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Abstract

We present an optimal “worst-case exact to average-case approximate” reduction for ma-
trix multiplication over a finite field of prime order p. Any efficient algorithm that correctly
computes, in expectation, at least ( 1p + ε)-fraction of entries of the multiplication A · B of a

pair (A,B) of uniformly random matrices over the finite field of order p for a positive constant
ε can be transformed into an efficient randomized algorithm that computes A · B for all the
pairs (A,B) of matrices with high probability. Previously, such reductions were known only in
a low-error regime (Gola, Shinkar and Singh; RANDOM 2024) or under non-uniform reductions
(Hirahara and Shimizu; STOC 2025).

1 Introduction

Matrix multiplication is a fundamental operation in algebra and plays a central role in scientific
computing. Understanding its computational complexity has been a key area of research from both
theoretical and practical points of view. Since the pioneering work of Strassen [Str69], numerous
studies have been aimed at accelerating matrix multiplication. The best known algorithm currently
runs in O(nω) time to multiply two n×n matrices for some constant ω ≤ 2.3716 (see, e.g., [DWZ23;
VXXZ24; ADWXXZ25] and references therein), which is significantly faster than the naive O(n3)-
time algorithm.

From an applied standpoint, computations are not necessarily limited to traditional computing
hardware. Specialized architectures, such as GPUs, enable efficient multiplication of large matrices
in practice [VD08]. Additionally, alternative physical models for computing matrix multiplication
have been proposed, leveraging optical devices [ZDCDHSZGQCRZ22], thermodynamics [CADM-
GASCMS23], and even divisible materials like water [Val24]. These approaches would be plagued
by a high level of noise and errors, leading to the following natural question:

Given a black-box device that approximately computes matrix multiplication, can we
design an efficient algorithm that exactly computes matrix multiplication?

Gola, Shinkar, and Singh [GSS24] recently formulated this question over a finite field F and
gave a solution in a low-error regime. Given a black-box oracle O that, given a pair of n × n
uniformly random matrices A,B ∼ Fn×n, outputs a matrix C such that a 8

9 -fraction of its entries
agree with A · B in expectation, they designed a randomized algorithm MO that can compute
matrix multiplication for all inputs with high probability. Very recently, Hirahara and Shimizu
[HS25] presented non-uniform1 reductions that improve the fraction 8

9 of agreement in [GSS24] to

1A non-uniform algorithm is an algorithm that takes an advice string αn for each input length n.
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1
p + ε over a finite field of order p for an arbitrary small constant ε > 0, which is optimal. The

main open question left in [GSS24; HS25] is whether the optimal fraction 1
p + ε of agreement can

be achieved for uniform algorithms.

1.1 Our Results

In this work, we answer this question affirmatively. For two matrices A and B ∈ Fn×n
p over a

finite field of size p, let dist(A,B) denote the fraction of the entries (i, j) ∈ {1, · · ·n}2 such that
the (i, j)-th entries of A and B disagree. The trivial algorithm M that outputs the all-0 matrix
achieves the expected distance

E
A,B∼Fn×n

p

[dist(M(A,B), AB)] ≤ 1− 1

p
,

where the expectation is taken over uniform random matrices A and B over Fn×n
p . Any algorithm

that achieves an expected distance smaller by an additive constant ε > 0 can be transformed into
a worst-case uniform algorithm.

Theorem 1.1. Let Fp be a finite field of prime order p, and let ε > 0 be a constant. Suppose that
there exists a randomized algorithm M that runs in time T (n) and satisfies for all sufficiently large
n,

E
A,B∼Fn×n

p

M

[dist(M(A,B), AB)] ≤ 1− 1

p
− ε,

where the expectation is taken over uniformly random matrices A,B, and the internal randomness
of M . Then, there exists a randomized algorithm M ′ that runs in time Õ(T (n) + n2) and satisfies,
for all sufficiently large n and every A,B ∈ Fn×n

p ,

Pr
M ′

[
M ′(A,B) = AB

]
≥ 2

3
.

Here, the Õ(·) notation hides a polylog(n) factor. Note that the constant 2
3 can be amplified to

1 − o(1) by the standard technique of repetition and a majority vote. As an immediate corollary,
we obtain the following equivalence.

Corollary 1.2. The following are equivalent for every prime p and every constant ε > 0.

• There exists a randomized Õ(n2)-time algorithm M such that for all sufficiently large n,

E
A,B∼Fn×n

p

M

[dist(M(A,B), AB)] ≤ 1− 1

p
− ε.

• There exists a randomized Õ(n2)-time algorithm M ′ such that for all sufficiently large n,

E
A,B∼Fn×n

p

M ′

[
M ′(A,B) = AB

]
≥ 1− o(1).
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Our results can be interpreted either pessimistically or optimistically. Pessimistically, approxi-
mating matrix multiplication slightly better than the trivial algorithm is as difficult as computing
matrix multiplication in time Õ(n2), which is the major open question in the long line of research
pioneered by Strassen [Str69]. Optimistically, our results give an approach towards resolving this
open question: It suffices to design an Õ(n2)-time algorithm that correctly computes a tiny fraction
of entries of the multiplication of a few pairs of n× n matrices!2

1.2 Proof Overview

We present high-level ideas of the proof of Theorem 1.1. The proof is based on the combination of
the techniques developed in the line of research.

1. The result of [GSS24] suggests that it suffices to design an algorithm that computes a 8
9 -

fraction of entries of matrix multiplication on average, under the assumption of Theorem 1.1.

2. Following the work of Asadi, Golovnev, Gur, and Shinkar [AGGS22], Hirahara and Shimizu
[HS23] presented a “worst-case exact to average-case exact” reduction that transforms any
algorithm that exactly computes all the entries of matrix multiplication for an α-fraction of
matrices for a constant α > 0 into a randomized algorithm for matrix multiplication.

Combining these techniques, one can observe that it suffices to design an algorithm that computes
a (1− δ)-fraction of entries of matrix multiplication for an α-fraction of matrices for small δ, α > 0
(see the proof of Lemma 3.7 for details).

To achieve this goal, we extend the techniques developed in [HS25] for uniform reductions that
achieve an optimal fraction of agreement up to a factor of 2. (One of the result in [HS25] is the
non-uniform optimal reduction mentioned earlier, whose techniques are orthogonal to ours. The
crux of our contributions is to improve uniform but non-optimal reductions of [HS25].) We briefly
review the idea of [HS25] and explain the bottleneck of the argument. Let Enc : Fn

p → FN
p be a linear

list-decodable error-correcting code that maps a message of length n to a codeword of length N .
Since this is a linear code, there is a matrix Q ∈ FN×n

p such that Enc(x) = Qx. In [HS25], a matrix

C is encoded by the left-right encoding Enc⋆, which is defined as Enc⋆(C) := QCQ⊤.3 An important
property of this encoding is that Enc⋆(A · B) = QABQ⊤ = (QA) · (QB⊤)⊤ = Enc(A) · Enc(B⊤)⊤

for any matrices A and B. This property suggests that if one can approximately compute the
multiplication of a pair of matrices Enc(A) and Enc(B⊤)⊤, then one can recover A · B exactly
using a list-decoding algorithm for Enc⋆. Unfortunately, this argument loses a factor of 2: If the
list-decoding radius of the original error-correcting code Enc is 1− β, then the list-decoding radius
of Enc⋆ can be shown to be at most 1 − 2β. Even if the original code has the optimal radius of
1 − 1

p − ε (i.e., β = 1
p + ε), the left-right encoding Enc⋆ may not have the optimal list-decoding

radius.
To address this issue, we present a new way of approximating Enc⋆(A ·B) by computing matrix

multiplication of a pair of “encoded” matrices. We take Enc⋆ to be the derandomized direct sum
code of Ta-Shma [Ta-17], which is approximately list-decodable within a radius of 1− 1

p − ε [Jer23].
The derandomized direct sum code is based on a random walk over an expander graph. We design
an encoding scheme LiftW (·), tailored for this specific code Enc⋆, that satisfies Enc⋆(A · B) =
LiftW (A) · LiftW (B⊤)⊤ (see Definition 3.3, Fig. 1, and Lemma 3.4). Then, Enc⋆(A · B) can be

2In fact, this statement is essentially equivalent to the assumption of Theorem 1.1; see Section A for details.
3In the literature of error-correcting code, the left-right encoding is called a tensor product code [GGR11].
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computed by multiplying the pair (LiftW (A), LiftW (B⊤)⊤) of the encoded matrices, which can be
approximated by the algorithm M of the assumption in Theorem 1.1.

One important detail that is omitted in the overview above is that (LiftW (A), LiftW (B⊤)⊤) may
not be uniformly distributed even if A and B are uniformly distributed; thus, M may fail to produce
a reasonable approximation of LiftW (A) ·LiftW (B⊤)⊤. This issue is addressed in the same way with
[HS25] but with a simpler analysis: The matrices can be partitioned into small sub-matrices so
that the marginal distribution of each sub-matrix is uniformly distributed. We present a simple
greedy coloring procedure that constructs such a partition (see Corollary 3.2), which simplifies the
previous construction of the partition in [HS25].

2 Preliminaries

For n ∈ N, let [n] = {1, . . . , n}. For a finite set S, we denote by x ∼ S that x is chosen uniformly
at random from S. For a vector v ∈ Fn

p and i ∈ [n], the i-th entry of v is denoted by vi. For a

subset I ⊆ [n], let v|I ∈ F|I|
p be the restriction of v to I. Formally, for I = {i1, . . . , ia} ⊆ [n] with

i1 < · · · < ia, the j-th entry of v|I is given by vij for every j ∈ [a]. We use the same notation
for matrices: For a matrix A ∈ Fn×n

p and i, j ∈ [n], the (i, j)-th entry of A is denoted by Ai,j and

A|I,J ∈ F|I|×|J |
p denotes the restriction of A to I × J .

Error-Correcting Codes and Approximate List-Decoding. Let Σ be a finite set. For two
vectors x, y ∈ Σn, let dist(x, y) = 1

n

∑
i∈[n] 1x(i)̸=y(i) be the normalized Hamming distance between

x and y. For a vector x ∈ Σn and ρ ∈ [0, 1], let Ball(x, ρ) ⊆ Σn be the set of vectors y ∈ Σn that
satisfy dist(x, y) ≤ ρ. A code C ⊆ Σm is a subset of Σm. The block length of C is m. An element of
a code C is called a codeword. In this paper, we prefer to use the term code to refer to an encoding
function, a function Enc : Σn → Σm that maps a message x ∈ Σn to a codeword Enc(x) ∈ Σm. The
finite set Σ is usually a finite field Fp.

We review the notion of approximate list-decoding, which has been studied in the literature of
direct product encoding and hardness amplification [DHKNT21; IJKW10].

Definition 2.1 (approximate list-decoding). A code Enc : Fn
p → FN

p is δ-approximately ℓ-list-

decodable within radius ρ if, for any ỹ ∈ FN
p , there exists a set L = {x1, . . . , xℓ} ⊆ Fn

p such that,
for any y = Enc(x) ∈ Ball(ỹ, ρ), we have Ball(x, δ) ∩ L ̸= ∅. An algorithm that computes such set
L given ỹ as input is called an approximate list-decoding algorithm.

In particular, the case of δ = 0 corresponds to the standard list-decodability.

Expander Graphs. The girth of a graph G is the minimum length of cycles in G. Note that
the girth of G is at least g if and only if G does not contain any cycle of length less than g. For
a d-regular graph G = (V,E), let P ∈ [0, 1]V×V be the normalized adjacency matrix defined by
Pu,v = mu,v/d, where mu,v is the number of edges between u and v (if G is simple, mu,v ∈ {0, 1}).
We say that G is λ-expander if the eigenvalues 1 = λ1 ≥ λ2 ≥ · · · ≥ λ|V | ≥ −1 of P satisfy
max{|λ2|, |λ|V ||} ≤ λ.

We use a sparse regular expander with large girth as a building block of our reduction. For
example, we can use a random d-regular graph Gn,d for a sufficiently large d = O(1), which satisfies
the following properties.
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Lemma 2.2. For n, d ∈ N such that nd is even, let Gn,d be a random d-regular graph, a graph
chosen uniformly at random from the set of all vertex-labeled simple d-regular n-vertex graphs.
Then, for every fixed d ≥ 3, the following hold:

• If d is even, then there exists an O(n)-time randomized algorithm that, on input 1n, samples
Gn,d with probability 2/3 for all large n [Wor99].4

• There exists a constant c > 0 that depends only on d such that with probability 1−n−10, Gn,d

is a

(
2
√
d−1
d + c

(
log logn
logn

)2
)
-expander [Fri03; Bor15].

• For any constant g ∈ N, with probability exp
(
−
∑g

r=3
(d−1)r

2r + o(1)
)
as n → ∞, the random

graph Gn,d has girth greater than g [MWW04].

Expander-Walk Direct Sum Codes. Our key technical tool is an approximate list-decoding
algorithm for direct sum encoding with respect to a collection of k-walks on a regular expander
graph. Jeronimo, Srivastava, and Tulsiani [JST21] and Jeronimo [Jer23] implicitly presented a
randomized approximate list-decoding algorithm for direct sum encoding with respect to a splittable
collection W ⊆ [n]k of k tuples, which satisfies a certain expansion property. A canonical example
of a splittable collection is the collection of walks on a regular expander graph. To state it more
formally, a k-walk on a graph G = ([n], E) is a k-tuple w = (u1, . . . , uk) ∈ [n]k of vertices such that
{ui, ui+1} ∈ E for all i ∈ [k − 1]. The set W of all possible k-walks is referred to as the k-walk
collection. For a walk w = (u1, . . . , uk) ∈ W , let visit(w) = {u1, . . . , uk} be the set of vertices visited
by w. If G is d-regular for a constant d ∈ N and k = O(1), then |W | = ndk−1 = O(n).

Definition 2.3 (Expander-Walk Direct Sum Code). Let G = ([n], E) be a d-regular graph and
W ⊆ [n]k be the k-walk collection on G. The k-wise expander walk direct sum code with respect
to G is the code Enc : Fn

p → FW
p that maps x ∈ Fn

p to Enc(x) ∈ FW
p defined by

Enc(x)w = xu1 + · · ·+ xuk

for every w = (u1, . . . , uk) ∈ W .

Lemma 2.4 (Implicit in the proof of [Jer23, Theorem 7.5]). Let p ≥ 2 be a constant prime, β, γ, λ >
0 and k ∈ N be any constants such that

β ≥ max

{
210

√
λk3, 4

(
1− (1− cos(π/p))2γ2

4

)k/2
}
. (1)

Then, for some ℓ = O(1), the k-wise expander-walk direct sum code Enc is γ-approximately ℓ-list-
decodable within radius (1− 1/p)(1− β) by an O(|W |polylog(|W |))-time randomized algorithm.

A brief description of the decoding algorithm of Lemma 2.4 can be found in Section B.

4If the degree d is odd, then we can sample Gn,d for every large even n.
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Auxiliary Results. We present three auxiliary results that are used in the proof of Theorem 1.1.
First, we show that multiplying random rectangular matrices can be reduced to multiplying two
random square matrices.

Lemma 2.5 ([HS25, Lemma 4.24]). There exists an O(n2)-time one-query oracle algorithm MO

such that for every randomized oracle O such that for every sufficiently large n,

E
A,B∼Fn×n

p

O

[
dist

(
O(A,B), A ·B

)]
≤ 1− α,

then, for every sufficiently large n and ℓ,m ≤ n, it holds that

E
A∼Fℓ×n

p

B∼Fn×m
p

MO

[
dist

(
MO(A,B), AB

)]
≤ 1− α.

Proof. The algorithm MO runs on input (A,B) ∈ Fℓ×n
p × Fn×m

p as follows:

1. Sample A,B ∼ Fn×n
p , I ∼

([n]
ℓ

)
and J ∼

(
[n]
m

)
.

2. Replace A|I,[n] with A. Specifically, if I = {i1, . . . , iℓ} ⊆ [n] for i1 < · · · < iℓ, then the ia-th

row of A is the a-th row of A for every a ∈ [ℓ]. Similarly, replace B|[n],J with B.

3. Output O(A,B)|I,J .

Observe that MO runs in time O(n2). We prove the correctness. By calculation, we have

E
A∼Fℓ×n

p

B∼Fn×m
p

MO

[
dist

(
MO(A,B), AB

)]
= E

A∼Fℓ×n
p

B∼Fn×m
p

A,B∼Fn×n
p

I∼([n]
ℓ )

J∼([n]
m)

[
dist

(
O(A,B)|I,J , (AB)|I,J

) ∣∣A|I,[n] = A,B|[n],J = B
]

= E
A,B∼Fn×n

p

I,J

[
dist

(
O(A,B)|I,J , (AB)|I,J

)]
= Pr

A,B∼Fn×n
p

I,J
i∼I,j∼J

[
O(A,B)i,j ̸= (AB)i,j

]

= E
A,B∼Fn×n

p

[
dist(O(A,B), AB)

]
≤ 1− α.

Therefore, MO satisfies the claim.

In the following, we formally state the result of Gola, Shinkar, and Singh [GSS24], which is
based on a simple and elegant modification of the worst-case to average-case reduction of Blum,
Luby, and Rubinfeld [BLR93].
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Lemma 2.6 (Gola, Shinkar, and Singh [GSS24]). There exists a randomized nearly-linear-time
O(logN)-query oracle algorithm M such that for every randomized oracle O such that

E
A∼FN×n

p

B∼Fn×N
p

O

[dist(O(A,B), AB)] ≤ 1

9
,

it holds that for every (A,B) ∈ FN×n
p × Fn×N

p ,

Pr
MO

[
MO(A,B) = AB

]
≥ 1− 1

N2
,

where the probability is taken over the internal randomness of MO.

We observe that the proximity of AB and C can be efficiently checked given A,B,C ∈ Fn×n
p as

input by random sampling.

Lemma 2.7. For any α, β > 0, there exists an O(n2 + n log n/β2)-time randomized algorithm M
that, on input A,B,C ∈ Fn×n

p , satisfies the following:

• If dist(AB,C) ≤ α, then M accepts with probability 1− 1/n3.

• If dist(AB,C) ≥ α+ β, then M rejects with probability 1− 1/n3.

Proof. The algorithm M runs on input A,B,C ∈ Fn×n
p . Repeat checking if (AB)i,j = Ci,j for

uniformly random i, j ∼ [n] for T = O
(
logn
β2

)
times. The algorithm accepts if and only if the

number of iterations at which (AB)i,j = Ci,j holds is at least (1− α− β/2) · T .
If dist(AB,C) ≤ α, then (AB)i,j = Ci,j with probability at least 1 − α over the random

choice of i, j ∼ [n]. Therefore, by the Hoeffding bound, the algorithm M ′ accepts with probability
1− exp(−2β2T ) ≥ 1− 1/n3. The case of dist(AB,C) ≥ α+ β is the same.

Finally, we will use the following direct product lemma.

Lemma 2.8 (Direct product lemma; [IJK09; HS23; HS24]). Let D be a set. For all sufficiently
small δ∗, ε∗ > 0, for every K ≥ O(log(1/ε∗))/(δ∗ε∗)2, for every function S : DK → [0, 1], it holds
that

Pr
x∼D

[∣∣∣∣ E
y′∼Γ(x)

[
S(y′)

]
− E

y∼DK
[S(y)]

∣∣∣∣ ≤ ε∗
]
≥ 1− δ∗.

Here, Γ(x) is the distribution over y′ ∈ DK defined by the following sampling procedure: Sample
y ∼ DK , k ∼ [K], replace the k-th element of y with x to obtain y′, and output y′.

3 Optimal Reduction for Small Field

In this section, we prove Theorem 1.1.
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3.1 Vertex-Disjoint Partition of k-Walks

We show that the k-walk collection on a regular graph can be partitioned into O(1) subsets such
that each subset in the partition is vertex-disjoint. A subset P ⊆ W of the k-walk collection is
said to be vertex-disjoint if walks in P visit distinct vertices, that is, visit(w)∩ visit(w′) = ∅ for any
distinct pair of walks w,w′ ∈ P .

Lemma 3.1. Let k, d ∈ N be constants, G = ([n], E) be a d-regular graph, and W ⊆ [n]k be the
k-walk collection on G. Let a = k2dk−1 +1. Then, there exists a partition P1 ⊔ · · · ⊔Pa = W of W
such that, for every i ∈ [a], the set Pi is vertex-disjoint. Moreover, we can compute such a partition
in time O(|W |).

Proof. For the k-walk collection W , define the intersection graph I = (V (I), E(I)) with respect to
W as follows.

• The vertex set V (I) is defined to be W .

• The edge set E(I) is defined to be the set of all the pairs (w,w′) of distinct walks in W such
that visit(w) ∩ visit(w′) ̸= ∅.

To distinguish vertices of G and vertices of I, we call the former a G-vertex and the latter an
I-vertex. Fix an I-vertex w ∈ V (I). Since |visit(w)| ≤ k and every G-vertex v ∈ V (G) is visited
by at most

∑k−1
i=0 di · dk−i−1 = k · dk−1 walks in W , the degree of the I-vertex w on I is at most

k ·kdk−1. That is, the maximum degree of I is at most k2dk−1. It follows that there exists a proper
vertex-coloring χ : V (I) → [a], where a = k2dk−1 + 1. This can be computed by O(|W |) time by
the straightforward greedy algorithm (order the vertices W and then color them one by one using
the smallest possible color).

For each i ∈ [a], let Pi = χ−1(i) ⊆ W . Since χ is a proper coloring, each Pi forms an independent
set in I (that is, no pair of vertices in Pi is connected by an edge in I). In other words, each Pi is
vertex-disjoint.

Corollary 3.2. Let k, d ∈ N be constants, G = ([n], E) be a d-regular graph with girth at least k,
and W ⊆ [n]k be the k-walk collection on G. Then, there exist an integer a = a(k, d) ∈ N and a
partition {P1, . . . , Pa, P

′} of W = P1 ⊔ · · · ⊔ Pa ⊔ P ′ with the following properties.

• Pi is vertex-disjoint for every i ∈ [a].

• |Pi| ≤ n/k for every i ∈ [a].

• Every walk w in Pi visits exactly k vertices (i.e., |visit(w)| = k) for every i ∈ [a].

• |P ′| ≤ k
d · |W |.

Moreover, we can compute such a partition in time O(|W |).

Proof. Let P ′
1 ⊔ · · · ⊔ P ′

a = W be the partition of Lemma 3.1. For every i ∈ [a] let Pi ⊆ P ′
i be the

set of walks w ∈ P ′
i such that |visit(w)| = k. Define P ′ = W \ (P1 ∪ · · · ∪ Pa).

It is easy to observe that the first three properties are satisfied. Since Pi is vertex-disjoint
and every walk in Pi visits exactly k vertices, Pi contains at most n/k walks. To prove the last
property, note that the set P ′ consists of walks w ∈ W such that |visit(w)| < k. We say that a walk
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w = (u1, . . . , uk) is backtracking if uj−1 = uj+1 for some j ∈ {2, . . . , k − 1}. By the union bound
over j ∈ {2, . . . , k − 1}, a random walk w ∼ W is backtracking with probability at most k/d. Since
G has girth at least k, if w is not backtracking, then |visit(w)| = k. Therefore, we have

|P ′|
|W |

= Pr
w∼W

[|visit(w)| < k] ≤ Pr
w∼W

[w is backtracking] ≤ k

d
.

3.2 Worst-Case Exact to Average-Case Approximate Reduction

In this section, we show that an average-case approximation solver can be used to compute all
entries of the product of any given two matrices, proving Theorem 1.1.

Definition 3.3 (W -lifting of matrices). Let W ⊆ [n]k be a collection of k-tuples. For a matrix
A ∈ Fn×m

p with row vectors a1, . . . , an ∈ Fm
p , the W -lifting of A is the matrix LiftW (A) ∈ FW×km

p

whose i = (i1, . . . , ik)-th row vector (for i ∈ W ) is the concatenation of ai1 , . . . , aik . That is, for
each i = (i1, . . . , ik) ∈ W , s ∈ [k] and t ∈ [m], the (i, (s− 1)m+ t)-th entry of LiftW (A) is given by
(ais)t.

Figure 1: The (i, j)-th entry of LiftW (A) · LiftW (B) for i = (i1, . . . , ik) and j = (j1, . . . , jk) is equal
to

∑k
ℓ=1(A ·B)iℓ,jℓ .

In the following lemma, we show a useful relation between W -lifting and direct sum encoding.
See Fig. 1 to gain some intuition. To state the lemma, recall that the tensor product G ⊗ G for
a graph G = ([n], E) is the graph on vertex set [n] × [n] such that two vertices (u1, u2), (v1, v2) ∈
[n]× [n] are adjacent on G⊗G if and only if {ui, vi} ∈ E for both i = 1, 2. It is well known that,
if G is d-regular and λ-expander, then G⊗G is d2-regular and λ-expander.5

By definition, if i = (i1, . . . , ik), j = (j1, . . . , jk) are k-walks on G, then the sequence of pairs
(i1, j1), . . . , (ik, jk) forms a k-walk on G ⊗ G. With this in mind, the expander-walk direct sum
encoding on G⊗G (Definition 2.3) can be naturally represented as a function Enc : Fn×n

p → FW×W
p

5More generally, if A has eigenvalues λ1, . . . , λn and B has eigenvalues µ1, . . . , µn, then the eigenvalues of the
tensor product A⊗B is given by λiµj for i, j ∈ [n] [HJ91].
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that maps a message matrix C ∈ Fn×n
p to a codeword matrix Enc(C) ∈ FW×W

p such that the (i, j)-

th entry of Enc(C) is given by
∑k

ℓ=1Ciℓ,jℓ . Note that Enc(C) ∈ FW×W
p can be identified with an

ndk−1 × ndk−1 matrix over Fp.

Lemma 3.4. Let G = ([n], E) be a d-regular graph and W ⊆ [n]k be the k-walk collection. For
a matrix A ∈ Fn×m

p , let LiftW (A) ∈ FW×km
p be the lifting of A with respect to W . Then, for any

A ∈ Fn×m
p and B ∈ Fm×n

p , we have

LiftW (A) · LiftW (B⊤)⊤ = Enc(AB).

Proof. For two matrices A,B ∈ Fn×n
p , consider LiftW (A) ·LiftW (B)⊤ ∈ FW×W

p . Let a⊤1 , . . . , a
⊤
n ∈ Fn

p

be the row vectors of A and b1, . . . , bn ∈ Fn
p be the column vectors of B. By definition of W -lifting,

the (i, j)-element of LiftW (A) · LiftW (B)⊤ for i = (i1, . . . , ik) and j = (j1, . . . , jk) can be written as(
LiftW (A) · LiftW (B⊤)⊤

)
i,j

=
∑

s∈[k],t∈[n]

(ais)t · (bjs)t

=
∑
s∈[k]

⟨ais , bjs⟩

=
∑
s∈[k]

(A ·B)is,js

= (Enc(AB))i,j.

Using Lemmas 3.1 and 3.4, we show that an average-case approximation solver can be used to
compute an approximate codeword of the direct sum encoding.

Lemma 3.5. Let Fp be the finite field of order p, and let k, d ∈ N and α > 0 be constants. There
exists a randomized oracle algorithm M such that, for every k, every d-regular graph G = ([n], E)
whose girth is at least k, and every oracle O such that for all sufficiently large n,

E
A,B∼Fn×n

p

O

[dist(O(A,B), A ·B)] ≤ 1− α,

it holds that for all sufficiently large n,

E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B,G, k), Enc(AB)

)]
≤ 1− α+

2k

d
. (2)

The algorithm M runs in time O(n2) and makes O(1) queries.

Proof. The oracle algorithm MO operates on input A,B ∈ Fn×n
p , k > 0, and G = ([n], E) as follows:

1. Let W ⊆ [n]k be the k-walk collection on G and compute LiftW (A), LiftW (B⊤) ∈ FW×kn
p .

2. Compute the partition W = P1 ⊔ · · · ⊔ Pa ⊔ P ′ of Corollary 3.2.

10



3. For each i, j ∈ [a], run the algorithm of Lemma 2.5 on input
(
LiftW (A)|Pi,[kn], LiftW (B⊤)⊤|[kn],Pj

)
using O as oracle. Let C̃(i,j) ∈ F|Pi|×|Pj |

p be the output of this algorithm.

4. Output a matrix C̃ ∈ FW×W
p that can be obtained by aligning C̃(i,j) for all i, j ∈ [a] and

filling the rest entries (i.e., entries whose either row or column index is in P ′) arbitrarily.

Note that M runs in time O(n2) and makes at most a2 = O(1) queries.
We prove Eq. (2). For each i ∈ [a], the set Pi consists of vertex-disjoint walks w such that

|visit(w)| = k. Since the i-th row vector of A consists of i1-th, i2-th, . . . , ik-th row vectors of
A for every i = (i1, . . . , ik) and vertices visited by walks in Pi are distinct, the row vectors of
LiftW (A) corresponding to walks in Pi are independent and uniformly distributed over Fkn

p when
A ∼ Fn×n

p is a uniformly random matrix. Therefore, for each i, j ∈ [a], when A,B ∼ Fn×n
p , the

marginal distribution of
(
LiftW (A)|Pi,[kn], LiftW (B⊤)⊤|[kn],Pj

)
is uniform over F|Pi|×kn

p × Fkn×|Pj |
p .

Since |Pi|, |Pj | ≤ kn for each i, j ∈ [a], it follows from Lemma 2.5 that

E
[
dist

(
C̃(i,j), LiftW (A)|Pi,[kn] · LiftW (B⊤)⊤|[kn],Pj

)]
≤ 1− α,

where C̃(i,j) is the matrix computed at Step 3 and the expectation is taken over A,B ∼ Fn×n
p and

the internal randomness of the oracle algorithm of Lemma 2.5.
Therefore, we have

LHS of Eq. (2) = E
A,B∼Fn×n

p

MO

[
dist

(
C̃, LiftW (A) · LiftW (B⊤)⊤

)]
∵ Lemma 3.4

≤ E
A,B∼Fn×n

p

MO
i,j∼[a]

[
dist

(
C̃(i,j), LiftW (A)|Pi,[kn] · LiftW (B⊤)⊤|[kn],Pj

)]
+

2|P ′|
|W |

≤ 1− α+
2k

d
.

Now we combine the above lemma with the list-decoding algorithm of Lemma 2.4 to compute
a (1− δ)-fraction of the entries of AB for an Ω(ε)-fraction of pairs (A,B) of matrices.

Lemma 3.6. Let Fp be a finite field of prime order p and δ, ε > 0 be constants. There exists a

randomized O(1)-query oracle algorithm MO that runs in time Õ(n2) such that, for any oracle O
satisfying

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− 1

p
− ε,

it holds for every sufficiently large n that

Pr
A,B∼Fn×n

p

[
Pr
MO

[
dist

(
MO(A,B), AB

)
≤ δ

]
≥ 1− o(1)

]
≥ ε

4
.
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Proof. Fix a randomized oracle O. For given p ≥ 2, δ, ε > 0, we set constants k ∈ N and λ > 0
such that Eq. (1) holds for β = ε/4 and γ = δ/2. Note that we can set k = O(p4 log(1/ε)/δ2)
and λ = O(ε2/k3). For d =

⌈
max

{
4
λ2 ,

8k
ε

}⌉
, fix a d-regular λ-expander graph G = ([n], E) with

girth at least k. From Lemma 2.2, with probability Ω(1) a random regular graph Gn,d satisfies this
property. We repeat generating G = Gn,d until G has girth at least k, which can be checked by
computing the girth in time O(n2) by the breadth first search from all vertices. Note that O(log n)
samples from Gn,d suffice to obtain such G with probability 1 − n−Ω(1). Thus, we can construct

such G in time Õ(n2) with probability 1− o(1).
From Lemma 3.5 for α = 1

p + ε, there exists a randomized oracle algorithm MO
0 such that

E
A,B∼Fn×n

p

MO
0

[
dist

(
MO

0 (G, k,A,B), Enc(AB)
)]

≤ 1− 1

p
− ε+

2k

d

≤ 1− 1

p
− 3ε

4
. ∵ d ≥ 8k/ε

Call an instance (A,B) ∈ Fn×n
p × Fn×n

p good if

E
MO

0

[
dist

(
MO

0 (G, k,A,B), Enc(AB)
)]

≤ 1− 1

p
− ε

2
.

By Markov’s inequality, at least an ε/4-fraction of instances (A,B) are good.
We present an algorithm that outputs a matrix that is (1 − δ)-close to AB for every good

(A,B). Let C̃ ∈ FW×W
p be the output of MO

0 on input (A,B), where W ⊆ [n]k is the k-walk

collection on G. By Markov’s inequality, with probability ε/4 over the internal randomness of MO
0 ,

we have dist(C̃,Enc(AB))) ≤ 1− 1
p−

ε
4 . Note that the encoding Enc is the direct sum encoding with

respect to the k-walk collection on G⊗G, which is a d2-regular λ-expander graph. By our choice
of parameters k and λ, from Lemma 2.4, this encoding Enc is δ/2-approximately ℓ-list-decodable

within radius
(
1− 1

p

)
(1 − β) ≤ 1 − 1

p − ε
4 by an Õ(n2)-time algorithm. Thus, by running the

list-decoding algorithm on input C̃ ∈ FW×W
p , we obtain a set L of O(1) matrices that contains a

matrix that is δ/2-close to AB in time Õ(n2). Finally, output a matrix in the list L such that the
the verifier of Lemma 2.7 with α = β = δ/2 accepts.

We then show that we can indeed compute a good approximation for a (1 − O(δ))-fraction of
(A,B) (Lemma 3.7).

Lemma 3.7. Let Fp be a finite field of prime order p and γ, ε > 0 be constants. There exists a

randomized O(logn)-query Õ(n2)-time oracle algorithm MO such that, for any oracle O satisfying

E
A,B∼Fn×n

p

[dist(O(A,B), AB)] ≤ 1− 1

p
− ε,

it holds for every sufficiently large n that

E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B), AB

)]
≤ γ.

12



Proof. From Lemmas 2.5 and 3.6, for any constant δ0 > 0 and any ℓ ≤ n, there exists an oracle
algorithm MO

0 such that

Pr
A∼Fℓ×n

p

B∼Fn×ℓ
p

[
Pr
MO

0

[dist
(
MO

0 (A,B), AB
)
≤ δ0] ≥ 1− o(1)

]
≥ ε

4
. (3)

For a sufficiently large constant c > 0, define the following parameters:

K =
c log(1/ε)

γ2ε2
, δ =

γ

4K2
, and m =

⌊ n

K

⌋
.

Let MO
0 be the algorithm of Eq. (3) for δ0 = δ/2 and ℓ = Km ≤ n. Let I1 ⊔ · · · ⊔ IK ⊔ I ′ be the

partition of [n] defined by

I1 = {1, . . . ,m}, I2 = {m+ 1, . . . , 2m}, . . . , IK = {(K − 1)m+ 1, . . . ,Km}, and I ′ = {Km+ 1, . . . , n}.

For i, j ∈ [K], let Ai = A|Ii,[n] and Bj = B|[n],Ij (Fig. 2).

Figure 2: Partition of A,B into A1, . . . , AK and B1, . . . , BK considered in the proof of Lemma 3.7.
To compute an approximation of AB, it suffices to compute a good approximation of AiBj for all
i, j.

Our reduction MO is given A,B ∈ Fn×n
p as input and runs as follows:

1. Let D ∈ Fn×n
p be a matrix that is initialized to be the all-zero matrix.

2. For each i, j ∈ [K], repeat the following for O(log(1/γ)/ε) times:

(a) Sample A ∼ FKm×n
p , B ∼ Fn×Km

p and k ∼ [K].

(b) Replace A|Ik,[n] by Ai. Similarly, replace B|[n],Ik by Bj (Fig. 3).

(c) Run the oracle algorithm MO
0 (A,B). Let C ∈ FKm×Km

p be the output.

(d) If C|Ii,Ij is δ-close to AiBj (which can be checked by Lemma 2.7), replace D|Ii,Ij by
C|Ii,Ij .

3. Output D.

13



We prove the correctness of MO. We have

E
A,B∼Fn×n

p

MO

[
dist

(
MO(A,B), AB

)]
≤ E

A,B∼Fn×n
p

MO
i,j∼[K]

[
dist

(
MO(A,B)|Ii,Ij , (AB)|Ii,Ij

)]
+

2|I ′|
n

≤ E
A,B∼Fn×n

p

MO
i,j∼[K]

[
dist

(
MO(A,B)|Ii,Ij , AiBj

)]
+

2m

n

≤ E
A,B∼Fn×n

p

MO
i,j∼[K]

[
dist

(
MO(A,B)|Ii,Ij , AiBj

)]
+

γ

4
. (4)

In the last inequality, we used m/n ≤ 1/K ≤ γ/8 by our choice of K (the leading constant c in the
definition of K is sufficiently large but chosen independently of γ and ε since K ≥ c/γ2). To bound
Eq. (4), we shall take a closer look at EA,B∼Fn×n

p

MO

[
dist

(
MO(A,B)|Ii,Ij , AiBj

)]
for every i, j ∈ [K].

Figure 3: The query (A,B) of the oracle algorithm MO is obtained by embedding Ai and Bj into
A and B at random positions. This procedure of generating a query coincides with the sampling
procedure Γ(x) of Lemma 2.8 for x = (Ai, Bj) ∼ Fm×n

p × Fn×m
p

Call an instance (A,B) ∈ FKm×n
p × Fn×Km

p good if EMO
0

[
dist

(
MO

0 (A,B), A ·B
)]

≤ δ. From

Eq. (3) with ℓ = Km and δ0 = δ/2, at least an ε/4-fraction of (A,B) are good. Let C ∈ FKm×Km
p

be the matrix obtained at Step 2(c) at an iteration where i = j = 1 (other blocks can be shown
similarly). For x = (A1, B1), the query y = (A,B) is obtained by embedding A1 and B1 into A and
B at random positions (Fig. 3). This coincides with the sampling procedure Γ(x) of Lemma 2.8.
Therefore, from Lemma 2.8 for S being the indicator of the set of good instances, δ∗ = γ/4 and
ε∗ = ε/8, for at least a (1− γ/4)-fraction of (A1, B1) ∼ Fm×n

p × Fn×m
p , the probability that (A,B)

obtained at Step 2(b) is good with probability at least 1
2 · ε

4 = ε
8 . For such (A1, B1), during the

O(log(1/γ)/ε) iterations of Step 2 (at i = j = 1), the probability that at least one instance (A,B) is
good (and thus the matrix C is δ-close to AB) is at least 1−γ/4. If C is δ-close to A·B, the number
of disagreeing entries between C and A1B1 is at most δ · (Km)2; thus the submatrix C|I1,J1 agrees
with A1B1 on at least m2− δ(Km)2 = (1− δK2)m2 entries, that is, dist(C|I1,J1 , A1B1) ≤ δK2 ≤ γ

4

14



by our choice of δ. Therefore, we have

(4) = E
(A1,B1)∼Fm×n

p ×Fn×m
p

A,B
C=MO

0 (A,B)

[dist(C|I1,J1 , A1B1)] +
γ

4

≤ γ

4︸︷︷︸
sampler property

+
γ

4︸︷︷︸
no

(
A,B

)
is good

during repetition

+
γ

4︸︷︷︸
dist(C|I1,J1 , A1B1)

+
γ

4

≤ γ.

Proof of Theorem 1.1. From Lemma 3.7 for γ = 1/9, there exists an oracle algorithm MO
0 such

that

E
A∼Fn×n

p

B∼Fn×n
p

O

[dist(O(A,B), AB)] ≤ 1

9
.

Then, from Lemma 2.6, we obtain the algorithm as desired.
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A Average-Case Approximation vs. Expected Distance

We show that computing a small fraction of entries of AB for a small fraction of (A,B) ∼ Fn×n
p ×

Fn×n
p suffices to meet the requirement of Theorem 1.1. Specifically, we prove the following:

Lemma A.1. Let Fp be a finite field of order p, and let ε > 0 be a constant. Suppose there exists
an algorithm M that runs in time T (n) and satisfies for all sufficiently large n,

Pr
A,B∼Fn×n

p

M

[
dist(M(A,B), AB) ≤ 1− 1

p
− ε

]
≥ ε.

Then, there exists an algorithm M ′ that runs in time Õ(T (n) +n2) and satisfies for all sufficiently
large n,

E
A,B∼Fn×n

p

M ′

[
dist(M ′(A,B), AB)

]
≤ 1− 1

p
− Ω

(
ε2
)
.

Conversely, suppose there exists an algorithm L that runs in time T (n) and satisfies for all
sufficiently large n,

E
A,B∼Fn×n

p

L

[dist(L(A,B), AB)] ≤ 1− 1

p
− ε.

Then, the same algorithm L satisfies

Pr
A,B∼Fn×n

p

L

[
dist(L(A,B), AB) ≤ 1− 1

p
− ε

2

]
≥ ε

2
.

Proof. Let M ′ be the algorithm that, on input (A,B), runs C := M(A,B) and outputs C if the
verification algorithm of Lemma 2.7 on input A,B,C accepts for α = β = ε and outputs a random
matrix otherwise.

With probability at least ε − o(1) (over the choice of A,B and the internal randomness of
M), the algorithm M ′ outputs a matrix C = M(A,B) such that dist(C,AB) ≤ 1 − 1

p − ε. With

probability at most 1 − ε + o(1), the algorithm M ′ outputs a random matrix, which satisfies
EM ′ [dist(M ′(A,B), AB)] = 1− 1

p . Therefore, the expected distance of M ′(A,B) and AB is bounded
by

E
A,B∼Fn×n

p

M ′

[
dist(M ′(A,B), AB)

]
≤ ε

(
1− 1

p
− ε

)
+ (1− ε)

(
1− 1

p

)
+ o(1)

= 1− 1

p
− Ω(ε2)
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for sufficiently large n.
The “Conversely” part follows from Markov’s inequality. Note that

Pr
A,B,L

[
dist(L(A,B), AB) ≥ 1− 1

p
− ε

2

]
≤ 1− 1/p− ε

1− 1/p− ε/2
≤ 1− ε

2
.

B Approximate List-Decoding

For completeness, we present a proof sketch of Lemma 2.4 by [Jer23]. Since the decoding algorithm
and its analysis rely on the heavy machinery of regularity lemma, we omit the technical details and
just describe the decoding algorithm.

Proof Sketch of Lemma 2.4. Let Enc : Fn
p → FW

p be the k-wise expander-walk direct sum code,

where W ⊆ [n]k is the k-walk collection on a d-regular λ-expander graph G = ([n], E). For a
partition P = {P1, . . . , Pa} of [n], we say that a vector x ∈ Fn

p is P-measurable if for every Pi ∈ P,
all entries of the restriction x|Pi are the same. Note that the number of P-measurable vectors is qa.

Our decoding algorithm is a slight modification of Algorithm 7.7 of [Jer23]. On input ỹ ∈ FW
p ,

the decoding algorithm runs as follows:

1. Let L = ∅.

2. For every a ∈ Fp \ {0}, do the following:

(a) Let g(a) ∈ Cnk
be the vector defined by

g
(a)
i1,...,ik

=

{
ωa·ỹ(i1,...,ik) if (i1, . . . , ik) ∈ W,

0 otherwise,

where ω = exp(−2πi/p) is the primitive p-th root of unity (note that p is a prime).

(b) Compute a partition P(a) of [n] given oracle access to g(a) using the efficient weak
regularity lemma [Jer23, Theorem 5.12]. This can be done in time O(|W |) = O(n) and
the number of subsets in P(a) can be shown to be O(1) (here, we used the assumption
that G is an expander).

(c) Add all P(a)-measurable vectors to L.

3. Output L.

Obviously, the output L contains at most O(1) vectors in Fn
p . The proof of the correctness directly

follows from the analysis of Algorithm 7.7 of [Jer23].

Indeed, [Jer23; JST21] considers the code obtained by applying the distance amplification to a
unique-decodable code using direct sum over a splittable tuple (e.g., expander walk). Specifically,
they consider the code Enc(x) = Encwalk(Encunique(x)), where Encunique : Fn

p → Fn′
p is a unique-

decodable code and Encwalk : Fn′
p → FN

p is an expander-walk direct sum code. Then, they show
the list-decodability of Enc using the following argument: Run the decoder described above, which
outputs a set L containing approximate codewords of Encunique. Thereafter, run the unique decoder
of Encunique on each x ∈ L, which yields a list of all codewords of Enc that is (1/p− ε)-close to the
input string ỹ.
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