (see, e.g., [vzGG13, Corollary 6.20]). Let F be a field and let f, g ∈ F[x1, . . . , xn, y].
Then resy(f, g) = 0 if and only if f and g have a nontrivial common factor h ∈ F[x1, . . . , xn, y] that
depends on the variable y.

Although it is immediate from the definition that resy(f, g) does not depend on the variable y,
the following proposition says that the resultant eliminates y from f and g in a structured manner.

Proposition 2.22 (see, e.g., [vzGG13, Corollary 6.21]). Let F be a field and let f, g ∈ F[x1, . . . , xn, y].
Then the resultant resy(f(x, y), g(x, y)) is an element of the elimination ideal ⟨f, g⟩ ∩ F[x1, . . . , xn].

3 A VNC0-Computable Generator

In this section, we describe and analyze a construction of a VNC0-computable hitting set generator
G. The generator G is defined using an arithmetic circuit Φ that computes a polynomial f(x). We
will obtain a complete description of the annihilator ideal Ann(G): the ideal Ann(G) is principal and
is generated by a polynomial that is closely related to the polynomial f(x) used to define the map G.
This structure allows us to infer pseudorandom properties of G from hardness of multiples of f(x).

3.1 Local Encodings of Circuits

We begin by describing the construction of our generator.

Definition 3.1 (Local encoding). Let Φ be an n-variate arithmetic circuit of fan-in two and size s.
Let α ∈ Fn and let β ∈ F. The local encoding of Φ(α) = β is the polynomial map G : Fn+s → Fn+s+1

defined by
G(x1, . . . , xn, y1, . . . , ys) := (Ginput(x, y),Ginternal(x, y),Goutput(x, y)),

where each of the polynomial maps Ginput, Ginternal, and Goutput are defined below.

1. The polynomial map Ginput : Fn+s → Fn is given by

Ginput(x, y) := (x1 − α1, . . . , xn − αn).

2. The map Ginternal : Fn+s → Fs is defined as follows. Let V be the set of gates of Φ. Let
v1, . . . , vs be a topological ordering of the internal gates of Φ, where vs is the output gate of Φ.
Define the function L : V → F ∪ {x1, . . . , xn, y1, . . . , ys} via

L(v) :=


γ if v is an input gate labeled by a constant γ ∈ F,
xi if v is an input gate labeled by the variable xi,
yi if v is the ith internal gate in topological order.

The ith output of Ginternal is defined in terms of the ith internal gate vi and its children u and
w.
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x1 x2 −1

× v1

+v2 + v3

×v4

x21 − x22

Figure 1: An arithmetic circuit computing the polynomial x21 − x22.

• If vi is an addition gate, then the ith output of Ginternal is the polynomial L(vi)− (L(u) +
L(w)).

• If vi is a product gate, then the ith output of Ginternal is the polynomial L(vi)−L(u)L(w).

3. The polynomial map Goutput : Fn+s → F is given by

Goutput(x, y) := ys − β. ♢

The name “local encoding” arises from the fact that the local encoding G of Φ(α) = β corresponds
to a system of polynomial equations that is satisfiable if and only if the circuit Φ outputs β when
evaluated at α. The corresponding system of polynomial equations is G(x, y) = (0, . . . , 0). The first
n equations Ginput(x, y) = (0, . . . , 0) ensure that the input to the circuit Φ is the point α. The next
s equations Ginternal(x, y) = (0, . . . , 0) enforce that for each i ∈ [s], the value of the variable yi equals
the value of the ith internal gate when Φ is evaluated at α. Finally, the equation Goutput(x, y) = 0
expresses that the output gate of Φ evaluates to β.

The following lemma describes the parameters of a local encoding, which follow immediately
from Definition 3.1.

Lemma 3.2. Let Φ be an n-variate arithmetic circuit of size s and fan-in two, and let α ∈ Fn and
β ∈ F. Let G : Fn+s → Fn+s+1 be the local encoding of Φ(α) = β. Then the following hold.

1. The seed length of G is n+ s and the stretch of G is 1.

2. The degree of G is 2.

3. Every output of G can be computed by an arithmetic formula of size 2.

In the subsections to come, we determine the annihilator ideals of local encodings and use this to
infer pseudorandom properties of local encodings when the circuit Φ computes a sufficiently-hard
polynomial. Before moving on to these general results, we first work out a small, concrete example
to build intuition for how annihilators of local encodings behave.

Example 3.3. Let Φ be the arithmetic circuit depicted in Figure 1 that computes the polynomial
x21 − x22. The internal gates of Φ are labeled as v1, v2, v3, and v4, corresponding to a topological
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ordering of the internal gates. For α1, α2, β ∈ F, the local encoding of Φ(α1, α2) = β is the polynomial
map G : F6 → F7 given by

G(x1, x2, y1, y2, y3, y4) = (x1 − α1, x2 − α2, y1 + x2, y2 − x1 − x2, y3 − x1 − y1, y4 − y2y3, y4 − β).

What do the annihilators of G look like? One annihilator can be constructed by writing y4 as a
polynomial combination of the first 6 outputs of G and then taking the difference of this polynomial
and z7 + β. To do this, we iteratively find polynomials hi ∈ F[z1, . . . , z7] so that (hi ◦ G)(x, y) = yi.
The desired polynomials h1, h2, h3, and h4 are given by

h1(z) = z3 − (z2 + α2)

h2(z) = z4 + (z1 + α1) + (z2 + α2)

h3(z) = z5 + (z1 + α1) + h1(z)

h4(z) = z6 + h2(z)h3(z).

Because (h4 ◦ G)(x, y) = y4, it follows that

h(z) := h4(z)− (z7 + β)

is a nonzero annihilator of G. Because Ann(G) is an ideal, every multiple of h is also an annihilator of
G. Using computer software, such as Macaulay2, one can verify that these are the only annihilators
of G: the ideal Ann(G) is precisely the principal ideal generated by h.

To prove that local encodings are pseudorandom, we need to understand the complexity of their
annihilators. As a first step towards this, let’s understand how the complexity of h relates to the
complexity of x21 − x22, the polynomial computed by Φ. Expanding out h(z) as

h(z) = z21 − z22 + z1z3 + z2z3 + z1z4 − z2z4 + z3z4 + z1z5 + z2z5 + z4z5 + 2α1z1 − 2α2z2

+ (α1 + α2)z3 + (α1 − α2)z4 + (α1 + α2)z5 + z6 − z7 + α2
1 − α2

2 − β,

we rewrite h(z) as
h(z) =

(
(z1 + α1)

2 − (z2 + α2)
2
)
+ g(z)− z7 − β,

where

g(z) := z1z3 + z2z3 + z1z4 − z2z4 + z3z4 + z1z5 + z2z5 + z4z5

+ (α1 + α2)z3 + (α1 − α2)z4 + (α1 + α2)z5 + z6.

Importantly, the polynomial g is an element of the ideal ⟨z3, z4, z5, z6⟩ ⊆ F[z]. In other words, every
monomial of g is divisible by one of the variables z3, z4, z5, or z6. By setting z3 = · · · = z7 = 0,
we see that h projects to

(
(z1 + α)2 − (z2 + α2)

2
)
− β. Applying the change of variables (z1, z2) 7→

(z1−α1, z2−α2), this projection of h becomes
(
z21 − z22

)
−β. Adding β yields z21−z22 , the polynomial

computed by the circuit Φ.
By zeroing out some variables, shifting other variables by a constant, and adding an appropriate

constant, the generator h is transformed to z21 − z22 , the polynomial that the circuit Φ computes.
This transformation of h has low complexity, so a small circuit that computes h can be used to
compute z21 − z22 with similar complexity. In the contrapositive, a lower bound on the complexity of
z21 − z22 implies a comparable lower bound on h. This reduction is not particularly useful for the
specific example at hand, as the polynomial z21 − z22 is easy to compute.

This example illustrates some features of the general case. The ideal Ann(G) is always principal
(Lemma 3.4) and is generated by a polynomial with the same structure as h above (Proposition 3.6).
Using this structure, we can prove lower bounds on the complexity of h and its multiples by
appealing to lower bounds on the complexity of the polynomial computed by Φ and its multiples
(Lemma 3.7). ♢
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3.2 Annihilators of Local Encodings

Having defined our candidate generator G as the local encoding of Φ(α) = β for an arithmetic circuit
Φ, we now proceed to analyze its annihilator ideal Ann(G). Our ultimate goal is to prove lower
bounds on the complexity of every nonzero polynomial in Ann(G), as this equates (via Lemma 2.11)
to proving that G hits some circuit class. To do this, we first need to understand what the polynomials
in Ann(G) look like.

We begin by showing that Ann(G) is a nonzero principal ideal. This means that there is a single
polynomial h(z) such that every element of Ann(G) is a multiple of h. This makes the task of proving
lower bounds for annihilators much easier, as we only have to reason about multiples of a single
polynomial.

The following lemma is essentially due to Kayal [Kay09, Lemma 7]. We cannot directly apply
[Kay09, Lemma 7], as the polynomials in a local encoding do not necessarily fit the hypothesis of
the lemma as it appears in Kayal’s work. However, inspecting the proof, it is clear that Kayal’s
argument applies to our setting. We include a (nearly identical) proof for the sake of completeness.

Lemma 3.4. Let Φ be an n-variate arithmetic circuit of size s and let G be the local encoding of
Φ(α) = β. Then the ideal Ann(G) is a nonzero principal ideal.

Proof. The polynomial map G consists of n+ s+ 1 polynomials in n+ s variables. Because there
are more polynomials than there are variables, the outputs of G are algebraically dependent, so the
annihilator ideal Ann(G) is nonempty.

Let a(z1, . . . , zn+s+1) ∈ Ann(G) be a nonzero element of minimal degree. We claim that a(z)
generates the ideal Ann(G). To prove this, it suffices to show that for any nonzero b(z) ∈ Ann(G),
the polynomial a(z) divides b(z).

We first show that a(z) is irreducible. Suppose a(z) factors as a(z) = a1(z)a2(z). Then we have

0 = a(G(x, y)) = a1(G(x, y)) · a2(G(x, y)),

so either a1(G(x, y)) = 0 or a2(G(x, y)) = 0. Suppose, without loss of generality, that a1(G(x, y)) = 0.
Then by definition we have a1(z) ∈ Ann(G). Because a was chosen to be a nonzero element of
Ann(G) of minimal degree, we have deg(a) ⩽ deg(a1). On the other hand, because a1 divides a,
we have deg(a1) ⩽ deg(a). Together, these inequalities imply deg(a) = deg(a1). It follows that
deg(a2) = 0, so a2(z) is a nonzero constant polynomial. Hence a(z) is irreducible as claimed.

Now let b(z) ∈ Ann(G) be nonzero. To see that a(z) divides b(z), consider their resultant with
respect to zn+s+1,

r(z) := reszn+s+1(a(z), b(z)).

By Proposition 2.22, we have

r(z) ∈ ⟨a(z), b(z)⟩ ∩ F[z1, . . . , zn+s] ⊆ Ann(G) ∩ F[z1, . . . , zn+s].

This implies r(z) vanishes on the first n+ s outputs of G. If r(z) were nonzero, then this vanishing
would imply that the first n+s outputs of G are algebraically dependent. However, this is impossible:
the Jacobian of the first n + s outputs of G is a triangular matrix with ones along the diagonal,
so Proposition 2.18 implies they are algebraically independent. Thus, it follows that r(z) = 0.
Lemma 2.21 implies that a(z) and b(z) have a common factor. Because a(z) is irreducible, it follows
that a(z) divides b(z) as desired.

Our next goal is to describe a polynomial that generates the ideal Ann(G). Just as in Example 3.3,
we can find a dependency between the outputs of G by iteratively expressing each of the y variables
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as a polynomial combination of the first n+ s outputs of G. Doing this results in a polynomial hs(z)
that satisfies hs(G(x, y)) = ys. Subtracting zn+s+1 + β from hs(z) results in an annihilator of G. It
turns out that the annihilator obtained in this way is irreducible, and hence it generates the ideal
Ann(G).

We start with the following lemma, which shows that each of the variables y1, . . . , ys can be
obtained as a polynomial combination of the first n+s outputs of G. These polynomials are obtained
by simulating the underlying circuit Φ in a gate-by-gate manner. As a byproduct of this construction,
we also obtain a bound on the circuit complexity of these polynomials.

Lemma 3.5. Let Φ be an n-variate arithmetic circuit of size s and let G be the local encoding of
Φ(α) = β. For every k ∈ [s], there is a multi-output arithmetic circuit Ψk such that the following
hold.

• The size of Ψk is bounded by O(k).

• The circuit Ψk outputs k polynomials h1, . . . , hk ∈ F[z1, . . . , zn+s+1] that depend only on the
variables z1, . . . , zn+k. For each i ∈ [k], the polynomial hi satisfies the identity hi(G(x, y)) = yi.

Proof. We proceed by induction on k. Let Ψk−1 be the circuit given by induction. (If k = 1, then
Ψ0 is the empty circuit.) To construct Ψk, it suffices to add a constant number of new gates to Ψk−1

in order to compute the desired polynomial hk(z).
To avoid a multitude of sub-cases, we need some additional notation. Let V be the set of gates

of Φ. Recall the function L : V → F ∪ {x1, . . . , xn, y1, . . . , ys} used in the definition of G, which was
given by

L(v) :=


γ if v is an input gate labeled by a constant γ ∈ F,
xi if v is an input gate labeled by the variable xi,
yi if v is the ith internal gate in topological order.

Let V⩽k−1 be the set consisting of the input gates and first k − 1 internal gates of Φ. Define the
function L̂ : V⩽k−1 → F[z] via

L̂(v) :=


γ if v is an input gate labeled by a constant γ ∈ F,
zi + αi if v is an input gate labeled by the variable xi,
hi(z) if v is the ith internal gate in topological order.

Note that every output of L̂ is either already computed by the circuit Ψk−1 or can be computed
using a constant number of gates. An immediate consequence of the inductive hypothesis is that the
polynomial L̂(v) ◦ G(x, y) is given by

L̂(v) ◦ G(x, y) =


γ if v is an input gate labeled by a constant γ ∈ F,
xi if v is an input gate labeled by the variable xi,
yi if v is the ith internal gate in topological order.

Put more succinctly, we have the identity

L̂(v) ◦ G(x, y) = L(v)

for all gates v ∈ V⩽k−1.
We now describe how to compute the desired polynomial hk(z). Let v be the kth internal gate of

Φ, and let u and w be its children. There are two cases to consider, depending on whether v is an
addition or multiplication gate.
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• Suppose v = u+ w. Define
hk(z) := zn+k + L̂(u) + L̂(w).

It is clear that hk(z) can be computed by adding O(1) gates to Ψk−1, so the size of Ψk is
bounded by O(k) as claimed.

It remains to verify that hk satisfies the claimed identity. Composing with G(x, y), we have

hk(G(x, y)) = yk − L(u)− L(w) + L̂(u) ◦ G(x, y) + L̂(w) ◦ G(x, y)
= yk − L(u)− L(w) + L(u) + L(w)

= yk

as desired.

• Suppose v = u× w. Define
hk(z) := zn+k + L̂(u)L̂(w).

As in the previous case, it is clear that hk(z) can be computed by adding O(1) gates to Ψk−1,
so the size of Ψk is bounded by O(k).

We now verify the claimed identity on hk. We compose with G(x, y) to obtain

hk(G(x, y)) = yk − L(u)L(w) + (L̂(u) ◦ G(x, y)) · (L̂(w) ◦ G(x, y))
= yk − L(u)L(w) + L(u)L(w)

= yk

as desired.

In both cases, we can construct Ψk by adding O(1) gates to Ψk−1.

Using the preceding lemma, we now describe the generator of the ideal Ann(G).

Proposition 3.6. Let Φ be an n-variate arithmetic circuit of size s that computes a polyno-
mial f(x1, . . . , xn). Let G be the local encoding of Φ(α) = β. Then there is a polynomial h ∈
F[z1, . . . , zn+s+1] such that the following hold.

1. The ideal Ann(G) is generated by h(z).

2. There exists a polynomial g ∈ F[z1, . . . , zn+s], not depending on the variable zn+s+1, such that
g ∈ ⟨zn+1, . . . , zn+s⟩ and

h(z) = zn+s+1 − f(z1 + α1, . . . , zn + αn) + g(z) + β.

3. There is an arithmetic circuit of size O(s) that computes h(z).

Proof. Let Ψs be the circuit of size O(s) obtained by applying Lemma 3.5 to Φ and G. Let hs(z) be
the output of Ψs that satisfies hs(G(x, y)) = ys. Define

h(z) := zn+s+1 − hs(z) + β.

It is clear from this definition that h(z) can be computed by an arithmetic circuit of size O(s). It
remains to verify that h generates Ann(G) and that h has the claimed form.
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We first establish that h generates the ideal Ann(G). To see that h ∈ Ann(G), we compute

h(G(x, y)) = ys − β − hs(G(x, y)) + β

= ys − β − ys + β

= 0.

Thus h ∈ Ann(G). To see that h generates Ann(G), note that because hs(z) does not depend on
the variable zn+s+1, the polynomial h is monic and has degree 1 in zn+s+1. This implies that h is
irreducible. Because h is irreducible, the ideal Ann(G) is principal, and h ∈ Ann(G), it follows that
h generates Ann(G).

It remains to show that h has the claimed form. Recall that G is the concatenation of the three
polynomial maps Ginput, Ginternal, and Goutput. Because h ∈ Ann(G), we have the identity

h(Ginput(x, y),Ginternal(x, y),Goutput(x, y)) = 0.

Let fi(x) be the polynomial computed by the ith internal gate of Φ and consider the substitution
given by yi 7→ fi(x). We claim that under this substitution, the outputs of Ginternal are mapped to
zero. Indeed, if the ith gate of Φ is an addition gate whose children are the jth and kth internal
gates, then under this substitution the ith output of Ginternal becomes

fi(x)− fj(x)− fk(x) = fi(x)− fi(x) = 0.

Likewise, if the ith internal gate of Φ is a multiplication gate whose children are the jth and kth

internal gates, then the ith output of Ginternal is mapped to

fi(x)− fj(x)fk(x) = fi(x)− fi(x) = 0.

Similar cancellations occur when the ith internal gate has one or more input gates as children; we
omit the straightforward calculations.

Applying the substitution yi 7→ fi(x) to the equation h(G(x, y)) = 0, we obtain the identity

h(x1 − α1, . . . , xn − αn, 0, . . . , 0, f(x)− β) = 0.

Next, we apply the shift xi 7→ xi + αi to obtain

h(x1, . . . , xn, 0, . . . , 0, f(x+ α)− β) = 0.

This implies that zn+s+1 − f(x+ α) + β is a factor of h(x1, . . . , xn, 0, . . . , 0, zn+s+1). Because the
polynomial h(x1, . . . , xn, 0, . . . , 0, zn+s+1) is monic and degree 1 in zn+s+1, we obtain the equality

h(x1, . . . , xn, 0, . . . , 0, zn+s+1) = zn+s+1 − f(x+ α) + β.

This implies
h(z) = zn+s+1 − f(z + α) + g(z) + β,

where g ∈ F[z] is a polynomial that vanishes on the substitution zn+1 = · · · = zn+s = 0, which is
equivalent to g being an element of the ideal ⟨zn+1, . . . , zn+s⟩. Thus h(z) has the claimed form.
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3.3 Pseudorandomness from Hardness of Multiples

In this subsection, we investigate the pseudorandom properties of local encodings. Suppose G is
the local encoding of Φ(α) = β, where Φ is an arithmetic circuit that computes a polynomial f(x).
As we saw in Proposition 3.6, the ideal Ann(G) is generated by a polynomial h(z) that is similar
to f(x), in the sense that any circuit computing h can be modified in a simple way to produce a
circuit that computes f . This reduction shows that lower bounds on the complexity of f imply lower
bounds on the complexity of h.

To show that G hits a circuit class C , we need to show that every nonzero multiple of h is hard
for C , not just that h itself is hard for C . Because the polynomials h and f are closely related, it
seems reasonable to expect that lower bounds on the complexity of multiples of f imply comparable
lower bounds for multiples of h.

This intuition is correct: suppose p ∈ Ann(G) is a polynomial of the form h(z) · r(z). If we work
in the ring F[z1, . . . , zn][zn+1, . . . , zn+s+1], then the bottom-degree homogeneous component of h(z)
is precisely

hbot(z) = −f(z1 + α1, . . . , zn + αn) + β.

Bottom-degree homogeneous components are homomorphic with respect to multiplication, so the
bottom-degree component of h(z) · r(z) is a multiple of hbot(z). From a circuit computing h(z) · r(z),
we can obtain circuit for this multiple of hbot(z) by applying polynomial interpolation in the variables
zn+1, . . . , zn+s+1. Applying the shift zi 7→ zi − αi for i ∈ [n] results in a circuit that computes a
multiple of f(z1, . . . , zn)− β. Thus, if multiples of f − β require large circuits, then it must have
been the case that the circuit computing h(z) · r(z) was large to begin with, so we obtain a lower
bound for all nonzero polynomials in Ann(G).

We now make the preceding sketch precise, showing that lower bounds on Ann(G) follow from
lower bounds for multiples of f(x). Although the interpolation argument described above works in
general, we state and prove this lemma for three concrete measures of complexity (bounded-depth
circuits, formulas, and branching programs) that correspond to the applications we give in Section 4.

Lemma 3.7. Let F be an infinite field. Let Φ be an n-variate circuit arithmetic circuit that computes
a polynomial f ∈ F[x]. Let G be the local encoding of Φ(α) = β.

1. If every nonzero multiple of f(x)− β requires depth-∆ circuits of size at least s, then every
nonzero polynomial p ∈ Ann(G) requires depth-(∆− 2) circuits of size at least Ω(s

1
∆−1 ).

2. If every nonzero multiple of f(x)− β requires formulas of size at least s, then every nonzero
polynomial p ∈ Ann(G) requires formulas of size at least Ω(

√
s).

3. If every nonzero multiple of f(x)− β requires branching programs of size at least s, then every
nonzero polynomial p ∈ Ann(G) requires branching programs of size at least Ω(

√
s).

Proof. Let p ∈ Ann(G) be nonzero. By Proposition 3.6, we know that p(z) can be written as

p(z) = (zn+s+1 − f(z1 + α1, . . . , zn + αn) + g(z) + β) · r(z),

where g ∈ ⟨zn+1, . . . , zn+s⟩ and r(z) is a nonzero polynomial. Consider the substitution

zi 7→

{
zi − αi if 1 ⩽ i ⩽ n,
w · zi if n+ 1 ⩽ i ⩽ n+ s+ 1,

where w is a fresh variable. Under this substitution, the first factor of p is mapped to

−f(z1, . . . , zn) + β +O(w),
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where O(w) indicates a term divisible by w. Let

r̂(z, w) =
b∑

i=a

ri(z)w
i

be the image of r(z) under this substitution, where a ⩽ b and ra(z) ̸= 0. Then the image of p(z)
under this substitution is

p̂(z, w) := (−f(z) + β) · ra(z)wa +O(wa+1),

where O(wa+1) indicates a term divisible by wa+1.
We now obtain a circuit that computes (−f(z) + β) · ra(z) using polynomial interpolation with

respect to w. Note that p̂(z, w) has degree at most d := deg(p) with respect to w. Let γ0, . . . , γd ∈ F
be distinct field elements. Then there are constants ζ0, . . . , ζd ∈ F such that

(−f(z) + β) · ra(z) =
d∑

i=0

ζi · p̂(z, γi).

This expresses a nonzero multiple of f(z) − β as a sum of deg(p) + 1 copies of p̂(z, w), each of
which can be obtained in a simple manner from the circuit computing p(z). In particular, if nonzero
multiples of f(z) − β have high complexity, then a similar lower bound holds for the annihilator
p ∈ Ann(G) that we started with. The precise details of this bound depends on the complexity
measure of interest.

1. Suppose p was computed by a circuit of depth ∆− 2 and size t. Then the resulting expression
for (−f(z)+β) ·ra(z) can be implemented by a circuit of depth ∆ and size O(t deg(p)). Because
p was computed by a circuit of depth ∆ − 2 and size t, we have the bound deg(p) ⩽ t∆−2.
Thus, we have a circuit of depth ∆ and size O(t∆−1) that computes (−f(z) + β) · ra(z). If
every nonzero multiple of f(z)−β requires depth-∆ circuits of size s, we conclude t ⩾ Ω(s

1
∆−1 )

as desired.

2. Suppose p was computed by a formula of size t. As in the previous case, the expression
for (−f(z) + β) · ra(z) can be implemented by a formula of size O(tdeg(p)). Because p was
computed by a formula of size t, we have the bound deg(p) ⩽ t. Thus, we obtain a formula of
size O(t2) that computes a nonzero multiple of f(z)− β. If such polynomials require formulas
of size s, we conclude the desired lower bound of t ⩾ Ω(

√
s).

3. Suppose p was computed by a branching program of size t. The argument in this case is
identical to the preceding argument for formulas, so we again conclude the lower bound
t ⩾ Ω(

√
s).

As an immediate corollary of the preceding lemma, we see that G hits circuit classes that require
large size to compute multiples of f(x)− β.

Corollary 3.8. Let F be an infinite field. Let Φ be an n-variate arithmetic circuit that computes a
polynomial f ∈ F[x]. Let G be the local encoding of Φ(α) = β.

1. Suppose every nonzero multiple of f(x)− β requires depth-∆ circuits of size at least s. Then G
hits circuits of depth ∆− 2 and size εs

1
∆−1 for a sufficiently small constant ε > 0.

2. Suppose every nonzero multiple of f(x)− β requires formulas of size at least s. Then G hits
formulas of size ε

√
s for a sufficiently small constant ε > 0.

3. Suppose every nonzero multiple of f(x)−β requires branching programs of size at least s. Then
G hits branching programs of size ε

√
s for a sufficiently small constant ε > 0.
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4 Instantiating the Generator

Having analyzed local encodings and their annihilators, we now move on to constructing hitting set
generators using local encodings. As Corollary 3.8 shows, to construct a hitting set generator for a
class C using a local encoding, it suffices to take an encoding of a circuit that computes a polynomial
whose multiples are hard for the target class C . In this section, we give three constructions of
VNC0-computable generators using local encodings. One generator hits VAC0 unconditionally,
while the others hit VF and VBP under strong but reasonable hardness assumptions. (In fact, the
generators for VAC0 and VF are local encodings of the same circuit family.)

Although our work up to this point has proceeded over an arbitrary field F, this section will require
F to have characteristic zero or sufficiently large characteristic. We omit the large characteristic
case for simplicity. The restriction on the field characteristic stems from the fact that the hitting
property for local encodings is inferred from the hardness of multiples of an explicit polynomial f(x).
Over fields of small positive characteristic, it is an open problem to show that if a polynomial f(x)
is hard to compute, then all multiples of f are similarly hard to compute. In particular, over a field
of characteristic p > 0, it is not known if a circuit lower bound for f(x) implies a comparable lower
bound for f(x)p. For some limited results in this direction, see Andrews [And20].

4.1 Low-Depth Circuits

In our first application of Corollary 3.8, we construct a VNC0-computable generator that hits VAC0.
To do this, we use the fact that multiples of the determinant are hard for low-depth circuits. In
particular, we make use of the following lower bound.

Theorem 4.1 ([LST21; AF22]). Let F be a field of characteristic zero. Any depth-∆ circuit that
computes a multiple of the n× n determinant detn(X) must be of size at least n(logn)exp(−O(∆)).

To construct a VNC0-computable generator for VAC0, we first combine Theorem 4.1 with
Corollary 3.8 to show that low-depth circuits are hit by local encodings of arithmetic circuits that
compute the determinant.

Lemma 4.2. Let F be a field of characteristic zero. Let (Φn)n∈N be a sequence of arithmetic circuits
of size s(n) ⩽ nO(1) such that Φn computes the n × n determinant detn(X). Let (An)n∈N be a
sequence of n × n matrices. Let Gn : Fn2+s(n) → Fn2+s(n)+1 be the local encoding of Φn(An) = 0.
Then G = (Gn)n∈N is a VNC0-computable hitting set generator for VAC0.

Proof. The fact that G is VNC0-computable follows immediately from Lemma 3.2. To show that G
hits VAC0, we will apply Corollary 3.8 and Theorem 4.1. Theorem 4.1 implies that any circuit of
depth ∆ computing a multiple of detn(X) must have size at least

n(logn)exp(−O(∆))
.

It follows from Corollary 3.8 that Gn hits circuits of depth ∆ and size

n
(logn)exp(−O(∆))

∆+1 .

This implies that G hits VAC0, as we now show.
Let (fn)n∈N ∈ VAC0. By definition, there is a fixed constant ∆ such that fn can be computed

by circuits of depth ∆ and size nO(1). Let m ⩽ nO(1) be the number of variables in fn and let q be
the largest integer such that q2 + s(q) + 1 ⩽ m. Because s(q) ⩽ qO(1), we have

q ⩾ mΩ(1) ⩾ nΩ(1).
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The map Gq, padded appropriately as in Remark 2.9, hits m-variate circuits of depth ∆ and size

q
(log q)exp(−O(∆))

∆+1 ≫ nO(1).

Thus, for sufficiently large n, the map Gq hits fn, so G hits VAC0 as claimed.

Lemma 4.2 gives a VNC0-computable generator with one bit of stretch that hits VAC0. We can
improve the stretch of this generator by applying independent copies of the generator in parallel.
This improves the stretch of the generator from 1 to n1−ε for any constant ε > 0.

Theorem 4.3. Let F be a field of characteristic zero and let ε > 0 be a fixed constant. There is an
explicit sequence of polynomial maps G = (G : Fn−n1−ε → Fn)n∈N such that G is a VNC0-computable
hitting set generator for VAC0.

Proof. Let Ĝ = (Ĝn : Fn−1 → Fn) be the generator of Lemma 4.2, padded appropriately as in
Remark 2.9. We take Gn : Fn−n1−ε → Fn to be the generator obtained by concatenating n1−ε

independent copies of Ĝnε . That is, we set Gn to be the generator

Gn(x, y) := (Ĝnε(x(1), y(1)), . . . , Ĝnε(x(n
1−ε), y(n

1−ε))),

where x = x(1) ⊔ · · · ⊔ x(n
1−ε) is a partition of the x variables and likewise y = y(1) ⊔ · · · ⊔ y(n

1−ε) is
a partition of the y variables. The VNC0-computability of Ĝ implies that G is VNC0-computable.

The fact that G hits VAC0 follows from a straightforward hybrid argument, which we now
describe. Suppose there is a p-family f = (fn)n∈N ∈ VAC0 such that G fails to hit f . We will use this
to construct a p-family g = (gn)n∈N ∈ VAC0 such that Ĝ fails to hit g, which contradicts Lemma 4.2.

For the sake of notational simplicity, assume without of generality that fn is a polynomial on n
variables z1, . . . , zn. Let z = z(1) ⊔ · · · ⊔ z(n

1−ε) be a partition of the z variables. Consider the hybrid
polynomials

fn,0(x, y, z) := fn(z
(1), z(2), . . . , z(n

1−ε))

fn,1(x, y, z) := fn(Ĝnε(x(1), y(1)), z(2), . . . , z(n
1−ε))

fn,2(x, y, z) := fn(Ĝnε(x(1), y(1)), Ĝnε(x(2), y(2)), . . . , z(n
1−ε))

...

fn,n1−ε(x, y, z) := fn(Ĝnε(x(1), y(1)), Ĝnε(x(2), y(2)), . . . , Ĝnε(x(n
1−ε), y(n

1−ε))).

The fact that G fails to hit f implies that fn,0(x, y, z) ̸= 0 and fn,n1−ε(x, y, z) = 0 when n is
sufficiently large. Thus, there is some i ∈ [n1−ε] such that fn,i−1(x, y, z) ̸= 0 but fn,i(x, y, z) = 0.
Because F is infinite, there are inputs α(1), . . . , α(i−1), β

(1)
, . . . , β

(i−1), and γ(i+1), . . . , γ(n
1−ε) such

that
gn(z

(i)) := fn,i−1(Ĝ(α(1), β
(1)

), . . . , Ĝ(α(i−1), β
(i−1)

), z(i), γ(i+1), . . . , γ(n
1−ε)) ̸= 0.

Note that g is a projection of f , so g = (gn)n∈N is a p-family in VAC0. Furthermore, we have

gn(Ĝnε(x(i), y(i))) = fi−1(Ĝ(α(1), β
(1)

), . . . , Ĝ(α(i−1), β
(i−1)

), Ĝ(x(i), y(i)), γ(i+1), . . . , γ(n
1−ε)) = 0,

so Ĝ fails to hit g, contradicting Lemma 4.2.
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4.2 Formulas

Next, we construct a VNC0-computable generator that hits VF. To do this, we need a polynomial
whose multiples all require large formulas. Formulas are not known to be closed under factorization,
so it is not clear if formula lower bounds for an explicit family of polynomials imply lower bounds
for multiples of the same family. For the special case of the determinant, however, lower bounds on
border formula complexity imply comparable lower bounds on the (border) formula complexity of
multiples, as the following theorem shows.

Theorem 4.4 ([AF22]). Let F be a field of characteristic zero. Suppose that any border formula
which computes the n × n determinant detn(X) must have size at least nω(1). Then any border
formula that computes a multiple of detn(X) must have size nω(1).

Assuming lower bounds on the border formula complexity of the determinant, we can construct
a VNC0-computable generator with one bit of stretch that hits VF. The proof is essentially the
same as in Lemma 4.2; the only difference is that the unconditional lower bound of Theorem 4.1 is
replaced by the conditional lower bound from Theorem 4.4.

Lemma 4.5. Let F be a field of characteristic zero. Assume that any border formula which computes
the n× n determinant detn(X) has size nω(1). Let (Φn)n∈N be a sequence of arithmetic circuits of
size s(n) ⩽ nO(1) such that Φn computes the n× n determinant detn(X). Let (An)n∈N be a sequence
of n × n matrices. Let Gn : Fn2+s(n) → Fn2+s(n)+1 be the local encoding of Φn(An) = 0. Then
G = (Gn)n∈N is a VNC0-computable hitting set generator for VF.

Proof. The fact that Gn is VNC0-computable is an immediate consequence of Lemma 3.2. To show
that G hits VF, we will invoke Corollary 3.8, Theorem 4.4, and the assumed lower bound on the
border formula complexity of the determinant. Because any border formula that computes the n× n
determinant must have size nω(1), Theorem 4.4 implies that any formula computing a multiple of
detn(X) must have size t ⩾ nω(1). It follows from Corollary 3.8 that the map Gn hits formulas of
size ε

√
t ⩾ nω(1) for some constant ε > 0. In particular, for a p-family (fn)n∈N ∈ VF, the map Gq(n)

(where q(n) ⩾ nΩ(1) is the index of the n-output generator in G) hits fn for sufficiently large n, since
fn can be computed by a formula of size nO(1). Hence G hits VF as claimed.

Once again, we can improve the stretch of the generator of Lemma 4.5 from 1 to n1−ε for any
constant ε > 0 by applying n1−ε copies of the generator in parallel.

Theorem 4.6. Let F be a field of characteristic zero and let ε > 0 be a fixed constant. Assume that
any border formula which computes the n× n determinant detn(X) has size nω(1). Then there is an
explicit sequence of polynomial maps G = (Gn : Fn−n1−ε → Fn)n∈N such that G is a VNC0-computable
hitting set generator for VF.

Proof. Let Ĝ be the generator of Lemma 4.5. We take Gn : Fn−n1−ε → Fn to be the concatenation of
n1−ε independent copies of Ĝnε . The VNC0-computability of Ĝ implies that G is VNC0-computable.
The fact that G hits VF follows from the fact that Ĝ hits VF, using a hybrid argument in exactly
the same manner as in the proof of Theorem 4.3.

4.3 Branching Programs

In our final application, we construct a VNC0-computable generator that hits VBP. To do this, we
make use of the fact that VBP is closed under factoring.
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Theorem 4.7 ([ST21b]). Let F be a field of characteristic zero. Suppose that f(x) can be computed
by an algebraic branching program of size s. Then every irreducible factor of f can be computed by
an algebraic branching program of size sO(1).

The contrapositive of Theorem 4.7 says that if a polynomial f requires branching programs of
super-polynomial size, then the same is true for all multiples of f . This allows us to instantiate
Corollary 3.8 under the assumption that there is a p-family (fn)n∈N ∈ VP such that fn requires
branching programs of size nω(1).

Lemma 4.8. Let F be a field of characteristic zero. Assume there is a p-family (fn)n∈N ∈ VP such
that fn requires branching programs of size nω(1). Let (Φn)n∈N be a sequence of arithmetic circuits
of size s(n) ⩽ nO(1) such that Φn computes fn. Let (α(n))n∈N be a sequence of points in Fn and
let (βn)n∈N be a sequence of field elements. Let Gn : Fn+s(n) → Fn+s(n)+1 be the local encoding of
Φn(α

(n)) = βn. Then G = (Gn)n∈N is a VNC0-computable hitting set generator for VBP.

Proof. The fact that Gn is VNC0-computable follows immediately from Lemma 3.2. To show that Gn

hits VBP, we use Corollary 3.8, Theorem 4.7, and the assumed lower bound on the p-family (fn)n∈N.
By assumption, any branching program that computes fn − βn must have size nω(1). Theorem 4.7
implies that any multiple of fn−βn likewise requires branching programs of size t ⩾ nω(1). It follows
from Corollary 3.8 that Gn hits branching programs of size ε

√
t ⩾ nω(1) for some constant ε > 0.

In particular, for a p-family (hn)n∈N ∈ VBP, the map Gq (where q(n) ⩾ nΩ(1) is the index of the
n-output generator in G) hits hn for sufficiently large n, since hn can be computed by a branching
program of size nO(1). Hence G hits VBP.

Once again, we can improve the stretch of the generator of Lemma 4.8 from 1 to n1−ε by applying
n1−ε copies of the generator in parallel. The proof is identical to the proofs of Theorem 4.3 and
Theorem 4.6, so we omit the details.

Theorem 4.9. Let F be a field of characteristic zero and let ε > 0 be a fixed constant. Assume there
is a p-family (fn)n∈N ∈ VP such that fn requires branching programs of size nω(1). Then there is an
explicit sequence of polynomial maps G = (Gn : Fn−n1−ε → Fn)n∈N such that G is a VNC0-computable
hitting set generator for VBP.

5 The Ideal Proof System and Cryptographic Generators

We now turn our attention to algebraic proof complexity. An easy observation, already due to
Grochow, Kumar, Saks, and Saraf [GKSS17, Section 4.2], shows that a hitting set generator G for a
circuit class C implies lower bounds against the Geometric C -Ideal Proof System. If the generator
is D-computable, then the hard instance for Geometric C -IPS consists of polynomials that are
likewise computable in D , which we term D-equations following Definition 2.15. Together with our
construction of VNC0-computable hitting set generators from Section 4, this lets us conclude lower
bounds against Geometric C -IPS for C ∈ {VAC0,VF,VBP} for systems of VNC0-equations.

5.1 Geometric IPS Lower Bounds from Hitting Set Generators

We begin with the relationship between hitting set generators and Geometric IPS, which was already
observed by Grochow, Kumar, Saks, and Saraf [GKSS17, Section 4.2]. Suppose G = (g1(y), . . . , gn(y))
is a generator that hits a class of polynomials C . This means that for every nonzero f ∈ F[x]
satisfying (f ◦ G)(y) = 0, we have the non-membership f /∈ C . Consider the system of polynomial
equations F = {g1(y) = 0, . . . , gn(y) = 0}, and suppose that the system F is unsatisfiable and can
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be refuted by Geometric IPS. Let r(x) be a Geometric IPS refutation of F . By definition, the
polynomial r satisfies the equations

r(0, . . . , 0) = 1

r(g1(y), . . . , gn(y)) = 0.

The polynomials that satisfy these equations are precisely the annihilators of G whose constant term
is 1. Because the refutation r is a nonzero annihilator of G and G hits C , we conclude that r /∈ C ,
which is a lower bound on the complexity of r.

Thus, Geometric IPS refutations are simply annihilators with a nonzero constant term. It seems
reasonable to conjecture that if there is an easily-computable annihilator, and an annihilator with a
nonzero constant term exists, then there is also an easily-computable annihilator with a nonzero
constant term. Put more informally, it is not outlandish to think that if we can prove Geometric
IPS lower bounds, then we can upgrade the hard system of equations into a hitting set generator.
We are unable to prove such a statement. Despite this, we believe that studying Geometric IPS is a
meaningful stepping stone towards obtaining hitting set generators. This very paper is evidence for
our belief: we first proved lower bounds against Geometric IPS, and only later realized the same
construction yields hitting set generators with a minor variation on the proof.

We formalize the preceding argument in the following lemma.

Lemma 5.1 ([GKSS17]). Let F be a field and let C and D be complexity classes. Let G = (Gn :
Fℓ(n) → Fn)n∈N be a D-computable hitting set generator for C . Then the family of equations
F = (Fn)n∈N given by

Fn = {gn,1(y) = 0, . . . , gn,n(y) = 0},

where Gn = (gn,1, . . . , gn,n), is a family of D-computable equations that is hard for Geometric C -IPS.

Proof. Let (rn)n∈N be a p-family such that rn(x) is a Geometric IPS refutation of Fn. The definition
of a Geometric IPS refutation implies

rn(0, . . . , 0) = 1

rn(gn,1(y), . . . , gn,n(y)) = 0.

The first equality implies rn(x) ̸= 0, while the second implies rn ∈ Ann(Gn). Because G hits C , it
follows that r /∈ C , hence there is no Geometric C -IPS refutation of F .

We note that in the setting of Lemma 5.1, neither the explicitness nor the stretch of the hitting
set generator are of primary concern. The resulting lower bounds are interesting even when the
generator is non-explicit and has stretch 1.

5.2 Lower Bounds for Geometric IPS

We now apply Lemma 5.1 to the hitting set generators of Section 4, obtaining systems of VNC0-
equations that are hard for subsystems of Geometric IPS. The lower bounds we obtain here directly
correspond to the generator constructions of Section 4: we obtain an unconditional lower bound
against Geometric VAC0-IPS and conditional lower bounds against Geometric VF-IPS and Geometric
VBP-IPS.

We stress that because Geometric IPS is an incomplete proof system, it is not enough for our
hard instances to be unsatisfiable; we must ensure that Geometric IPS is powerful enough to refute
these systems of equations in the first place. For the systems we consider, this property is easy
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to verify, as the polynomial that generates the annihilator ideal Ann(G) is a valid Geometric IPS
refutation.

We start with a system of VNC0-computable equations that are unconditionally hard to refute
in Geometric VAC0-IPS.

Theorem 5.2. Let F be a field of characteristic zero. Let (Φn)n∈N be a sequence of arithmetic
circuits of size s(n) ⩽ nO(1) such that Φn computes the n× n determinant detn(X). Let (An)n∈N be
a sequence of n× n matrices such that det(An) ̸= 0 for all n ∈ N. Let Gn : Fn2+s(n) → Fn2+s(n)+1 be
the local encoding of Φn(An) = 0. Let Fn be the system of equations given by

Fn = {gn,1(y) = 0, . . . , gn,n2+s(n)+1(y) = 0},

where Gn = (gn,1, . . . , gn,n2+s(n)+1). Then F = (Fn)n∈N is a sequence of unsatisfiable VNC0-equations
that can be refuted by Geometric VP-IPS, but cannot be refuted by Geometric VAC0-IPS.

Proof. The fact that Fn is a system of VNC0-equations that cannot be refuted by Geometric
VAC0-IPS follows from Lemmas 4.2 and 5.1. To show that Fn can be refuted by Geometric IPS, let
hn(z) ∈ Ann(Gn) be the generator of the ideal Ann(Gn). By Proposition 3.6, we know that hn is
given by

hn(z) = zn2+s+1 − det(Z1...n2 +An) + g(z),

where Z1...n2 denotes an n× n matrix formed from the variables z1, . . . , zn2 and g(z) is a polynomial
that satisfies g(0) = 0. The constant term of hn is given by

hn(0) = −det(An) ̸= 0.

In particular, the polynomial −1
det(An)

hn(z) is a Geometric IPS refutation of Fn. The soundness of
Geometric IPS implies that Fn is unsatisfiable. Proposition 3.6 implies that −1

det(An)
hn(z) can be

computed by a circuit of size O(s) ⩽ nO(1), so (hn)n∈N ∈ VP. Hence Geometric VP-IPS can refute
F as claimed.

Next, we prove a conditional lower bound against Geometric VF-IPS. Our lower bound for
Geometric VF-IPS holds assuming a super-polynomial lower bound on the border formula complexity
of the determinant. This is the same condition used in Theorem 4.6 to design a VNC0-computable
hitting set generator against VF.

Theorem 5.3. Let F be a field of characteristic zero. Assume that any border formula which computes
the n×n determinant detn(X) must have size nω(1). Let (Φn)n∈N be a sequence of arithmetic circuits
of size s(n) ⩽ nO(1) such that Φn computes the n × n determinant detn(X). Let (An)n∈N be a
sequence of n× n matrices such that det(An) ̸= 0 for all n ∈ N. Let Gn : Fn2+s(n) → Fn2+s(n)+1 be
the local encoding of Φn(An) = 0. Let Fn be the system of equations given by

Fn = {gn,1(y) = 0, . . . , gn,n2+s(n)+1(y) = 0},

where Gn = (gn,1, . . . , gn,n2+s(n)+1). Then F = (Fn)n∈N is a sequence of unsatisfiable VNC0-equations
that can be refuted by Geometric VP-IPS, but cannot be refuted by Geometric VF-IPS.

Proof. The fact that Fn is a system of VNC0-equations that cannot be refuted by Geometric VF-IPS
follows from the assumed lower bound on the border formula complexity of the determinant together
with Lemmas 4.5 and 5.1. This is the same system of equations that appears in Theorem 5.2, so the
fact that F can be refuted by Geometric VP-IPS follows from Theorem 5.2.
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Our final application to Geometric IPS lower bounds is a conditional lower bound against
Geometric VBP-IPS. We use the same assumption as in Theorem 4.9, where we constructed a
VNC0-computable generator that hits VBP. That is, we assume there is a p-family (fn)n∈N ∈ VP
such that the branching program complexity of fn grows super-polynomially in n.

Theorem 5.4. Let F be a field of characteristic zero. Assume there is a p-family (fn)n∈N ∈ VP such
that fn requires branching programs of size nω(1). Let (Φn)n∈N be a sequence of arithmetic circuits of
size s(n) ⩽ nO(1) such that Φn computes fn. Let (α(n))n∈N be a sequence of points in Fn and (βn)n∈N
be a sequence of field elements such that fn(α(n)) ̸= βn for all n. Let Gn : Fn+s(n) → Fn+s(n)+1 be
the local encoding of Φn(α

(n)) = βn. Let Fn be the system of equations given by

Fn = {gn,1(y) = 0, . . . , gn,n+s(n)+1(y) = 0},

where Gn = (gn,1, . . . , gn,n+s(n)+1). Then F = (Fn)n∈N is a sequence of unsatisfiable VNC0-equations
that can be refuted by Geometric VP-IPS, but cannot be refuted by Geometric VBP-IPS.

Proof. The fact that Fn is a system of VNC0-equations that cannot be refuted by Geometric
VBP-IPS follows from Lemmas 4.8 and 5.1. To show that Fn can be refuted by Geometric IPS, let
hn(z) ∈ Ann(Gn) be the generator of Ann(Gn). By Proposition 3.6, we know that hn is given by

h(z) = zn+s+1 − fn(z1 + α1, . . . , zn + αn) + g(z) + βn,

where g(z) is a polynomial satisfying g(0) = 0. The constant term of hn is given by

hn(0) = βn − fn(α) ̸= 0,

so 1
βn−fn(α)

hn(0) = 1. In particular, the polynomial 1
βn−fn(α)

hn(z) is a Geometric IPS refutation of
Fn. The soundness of Geometric IPS implies that Fn is unsatisfiable. Moreover, Proposition 3.6
implies that 1

βn−fn(α)
hn can be computed by a circuit of size O(s) ⩽ nO(1), so (hn)n∈N ∈ VP. Hence

Geometric VP-IPS can refute Fn.

6 Conclusion and Open Problems

In this work, we gave new constructions of VNC0-computable hitting set generators for fairly strong
circuit classes, whose proof of correctness is based on lower bounds for circuit complexity rather
than degree. Our constructions followed a general paradigm: from a separation of complexity classes
C ⊊ D ⊆ VP, we constructed a VNC0-computable generator that hits C by using a local encoding
of a p-family in the difference D \ C . The seed length of the generator corresponds to the circuit
complexity of the hard p-family in D \ C . This means that we cannot hope to use local encodings
to construct generators that hit VP. Because VP is a class of low-degree polynomials, the same
argument as in Section 1.2 shows that degree lower bounds for annihilators can be used to construct
VNC0-computable generators for VP. Can one construct VNC0-computable generators for VP whose
correctness is based on circuit complexity, not on degree bounds?

A natural approach to this problem would be to take a known hitting set generator G for VP
and compile it into a different generator G′ that may have worse stretch than G, but improves on the
complexity of G and retains its ability to hit VP. Such a compiler underlies the NC0-computable
one-way functions and pseudorandom generators constructed by Applebaum, Ishai, and Kushilevitz
[AIK06]. We do not know how to construct such a compiler in the algebraic setting. One can
obtain a new generator G′ by encoding the generator G by extension variables, similar to how we
represent circuits by local encodings, and the resulting G′ is indeed VNC0-computable. However,
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it’s not obvious how to show that lower bounds on the annihilators of G imply lower bounds on
annihilators of the new generator G′. It may be the case that by transforming G to G′, we introduce
new annihilating polynomials of lower complexity. Our work shows that this is not possible for
generators of the form x 7→ (x, f(x)), but it is less clear how to reason about other base generators
G.

For example, if we take G to be the Kabanets–Impagliazzo generator instantiated with the
permanent, can we show that its local encoding G′ hits VP, assuming circuit lower bounds for the
permanent? The obvious approach to proving this would be to take an annihilator of the local
encoding G′ and obtain from it an annihilator of the base generator G by substituting a gate variable
yi with the polynomial fi(x) computed at the ith gate, just as we did in the proof of Proposition 3.6.
If the annihilator of G′ remains nonzero under this substitution, we can conclude a lower bound on
its complexity, but it may be the case that the annihilator becomes zero under this substitution, in
which case we do not know how to conclude a lower bound on its complexity.

Another natural question in this line of work is to improve on the parameters of our VNC0-
computable generators. We are only able to construct generators with sublinear stretch. Can this
be improved to linear or superlinear stretch? Or are there inherent tradeoffs between the stretch,
degree, and complexity of a hitting set generator?

In our application to lower bounds for the Ideal Proof System, we were only able to establish
lower bounds against the Geometric Ideal Proof System. Can these lower bounds be strengthened to
hold for subsystems of the Ideal Proof System, such as VAC0-IPS? Although polynomial identity
testing has a clear and simple relationship to Geometric IPS, it is not obvious if there is a useful
application of hitting set generators towards proving lower bounds for the Ideal Proof System.

Finally, constructions of NC0-computable one-way functions and pseudorandom generators have
found numerous applications throughout complexity theory and cryptography. Are there useful
applications of VNC0-computable generators within algebraic complexity, or in complexity theory
more broadly?
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