
Simplyfing Armoni’s PRG

Ben Chen∗ Amnon Ta-Shma†

May 21, 2025

Abstract

We propose a simple variant of the INW pseudo-random generator, where blocks
have varying lengths, and prove it gives the same parameters as the more complicated
construction of Armoni’s PRG. This shows there is no need for the specialized PRGs
of Nisan and Zuckerman and Armoni, and they can be obtained as simple variants of
INW.

For the construction to work we need space-efficient extractors with tiny entropy
loss. We use the extractors from [CL20] instead of [GUV09] taking advantage of the
very high min-entropy regime we work with. We remark that using these extractors has
the additional benefit of making the dependence on the branching program alphabet
Σ correct.

∗Department of Computer Science, Tel Aviv University. The research leading to these results has received
funding from the Israel Science Foundation (grant number 443/22). Email: ben1chen@gmail.com.

†Department of Computer Science, Tel Aviv University. The research leading to these results has received
funding from the Israel Science Foundation (grant number 443/22). Email: amnon@tauex.tau.ac.il.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 65 (2025)

1 Introduction

In this paper we revisit the problem of constructing pseudo-random generators (PRGs)
against bounded width read-once branching programs (ROBPs).1 Nisan [Nis90] constructed

a PRG ε–fooling length t width w ROBP over Σ with seed length Θ(log t · log wt|Σ|
ε

) using
pair-wise independence. Impagliazzo, Nisan and Wigderson [INW94] gave another variant
of the construction with a similar seed length, but using expanders, extractors or samplers
instead of pair-wise independence. The INW PRG has seed length log|Σ|+Θ(log t · log wt

ε
).

For the special case when the width w of the ROBP is much larger then the length
of the ROBP and the error, i.e., t

ε
≤ logc w for some constant c, Nisan and Zuckerman

[NZ96] constructed a different PRG with an optimal seed length Θ(log wt
ε
). Armoni [Arm98]

recursively used the NZ construction, and with a careful analysis obtained a PRG with seed

length θ(log t · log wt
ε

max{log logw

log t
ε
,1}

) for constant size Σ where t ≤ 2log
1−ε w for some constant ε > 0.

In [KNW08] Armoni’s PRG is instantiated with a specific space-explicit extractor re-

moving the parameters limit, and the resulting seed length is 2 log|Σ|+θ(log t · log wt
ε

max{log logw

log t
ε
,1}

).

Armoni’s PRG with [KNW08] bridges the gap between INW and NZ - it asymptotically
matches INW when t/ε is large, and it matches NZ when t/ε is small compared to w.

In this paper we construct another PRG that matches the parameters obtained in Armoni.
The surprising thing about our construction is that it avoids altogether the NZ PRG, and
also avoids the recursion in Armoni, and instead it is a direct, simple variant of INW. Saying
it differently, Armoni interpolates between two different PRG constructions: the NZ PRG
and the INW PRG, and his construction is a recursive combination of both. Instead, we
show that a simple variant of INW alone gives the same bounds for all parameter regimes.

To understand our new construction, we revisit the INW construction. The main building
block behind the INW construction is showing that one can recycle the randomness given
to a PRG, where the recycling is done using an expander, or more generally, a sampler or
an extractor. Specifically, instead of applying twice a PRG with two independent seeds, one
can apply it once (consuming s random bits) and then use a short seed (of length d ≪ s)
to recycle the s bits and get from it a new seed for the second application of the PRG. The
constructions in [Nis90, INW94] preserve the same seed lengths for the two applications of
the PRGs (we say, in short, that INW preserves the block length).

Nisan and Zuckerman observe that the seed needed for the extractor has length d =
O(log t

ε
) while the string it acts upon has length s = Ω(logw), and so when t/ε ≪ w,

instead of applying the extractor once, it is more beneficial to apply it u = O(logw
log t/ε

) times
with independent seeds of length d. Extending these ideas, Armoni implements this idea
recursively.

In this paper we suggest an alternative to NZ and Armoni where instead of taking a large
u so that ud = s, we keep u = 1 and instead track down our losses. Next, we explain this
idea in detail.

1For a formal definition of ROBPand PRG see Definitions 2.1 and 2.2.

2

Suppose we start with a seed y of length s and we want to create from it two seeds for
two independent applications of the PRG. The way INW achieves this is by carving out d
bits from y and reserving them for the extractor application. Specifically, say y = yleft◦yright
where yright has length d. Then, in INW, the first PRG is called with the seed yleft, and the
second PRG is called with the seed Ext(yleft, yright), where Ext is an extractor. Thus, the
seed length for the first application is s− d and the seed length for the second application is
the extractor output size, and it suffers the losses the extractor suffers. These include:

• The amount of information the machine knows about yleft after seeing the output of
the first PRG. This loss amounts to ℓ = O(log tw

ε
).

• The extractor entropy loss, which is 2 log 1/ε in non-explicit constructions. For the
time being let us assume we can achieve a O(ℓ) loss explicitly, and then this loss is
comparable with the first loss.

Thus, the seed loss in the first PRG application is d = O(log t
ε
), whereas the loss in the

second PRG application is larger and is O(log tw
ε
). The two losses are quite different when

t/ε ≪ w.

We then do the obvious. We define a recursive construction, where starting with a seed
length s we get two recursive calls, one with seed length s−d and one with seed length s− ℓ,
where d = O(log t

ε
) and ℓ = O(log wt

ε
). Doing the analysis we find out that we recover the

bound log|Σ|+Θ(log t · ℓ
log(ℓ

d
+1)

) in a much simpler way.

To summarize, when t/ε ≪ w, it is much better to employ the INW strategy with varying
block lengths, and doing so gives the correct parameters in a straight forward way. However,
NZ and later Armoni try to preserve the block length throughout different calls. This forces
NZ to use several calls of the extractor, and later forces Armoni to use specially crafted
recursion (and a more careful analysis). What we show here is that all of that is unnecessary,
and with varying block lengths the INW construction obtains the same parameters as NZ
and Armoni.

For our construction to work, we require space-efficient extractors with small entropy
loss. In general, there are non-explicit (k, ϵ) extractors E : {0, 1}n × {0, 1}d → {0, 1}m
with entropy loss 2 log 1/ε + O(1), i.e., m = k + d − 2 log 1/ε − O(1), and notice that the
entropy loss is independent of k. Kane et al. in [KNW08] instantiated Armoni’s PRG with
the GUV extractor [GUV09, Theorem 5.10] which has Ω(k) entropy-loss, and they show it
is space-efficient. However, Ω(k) loss is too much for us.

In general, the best explicit extractors have Ω(k
poly(log k))

) entropy-loss [DKSS13, TSU12].
What saves us here is that we do not need general extractors but rather extractors working
in the very-high min-entropy regime, where ∆ = n−k is small. In this regieme one can split
the source to a large block followed by a second small block of length O(∆), and then use
a block-wise extractor. This was implemented in [CL20]. The resulting extractor is cited in
Theorem 2.4, has low entropy-loss and is space-efficient.

Replacing the lossy extractor used in [KNW08] with the small entropy-loss extractor of
[CL20] has other benefits. It turns out this also reduces the additive dependence on |Σ| from

3

2 log|Σ| to log|Σ|. We summarize the parameters obtained by the previous constructions and
by our construction in Table 1.

Seed Size Reference Remarks

Θ(log t · log wt|Σ|
ε

) [Nis90]
log|Σ|+Θ(log t · log wt

ε
) [INW94]

Θ(logw) [NZ96] When logw = (t/ε)β for some β > 0

2 log|Σ|+Θ(log t · log wt
ε

max{log logw

log t
ε
,1}

) [Arm98] With the extractors of [KNW08]

log|Σ|+Θ(log t · log wt
ε

max{log logw

log t
ε
,1}

) This paper Also, [Arm98] with the extractor of Theorem 2.4

Table 1: PRG for standard order ROBP

We remark that while the improvement in the dependence of Σ may seem insignificant, it
can help simplify certain constructions. A notable example is the recent work of Cheng and
Wu [CW25] which employs an iterative process of alternating steps of length and alphabet
reductions. Using our PRG (and [CL20] extractor) in the length reduction, the alphabet
reduction becomes unnecessary.

2 Preliminaries

[k] denotes the set {1, . . . , k}. For a k × k matrix M and i, j ∈ [k], M [i, j] is the value of M
at the i’th row and j’th column. ||M || is the spectral norm of M . For every f : [w] → [w]
there is a corresponding w × w boolean matrix Mf such that Mf [i, j] = 1 iff f(j) = i. We
denote the set of such matrices by SBMw×w (stochastic, boolean matrices).

Definition 2.1 (ROBP). Let Σ be an arbitrary subset, w, t ∈ N. B is a width w length
t read once branching program (ROBP) on alphabet Σ if it is a sequence of t functions
(B1, B2, ..., Bt), with Bi : Σ → SBMw×w. The evaluation of B on input σ1, ...σt ∈ Σt is the

linear operator B(σ1, ..., σt)
def
= Bt(σt) · ... ·B1(σ1). We also say B is a (w, t,Σ)− ROBP.

Definition 2.2 (PRG). Let Σ be an arbitrary subset and s, t ∈ N. A (s, t,Σ) pseudo random
generator is a function PRG : {0, 1}s → Σt. For ϵ > 0 a we say PRG ϵ-fools (w, t,Σ)−ROBP
if for every (w, t,Σ)− ROBP B we have:

||Eσ∈ΣtB(σ)− Ex∈{0,1}sB(PRG(x))|| ≤ ϵ

2.1 Extractors

Un denotes the uniform distribution on n bits. The min-entropy of a random source X,

denoted H∞(X), is H∞(X)
def
= minω∈Supp(X) log

1
Prx∼X(x=ω)

. The statistical distance between

two random random variables defined over a domain Ω is SDΩ(X, Y)
def
= 1

2

∑
ω∈Ω|Prx∼X [x =

4

ω] − Pry∼Y [y = ω]|. The statistical distance can be equivalently defined as SDΩ(X, Y)
def
=

maxf :Ω→{0,1}|Ex∼Xf(x)− Ey∼Y f(y)|.

Definition 2.3. (extractor) Let n, d, k,m ∈ N and ϵ > 0. A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}m is a (k, ϵ) extractor if for every random variable X over {0, 1}n with
H∞(X) ≥ k it holds that

SD{0,1}m(Ext(X,Ud), Um) ≤ ϵ

Theorem 2.4. [CL20] (High min-entropy extractor with a small entropy loss) For n > k,
ϵ > 0, there is a family of extractors Ehigh : {0, 1}n × {0, 1}d → {0, 1}m that is a (k, ϵ)
extractor with d = O(log(n− k) + log 1

ϵ
) and entropy loss n + d−m ≤ O(n− k + log 1/ε).

Furthermore, Ehigh(x, y) can be computed in time poly(n log 1
ϵ
) and space O(n− k + log n+

log 1
ε
) for all x, y.

Cohen et al. in [CDSTS23] used a more careful space analysis to show a different space
bound O(logm + logm log 1

ε
). For our analysis the bound of Chattopadhyay et al. is suffi-

cient.

3 The new PRG

As explained in the introduction, we apply the INW approach, each time replacing a seed with
two different (shorter) seeds. Unlike INW the two seeds have different lengths. Specifically,
if we start with an initial seed of length s, then we can only pass s − d bits to the first
application of the PRG, because we need to keep d independent bits for the recycling step.
When we recycle the randomness, say with an extractor, and get a new seed for the second
PRG, we can recover these d bits but we have two new losses:

• An entropy loss of order O(log 1
ε′
), where ε′ is the extractor error, which we take to be

Θ(ε
t
), where ε is the final error, and t is the final number of blocks, and,

• A log w
ε′
loss, that is due because of the information collected in the width w branching

program after seeing the output of the first PRG.

Thus, for the second application we lose ℓ = O(log wt
ε
) bits. As d = O(log t

ε
) it is significantly

smaller than ℓ when w ≫ t
ε
. To summarize, we replace a length s seed, with two seeds, one

of length s − d and the other of length s − ℓ where d = O(log t
ε
) and ℓ = O(log wt

ε
), where

the constants behind the big O notation are essentially determined by the seed length and
the entropy loss of the explicit extractor that we use (plus an additive log w

ε′
added to ℓ).

Having the recycling building block, we use it recursively and define a sequence of PRGs.
Applying this idea in a tree-like construction, we have the following construction:

5

Construction 3.1. [INW with varying block lengths]
Given a set Σ of size 2σ, parameters d, ℓ ∈ N and a family

{Exts : {0, 1}s−d × {0, 1}d → {0, 1}s−ℓ}s∈N

define a family {Ps : {0, 1}s → Σt(s)}s∈N of PRGs by

Ps(x ◦ y) =


Ps−d(x) ◦ Ps−ℓ(Exts(x, y)) If |x ◦ y|≥ σ + ℓ

The first σ bits of x ◦ y If σ ≤ |x ◦ y|< σ + ℓ

where t(s) = 1 for σ ≤ s < σ + ℓ and t(s) = t(s− d) + t(s− ℓ) for s ≥ σ + ℓ.

Theorem 3.2. Let w, t ∈ N, ε > 0, Σ a set of size 2σ. There is a large enough constant
c s.t. setting d = c log t

ε
, ℓ = c log wt

ε
, and assuming a family {Exts : {0, 1}s−d × {0, 1}d →

{0, 1}s−ℓ}s∈N of (s − d − log w
ε′
, ε′) extractors, for ε′ = ε

6t
, we have that {Ps}s∈N as in Con-

struction 3.1 is a (s, t,Σ)− PRG ε-fooling (w, t,Σ)− ROBP with s = σ +Θ

(
log wt

ε
log t

log

(
2+ logw

log t
ε

)
)
.

We need to analyze the output length of the generator and to prove correctness. We
start by analyzing the output length of Ps as a function of the seed length s.

3.1 The seed length

Recall that t(s) is the number of Σ symbols the PRG Ps outputs. Conversely, let us denote by
s(t) the seed length needed to output t symbols, i.e., the minimal integer such that t(st) ≥ t.
Then,

Lemma 3.3 (seed size). s(t) = σ +Θ(ℓ log t

log(ℓ
d
+1)

).

To gain intuition, think of the recursion in Construction 3.1 as a tree, where at the root
we have our initial seed, and every non-leaf vertex with seed length s > σ + ℓ has two
children: a left child with seed length s − d, and a right child with seed length s − ℓ. The
leaves are vertices with σ ≤ s < σ + ℓ. A path in the tree is a sequence of left and right
steps from the root to a leaf. Unlike the PRGs of [Nis90, INW94, Arm98], where all paths
have the same length, in our construction different paths have different lengths.

Proof. Without a loss of generality assume ℓ is an integer multiple of d and s−σ is an integer
multiple of ℓ.

t(s) =
∑

kL,kR∈N
kL·d+kR·ℓ+σ=s

(
kL + kR

kR

)

6

where kL (resp. kR) is the number of left (resp. right) steps in the path. While we need a
lower bound on t(s) we also derive a matching upper bound.

For the upper bound we notice that kL ≤ s−σ
d

and kR ≤ s−σ
ℓ
. As

(
a+b
b

)
is an increasing

monotone function for each parameter a and b when the other is fixed, we conclude that(
kL + kR

kR

)
≤
(s−σ

d
+ s−σ

ℓ
s−σ
ℓ

)
Also notice that there are at most s−σ

ℓ
legal assignments for KR.

For the lower bound we notice that kL = s−σ
2d

and kR = s−σ
2ℓ

is a legal assignment. Thus,(s−σ
2d

+ s−σ
2ℓ

s−σ
2ℓ

)
≤ t(s) ≤ s− σ

ℓ
·
(s−σ

d
+ s−σ

ℓ
s−σ
ℓ

)
Using s−σ

ℓ
≤ log t(s) and (n

k
)k ≤

(
n
k

)
≤ (en

k
)k, we get

(
ℓ

d
+ 1

) s−σ
2ℓ

=

(s−σ
2d

+ s−σ
2ℓ

s−σ
2ℓ

) s−σ
2ℓ

≤ t(s) ≤ log t(s) ·
(
e ·

s−σ
d

+ s−σ
ℓ

s−σ
ℓ

) s−σ
ℓ

= log t(s) ·
(
eℓ

d
+ e

) s−σ
ℓ

Thus, for sup = σ + 2ℓ log t

log(ℓ
d
+1)

we have t(sup) ≥ (ℓ
d
+ 1)

sup−σ

2ℓ = t and therefore s(t) ≤ sup.

Similarly, for slow = σ + ℓ log(t/log t)

log(eℓ
d
+e)

we have t(slow)
log t(slow)

≤ (eℓ
d
+ e)

slow−σ

ℓ = t
log t

and therefore

s(t) ≥ slow. I.e.,

ℓ log t
log t

log(eℓ
d
+ e)

≤ s(t)− σ ≤ 2ℓ log t

log(ℓ
d
+ 1)

We conclude that

s(t) = σ +Θ

(
ℓ log t

log(ℓ
d
+ 1)

)
,

proving Lemma 3.3

3.2 Correctness

Lemma 3.4. (Following [INW94]) Suppose

• P1 is a (s1, t1,Σ)− PRG that ϵ1-fools (w, t1,Σ)− ROBP, and,

• P2 is a (s2, t2,Σ)− PRG that ϵ2-fools (w, t2,Σ)− ROBP,

for some s1, s2, t1, t2, d ∈ N and ϵ1, ϵ2 > 0. Further assume

7

• E : {0, 1}s1 × {0, 1}d → {0, 1}s2 is a (s1 − log w
ε′
, ε′) extractor.

Then G : {0, 1}s1 × {0, 1}d → Σt1+t2 defined by

G(x, y) = P1(x) ◦ P2(E(x, y))

(3ε′ + ϵ1 + ϵ2)-fools (w, t1 + t2,Σ)− ROBP.

The main difference between Lemma 3.4 and the corresponding lemma in [INW94] is
that P1 and P2 take different input lengths. For completeness we give the proof:

Proof. Let B be a (w, t = t1 + t2,Σ)-ROBP. The main claim is

Claim 3.5. ||Ex∼Us1 ,y∼Ud
B(P1(x) ◦ P2(E(x, y)))− Ex∼Us1 ,y∼Us2

B(P1(x) ◦ P2(y))||≤ 3ε′.

Proof. Let v be the state in layer t1 of B reached after taking a walk on B according to
P1(x). We split our expectation into two cases.

• We reach a vertex v that has at most 2s1 ·ε′
w

sources. Using the union bound over the
states, we see that the probability over x of this event is at most ε′. This gives an error
of at most ε′.

• We reach a vertex v that has at least 2s1 ·ε′
w

sources. In this case, the min-entropy of x
conditioned on v is at least s1− log w

ε′
. Since E is an (s1− log w

ε′
, ε′) extractor, from the

adversary point of view, the distributions E(x, Ud) and Us2 are ε′ statistically close,
and therefore this adds at most 2ε′ to the distance.

This proves Claim 3.5.

Thus,

||Ex,yB(P1(x) ◦ P2(E(x, y)))− Eσ∈ΣtB(σ)|| ≤ ||Ex,yB(P1(x) ◦ P2(E(x, y)))− Ex,yB(P1(x) ◦ P2(y))||
+ ||Ex,yB(P1(x) ◦ P2(y))− Eσ∈Σt1 ,yB(σ ◦ P2(y))||
+ ||Eσ∈Σt1 ,yB(σ ◦ P2(y))− Eσ∈ΣtB(σ)||

The first expression is bounded by 3ε′ by Claim 3.5, the second expression by ε1 because P1

fools (w, t1Σ) − ROBP and the third by ε2 because P2 fools (w, t2,Σ) − ROBP, completing
the proof of Lemma 3.4.

Once we know how the error accumulates in a single application we can deduce how it
accumulates throughout the tree:

Lemma 3.6 (error accumulation). Ps ε′′-fools (w, t(s),Σ)− ROBP for ε′′ = 3(t(s)− 1) · ε′.

Proof. (of Lemma 3.6) By induction on s. For s < σ + ℓ the PRG returns truly uniform
bits. Let us prove for s ≥ σ + ℓ. By Lemma 3.4, ϵs ≤ ϵs−d + ϵs−ℓ + 3ε′. By induction
ϵs ≤ 3ε′(t(s − d) − 1) + 3ε′(t(s − ℓ) − 1) + 3ε′ = 3ε′(t(s − d) + t(s − ℓ) − 1). The proof is
complete using t(s) = t(s− d) + t(s− ℓ).

8

Lemma 3.3 together with Lemma 3.4 prove Theorem 3.2, because ε′′ ≤ 3t(s)ε′ ≤ 6tε′ ≤
ε.

References

[Arm98] Roy Armoni. On the derandomization of space-bounded computations. In Inter-
national Workshop on Randomization and Approximation Techniques in Com-
puter Science, pages 47–59. Springer, 1998.

[CDSTS23] Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating
iterated multiplication of stochastic matrices in small space. In Proceedings of
the 55th Annual ACM Symposium on Theory of Computing, pages 35–45, 2023.

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for
read-once branching programs. arXiv preprint arXiv:2002.07208, 2020.

[CW25] Kuan Cheng and Ruiyang Wu. Weighted pseudorandom generators for read-
once branching programs via weighted pseudorandom reductions. arXiv preprint
arXiv:2502.08272, 2025.

[DKSS13] Zeev Dvir, Swastik Kopparty, Shubhangi Saraf, and Madhu Sudan. Extensions
to the method of multiplicities, with applications to kakeya sets and mergers.
SIAM Journal on Computing, 42(6):2305–2328, 2013.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced
expanders and randomness extractors from parvaresh–vardy codes. Journal of
the ACM (JACM), 56(4):1–34, 2009.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for
network algorithms. In Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing, pages 356–364, 1994.

[KNW08] Daniel M Kane, Jelani Nelson, and David P Woodruff. Revisiting norm estima-
tion in data streams. arXiv preprint arXiv:0811.3648, 2008.

[Nis90] Noam Nisan. Pseudorandom generators for space-bounded computations. In
Proceedings of the twenty-second annual ACM symposium on Theory of comput-
ing, pages 204–212, 1990.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of
Computer and System Sciences, 52(1):43–52, 1996.

[TSU12] Amnon Ta-Shma and Christopher Umans. Better condensers and new extractors
from parvaresh-vardy codes. In 2012 IEEE 27th Conference on Computational
Complexity, pages 309–315. IEEE, 2012.

9
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

