
Better Weighted Pseudorandom Generators Against
Low Weight Read-Once Branching Programs

Ben Chen∗ Amnon Ta-Shma†

May 21, 2025

Abstract

In this work, we combine the work of Chen et al. and Hoza to obtain a WPRG

against regular ROBPs with seed length O(log t · (logw +
√
log 1

ε + log log t) + log 1
ε),

improving upon previous construction which also include some additional lower order
terms.

∗Department of Computer Science, Tel Aviv University. The research leading to these results has received
funding from the Israel Science Foundation (grant number 443/22). Email: ben1chen@gmail.com.

†Department of Computer Science, Tel Aviv University. The research leading to these results has received
funding from the Israel Science Foundation (grant number 443/22). Email: amnon@tauex.tau.ac.il.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 67 (2025)

1 Introduction

Derandomizing space-bounded probabilistic computation is a major challenge of theoretical
computer science. The problem comes in two flavors:

• Derandomization, where the goal is to replace the probabilistic algorithm with another
deterministic, space-bounded algorithm solving the same problem in about the same
space, and,

• Pseudo-randomness, where derandomization is achieved by retaining the probabilistic
algorithm, but replacing its random coins by an explicit, shallow distribution with a
small support.

We call the first type (of general derandomization) white-box derandomization, because
the derandomization is specific to the specific algorithm it deranomizes. We call the second
type (using pseudo-randomness) black-box derandomization, because the derandomization is
oblivious to the specific algorithm. We refer the reader to the excellent survey paper [H+22]
for further reading.

In this paper we focus on black-box derandomization. The class of algorithms we try to
fool is the set of (w, t,Σ) read-once branching programs (ROBPs) which can be thought of as a
(t+1)-layered directed graph, where each vertex in the graph has Σ outgoing edges connecting
to the next layer, according to the machine action on the given coin toss. (w, t,Σ)−ROBPs
are the non-uniform analog of space-bounded machines using logw space and t time, getting
at each time step a uniform toss of a |Σ|-sided dice. For a formal definition see Definition 2.1.
Our goal is to replace the uniform distribution used by the ROBP with another distribution
having a small support.

A prominent example is the INW PRG [INW94] which is a function P : {0, 1}s → Σt,
such that for every (w, t,Σ) − ROBP B, running B on a uniform string σ ∈ Σt behaves
similarly to running B on a uniform string taken from the image of the PRG. In symbols,
||Ex∈{0,1}sB(INW (x))− Eσ∈ΣtB(σ)||≤ ε The INW PRG has seed length log|Σ|+O(log t ·
log(wt

ε
)). Remarkably, after more than thirty years of intensive research, and a flurry of

results, there is no better PRG known today for general (w, t,Σ)− ROBPs.

Braverman, Cohen and Garg [BCG19] generalized the PRG notion by assigning integral
(possibly negative) weights to the outputs of the PRG. We say a weighted PRG (WPRG)
derandomizes a (w, t,Σ) − ROBP B if the weighted average of running B on the image of
the WPRG is close to the true average (see Definition 2.3 for a formal definition). Note
that derandomization by a WPRG is still black-box derandomization as the WPRG is obliv-
ious to the specific machine in the class it tries to fool. [BCG19] showed a WPRG against

(w, t,Σ)−ROBP with seed length Õ(log t logwt+log 1
ε
). The [BCG19] result is technical and

complicated. Following [AKM+20], [CDR+21, PV21] obtained the same result in a cleaner
way using Richardson’s iteration. Table 1 summarizes the results for general ROBP.

There has been a flurry of work trying to improve and/or generalize these bounds, for
PRG or WPRG against restricted ROBPs. A partial list of these results include:

2

Seed Size Reference Remarks

O(log t · log wt
ε
) [Nis90, INW94] PRG

Õ(log t · log(wt) + log 1
ε
) [BCG19] WPRG

Õ(log t · log(wt)) +O(log 1
ε
) [CL20] WPRG

O(log t · log(wt)) + Õ(log 1
ε
) [CDR+21, PV21] WPRG

O(log t · log(wt) + log 1
ε
) [Hoz21] WPRG

O(log t·log(wt)
log logw

+ log w
ε
logt log

1
ε
) [CDR+21, PV21] WPRG when t ≪ w

O(log t·log(wt)
log logw

+ logw log log logw + log 1
ε
) [CW25] WPRG when t ≪ w

Table 1: PRG and WPRG for general ROBP

• Work on fooling small width ROBPs (e.g. width-3 ROBP [MRT19, CHL+23]),

• Work on restricted ROBPs such as regular [BRRY14, CHL+23, CL23], permutation
[HPV21, PV21, CHL+23, CW25] or monotone [DMR+21] branching programs,

See Definition 2.8 for a formal definition of regular ROBPs. For the other classes, we refer
the interested reader to the survey papers [H+22, HH+24]. The result in this paper focuses
on constructing a WPRG against small-width, regular ROBPs.

Braverman et al.[BRRY14] showed a PRG against regular (w, t,Σ) − ROBP with seed
length O(log t · log w log t

ε
). In a seminal result, and using completely different techniques,

Ahmadinejad et al. gave a white-box algorithm completely derandomizing the class of regular
ROBPs. Specifically, they show that for regular (w, t,Σ) − ROBP B, one can approximate

Eσ∈ΣtB(σ) in space Õ(logwt·log log 1
ε
). Chen et al.[CHL+23] vastly simplified the [AKM+20]

technique, and we discuss this soon. In addition, they gave aWPRG against regular (w, t,Σ)−
ROBP with seed length O(log t·(logw+

√
log 1

ε
+log log t))+O(log w

ε
·log log 1

ε
), where log log t

and log log 1
ε
are lower order terms. Compared with the previous WPRGs for general ROBPs,

they remove the O(log2 t) term at the expense of adding a log t
√

log 1
ε
term (up to lower

order terms). This is an improvement when w is small relative to t and ε > 2− log2 t.

In this paper we shave off the lower order term multiplying the log w
ε
term. Specifically:

Theorem 1.1. (informal) There exists an explicit WPRG that ε–fools regular (w, t,Σ) −
ROBP with seed length O(log t · (logw +

√
log 1

ε
+ log log t)) +O(log 1

ε
).

In many cases this completely removes the lower order terms. For example, when t ≤ 2w,
or ε is mildly small, i.e., ε ≤ 2−(log log t)2 . We summarize these results in Table 2.

We next discuss the previous techniques and our contribution. The common theme
underlying many of these results, is the attempt to replace log t log 1

ε
by log t + log 1

ε
, an

3

Seed Size Reference Remarks

Õ(log(wt) · log log 1
ε
) [AKM+20] White-box (space)

O(log t · log w
ε
) [BRRY14] PRG

O(log t · logwt+ log 1
ε
) [Hoz21] WPRG, general ROBP

O(log t(logw +
√

log 1
ε
+ log log t) + log 1

ε
log log 1

ε
) [CHL+23] WPRG

O(log t(logw +
√

log 1
ε
+ log log t) + log 1

ε
) This paper WPRG

Table 2: PRG and WPRG for regular ROBP

endeavor often termed ”liberating” the error. Braverman et al. [BCG19] were the first
to show such a result, and for that they constructed the first WPRGs, crucially exploiting
negative weights. In a breakthrough result, Ahmadinejad et al. [AKM+20] obtained an
almost optimal white-box derandomization, by using a host of new techniques, including
Richardson’s iteration for error reduction. Cohen et al. [CDR+21] and Pyne et al. [PV21]
noticed that Richardson’s iteration give a clean way to obtain the [BCG19] result. We now
explain this technique, as we build upon it.

Richardson’s iteration is an amazingly efficient way to reduce the approximation error.
Suppose we have at hand a PRG εprg-fooling (w, t,Σ) − ROBP, for some large error ε0. We
will show how to construct from it a WPRG ε-fooling the same class for a much smaller ε. We
first describe a white-box algorithm, and then discuss how to turn it to a black-box WPRG.

Suppose we want to fool a (w, t,Σ) ROBP B. Let Wi denote the random walk matrix of B
at time i ∈ [t−1] (for a formal definition see Definition 2.1). Instead of working with t linear
operators Wi, we define the ”clocked” transformation W of dimension w(t + 1) × w(t + 1),
that has (t+1)× (t+1) blocks, each of dimension w×w, and where the blocks are indexed
by i, j ∈ [t] and the (i, j)’th block is W [i, j] = Wi when j = i+ 1 and zero otherwise.

The ”clocked Laplacian” of B is L = I − W . Since W t+1 = 0, L is invertible and
L−1 = I +W + ...+W t. One can see that the blocks of L−1 are

L−1[i, j] =

0w If j > i

Iw If i = j

Πi→jWi If 0 ≤ i < j ≤ t,

where Πi→jWi is taken to be Wj · . . . ·Wi, and notice that this is a non-commutative product.
Thus, we see that the exact operator L−1 carries all the information that we need, and, in
particular,

L−1[0, t] = Wt−1 . . .W0 (1)

is the operator capturing the execution of the ROBPB.

4

By definition L−1[i, j] = Πi→jWi = Eσ∈Σj−iBi→j(σ) where Bi→j is the (w, j− i,Σ) ROBP
that acts as B on the layers between i and j (see Definition 2.1 for a formal definition). Now
assume we have a crude PRG P fooling ROBPs. We replace each block Eσ∈Σj−iBi→j(σ) with
the pseudo-random block Ex∈{0,1}sBi→j(Pi→j(x)) (again, see Definition 2.2, for a rigorous

definition). Approximating each block independently we get an approximation
I

L̃−1 to L−1:

I

L̃−1[i, j] =

0w If j > i

Iw If i = j

Ex∈{0,1}sBi→j(Pi→j(x)) If 0 ≤ i < j ≤ t

We denote this approximation by
I

L̃−1 because each block is approximated separately and
independently. It is not difficult to see that

||
I

L̃−1 − L−1|| ≤ (t+ 1)εprg (2)

Richardson’s approximation takes any ε0 approximation A0 to L−1, (with independent
approximations as above, ε0 = (t + 1)εprg), in some sub-multiplicative norm, and gives
a better approximation to L−1 with low-error ε. Specifically, the new approximation is∑m

j=0(I − A0L)
i · A0, where m = log1/ε0(1/ε). Doing the calculation, one can see that this

approximation can be done in space Õ(logwt log log 1
ε
) [AKM+20, CHL+23].

Cohen et al. [CDR+21] and Pyne et al. [PV21] noticed that if A0 is the expectation of
B over the image of a PRG P , then one can convert the above white-box algorithm to a
black-box WPRG. This is explained in Section 2.2. Roughly speaking, opening (I − A0L)

i

to multiplications, we get a weighted PRG that incorporates up to m independent calls to
the PRG P .

Now, having m independent calls to P is too expensive. To solve this issue:

• [CDR+21, PV21] use a low-error INW generator to create m dependent seeds that are
used in the m applications of P . The crucial point here is that even though the INW
generator has very low error, it is very short m ≪ log 1

ε
, and therefore the penalty

incurred by this is off by only lower order terms such as log log(1/ε).

• Hoza [Hoz21] solved the problem in a completely different way. Instead of using the
INW PRG to generate m dependent seeds, Hoza keeps the different applications of P
independent. However, in each application, instead of averaging over all the seeds of P ,
Hoza uses sampler, where on the right hand side we have all possible seeds to the PRG
P . Hoza samples a single x on the left hand side of the sampler, and in each of the
independent applications of P , it averages only over the neighbors of x in the sampler.

5

More formally, fixing x on the left hand side of the sampler, we get an operator
Hx

L̃−1

approximating L−1, where

Hx

L̃−1[i, j] =

0w If j > i

Iw If i = j

Ey∈YBi→j(Pi→j(Samp(x, y))) If 0 ≤ i < j ≤ t

Hoza showed that for many fixed x ∈ X, the approximation is ε–good. The bad x’s
might be very bad, but good samplers have a tiny fraction δ of bad vertices.

Both [CDR+21, PV21] and [Hoz21] take the error εprg of the crude PRG P to be εprg =
poly(1

t
)1, so that after using Equation (2), ε0 < 1. We next address this point.

Chen et al. [CHL+23] simplified [AKM+20], and also combined their ideas with previous
ideas to give improved WPRGs against restricted ROBPs. The basic idea is to replace the
independent approximation of each block L−1[i, j], by dependent approximations. Specifi-
cally, they introduced the shortcut graph and independently approximated only blocks that
correspond to edges in the short-cut graph. They put an edge between i and j iff j − i is a
power of 2 dividing i. They then complete the other blocks from these approximations. For
i < j, they first find the shortest path from i to j on the shortcut graph, and they let the
(i, j)’th block be the product of the approximations along the edges of this path. We denote

the resulting approximation by
SC

L̃−1, where

SC

L̃−1[i, j] =

0w If j > i

Iw If i = j

Es1,...,sℓ∈{0,1}sBi→j(P
SC
i→j(s1, ..., sℓ)) If 0 ≤ i < j ≤ t

where

P SC
i→j(s1, ..., sℓ) = Pi0→ik(s1) ◦ ... ◦ Pik−1→ik(sk), (3)

and i = i0, ..., ik = j is the shortest path from i to j in the shortcut graph (see Definition 2.6

for a formal treatment). Chen et al. proved that the true inverse of
SC

L̃−1 is a meaningful
object (that corresponds to a weighted graph, with possibly negative weights). They use the
sparsity of the shortcut graph to prove:

1Specifically [Hoz21] additionally requires the error to be smaller than w due to constraints arising from
seed calculations.

6

Lemma 1.2. [CHL+23](informal) If for every i < j the PRG Pi→j εprg-fools Bi→j then

||I −
SC

L̃−1L||∞≤ O(MW (B) · w2 · log t) · εprg,

where MW (B) is the maximal weight of B and its subprograms Bi→j

We also note that Braverman et al. showed that MW (B) is at most poly(w) for regular
ROBPs.

We now see that with the new bound in Lemma 1.2, and when working against regular
ROBPs, we only need to choose εPRG ≤ poly(1

w log t
), which is much larger than 1/t when

w ≪ t. We can then try to reduce the error to ε using Richardson’s iteration. Opening
Richardson’s iteration, reduces to m independent applications of operators that come from
the shortcut graph, which reduces to O(m log t) applications of the original PRG P . To get
the results stated before, [CHL+23] replace the O(m log t) independent applications of P ,
with dependent applications, where the seeds are the output of a short (length O(m log t))
low-error INW generator.

We suggest a different way of implementing the Richardson’s reduction. Chen et al.
reduce the new operator to a concatenation of several applications of the original PRG P
and they use dependent seeds for the different applications. Instead, inspired by Hoza’s work
on WPRG for general ROBPs, we would have liked to run independent applications of P SC

(defined in Equation (3)), but over a smaller sample space. I.e., we want to use a sampler,
such that most vertices x on the left hand side, define a good subsample of the the seeds
of the PRG P SC , and then, opening Richardson’s approximation, we run m independent
applications of P SC , but averaging each (independently) only over the neighbors of x.

Working out the parameters we find out that this approach is too expensive. The reason
for that is that the PRG P SC has O(log t) independent calls to the original PRG P , and these
independent calls are too expansive. Our final solution is to use dependent applications for
the O(log t) applications of P in P SC , using, say, the INW generator, and to use independent
calls to P SC using Hoza’s sampler trick. Specifically, we define the derandomized short-cut
operator

SC+INW

L̃−1 [i, j] =

0w If j > i

Iw If i = j

Es1∈SINW
Bi→j(P

SC
i→j(INW (s1))) If 0 ≤ i < j ≤ t

We then use independent applications of this operator on the simpler subset. Specifically,
this gives the operator:

7

SC+INW+Hx

L̃−1 [i, j] =

0w If j > i

Iw If i = j

Ey∈YBi→j(P
SC
i→j(INW (Samp(x, y)))) If 0 ≤ i < j ≤ t

Saying it differently, Chen et al. take dependent samples for all theO(m log t) applications
of the original PRG P , whereas we take m independent samples (but averaged over a smaller
subset using the sampler) of a PRG that takes O(log t) dependent samples of P along the
short-cut graph. This gives the results stated before.

The WPRG we have seen before works not only for regular ROBPs, but also for general
ROBPs with small weight (where weight here means Definition 2.7). Meka et al. [MRT19]
showed that a random restriction (with a small bias distribution) of a width 3 ROBP is (with
a good probability) a small weight ROBP. Thus, Chen et al. plug their WPRG into the
[MRT19] construction. However plugging our improved WPRG does not improve the bottom
line result because the restrictions contain more dominant terms than our improvement.

The paper is organized as follows. We begin with definitions, notations and background
in Section 2. In Section 3 we present the construction of our low weight WPRGand prove its
correctness.

2 Preliminaries and Background

[k] denotes the set {0, . . . , k}. Ut denotes the uniform distribution over {0, 1}t. Let M
be a w × w matrix. The infinite induced norm ||M ||∞ is ||M ||∞= max||x||∞=1||Mx||∞=
max1≤r≤w|Mr|1, where Mr is the r’th row of M . Iw denotes the w × w identity matrix and
0w the w × w zero matrix.

For a k× k matrix M and i, j ∈ [k− 1], M [i, j] is the value of M at the i’th row and j’th
column. For consistency the rows and columns of a w × w matrix are indexed by [w − 1],
i.e., the indices run from 0 to w− 1. For every f : [w− 1] → [w− 1] there is a corresponding
w × w boolean matrix Mf such that Mf [i, j] = 1 iff f(j) = i. We denote the set of such
matrices by SBMw×w (stochastic, boolean matrices).

Definition 2.1 (ROBP). Let Σ be an arbitrary subset, w, t ∈ N. B is a width w length
t read once branching program (ROBP) on alphabet Σ if it is a sequence of t functions
(B0, B1, ..., Bt−1), with Bi : Σ → SBMw×w. The evaluation of B on input σ0, ...σt−1 ∈
Σt is the linear operator B(σ0, ..., σt−1)

def
= Bt−1(σt−1) · ... · B0(σ0). We also say B is a

(w, t,Σ)− ROBP. For i < j ∈ [t] we let Bi−→j denote the sequence (Bi, ..., Bj−1), which is a
(w, j−i,Σ)−ROBP. For any i ∈ [t−1] the random walk matrix in time i is Wi = Eσ∈ΣBi(σ).

Definition 2.2 (PRG). Let Σ be an arbitrary subset and s, t ∈ N. A (s, t,Σ) pseudo random
generator is a function PRG : {0, 1}s → Σt. For ϵ > 0 and a norm ||·||, we say PRG

8

(ϵ, ||·||)-fools (w, t,Σ)− ROBP if for every (w, t,Σ)− ROBP B we have:

||Eσ∈ΣtB(σ)− Ex∈{0,1}sB(PRG(x))|| ≤ ϵ

Definition 2.3 (WPRG). Let Σ be an arbitrary subset and s, t, k ∈ N. A weighted (s, t,Σ, k)
pseudo random generator is a tuple (Γ, P), where P : {0, 1}s → Σt and Γ : {0, 1}s →
[−k, k]. For ϵ > 0 and a norm ||·||, we say (Γ, P) (ϵ, ||·||)-fools (w, t,Σ)−ROBP if for every
(w, t,Σ)− ROBP B we have:

||Eσ∈ΣtB(σ)− Ex∈{0,1}sΓ(s)B(P (s)))|| ≤ ϵ

Definition 2.4 (Sampler). A function Samp : {0, 1}n × {0, 1}d → {0, 1}m is an (ε, δ)-
sampler if for every function f : {0, 1}m → [0, 1],

Pr
x∈{0,1}n

[|Eu∈Umf(u)− Ey∈Ud
f(Samp(x, y))| ≤ ε]] ≥ 1− δ

Theorem 2.5. [RVW00, Gol11, CL20] For every δ, ε > 0 and integer m, there exists an
(ε, δ)-sampler f : {0, 1}n × {0, 1}d → {0, 1}m s.t. d = O(log log 1

δ
+ log 1

ε
) and n = m +

O(log 1
δ
+ log 1

ε
) that can be computed in space O(m+ log 1

δε
).

Definition 2.6 ([CHL+23] Shortcut Graph). For any n ∈ N, the shortcut graph SCN on
N = 2n is a graph (V,E). Where V = [N] and

E = {(i, i+ 2q) ∈ V × V |2q divides i}

2.1 Weight and Regular ROBPs

Let B be a (w, t,Σ) − ROBP, and q⃗ ∈ {0, 1}w a vector indicating which of the vertices on
the final layer is accepting. Let u ∈ [w − 1] and i ∈ [t]. The accept rate of (i, u) in relation
to B, q⃗ is

Accpt(B, q⃗, i, u) =

 q⃗u If i = t,

(q⃗TEσ∈Σt−iBi→t(σ))u Else

Definition 2.7 (Weight of ROBP). [BRRY14, CHL+23] Let B be a (w, t,Σ)− ROBP. The
weight of B, denoted as Weight(B), is

Weight(B) = maxq⃗∈{0,1}w

t−1∑
i=0

∑
u∈[w−1],σ∈Σ

|Accpt(B, q, i, u)− Accpt(B, q, i+ 1,Γ(i, u, σ))|

9

where Γ(i, u, σ) = v is the unique v ∈ [w − 1] s.t. Bi(σ)v,u = 1. We define the maximal
weight for B as MW (B) by

MW (B) = max
i<j∈[t]

Weight(Bi→j)

Definition 2.8 (Regular branching program). Let B be as above. We say B is a regular
ROBP if for every i ∈ [t− 1] the random walk matrix Wi is doubly stochastic.

Theorem 2.9. [BRRY14] If B is a regular (w, t, {0, 1})−ROBP, then MW (B) ≤ w(w−1).

2.2 Black Box Richardson’s Iteration

Fix B a (w, t,Σ) − ROBP. Let W be the clocked random walk matrix, L the ”clocked

Laplacian” matrix, L−1 its inverse and A0 =
I

L̃−1 its approximation as defined in Section 1.
We assume we have a family of PRGs {Pi→j}i,j∈[t] such that

A0[i, j] = EsBi→j(Pi→j(s))

and A0 approximates L−1, i.e., ||I − A0L||≤ ε, where ε is some crude approximation. We
now use,

Lemma 2.10 (Richardson’s iteration). Let m ∈ N and A0 a matrix. Denote

Am =
∑
i∈[m]

(I − A0L)
iA0 (4)

For any sub-multiplicate norm, if ||I − A0L||≤ ε then ||I − AmL||≤ εm.

Opening up the powers in Equation (4) to multiplications, Cohen et al. [CDR+21] and
Pyne et al. [PV21] showed that if A0 is defined by a PRG, then Am[0, t] can also be evaluated
in a black-box manner, alas with weights, i.e., there exists a WPRG (Γ, G) that implements
Am, i.e., Am[0, t] = Es∈SG

Γ(s)B(G(s)).

To explain how this is done we need some definitions. A partition of [t] into i parts is
π ∈ [t]i+1 where 0 ≤ π0 ≤ ... ≤ πi = t. A labeling of a partition π with i parts is a function
ℓ : [i − 1] → {0, 1}. A labeled partition of size i (i, π, ℓ) is a partition π with i parts along
with a labeling function ℓ : [i − 1] → {0, 1} of π. Fix an integer m. We let Π(t,m) denote
the set of all labeled partitions (i, π, ℓ) of [t] of size i ∈ [m].

Definition 2.11 (Independent seeds WPRG). [CDR+21, PV21] Keeping notation as above
we assume A0[i, j] = EsBi→j(Pi→j(s)). We define (Γ, G) where

Γ : Π(t,m) → R
G : Π(t,m)× {0, 1}s·(m+1) × Σm → Σt

10

defined by:

Γ(i, π, ℓ) = (−1)
∑

k∈[i] ℓk · |Π(t,m)|
G((i, π, ℓ), y0, ..., ym, σ1, ..., σm) = P0→π0(y0) ◦ P ℓ0

π0→π1
(σ1, y1) ◦ ... ◦ P ℓi−1

πi−1→πi
(σi, yi)

where P b
i→ j is defined by

• P 0
i−→j(σ, s) = Pi−→j(s)

• P 1
i−→j(σ, s) = σ ◦ Pi−→j(s)

Lemma 2.12. [CDR+21, PV21] As A0[i, j] = EsBi→j(Pi→j(s)) we have that Am[0, t] =
Es∈SG

Γ(s)B0→t(G(s))

2.3 Moderate Approximation in Low Weights ROBP

As described in Section 1 Chen et al. used the shortcut graph (given in Definition 2.6) to

define their approximation
SC

L̃−1 to the inverse of the clocked laplacian. They then defined L̃

to be the true inverse of
SC

L̃−1, i.e., L̃ = (
SC

L̃−1)−1. They proved that:

Lemma 2.13. [CHL+23, Lemma 6.4] If for every i < j ∈ [t] the PRG Pi→j εprg-fools Bi→j

then

||L−1(L̃− L)||∞≤ 1.5 ·MW (B) · w2 · log t · εprg,

They also proved:

Corollary 2.14. [CHL+23, Corollary 4.11] Let L and L̃ be lower uni-triangular matrices of

the same dimension, δ ∈ [0, 1). If ||L−1(L̃− L)||∞≤ δ then ||(L̃)−1(L̃− L)||∞≤ δ
1−δ

Together this implies:

Lemma 2.15. [CHL+23] If for every i < j ∈ [t] the PRG Pi→j εprg-fools Bi→j then

||I −
SC

L̃−1L||∞≤ 3 ·MW (B) · w2 · log t · εprg.

3 Our Construction

As described in the introduction, our paper combines ideas from [CHL+23] and [Hoz21]. The
construction begins in the same way as [CHL+23]. We use the shortcut graph to define an

initial approximation
SC

L̃−1[i, j] for each block L−1[i, j]. The approximation in [CHL+23] is

11

defined as O(log t) independent approximations of our original PRG. To use Hoza’s sampler
idea, we start by replacing the independent approximations with dependent approximations

using the INW PRG. We denote this approximation by
SC+INW

L̃−1 . We then apply Hoza’s

sampler idea to get our final approximation which we denote by
SC+INW+Hx

L̃−1 . We now give
the details.

Let w, t,W ∈ N, ε > 0 and Σ an arbitrary alphabet. We construct a WPRG that ε-fools
(w, t,Σ)− ROBP with max weight at most W.

We define three new parameters ε0, ℓmax,m where:

• ε0 =
1
w
· 2−

√
log 1

ε - our initial error for Richardson’s iteration,

• ℓmax = 2 log t - the maximal length of a shortest path in the graph SCt of Definition 2.6,

• m =
log 2

ε

log 1
ε0

+ 1 -the maximal degree of the Richardson’s iteration.

We use the following building blocks

• [BRRY14] : Pi→j : SBRRY → Σj−i is a PRG εBRRY -fooling (w, j − i,Σ) − ROBP with
max weight W, where εBRRY = ε0

6Ww2 log t
. It has seed

log|SBRRY | = log|Σ|+O(log t log
w ·W log t

ε0
)

• [INW94]: INW : SINW → Sℓmax
BRRY is a PRG εINW -fooling (w, ℓmax, SBRRY) − ROBP,

where εINW = ε0
8w(t+1)

. It has seed

log|SINW | = log|SBRRY |+O(log ℓmax log
wt

ε0
)

• [RVW00, Gol11, CL20] (also stated in Theorem 2.5): Samp : X × Y → SINW is a
(δs =

ε
2w2(2t)m+3 , εs =

ε0
8w(t+1)

)-sampler. Its parameters are bounded by

log|X| = log|SINW |+O(log
1

εs · δs
) = log|SINW |+O(log

w

ε
+m log t)

log|Y | = O(log
log 1

δ

εs
) = O(log

mwt

ε0
) = O(log

wt

ε0
)

As in [CHL+23], we define

P SCt
i→j (s1, ..., sk) = Pi0→i1(s1) ◦ ... ◦ Pik−1→ik(sk)

where i = i0, ..., ik = j is the shortest path from i to j in the shortcut graph SCt.

12

Next, for any fixed x ∈ X, we define a family of PRG {P (x)
i→j : Y → Σj−i}i<j≤t

P
(x)
i→j(y) = P SCt

i→j (INW (Samp(x, y))), and,

P
(x),b
i→j (σ, y) =

{
P

(x)
i→j(y) b = 0,

σ ◦ P (x)
i+1→j(y) b = 1.

We are now ready to define our WPRG.

Definition 3.1. We define Wfinal = (Γ, G) where

Γ : Π(t,m) → R

G : Π(t,m)×X × Y m+1 × Σm

by

Γ(i, π, t) = (−1)
∑

k∈[i] tk |Π(t,m)|
G((i, π, t), x, y0, ..., ym, σ1, ..., σm) = P

(x)
0→π1

(y0) ◦ P (x),t1
π1→π2

(σ1, y1) ◦ ... ◦ P (x),ti
πi→πi+1

(σi, yi)

Theorem 3.2 (Main theorem). Wfinal is an explicit WPRG (ε, ||·||ℓ1)-fooling (w, t,Σ)−ROBP
with max weight at most W. Its seed length s is

s = O

(
log(w ·W · log t) · log t+ log(t · |Σ|) ·

√
log

1

ε
+ log

1

ε

)
.

An immediate corollary of Theorem 2.9 gives a WPRG for regular ROBP:

Theorem 3.3 (WPRG for regular ROBP). Σ = {0, 1}. Wfinal is an explicit WPRG (ε, ||·||ℓ1)-
fooling regular (w, t,Σ)− ROBP with seed

s = O

(
log t ·

(
log(w · log t) +

√
log

1

ε

)
+ log

1

ε

)
.

Tracing parameters:

Lemma 3.4 (Seed length). The WPRG Wfinal has seed length

O

(
log(w ·W · log t) · log t+ log(t · |Σ|) ·

√
log

1

ε
+ log

1

ε

)
.

and its weights are bounded by t · (2t)1+
√

log 1
ε .

13

Proof. If one of the parameters w,W is bigger than t, then [Hoz21] is a simpler WPRG
achieving the stated parameters, so w.l.o.g assume w,W ≤ t.

The seed length s of Wfinal is

s = O(m(log|Y |+ log|Σ|) + log|X|+ log|Π(t,m)|)

= O

(
log 1

ε

log 1
ε0

(
log

t

ε0
+ log|Σ|

)
+ log t · log w ·W · log t

ε0
+ log

w

ε

)

Plugging ε0 =
1
w
· 2−

√
log 1

ε we get the desired seed length.

The weights of the WPRG are all the same size |Π(t,m)|. They are bounded by the term

|Π(t,m)|=
∑m

i=0

(
t
i

)
2i ≤ 2m · tm+1 = t(2t)m ≤ t · (2t)1+

√
log 1

ε .

Finally we claim correctness:

Lemma 3.5 (Correctness). The WPRG Wfinal (ε, ||·||ℓ1)-fools (w, t,Σ) − ROBP with max
weight at most W.

We prove the lemma in the remaining subsections.

3.1 Correctness

Following [CHL+23, Hoz21], we prove the following two lemmas, which immediately imply
Lemma 3.5. Fix any B a (w, t,Σ)− ROBP with MW (B) ≤ W .

Definition 3.6 (Good and bad x). Call x ∈ X good if for every i, j ∈ [t], u, v ∈ [w − 1] we
have that∣∣Es∈SINW

Bi→j(P
SC
i→j(INW (s)))v,u − Ey∈YBi→j(P

SC
i→j(INW (Samp(x, y))))v,u

∣∣ ≤ εs,

where εs is the sampler accuracy. We say x is bad if it is not good.

Now,

Lemma 3.7 (Bad x). Prx∈X [x is bad] ≤ δsw
2(t + 1)2, where δs is the sampler confidence.

In addition, for every x ∈ X, ||Es∈SG
Γ(s) ·B(G(x)(s))− Eσ∈ΣtB(σ)||ℓ1≤ t(2t)m + 1.

Lemma 3.8 (Good x). For every good x ∈ X, ||Es∈SG
Γ(s) ·B(G(x)(s))− Eσ∈ΣtB(σ)||ℓ1≤ ε

2
.

Assuming the two lemmas we conclude:

Proof of Lemma 3.5. Let B a (w, t,Σ)− ROBP with MW (B) ≤ W . Then,

||ExEsΓ(s)B(G(x)(s))− Eσ∈ΣtB(σ)||ℓ1 ≤ Pr
x∈X

[x is bad] · (t(2t)m + 1) +
ε

2

≤ δsw
2(2t)m+3 +

ε

2
≤ ε

14

3.2 Bad x

Proof of Lemma 3.7. For i, j ∈ [t] and u, v ∈ [w − 1] define

fi,j,u,v(s) = Bi→j(P
SC
i→j(INW (s)))v,u

Say x ∈ X is bad for i, j, u, v if

|Es∈SINW
fi,j,u,v(s)− Ey∈Y fi,j,u,v(Samp(x, y))| > εs

Since Samp is an (εs, δs)−sampler, the probability x is bad for i, j, u, v is at most δs. By
the union bound

Pr
x∈X

[x is good] ≥ 1− δs · w2(t+ 1)2.

Finally, fix any x ∈ X. As |Γ(s)|= |Π(t,m)| for every s ∈ SG, we get:

||Es∈SG
Γ(s)B(G(x)(s))− Eσ∈ΣtB(σ)||ℓ1 ≤ ||Es∈SG

Γ(s)B(G(x)(s))||ℓ1+||Eσ∈ΣtB(σ)||ℓ1
≤ |Π(t,m)|·max

s∈SG

||B(G(x)(s))||ℓ1+max
σ∈Σt

||B(σ)||ℓ1

≤ |Π(t,m)|+1 ≤ t(2t)m + 1.

3.3 Good x

Notice that by definition

Es∈SINW
fi,j,u,v(s) =

(
SC+INW

L̃−1 [i, j]

)
v,u

Ey∈Y fi,j,u,v(Samp(x, y)) =

(
SC+INW+Hx

L̃−1 [i, j]

)
v,u

and so

Lemma 3.9. For every good x, ||
SC+INW

L̃−1 −
SC+INW+Hx

L̃−1 ||∞≤ εs · w(t+ 1) ≤ ε0
8
.

Furthermore,

Lemma 3.10. For every good x, ||I −
SC+INW+Hx

L̃−1 L||∞≤ ε0.

15

Proof. Using the triangle inequality and ||L||∞≤ 2 we have:

||I −
SC+INW+Hx

L̃−1 L||∞ ≤ ||I −
SC

L̃−1L||∞+||
SC

L̃−1 −
SC+INW+Hx

L̃−1 ||∞·||L||∞≤

≤ ||I −
SC

L̃−1L||∞+2(||
SC+INW

L̃−1 −
SC

L̃−1||∞+||
SC+INW

L̃−1 −
SC+INW+Hx

L̃−1 ||∞).

Now,

• we recall that B is a (w, t,Σ)− ROBP with MW (B) ≤ W . Hence, by Lemma 2.15,

||I −
SC

L̃−1L||∞ ≤ 3 ·MW (B) · w2 · log t · εBRRY ≤ ε0
2

• Also, since INW εINW -fools (w, k, SBRRY)− ROBP for all k ≤ ℓ,

||
SC+INW

L̃−1 −
SC

L̃−1||∞≤ εINW · w(t+ 1) ≤ ε0
8

• Finally, ||
SC+INW

L̃−1 −
SC+INW+Hx

L̃−1 ||∞≤ ε0
8
by Lemma 3.9.

Together, this completes the proof of the lemma.

Now, let

Ax
0 =

SC+INW+Hx

L̃−1 ,

and recall that

Ax
0 [i, j] = Ey∈YBi→j(P

SC
i→j(INW (Samp(x, y)))) (5)

Let Ax
m denote the matrix defined as the result of m Richardson’s iterations. Namely,

Ax
m =

m∑
i=0

(I −
SC+INW+Hx

L̃−1 L)i ·
SC+INW+Hx

L̃−1

By Lemma 2.10 together with Lemma 3.10 and our choice of m = 1+
log 2

ε

log 1
ε0

, we conclude

that

||I − Ax
mL||∞ ≤ ε0 · ε

2
≤ ε

2w
.

We are finally ready to prove Lemma 3.8, following [CHL+23, Section 6.2].

16

Proof. (of Lemma 3.8) For any basis vector e = ei,u (indexed by i ∈ [t] and u ∈ [w− 1]), we
have that ||L−1e||∞= 1, because it contains columns of stochastic matrices applied on eu.
Hence,

||L−1e− Ax
me||∞ = ||L−1e− Ax

mLL
−1e||∞

= ||(I − Ax
mL)L

−1e||∞
≤ ε

2w
||L−1e||∞≤ ε

2w
.

In particular, this is true for all e = e0,u, u ∈ [w− 1]. We therefore conclude that for any
u, v ∈ [w − 1],

|(Ax
m[0, t]− L−1[0, t])[v, u]| ≤ ε

2w

Recalling that

L−1[0, t] = Eσ∈ΣtB(σ) (6)

Ax
m[0, t] = Es∈SG

Γ(s)B0→t(G
(x)(s)) (7)

where Equation (6) is by Equation (1), and Equation (7) is by Lemma 2.12, where the
P = {Pi→j} that we plug into the lemma is {P SC

i→j(INW (Samp(x, y)))}, where y is the seed
and x is fixed (see Equation (5)).

Therefore, for any u, v ∈ [w − 1]:

|(EsΓ(s)B(G(x)(s))− Eσ∈ΣtB(σ))[v, u]|≤ ε

2w

We conclude:

||EsΓ(s)B(G(x)(s))− Eσ∈ΣtB(σ)||ℓ1≤
ε

2

References

[AKM+20] AmirMahdi Ahmadinejad, Jonathan Kelner, Jack Murtagh, John Peebles, Aaron
Sidford, and Salil Vadhan. High-precision estimation of random walks in small
space. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Sci-
ence (FOCS), pages 1295–1306. IEEE, 2020.

17

[BCG19] Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-
distributions with near-optimal error for read-once branching programs. SIAM
Journal on Computing, 49(5):STOC18–242, 2019.

[BRRY14] Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudoran-
dom generators for regular branching programs. SIAM Journal on Computing,
43(3):973–986, 2014.

[CDR+21] Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Er-
ror reduction for weighted prgs against read once branching programs. Leibniz
international proceedings in informatics, 200(22), 2021.

[CHL+23] Lijie Chen, William M Hoza, Xin Lyu, Avishay Tal, and Hongxun Wu. Weighted
pseudorandom generators via inverse analysis of random walks and shortcutting.
In 2023 IEEE 64th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1224–1239. IEEE, 2023.

[CL20] Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for
read-once branching programs. arXiv preprint arXiv:2002.07208, 2020.

[CL23] Eshan Chattopadhyay and Jyun-Jie Liao. Recursive error reduction for regular
branching programs. arXiv preprint arXiv:2309.04551, 2023.

[CW25] Kuan Cheng and Ruiyang Wu. Weighted pseudorandom generators for read-
once branching programs via weighted pseudorandom reductions. arXiv preprint
arXiv:2502.08272, 2025.

[DMR+21] Dean Doron, Raghu Meka, Omer Reingold, Avishay Tal, and Salil Vadhan. Pseu-
dorandom generators for read-once monotone branching programs. Leibniz in-
ternational proceedings in informatics, 207(58), 2021.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective on sam-
pling. In Studies in Complexity and Cryptography. Miscellanea on the Inter-
play between Randomness and Computation: In Collaboration with Lidor Avigad,
Mihir Bellare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman,
Leonid Levin, Noam Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vad-
han, Avi Wigderson, David Zuckerman, pages 302–332. Springer, 2011.

[H+22] William M Hoza et al. Recent progress on derandomizing space-bounded com-
putation. Bulletin of EATCS, 138(3), 2022.

[HH+24] Pooya Hatami, William Hoza, et al. Paradigms for unconditional pseudorandom
generators. Foundations and Trends® in Theoretical Computer Science, 16(1-
2):1–210, 2024.

[Hoz21] William M Hoza. Better pseudodistributions and derandomization for space-
bounded computation. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

18

[HPV21] William M Hoza, Edward Pyne, and Salil Vadhan. Pseudorandom generators
for unbounded-width permutation branching programs. In 12th Innovations
in Theoretical Computer Science Conference (ITCS 2021), pages 7–1. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2021.

[INW94] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for
network algorithms. In Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing, pages 356–364, 1994.

[MRT19] Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for
width-3 branching programs. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 626–637, 2019.

[Nis90] Noam Nisan. Pseudorandom generators for space-bounded computations. In
Proceedings of the twenty-second annual ACM symposium on Theory of comput-
ing, pages 204–212, 1990.

[PV21] Edward Pyne and Salil Vadhan. Pseudodistributions that beat all pseudorandom
generators. In 36th Computational Complexity Conference (CCC 2021), pages
33–1. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2021.

[RVW00] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag
graph product, and new constant-degree expanders and extractors. In Proceed-
ings 41st Annual Symposium on Foundations of Computer Science, pages 3–13.
IEEE, 2000.

19
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

