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Abstract

We prove that hashing n balls into n bins via a random matrix over F2 yields expected
maximum load O(log n/ log log n). This matches the expected maximum load of a fully random
function and resolves an open question posed by Alon, Dietzfelbinger, Miltersen, Petrank, and
Tardos (STOC ’97, JACM ’99). More generally, we show that the maximum load exceeds
r · log n/ log log n with probability at most O(1/r2).

1 Introduction

In 1997, Alon, Dietzfelbinger, Miltersen, Petrank, and Tardos [ADM+97] asked “Is Linear Hash-
ing Good?” We answer this question in the affirmative over F2.

Theorem 1. Let u ≥ ℓ ≥ 1 be integers, n := 2ℓ, and H the set of linear maps Fu
2 → Fℓ

2. For
any S ⊆ Fu

2 with cardinality n, we have

Eh∼H

[
max
y∈Fℓ

2

|h−1(y) ∩ S|
]
≤ 16 log n

log log n
.

Due to the classical balls-and-bins result, this shows that the expected maximum load of a
random linear map is within a constant factor of the maximum load of a fully random function.
Our proof uses potential functions, which more generally allows us to show that the maximum
load exceeds r logn

log logn with probability O(1/r2). We now provide context on our work, and cover
prior results on linear hashing.

1.1 Motivation

Consider tossing n balls uniformly and independently into n bins. The maximum number
of balls in any bin–the max load–is a well studied quantity critical to randomized algorithm
design [MU05, Chapter 5]. A common application arises in hashing with chaining. In this
scenario, keys are mapped to addresses via a random hash, and each address holds a linked list
of all keys mapping to it. Consequently, retrieving a key might require sweeping through the
largest linked list, and so the worst-case retrieval time would be the max-load.

A classical result says that tossing n balls randomly into n bins will have expected max-load

O
(

logn
log logn

)
, implying that a fully random hash will have only O

(
logn

log logn

)
expected retrieval

time. However, placing balls independently and uniformly requires sampling a truly random
function, which has near-maximal time and space complexity. This raises a central question:
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What is the simplest hash family with optimal expected max-load?

An engineering approach to this question is to use any tools necessary to design hash func-
tions that minimize the time and space complexity, say in the word-RAM model. Such an
approach will naturally give low complexity hash functions, but at the cost of a more con-
trived construction that is hard to implement practically. Nevertheless, this approach has
been extremely successful, and arguably started with Wegman and Carter’s definition of k-
wise independent hash functions [WC81]. One can easily verify that O(log n/ log log n)-wise
independent hash functions have optimal max-load, and only require O(log n/ log log n) evalu-
ation time and O(log2 n/ log log n) description size. Recent works greatly optimized the use of
k-wise independence, culminating in a construction of Meka, Reingold, Rothblum, and Roth-
blum [CRSW13,MRRR14] only needing O(log n log log n) bits to describe and O((log log n)2)
time to evaluate. This gets us within a poly(log log n) factor of optimal in both parameters.
However, these function rely on concatenating hashes of gradually increasing independence,
which will require implementing either prime fields or polynomial rings, and performing ω(1)
multiplications over them. Although possible, it is quite complicated and slow to do in practice.

The approach we adopt in this paper is to only consider simple and practical hash functions
and analyze their properties as well as possible. To this end, Chung, Mitzenmacher, and Vadhan
[CMV13] showed that basic universal hash functions (e.g., linear congruence or multiplication
schemes) can achieve optimal max-load if the balls are assumed to have high enough entropy,
but say nothing about a worst-case choice of balls. In terms of worst-case results, a surprising
result of Pǎtraşcu and Thorup [PT12] show that tabulation hashing has optimal max-load. This
scheme is only 3-wise independent, is simple and practical to use, and has O(1) evaluation time.
However, it requires O(nε) bits to describe.

Linear Hash Functions

In this paper, we consider an extremely simple hash family proposed in the first paper on
universal hashing [CW79]: random matrices over F2. In particular, let ℓ := log n, and say
we arrange our n bins into a vector space Fℓ

2. Further, arrange the universe set into a vector
space Fu

2 . Our hash family is simply the set of linear maps h : Fu
2 → Fℓ

2. This family is arguably
the easiest to implement over all constructions mentioned thus far. For u = O(ℓ), this family
only needs to bitwise XOR O(log n) words together, and takes O(log2 n) bits to describe. This
family requires no multiplication, is not even 3-wise independent, and can be seen as the simplest
version of tabulation hashing, where the lookup tables only stores two values.

Furthermore, linear hash functions can batch compute keys that are clustered together, which
happens often in practice. This notion of efficiency, dubbed incremental cryptography, was first
introduced in a pair of papers by Bellare, Goldreich, and Goldwasser [BGG94, BGG95]. The
motivation behind incremental cryptography is that data to be hashed often consists of slight
modifications of each other, whether it be consecutive frames of video footage or edited versions
of files. Ideally, after computing the first hash, future hashes should have computation time
proportional to the amount of modification made to this initial key. This is indeed the case for
linear maps. Let h(x) :=

∑
i:xi=1 ci be a linear map whose matrix has columns c1, . . . , cu. If

x has Hamming weight w, h(x) is simply a sum of w column vectors. Hence, if x, x1, . . . x100

are keys such that each xi differs from x in less than w ≪ u bits, we can compute all the
hashes by computing h(x), h(x + xi) for all i, and then computing h(xi) = h(x) + h(x + xi).
This gives a total of u + 100w additions, which is better than the naive way of computing
h(x), h(x1), . . . , h(x100) directly, which can take up to 100u additions.

Computational considerations aside, it is a fundamental question to ask how much a random
matrix behaves like a random function. From a technical standpoint, dealing with the corre-
lations between linearly dependent balls has proven to be challenging. For example, the mere
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existence of good linear seeded extractors is a longstanding open problem in pseudorandom-
ness [Woo14, Question 7.6], and highlights our lack of understanding of random linear maps.

The Expected Max-Load of Linear Maps

Characterizing the max-load of H, the set of linear maps, has remained elusive. As a preliminary
bound, the expected max-load ofH is O(

√
n) since it is universal [CW79]. Indeed, some universal

hash functions saturate this bound [ADM+97]. However, Markowsky, Carter, and Wegman
[MCW78] showedH achieves expected max-loadO(n1/4), significantly outperforming the generic
universal bound [ADM+97]. This initiated further study of H’s max-load, with Mehlhorn and

Vishkin [MV84] (implicitly) showing a subpolynomial bound of 2O(
√
logn), and later with Alon,

Dietzfelbinger, Miltersen, Petrank, and Tardos [ADM+97] giving a bound of O(log n log log n).
Since then, progress has largely stalled, except for a note by Babka [Bab18], who observed that
an improved choice of parameters in the argument of [ADM+97] yields a bound of O(log n).
Unfortunately, the argument in [ADM+97] has an inherent barrier at O(log n),1 leaving open
whether H can match the performance of a fully random map. Indeed, this natural question
was explicitly posed in [ADM+97].

1.2 Our Results

We fully resolve this question by showing that a random linear map hashing n balls to n bins

will have expected max-load O
(

logn
log logn

)
. Our proof easily generalizes to m balls and n bins for

m ̸= n. In particular, define

opt(m,n) =

{
logn

log(n log n
m )

m ≤ 1
2n log n

m
n m > 1

2n log n.

It is well known that a random function mapping m balls to n bins will have expected max-load
Θ(opt(m,n)) [RS98, Theorem 1]. We show that a random linear map performs just as well.

Theorem 2 (Theorem 1 generalized). Let u ≥ ℓ,m be integers, n := 2ℓ , and H the set of linear
maps Fu

2 → Fℓ
2. For any S ⊆ Fu

2 with cardinality m,

Eh∼H

[
max
y∈Fℓ

2

|h−1(y) ∩ S|
]
≤ 16 · opt(m,n)

Our Theorem 2 is a simple corollary of the following theorem, which gives quadratically
decaying tail bounds on the max-load.

Theorem 3. Let u ≥ ℓ ≥ 1,m ≥ 1 be integers, n := 2ℓ, and H the set of linear maps Fu
2 → Fℓ

2.
For any S ⊆ Fu

2 with cardinality m and r ≥ 6,

Pr
h∼H

[
max
y∈Fℓ

2

|h−1(y) ∩ S| ≥ r · opt(m,n)

]
≤ 49

(r − 2)2
.

Our techniques arguably yield a more streamlined proof than [ADM+97], which first proves
a coupon collector property, and then cleverly converts it to a max-load bound. In contrast,
we directly analyze the max-load by defining a potential function and tracking its growth. We
elaborate further in Section 1.3.

In terms of matching lower bounds, we note Theorem 2 is tight up to constant factors. In
particular, Celis, Reingold, Segev, and Wieder show that any family of hash functions will have
max-load Ω(opt(m,n)) with high probability [CRSW13, generalization of Theorem 5.1].

1Applying their argument to a purely random function only yields an O(logn) expectation bound on the max-load.
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Interestingly, in the regime m = Ω(n log n), we show that with high probability, every bin
has load within a constant factor of opt(m,n).

Theorem 4. Let u ≥ ℓ ≥ 1,m ≥ 1 be integers, S ⊆ Fu
2 a set of cardinality m, and H the set of

linear maps Fu
2 → Fℓ

2. For every 0 < ε < 1/2, there exists constants C1 < C2 depending on ε
such that for m ≥ C−1

1 n log n,

Pr
h∼H

[
∀y ∈ Fℓ

2, C1
m

n
≤ |h−1(y) ∩ S| ≤ C2

m

n

]
≥ 1− ε.

In particular, C1 = Ω(ε74) and C2 = O(ε−1/2).

This can be seen as a generalization of the result of [ADM+97, Theorem 7], which states that
H satisfies the covering property. The covering property, named after the fact that the cover
time of a random walk on the complete graph on n vertices is O(n log n), says that if Ω(n log n)
balls are mapped to n bins by h ∼ H, every bin will be occupied with high probability. We show
these hash functions actually satisfy a blanketing property : if Ω(n log n) balls are mapped to n
bins by h ∼ H, every bin will contain Ω(log n) balls with high probability. A fully random h
has this property by the fact that the blanket time [WZ96] of the complete graph is O(n log n).
Interestingly, we use potential functions to prove this claim as well.

Comparison with Dhar and Dvir

A recent work of Dhar and Dvir [DD22] also established two-sided bounds on all bins for linear
hash functions. They proved the following:

Theorem 5 ([DD22], Theorem 2.4). Let u ≥ ℓ ≥ 1 be integers, n := 2ℓ, ε, τ ∈ (0, 1), and S ⊆ Fu
2

a set of cardinality m. Let H be the set of linear maps h : Fu
2 → Fℓ

2. For m = Ω(n log4(n/τε))
we have

Pr
h∼H

[
∀y ∈ Fℓ

2, (1− τ)
m

n
≤ |h−1(y) ∩ S| ≤ (1 + τ)

m

n

]
≥ 1− ε.

Take ε = O(1). We note that Theorem 5 gives strong deviation bounds from the optimal load,
especially if one sets τ = o(1), whereas our Theorem 4 only establishes that all bins are within
some constant multiplicative factor of optimal. However, Theorem 5 only holds in the regime
m = Ω(n log4 n), whereas Theorem 4 can handle m as small as Θ(n log n). This gap between m
and n is optimal, as it was shown in [ADM+97] that there exists sets of size 0.69n log n such
that no linear map will even occupy all bins. Our techniques are also quite different. Dhar
and Dvir [DD22] first reduce the problem of bounding the max-load to bounding the size of
Furstenberg sets and then apply the polynomial method, while our proof constructs a potential
function and bounds its growth to yield the result.

In summary:

• when m = O(n log n), Theorem 2 gives us optimal upper bounds (up to a constant multi-
plicative factor) on all bins,

• when m ∈ [Ω(n log n), O(n log4 n)], Theorem 4 gives us two-sided multiplicative bounds
from the mean load on all bins,

• and when m = Ω(n log4 n), Theorem 5 gives very strong bounds on the additive deviation
of all bins from the mean.

1.3 Proof Overview

For simplicity, assume H is a random surjective linear map Fu
2 → Fℓ

2. We would like to directly
analyze the load distribution of H, but this is quite complicated to do. Instead, for a set of
balls S and hash h, we define a potential function Φ that measures how “imbalanced” the

4



allocation of S by h is. In particular, we want a potential function Φ := Φ(S, h) such that if one
preimage of h contains ≥ t elements in S, then Φ ≥ f(t) for some function f . The hope is now
that analyzing Φ will be much easier than analyzing the load distribution directly.

We use the potential Ey[b
|h−1(y)∩S|], which takes the average of the exponentials of all the

bin loads with some base b > 1. To analyze this potential, we think of hashing our universe,
Fu
2 , “one kernel vector at a time.” In particular, any h : Fu

2 → Fℓ
2 can be decomposed into

h = h1 ◦ h2 ◦ · · · ◦ hu−ℓ, where hi : Fu−i+1
2 → Fu−i

2 is a random surjective map. Each hi is much
simpler to analyze, and allows us to show that if h≤i := h1 ◦ · · · ◦ hi and Φi := Φ(S, h≤i), then
E[Φi+1|Φ1, . . .Φi] ≤ Φ2

i .
It remains to show that these conditional expectation bounds can be leveraged to give a tail

bound on Φu−ℓ = Φ. A tempting approach is to use the conditional expectations to bound
E[Φ] ≤ f(t)/2, and then apply Markov’s inequality to get a tail bound. Unfortunately, there
exists random variables satisfying the conditional expectation bounds, but with E[Φ] much larger
than f(t). Nevertheless, we prove a technical lemma showing that although E[Φ] may be larger
than f(t), the conditional expectation bounds enforce that Φ will still be smaller than f(t) with
good probability. A tail bound of similar flavor was established in [ADM+97], but only works on
random variables less than 1, and is inapplicable to our setting.

This lemma allows us to prove that the max-load exceeds r logn
log logn with probability O(1/r).

Unfortunately, this is not enough to deduce an O(log n/ log log n) bound in expectation. In fact,
only using the property E[Φi+1|Φ1, . . .Φi] ≤ Φ2

i provably cannot give a stronger tail bound.
Thankfully, our potential functions have a strong monotonicity property: ∀i,Φi+1−1 ≥ 2(Φi−1).
With some technical work, we can leverage the monotonicity and squared conditional expectation
properties to obtain quadratically stronger tail bounds, from which optimal expected max-load
follows straightforwardly.

Surprisingly, our potential functions also allow us to establish lower bounds on the loads
of all bins. By setting the base b < 1, the potential now detects whether some bin is light.
Combining this with the max-load analysis allows us to deduce our two-sided bounds on the bin
loads.

To the best of our knowledge, our analysis provides the first proof of optimal max-load for a
function that is universal, but not 3-wise independent. In fact, our proof technique applies to a
broader class of hash functions mapping [2u]→ [2ℓ]. Imagine starting with 2u bins, where each
of the 2u universe elements are in their own bin. For u− ℓ iterations, pseudorandomly pair bins
up in a pairwise independent fashion (i.e., for an arbitrary bin, the marginal distribution of the
bin’s partner is uniform among all bins) and consolidate each pair into one bin. Consequently,
each iteration halves the number of bins, and at the end of this process, we will have hashed into
n bins. Our techniques show that any such hashing scheme will have optimal expected max-load.
The case of surjective linear maps is when in each round, a random vector v is picked, and each
bin x is paired with bin x+ v.

2 Preliminaries

2.1 Notation

We let log denote the base-2 logarithm, and ln denote the base-e logarithm. For a list of vectors
v1, . . . , vn, we will denote the tuple v≤i := (v1, v2, . . . , vi) and Vi = Span(v≤i) (by convention,
V0 = {0}). We will use the convention 00 = 1. Throughout this paper, we always have
ℓ = ℓ(n) := log n and n a power of 2. F2 is the finite field over {0, 1}. For a set S, we write
s ∼ S to denote that s is sampled uniformly at random from S.

Definition 1. Let h : A→ B and S ⊆ A be a subset. We define the maximum load function

M(S, h) := max
y∈B
|h−1(y) ∩ S|.
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2.2 Inequalities

We will use the classic inequality 1 + x ≤ ex for all x, and the following not-so-classic variant.

Fact 1. For x < 1, we have 1− x ≥ e−
x

1−x .

Proof. Note 1
1−x = 1+ x

1−x ≤ e
x

1−x . When x < 1, both sides of the inequality are positive, and
taking reciprocals gives the fact.

We will also use Bernoulli’s Inequality.

Fact 2. For an integer n ≥ 1 and 1 + x ≥ 0, (1 + x)n ≥ 1 + nx.

Finally, for the two-sided bounds, we will use standard facts about martingales, such as the
Doob martingale and an elementary version of Azuma’s inequality [MU05, Chapter 12].

Fact 3. Let (Xi)i≥0 be a martingale such that for all i, |Xi+1 −Xi| ≤ 1. Then for all positive
integers k and real number ε > 0, we have

Pr[Xk −X0 ≤ −ε] ≤ e−ε2/2k.

2.3 Random Linear Maps

If h : Fu
2 → Fℓ

2 is a linear map with kernel V ≤ Fu
2 and y is in the image of h, then h−1(y) = x+V

for some x ∈ Fu
2 . A random surjective linear map h : Fu

2 → Fℓ
2 is equivalent to sampling a uniform

(u− ℓ)-dimensional subspace V ≤ Fu
2 , and then sampling a uniform linear h with kernel V . For

any u ≥ t ≥ ℓ and surjective map h2 : Ft
2 → Fℓ

2, if h1 : Fu
2 → Ft

2 is a uniform random linear
map, then h1 ◦ h2 : Fu

2 → Fℓ
2 is a uniform random linear map.

3 Introducing the Potential Functions

Consider k vectors v≤k ∈ (Fu
2 )

k and a set of balls S ⊆ Fu
2 . Recall Vi = Span(v≤i). To (v≤k, S)

we will associate functions {Si : Fu
2 → N}0≤i≤k, defined by

Si(x) := |(x+ Vi) ∩ S|. (1)

In particular, Si depends on S and v≤i. Intuitively, S0 is (the indicator of) S, and Si(x) is the
number of balls in the same bin as x after hashing according to the kernel vectors v≤i.

Now for any real number b ≥ 0, we can define a sequence of potential functions

Φi = Φi(S; b; v≤i) := Ex∼Fu
2
[bSi(x)].

The following claim shows that if b ≥ 1, a heavy bin implies large potential.

Lemma 1. Let v≤i be a fixed tuple of linearly independent vectors in Fu
2 , and let b ≥ 1. If there

exists x ∈ Fu
2 such that |(x+ Vi) ∩ S| ≥ m, then Φi ≥ bm

2u−i .

Proof. If v ∈ Vi, then v + Vi = Vi. Hence, for all v ∈ Vi, Si(x+ v) = Si(x) ≥ m. Therefore,

Φi =
1

2u

∑
x′∈Fu

2

bSi(x
′) ≥ 1

2u

∑
x′∈x+Vi

bSi(x
′) ≥ 1

2u
|Vi|bm =

bm

2u−i
,

where we used the fact bx is increasing for b ≥ 1.

Interestingly, if we use a base b ≤ 1, we can detect by the same test if some bin is light as
well. This will help us establish two-sided bounds on the bins later on.
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Lemma 2. Let v≤i be a fixed tuple of linearly independent vectors in Fu
2 , and let b ≤ 1. If there

exists x ∈ Fu
2 with |(x+ Vi) ∩ S| ≤ m, then Φi ≥ bm

2u−i .

Proof. The proof is essentially the same as Lemma 1. We observe that for all v ∈ Vi,
Si(x+ v) ≤ m. Hence,

Φi =
1

2u

∑
x′∈Fu

2

bSi(x
′) ≥ 1

2u

∑
x′∈x+Vi

bSi(x
′) ≥ 1

2u
|Vi|bm =

bm

2u−i
,

where we used the fact bx is decreasing for b ≤ 1.

The following claim relates Si to Si+1.

Claim 1. For any vectors v≤(i+1), we have

Si(x) + Si(x+ vi+1) =

{
2Si(x) vi+1 ∈ Vi

Si+1(x) vi+1 /∈ Vi

.

Proof. If vi+1 ∈ Vi, then Vi = vi+1 + Vi, and so

Si(x) + Si(x+ vi+1) = Si(x) + Si(x) = 2Si(x).

If vi+1 /∈ Vi, then Vi+1 = Vi ⊔ (vi+1 + Vi). Thus, (x+ Vi) ∩ S and (x+ vi+1 + Vi) ∩ S partition
(x+ Vi+1) ∩ S, implying that Si(x) + Si(x+ vi+1) = Si+1(x).

Using the above claim, we can prove the following crucial lemma which upper bounds the
conditional expectations of our potentials.

Lemma 3. Let v≤i ∈ (Fu
2 )

i, and let vi+1 ∼ Fu
2 \ Vi. We have

Evi+1 [Φi+1] ≤ Φ2
i .

Proof. For x, vi+1 ∈ Fu
2 picked uniformly and independently, x and x + vi+1 are uniform and

independent as well. Hence

Ex,vi+1
[bSi(x)+Si(x+vi+1)] = Ex,vi+1

[bSi(x)+Si(vi+1)] = Ex[b
Si(x)] · Evi+1

[bSi(vi+1)] = Φ2
i . (2)

Now for any fixed vi+1 ∈ Vi, we have

Ex[b
Si(x)+Si(x+vi+1)] = Ex[b

2Si(x)] ≥ Ex[b
Si(x)]2 = Φ2

i (3)

by Claim 1 and convexity. By an averaging argument, (2) and (3) imply

Φ2
i ≥ Ex,vi+1 [b

Si(x)+Si(x+vi+1)|vi+1 /∈ Vi]

= Ex,vi+1
[bSi+1(x)|vi+1 /∈ Vi]

= Evi+1
[Φi+1|vi+1 /∈ Vi],

where the first equality follows from Claim 1.

At a high level, we will use Lemma 3 to upper bound the potential, from which Lemma 1
implies a small max-load.

While the above suffices to get decent tail bounds on the max-load, for technical reasons we
will need the following lemma, which is essential to establishing optimal expected max-load and
quantitatively stronger two-sided bounds.
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Lemma 4. Let v≤i ∈ (Fu
2 )

i, and vi+1 ∈ Fu
2 \ Vi. For any b ≥ 0 we have Φi+1 − 1 ≥ 2(Φi − 1).

When b ≤ 1, we also have Φi+1 ≤ Φi.

Proof. By Claim 1, elementary manipulations, and linearity of expectation,

Φi+1 − 1 = Ex[b
Si(x)+Si(x+vi+1) − 1]

= Ex[b
Si(x) − 1] + Ex[b

Si(x+vi+1) − 1] + Ex[b
Si(x)+Si(x+vi) − bSi(x) − bSi(x+vi+1) + 1]

= 2Ex[b
Si(x) − 1] + Ex[(b

Si(x) − 1)(bSi(x+vi+1) − 1)]

≥ 2(Φi − 1),

where the inequality follows from the fact for any b, r, s ≥ 0, br − 1 and bs − 1 have the same
sign. When b ≤ 1, Claim 1 and the fact f(r) = br is decreasing tells us

Φi+1 = Ex[b
Si(x)+Si(x+vi+1)] ≤ Ex[b

Si(x)] = Φi.

4 Warmup: Optimal Max-Load With .99 Probability

In this section, we will use the potentials we constructed to show that a random linear map has

maximum load O
(

logn
log logn

)
with probability 0.99.

4.1 The Existential Case

To give intuition on how the potential functions will be used, we first prove a preliminary result.
We will show that for any choice of n balls, there exists a linear hash map that has a maximum
load of 2 lnn

ln lnn . To the best of our knowledge, even this existential result was not known prior to
our work. Recall Definition 1.

Theorem 6. Let u ≥ ℓ ≥ 1 be integers, n := 2ℓ, and S ⊆ Fu
2 be of cardinality n. There exists a

linear map h : Fu
2 → Fℓ

2 such that

M(S, h) <
2 lnn

ln lnn
.

Proof. Define k := u − ℓ. We will carefully pick linearly independent kernel vectors v≤k from
Fu
2 , and then argue that any linear h : Fu

2 → Fℓ
2 with kernel V := Span(v≤k) will have small

maximum load.
Using the vectors v≤k and set S, define {Si(x) := |(x+ Vi) ∩ S|}0≤i≤k and define potentials

{Φi := Ex∼Fu
2
[bSi(x)]}0≤i≤k for b = lnn. As |S| = n, we can compute

Φ0 = Ex[b
S0(x)] =

n

2u
· b+

(
1− n

2u

)
· 1 ≤ 1 +

lnn

2k
.

By Lemma 3, for i = 1, 2, . . . , k we can iteratively pick vi+1 /∈ Span(v≤i) such that Φi+1 ≤ Φ2
i .

Upon picking these k linearly independent vectors v≤k in this manner, we claim any h with
Span(v≤k) =: V as the kernel will yield the desired result. To see this, first notice

Φk ≤ Φ2
k−1 ≤ · · · ≤ Φ2k

0 ≤
(
1 +

lnn

2k

)2k

< elnn = n.

Assume there was y such that |h−1(y) ∩ S| ≥ 2 lnn
ln lnn . Then there must exist x such that

|(x+ V ) ∩ S| ≥ 2 lnn
ln lnn . But by Lemma 1, this implies

Φk ≥
(lnn)

2 lnn
ln lnn

2u−k
=

n2

2ℓ
= n,

absurd!
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4.2 A Tail Bound to Boost Existence to Abundance

The above theorem showed the existence of a choice of kernel vectors v1, . . . , vk that minimized
the potential function, thereby implying the existence of a load-balancing linear map. We would
like to show most choices of v≤k will minimize the potential. To do so, we will prove a technical
lemma that converts the conditional expectation upper bound guarantees from Lemma 3 into
tail bounds on the final potential. In particular, while the last section showed the existence

of v≤k such that Φk ≤ Φ2k

0 , the following lemma shows that most choices of v≤k will have

Φk ≤ (Φ2k

0 )O(1).

Lemma 5. Let X0 ≥ 1 be a constant, and let X1, . . . , Xk ≥ 1 be random variables satisfying
E[Xi+1|X≤i] ≤ X2

i . For any t > 1,

Pr[Xk ≥ t2
k−1

] ≤ X2
0 − 1

t− 1
.

Remark 1. Lemma 5 is tight for the sequence

• X1 =

{
t with probability

X2
0−1
t−1

1 otherwise
,

• For i > 1, Xi+1 = X2
i .

Proof of Lemma 5. We proceed by induction on k. For k = 1, it follows by Markov’s inequality
and the fact X1 − 1 is a nonnegative random variable that

Pr[X1 ≥ t] = Pr[X1 − 1 ≥ t− 1] ≤ X2
0 − 1

t− 1
.

Now assume we have the lemma for k and wish to prove it for k + 1. We can bound

Pr[Xk+1 ≥ t2
k

] = EX1

[
Pr
[
Xk+1 ≥ (t2)2

k−1
]
|X1

]
≤ EX1

[
min

(
1,

X2
1 − 1

t2 − 1

)]
,

where the inequality follows from the inductive hypothesis and the fact that all probabilities are
at most 1. To bound the above expression, we will first upper bound the argument of EX1 [·] in
the domain X1 ≥ 1 by a linear function.

Claim 2. Let x ≥ 1 and t > 1. We have

min

(
1,

x2 − 1

t2 − 1

)
≤ x− 1

t− 1
.

Proof. If 1 ≤ x ≤ t, then x2−1
t2−1 ≤ 1, x+1

t+1 ≤ 1, and x−1
t−1 ≥ 0. Hence

min

(
1,

x2 − 1

t2 − 1

)
=

x2 − 1

t2 − 1
=

(
x− 1

t− 1

)(
x+ 1

t+ 1

)
≤ x− 1

t− 1
.

If x > t, we have x−1
t−1 > 1 ≥ min

(
1, x2−1

t2−1

)
.

With this linear upper bound, we can use the bound on E[X1] and linearity of expectation
to finish the inductive step as follows.

Pr[Xk+1 ≥ t2
k

] ≤ EX1

[
min

(
1,

X2
1 − 1

t2 − 1

)]
≤ EX1

[
X1 − 1

t− 1

]
≤ X2

0 − 1

t− 1
.

The desired result follows.
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4.3 Using the Tail Bound to Analyze Potentials

With Lemma 5 in hand, we can now revisit the proof strategy of Theorem 6, and use the tail
bound to argue the potentials are minimized with high probability.

Theorem 7. Let ℓ ≥ 1, u ≥ ℓ + log ℓ be integers, and n := 2ℓ. Let S ⊆ Fu
2 be of cardinality n,

and let H be the set of all surjective linear maps h : Fu
2 → Fℓ

2. For any r ≥ 1,

Pr
h∼H

[
M(S, h) ≥ r · log n

log log n

]
≤ 3 log e

2(r − 1)
.

In the next section, we will establish a stronger tail bound that decays quadratically (Theo-
rem 9). Theorem 7 suffices for a high constant probability guarantee.

Proof. Let k := u− ℓ. To pick h ∼ H, we will pick linearly independent vectors v1, . . . vk ∈ Fu
2

uniformly at random, and then pick a uniformly random h with kernel V := Span(v≤k). In
particular, for i = 1, . . . , k we will iteratively pick vi ∼ Fu

2 \ Vi−1. Using S and v≤k, define the
functions {Si(x) := |(x + Vi) ∩ S|}0≤i≤k, and the potentials {Φi(x) := Ex∼Fu

2
[ℓSi(x)]}i∈[k]. If

some preimage of h had load rℓ/ log ℓ, then |(x+ V )∩ S| ≥ rℓ/ log ℓ for some shift x. Lemma 1
then implies

Φk ≥
ℓrℓ/ log ℓ

2u−k
=

2rℓ

2ℓ
= nr−1.

We can easily compute

Φ0 = Ex[ℓ
S(x)] = 1− n

2u
+

nℓ

2u
< 1 +

ℓ

2k
.

Consequently, Φ2
0 ≤ 1 + 2ℓ/2k + (ℓ/2k)2 ≤ 1 + 3ℓ/2k, where we used the assumption

u ≥ ℓ+ log ℓ ⇐⇒ ℓ/2k ≤ 1. We already know by Lemma 3 that E[Φi+1|Φ≤i] ≤ Φ2
i . Hence, by

Lemma 5 (where all Φi ≥ 1 since ℓ ≥ 1), we have

Pr

[
M(S, h) ≥ rℓ

log ℓ

]
≤ Pr[Φk ≥ nr−1] ≤ Φ2

0 − 1

n(r−1)/2k−1 − 1

≤ 3ℓ/2k

(r − 1)(lnn)/2k−1
(ex − 1 ≥ x)

=
3 log e

2(r − 1)
.

5 Optimal Average Max-Load

In this section, we refine the techniques from Section 4 to prove tail bounds strong enough to
establish our main result: optimal expected max-load. The tail bound in Theorem 7 decays too
slowly to imply this expectation bound. At first glance, strengthening the tail bound appears
difficult, as the technical lemma underpinning it, Lemma 5, is tight by Remark 1. Crucially,
our potential functions satisfy a strong monotonicity property that Lemma 5 does not exploit:
Xi+1 − 1 ≥ 2(Xi − 1) for all i ≥ 1 (Lemma 4). Under this assumption, we can prove a
quadratically stronger version of Lemma 5 (see Theorem 8).

Interestingly, the conditions required for quadratically decaying appear to be quite delicate
for two reasons.
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• A stronger version of Lemma 5 is not possible under the weaker and more standard mono-
tonicity property Xi+1 ≥ Xi. There exists a random sequence (Xi) with E[Xi+1|X≤i] ≤
X2

i and Xi+1 ≥ Xi that asymptotically saturates the bound of Lemma 5.

• The tight example from Remark 1 satisfies Xi+1 − 1 ≥ 2(Xi − 1) for all i ≥ 1, but not
for i = 0—showing that even a single exceptional timestep can eliminate any asymptotic
improvement on the tails.

5.1 A Stronger Tail Bound

The main result we will show is the following.

Theorem 8. Let X0 > 1 be a constant, and let X1, . . . , Xk be random variables satisfying
Xi+1 − 1 ≥ 2(Xi − 1) and E[Xi+1|X≤i] ≤ X2

i for all i. For 1 + 4(X0 − 1) ≤ t ≤ 2, we have

Pr[Xk ≥ t2
k−1

] ≤ 48

(
X0 − 1

t− 1

)2

.

We would like to prove the above statement using induction, similar to the proof of Lemma 5.
However, to make the induction go through, we need to strengthen our inductive hypothesis.
For each i ≥ 0, define the functions

βi(t, δ) =
t2

i − (1 + 2iδ)2

t2i − (1 + 2i+1δ)
.

The following stronger claim will be easier to prove via induction.

Lemma 6. Let δ > 0 and X0 > 1 be constants, and let X1, . . . , Xk be random variables such
that ∀i ≥ 0, Xi ≥ 1 + 2iδ, and E[Xi+1|X≤i] ≤ X2

i . For any t > 1 + 2δ,

Pr[Xk ≥ t2
k−1

] ≤ 1− t−X2
0

t− 1− 2δ

k−1∏
i=1

βi(t, δ).

Remark 2. Lemma 6 is tight for the sequence

• X0 = 1 + δ, and X1 =

{
1 + 2δ with probability

t−X2
0

t−1−2δ

t otherwise
,

• for i ≥ 1,

– if Xi = t2
i−1

, set Xi+1 = t2
i

– if Xi = 1 + 2iδ, set Xi+1 =

{
1 + 2i+1δ with probability βi(t, δ)

t2
i

otherwise
.

Remark 3. Setting δ = 0 recovers Lemma 5.

Before we start the proof, we will establish some preliminary properties of βi(t, δ).

Claim 3. βi(t
2, 2δ) = βi+1(t, δ)

Proof.

βi(t
2, 2δ) =

(t2)2
i − (1 + 2i(2δ))2

(t2)2i − (1 + 2i+1(2δ))
=

t2
i+1 − (1 + 2i+1δ)2

t2i+1 − (1 + 2i+2δ)
= βi+1(t, δ).

11



Claim 4. For all i ≥ 1 and t > 1 + 2δ, 0 ≤ βi(t, δ) ≤ 1.

Proof. For the lower bound, note t2
i ≥ 1+2i+1δ for all i (by Fact 2). Consequently, the numer-

ator and denominator of βi(t, δ) are both positive. For the upper bound, we see 1− βi(t, δ) =
4iδ2

t2i−(1+2i+1δ)
. The numerator is trivially nonnegative, and the denominator is positive by

Fact 2.

With these tools, we are ready to prove Lemma 6.

Proof of Lemma 6. We apply induction on k. For the base case k = 1, we apply Markov’s
inequality on the nonnegative random variable X1 − 1− 2δ to yield

Pr[X1 ≥ t] = Pr[X1 − 1− 2δ ≥ t− 1− 2δ] ≤ X2
0 − 1− 2δ

t− 1− 2δ
= 1− t−X2

0

t− 1− 2δ
.

Note the implicit use of t > 1 + 2δ in the application of Markov’s inequality.
Now assume the lemma for k. We will now prove it for k + 1. Write the tail probability as

Pr[Xk+1 ≥ t2
k

] = EX1 [Pr[Xk+1 ≥ (t2)2
k−1

|X1]]. (4)

For fixedX1, it follows thatX2, . . . , Xk+1 is a sequence of random variables of length k satisfying
Xi+1 ≥ 1 + 2i(2δ) and E[Xi+2|X1, X2, . . . , Xi+1] ≤ X2

i+1 for all i ∈ [k]. Furthermore, t2 ≥
1 + 2(2δ) by Fact 2. Hence, all assumptions of the inductive hypothesis are satisfied with the
instantiation δ ← 2δ, t ← t2. Utilizing this as well as the fact all probabilities are bounded by
1, we obtain

EX1 [Pr[Xk+1 ≥ (t2)2
k−1

|X1]] ≤ EX1

[
min

(
1, 1− t2 −X2

1

t2 − 1− 4δ

k−1∏
i=1

βi(t
2, 2δ)

)]

= 1− EX1

[
max

(
0,

t2 −X2
1

t2 − 1− 4δ

k∏
i=2

βi(t, δ)

)]

= 1− EX1

[
max

(
0,

t2 −X2
1

t2 − 1− 4δ

)] k∏
i=2

βi(t, δ) (5)

where the last equality used the fact
∏k

i=2 βi(t, δ) ≥ 0. To bound this expression, we would like
to mimic the intuition of Claim 2 and bound the argument of EX1

[·] by a linear function in the
domain X1 ≥ 1 + 2δ. The following claim does so.

Claim 5. Let δ ≥ 0, x ≥ 1 + 2δ, and t > 1 + 2δ. Then

max

(
0,

t2 − x2

t2 − 1− 4δ

)
≥
(

t− x

t− 1− 2δ

)
β1(t, δ).

Assuming this claim is true for now (see Remark 4 for geometric intuition), we can use the
fact X1 ≥ 1 + 2δ, βi(t, δ) ≥ 0, Claim 5, and linearity of expectation to bound

1− EX1

[
max

(
0,

t2 −X2
1

t2 − 1− 4δ

)] k∏
i=2

βi(t, δ) ≤ 1− EX1

[
t−X1

t− 1− 2δ
· β1(t, δ)

] k∏
i=2

βi(t, δ)

≤ 1− t−X2
0

t− 1− 2δ

k∏
i=1

βi(t, δ). (6)
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Combining (4),(5), and (6) gives us

Pr[Xk+1 ≥ t2
k

] ≤ 1− t−X2
0

t− 1− 2δ

k∏
i=1

βi(t, δ).

The desired result follows by induction.

We now prove Claim 5. Notice when δ = 0 this is exactly Claim 2.

Proof of Claim 5. If x > t, then t−x
t−1−2δ < 0 as t > 1 + 2δ. Since we know βi(t, δ) ≥ 0 by

Claim 4, it follows (
t− x

t− 1− 2δ

)
β1(t, δ) < 0 ≤ max

(
0,

t2 − x2

t2 − 1− 4δ

)
.

If x ≤ t, then t−x
t−1−2δ ≥ 0 and t2−x2

t2−1−4δ ≥ 0, since t > 1+ 2δ and t2 > 1+ 4δ (by Fact 2). Hence,

max

(
0,

t2 − x2

t2 − 1− 4δ

)
=

t2 − x2

t2 − 1− 4δ
=

(
t− x

t− 1− 2δ

)(
(t+ x)(t− 1− 2δ)

t2 − 1− 4δ

)
≥
(

t− x

t− 1− 2δ

)
(t+ 1 + 2δ)(t− 1− 2δ)

t2 − 1− 4δ

=

(
t− x

t− 1− 2δ

)(
t2 − (1 + 2δ)2

t2 − 1− 4δ

)
=

(
t− x

t− 1− 2δ

)
β1(t, δ).

Remark 4. As per the diagram below, the LHS of Claim 5 is a downward-facing parabola which
flattens out to 0 for x ≥ t. By convexity, a lower bound for x ≥ 1 + 2δ will be the line that
intersects the parabola at x = 1 + 2δ and x = t. The equation of this line is exactly the RHS.

−1

1

(t, 0)

(1 + 2δ, β1(t, δ))

x

y

y = max
(
0, t2−x2

t2−(1+4δ)

)
y = β1(t,δ)

(1+2δ)−t (x− t)

At this point, we have unconditionally proven Lemma 6. Using Lemma 6, we can now show
Theorem 8 is true.

Proof of Theorem 8. Let δ := X0 − 1. Notice that by composing the assumed inequality, the
random variables satisfy Xi − 1 ≥ 2i(X0 − 1) = 2iδ for each i. Hence, we can apply Lemma 6

and use the fact β0(t, δ) =
t−(1+δ)2

t−1−2δ =
t−X2

0

t−1−2δ to yield

Pr[Xk ≥ t2
k−1

] ≤ 1−
(

t−X2
0

t− 1− 2δ

) k∏
i=1

βi(t, δ) = 1−
k∏

i=0

βi(t, δ).

13



Since Claim 4 tells us 0 ≤ βi(t, δ) ≤ 1 for all i, we can treat these quantities as probabilities.
Consider k + 1 independent and biased coins, where coin i has probability βi(t, δ) of showing
heads. By the union bound on the event that at least one tail shows, we have

1−
k∏

i=0

βi(t, δ) ≤
k∑

i=0

(1− βi(t, δ)) =

k∑
i=0

4iδ2

t2i − 1− 2i+1δ
≤ 2δ2

k∑
i=0

4i

t2i − 1
,

where we used the fact that for all i, t2
i − 1 ≥ 2i(t − 1) ≥ 2i+2δ by Fact 2 and the theorem

assumption. For i ≤ log
(

5
t−1

)
, we have

∑
i≤log( 5

t−1 )

4i

t2i − 1
=

∑
i≤log( 5

t−1 )

2i

ln t
· 2i ln t

e2i ln t − 1
≤ 1

ln t

∑
i≤log( 5

t−1 )

2i ( x
ex−1 ≤ 1)

≤ 1

ln t
· 10

t− 1

≤ t

t− 1
· 10

t− 1
(1 + x ≥ e

x
1+x )

≤ 20

(t− 1)2
,

For i > log
(

5
t−1

)
, we can bound

∑
i>log( 5

t−1 )

4i

t2i − 1
=
∑
j≥1

4log(5/(t−1))4j

(t5/(t−1))2j − 1
≤
(

5

t− 1

)2∑
j≥1

4j

(1 + 5
t−1 (t− 1))2j − 1

(Fact 2)

≤
(

5

t− 1

)2∑
j≥1

(4/35)j

≤ 4

(t− 1)2
.

Hence we have

Pr[Xk ≥ t2
k−1

] ≤ 2δ2
k∑

i=0

4i

t2i − 1
≤ 2δ2

(
20

(t− 1)2
+

4

(t− 1)2

)
= 48

(
X0 − 1

t− 1

)2

.

5.2 Applying the Tail Bound To Our Potentials

We will strengthen the tail bounds of Theorem 7, and also generalize Theorem 7 to the setting
of m balls and n bins, for m ̸= n. For brevity, define

opt(m,n) =

{
logn

log(n lnn
m )

m ≤ 1
2n log n

m
n m > 1

2n log n

to be the function that outputs the maximum load obtained when a fully random hash maps m
balls to n bins.

Theorem 9. Let u, ℓ,m ≥ 1 be integers such that u ≥ ℓ+ 2 log(ℓm), and let n := 2ℓ. Let H be
the set of surjective linear maps Fu

2 → Fℓ
2. Let S ⊆ Fu

2 be a subset of size m. Then for any real
r ≥ 6,

Pr
h∼H

[M(S, h) ≥ r · opt(m,n)] ≤ 48

(r − 2)2
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Proof. Define k := u − ℓ. We assume r ≤ m, since M(S, h) ≤ |S| = m for any h. We will pick
h ∼ H by iteratively sampling vi+1 ∼ Fu

2 \ Vi, and then picking random h with ker(h) = V .
Define the associated functions {Si(x) := |(x+ Vi) ∩ S|}0≤i≤k. We will split into two cases.
Case 1: m ≤ 1

2n log n.

Set b = nℓ/m and Φi := Ex∼Fu
2
[bSi(x)] for 0 ≤ i ≤ k. Then

Φ0 =
(
1− m

2u

)
· 1 + m

2u
· b ≤ 1 +

bm

2u
= 1 +

ℓ

2k
.

By Lemma 1 and the fact opt(m,n) = ℓ/ log b in this case, we have

Pr[M(S, h) ≥ r · opt(m,n)] ≤ Pr

[
Φk ≥

br·opt(m,n)

n

]
= Pr[Φk ≥ nr−1].

Note that for t = 1 + rℓ/2k, t2
k−1 ≤ erℓ/2 < nr−1. Furthermore, as 4 ≤ r ≤ m and u ≥

ℓ + log(ℓm), we have t − 1 ≥ 4ℓ/2k ≥ 4(Φ0 − 1) and t − 1 ≤ mnℓ/2u ≤ 1. Finally, we have
Φi+1 − 1 ≥ 2(Φi − 1) for all i by Lemma 4. Hence, we can use Theorem 8 to bound

Pr[Φk ≥ nr−1] ≤ Pr[Φk ≥ t2
k−1

] ≤ 48

(
Φ0 − 1

t− 1

)2

≤ 48

(
ℓ/2k

rℓ/2k

)2

=
48

r2
.

Case 2: m > 1
2n log n.

Define Φi := Ex∼Fu
2
[2Si(x)] for 0 ≤ i ≤ k. Then

Φ0 = 1− m

2u
+

2m

2u
= 1 +

m

2u
.

By Lemma 1 and the fact opt(m,n) = m/n in this regime,

Pr[M(S, h) ≥ r · opt(m,n)] = Pr[M(S, h) ≥ rm/n]

≤ Pr[Φk ≥ 2rm/n−ℓ]

≤ Pr[Φk ≥ 2(r−2)m/n] (m ≥ 1
2nℓ)

For t := 1 + (r − 2)m/2u, we have t2
k−1 ≤ e(r−2)m/2n ≤ 2(r−2)m/n. Since 6 ≤ r ≤ m and

u ≥ ℓ+2 logm, we can deduce t−1 ≥ 4m/2u ≥ 4(Φ0−1) and t−1 ≤ m2/2u ≤ 1. Furthermore,
we have Φi+1 − 1 ≥ 2(Φi − 1) for all i by Lemma 4. Hence, by Lemma 6, we have

Pr[Φk ≥ t2
k−1

] ≤ 48

(
Φ0 − 1

t− 1

)2

≤ 48

(
m/2u

(r − 2)m/2u

)2

=
48

(r − 2)2
.

With a simple argument (whose proof is deferred to Appendix A.1), we can remove the
artificial lower-bound condition on u and the surjectivity condition on h.

Theorem 10. Let u ≥ ℓ ≥ 1 and m ≤ 2u be integers. Let n := 2ℓ. Let h : Fu
2 → Fℓ

2 be a random
linear map. For any S ⊆ Fu

2 of size m and r ≥ 6, we have

Pr
h∼H

[M(S, h) ≥ r · opt(m,n)] ≤ 49

(r − 2)2
.

With these strong tails, optimal expected max-load is a simple corollary.

Theorem 11. Let u ≥ ℓ ≥ 1 be integers, and n := 2ℓ. For uniformly random linear map
h : Fu

2 → Fℓ
2,

Eh[M(S, h)] ≤ 16 · opt(m,n).
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Proof.

Eh[M(S, h)] =

∫ ∞

0

Pr[M(S, h) ≥ t]dt

≤
∫ 9·opt(m,n)

0

1dt+

∫ ∞

9·opt(m,n)

Pr[M(S, h) ≥ t]dt

≤ 9opt(m,n) + opt(m,n)

∫ ∞

9

Pr[M(S, h) ≥ ropt(m,n)]dr

≤ 9opt(m,n) + 49opt(m,n)

∫ ∞

9

1

(r − 2)2
dr (Theorem 10)

= 16 · opt(m,n).

6 Two-Sided Bounds

In the regime of m = Ω(n log n), we can give two-sided bounds on all bins. In particular, we
can show for any set of m balls, a random linear map will hash Θ(m/n) balls to each bin with
high probability.

Theorem 12. Let 0 < ε < 1/2 be a constant. There exists constants C1 < 1 < C2 depending
on ε such that for m ≥ C−1

1 n log n and any S ⊆ Fu
2 of cardinality m, a uniformly random linear

map h : Fu
2 → Fℓ

2 satisfies

Pr

[
∀y ∈ Fℓ

2,
C1m

n
≤ |h−1(y) ∩ S| ≤ C2m

n

]
≥ 1− ε.

Furthermore, C1 = Ω(ε74) and C2 = O(ε−1/2).

We reiterate that the condition m = Ω(n log n) is necessary: there exists S of size at least
0.69n log n such that every linear map has at least one empty bin ( [ADM+97], Proposition 2.2).
Interestingly, this two-sided bound is also proven using potential functions. To prove this, we
will require the following tail bound.

Lemma 7. Let 0 < ε < 1 and 0 ≤ X0 < 1 be fixed, and let 1 > X1 ≥ X2 ≥ · · · > 0
be random variables satisfying Xi+1 ≥ 2Xi − 1 and E[Xi+1|X≤i] ≤ X2

i . Then for
Cε = (1−X0)

25(ε/2)50 log(1/ε) and any s,

Pr
[
Xs ≥ 2−Cε2

s
]
≤ ε.

We will first prove Theorem 12 assuming this tail bound, and then prove the tail bound
afterwards.

Proof of Theorem 12. We first focus on the lower bound. Set t = log(4m/ε) and factor h =
h1 ◦ h2, where h1 : Fu

2 → Ft
2 is a uniformly random linear map, and h2 : Ft

2 → Fℓ
2 is a uniformly

random surjective linear map. h1 will collide any fixed pair of elements in S with probability

1/2t. Hence the expected number of pairwise collisions among S is
(
m
2

)
1
2t ≤

m2

2t+1 . Let E denote
the event in which there are at least m/2 pairs that collide. By Markov’s inequality,

Pr[E ] ≤ m2

2t+1
· 2
m

=
m

2t
=

ε

4
.

Letting k := t − ℓ, we will sample random linearly independent vectors v1, . . . , vk ∈ Ft
2,

and consider h2 with kernel V := Span(v≤k). Using the set h1(S) and vectors v≤k, we
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construct the associated functions {Si(x) := |(x + Vi) ∩ h1(S)|}0≤i≤k and potentials {Φi :=
Ex∼Fu

2
[(1/2)Si(x)]}0≤i≤k.

Conditioning on ¬E , we have |h1(S)| ≥ m −m/2 = m/2, and so the density of h1(S) ⊆ Ft
2

is lower bounded by m/2
4m/ε = ε/8. Consequently, we have

Φ0 ≤
(
1− ε

8

)
· 1 + ε

8
· 1
2
= 1− ε

16
.

Lemma 3 and Lemma 4 show that (Φi) satisfy the premise of Lemma 7. Hence, we can use
Lemma 7 and the fact ℓ ≤ C1m/n to deduce

Pr[Φk > 2−C1m/n−ℓ] ≤ Pr[Φk > 2−2C1m/n] = Pr[Φk > 2−(ε/2)C12
k

] ≤ ε/4

for C1 := 2
ε (1− Φ0)

25(ε/8)50 log(4/ε) = Ω(ε74). Now note for all y ∈ Fℓ
2, we have

h−1(y) =
⊔

z∈h−1
2 (y)

h−1
1 (z).

Hence,

|h−1(y) ∩ S| =
∑

z∈h−1
2 (y)

|h−1
1 (z) ∩ S| ≥

∑
z∈h−1

2 (y)

1(z ∈ h1(S)) = |h−1
2 (y) ∩ h1(S)|.

Therefore, it follows

Pr
[
∀y ∈ Fℓ

2, |h−1(y) ∩ S| < C1
m

n

]
≤ Pr

[
∀y ∈ Fℓ

2, |h−1
2 (y) ∩ h1(S)| < C1

m

n

]
≤ ε

4
+ Pr

[
∀y ∈ Fℓ

2, |h−1
2 (y) ∩ h1(S)| < C1

m

n

∣∣¬E]
≤ ε

4
+ Pr[Φk > 2−C1m/n−ℓ|¬E ] (Lemma 2)

≤ ε

4
+

ε

4
=

ε

2
. (7)

We already have from Theorem 10 that there exists C2 = 7ε−1/2 + 2 such that
Pr[M(S, h) > C2m/n] ≤ ε/2. Taking a union bound over this and Equation (7) gives
the desired result.

Proof of Lemma 7. The proof will resemble that of Theorem 7 in [ADM+97]. Call i a stride if
Xi−1 > 1/2 and (1 −Xi) ≥ 5

4 (1 −Xi−1), or if Xi−1 ≤ 1/2 and Xi ≤ 3
4Xi−1. We will show on

any conditioning of X≤i, i+ 1 is a stride with probability ≥ 1/3. We split into two cases.

• If Xi ≤ 1/2, then E[Xi+1] ≤ X2
i ≤ 1

2Xi. Therefore, by Markov’s inequality, Pr[Xi+1 >
3
4Xi] <

Xi/2
3Xi/4

= 2/3, so i+ 1 is a stride with probability at least 1/3.

• If Xi > 1/2, we will instead apply Markov’s inequality on 1− 2Xi +Xi+1. Note

E[1− 2Xi +Xi+1|X≤i] = 1− 2Xi +X2
i = (1−Xi)

2.

Hence, conditioned on X≤i, we have

Pr
Xi+1

[
1−Xi+1 <

5

4
(1−Xi)

]
= Pr

Xi+1

[
1− 2Xi +Xi+1 >

3

4
(1−Xi)]

]
<

(1−Xi)
2

3(1−Xi)/4
<

2

3
,

so i+ 1 is a stride with probability ≥ 1/3 in this case as well.
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Let j be the first integer such that Xj+1 < 1/2, and let k be the first integer such that
Xk+1 < ε2/8. Let s1 be the number of strides in [j], and let s2 be the number of strides
in {j + 1, . . . , k}. We observe that (1 − X0)(

5
4 )

s1 ≤ 1
2 , and so s1 ≤ log5/4(1/2(1 − X0)).

Similarly, we must have 1
2

(
3
4

)s2 ≥ ε2

8 , implying that s2 ≤ log4/3(4/ε
2). Therefore, there must

be at most s1 + s2 ≤ log5/4(4/(1 − X0)ε
2) strides in [k]. Define k∗ := 8 log5/4(4/(1 − X0)ε

2).
Let f(X0, X1, . . . , Xk∗) evaluate the number of strides in the first k∗ steps, and define Yi :=
E[f(X≤k∗)|X<i]. Notice (Yi) is a Doob martingale with |Yi+1 − Yi| ≤ 1 for all i. Furthermore,
since we showed each index is a stride with probability ≥ 1/3,

Y0 ≥ k∗/3 = (8/3) log5/4(4/(1−X0)ε
2) ≥ 16 log(2/ε)

Hence, by Azuma’s inequality (Fact 3) and the above string of inequalities,

Pr[k ≥ k∗] ≤ Pr

[
f(X≤k∗) ≤ log5/4

(
4

(1−X0)ε2

)]
≤ Pr

[
Yk∗ ≤ (3/8)Y0

]
≤ e−

(5Y0/8)2

2k∗ ≤ e−
(5/8)2

6 (16 log(2/ε)) ≤ ε/2.

If s ≤ k∗, we have just shown with probability at most ε/2 that Xs ≥ Xk ≥ ε2/8 ≥ 2−Cε2
s

for any Cε ≤ log(8/ε2). Henceforth, we will assume s > k∗. Conditioned on k < k∗, we have

Xk∗ < ε2/8. Let Ei be the event Xk∗+i < ε2
i+1/2i+3 and denote E≤t =

∧t
i=1 Ei. Notice that

E[Xk∗+i+1|E≤i] ≤ ε2
i+1+2/22i+6, so by Markov’s inequality,

Pr[¬Ei+1|E≤i] ≤
ε2

i+1+2/22i+6

ε2i+1+1/2i+4
≤ ε/2i+2.

Hence for any t we have

Pr [¬E≤t] =

t∑
i=0

Pr [¬Ei+1 ∧ E≤i] ≤
t∑

i=0

Pr[¬Ei+1|E≤i] ≤
∑
i≥0

ε/2i+2 ≤ ε/2.

Consequently by a union bound, k < k∗ and E≤(s−k∗) occurs with probability at least 1− ε.
In the event this happens, and noting k∗ = 8 log5/4(4/(1 − X0)ε

2) ≤ 25 log(4/(1 − X0)ε
2), it

follows

Xs ≤
ε2

s−k∗
+1

2s−k∗+3
≤ ε2

s((1−X0)ε
2/4)25+1 ≤ 2−Cε2

s

for Cε = (1−X0)
25(ε/2)50 log(1/ε). The desired result follows.
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A Deferred Proofs

A.1 Proof of Theorem 10: Removing the Surjectivity Assumption

Proof of Theorem 10. We will first show the result for u large enough, i.e. 2u−ℓ ≥ max{(m −
2)2, (mℓ)2}. At the end, we will remove this assumption on u. Let H be the set of linear
maps Fu

2 → Fℓ
2, and let K be the distribution of the nullity of h ∼ H. If k is the nullity of h,

then the number of universe elements v ∈ Fu
2 such that h(v) = 0 is 2k. For h ∼ H we have

Pr[h(v) = 0] = 2−ℓ for fixed v ̸= 0. Hence, we can compute by linearity that

Ek∼K [2k] = Eh∼H

∑
v∈Fu

2

1{h(v) = 0}

 =
∑
v∈Fu

2

Pr
h
[h(v) = 0] = 1 + 2−ℓ(2u − 1) ≤ 2u−ℓ + 1.

Let E be the event that h is surjective, i.e. k = u − ℓ. By Markov’s inequality on the random
variable 2k − 2u−ℓ (as k ≥ u− ℓ), we have

Pr [¬E ] = Pr
k∼K

[k ≥ u− ℓ+ 1] = Pr
k∼K

[
2k − 2u−ℓ ≥ 2u−ℓ

]
≤ 1

2u−ℓ
≤ 1

(m− 2)2
≤ 1

(r − 2)2
.

For brevity, set M := r · opt(m,n). We can use Theorem 9, the above observation, and the
fact u ≥ ℓ+ 2 log(ℓm) to deduce

Pr
h∼H

[M(S, h) ≥M ] ≤ Pr[¬E ] + Pr
h∼H

[M(S, h) ≥M |E ] ≤ 1

(r − 2)2
+

48

(r − 2)2
=

49

(r − 2)2
.

We will now remove the lower bound assumption on u. Intuitively, for any ℓ ≤ u′ < u we
can simply embed Fu′

2 into Fu
2 , and then port in the max-load result for Fu

2 .
More formally, let H′ be the set of linear maps Fu′

2 → Fℓ
2. Take an arbitrary u′-dimensional

subspace V ≤ Fu
2 . There is an isomorphism ι : Fu′

2 → V . Denote T := ι(S). Since T ⊆ V , we
have for any h : Fu

2 → Fℓ
2 that

M(T, h|V ) = max
y∈Fℓ

2

|(h|V )−1(y) ∩ T | = max
y∈Fℓ

2

|h−1(y) ∩ V ∩ T | = max
y∈Fℓ

2

|h−1(y) ∩ T | = M(T, h).

For h ∼ H, h|V : V → Fℓ
2 will be a uniform random linear map. Consequently,

Pr
h′∼H′

[M(S, h′) ≥M ] = Pr
h∼H

[M(T, h|V ) ≥M ] = Pr
h∼H

[M(T, h) ≥M ] ≤ 49

(r − 2)2

since T has cardinality m.
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