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Abstract

We study the randomized communication complexity of the equality function in the public-
coin model. Although the communication complexity of this function is known to be low in the
setting where error probability is constant and a large number of random bits are available to
players, the complexity grows if the allowed error probability and the amount of randomness
are restricted.

We show that randomized protocols for equality and error correcting codes are essentially
the same object. That is, given a protocol for equality, we can construct a code, and vice versa.

We substantially extend one of the directions of this connection: any protocol computing a
function with a large fooling set can be converted into an error correcting code. As a corollary,
we show that among functions with a fooling set of size s, equality on log s bits has the least
randomized communication complexity, regardless of the restrictions on the error probability
and the amount of randomness.

Finally, we use the connection to error correcting codes to analyze the randomized commu-
nication complexity of equality for varying restrictions on the error probability and the amount
of randomness. In most cases, we provide tight bounds. We pinpoint the setting in which tight
bounds are still unknown.

1 Introduction

In the standard model of communication complexity, two players, Alice and Bob, are tasked with
computing the value of a fixed function f: {0,1}" x {0,1}" — {0,1} on some given input (z,y).
However, Alice only knows = and Bob only knows y, and they must communicate to compute f(x,y).
Communication complexity studies the amount of communication between players in terms of the
number of bits exchanged. In recent decades, communication complexity has become one of the
central areas in computational complexity, with numerous applications to other areas, including
circuit complexity, proof complexity, online algorithms, and data structures [KN97, RY20, Roul6,
Juk12].

The equality function EQ: {0,1}" x {0,1}" — {0,1} is one of the most fundamental functions
in communication complexity. On input (x,y), this function outputs 1 iff x = y. This was the first
function for which an exponential separation between deterministic and randomized communication
complexity was shown (see [Yao79]). Later, EQ played a key role in many results in communica-
tion complexity, including direct sum results for the randomized setting [FKNN95], protocols for
threshold functions [Nis93], lifting theorems [LM19, dRMN20], and communication complexity
with an equality oracle [CLV19, PSS23].
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It is well known that the randomized communication complexity of EQ is low for constant error
probability. In the private randomness setting, there is an O(logn) protocol, usually attributed
to Rabin and Yao (unpublished, see [KN97, Razl1]). For the case of public randomness, there
is an O(1) protocol. The general idea of this protocol is that players can first use their shared
randomness to sample a random hash function h. Then Alice sends Bob h(z), and Bob compares it
to h(y). The most standard protocol of this type is for players to pick a random vector r € {0,1}"
and compare the inner products (x,r) and (y,r) over Fo. In the case that z and y are not equal,
there is a 1/2 probability that the compared inner products are also not equal.

Although the randomized complexity of EQ is O(1) for constant error probability and unlimited
access to randomness, the complexity can increase when we impose stronger restrictions on these
parameters. The error probability for EQ (as well as for any other function) can be reduced to any
€ at the cost of a log% factor in complexity by a standard error reduction procedure. As for the
amount of randomness required, note that the EQ protocol above uses a large number of random
bits, which grows as the error probability is reduced. The number of random bits, which we denote
by m, can be substantially reduced using the idea from Newman’s result on the connection between
communication complexity in the public-coin and private-coin models [New91, LMdW21]. Another
known construction of randomized protocols for EQ with restricted randomness is through error
correcting codes. In such a protocol, players privately encode their inputs via an error correcting
code and compare them in a random coordinate (see Section 2.4 or [RY20, Chapter 3]).

As for lower bounds, Canetti and Goldreich [CG93] obtained general lower bounds in the setting
with restricted amount of randomness (by reduction to deterministic case, see Fact 4). For equality,
their result gives a lower bound of 2 (62%) They also provided examples of matching upper bounds
for the case of constant error probability. Moran et al. [MSY16] (see also [LMdW21]) gave a
lower bound on communication complexity in the private-coin model in the small error case for
functions with large fooling sets. In particular, for equality, their bound implies a lower bound of
Q (logn + log %) in the private randomness setting. For public randomness, this implies a lower
bound (logn + log% — m) (to reduce a protocol with private randomness to one with public
randomness one of the players can generate random bits and send them to another player). Despite
these results, the entire landscape of communication complexity of EQ for varying ¢ and m is not
fully clear.

Our Results

As mentioned above, error correcting codes give communication protocols for EQ. In our first
result, we observe that actually, the converse is also true: communication protocols for EQ give
rise to error correcting codes. Thus, error correcting codes and protocols for EQ are essentially the
same object.

Main Theorem 1 (Informal version of Theorem 2 and Corollary 3). Given a protocol for EQ,
we can construct an error correcting code with equivalent parameters (up to a constant factor),
and vice versa. Furthermore, this connection is precise for one-sided error protocols; in this case,
protocols and error-correcting codes are in one-to-one correspondence.

We obtain the following corollary:

Corollary (Informal version of Corollary 4). Any randomized public-coin protocol for EQ can be
converted into a one-sided false-positive error protocol with no loss in parameters.

In particular, any communication protocol for EQ with e; false positive error and ¢¢ false
negative error can be converted into a one-sided error protocol with g9 + ¢ false positive error (the
communication complexity and the number of random bits used remain the same).



Next, we show that one direction of the result above generalizes to arbitrary functions in the
following way:

Main Theorem 2 (Informal version of Theorem 5). Any randomized public-coin protocol for
a function with a large fooling set can be converted into an error correcting code with the same
parameters as for EQ.

As a consequence, we obtain the following corollary:

Corollary (Informal version of Corollary 6). Among all functions with a fooling set of size s, EQ
on log s bits has the least randomized public-coin communication complexity for all values of error
probability and number of random bits.

In other words, this corollary says that of all functions, EQ provides the largest separation
between fooling set size and public-coin randomized communication complexity.

We next use the established connection between communication complexity of EQ and error
correcting codes to provide a detailed analysis of the communication complexity k of EQ on n-bit
inputs for varying amounts of random bits m and error e. We start by translating bounds for
error correcting codes to lower bounds for communication complexity. In particular, using the
Singleton and Elias-Bassalygo bounds from coding theory, we obtain the following lower bound
on the randomized communication complexity of EQ in the public-coin model (up to a constant
factor):

Main Theorem 3 (Informal version of Theorem 8). Any randomized public-coin protocol for EQ
satisfies the following lower bound for the communication complexity k:

. n 1
k > max (mln (n, —) ,log ) .
g2m €

Furthermore, this lower bound is tight for many regions of the parameters m, €.

We show that the Plotkin bound and Griesmer bound do not give better bounds in any range
of parameters (up to a constant factor).

Interestingly, the two known lower bounds for EQ mentioned above have natural interpretations
in terms of codes. The result of [MSY16] corresponds to the Elias-Bassalygo bound (after translation
of their result to the public randomness setting) and the result of [CG93] matches the Singleton
bound. Our equivalence between communication protocols and error correcting codes provides a
unified framework which captures both of these bounds. Furthermore, in our analysis of the equality
function (Section 4), we notice that these bounds can be simplified (ignoring constant factors).

Next, we further analyze the landscape of communication complexity of EQ. Depending on
values of the parameters m and e, the expression in the theorem above can resolve (up to constant
factors) to n, g, or log % In the first case, the trivial deterministic protocol for EQ (see Sec-
tion 2.2) is clearly optimal. In the second case, we show that for a wide range of parameters, the
EQ protocol obtained from Reed-Solomon codes is optimal. However, this code does not apply in
a certain range of parameters, specifically when log% < —gw < m. In this case, we devise a pro-
tocol that is suboptimal, but close to the lower bound (specifically, we iterate the Reed-Solomon
code with itself). Finally, in the third case, we show that the standard protocol combined with an
improvement of Newman’s theorem (see Fact 5) for reducing the number of random bits gives an
upper bound that is tight, up to additive lower order terms. Previously this was known only for
the case of constant £ [CG93].




Other related work. Fleischer et al. [FJM95] studied the relation between the number of ran-
dom bits and the zero-error communication complexity for the list-non-disjointness function. Ball
et al. [BGM21] gave a lower bound on randomized communication complexity with defective ran-
domness through the size of the fooling set. The paper [MSY16] analyses communication protocols
of functions by looking at the statistical distance of the protocol on distinct inputs from the fooling
set. The difference with our approach is that we look at Hamming distance between the vectors of
outcomes instead.

The rest of the paper is organized as follows. In Section 2, we give the necessary definitions and
state known results. In Section 3, we prove our results on the connection between communication
complexity and error correcting codes. In Section 4, we use the connection established in Section 3 to
deduce lower bounds on the communication complexity of equality for various amounts of allowed
error and randomness. In Section 5, we analyze the landscape of communication complexity of
equality by comparing our lower bounds against upper bounds for various regions of parameters.

2 Preliminaries

We make frequent use of the following fact:

Fact 1. For two non-negative functions a(n),b(n) such that a(n) = b(n) + logb(n),
b(n) = a(n) —loga(n) + O(1).

2.1 Notation and Conventions

All logarithms are base 2 unless otherwise specified. We use the notation f to denote the function
f iterated with itself ¢ times.

For brevity, unless specified otherwise, when we refer to the “complexity” of a function, we are
referring to the randomized communication complexity in the public-coin model. Similarly, when
we refer to a “protocol”, we mean a randomized communication protocol in the public-coin model.
By “naive protocol” for EQ, we mean the deterministic protocol in which Alice sends her entire
input, and by the “standard protocol” for EQ, we mean the standard randomized protocol used
in the public-coin model, as described in Section 2.2. Finally, when we refer to a “code”, we are
referring to an error correcting code.

We use m to denote the amount (in bits) of public randomness in a communication protocol,
and we use € to denote the allowed error. When protocols have two-sided error, we use €1 to denote
false positive error and ¢ to denote false negative error. For convenience, we often use k to denote
public-coin randomized communication complexity. That is, we let k& denote CCP™. We use the
notation [N, K, D] code to refer to a code with block length N, message length K, and distance D
(see Section 2.3 for definitions of these parameters).

2.2 Communication Complexity

In the standard model of communication complexity, two players, Alice and Bob, wish to compute
the value of a function f: {0,1}" x {0,1}" — {0,1} on some given input (z,y). The challenge is
that Alice only knows = € {0,1}" and Bob only knows y € {0,1}", and thus the players need to
communicate (i.e., send bits) to compute f(x,y).



Definition 1 (protocol, value, cost, one-way). A communication protocol 11 is a binary tree where
each internal node v is labeled either by a function a, : {0,1}" — {0,1} or by a function b, :
{0,1}™ — {0,1} (denoting Alice or Bob’s message respectively) and each leaf node is labeled with
an element in {0, 1}.

The value of the protocol II on input (z,y) is the label reached by traversing the tree according
to the following rules: start at the root, and for each internal node v labeled by a, (resp b,), move
left if a,(x) = 0 (resp by(y) = 0) and right otherwise. The cost of II on input (z,y) is the length of
the path taken on input (x,y). The cost of II is the height of the tree. We call a protocol one-way
if the entire protocol consists of just one message.

Definition 2 (deterministic communication complexity). The deterministic communication com-
plezity CC(f) of f: {0,1}™ x {0,1}"™ — {0, 1} is the minimum cost of II, over all protocols II that
compute f.

Fact 2 (deterministic communication complexity of EQ,,). For z,y € {0,1}", the equality function,
EQ, (z,y), is defined to be 1 if x =y and 0 otherwise. We have that CC(EQ,,) =n+ 1.

The lower bound on CC(EQ) can be proved using the fooling set method (see [KN97]). We
define a fooling set below:

Definition 3 (fooling set [KN97]). A fooling set for F' : {0,1}" x {0,1}" — {0,1} is a set F' C
{0,1}" x {0,1}"™ and a value b € {0,1} such that

1. For every (z,y) € F, f(xz,y) =b

2. For all distinct pairs (x1,y1), (z2,y2), either f(x1,y2) # b or f(x2,y1) # b.

While Definition 1 defines protocols for deterministic communication complexity, this paper
focuses on randomized communication complexity, wherein Alice and Bob have a source of public
randomness. Formally, there is a random string of bits » € {0,1}* available to both players.
Where in the deterministic setting we had internal nodes in the protocol tree labeled with a,(z)
and b, (y), we now have internal nodes labeled with a,(z,r) and b,(y,r); that is, Alice and Bob’s
communication can depend on r. We can also view this model as a distribution {P,},cr on
deterministic protocols:

Definition 4 (randomized public-coin protocol [KN97]). A (randomized) public-coin protocol is
a probability distribution over deterministic protocols. The success probability of a public-coin
protocol on input (z,y) is the probability of choosing a (deterministic) protocol, according to the
probability distribution { P, },er, that computes f(z,y) correctly.

Definition 5 (randomized communication complexity [KN97]). The randomized communication
complezity CCP"™(f) is the minimum cost of a public-coin protocol that computes f with an error
of at most ¢ (for every input (z,y)).

Fact 3 (randomized communication complexity of EQ). The randomized communication complexity
(in the public randomness model) of EQ with constant error e is O(1).

Fact 3 can be proven by considering the following protocol for EQ, which we call the “standard
protocol” for EQ. Alice and Bob choose n bits of the public random string; call these bits r. Alice
computes the inner product b = (x,r) over Fy. She then sends this value (a single bit) to Bob. Bob
checks whether b = (y,r) and sends 1 if they are equal and 0 otherwise. When = = y, Bob outputs



1 with probability 1. If x # y, Bob outputs 1 with probability % By repeating the procedure ¢
times with different n-bit random strings 7, the error probability can be reduced to 2—1t
Randomized protocols can be converted to deterministic protocols, with some overhead on the
communication complexity, by repeating the randomized procedure and taking a majority vote.
The following upper bound is proved in [CG93], and we include a proof here for completeness:

Fact 4 ([CG93]). Let f: {0,1}" x {0,1}" — {0,1}, be a function computable via a randomized
communication protocol I using k bits of communication, m bits of randomness, and with error
probability . Then the deterministic communication complexity CC(f) is bounded by

CO(f) < k(2™e +1). (1)

Proof. Since is f computable by II using m bits of randomness, k bits of communication, and error
rate e, for any input (z,y), there exist at most €2™ choices of random bits such that the protocol
fails to output f(z,y). Thus, we can construct a deterministic protocol 5 by simulating IT over any
2e2™ 41 choices of predetermined unique random strings. The majority output will be the correct
computation of f, and thus from the randomized protocol II we have obtained a deterministic
protocol for f using k(2™e + 1) bits of communication. O

The following fact improves upon Newman’s Theorem [New91], and states that a public-coin

protocol can be converted into a private-coin protocol with only logarithmic additive overhead in
the complexity. Similarly, the amount of randomness used by a public-coin protocol can be reduced
by incurring a small amount of extra error.
Fact 5 ([LMdW21]). Let f : {0,1}" x {0,1}* — {0,1} be a function. Then 06'5({15)( f) <
CCreb(f) +log(%) —|—log(5%). Furthermore, any public-coin protocol for f which uses m random bits
and has error € can be converted into a protocol using logn + log(1/¢) + log((%) random bits with
error €(1 4+ 0), at no penalty to the communication complexity.

Interestingly, this improvement over original Newman’s Theorem is crucial for tight bounds in
one of the cases in our analysis in Section 5.3.
See [KN97] for more on private and public-coin settings in communication complexity.

2.3 Error Correcting Codes and Bounds

Definition 6 (code, block length, codewords). A code C' of block length N over alphabet ¥ is
C C X", The elements ¢ € C are called codewords.

Definition 7 (distance, relative distance). The distance D of a code C C £ is min . (A(c, ),
where A is the Hamming distance function. In other words, the distance of a code is the minimum
Hamming distance between any pair of codewords. The relative distance § of C' is the ratio of
distance to block length, %.

Definition 8 (message length). The message length (sometimes called dimension) K of a code C
over alphabet ¥ with || = ¢ is K = log, |C].

We call a code with block length N, message length K, and distance D an [N, K, D] code.
Definition 9 (rate). The rate of a code with block length N and message length K is R := %

High distance and high rate are desirable properties for codes; however, there is a trade-off
between these two parameters. The bounds stated below offer some insight into this trade-off.



Fact 6 (Singleton Bound). Let C be an [N, K, D] code with alphabet size q. Then
K<N-D+1.

Equivalently, we can express the Singleton Bound in terms of rate and relative distance:
R<1-0+ =
p— N .

The Singleton Bound is tight when ¢ > N. That is, there exist codes for which K = N —
D + 1 under this condition. We call such codes MDS (Maximum Distance Separable) codes. See
Section 2.3 below.

Definition 10 (g-ary entropy). The g-ary entropy function Hy(J), a generalization of binary en-
tropy, is defined as follows:

H,(8) = §log, <qgl> + (1 6)log, <1i5> .

As the block length N of a code tends to infinity, we have the relationship Vol,(dN,N) ~
¢VHa(©) and hence H, appears in the asymptotic statement of various bounds for error-correcting
codes, such as the Elias-Bassalygo Bound below:

Fact 7 (Elias-Bassalygo Bound). Let C' be an [N, K, D] code with alphabet size q. Then

R [ (|

Fact 8 (Griesmer Bound). For a linear [N, K, D] code with alphabet size q, we have:
K-1
D
v= 5[]
1=0

For more information on linear codes, see [Rot06].

Fact 9 (Plotkin Bound). The Plotkin bound strengthens the Singleton bound. For a code C with
message length K, block length N, relative distance §, and alphabet size q, we have:

K q 1
—4il— ) <1+ —.
NJr <q—1>_ +N

Our upper bounds use protocols based on Reed-Solomon codes, which we define below. For
more information about these codes, see [Rot06].

Reed-Solomon codes are a family of codes which achieve the Singleton bound (i.e., for which
D=N-K+1).

Formally, Reed-Solomon codes are defined as follows:

Definition 11 (Reed-Solomon codes). Let ¢ > N > K. Let ay,...an € F, be distinct. The
Reed-Solomon code over F, with evaluation points o = (a1,...,an), is the [N, K, N — K +1] code
given by:

RS, (N, K — 1) = {(f(an), f(a).... flan)) : f € F[X], deg(f) < K — 1}.



2.4 Codes Give Communication Protocols for EQ

It is known (see [RY20, beginning of Chapter 3]) that codes give communication protocols for EQ.
In particular, we have the following fact:

Fact 10. For every [N, K, D] code with alphabet 3 of size q, there exists a communication protocol,
I, computing EQ,,, such that n < Kloggq, using m public random bits, and logq bits of com-

munication, with error NQ D Moreover, this protocol is one-way and has one-sided false-positive
error.

Proof. Prior to the start of the communication protocol, Alice and Bob agree on a fixed subset
S C [N] such that |S| = 2™. The protocol is roughly as follows. Alice and Bob translate their
binary inputs to the 3 alphabet, and then pad appropriately to get 2/, v’ € ¥¥. They then encode
their strings to get f(z'), f(v') € V. Finally, using m bits of randomness, Alice and Bob select
i € S and Alice shares f(2')[i] with Bob. Bob outputs 1 if f(2')[i] = f(v/)[i], and otherwise
outputs 0.

Clearly, if @ = y, then f(2')[i] = f(v/)[i] for all indices i. If x # y then the distinct codewords
f(2') and f(y') will match on at most N — D indices and thus will err at most on N—E‘D = %%D
fraction of random choices. O

3 Communication Complexity vs. Error Correcting Codes

In this section, we show that randomized communication protocols for EQ give codes. In fact, we
prove a generalization of this statement which applies to functions that are close to EQ in some
sense, which we call “EQ-like” functions.

Definition 12 (EQ-like). We say that a function f : {0,1}" x {0,1}" — {0,1} is EQ-like if for all
x € {0,1}", f(x,z) =1 and for all pairs (z,y) such that z # y, either f(z,y) =0 or f(y,x) = 0.

Note that EQ is a particular example of an EQ-like function, where for all pairs (x,y) such that
z#y, f(z,y) =0 and f(y,z) = 0.
3.1 Protocols for EQ Give Codes

Consider a protocol for f. Alice holds x, Bob holds y, and there is public randomness r. Let
T(z,y,r) be the transcript of Alice and Bob’s communication. That is,

T(xvyvr) - ((11, blv az, b25 ..., QR, bR)7

where each a; is a function of all previous messages, x, and their shared randomness r, and each
b; is a function of all previous messages, y, and r. Without loss of generality, at the end of the
protocol, Alice outputs ¢(T'(z,y,7),z,7). Let 9,1 denote the error parameters for the protocol;
that is

V([IZ, y) such that f(xvy) = 07 PI‘[C(T(I‘, Y, 7’),1‘,7") = 1] <eéo

V(z,y) such that f(z,y) =1, Prle(T(x,y,r),z,r)=1>1—¢;.

We show that the transcript T of Alice and Bob’s messages forms a code. An encoding of
x € {0,1}" is simply the concatenation of T'(x,x,r) for all choices of .



Lemma 1. Let f be EQ-like, and let T'(x,y,r) be the transcript for Alice and Bob’s communication
in a randomized protocol for f as given above. Then for x,y € {0,1}" with x # vy,

PI’[T(ZE, xz, 7") = T(y7y7 T)] < €0 t+e€1-
r

Proof. Let x,y € {0,1}" with x # y. Without loss of generality suppose f(x,y) = 0 !. Then we
have

Pr{e(T (@.y.r),.7) = 1]+ Pr{o(T(y.y.7),.7) = O
> (};T[C(T(:Ca Y, T)v z, T) =1 | T($7 xz, T) = T(y, Y, T)]

+Pre(T(y.y,r),y.1) = 0| T(z,2,7) = T(y.y.7)])
Pr{T(z,,7) = T(y,y,7)].
=(Prle(T(y,y,7),y.7) = 1| T(w,2,r) = Ty, y, 7))
+ Prle(T(y,9,7),y,7) = 0| T(w,z,7) = T(y,y,7)])
Pr[T(z,z,7) = T(y,y,7)]
=1-Pr[T(z, z,r) = T(y,y,7)],

where the substitution T'(x,y,r) = T'(y,y,r) follows from the fact that T'(z,x,r) = T(y,y,r) and
that the communication tree partitions inputs into combinatorial rectangles.
Hence,

Pr{T(x,2,7) = T(y,,7)] < Prle(T(z,y,7),2,7) = 1]+ Pele(T(y, ,7),y,7) = 0] < o + 1.

Using Lemma 1, we obtain the following theorem:

Theorem 2. Let f:{0,1}" x {0,1}" — {0,1} be EQ-like, and suppose there exists a randomized
communication protocol for f which has communication complexity k, uses m bits of public ran-
domness, and has two-sided error probabilities €9 and €1. Then there exists an error correcting code
with message length n, codeword length 2™, relative distance 1 — (eg + 1), and alphabet size 2F.

Proof. The proof follows directly from Lemma 1. Concretely, the codeword for x € {0,1}" is given
by the concatenation of T'(z, x, r) for all 2™ possible values of randomness r € {0,1}™. Each symbol
in the codeword corresponds to T'(x, x,r) for one choice of r, and since each transcript uses k bits
of communication, there are 2% possible symbols in the code alphabet. Finally, by Lemma 1, the
probability that two different codewords agree on any given coordinate is bounded above by eg+¢1.
Thus the relative distance of the code is 1 — (g9 + €1). O

If we consider a protocol with one-sided error, that is, a protocol with either ¢g = 0 or 1 = 0,
we immediately obtain the following corollary:

Corollary 3 (One-sided error). Let f : {0,1}" x {0,1}" — {0,1} be EQ-like, and suppose there
exists a randomized communication protocol for f which has communication complexity k, uses m
bits of public randomness, and has one-sided error probability €. Then there exists a code with
message length n, codeword length 2™, relative distance 1 — e, and alphabet size 2F.

'Tf instead f(y,z) = 0, we replace T(x,y,r) with T(y,z,r) in the first two lines of Equation (2), and the proof
holds.



We remark that since codes give protocols (Fact 10), this corollary shows that one-way protocols
for EQ with one-sided false-positive error are in one-to-one correspondence with error correcting
codes. That is, we can translate from protocols to codes and vice versa with no loss in parameters.
Another consequence of Corollary 3 is the following corollary:

Corollary 4. Any randomized protocol for EQ can be converted to a one-way protocol with one-
sided false-positive error with no loss in parameters.

The following table summarizes the relationship between the communication complexity of a
protocol for EQ and the obtained code:

Communication Complexity Code
size of input = n # of messages = 2"
# of random bits = m length of code = 2™
error = ¢ relative distance = 1 —¢
complexity = k alphabet size = 2F

Figure 1: Translation Between CC and Codes

3.2 Codes from Functions Based on Fooling Sets

We have seen that protocols for EQ-like functions give codes. We can actually make a more general
statement which applies to all functions. In particular, for any function f, a protocol for f gives a
code whose parameters depend on the parameters of the protocol and the size of the largest fooling
set for f.

Theorem 5. Let f : {0,1}" x {0,1}" — {0,1} be any function with fooling set F', and suppose
there exists a randomized communication protocol for f which has communication complexity k,
uses m bits of randomness, and has error probabilities €g,e1. Then there exists a code with block
length 2™, message length log |F|, relative distance 1 — (g9 +€1), and alphabet size 2*.

Proof. To prove the theorem, we show how to construct an error correcting code from the function
f with fooling set F. Let X and Y denote the set of x and ¥y inputs respectively which appear in
elements of the fooling set F, and define f’ : {0, 1}°81F1 x {0, 1}1°8Fl — {0,1} to be f restricted
to the inputs X x Y. Without loss of generality, assume that for (z,y) € F, f(z,y) = 1. By the
definition of fooling set (see Section 2.2), f’ is EQ-like, up to a permutation on one half of the
input. Therefore, a protocol for computing f gives a protocol for f’, which by Lemma 1 gives an
error correcting code for messages of length log|F|. O

As a consequence of Theorem 5, we obtain the following corollary, which says that in some sense,
EQ represents the largest gap between fooling set size and randomized communication complexity
in the public-coin model.

Corollary 6. Let f : {0,1}" x {0,1}" — {0,1} be any function with fooling set F, and suppose
there exists a randomized communication protocol for f which has communication complexity k,
uses m bits of randomness, and has error probabilities eg,e1. Then there exists a protocol for EQ
on log |F| bits which has communication complexity k, uses m bits of randomness, and has one-sided
false-positive error probability g + 1.

10



This follows because, given a protocol for f, we can construct a code with message length
log |F'|, from which we obtain a protocol for EQ on log |F| bits.

Informally, Corollary 6 says that among all functions with a fooling set of size s, EQ on log s
bits has the smallest randomized complexity in the public-coin setting for all values of ¢ and m.
For protocols with two-sided error, this interpretation is true up to constant factors. For protocols
with one-sided error, it is precise.

4 Communication Lower Bounds Implied by Code Bounds

The equivalence between EQ communication protocol and codes allows us to view bounds on codes
as bounds on communication complexity. In particular, since we showed that existence of protocols
implies existence of codes, nonexistence of codes implies nonexistence of protocols. Using this
connection, we translate known bounds for codes (Section 2.3) into bounds on communication
complexity using the correspondence given by Figure 1°.

4.1 Singleton Bound
Using the Singleton Bound for codes (Fact 6), we obtain the following bound for protocols:

2 > 2 4+2"(1—¢)— 1. (3)
Rearranging yields
n
k> ——. 4
2 T4 om (4)

Depending on m and ¢, either 1 or €2™ is the dominant term in the denominator. Based on
these two cases, the bound can be equivalently stated (up to constant factors) as

n
k> min(——,n). )
> min(—--,n) )

Note that when n is the communication lower bound, it is optimal since it is achieved by the
naive protocol for EQ.
This bound essentially coincides with the bound of [CG93] (see Fact 4).

4.2 Elias-Bassalygo Bound
Next, we apply the Elias-Bassalygo bound (Fact 7) to obtain the following bound for protocols:

n 1 2k
SELLE T 5 A I (5 Ry I Y I § 6
k-2m = 2 ( 2k> \/ SN N (6)

where Hoy is the 2F-ary entropy function as defined in Section 2.3. Now we use the fact that Hop
has the following Taylor approximation [GRS23|:

1
H2k (1—2]€—a) Z 1—02ka2. (7)

22k

3P 1) (") depends only on k. Expanding yields

where the value cor =

2Note that these lower bounds also hold for functions with large fooling sets.

11



n 1 2k 1 2k
T \/1—%_1“‘5)‘%\/1‘%1(1‘@ - ®

Substituting (8) in (6) and applying (7) gives

n 2k 1 2k

_ 22k (28 —1)2\ [2ke —1 9)
©2(2F — 1) 1n (2F) ( 22k ) <2k -1 )

_2ke—1

~ 2kIn(2)’

Isolating the communication complexity k yields the following lower bound:

22 1
k:Zlog( :22 +€). (10)

Up to constant additive terms, this is equivalent to

k > max <log <”;217(n2)> log C)) : (11)

which simplifies to
1 1
k > max <(log(n) -m+0(1))+ <log 6) ,log 6) . (12)
To further simplify this, we make the following observation: if the second term dominates in the

expression (log(n) —m+©(1)) + (log %), then, up to a constant factor, this bound is equivalent to
k > log % Since log% already appears as a term in (12), we can further simplify the bound to

k > max (log(n) —m+0(1),log i) . (13)

This bound matches (up to a constant factor) the public-coin translation of the bound given
in [MSY16].

4.3 Griesmer Bound

The Griesmer Bound (Fact 8) offers a slight improvement to the Singleton bound and the Elias-
Bassalygo bound for linear codes, but we show that this improvement is small. The Griesmer
bound, translated using Figure 1, is given by

n_y

s 5 [0z =

o

i=

12



We will show that even a slightly stronger lower bound is always within a constant factor of the
Singleton or the Elias-Bassalygo bound. Note that the ceiling function can add at most 1 to each
term in the sum. Thus the following bound is slightly stronger:

n_q
k
n 2"M(1 —¢)
2™ > T + ok (15)
=0
Evaluating the geometric series yields
n 1-27"
om > D opom(] gy (2 ), 16
> pren-o) (120 (16)
and rearranging allows us to lower bound the error rate by
_p  n27m n
e>2""4 T gtk (17)
It suffices to consider only the positive terms in (17). In the event that 2% > 22 ™ we obtain the
Elias-Bassalygo bound up to a factor of 2:
1
e>2 o (18)
If 27% < ”2,; ™ we recover the Singleton bound up to constant factors:
n
>2-——. 19
€ om (19)

Therefore, up to constant factors in the error rate, the Griesmer bound does not allow us to achieve
stronger lower bounds on the communication complexity.

4.4 Plotkin Bound

The Plotkin bound (Fact 9) can be expressed in terms of communication protocols as:

”+(1_5)< 2" ><1. (20)

k2m 2k — 1

In terms of error rate e, this implies

e> <2k_1>+1. (21)

2mk 2k 2k
—_——
A B

However, this bound on the error rate is always within a constant factor of that given by the
Singleton bound or Elias-Bassalygo bound. Indeed, if A > B, we have the following, which is
strictly tighter than (21):

n
2. ——. 22
> (22)

This bound recovers the error rate given by the Singleton bound (obtained by rearranging (4) to
lower bound €) up to constant factor. If B > A, the bound is given by

2

522k7

(23)
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which recovers the error rate given by Elias-Bassalygo bound (13) up to a constant factor. This
bound is also strictly tighter than (21). Therefore, up to constant factors in the error rate, the
Plotkin bound does not allow us to achieve stronger lower bounds than we can achieve with the
Singleton or Elias-Bassalygo bound.

4.5 Summarizing Lower Bounds

In this section, we present a unified analysis of our bounds. Directly combining the Singleton bound
and Elias-Bassalygo bound results in the following;:

1
k > max (min(n, 82%), logn —m+ ©(1),log 5) , (24)

which holds up to a constant factor.
However, the following lemma allows us to simplify the expression.

Lemma 7. The mazimum in (24) never evaluates to log(n) — m + ©(1). More precisely, if the
log(n) — m+ ©(1) term is maximal, some other term is also mazximal (up to a constant factor).

Proof. Indeed, if the log(n) — m + (1) term is maximal, we have the following system:

log(n) —m+ ©(1) > log %,
log(n) —m + ©(1) > min(n, 5w ).

The inequality log(n) —m + ©(1) > n is impossible, which leaves us with

Let A =log(n) —m and B = log % Then, taking the logarithm of the second inequality, we get

A+06(1) > B,
log(A+©(1)) > B + A.

Note that we can assume that ¢ < % and thus B > 0. Now we apply this to the second inequality
to obtain
log(A+©6(1)) > A,

which implies that A is constant. Then, it follows from the first inequality that B is also constant.
Overall, we have that third term in (24) is also constant. O

Thus, we can simplify (24) to obtain the following theorem.

Theorem 8. For any randomized public-coin protocol for EQ on n bits with complexity k, m bits
of randomness, and error probability ¢,

n 1
k> i —),log— ). 25
> max (mm(n, £2m)’ og 5) (25)
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Note that Theorem 8 gives a different lower bound (one of n, 5, or log %) for different regions

of the parameters n, m, and . In Section 5, we examine the necessary relationship between n,m,
and ¢ for achieving each of the three possible lower bounds. We also analyze when these bounds
are tight by giving matching upper bounds for most regions of the parameters. This analysis is
summarized in the table below.

Description of Region Lower Bound Upper Bound
1 1
om >e> on n n
n
62771 )
3 n
if m < zom
n_
2m b
n> - >log L = if logn —log® n > m > g

and constant € and ¢

_n__
Zcom s

if e = % and ¢ is constant
log'® n

log %,

logn +logt —loglogd < m log 1
g gc —loglog g 8¢ if m > logn +log 1 + ©(1)

Figure 2: Bounds on complexity of EQ for various regions of parameters

5 Analyzing the Landscape of Communication Complexity of EQ

In this section, we analyze the various regions of parameters which give rise to different lower
bounds on communication complexity. We further examine when these bounds are tight by giving
upper bounds. Now we consider the three cases based on which of the three terms the maximum
in Theorem 8 evaluates to.

5.1 Casel

In this case, we have
n < g,
1
n > log =
or, after rearranging, 2% <e< 2%” In this case, max (min(n, =5 ), 10g %) = n, giving the lower
bound k& > n. Clearly, the naive protocol for EQ gives us the matching upper bound.

1

Remark 1. This lower bound is actually easy to see, since for e < 5

protocol is possible (because of the granularity of error probability).

only the deterministic

5.2 Case 2

In this case, we have

_n_

The lower bound in this case is k > 5.
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Remark 2. Note that this case shows that we cannot study the value of m up to a constant factor.
The reason is that the bound depends on 2™ and multiplicative changes for m may affect the bound
dramatically. Note that we never allowed extra multiplicative constant factors for m.

5.2.1 Upper Bound with Reed-Solomon Protocol

For the upper bound in this case, we can use the communication protocol derived from Reed-
Solomon codes (Section 2.3). In this protocol, Alice and Bob encode their inputs using a Reed-
Solomon code and check the value of a single random index in a subset S of their respective
codewords. For some values of parameters, the communication complexity of this protocol matches
the lower bound given by the Singleton bound.

Lemma 9. For any m < k, there exists a public-coin randomized communication protocol that
computes EQ using k bits of communication, m bits of randomness, and error rate € = O( 5w ).

Proof. Let g be the largest prime number such that ¢ < 2¥. To compute EQ, we use a RSq(q, [%])
code to get an error rate of

(7] 1
_ k! 2
om k2m +06 ) (26)
but we know that & < n + 1 (the naive protocol for EQ gives this upper bound), giving ¢ =
O (55 )- O

Note that Reed-Solomon codes are only defined for m < k. For this protocol, & = O(5w).
Thus, we have a protocol only in the region
n
<O(—).
= (52m)
Hence, this protocol does not give an upper bound when

1 n
1 < — < m. 27
05~ < - <m @27)

An example parameters in this region is m = logn and € = 1/loglogn. The complexity in this
case is 3 = loglogn. We partially address this issue in the next section.

5.2.2 Upper bound with iterated Reed-Solomon

The Reed-Solomon code allows us to do the following transformation of parameters:

n
n— (m,e, EQ—m)

This notation means that when we need to send a message of length n, we can use m random bits,
introduce an error €, and reduce the problem to sending a message of size 5. This protocol gives
a tight upper bound, but it has the restriction m < 5. For the range of parameters

1 n
log — <%<m

we do not have a tight upper bound.
Restating in terms of m, Reed-Solomon codes give tight upper bounds for the region of param-
eters satisfying
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1 1
m < logn + log o log <Iogn + log 5) . (28)

Using Fact 1, we see that the following range of the lower bound is not matched with a tight upper

bound: . . . .
logn + log — — log <logn + log ) < m < logn + log — — loglog —. (29)
€ € € €

Our plan is to apply Reed-Solomon code iteratively. That is, in the first step, we apply the

code with some parameters:
n

n (m17517 612m1

),

n— bits, we apply Reed-Solomon code (with some new values of

but then instead of sending ot
parameters) to this message again:

n ( no
— (Mmoo, €9, ———
2,2, 522m2

ng =
€12mM

).

Below we give the parameters of the resulting procedure. Notice that in both iterations we use
random bits, but only communicate according to the result of the final iteration. The resulting
procedure for two iterations gives us the following parameters

= < —
n— <m m1+m2,8_€1+82,81€22m1+m2) ,

and has the following restrictions

<7

m

1> 12m17
n

my < ————.
2= gieg2matme

Observe that we are interested in € and communication complexity only up to a constant factor.
Further, notice that our errors are only additive from the first to the second iteration. Finally, we
see that allowing a higher error rate in a given round will never increase the amount of randomness
or communication required. Therefore, we can assume that in each iteration we allow the same
error €; otherwise, we could simply choose to increase the allowed error in the iteration with a
smaller error rate.

With this assumption, on an arbitrary iteration ¢ we will have parameters

n
(s, e, 5i2m1+-.-+mi)
with the restriction n
<
mi = ciomit...+m;

The total values of parameters after ¢ iterations (we assume that c is a constant) are

n
n+—— (m:m1++mc,€7m>

Recall that our protocol using single-iteration Reed-Solomon works only for m < . Thus
our goal is to develop a protocol that is valid for larger values of m. Notice that only the final

restriction directly contains a restriction on the total number of random bits used in the protocol:
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< n n
Me = £Comi+-4me - ecom’

Rearranging this expression, we get N

m < oo
We can see that minimizing the randomness used in the last iteration, m., while keeping m the
same maximizes the range in which this protocol is valid. Naturally to minimize m., we need to
maximize the randomness used in all previous iterations. Thus, to optimize the parameters we
need to fix

n

m; = €i2m1+...+mi

on intermediate iterations.
For a real nonnegative x, we introduce the function f(z) = log(log % +x). We now describe the
values of parameters that we can cover with c iterations of Reed-Solomon protocol.

Lemma 10. For any integer constant ¢ we have that the communication protocol derived from c
iterations of Reed-Solomon has complexity —om and is valid for all

1
m < logn + clog - 7 (logn) (32)

(up to an additive constant).
Moreover, if all restrictions (30) are saturated, the inequality (32) is saturated as well.

Proof. We prove this by induction on c¢. The base case corresponds to the standard Reed-Solomon
protocol, which we already covered.
For the induction step, we do one extra step of the iteration and obtain the restriction

n
€C+l 2m1+...+mc+1 :

Me+1 S

Since for the previous iterations we need to maximize ms,...,m., we must fix them so that all
restrictions (30) are saturated. By the inductive hypothesis we have that (32) is saturated. Sub-
stituting my + ... + m. from this equality to above yields

o) (logn)

m < — .
e+l = €2mc+1

Rearranging this inequality we obtain, using Fact 1,
1 1 1
mes1 < log — + [ (logn) —log ( + /1) (log n)) = log — + [ (logn) — f*V(logn).
€ € €
Adding this to the expression for m; + ...+ m,. gives the desired inequality.

Moreover, it is easy to see that if (30) is saturated for i = ¢ + 1 as well, the resulting inequlity
is saturated. O

As a result we get a protocol with complexity —g for constant ¢ and for parameters satisfy-
ing (32). For example, for constant € the lower bound we get is still tight up to the constant factor.
It is not hard to see in this case that the function f(©) (logn) is equal to log(c) n up to an additive
constant, and thus the range of parameters for which we do not have an upper bound reduces to

logn — log(c) n < m < logn.
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For non-constant e, our upper bound is not tight. To analyze the interval in which it applies,
observe that f(x) = log(log% + x) is equal to log log% (up to an additive constant 1) for log% >

and is equal to logx (up to an additive constant 1) for log% <z

1
log(t> n’

we have that f(+1) = log log% (up to an additive constant 1). Substituting this into (32) we get
that this upper bound covers the whole region (29).

For example, for € = for constant ¢, we get that log % = log"tY) n. After ¢t + 1 iterations

5.3 Case 3
This case applies when
log—>n
€
or
) 1 n
0o — > —
& €~ g2m

The lower bound in this case is k > log é
Note that the first of the subcases here corresponds to ¢ <
complexity bound is n. We know that this bound is tight.
The remaining case to consider is

1

ow> in which case the communication

) 1 SN
og— > —.
& e eg2m
which, after the rearranging gives

1

2" >n—-v
elog <

or equivalently,
1 1
m > logn + log — — log log —.
€ €

As for the upper bound, we use the standard randomized protocol and apply Fact 5. The
standard protocol gives us the parameters

1 1
(nlog —,e,log —).
€ €

Applying Fact 5 with error parameter § gives

1 6 1
(logn + log - + log <62> ,e(1+9),log g)

Setting 6 = O(1) yields
1 1
(logn + log - +0(1),0(¢),log g),
and this bound achieves optimal m up to an additive factor in lower order terms, and optimal € up
to a constant multiplicative factor.

Remark 3. We observe that this public-coin protocol implies a private-coin protocol, where the
randomness is simply shared at the start of the protocol at the cost of logn + logé + O(1) bits
of communication. This resulting private-coin protocol has ©(g) error using log(Z) + ©(1) bits of
communication, essentially matching the lower bound of log(Z) —log log(%) observed in [LMdW21].
This indicates that in this range of parameters, the optimal private-coin protocol is to simply share
the private randommness and then simulate the standard public-coin protocol.
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6 Discussion & Future Directions

We identify an equivalence between randomized public-coin protocols for equality and error correct-
ing codes, and generalize one direction of this equivalence to functions with large fooling sets. We
use this connection to study the randomized communication complexity of EQ for various regions
of parameters error ¢ and randomness m. We give lower bounds for protocols from lower bounds
from codes, and analyze when these lower bounds are tight. An immediate question is whether we
can tighten our bounds in the region in which they are not tight.

One way to view our result on fooling sets is that the maximal separation between the fooling set
size and randomized communication complexity with public randomness is achieved by the equality
function (for all regions of parameters). A natural future direction is to explore whether similar
separations can be found between randomized communication complexity and other complexity
measures, such as deterministic communication complexity, rectangle size, or rank. Partial progress
in this direction was obtained by Canetti and Goldreich [CG93].
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