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Abstract

TFNP studies the complexity of total, verifiable search problems, and represents the first layer of
the total function polynomial hierarchy (TFPH). Recently, problems in higher levels of the TFPH have
gained significant attention, partly due to their close connection to circuit lower bounds. However, very
little is known about the relationships between problems in levels of the hierarchy beyond TFNP.

Connections to proof complexity have had an outsized impact on our understanding of the relation-
ships between subclasses of TFNP in the black-box model. Subclasses are characterized by provability
in certain proof systems, which has allowed for tools from proof complexity to be applied in order to
separate TFNP problems. In this work we begin a systematic study of the relationship between sub-
classes of total search problems in the polynomial hierarchy and proof systems. We show that, akin to
TFNP, reductions to a problem in TFΣd are equivalent to proofs of the formulas expressing the totality
of the problems in some Σd-proof system. Having established this general correspondence, we examine
important subclasses of TFPH. We show that reductions to the STRONGAVOID problem are equivalent
to proofs in a Σ2-variant of the (unary) Sherali-Adams proof system. As well, we explore the TFPH
classes which result from well-studied proof systems, introducing a number of new TFΣ2 classes which
characterize variants of DNF resolution, as well as TFΣd classes capturing levels of Σd-bounded-depth
Frege.
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1 Introduction
The class TFNP consists of the total search problems whose solutions are verifiable in polynomial time . It has
received considerable attention since it captures fundamental problems in a broad range of areas whose lack of efficient
algorithms is not readily explained by the theory of NP-completeness. Famous examples include NASH: output a Nash
equilibria of a given bimatrix game; and FACTORING: output a prime divisor of a given integer. TFNP itself is not
believed to admit complete problems [Pud15], and as a consequence much of the work on TFNP has focused on
studying subclasses which do. However, we are limited to proving conditional or oracle separations, as a separation
between any TFNP subclasses would imply P ̸= NP.

A flurry of recent results have established a complete picture of the relationships between the major TFNP sub-
classes in the black-box setting, where the input is presented as a black-box oracle which can be queried [BCE+98,
GHJ+22b, GHJ+22a, FGPR24, GKRS19]. These results exploited a deep connection between black-box TFNP —
denoted TFNPdt — and proof complexity, an area which studies efficient provability in certain propositional log-
ics, known as proof systems. The connection of proof complexity to TFNPdt can be summarized as follows: A
reduction between two total search problems is a proof that the first is total, assuming the totality of the second.
By employing this lens, it has been shown that many important TFNPdt subclasses are characterized by prov-
ability in certain well-studied proof systems in the sense that there is a simple proof of the totality of a search
problem if and only if there is an efficient reduction of that search problem to the complete problem for that sub-
class [GKRS19,GHJ+22b,BFI23,LPR24,DR23]. This connection has been highly impactful for the study of TFNPdt,
allowing for the rich set of tools in proof complexity to be leveraged in order to provide separations between the major
TFNPdt subclasses.

TFNP = TFΣ1 is the first level of the total function polynomial hierarchy TFPH =
⋃

i TFΣi [KKMP21].
Recently, problems in higher levels of the polynomial hierarchy have received considerable attention, in part due
to their close connection to circuit lower bounds. Indeed, consider the task of finding (the truth table of) a function
which does not have circuits of size s. Using a standard encoding, any circuit of size s can be represented uniquely by
k = poly(s)-many bits. Consider the map T : {0, 1}k → {0, 1}n which maps circuits of size s to truth tables of the
function that they compute. Finding a truth table of a function with high circuit complexity is equivalent to finding a
string which is not in the range of T . This is an instance of the RANGEAVOIDANCE problem.

Definition 1.1. RANGEAVOIDANCE (or simply AVOID) is the following search problem: Given a function f :
{0, 1}n → {0, 1}n+1, find a y ∈ {0, 1}n+1 such that for all x, f(x) ̸= y.

Observe that any solution y to AVOID can be checked by a coNP verifier — check that for every x ∈ {0, 1}n,
f(x) ̸= y. This means that AVOID belongs to the class TFΣ2. If there is an algorithm for solving AVOID which belongs
to a class C then this implies the existence of a function in C which does not have small circuits — a circuit lower
bound against C! This approach led to the recent breakthrough circuit lower bounds against symmetric exponential
time [Li24,CHR24,KP24]. Hence, understanding the complexity of TFΣ2 is important for understanding circuit lower
bounds. Indeed, the current best upper bound puts AVOID in the class of problems reducible to LOP — the TFΣ2

problem of finding a minimum element in a total order.
TFΣ2 contains numerous important problems beyond those connected to circuit lower bounds. For example,

AVOID is the complete problem for the class APEPP which also captures the complexity of finding pseudo-random
number generators, randomness extractors, and rigid matrices [Kor21]. We can restrict AVOID to only have one more
element in its range than in its domain to obtain the problem STRONGAVOID.

Definition 1.2. STRONGRANGEAVOIDANCE (or simply STRONGAVOID) is the following search problem: Given a
function f : {0, 1}n \ {0} → {0, 1}n, find an empty hole y ∈ {0, 1}n, i.e., such that for all x ∈ {0, 1}n \ {0},
f(x) ̸= y.

STRONGAVOID is the complete problem for the class PEPP which captures the complexity of finding objects
whose existence is guaranteed by the union bound, including all of APEPP [KKMP21]. Important problems have
also been identified in higher levels of the polynomial hierarchy, such as those related to finding sets of large VC
dimension [KKMP21].

Despite the importance of problems in levels of the polynomial hierarchy beyond TFNP, there has been little
structural exploration into how they relate. Indeed, [KP24] provide the first black-box separation, showing that
STRONGAVOID is not reducible to any problem in TFΣ2 with a unique solution (in fact, they show that it cannot
be solved with non-adaptive oracle calls to any language in ΣP

2 ). Proof complexity has had an outsized impact on

1



proving black-box separations for TFNP. To facilitate further structural exploration of TFPH, we would like to ex-
plore to what degree proof complexity tools can be used to provide separations between classes within higher levels
of the black-box total function polynomial hierarchy (denoted TFPHdt).

Our Results

PEPPSOPL2

TFΣ2

SOD

FNP

uCircular-Res(polylog)

PPADS2

Res(polylog)

PLS2

APEPP

LOP

uSherali-AdamsReversible-Res(polylog)

Figure 1: Relationships and characterizations of TFΣ2 classes studied. An arrow indicates containment.

In this paper we begin a systematic study of the connections between the total function polynomial hierarchy
in the black-box model and propositional proof complexity. First, we identify the form that proof systems which
characterize TFΣdt

d subclasses take. In order to characterize TFΣd subclasses, these proof systems must be able to
prove the validity of depth-(d + 1) propositional formulas. However, they cannot be Cook-Reckhow proof systems
(NP-verifiers) in general unless NP = coNP as there are syntactic subclasses of TFΣdt

2 which contain all of TFNPdt;
a characterization of which would imply a polynomialy-bounded proof system. Recall that a class is syntactic if it
admits a complete problem. We show that in order to characterize TFΣdt

d subclasses, it suffices to augment Cook-
Reckhow proof systems P with a Σd-weakening rule which generalizes the resolution weakening rule to Σd formulas;
we call the resulting proof system Σd-P (see Definition 3.5).

To begin, we explore the limits of these characterizations, verifying that this is indeed the correct definition of a
proof system for TFΣdt

d . A syntactic class C ⊆ TFΣdt
d is uniform is there is a polynomial-time algorithm which given

n outputs the nth instance of the complete problem for C.

Theorem 1.3 (Informal). The following hold:

1. For every uniform C ⊆ TFΣdt
d there is a Σd-proof system P such that R ∈ C if and only if P efficiently proves

that R is total.
2. For every well-behaved Σd-proof system P there is a uniform TFΣdt

d subclass C such that R ∈ C if and only if
P proves that R is total.

Having established this scaffolding result, we begin to explore characterizations of specific TFΣdt
d subclasses;

our results for TFΣ2 can be seen in Figure 1. First, we show that PEPPdt is characterized by the Σ2-variant of the
Sherali-Adams proof system.

Theorem 1.4 (Informal). R ∈ PEPPdt iff there is an efficient Σ2-Sherali-Adams proof that R is total.
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This allows one to use an extension to the pseudo-expectation technique in order to exclude total search problems
from PEPP, and hence also APEPP. Currently, no such exclusions are known.

We also consider several variants of the DNF-resolution proof system: DNF Resolution (Res(polylog)), Circular
DNF resolution (uCircRes(polylog)), and Reversible DNF resolution (RevRes(polylog)). We introduce new TFΣdt

2

classes which characterize them.

Theorem 1.5 (Informal). Σ2-Res(polylog), Σ2-uCircRes(polylog), Σ2-RevRes(polylog) are characterized by the
TFΣdt

2 subclasses PLS2, SOL2, SOPL2, respectively.

We explore how these new classes relate to natural TFΣ2 classes, which can be seen in Figure 1. In doing so,
we introduce a natural TFΣ2 class SOD, of problems reducible to finding a source in a DAG given a sink, which we
believe may be of independent interest.

Finally, we show that our characterization of DNF resolution can be extended to characterize bounded-depth Frege
in higher levels of TFPH. The depth-d Frege system allows one to cut on depth-d propositional formulas.

Theorem 1.6 (informal). Σd-Depth d-Frege is characterized by the TFΣdt
d class PLSdtd .

This result is inspired by the work of Beckmann and Buss, who characterize PEd and GId in bounded arithmetic
[PT12]. It is also the TFΣd analogue of Thapen’s recent TFNP characterization of bounded-depth Frege [Tha24].

Comparison with Bounded Arithmetic. Characterizations of TFPH classes have been studied in the uniform set-
ting by theories of bounded arithmetic. Beckmann and Buss [BB09] showed that Σb

d-definable functions of T d
2 cor-

respond to the class PLSΣ
p
d−1 , which is defined by replacing the polynomial-time predicates and functions of the

complete problem for the TFNP subclass PLS with predicates and functions from PΣp
d−1 . This results in the gener-

alized polynomial local search problem GPLSd of [PT12]. However, these correspondences do not stray outside of
proof systems which correspond to bounded-depth Frege systems.

Comparison with [Tha24]. Recently and independently, Thapen [Tha24] considered reductions between black-box
total search problems in the polynomial hierarchy under the notion of counter example reducibility, in order to define
new TFNP subclasses. Taking the set of TFNP problems which are counter-example reducible to a TFΣ2 problem,
characterizing a class C ⊆ TFΣ2, essentially acts as a projection of C to TFNP. He uses these in order to obtain
TFNPdt characterizations. In comparison, we are interested in reductions between and characterizations of TFΣdt

d

problems. As well, he shows that versions of the game induction problems GId [ST11] form TFNPdt subclasses
which characterize bounded-depth Frege proofs of CNF formulas.

Open Problems. In this paper we provide the framework for characterizations between total search problems in the
polynomial hierarchy, leaving open many natural questions.

1. We study decision-tree reductions, as these are the query analogue of polynomial-time reductions. However, it
is natural also to consider more powerful reductions, such as PNP-reductions. What characterizations does one
obtain under such reductions?

2. There are several studied classes for which we do not yet have characterizations, such as APEPP and LOP. Due
to the connection between STRONGAVOID and Sherali-Adams, it would appear that PEPP should correspond to
a variant of Sherali-Adams which produces a large negative value, rather than −1. However, we cannot maintain
this under decision-tree reductions.

3. TFΣ2 problems with unique solutions play a critical role in the recent circuit lower bounds [Li24,CHR24,KP24].
What properties do proof systems which characterize such problems possess?

2 Preliminaries on the Total Function Polynomial Hierarchy
Subclasses of TFPH are typically defined by a simple existence principle to which everything in the class reduces. For
example, any total order must have a minimal element. These existence principles naturally give rise to total search
problems. Continuing the example:
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Definition 2.1. The Linear Ordering Principle (LOP) asks, given ≺: {0, 1}n × {0, 1}n → {0, 1}, to find:

− A minimal element: x ∈ {0, 1}n such that ∀y ̸= x, x ≺ y.
− A violation of the total order: either (i) x ∈ {0, 1}n such that x ≺ x, (ii) x ̸= y such that x ̸≺ y and y ̸≺ x, or

(iii) x ≺ y and y ≺ z and x ̸≺ z.

To make these problems non-trivial, the input is presented as a circuit C so that the search space is exponential in
the number of input bits n. Formally, for any x, y ∈ {0, 1}n, C(x, y) =≺ (x, y). We call C a white-box encoding of
the problem. Unfortunately, a separation between any pair of total search problems in the white-box model is hard to
achieve, as it would imply P ̸= NP.

Instead, we can gain intuition for the relationships between these classes by exploring their black-box variants. In
this setting C is given as an oracle which can be queried, but we no longer have access to the description of C. A
major benefit of considering the black-box model is that we can now prove unconditional separations between classes
without having to resolve P versus NP. These separations imply oracle separation in the white-box setting.

A query search problem is a sequence of relations Rn ⊆ {0, 1}n × On, one for each n ∈ N. It is total if for
every x ∈ {0, 1}n there is an o ∈ On such that (x, o) ∈ Rn. We think of x ∈ {0, 1}n as a bit string which can be
accessed by querying individual bits, and we will measure the complexity of solving Rn as the number of bits that
must be queried. Hence, an efficient algorithm for Rn will be one which finds a suitable o while making at most
polylog(n)-many queries to the input. We will not charge the algorithm for other computational steps, and therefore
an efficient algorithm corresponds to a shallow decision tree. Total query search problems which can be computed by
decision trees of depth polylog(n) belong to the class FPdt, where dt indicates that it is a black-box class. While search
problems are formally defined as sequences R = (Rn), we will often want to speak about individual elements in the
sequence. For readability, we will abuse notation and refer to elements Rn in the sequence as total search problems;
furthermore, we will often drop the subscript n, and rely on context to differentiate.

In this paper we will be considering total query search problems in the polynomial hierarchy TFPHdt.

Definition 2.2. We say that a total search problem R = (Rn), where Rn ⊆ {0, 1}n ×On, belongs to the dth level of
the query total function polynomial hierarchy TFΣdt

d if for every o ∈ On

(x, o) ∈ R ⇐⇒ ∀z1 ∈ {0, 1}ℓ1 ∃z2 ∈ {0, 1}ℓ2 . . . Qzd−1 ∈ {0, 1}ℓd−1 Vo,(z1,...,zd−1)(x) = 1,

where Q ∈ {∃,∀}, Vo,z⃗ = Vo,(z1,...,zd−1) is a decision tree of polylog(n)-depth, and each ℓi ∈ polylog(n).

Note that FPdt = TFΣdt
0 and TFNP = TFΣdt

1 . At this point one may ask about TFΠdt
d . Kleinberg et al.

[KKMP21] showed that TFΠd is efficiently reducible to TFΣd−1, and vice versa. Hence, it does not offer a new
perspective.

We can compare the complexity of total search problems by taking reductions between them. The following defines
decision tree reductions between total search problems, the query analogue of polynomial-time reductions.

Definition 2.3. For total search problems R ⊆ {0, 1}n ×On, S ⊆ {0, 1}m ×O′
m, there is an S-formulation of R if,

for every i ∈ [m] and o ∈ O′
m, there are functions fi : {0, 1}n → {0, 1} and go : {0, 1}n → On such that

(f(x), o) ∈ S =⇒ (x, go(x)) ∈ R,

where f(x) = (f1(x) . . . fn(x)). The depth of the reduction is

d := max
(
{depth(fi) : i ∈ [m]} ∪ {depth(go) : o ∈ O′

m}
)
,

where depth(f) denotes the minimum depth of any decision tree which computes f . The size of the reduction is m,
the number of input bits to S. The complexity of the reduction is logm+ d, and the complexity of reducing R to S is
the minimum S-formulation of R.

We extend this definition to sequences in the natural way. If S = (Sn) is a sequence and Rn is a single search
problem, then the complexity of reducing Rn to S is the minimum over m of the complexity of reducing Rn to Sm.
For two sequences of search problems S = (Sn) and R = (Rn), the complexity of reducing R to S is the complexity
of reducing Rn to S for each n. A reduction from R to S is efficient if its complexity is polylog(n); we denote this by
R ≤dt S.
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Syntactic and Uniform Classes. We say that a class of total search problems C ⊆ TFΣdt
d has R ∈ C as its complete

problem if for every S ∈ C, S ≤dt R. We call subclasses with complete problems syntactic. Further, we say that a
syntactic class is uniform if it has a complete problem R which is uniformly generated —- there is a polynomial-time
Turing machine which on input n outputs the nth instance of a complete problem for that class.

3 Proof Systems for TFPH
Search problems in the black-box model are intimately tied to the complexity of propositional theorem proving. A
proof is a procedure for convincing a verifier that a statement is correct. In the propositional setting, a proof convinces
the verifier that a propositional formula is unsatisfiable (equivalently, its negation is a tautology).

3.1 Recap: Proof Systems for TFNP
We begin by recalling how characterizations of proof systems by TFNPdt subclasses occur. We will then generalize
this to TFPH. Let UNSAT be the language of all unsatisfiable propositional formulas.

Definition 3.1. A Cook-Reckhow proof system is a polynomial-time function P : {0, 1}∗ → {0, 1} such that for every
propositional formula F ∈ {0, 1}∗,

F ∈ UNSAT ⇐⇒ ∃Π ∈ {0, 1}∗, P (Π, F ) = 1.

The size of proving an unsatisfiable formula F in P is min{|Π| : P (Π, F ) = 1}.
For many proof systems there is an associated width/degree measure. For example, in resolution it is the maximum

number of literals in any clause appearing in a proof, and in algebraic systems such as Sherali-Adams and Sum-of-
Squares it is the maximum degree of the polynomials appearing in the proof. Characterizations of TFNPdt subclasses
are in terms of a complexity parameter of the proof system, denoted

P (F ) := min
{
width(Π) + log size(Π) : Π is a P -proof of F

}
,

where width is some associated width measure particular to that system. For example, for example for resolution the
width measure is the number of literals in a clause, while for algebraic proof systems the width measure is typically
the proof degree. This complexity measure is studied in order to account for the fact that in the black-box setting our
reductions are performed by decision trees and we would like the complexity of a proof to be closely related to the
complexity of a formulation; width will correspond to the depth of the decision trees in the formulation.

Typically one studies the complexity of proving the unsatisfiability of CNF formulas. As a CNF formula F =
C1 ∧ . . . ∧ Cm is falsified only when one of its clauses is falsified, a proof convinces the verifier that for every
assignment x ∈ {0, 1}n there is some clause Ci of F such that Ci(x) = 0. Hence, the complexity of proving that
F is unsatisfiable is intimately related to the complexity of exhibiting a falsified clause, given an assignment. This is
known as the false clause search problem SEARCHF ⊆ {0, 1}n × [m], defined as

(x, i) ∈ SEARCHF ⇐⇒ Ci(x) = 0.

As F is unsatisfiable, this search problem is total, and if each clause of F contains at most polylog(n)-many variables,
it belongs to TFNPdt.

The above intuition suggests that understanding TFNPdt (or at least the false clause search problem) is important
for understanding proof complexity. Remarkably, proof complexity is also crucial for understanding TFNPdt. It turns
out that TFNPdt is equivalent to a large sub-area of proof complexity! The intuition is the following: A reduction
between two total search problems is a proof that the first is total, assuming the totality of the second. By employing
this lens, works have shown that many common proof systems are characterized by certain well-studied tautologies in
the sense that they can prove a tautology iff there is a short reduction of that tautology to the characterizing one.

The heart of this connection is the following claim, which shows that TFNPdt is exactly the study of the false
clause search problem. The proof proceeds by expressing the totality of any problem R in TFNPdt as a tautology and
then taking its negation.

Claim 3.2. If R ∈ TFNPdt then there is an unsatisfiable polylog(n)-width CNF formula FR such that SEARCHFR
∈

TFNPdt and R =dt SEARCHFR
.
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From this, characterizations of TFNPdt subclasses by proof systems have been derived. We say that a syntactic
subclass C ⊆ TFNPdt is characterized by a proof system P if for every SEARCHF ∈ TFNPdt, SEARCHF ∈ C iff
P (F ) = polylog(n). Note that as a proof system is a polynomial-time Turing machine, any TFNPdt class must be
which characterizes that proof system must be uniform.

3.2 Proof Systems and TFPH
The aim of this paper is to explore characterizations of classes of problems belonging to higher levels of TFPHdt.
These will correspond to the provability of quantified formulas.

Definition 3.3. A Σd.5 formula F is the propositional translation of any quantified formula of the form

∃z1 ∈ {0, 1}ℓ1 ∀z2 ∈ {0, 1}ℓ2 . . . Qzd ∈ {0, 1}ℓd L(x, z1, . . . , zd),

where ℓi ∈ polylog(n), Q ∈ {∃,∀}, and L is a formula which depends on at most polylog(n)-many free variables (x).
That is, a Σd.5 formula is of the form

F (x) =
∨

z1∈{0,1}ℓ1

∧
z2∈{0,1}ℓ2

. . . ⃝
zd∈{0,1}ℓd

Lz1,...,zd(x),

where ⃝ ∈ {∧,∨}, and Lz1,...,zd(x) := L(x, z1, . . . , zd). Similarly, Πd.5 formulas are negations of Σd.5 formulas.

Note that because Lz depends on polylog(n)-many variables, we may assume without loss of generality (with a
quasi-polynomial blow-up in size) that Lz is a CNF/DNF formula with clauses/terms of width polylog(n). Hence, a
Σd.5-formula is a layered circuit of depth d where the gates at each layer are the same, and the gates at the first d layers
are allowed 2polylog(n) fanin, while the final layer is restricted to have polylog(n) fanin. Observe that a Π1.5-formula
is a low-width CNF formula.

Our aim is to characterize subclasses of the higher levels of the total function polynomial hierarchy. Towards this,
we generalize the false clause search problem to Σd.5 formulas.

False Formula Search. For a formula F :=
∧

o∈[m] Ho where each Ho is a Σd.5-formula, the False Formula search
problem FFF ⊆ {0, 1}n × [m] is defined as

(x, o) ∈ FFF ⇐⇒ Ho(x) = 0.

Observe that if F is unsatisfiable then FFF is total and FFF ∈ TFΣdt
d+1. The following lemma generalizes

Claim 3.2 to say that TFΣdt
d is exactly the study of the false formula search problem.

Lemma 3.4. For every d ≥ 1 and R ∈ TFΣd there is an unsatisfiable Πd.5-formula FR such that (x, o) ∈ R iff
(x, o) ∈ FFFR

.

Proof. Let R ⊆ {0, 1}n × [m] ∈ TFΣd. Then there are polylog(n)-depth decision trees Vo,(z1,...,zd−1) such that

(x, o) ∈ R ⇐⇒ ∀z1 ∈ {0, 1}ℓ1 ∃z2 ∈ {0, 1}ℓ2 . . . Qzd−1 ∈ {0, 1}ℓd−1 Vo,(z1,...,zd−1)(x) = 1,

where Q ∈ {∃,∀}, Vo,z⃗ = Vo,(z1,...,zi−1) is a decision tree of polylog(n)-depth, and each ℓj ∈ polylog(n). Slightly
abusing notation, let Vo be a propositional translation of the verifier as a Π(d−1).5-formula:

Vo(x) :=
∧

z1∈{0,1}ℓ1

∨
z2∈{0,1}ℓ2

. . . ⃝
zd−1∈{0,1}ℓd−1

Vo,z⃗(x),

where ⃝ ∈ {∧,∨}, and Vo,z⃗(x) is computable by a polylog(n)-depth decision tree, and hence propositionalized as a
polylog(n)-width CNF formula if ⃝ = ∧ or a polylog(n)-width DNF if ⃝ = ∨, collapsing the top gate into ⃝. This
is done as follows: Say that a root-to-leaf path in Vo,z⃗ is a b-path if it ends at a leaf labeled b ∈ {0, 1}. Then, Vo,z⃗ is
propositionalized as

− If d− 1 is even:
∨

1-path p∈Vo,z⃗
p,

− If d− 1 is odd:
∧

0-path p∈Vo,z⃗
¬p,
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where p is the conjunction of literals queried along p (if a variable x is queried and we take branch-0, then we consider
this as literal ¬x and otherwise as x). Note that in this case the outer gate of Vo,z⃗ matches ⃝, and the depth collapses
by 1. Consider the following Πd.5-formula, which states that R is not total:

F (x) :=
∧
o∈O

¬Vo(x).

Observe that if (x, o) ∈ R, then there is some z1, . . . , zd such that Vo,z(x) = 1, and hence (x, o) ∈ FFF . Conversely,
if (x, o) ∈ FFF , then (x, o) ∈ R.

We will call the formula FR the propositionalization of R. This lemma allows us to relate the complexity of total
search problems to the provability of propositional formulas. In the remainder we will develop what provability means
in this context. In particular, what are the properties of a proof system which proves the formulas that result from
TFPHdt search problems.

A characterization of a TFPHdt class by a proof system proceeds by showing that the proof system can prove the
correctness of reductions to the class. To discuss this, we will need to propositionalize reductions.

Reduced Formula. Let R ⊆ {0, 1}n × O be a problem in TFΣdt
d and let Vz⃗,o, o ∈ O be its verifiers. Let (f, g)

be an R-formulation where f : {0, 1}m → {0, 1}n, g : {0, 1}m → O, then the reduced formula FR(f, g) is the
Πd.5-formula defined as

FR(f, g) :=
∧
o∈O

∧
path p∈go

¬Vo,p(f(x)),

where Vo,p(f(x)) =
∧

z1∈{0,1}ℓ1

∨
z2∈{0,1}ℓ2 . . .⃝zd−1∈{0,1}ℓd−1 (Vo,z⃗(f(x))∧p) and Vo,z⃗(f(x)) can be represented

as a polylog(n)-width CNF/DNF as in Lemma 3.4, using that both Vo,z⃗ and f are computable by polylog(n)-depth
decision trees.

Reduced formulas capture formulations in the following sense. Let H :=
∧

o∈OH
Ho and (f, g) be an FFF -

formulation of FFH , where F =
∧

o∈OF
Fo. Then for any o ∈ OF and any path p in go labelled with some o∗ ∈ OH

we have that

¬Vo,p(f(x)) = 0 =⇒ Ho∗(x) = 0. (1)

That is, Ho∗ =⇒ ¬Vo,p(f), and we say that ¬Vo,p(f) is a weakening of Ho∗ .
A proof system P is characterized by a TFPHdt class C with complete problem FFF if efficient provability of F

in that proof system implies low-complexity reductions to the complete problem FFF for that class, and membership
in the class C implies that P can prove the correctness of the reduction to P . The latter takes the following form: if
(f, g) is a FFF -formulation of a FFH ∈ C then

i) From H , P can efficiently derive the reduced formula F (f, g).
ii) P has an efficient proof of F (f, g).

What properties must a proof system possess in order to perform (i) and (ii) for a subclass C ⊆ TFPHdt? If
TFNPdt ⊆ C then a Cook-Reckhow proof system (an NP-verifier) does not suffice unless NP = coNP1. Interestingly,
what fails is step (i) — Theorem 5.1 shows that step (ii) can always be carried out by a Cook-Reckhow system. We
will need to augment Cook-Reckhow proof systems in order to perform step (i). The issue is that Cook-Reckhow
systems cannot always perform the weakening from (1). That is, if F (f, g) =

∧
o∈OF (f,g)

Fo and H =
∧

o′∈OH
Ho′

then by correctness of the reduction, we know that for every o ∈ OF (f,g), Fo is a weakening of some Ho′ . However,
Cook-Reckhow proof systems cannot necessarily derive Fo efficiently given H . For example, if Fo = ⊤, the trivial
tautology, then this is tantamount to proving that Fo is a tautology, which is a coNP-complete task. It will suffice to
augment our proof systems to be able to do so.

Definition 3.5. Let P be a Cook-Reckhow proof system. A proof of a Πd+1 formula F =
∧

i∈[m] Fi in the proof
system Σd-P is a pair (H,Π) such that

1Indeed, for any unsatisfiable 3-CNF formula F , FFF ∈ TFNPdt.
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1. Π is a P -proof that the Πd+1-formula H =
∧

j∈[k] Hj is unsatisfiable.

2. Each Hj is a Σd-formula such that there is some i ∈ [m] for which Fi =⇒ Hj . That is, Hj is a Σd-weakening
of Fi.

The complexity of the proof (H,Π) is log |H|+ log s+ d, where log s+ d is the complexity of the proof Π.

Clearly such proofs are verifiable in Σd. As we will see, they suffice to characterize subclasses of TFΣdt
d . Note as

well that the definition of a Σ1-proof system agrees with the standard definition of any proof system which corresponds
to a TFNPdt subclass. Indeed, Σ1-weakening is simply weakening over clauses, which can be performed in tree
resolution, which characterizes FPdt.

Comparison with Proof Systems for QBF. A line of research has explored proof systems for proving the unsatisfia-
bility of quantified boolean formulas (QBF) (see [Bey22] for a survey). These QBF proof systems appear to be weaker
than Σd-proof systems when restricted to Σd-formulas. Indeed, these proof systems are typically Cook-Reckhow
systems augmented with a ∀Reduction rule, and hence lower bounds for CNF formulas from the propositional case
readily apply to these proof systems. This is not the case for Σd-proof systems, and further Σd weakening is able to
simulate ∀Reduction.

4 Sherali-Adams and Strong Range Avoidance
We begin with an example of a characterization by showing that STRONGRANGEAVOIDANCE is characterized by
Σ2-Sherali-Adams. A full treatment of the Sherali-Adams proof system is given in the monograph [FKP19].

For any boolean formula F , we will assume without loss of generality that all negations occur at the leaves and let
Vars+(F ) be the positive literals in F and Vars−(F ) be the negative literals. For any conjunct t =

∧
x∈Vars+(t) x ∧∧

x∈Vars−(t) ¬x, we associate the polynomial
∏

x∈Vars+(t) x
∏

x∈Vars−(t)(1 − x), and refer to them also as conjuncts.
A conical junta is a sum of conjuncts J :=

∑
t.

Let D =
∨

t t be any DNF. We can express D as a degree deg(D) := maxt∈D deg(t) polynomial∑
t∈D

t− 1.

Observe that for any x ∈ {0, 1}n, D(x) = 1 iff
∑

t∈D t(x) − 1 ≥ 0. Henceforth we will abuse notation and refer to
D as both the DNF and the associated polynomial.

Throughout this section we will work with multi-linear arithmetic, associating x2
i = xi for every variable x. This

has the effect of restricting the underlying linear program to {0, 1}-points.

Definition 4.1. Let F = {Di}i∈[m] be an unsatisfiable collection of DNFs. A Σ2-Unary Sherali-Adams (which we
denote by uSA) proof Π of F is a weakening F ′ = {D′

i}i∈[m′] of F together with a list of conical juntas Ji,J , such
that ∑

i∈[m′]

D′
iJi + J = −1.

The degree deg(Π) is the maximum degree among Di, D
′
iJi, and J , and the size size(Π) is the number of monomials

(counted with multiplicity)2 in Di, D
′
iJi,J . The complexity of the proof is uSA(Π) := deg(Π) + log size(Π), and

the complexity of proving F is uSA(F ) := minΠ uSA(Π), where the minimum is taken over all uSA proofs of F .

Note also that weakening subsumes the need to explicitly allow the additional conical junta in a uSA proof; we
could instead defined uSA as a Nullstellensatz proof

∑
D′

iJi = −1. This is because the additional junta J may be
introduced using weakening: for each conjunct t of J , weaken some Di in F to true or t. For example, Di can be
weakened to xi ∨ ¬xi ∨ t, the polynomial encoding of which is xi + (1− xi) + t− 1 = t.

Claim 4.2. uSA is sound and complete.
2This is a unary proof system as the number of monomials are counted with multiplicity, akin to writing coefficients in unary, rather than

allowing for monomials with coefficients written in binary
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Proof. Suppose that uSA is not sound; then there exists a uSA refutation of a satisfiable DNF F = {Di}i∈[m],∑
i∈[m′]

D′
iJi + J = −1.

Let x ∈ {0, 1}n be a satisfying assignment to F , meaning that for every i, D′
i(x) = 1 for any weakening D′

i of Di,
and in particular the polynomial representation of D′

i(x) ≥ 0. As juntas are non-negative over {0, 1}n, we have that∑
i∈[m′]

D′
i(x)Ji(x) + J (x) ≥ 0,

which is a contradiction.
For completeness, let F = {Di}i∈[m] be an unsatisfiable formula. Each assignment x ∈ {0, 1}n must falsify some

DNF of F , which we will denote by Dx. Let Ix be the indicator polynomial Ix :=
∏

i:xi=1 xi

∏
i:xi=0(1− xi) of the

assignment x. We claim that the polynomial ∑
x∈{0,1}n

IxDx = −1,

and is therefore a uSA proof. To see this, since we are working over the ideal ⟨xi − x2
i ⟩, it suffices to show that

the polynomial evaluates to −1 on every x ∈ {0, 1}n. Observe that if y ∈ {0, 1}n falsifies Dx, then Dx(y) = −1;
additionally, if x ̸= y, then Ix(y) = 0. Hence, for every y ∈ {0, 1}n,∑

x∈{0,1}n

Ix(y)Dx(y) = Iy(y)Dy(y) = Dy(y) = −1.

In the rest of this section, we show that uSA is closely related to STRONGRANGEAVOIDANCE. We restate an
equivalent definition next.

Definition 4.3. An instance of STRONGRANGEAVOIDANCE (STRONGAVOID) is given by a map f : [n] → [n + 1].
A solution is any h ∈ [n+ 1] such that for every p ∈ [n], f(p) ̸= h.

STRONGAVOID can be encoded as a CNF formula by introducing, for every p ∈ [n], log(n + 1)-many binary
variables p1, . . . , plogn+1 naming in binary the hole h ∈ [n + 1] to which pigeon p flies. For exposition, it will be
convenient to think of p as an (n+1)-ary variable and we will denote by [[p = h]] the indicator conjunct that is satisfied
iff p maps to h ∈ [n+ 1] under the given assignment

[[p = h]] := ph1
1 ∧ . . . ∧ p

hlog(n+1)

log(n+1) ,

where phi
i = pi if the ith bit of h is 1 and ¬pi otherwise. Note that

∑
h∈[n+1][[p = h]] = 1 as polynomials.

We can express STRONGAVOID as the unsatisfiable family of DNFs,∨
p∈[n]

[[p = h]] ∀h ∈ [n+ 1].

The main theorem of this section is the following.

Theorem 4.4. For any FFF ∈ TFΣdt
2 there is a complexity-c STRONGAVOID-formulation of FFF iff there is a Σ2-

uSA proof of F of complexity Θ(c).

We break the proof of this theorem into Lemma 4.5 and Lemma 4.8, which are proven over the following
two subsections. This theorem gives necessary and sufficient conditions for separating other TFΣ2 classes C from
STRONGAVOID: Exhibit a pseudo-expectation (see e.g., [FKP19]) against any polylog(n)-width Σ2-weakening of the
propositionalization of STRONGAVOID.
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4.1 SA Proofs Imply sRA Reductions
Lemma 4.5. If there is a size s and degree d Σ2-uSA proof of F , then there is a depth-d reduction from FFF to an
instance of STRONGAVOID of size O(s).

To prove this lemma, it will be convenient to work with the following problem. We show that it is equivalent to
STRONGAVOID.

Definition 4.6. The Unmetered Source of Dag (USOD) problem is defined as follows. The input is a “successor”
function S : [n] → [n] which defines a graph in which each vertex has fan-out ≤ 1 but arbitrary fan-in. There is an
edge from i to j if S(i) = j. To make the problem total, we enforce that the vertex 1 is a sink; it will have fan-out 0
but fan-in at least 1. The goal is to find a source; the solutions are:

− 1 is a solution if either S(1) ̸= 1 or ∀v ̸= 1 ∈ [n], S(v) ̸= 1 (1 is not a sink).
− v ∈ [n] is a solution if S(v) ̸= v but ∀u ∈ [n], S(u) ̸= v (v is a source).

Lemma 4.7. USOD =dt STRONGAVOID. Furthermore, this reduction is by depth-1 decision trees.

Proof. From an instance S : [n] → [n] of USOD, we construct an instance f : [n] → [n + 1] of STRONGAVOID
as follows. For v ̸= 1 ∈ [n], let f(v) := S(v) and let f(1) := n + 1. We claim that any solution u to this
STRONGAVOID instance is a source in S. First observe that u ̸= n+ 1 as f(1) = n+ 1. Hence, by construction, we
have that ∀v ∈ [n], S(v) ̸= u, and in particular S(u) ̸= u, so u is a source.
For the converse direction, from an instance f : [n] → [n + 1] of STRONGAVOID we construct an instance S :
[n+ 1] → [n+ 1] of USOD by defining S(v + 1) := f(v) for all v ∈ [n] and letting S(1) = 1. Let v be a solution
to this instance of USOD, if v = 1, then, since S(1) = 1, for all u ∈ [n], f(u) ̸= 1. Otherwise, v ̸= S(u) for all
u ∈ [n+ 1], and so v ̸= f(u) for all u ∈ [n].

Proof of Lemma 4.5. Let F =
∧

o∈O Do, and let Π be a size s and degree d uSA proof of F over n variables, where

Π :=
∑
i∈[m]

∑
j∈Ii

D′
iJj +

∑
k∈K

Jk + 1 = 0,

for sets of indices Ii,K, each D′
i is a weakening of some Do ∈ F and each Jj , Jk is a conjunct. We construct an

instance of USOD with one node per occurrence of a (signed) monomial in Π. Therefore, for simplicity, we will refer
to monomials as nodes and vice versa. The constant 1 will be our distinguished sink, and we will set S(1) = 1. We
will define the remaining successor pointers as follows:

Negative Monomials. Since Π = 0, there is a positive and negative copy of every monomial occurring in the proof;
construct a pairing of the monomials in this way. Furthermore, under any assignment x ∈ {0, 1}n, the number of
monomials which evaluate to 1 and to −1 is equal. For each negative monomial −m in Π, the decision tree S(−m)
queries the variables of m and outputs as follows:

i) If m(x) = 0, then S(−m) = −m.
ii) Otherwise, let m be the positive copy of −m that −m is paired with, and set S(−m) = m.

This completes the description of the successor pointer for negative monomials.

Positive Monomials. For any positive monomial m, the decision tree for S(m) first queries the (at most d-many)
variables of m to determine the value of m(x). If m(x) = 0, then S(m) = m. Otherwise, we will define S as follows.

We define the successor pointer for the positive monomials which belong to each D′
iJj first, and handle the

monomials from the conjuncts Jk later. Fix some D′
iJj in Π, where D′

i =
∑

k∈[ℓ] tk − 1, and consider the monomials
within it. We would like to satisfy the following property: there is a source within the monomials D′

iJj iff D′
i(x) = −1

(i.e., the DNF D′
i(x) = 0). To get some intuition, first suppose that Jj = 1 and that all monomials m in D′

i are positive
— that is, D′

iJj =
∑

k∈[ℓ] mk − 1. Then, the current assignment to S affects D′
iJj as follows:

− Each monomial mk such that mk(x) = 0 is an isolated vertex for which S(mk) = mk.
− Each monomial mk for which mk(x) ̸= 0 has a single incoming edge (from −mk).
− The monomial −1 has an outgoing edge.

10



If at least one of the monomials mk is non-zero, we can send it to −1, and otherwise −1 becomes a source (see
Figure 2). Therefore, the only sources will come from the “−1 nodes” of falsified DNFs. To handle the general case,
we use the fact that in every conjunct, under any assignment, there are at least as many non-zero positive monomials
as non-zero negative monomials.

mℓ

m2

m1

−1

m1(x) = 0

m1(x) = 1

...

Figure 2: The “gadget” for a D′
iJj where Jj = 1 and D′

i contains only positive literals (each conjunct is a monomial).

We now describe the construction in general. Consider a D′
iJj in Π. For each positive monomial m in D′

iJj =
(
∑

k∈[ℓ] tk − 1)Jj , belonging to some conjunct tkJj , the pointer S(m) will query the (at most d-many) variables in
tkJj . Let α ∈ {0, 1}Vars(Jj) be the assignment to the variables of Jj that was discovered.

If Jj ↾ α = 0: Then D′
iJj ↾ α = 0. Hence, for every positive monomial m in D′

iJj , either m ↾ α = 0, in which
case we have already set S(m) = m, or m must cancel with another monomial −m′ in D′

iJj under α. That is,
m ↾ α = −m′ ↾ α, and so we define S(m) = −m′. Note that in this case there are no sources within D′

iJj : every
monomial mD′

iJj either evaluates to 0 and nothing points to it, or has exactly one incoming and one outgoing edge.

If Jj ↾ α ̸= 0: We define the successor pointer for the monomials in D′
iJj so that there is a source iff every for

every term tk of D′
i, tk(x) = 0. Let Mons(Jj)

+,Mons(Jj)
− be the (non-zero) positive and negative monomials in Jj

respectively. Let
δ := |Mons+(Jj ↾α)| − |Mons−(Jj ↾α)|

be the difference between the number of positive and negative monomials, and note that δ > 0 as Jj is a conjunct and
Jj ↾ α ̸= 0. Recall that D′

iJj =
∑

k∈[ℓ] tkJj − Jj . For each term, we will define a matching so that −Jj has only
δ-many negative monomials without incoming edges, and every negative monomial in tkJj has an incoming edge.

− For −Jj : Define an arbitrary pairing P := {(m,−m′)} ⊆ Mons+(Jj ↾ α) × Mons−(Jj ↾ α) such that each
positive monomial occurs in exactly one pair and each negative monomial occurs in at most one pair. Hence we
have δ-many negative monomials that are not paired. For each pair (m,−m′) ∈ P , define S(m) = −m′.

Note that we have now defined the successor of every positive monomial in Jj .
− For each tkJj : Observe that as tk is a conjunct, under any assignment it contains at least as many positive

monomials as negative monomials. Define an arbitrary pairing P := {(m,−m′)} ⊆ Mons+(tkJj ↾ α) ×
Mons−(tkJj ↾ α) such that each negative monomial occurs in exactly one pair and each positive monomial
occurs in at most one pair. For each pair (m,−m′) ∈ P , define S(m) = −m′. Let β ∈ {0, 1}Vars(tkJj) be
the assignment to the variables of tkJj that was discovered by the trees made by the decision tree of any of the
monomials m in tkJj . Let

c := |Mons+(tk ↾β)| − |Mons−(tk ↾β)|

be the difference between the number of non-zero positive and negative monomials in tk under β.
If c = 0, then tkJj ↾β = 0, and so the number of non-zero positive and negative monomials is equal. In this

case, each negative monomial has an incoming edge, which is provided by this pairing.
Otherwise, if tkJj ↾ β ̸= 0, then there are cδ-many non-zero positive monomials whose successor is still

undefined, and partition them into c-many groups of C1, . . . Cδ of δ-many monomials each. Recall that −Jj
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has exactly δ-many negative monomials with no incoming edge, −m1, . . . ,−mδ . For each m ∈ Ci, define
S(m) = −mi. In this case, each monomial in tkJj and −Jj has an incoming edge.

Finally, we define the successor for each positive monomial in the conical junta
∑

k∈K Jk in Π. We will do this
individually for each Jk. To do so, we use the fact that Jk contains at least as many positive monomials as negative
monomials in order to ensure that there is never any source among the monomials of Jk. The successor for each
positive monomial m of Jk queries the (at most d-many) variables in Jk for an assignment α ∈ {0, 1}Vars(Jk). Define
an arbitrary pairing P := {(m,−m′)} ⊆ Mons+(Jk ↾ α) × Mons−(Jk ↾ α) such that each negative monomial
occurs in exactly one pair and each positive monomial occurs in at most one pair. For each pair (m,−m′) ∈ P , define
S(m) = −m′. For the remaining positive monomials m in Jk whose successor is not defined, set S(m) = 1 (this
choice is somewhat arbitrary).

This completes the description of the successor function S (the f -part of the formulation). It remains to define the
output function g of the formulation. For each potential solution m,

− If m is a monomial from some D′
iJj , then D′

i is the weakening of some Do of F , and we output o.
− Otherwise, we output an arbitrary index o ∈ [m].

Finally, we prove that this formulation is correct. To do so, we show that the only monomials which do not have
incoming edges belong to some D′

iJj for which D′
i(x) is falsified. This suffices, as if m belongs to D′

iJj where
D′

i(x) = 0, then gm(x) = o for some Do of F of which D′
i is a weakening of. Hence, Do(x) is falsified, and we have

found a solution to FFF . By the negative monomial case in the formulation, every positive monomial has an incoming
edge. By the pairings constructed in the formulation, every negative monomial in each Jk in the conical junta also has
an incoming edge. As well, for each D′

iJj =
∑

k tkJj − Jj , each negative monomial in each tkJj has an incoming
edge. Hence, the only potential sources belong to the −Jj terms of each D′

iJj . As we argued before, if Jj(x) = 0,
then there is no source in the monomials of D′

iJj , so suppose that this is not the case. As we have paired off positive
and negative monomials in −Jj , the only incoming edge to each of the δ-many remaining negative monomials of Jj
must come from some tkJj . If there is a tk such that tk(x) ̸= 0 (and hence D′

i(x) is satisfied), then tkJj has cδ-many
monomials which map to to the δ-many remaining negative monomials of Jj , meaning that there is no source in D′

iJj .
Thus, D′

iJj becomes a source only if Jj(x) ̸= 0 and D′
i(x) is falsified.

4.2 sRA Reductions Imply SA Proofs
We begin by observing that there is a trivial unary Sherali-Adams refutation of Range Avoidance:∑

h∈[n+1]

( ∑
p∈[n]

[[p = h]]− 1
)
=

∑
p∈[n]

∑
h∈[n+1]

[[p = h]]− (n+ 1) = n− (n+ 1) = −1,

where the third equality follows as we
∑

h∈[n+1][[p = h]] = 1.
In the remainder of this section, we will show that unary Sherali-Adams can prove reductions to STRONGAVOID.

Lemma 4.8. If f, g is a STRONGAVOID-formulation of FFF of depth d and size s, then there is a degree-O(d log n)
and size poly(s · nd) Σ2-uSA proof of F .

If (f, g) is a STRONGAVOID-formulation of FFF for some formula F =
∧

i∈[m] Di, let P (gh), P (fp) be the set
of all root-to-leaf paths in the decision trees gh and fp, respectively. As well, for any hole h ∈ [n+ 1], let Ph(fp) be
the set of paths in fp whose leaf is labeled by hole h.

We can express the reduction from FFF to STRONGAVOID as the unsatisfiable formula STRONGAVOID(f, g)
defined as

∀h ∈ [n+ 1], ∀σ∗ ∈ P (gh),
∨

σ ̸=σ∗∈P (gh)

∨
p∈[n]

[[p = h]] ∧ σ

= ∀h ∈ [n+ 1], ∀σ∗ ∈ P (gh),
∨

σ ̸=σ∗∈P (gh)

∨
p∈[n]

∨
ρ∈Ph(fp)

ρ ∧ σ

Letting Dh,σ∗ :=
∨

σ ̸=σ∗∈P (gh)

∨
p∈[n]

∨
ρ∈Ph(fp)

ρ ∧ σ, this becomes the unsatisfiable family of DNFs

STRONGAVOID(f, g) := {Dh,σ∗}h∈[n+1],σ∗∈P (gh).

The following lemma shows that uSA can deduce STRONGAVOID(f, g) from F .
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Proof of Lemma 4.8. We will abuse notation and let [[p = h]] :=
∑

δ∈Ph(fp)
δ denote the decision-tree substitution of

the indicator [[p = h]]. To begin, we will weaken F to STRONGAVOID(f, g), the polynomials of which are

Dh,σ∗ :=
∑

σ ̸=σ∗∈P (gh)

∑
p∈[n]

[[p = h]] · σ − 1

for h ∈ [n + 1] and σ∗ ∈ P (gh). As each [[p = h]] contains O(log n)-many Boolean variables, and we are replacing
each one by a depth-d decision tree, the degree of STRONGAVOID(f, g) is O(d log n). Similarly, the size blows up by
a factor of nd.

For any h ∈ [n+ 1],∑
σ∗∈P (gh)

Dh,σ∗ =
∑

σ∗∈P (gh)

( ∑
σ ̸=σ∗∈P (gh)

∑
p∈[n]

[[p = h]]σ − 1
)

=
∑
p∈[n]

∑
σ∗∈P (gh)

∑
σ ̸=σ∗∈P (gh)

[[p = h]]σ − |P (gh)|

=
∑
p∈[n]

[[p = h]]
∑

σ∗∈P (gh)

∑
σ ̸=σ∗∈P (gh)

σ − |P (gh)|

=
∑
p∈[n]

[[p = h]]
(
|P (gh)| − 1

) ∑
σ∈P (gh)

σ − |P (gh)|

=
∑
p∈[n]

[[p = h]]
(
|P (gh)| − 1

)
− |P (gh)| (Summing all paths in the DT g(h))

=
(
|P (gh)| − 1

)( ∑
p∈[n]

[[p = h]]− 1
)

By padding, we can assume without loss of generality that all decision trees gh have the same number of paths; that
is, |P (gh)| = |P (gh′)| = α for all h, h′ ∈ [n+ 1], and some α ∈ N with α > 1. Then,∑

h∈[n+1]

∑
σ∗∈P (gh)

Dh,σ∗ =
∑

h∈[n+1]

(
α− 1

)( ∑
p∈[n]

[[p = h]]− 1
)

= (α− 1)
( ∑

p∈[n]

∑
h∈[n+1]

[[p = h]]− (n+ 1)
)

= (α− 1)
( ∑

p∈[n]

∑
h∈[n+1]

∑
δ∈Ph(p)

δ − (n+ 1)
)

= (α− 1)
( ∑

p∈[n]

∑
δ∈P (p)

δ − (n+ 1)
)

= (α− 1)
( ∑

p∈[n]

1− (n+ 1)
)

(Summing all paths in the DT f(p))

= (α− 1)
(
n− (n+ 1)

)
= −(α− 1) ≤ −1.

5 A Generic Correspondence
In this section we establish a general correspondence between uniform subclasses of total search problems in the
polynomial hierarchy and proof systems. Our characterizations will rely on the following two properties of a Σd-proof
system:

− Reduction-Closed. For unsatisfiable Πd.5 formulas F,H , if P has a complexity-s proof of F and there is a
complexity-c FFF -formulation of FFH , then P (H) = poly(cs).

− Reflective. P has polylog(n)-complexity proofs of a reflection principle about itself—a formula encoding the
soundness of this proof system; we expand on the meaning of this below.
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We show the following, generalizing [BFI23].

Theorem 5.1. The following hold:

i) Every uniform subclass of TFΣd is characterized by a Σd-proof system.
ii) Every Σd-proof system which is reduction-closed and reflective is characterized by a subclass of TFΣd.

We prove (i) in subsection 5.1 and (ii) in subsection 5.2.

5.1 A Proof System for any TFΣd Problem
In this section we show how to construct a proof system from any total search problem R ⊆ {0, 1}n × O, which
we think of as the complete problem for some uniform subclass. The key insight is that one can view a decision tree
reduction from a total search problem Q ⊆ {0, 1}m ×OQ to R as a proof that Q is total, if we take the totality of R
as an axiom. In what follows, we formalize this intuition. We define proofs in the canonical proof system for a TFΣdt

d

subclass as reductions to one of its complete problems.

Definition 5.2. Let FFF ∈ TFΣdt
d where Fn =

∧
o∈[m] Fo. The canonical proof system for FFF , denoted PF , is

defined as follows: A proof Π in PF consists of a triple (n, f, g, Fn(f, g)), where

− (f, g) is a FFF -formulation (i.e., a set of decision trees) to an instance of FFF on n variables, and
− Fn(f, g) =

∧
o∈[m∗] Lo is the reduced formula associated with this formulation.

Π is a PF proof of an unsatisfiable formula H =
∧

t∈[m′] Ht, where each Ht is a Σd-formula, if for every Lo in
Fn(f, g) there exists some t ∈ [m′] such that Lo is a Σd-weakening of Lo; that is,

Ht =⇒ Lo.

The size of the proof Π is the number of bits needed to write down Π, and the width of Π is the maximum depth
among the decision trees in the formulation,

depth(Π) := max
i∈[n],o∈[m]

{
depth(fi), depth(go)

}
.

The complexity of proving H in PF is the minimum over all PF -proofs of H ,

PF (H) := min
{
width(Π) + log size(Π) : Π is a PF -proof of H

}
.

This proof system is sound, since any substitution of an unsatisfiable formula remains unsatisfiable. As well, it
is complete for unsatisfiable Πd+1 formulas, as depth-n decision trees suffice to solve any total search problem. It is
also verifiable by a polynomial-time ΠP

d−1 machine which generates Fn, checks that (f, g) is a valid FFF -formulation
which agrees with the reduced formula Fn(f, g), and checks that Ht =⇒ Lo Note that this proof system agrees with
the definition of [BFI23] when d = 1.

We will show that PF characterizes the subclass with complete problem FFF , proving the first direction of Theo-
rem 5.1.

Lemma 5.3. If FFF , FFH ∈ TFΣdt
d , then there is a complexity-c FFF -formulation of FFH iff PF (H) ≤ c·polylog(n).

Proof. Let (f, g) be a complexity-c FFF -formulation of FFH . We claim that (n, f, g, FFF (f, g)) is a PF proof of
H . As FFF ∈ TFΣdt

d , F is a Πd.5 formula, and so the reduced formula FFF (f, g) is a Πd+1-formula (Πd.5 if
c = polylog(n)). As well, the size of FFF (f, g) is at most size(FFF ) · exp(O(c)), as each clause/term on the bottom
layer of F has width at most polylog(n) and we replace it by the CNF/DNF representation of a depth-O(c) decision
tree, which has width O(c) and size at most exp(O(c)). Finally, for F (f, g) :=

∧
o∈[m∗] Lo and H :=

∧
t∈[m] Ht,

by the correctness of the formulation, we can conclude that for every o ∈ [m∗] there exists some t ∈ [m′] such that
Ht =⇒ Lo, and so Lo is a Σd-weakening of Ht.

For the converse direction, suppose that (n, f, g, F (f, g)) is a PF proof of an unsatisfiable formula H :=
∧

i∈[m] Hi,
where each Hi is a Σd-formula. By definition, (f, g) constitutes a complexity-c FFF -formulation of FFH . Indeed,
each decision tree of (f, g) has depth at most c and there are at most 2c-many of them, and so this is a complexity-c
formulation.
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5.2 A TFΣd Problem for any Proof System which Reflects
In this section we show that a Σd-proof system P corresponds to a TFΣd-problem if that proof system is reduction
closed and reflective.

A reflection principle states that P -proofs are sound; we will restrict ourselves to proofs of Σd.5 formulas. Typ-
ically, the provability of a proof system’s reflection principle is sufficient in order to simulate that system. In our
setting, a reflection principle will falsely assert that there is a complexity-c P -proof Π of a Σd.5-formula H and that
H is satisfied by a truth assignment α:

REFP := PROOF(H,Π) ∧ SAT(H,α).

This formula will be parameterized by nH , the number of variables of H , as well as c the complexity of the proof Π.

SAT. The formula SAT(H,α) states that α ∈ {0, 1}nH is a satisfying assignment to H , where α ∈ {0, 1}n and H
are given as input. A generic Πd.5-formula has the following structure:

H =
∧
o∈O

∨
z1∈{0,1}ℓ1

∧
z2∈{0,1}ℓ2

. . . ⃝
zd−1∈{0,1}ℓd−1

Ho,z1,...,zd−1

where ⃝ ∈ {∧,∨} and Ho,z1,...,zd−1
, is a width w ∈ polylog(n) clause if ⃝ = ∧ or conjunct if ⃝ = ∨. Each

Ho,z⃗ := Ho,z1,...,zd−1
is specified by w-many (2n+1)-ary variables vo,z,1, . . . , vo,z,w ∈ [2(n+1)], where vo,z,i = j

denotes the variable

− xj if i ∈ [n],
− ¬xj−n if j ∈ {n+ 1, . . . , 2n},
− constant 1 if j = 2n+ 1,
− constant 0 if j = 2n+ 2.

We could allow the formula REFP to be parameterized by |O|, ℓ1, . . . , ℓd−1. However, for simplicity, since we are
considering complexity-c proofs, it suffices to simply set all of these parameters to 2c and w = c. In this case, the
number of Ho,z⃗ is 2cd, and hence the number of Boolean variables of H is c log(2nH +2) ·2cd. Then the Πd.5 formula
SAT can be written as

SAT(H,α) :=
∧
o∈O

Ho(α) :=
∧
o∈O

∨
z1∈{0,1}ℓ1

∧
z2∈{0,1}ℓ2

. . . ⃝
zd−1∈{0,1}ℓd−1

[[Ho,z⃗(α) = 1]],

where [[Ho,z⃗(α) = 1]] is the width-O(w log nH) DNF (if ⃝ = ∨) or CNF (if ⃝ = ∧) defined by the following
decision tree To,z⃗: First query the w log(2nH+2)-many Boolean variables Ho,z⃗,1, . . . ,Ho,z⃗,w to determine the literals
ℓ1, . . . , ℓw of Ho,z⃗ . Then, query the corresponding bits of α to determine if Ho,z⃗ is satisfied. If it is, then To,z⃗ outputs
1, and otherwise it outputs 0. This can be converted into a DNF or CNF in the usual way.

Proof. The formula PROOF(H,Π) states that Π is a P -proof of H . A complication is that there are many different
ways by which one could encode a P -proof as a formula, some of which may change the difficulty of proving the
reflection principle drastically. Following [BFI23], we define one reflection principle for each encoding of a P -proof;
we call such an encoding a verification procedure.

Definition 5.4. A verification procedure V for a Σd-proof system P , parameterized by nH , c, is a Πd.5-formula which
generically encodes a complexity-c P -proof Π of an nH -variate formula H . Specifically, the formula VnH ,c(Π, H)
has two sets of variables H , Π, where:

− An assignment to the variables H = {Ho,z⃗,i|i ∈ [nH ]} specifies a Πd.5 formula as before.
− An assignment to the variables Π specifies a purported P -proof of H of complexity c, such that any error in Π

can be verified by an efficient Σd−1-algorithm (placing REF ∈ TFΣd).
− V has 2Θ(c)-many variables.

As c bounds the logarithm of the size of the proof, and the number of variables is exponential in Θ(c), the second
condition ensures that a violated sub-formula of V can be verified by a Σd−1-algorithm making polylog(c)-many
queries.
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A reflection principle for a proof system P and verification procedure V is

REFP,V := PROOFnH ,c(H,Π) ∧ SATnH ,c(H,α),

where PROOFnH ,c(H,Π) := VnH ,c(H,Π). Often, we will suppress the subscripts P, V .
We now prove point (ii) of Theorem 5.1.

Lemma 5.5. Let P be a Σd-proof system that is reduction closed and reflective for some REF := REFP,V . Then for
any FFH ∈ TFΣd,

i) If there is a complexity-c FFREF-formulation of FFH , then P (H) = poly(c · P (REF)).
ii) There is a complexity O(P (H)) FFREF-formulation of FFH .

Proof. To prove (i), suppose that there is a complexity-c FFREF-formulation of H . By the definition of being reduction
closed, there is a P proof of H of complexity poly(c · P (REF)).

For (ii), let Π be a complexity-c proof of H in P . We construct a FFREF-formulation (f, g) of FFH as follows.
f will hard-wire (Π, H) as the input to REF, and map the input variables of FFH to the variables α1, . . . , αnH

of
REF. Since Π is a valid proof of H , PROOF(Π, H) is always satisfied, and we can set go arbitrarily for any solution o
corresponding to a subformula of PROOF(Π, H). As PROOF(Π, H) is always satisfied under this reduction, the only
solutions which may occur belong to SAT(H,α). In particular, as we have mapped the input variables of H to the bits
α1, . . . , αnH

, for any assignment x ∈ {0, 1}n, Ho(x) = 0 ⇐⇒ Ho(α) = 0. Hence, we define go = o.

6 Characterizations in TFΣ2

In this section we uncover TFΣ2 characterizations of several well-studied proof systems — DNF Resolution, DNF
Circular Resolution [AL23, DR23], and DNF Reversible Resolution [GHJ+22b, DR23]. Along the way we introduce
several new TFΣ2 classes, which are inspired by TFNP classes. These are analogs to the coloured TFNP classes
introduced in [KST07, DR23]. In subsection 6.3 we explore the relationships between these and prominent TFΣ2

subclasses.
The DNF resolution proof systems are extensions of the resolution proof system (and restrictions of) to allow them

to operate with DNF formulas, rather than only clauses. Davis and Robere [DR23] gave characterizations of these
systems by coloured TFNP classes. We introduce several classes which characterize the Σ2-variants of these proof
systems; we believe these TFΣ2 classes herbrandize to the coloured classes.

Definition 6.1. A Res(polylog) refutation of a Π2-unsatisfiable formula F =
∧m

i=1 Ai is a sequence of polylog(n)-
width DNF formulas Π = (D1, . . . , Ds = ⊥) where each Di is deduced from previous DNFs by one of the following
rules:

− Axiom Introduction. Introduce Ai for some i ∈ [m].
− Symmetric Cut. From D ∨ t and D ∨ t derive D, where t is any term.
− Reverse Cut. From D derive Di = D ∨ t and Di+1 = D ∨ t, for some term t.

The size s of Π is the sum of the sizes of DNFs involved in Π, and the width w is the maximum width of any DNF in
Π. The complexity of Π is log s+ w.

A RevRes(polylog) proof is a Res(polylog) proof in which every DNF in the sequence is used as the premise to a
derivation rule at most once.

A uCircRes(polylog) proof has access to the additional rule

− DNF Creation. Si = Si−1 ∪ {D}, where D is any DNF formula.

provided that each copy of D that is created in this way is derived at least as many times as it is used as the premise to
a derivation rule.

The following technical lemma will be key to our characterizations.

Lemma 6.2. (Theorem 3.6 in [DR23]) Res(polylog),RevRes(polylog), and uCircRes(polylog) are reduction closed.
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Davis and Robere proved Lemma 6.2 for DNF resolution proofs of Π1.5-formulas (that is, when the axioms are
clauses). It is straightforward to see that it holds by exactly the same argument (Claim 1) when the axioms are DNF
formulas. In section 7 we prove this theorem for depth-d.5 Frege, for every d, of which Res(k) is d = 1.

In the following subsections we will prove Theorem 1.5, characterizing each of these proof systems by new TFΣdt
2

subclasses. To define each of these classes, it will be convenient to use the following notion of a meta-pointer.

Definition 6.3. Given a function S : [m]× [t] → [m], the meta-pointer S̃ : [m] → [m] ∪ {undefined} is defined as

S̃(u) =


v if for every i ∈ [t], S(u, i) = v,
u if there is i ∈ [t] such that S(u, i) = u

undefined otherwise if there is i, j ∈ [t] such that u ̸= S(u, i) ̸= S(u, j).

Note that, if u ̸= v, S̃(u) = v is Π1-verifiable: For all i ∈ [t], we need to verify that S(u, i) = v, which takes
log(m) queries . Moreover, S̃(u) = u and S̃(u) = undefined are Σ1 verifiable: We can non-deterministically guess
i ∈ [t] such that S(u, i) = u, or i ̸= j ∈ [t] such that u ̸= S(u, i) ̸= S(u, j); in other words, they are efficiently
computable if we are given i (and j) as witnesses. The inclusion in TFΣ2 of the problems presented in this chapter
follows directly from this fact.

6.1 DNF Resolution
polylog(n)-width resolution was characterized by the TFNPdt subclass PLS [BKT14]. In this section we introduce a
TFΣ2-variant of the PLS-complete problem iteration and show that it characterizes Σ2-Res(polylog). The iteration
problem encodes the principle that every DAG has a sink. The input is given by a pointer function S : [n] → [n]
giving the successor of a node u ∈ [n], thought of as the next node on a root-to-leaf walk in the DAG. A solution is
(i) an invalid source S(1) = 1, (ii) a u which points backwards S(u) < u, (iii) a sink: u ∈ [n] such that S(u) ̸= u but
S(S(u)) = S(u), or (iv) a node u with an undefined pointer S(u) = undefined. Our TFΣ2 variant obfuscates the
successor function. Similar ideas were used to define the RWPHP2 problem in [KT21].

Definition 6.4. An instance of ITER2 is given by a function S : [m]× [t] → [m]. A solution is a witness of a solution
to the iteration instance defined by the meta-pointer S̃:

− (u, i, i′) such that S(u, i), S(u, i′) ̸= u and S(u, i) ̸= S(u, i′), (S̃(u) is undefined.)
− (u, i) such that S(u, i) < u. (A pointer which points backwards)
− (1, i) if S(1, i) = 1. (1 is not a source)
− (u, v, i) such that S̃(u) = v and S(v, i) = v. (v is a proper sink)

The class PLSdt2 is the set of R ∈ TFΣdt
2 such that R ≤dt ITER2.

Theorem 6.5. For any FFF ∈ TFΣdt
2 , there is a complexity-c ITER2-formulation of FFF iff there is a complexity

O(c) Σ2-Res(polylog) proof of F .

We prove this theorem in the following two lemmas, each giving one direction.

Lemma 6.6. For FFF ∈ TFΣ2, if Σ2-Res(polylog)(F ) = c, then there is a complexity-O(c) ITER2-formulation of
FFF .

Proof. Let (Π, H) be a Σ2-Res(polylog)(F ) proof of F =
∧

i∈[ℓ] Fi, where H =
∧

i∈[k] Ai and each Ai is a Σ2-
weakening of a DNF of F . Up to padding, we may assume that each DNF in the proof has the same number of terms
t. Consider the proof Π = D1, . . . , Dm in reverse order so that D1 = ⊥; this will be our designated source.

Let tu,i be the ith term of Du. Given an assignment α ∈ {0, 1}n to the variables of F , we construct a function
Sα : [m]× [t] → [m] by setting Sα(u, i) to be:

− u if Du is an axiom, or if tu,i(α) = 1;
− v if tu,i(α) = 0 and Du was derived from Dv by the reverse cut rule or semantic weakening of an axiom;
− v if tu,i(α) = 0 and Du was derived from Dv = Du ∨ t and Dw = Du ∨ t̄ via symmetric cut and t(α) = 0 and

w if t̄(α) = 0;
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Finally, for each solution o to the instance Sα, we define the output of the reduction go(α) to be arbitrary if o does
not correspond to an axiom Ai of H , and otherwise this axiom Ai is a weakening of a DNF Fj of F , and we set
go(α) = j. Note that in this case Ai(α) = 0 =⇒ Fj(α) = 0. Observe that computing Sα(u, i) involves evaluating
at most two terms, and hence the depth of the reduction is at most twice the width of the proof. It remains to argue that
the reduction is correct.

Claim. The function S̃α satisfies the following properties:

i) S̃α is defined everywhere.
ii) If Du is not an axiom of H , then Du(α) = 0 iff S̃α(u) ̸= u.

iii) If S̃α(u) = v ̸= u, then Dv(α) = 0.

Assuming the claim, we see that the only type of solution to this ITER2 instance Sα are proper sinks corresponding
to falsified axioms of H , which are weakenings of (falsified) axioms of F . Hence, g returns a correct solution to
FFF (α).

Proof of Claim. We prove each item, beginning with (i). Clearly S̃α is well defined for any u that was not derived
using the cut rule since Sα(u, i) only has one choice of value other than u. So now consider u such that Du was
derived from Dv = Du ∨ t and Dw = Du ∨ t̄. For i ∈ [t], we see that Sα(u, i) depends on two values: tu,i(α), and
t(α) in the case where tu,i(α) = 0. Thus, t(α) being independent of i, Sα(u, i) is always identical when not equal to
u.

(ii) follows from the fact that Du(α) = 0 iff tu,i(α) = 0 for all i, and S̃α(u) = u iff tu,i(α) = 1 for at least one i.
Finally, (iii) follows by definition.

We will now prove the converse. First, we describe the encoding of ITER2 as an unsatisfiable formula. For each
(u, i) ∈ [m] × [t], the m-ary value of Su,i will be described by logm-many boolean variables Su,i,b, where the
indicator function

[[Su,i = v]] :=
∧

b∈[logm]

Svb
u,i,b,

where we think of v as being written in its binary encoding, vb is its bth bit, and S1
u,i,b = Su,i,b and S0

u,i,b = ¬Su,i,b.
As well, [[Su,i ̸= v]] = ¬[[Su,i = v]], and

[[S̃u ̸= v]] :=
∨
i∈[t]

[[Su,i ̸= v]].

Then ITER2 is the conjunction of the following subformulas:

− [[S1,i ̸= 1]] for each i ∈ [n]. (1 is not a source)
− [[Su,i ̸= v]] ∨ [[Su,i′ ̸= v′]] for all v ̸= v′ and i ̸= i′ such that u ̸= v, v′ (S̃ is defined everywhere)
− [[Su,i ̸= v]] for all v < u and i ∈ [n]. (Nothing points backwards)
− [[S̃u ̸= v]] ∨ [[Sv,j ̸= v]] for all u < v and j ∈ [n]. (v is not a proper sink)

Note that the subformulas of the ITER2 formula are clauses making the formula a CNF. We may then question what
makes ITER2 a TFΣdt

2 problem and not a TFNPdt one. The key to understanding this resides in the size of said clauses.
Indeed, for a false formula problem corresponding to a CNF to be in TFNPdt, we need to be able to verify if a given
clause is falsified by an assignment by only querying a polylog(n) amount of bits. This in turn directly implies that
we would need each clause to be of polylog(n)-width. This is not the case here because of the fourth type of axioms,
which are of poly(n)-width. On the other hand, considering clauses as 1-width DNFs, we see that this false formula
problem corresponding to this formula lands indeed in TFΣdt

2 . We now state the converse.

Lemma 6.7. For FFF ∈ TFΣ2, if there is a complexity-c ITER2-formulation of FFF , then there is a complexity-O(c)
Res(polylog) proof of F .
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Observe that the set of formulas {[[Su,i ̸= v]]}v∈[m] contains all clauses containing all of the variables Su,i,b.
Hence they can be cut in O(m logm)-many steps to obtain ⊥. Throughout the proof we will write the

Dv ∨ [[Su,i ̸= v]], ∀v
D

as a shorthand for this derivation with D =
∨

v∈[m] Dv .

Proof of Lemma 6.7. By Lemma 6.2 it suffices to show that Res(polylog) can prove ITER2. By induction from u = m
to u = 1, we will derive a set of formulas that state that does not point forward in S̃. Combining this with the fact that
the image of u by S̃ cannot be undefined and u may not point backwards, this is semantically equivalent to stating that
u points to itself. We then reach a contradiction when reaching u = 1, since 1 must be a proper source of our graph.
This will be achieved by deducing

Lu :=
{
[[S̃u ̸= v]] : u < v

}
,

which can be combined with axioms stating that no node points backwards for the desired statement.
The base case is trivial, as Lm = ∅. Consider some u ∈ [m] and suppose that we have derived Lv for all v > u.

We derive the formula [[S̃u ̸= v]] ∈ Lu as follows: Consider some w > v > u and apply the reverse cut rule to
[[S̃v ̸= w]] in order to obtain [[S̃v ̸= w]] ∨ [[S̃u ̸= v]]. Now consider the cuts from a = t to a = 2,

[[S̃u ̸= w]] ∨
∨

i<a+1[[Sv,i ̸= v]] [[S̃u ̸= v]] ∨ [[Sv,a ̸= v]] [[Sv,1 ̸= w]] ∨ [[Sv,a ̸= w′]],∀w′ ̸= v, w

[[S̃u ̸= v]] ∨
∨

i<a[[Sv,i ̸= v]]

to the set of formulas [[S̃u ̸= v]] ∨ [[Sv,1 ̸= w]]. Finally, we do one last cut:

[[S̃u ̸= v]] ∨ [[Sv,1 ̸= w]], ∀w > v [[S̃u ̸= v]] ∨ [[Sv,1 ̸= v]] [[Sv,1 ̸= w]], ∀w < v

[[S̃u ̸= v]]
,

which derives the formula [[S̃u ̸= v]] ∈ Lu.
Finally, once we have derived L1, we can derive ⊥ as follows. For a fixed v > 1, starting from a = t down to

a = 2, we operate the cuts:∨
i<a+1[[S1,i ̸= v]] [[S1,a ̸= 1]] [[S1,1 ̸= v]] ∨ [[S1,n ̸= v′]], ∀v′ ̸= v, 1∨

i<a[[S1,i ̸= v]]
.

Once we have derived [[S1,1 ̸= v]], we do one final cut:

[[S1,1 ̸= v]], ∀v ̸= 1 [[S1,1 ̸= 1]]

⊥

6.2 Circular and Reversible DNF Resolution
In this section we characterize the Σ2-uCircRes(polylog) proof system by a TFΣ2-variant of the Sink-of-Line problem.
An instance of Sink-of-Line is given by functions S, P : [m]× [t] → [m] ∪ {undefined} which define a graph G as
follows: there is a directed edge (u, v) if S̃(u) = v and P̃ (v) = u. A solution to this instance is either i) 1 if 1 is not a
source in G, ii) a sink u in G, iii) a vertex u for which P̃ (u) or S̃(u) is undefined. We now describe the TFΣ2 variant.

Definition 6.8. An instance of SOL2 is given by functions S, P : [m]× [t] → [m]. A solution is a witness to a solution
to the SOL instance defined by the meta-pointers (S̃, P̃ ):

− (u, i, i′) if S(u, i), S(u, i′) ̸= u and S(u, i) ̸= S(u, i′);
or P (u, i), P (u, i′) ̸= u and P (u, i) ̸= P (u, i′). (Predecessor or Successor of u is undefined)

− (1, i) if S(1, i) = 1 or S̃(1) = v ̸= 1 and P (v, i) ̸= 1. (1 is not a source)
− (u, i) if u ̸= 1 and S(u, i) = 1. (u has a pointer to 1)
− (u, v, i) for u ̸= v if S̃(u) = v, P̃ (v) = u and S(v, i) = v;

or S̃(u) = v, P̃ (v) = u, S̃(v) = w and P (w, i) ̸= v. (v is a proper sink)
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Theorem 6.9. For any FFF ∈ TFΣ2, there is a complexity-c SOL2-formulation of FFF iff there is a complexity O(c)
Σ2-uCircRes(polylog) proof of F .

This theorem follows by combining Lemma 6.10 and Lemma 6.14. We begin with the backwards direction,
showing that uCircRes(polylog) can prove SOL2 formulations. SOL2 is encoded as an unsatisfiable formula which is
the conjunction of the following

− [[Su,i ̸= 1]] for u ∈ [m], i ∈ [t], and [[S̃1 ̸= v]] ∨ [[Pu,i ̸= v]] for all u, v ̸= 1, i ∈ [t]. (1 is a source)
− [[Su,i ̸= v]] ∨ [[Su,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (S̃ is not undefined)
− [[Pu,i ̸= v]] ∨ [[Pu,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (P̃ is not undefined)
− [[Su,i ̸= 1]] for all i ∈ [t] and u ̸= 1. (Nothing points to 1)
− Let Ēu,v := [[S̃u ̸= v]] ∨ [[P̃v ̸= u]], we include (No proper sinks)

− Ēu,v ∨ [[Sv,i ̸= v]] for each u ̸= v and i ∈ [m], and
− Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pw,k ̸= w′]] for u ̸= v ̸= w ̸= w′ and k ∈ [t].

Lemma 6.10. For FFF ∈ TFΣ2, if there is a SOL2-formulation of FFF of complexity c then there is a complexity
O(c) Σ2-uCircRes(polylog)(F ) proof of F .

Proof. By Lemma 6.2, it suffices to show that uCircRes(polylog) can prove SOPL2. For each u ∈ [m], we would like
to derive the set of formulas

Lu = {Ēu,v : v ̸= u, 1},

stating that u has no outgoing edges. Our proof will proceed by the following three steps:

1. Assume Lu for each u ̸= 1;
2. From Lv for v ̸= u, deduce Lu. Since Lv is semantically equivalent to saying that node v points to itself, if u

were to point to any other node, then said node would be a proper sink. Hence Lu follows.
3. L1 is in direct contradiction with axioms stating that 1 is a source.

For step 1, we use the DNF creation rule,

Ēu,v

For step 2 and u ∈ [m], we perform the following. For w ̸= v ̸= u with w, v ̸= 1, consider Ēv,w ∈ Lv and weaken it
successively to get

Ēu,v ∨ Ēv,w
,

then we cut as follows: starting with c = n down to c = 1,

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c+1[[Pw,k ̸= v]] Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pw,c ̸= w′]], ∀w′ ̸= w

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c[[Pw,k ̸= v]]

to get Ēu,v ∨ [[S̃v ̸= w]]. Next, starting from b = n down to b = 2,

Ēu,v ∨
∨

j<b+1[[Sv,j ̸= w]] Ēu,v ∨ [[Sv,b ̸= v]] [[Sv,1 ̸= w]] ∨ [[Sv,b ̸= w′]], ∀w′ ̸= v, w

Ēu,v ∨
∨

j<b[[Sv,j ̸= w]]

and end up with the formulas Ēu,v ∨ [[Sv,1 ̸= w]]. Finally,

Ēu,v ∨ [[Sv,1 ̸= w]], ∀w ̸= v, 1 Ēu,v ∨ [[Sv,1 ̸= v]] [[Sv,1 ̸= 1]]

Ēu,v

derives Ẽu,v ∈ Lu. Having derived L1 allows us to take Ē1,v ∈ L1 and, starting with b = n down to b = 1, we may
cut:

[[S̃1 ̸= v]] ∨
∨

j<b+1[[Pv,j ̸= 1]] [[S̃1 ̸= v]] ∨ [[Pv,b ̸= w]], ∀w ̸= 1

[[S̃1 ̸= v]] ∨
∨

j<b[[Pv,j ̸= 1]]
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to get [[S̃1 ̸= v]] for each v ̸= 1. Next, starting from a = n down to a = 2, we cut:∨
i<a+1[[S1,i ̸= v]] [[S1,a ̸= 1]] [[S1,1 ̸= v]] ∨ [[S1,a ̸= v′]], ∀v′ ̸= v∨

i<a[[S1,a ̸= v]]

to get [[S1,1 ̸= v]] for v ̸= 1. We may then cut one final time,

[[S1,1 ̸= v]], ∀v ̸= 1 [[S1,1 ̸= 1]]

⊥
.

We delay the proof of the other direction until the end of this section and complete it together with the proof of the
same direction RevRes(polylog) as they are similar.

We characterize the RevRes(polylog) by a TFΣ2 variant of the Sink-of-Potential-Line (SOPL) problem. This is a
metered variant of SOL, meaning that edges must always point towards larger numbers. An instance of SOPL is given
by functions S, P : [m] → [m] ∪ {undefined} that define a graph G with edges (u, v) iff S(u) = v and P (v) = u.
A solution is either i) 1 if 1 is not a source in G, ii) a sink u in G, iii) a vertex which points backwards S(u) < u, or
iv) a vertex u if S(u) or P (u) is undefined.

Definition 6.11. An instance of SOPL2 is given by functions S, P : [m] × [t] → [m]. A solution is a witness to a
solution to the SOPL instance defined by the meta-pointers (S̃, P̃ ):

− (u, i, i′) if S(u, i), S(u, i′) ̸= u and S(u, i) ̸= S(u, i′);
or P (u, i), P (u, i′) ̸= u and P (u, i) ̸= P (u, i′).

(Predecessor or Successor of u is undefined)
− (1, i) if S(1, i) = 1 or S̃(1) = v ̸= 1 and P (v, i) ̸= 1. (1 is not a source)
− (u, i) if S(u, i) < u. (u points backwards)
− (u, v, i) for u < v if S̃(u) = v, P̃ (v) = u and S(v, i) = v; or S̃(u) = v, P̃ (v) = u, S̃(v) = w and P (w, i) ̸= v.

(v is a proper sink)

Theorem 6.12. For any FFF ∈ TFΣ2, there is a complexity-c SOPL2-formulation of FFF iff there is a complexity
O(c) Σ2-RevRes(polylog) proof of F .

This theorem follows by combining Lemma 6.13 and Lemma 6.14. We begin with the backwards direction,
showing that RevRes(polylog) can prove SOPL2 formulations. SOPL2 is encoded as an unsatisfiable formula, which
is the conjunction of the following:

− [[Su,i ̸= 1]] for u ∈ [m], i ∈ [t], and [[S̃1 ̸= v]] ∨ [[Pu,i ̸= v]] for all u, v ̸= 1, i ∈ [t]. (1 is a source)
− [[Su,i ̸= v]] ∨ [[Su,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (S̃ is not undefined)
− [[Pu,i ̸= v]] ∨ [[Pu,i′ ̸= v′]] for all i ̸= i′, v ̸= v′. (P̃ is not undefined)
− [[Su,i ̸= v]] for all i ∈ [t] and v < u. (No backwards edges)
− Let Ēu,v := [[S̃u ̸= v]] ∨ [[P̃v ̸= u]], we include (No proper sinks)

i) Ēu,v ∨ [[Sv,i ̸= v]] for each u < v and j ∈ [m], and
ii) Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pw,k ̸= w′]] for u < v < w and w ̸= w′ and k ∈ [t].

Lemma 6.13. For FFF ∈ TFΣ2, if there is a SOPL2-formulation of FFF of complexity c, then there is a complexity
O(c) Σ2-RevRes(polylog)(F ) proof of F .

Proof. By Lemma 6.2, it suffices to show that RevRes(polylog) can prove SOPL2. We will prove by induction on
u = m. . . 1 that u does not have any outgoing edges. That is, we will derive the set of formulas:

Lu :=
{
Ēu,v : u > v

}
.

First observe that the base case is given by the no backwards edges axioms. Assuming that we can derive L1, we show
how to complete the proof. For v > 1, starting with b = n down to b = 1, we cut

[[S̃1 ̸= v]] ∨
∨

j<b+1[[Pv,j ̸= 1]] [[S̃1 ̸= v]] ∨ [[Pv,b ̸= w]], ∀w ̸= 1

[[S̃1 ̸= v]] ∨
∨

j<b[[Pv,j ̸= 1]]
.
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Next, starting from a = n down to a = 2, we successively cut∨
i<a+1[[S1,i ̸= v]] [[S1,a ̸= 1]] [[S1,1 ̸= v]] ∨ [[S1,a ̸= w]], ∀w ̸= 1, v∨

i<a[[S1,i ̸= v]]
.

Once all those formulas are derived, we cut one final time to finish the proof

[[S1,1 ̸= 1]] [[S1,1 ̸= v]], ∀v > 1

⊥
.

We now describe how to derive Lu from all Lv with v > u. For a given v and Ēv,w ∈ Lv , we start by weakening
it to get [[P̃v ̸= u]] ∨ Ēv,w and again to get Ēu,v ∨ Ēv,w. Once this is done, starting at c = n down to k = 1, we cut

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c+1[[Pw,k ̸= v]] Ēu,v ∨ [[S̃v ̸= w]] ∨ [[Pv,c ̸= w′]], ∀w′ ̸= w

Ēu,v ∨ [[S̃v ̸= w]] ∨
∨

k<c[[Pw,k ̸= v]]

to get Ēu,v ∨ [[S̃v ̸= w]]. Finally, from b = n down to b = 2, we cut

Ēu,v ∨
∨

j<b+1[[Sv,j ̸= w]] Ēu,v ∨ [[Sv,b ̸= v]] [[Sv,1 ̸= w]] ∨ [[Sv,c ̸= w]], ∀w′ ̸= v, w

Ēu,v ∨
∨

j<b[[Sv,j ̸= w]]
.

Once we derived Ēu,v ∨ [[Sv,1 ̸= w]] for each w > v, we have one final cut

Ēu,v ∨ [[Sv,1 ̸= w]], ∀w > v Ēu,v ∨ [[Sv,1 ̸= v]] [[Sv,1 ̸= w]], ∀w < v

Ēu,v

to get Ēu,v ∈ Lu.

Finally, we prove the other direction of Theorem 6.12 and Theorem 6.9.

Lemma 6.14. Let FFF ∈ TFΣ2. Suppose that F admits a complexity-c Σ2-uCircRes(polylog) (Σ2-RevRes(polylog))
proof. Then there is a complexity-O(c) SOL2-(SOPL2-)formulation of FFF .

Proof. We first handle Circular DNF Resolution and discuss what needs to be changed in order to handle Reversible
DNF Resolution at the end of the proof. The idea for the transformation of a uCircRes(polylog) proof into an SOL2

formulation is the same as the transformation of a Res(polylog) into an ITER2 formulation (Lemma 6.6) with the
addition of defining a predecessor function. Let Π = (D1, . . . , Dm) be such a proof. By padding, we may assume
that each DNF in the proof has the same number of terms. Let us consider the proof in reverse order such that
D1 =

∨
i∈[t] ⊥.

Let tu,i be the ith term of Du. Given an assignment α ∈ {0, 1}n to the variables of F , we construct a function
Sα : [m]× [t] → [m] by setting Sα(u, i) to be:

− u if Du is an axiom, or if tu,i(α) = 1;
− v if tu,i(α) = 0 and Du was derived from Dv by the reverse cut rule or semantic weakening of an axiom;
− v if tu,i(α) = 0 and Du was derived from Dv = Du ∨ t and Dw = Du ∨ t̄ via symmetric cut and t(α) = 0 and

w if t̄(α) = 0;

As well, define the predecessor function Pα : [m]× [t] → [m], as Pα(u, i):

− u if either u = 1, or the formula Du was deduced but never used as the premise of a rule, or if tu,i(α) = 1;
− v if tu,i(α) = 0 and u is used as a premise to derive Dv via any of the rules but the reverse cut;
− v or w if tu,i(α) = 0 and Du was used as the premise of the reverse cut rule to derive Dv = Du ∨ t and

Dw = Du ∨ t̄. If t(α) = 0, then Pα(u, i) = v and Pα(u, i) = w otherwise.

Finally, for each solution o to the instance Sα, we define the output of the reduction go(α) to be arbitrary if o does not
correspond to an axiom Ai of H , and otherwise this axiom Ai is a weakening of a DNF Fj of F , and we set go(α) = j.
Note that in this case Ai(α) = 0 =⇒ Fj(α) = 0. Observe that computing Sα(u, i) and Pα(u, i) involves evaluating
at most two terms, and hence the reduction is efficient.

It remains to argue that the reduction is correct.

Claim. The following hold:
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i) P̃α and S̃α are defined everywhere;
ii) If Du was used as the premise of a rule, Du(α) = 0 if and only if P̃α(u) ̸= u and S̃α(u) ̸= u;

iii) If P̃α(u) = v ̸= u, then Dv(α) = 0;
iv) For a pair u ̸= v, S̃α(u) = v if and only if P̃α(v) = u.

Assuming the claim, the only solutions are proper sinks corresponding to falsified axioms of H , which are weak-
enings of (falsified) axioms of F . Hence, g returns a correct solution to FFF (α).

Proof of Claim. The proof of this claim is, at heart, the same as the proof of the claim in Lemma 6.6. The behavior
of both functions implies that the only solutions one might get in the instance are proper sinks and that these proper
sinks can only be falsified axioms. Finally, when Π is a RevRes(polylog) proof, Sα(u, i) ≥ u and Pα(v, j) ≤ v for
any u and v since the graph representation of Π does not include cycles, and thus we would not have fake solutions
corresponding to edges pointing backwards, making our formulation a valid SOPL2-formulation.

6.3 Relationships in TFΣ2

In this subsection, we use the characterizations that we have constructed in order to prove all of the new inclusions
in Figure 1. We begin by giving a uCircRes proof of the unmetered source-of-DAG problem, which is equivalent to
STRONGAVOID. USOD is encoded propositionally by the conjunction of the following formulas:

− [[S1 = 1]] and
∨

t∈[n][[St = 1]]. (1 is a sink);
−

∨
t∈[n][[St = u]] for all u ̸= 1. (u is not a source).

Proposition 6.15. USOD has a polylog(n)-complexity uCircRes(polylog(n))-proof and so STRONGAVOID ∈ SOL2.

Proof. The strategy for the proof is:

i) Assume that S(u) = u for any u ̸= 1;
ii) From the fact that S(v) = v for all v ̸= u, deduce that S(u) = u. Indeed if all other nodes point to themselves,

u can not point to anything but itself since otherwise it would qualify as a source. We also derive S(u) ̸= 1
during this process;

iii) Once this is done, we will be left with the fact that S(u) ̸= 1 for each u ̸= 1 which is in direct contradiction
with the second axiom.

For step (i), we introduce [[Su = u]] for each u ̸= 1 via the DNF creation rule. Now, fixing some such u, for t ̸= u,
we weaken [[St = t]] to [[St = t]] ∨ [[Su ̸= w]] for each w ∈ [n] and consider the case w = t. Since u ̸= t, the formula
[[St ̸= t]] ∨ [[Su ̸= t]] is a tautology, and therefore we can introduce it. For each t ̸= u we cut

[[St = t]] ∨ [[St ̸= u]] [[St ̸= t]] ∨ [[St ̸= u]]

[[St ̸= u]]
.

Then, cutting ∨
t[[St = u]] [[St ̸= u]], ∀t ̸= u

[[Su = u]]

From [[Su = u]] we can deduce [[Su ̸= 1]], completing step (ii).
Finally, we can perform step (iii) by cutting∨

u̸=1[[Su = 1]] [[Su ̸= 1]], ∀u ̸= 1

⊥
The size of the proof and the characterization theorem shows that USOD ∈ SOL2. Also, the equivalence USOD =dt

STRONGAVOID gives us STRONGAVOID ∈ SOL2

The sink-of-DAG problem is the canonical PLS-complete problem in which one is given a source of a DAG and
one wants to find a sink. Our characterization of unary Sherali-Adams by STRONGAVOID proceeded via the equivalent
unmetered source-of-DAG problem. Hence, it is natural to also consider a metered version of these problem, where
one is given a sink of a DAG and one wants to find a source.
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Definition 6.16. The Source of DAG (SOD) problem is defined as follows. The input is a “successor” function
S : [n] → [n] which defines a graph in which each vertex has fan-out ≤ 1 but arbitrary fan-in. There is an edge from i
to j if S(i) = j. A solution to the instance S is:

i) i if S(i) < i; (i has a backward edge)
ii) n if for all i < n, S(i) ̸= n; (n is not a sink)

iii) i if for all j ∈ [n], S(j) ̸= i. (A source)

We can encode SOD propositionally as the conjunction of the following formulas:

i)
∨

t ̸=n[[St = n]]; (n is a proper sink)
ii)

∨
t[[St = u]] for each u ̸= 1; (no sources)

iii) [[Su ̸= v]] for any pair of nodes v < u. (no edges pointing backwards)

Proposition 6.17. There is a polylog(n)-complexity RevRes(polylog(n)) proof of SOD, and hence SOD ∈ SOPL2.

Proof. The strategy of the proof is as follows:

i) Given that S(t) = t for each t < u, deduce that S(u) = u. This must be true since otherwise u is a source.
ii) Use the fact that the derived formulas directly contradicts the first axiom.

For step (i), by induction assume that we have derived [[St = t]] for each t < u. Weaken these formulas to get
[[St = t]] ∨ [[St ̸= v]] and consider the case when v = u. Since t ̸= u, the formula [[St ̸= t]] ∨ [[St ̸= u]] is a tautology
that we introduce, and we cut

[[St ̸= t]] ∨ [[St ̸= u]] [[St = t]] ∨ [[St ̸= u]]

[[St ̸= u]]

to obtain [[St ̸= u]. Next, we cut∨
t[[St = u]] [[St ̸= u]], ∀t < u [[St ̸= u]],∀t > u

[[Su = u]]

to derive [[Su = u]]. Fianlly, cut ∨
t ̸=n[[St = n]] [[St ̸= n]], ∀t ̸= n

⊥
hence SOD ∈ SOPL2.

Observe that these proofs indicate that up to complexifying a function, it is possible to build an inverse that is also
hard to compute with an efficient reduction. Also, since we know how to transform uCircRes(polylog) refutations
(resp. RevRes(polylog) refutations) into SOL2-instances (resp. SOPL2-instances), following the instructions lets us
concretely build those inverses.

We end this section by proving several inclusions which do not rely on our characterizations.

Proposition 6.18. LOP ≤dt ITER2.

Proof. Let ≺ be an LOP instance on [n]. By encoding it with
(
n
2

)
variables such that, for i < j ∈ [n], xi,j = 1 means

i ≺ j, and xi,j = 0 means j ≺ i, we can force the purported order to always be total. An output to the LOP instance
would thus either be a ≺-minimal element or a proof that ≺ is not an order, i.e., that the transitivity does not hold.
Consider the ITER2 instance on

(
n
2

)
+ n meta-nodes with a meta-node for each (i, j) ∈ [n]2 with i ≥ j. Let (1, 1) be

the source. It helps to think of the meta-nodes as arranged in n levels, with the first element in the label being the level
a meta-node is at.

The idea is that (i, j) is valid (i.e., has an outgoing edge) iff ≺ is transitive and j is the ≺-minimal value in [i]. If
i < n, it will point to (i + 1, j′), where j′ = j if j is still ≺-minimal in [i + 1], and j′ = i + 1 otherwise. We now
formally define the nodes with index (i, j). If i = n, then it contains a single node that points to itself. Otherwise,
there are two kinds of nodes:

Transitivity nodes.
(
n
3

)
-many nodes verifying the transitivity of ≺. Each of those nodes is associated with 3

distinct elements (a, b, c) ∈ [n]3. We define S((i, j), (a, b, c)) as follows:
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− Query a ≺ b, b ≺ c and a ≺ c. If the answers show that ≺ is not transitive on (a, b, c), point to (i, j).
− Query j ≺ i+ 1. If it holds, point to (i+ 1, j). Otherwise, point to (i+ 1, i+ 1).

Validity nodes. (i−1)-many nodes verifying the validity of (i, j). Each of those nodes is associated with a value
k ∈ [i] \ {j}. We define S((i, j), k) as follows:

− Query j ≺ k. If it does not hold, point to (i, j).
− Query j ≺ i+ 1. If it holds, point to (i+ 1, j); otherwise, point to (i+ 1, i+ 1).

Since every node that points out of its index does the same query to decide where to point, the meta successor is
well-defined. If ≺ is not transitive, every meta-node will point to itself. The solution can thus only be of type ((1, 1), i),
with this node being of the transitive type. This immediately gives us a triple in [n], proving ≺ is not transitive. If ≺ is
indeed a total order, then it is clear that every level has a single active node; the only proper sink on level n indicates
the ≺-minimal value in [n].

Proposition 6.19. SOD ≤dt LOP.

Proof. Let S be an SOD instance on n vertices. Consider an LOP instance ≺ on 2n values split into two groups
C = [n] and L = [n]. We denote elements of C by iC and elements of L by iL, for i ∈ [n]. The group C’s goal is
to ”check for backward pointers”; if the ≺-minimal element is iC , then i points backwards. The group L checks for
loops: if the ≺-minimal element is iL, then there are no backward edges. Moreover, if i = n, then n is not a proper
sink. Otherwise, i is the first node (in regular order) to not point to itself in S, i.e., i is a source.
Formally, for i, j ∈ [n], we define ≺ as follows:

− iC ≺ jC iff i < j;
− iC ≺ jL iff S(i) < i;
− iL ≺ jL iff either one of the following holds:

i) S(iL) = i, S(jL) = j and i > j;
ii) S(iL) ̸= i and S(jL) = j;

iii) S(iL) ̸= i, S(jL) ̸= j and i < j.

Observe that ≺ is total. If it is transitive, then the minimal element is either the first source in S, or n if it is not a
proper sink. If it is not transitive, the minimal element allows us to find a backward pointer.

Theorem 1 in [KKMP21] proves that FNP ⊆ PEPP; we prove that actually FNP ⊆ SOD. As it is straightforward
that SOURCEOFDAG reduces to UNMETEREDSOURCEOFDAG, which is equivalent to empty, this implies that every
TFΣ2 class studied in this paper, apart from APEPP, contains FNP.

Proposition 6.20. FNP ⊆ SOD.

Proof. Let x be an instance of Rn, an FNP problem, and let O be its set of solutions. By definition of FNP, this set is
of size at most quasipolynomial in n. Consider the SOD instance with |O| + 1 nodes. Consider the extra node as n.
To define S(o), run the verifier To(x). If it accepts, point to n; otherwise, point S(o) to itself.

Any solution o for the input x will then point to n, making it a source. The case where n is not a proper sink may
occur only if x does not admit an output.

7 Characterizing Bounded-Depth Frege
In this section we prove Theorem 1.6, introducing a hierarchy of classes in the polynomial hierarchy which characterize
bounded-depth Frege systems. Depth-d Frege generalizes resolution to allow one to cut (resolve) over depth d formulas
of unbounded fanin. Recall that the depth of a formula is the length of the longest root-to-leaf path, and the size is the
number of wires in the formula. The width of a Σd-formula is defined as the maximum fanin among the gates at depth
d. From now on and for the remainder of this section, we assume d ≥ 3.

Definition 7.1. A Frege proof of an unsatisfiable formula F =
∧m

i=1 Ai is a sequence Π = (π1, . . . , πℓ = ⊥) of
formulas, where each πi is deduced from the previously derived formulas by one of the following rules:

− Axiom Introduction. Introduce πi = Ai for some i ∈ [m].
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− Cut. From C ∨D and D ∨H derive C ∨H for any formula D.
− Weakening. From C derive C ∨D for any formula D.

The depth (resp. width) of a Frege proof is the maximum depth (resp width) among any of the formulas πi ∈ Π. In
particular, we say that Π is a depth-d Frege (which we denote Freged) proof if each πi is a Σd-formula. The size |Π|
of the proof is

∑ℓ
i=1 |π|. The complexity of a Freged proof Π is width(Π)+ log |Π|, and the complexity of proving an

unsatisfiable formula in Freged is the minimum complexity of any Freged proof of F .

Our characterization will generalize our characterization of Σ2-Res(polylog) by ITER2 (Theorem 1.5). The high-
level idea is to obfuscate the successor function of the TFNP problem ITER so that it is efficiently computable with
access to a Πd−1 oracle, but not obviously efficiently computable with any weaker oracle. For ITER2, this was
accomplished by replacing each node v ∈ [m] of ITER with a group of nodes v1, . . . , vt, each with their own successor
function, pointing to a “meta-node” in [m]. We then treated v as pointing to a meta-node u ∈ [m] iff all of v1, . . . , vt
pointed to u. To generalize this to a problem in the dth layer of the polynomial hierarchy, which we call ITERd, we
will take a slightly different approach. We will still replace the “meta-nodes” of ITER with groups of nodes — in fact,
this is recursively repeated d − 1 times in order to simulate d alternating quantifiers — however, we will no longer
insist that they all point to the same node. Instead, the successor will be defined by alternatively taking the minimum
(corresponding to universal quantifiers) or maximum (corresponding to existential quantifiers) of the pointed-to nodes.
The intuition is that the evaluation of an existentially quantified relation ∃xF (x) is true if some value of x makes F
true, hence we should take the maximum value of F over all x. Similarly, the evaluation of universally quantified
relation ∀xF (x) should be false unless every assignment makes x output true, and so this corresponds to a minimum
value of F over all x. This is inspired by the problems GPLSd and PEd from [PT12], which characterize the ∀Σb

1

consequences of T d
2 in bounded arithmetic.

For an integer d ≥ 1, a product set r = [r1]× · · · × [rd], and a function S : [r1]× . . .× [rd] we will denote by

MAX(S, r) := max
i1∈[r1]

min
i2∈[r2]

· · · max
id∈[rd]

S(i1, . . . , id),

MIN(S, r) := min
i1∈[r1]

max
i2∈[r2]

· · · min
id∈[rd]

S(i1, . . . , id),

if d is odd, and if d is even, we change the final min or max to its opposite. We now formalize the aforementioned
intuition about the connection between ∃/∀ quantifiers (that is, ∨/∧ gates) and max /min which will allow us to
connect our Frege proofs to

Observation 7.2. Let F =
∨

i1∈[r1]

∧
i2∈[r2]

· · · ⃝id∈[rd] Fi, where i = (i1, . . . , id) and each Fi is a formula. Then,
for any assignment x ∈ {0, 1}n, F (x) = MAX(Fx, r), where Fx(i) := Fi(x). Similarly, if instead F begins with ∧,
then F (x) = MIN(Fx, r).

∨
g = max{g1, g2} = max{min{x1, x2},min{x3, x4}}

∧
g1 = min{x1, x2}

∧
g2 = min{x3, x4}

x1 x2 x3 x4

Figure 3: An example of how a formula is converted into a sequence of minimums/maximums in Observation 7.2.
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Proof. The main idea is depicted Figure 3. The proof is by induction on the depth d, observing that a disjunction
returns the maximum value of its subformulas, while a conjunction returns the minimum value.

Definition 7.3. An instance of ITERd is given by a successor function S : [m] × [r1] × · · · × [rd−1] → [m] that
describes a directed graph on m vertices as follows. For u ∈ [m], let Su denote the function S where the first input is
fixed to u, let r = [r1]× . . .× [rd−1], and define the meta-pointer S̃ : [m] → [m] as

S̃(u) := MIN(Su, r).

There is an edge from u to v in this graph if S̃(u) = v. A solution to ITERd is then a solution to the ITER instance
defined by S̃. In particular, a solution is a quadruple (u, i∗1, v, j

∗
1 ) such that S̃(u) = v and either

i) u = v = 1 (1 is not a source);
ii) v < u (u admits a backward pointer);

iii) u < v and S̃(u) = S̃(v) = v (v is a proper sink);

and i∗1 and j∗1 witness the outermost minimums for u and v: if d is even

i∗1 = argmin
i1∈[r1]

{
max
i2∈[r2]

· · · min
id−1∈[rd−1]

S(u, i)
}
;

j∗1 = argmin
j1∈[r1]

{
max
j2∈[r2]

· · · min
jd−1∈[rd−1]

S(v, j)
}
;

and if d is odd the last min is replaced by a max.
The class PLSd ⊆ TFΣd is the class of problems that admit an efficient reduction to ITERd.

One should think of the indices i∗1 and j∗1 in a solution to ITERd as the outer-most existential in Σd-certificates of
the computation of the successor functions for u and v. One reason that this problem is hard is that for the solutions
where u < v, the verifier must be able check that S̃(u) = v and S̃(v) = v or, in other words, it must be able to verify
that the certificates i∗ and j∗ indeed witness a correct computation for their respective input nodes.

Proposition 7.4. ITERd ∈ TFΣd for all d ≥ 1.

Proof. Let us assume d is even; the case when d is odd is identical up to changing the final min into a max. Let S
be an instance of ITERd and o = (u, i∗1, v, j

∗
1 ) be a solution. Writing i = (i1, . . . , id−1), checking that S̃(u) = v is

equivalent to checking that

S̃(u) ≥ v ≡ ∀i1∃i2 · · · ∀id−1S(u, i) ≥ v;

S̃(u) ≤ v ≡ ∃i1∀i2 · · · ∃id−1S(u, i) ≤ v.

Our polynomial-time verifier Vo, given witnesses i = (i2, . . . , id−1), j = (j2, . . . , jd−1), i′ = (i′1, . . . , i
′
d−1), j

′ =
(j′1, . . . , j

′
d−1), Vo, behaves as follows:

i) It checks that S(u, i′) ≥ v and S(u, i∗1i) ≤ v; if not, it outputs 03;
ii) It outputs 1 if u < v or u = v = 1;

iii) Otherwise, it checks whether S(v, j′) ≥ v and S(v, j∗1 j) ≤ v; if this is the case then it outputs 1, and otherwise
it outputs 0.

Observe that the expression

∀(i′1, i2, j′1, j2)∃(i′2, i3, j′2, j3) · · · ∃(i′k−2, id−1, j
′
k−2, jd−1)∀(i′d−1, j

′
d−1) Vo(S, i, i

′, j, j′) = 1

is true iff o is a solution to S.
3Here, i∗1i denotes the concatonation of i∗1 with i.
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7.1 Proofs as Games
To establish the correspondence between bounded-depth Frege and ITERd it will be useful to view proofs as games.
The depth-d Prover-Delayer game (essentially also known as the Buss-Pudlák game [PB94]) for an unsatisfiable
formula F consists of two players, Prover and Delayer. Intuitively, the Prover is attempting to convince itself that
F is unsatisfiable, while the Delayer is trying to postpone this. The game proceeds in rounds, where in each round
the Prover asks for the value of an arbitrary formula C and the delayer responds with an answer — either C = 1 (in
which case the Prover remembers C) or ¬C = 1 (and the Prover remembers ¬C). Finally, at the end of each round
the Prover may forget any number of formulas from its memory. The game ends when the set of {0, 1}-assignments
consistent with the Prover’s memory all falsify some axiom Ai. That is, when the conjunction of the formulas in the
Prover’s memory logically imply Ai.

Definition 7.5. Let F =
∧m

i=1 Ai be an unsatisfiable formula. A Prover strategy is a rooted fan-out ≤ 2 DAG G
in which every node v is labeled with a set of boolean formulas Mv , which we call the memory at node v. Let
False(Mn) := {x ∈ {0, 1}n : C(x) = 0,∀C ∈ Mv} be the set of assignments which falsify all of the formulas. The
labels Mv satisfy the following:

− root. If v is the root then Mv = ∅;
− single child. If v has one child c then Mc = Mv \ {C} for some formula C;
− two children. If v has two children c, c′, then Mc = Mv ∪ {¬C} and Mc′ = Mv ∪ {C} for some formula C;
− leaf. If v has no children, then there is some Ai for i ∈ [m] such that Ai(x) = 0 for all x ∈ False(Mv).

The width of the strategy is maxv∈V maxC∈Mv{width(C)} and its depth is maxv∈V maxC∈Mv{depth(C)} + 1 —
the off-by-one is to account for the fact that, as we will see, the conjunction of the formulas in memory will correspond
to a line in Frege proof. The size of the strategy is

∑
v∈V (G)

∑
C∈Mv

|C|.

As for the original Prover-Delayer game for the resolution proof system and the Buss-Pudlák game for bounded-
depth Frege proofs, finding a strategy for a formula closely relates to finding a refutation.

Lemma 7.6. Let F =
∧

i∈[m] Ai be an unsatisfiable Πd+1-formula. There exists a width-w and size-s Freged refuta-
tion of F iff there is a width-w, depth-d, and size-s Prover strategy for F .

Proof. Let Π be a Freged proof of F . The graph of the Prover strategy will be the same as that of the proof. Beginning
at the root r, where Mr = ∅, the Prover’s memory is constructed as follows: let v be a node with memory Mv; we
have several cases based on the rule used to derive the corresponding line πv .

− If πv was obtained by weakening πu with a formula D, then Mu := Mv \ {¬D}. That is, the Prover forgets
¬D.

− If πv was obtained by cutting πu and πw on a formula D, then Mu := Mv ∪ {D} and Mw := Mv ∪ {¬D}.
That is, the Prover queries the Delayer for the value of D.

− If πv was obtained by axiom introduction, then v is a leaf.

By induction, observe that the conjunction of the formulas in Mv logically implies πv , and hence the leaf case is
satisfied. The width and size of the strategy are the same as the proof. The fact that Π is a Freged refutation (meaning
that D is always a Πd−1 ∪ Σd−1-formula), gives us the depth of the strategy to be d.

For the converse direction, a Prover strategy can be converted into a Frege proof by replacing each memory
Mv = {C1, . . . , Ck} with the line ¬C1 ∨ . . . ∨ ¬Ck. As each formula in memory is a Πd−1 or a Σd−1-formula, the
lines of this proof are Σd-formulas and the proof is a Freged proof of with the same width and size as the strategy.

As seen in section 5, for a proof system to correspond to a TFPH class it must be reduction closed. We verify that
Freged satisfies this property.

Lemma 7.7. Let F =
∧

i∈[m] Fi and G =
∧

j∈ℓ Gj be unsatisfiable Πd+1-formulas on n variables, and suppose that
there is a width-w and size-s Freged proof of F . If (f, g) is an FFF -formulation of FFG of depth polylog(n), then G
has a Σd-Freged refutation of size s · 2polylog(n) and width w.

Proof. Let Π be a size-s, Freged proof of F . First, we modify Π to be a proof of F (f) =
∧

i∈[m] Fi(f), where Fi(f)
is the Σd obtained by replacing each variable xj with the propositionalization of decision tree fj as defined in the
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reduced formula. To do so, we will view Π as a Prover strategy and replace each memory Mv = {C1, . . . , Ck} by
{C1(f), . . . , Ck(f)}. That is, instead of querying C, the prover will now query the formula C(f).

We now transform this into a Prover strategy, and hence proof, of F (f, g), which is a Σd-weakening of G. To do
so, consider any leaf of the Prover strategy labeled by some Fi(f) (corresponding to the Prover learning that Fi(f) is
falsified). At this leaf the Prover queries the decision tree gi, one variable at a time. Each leaf is labeled with Fi(f)∨p
for some path p ∈ gi; an axiom of the formula of F (f, g).

7.2 Chracterizing PLSd

Now we are ready to prove our characterization Theorem 1.6, which we state formally next.

Theorem 7.8. For any FFF ∈ TFΣd, there is a complexity-c ITERd-formulation of FFF iff there is a complexity-Θ(c)
Σd-Freged refutation of F .

We will break the theorem into two lemmas, Lemma 7.9 transforming Frege proofs into ITERd-formulations, and
Lemma 7.10 together with Lemma 7.7 providing the converse.

Lemma 7.9. Let F be an unsatisfiable Πd+1 formula on n variables. Suppose that there is a width-w and size-s
Σd-Freged proof of F . Then FFF admits an ITERd-formulation of size s and depth w.

Proof. Let Π′ = (π′
1, . . . , π

′
m) be a Freged refutation of size s and width w, and suppose that it is ordered in reverse

topological order so that π1 = ⊥. At a high level the meta-pointer S̃ : [m] → [m] of the ITERd formula will trace a
path from the root to a falsified axiom of the proof by always pointing a node u, for which π′

u(x) is false under the
given assignment x, to a falsified child which is guaranteed to exist by the soundness of the proof. If π′

u(x) is false and
was derived by cutting on π′

v = A ∨ C and π′
w = B ∨ ¬C then S̃ should point u to the child v or w that is falsified.

To determine which of π′
v, π

′
w is falsified, we need to evaluate A,B, and C. Hence, we need to ensure that the size

of the domain of the successor S is large enough. A simple way to do so is to pre-process our proof Π′ into a proof
Π = (π1, . . . , pm) as follows: if π′

u = A∨B was derived by cutting A∨¬C and B∨C, then replace πu = A∨B∨C.
Now, let ri be the maximum fanin at layer i of any line πi in the proof Π. By padding (with, for example, ⊤ = x∨¬x
or ⊥ = x ∧ ¬x) we may assume that every line πu in Π has the same fanin ri at each layer. That is,

πu =
∨

i1∈[r1]

∧
i2∈[r2]

· · · ⃝
id−1∈[rd−1]

Gu,i,

where Gu,i is a fanin-w clause if ⃝ = ∧ and a fanin-w term if ⃝ = ∨. Let r = [r1]× · · · × [rd−1].
For any assignment x ∈ {0, 1}n the successor function Sx of our ITERd instance is defined as:

− Axiom Introduction. If πu is an axiom then Sx(u, i) = u;
− Weakening. If πu is a weakening of πv then Sx(u, i) = u if Gu,i(x) = 1 and v otherwise.
− Cut. If πu = A ∨B ∨ C was derived by cutting πv = A ∨ ¬C and πw = B ∨ C then

i) If Gu,i is a subformula belonging to A or B then Sx(u, i) = u if Gu,i(x) = 1 and v otherwise.
ii) Gu,i is a subformula belonging to C then Sx(u, i) = v if Gu,i(x) = 1 and w otherwise.

Observe that Gu,i(x) have width w and so Sx(u, i) can be evaluated by a depth-w decision tree fu,i querying the
variables x. Finally, for each solution o = (u, i∗1, v, j

∗
1 ), the output decision tree go is the constant function which

returns v.
The following claim asserts the correctness of the formula, completing the proof.

Claim. The meta-pointer S̃x, defined from Sx, satisfies the following properties:

i) S̃x(u) ≥ u for any u ∈ [m];
ii) If u ∈ [m] is such that πu is not an axiom, then S̃x(u) = u iff π′

u(x) = 1 (recall that π′
u belongs to the proof Π′

before pre-processing);
iii) For any u ∈ [m], if S̃x(u) = v ̸= u then πv(x) = 0.
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Proof of Claim. We will consider cases based on how πu was derived. If πu was deduced by axiom introduction then
the claim holds by definition. If πu was derived by weakening πv , then re-parameterize the formula Gu,x(i) := Gu,i(x)
and let Sx,u be Sx with the first input fixed to u. Then, noting that the definition of the successor in the case of
weakening is equivalent to Sx,i(u) = Gu,i · u+ (1−Gu,i) · v, we have

S̃x(u) = MIN
(
Sx,u, r

)
= MIN

(
Gu,x · u+ (1−Gu,x) · v, r

)
= MAX(Gu,x, r)(u− v) + v

= πu(x)(u− v) + v (Observation 7.2)
= πu(x) · u+ (1− πu(x)) · v,

where the MIN switched to a MAX because u− v < 0. The final equality is equivalent to

S̃x(u) =

{
u if πu(x) = 1;

v if πu(x) = 0.

Thus, the claim holds when πu was derived by weakening.
Finally, consider the case when πu = A ∨B ∨C was derived by cutting πv = A ∨ ¬C and πw = B ∨C. Denote

by rA∨B = [r1 − 1] × [r2] × · · · × [rd−1] and rC = {r1} × [r2] × · · · × [rd−1]. By partitioning the indices in this
way, we will enforce that the subformulas with indices in rA∨B belong to C, and the remaining belong to A ∨B; that
is, we take the convention that all subformulas of C have index r1. Then,

S̃x(u) = MIN
(
Sx,u, r

)
= min

{
MIN

(
Gu,x · u+ (1−Gu,x)v, rA∨B

)
, MAX

(
Gu,x · v + (1−Gu,x)w, rC

)}
= min

{
MAX

(
Gu,x, rA∨B

)
(u− v) + v, MIN

(
Gu,x, rC

)
(v − w)

}
= min

{
(A(x) ∨B(x))(u− v) + v, C(x)(v − w) + w

}
(Observation 7.2)

=
(
A(x) ∨B(x)

)
· u+

(
1− (A(x) ∨B(x)

)
·
(
C(x) · v + (1− C(x)) · w

)
,

where we have swapped MINs and MAXs using that u < v,w. That is,

S̃x(u) =


u if (A ∨B)(x) = 1;

v if (A ∨B)(x) = 0 and C(x) = 0;

w if (A ∨B)(x) = 0 and C(x) = 1.

It follows that the claim holds in the case of the cut rule.

We now turn to establishing the forward direction of Theorem 7.8, converting ITERd-formulations into Σd-Freged
proofs. As observed in Lemma 7.7, Σd-Freged is reduction closed. Hence, in order to establish the forward direction
of Theorem 7.8, it suffices to show that Freged has efficient proofs of the propositional encoding of ITERd, which we
describe next.

The ITERd Formula. For simplicity (by padding) we may assume without loss of generality that in the definition
of ITERd, m = r1 = . . . = rd−1. Our formula will be over m-ary variables Su,i ∈ [m] for u ∈ [m] and i ∈ [m]d−1;
this may be encoded by log n-many binary variables Su,i,k which spell out the binary encoding of the value of Su,i. In
particular, if v ∈ [m] has binary expansion v =

∑
k∈[logm] bk2

k−1, then the formula [[Su,i = v]] :=
∧

k∈[logm] S
bk
u,i,k

with the notation that x1 = x and x0 = ¬x for any variable x. Similarly, we write [[Su,i ̸= v]] = ¬[[Su,i = v]], where
the negation is propagated to the literals. As well, for u, v, i∗ ∈ [m] denote by [[bad(i∗) ∨ S̃(u) ̸= v]] the following
formula:

[[bad(i∗1) ∨ S̃(u) ̸= v]] :=

(∨
i1

∧
i2

· · ·
∧
id−1

∧
v≤v′

[[Su,i ̸= v′]]

)
∨
(∨

i′2

∧
i′3

· · ·
∨
i′d−1

∨
v<v′

[[Su,i∗1 i
′ = v′]]

)
if d is odd;

[[bad(i∗1) ∨ S̃(u) ̸= v]] :=

(∨
i1

∧
i2

· · ·
∨
id−1

∨
v′<v

[[Su,i = v′]]

)
∨
(∨

i′2

∧
i′3

· · ·
∧
i′d−1

∧
v′≥v

[[Su,i∗1 i
′ ̸= v′]]

)
if d is even;
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It states that S̃(u) ̸= v by asserting that either i∗1 is not a certificate of computation for u (left-hand side of the
disjunction) or that the minimum is greater than v (right-hand side of the disjunction). These are Σ(d−1).5-formulas.

The ITERd formula is the conjunction of the following:

i) [[bad(i∗1) ∨ S̃(1) ̸= 1]] for each i∗1, (1 is a source)
ii) [[bad(i∗1) ∨ S̃(u) ̸= v]] for each pair of nodes v < u and index i∗1, (No backwards pointer)

iii) [[bad(i∗1) ∨ S̃(u) ̸= v]] ∨ [[bad(i∗1) ∨ S̃(v) ̸= v]]. for each u, v, i∗1, j
∗
1 ∈ [m] with u < v. (No proper sinks)

Lemma 7.10. There is a size-O(n2) and width-O(log n) Freged proof of ITERd.

For nodes u, v and an index i1, it will be convenient to denote by [[Si1(u) ≤ v]] the formula

[[Si1(u) ≤ v]] :=
∧
i2

∨
i3

· · ·
∧
id−1

∧
v<v′

[[Su,i1i ̸= v′]] if d is odd,

[[Si1(u) ≤ v]] :=
∧
i2

∨
i3

· · ·
∨
id−1

∨
v′≤v

[[Su,i1i = v′]] if d is even,

which encodes that maxi2 mini3 · · · ⃝id S(u, i1i) is less than or equal to v. These are Π(d−2).5-formulas that will be
used as cuts in the proof (or queries in the Prover’s strategy).

Proof. We give a Prover strategy for ITERd. The idea of the strategy is as follows: the Prover will begin at the root
node 1 and will traverse the successor S̃ until they reach a solution (either 1 points to itself, u points to v with v < u,
or u is a proper sink). To achieve this, at each node u, the Prover tries to determine the value of S̃(u). They are unable
to do so directly, as this would require the Prover to query a formula of depth d. Instead, they determine the value of
S̃(u) via an auction procedure, which we describe below. Once the Prover has determined v such that S̃(u) = v, then
either the Prover has found a solution, or otherwise the Prover forgets everything except the information necessary to
infer S̃(u) = v, and queries the Delayer via the auction procedure to learn the value of S̃(v). At each step, the Prover
has in memory the value of S̃(w) for at most two nodes w ∈ [m].

The Auction Procedure. The procedure determines a value v ∈ [m] so that S̃(u) = v is the only value compatible with
the answers given by the Delayer. The procedure is in rounds v = m− 1, . . . , 1. At each round the Prover queries the
formula [[Si1(u) ≤ v]] for i1 = 1, . . . ,m and reacts in the following way to the answers of the Delayer:

Round v = m− 1: As soon as the Delayer answers 1 for some i∗1 ∈ [m], the Prover forgets all of the previously-
learned formulas of the form ¬[[Sj(u) ≤ m− 1]] for j < i∗1, retains in memory the formula [[Si∗1

(u) ≤ m− 1]],
and moves to the round v = m − 2. If the Delayer answers 0 to all i∗1 ∈ [m], then the Prover knows that
S̃(u) = m.

Round v < m−1: By induction the Prover’s memory consists only of [[Sj∗1
(u) ≤ v+1]] for some j∗1 ∈ [m]. Hence,

the Prover knows that S̃(u) ≤ v+1, and it would like to determine whether S̃(u) = v+1 or S̃(u) ≤ v. As soon
as the Delayer answers 1 to the queries made during this round, for some i∗1 ∈ [m], the Prover retains in memory
only the formula [[Si∗1

(u) ≤ v]], forgetting the formulas ¬[[Sk(u) ≤ v]] for all k < i∗1 and [[Sj∗1
(u) ≤ v + 1]].

They then move to round v − 1 if v > 1 or halt if v = 1, as this implies that S̃(u) = 1.
If the Delayer answers 0 to all i∗1 ∈ [m], then the Prover’s memory contains [[Sj∗1

(u) ≤ v+1]] and ¬[[Sk(u) ≤
v]] = 0 for all j ∈ [m], which implies that S̃(u) = v. The Prover then halts the auction procedure, keeping its
memory as is.

Observe that there are at most O(m4)-many possible states in any auction procedure. The memory of each state
contains at most O(m)-many formulas, and each formula has size O(md) and width O(logm). Hence the size of each
auction phase is at most O(md+5).

With the auction procedure in place, we are ready to describe the Prover strategy in detail. Beginning with the
node u = 1, the Prover determines a node v such that S̃(u) = v via the auction procedure.

− If u = v = 1: the Prover halts;
− If v < u: the Prover forgets everything in memory except for the formulas determining that S̃(u) = v and halts.
− If v = u ̸= 1, then prior to computing S̃(u), the Prover’s memory already contains formulas which enforce that

S̃(w) = u for some u < w, hence they have found a solution and they halt.

31



− If u < v then the Prover had in its memory the formulas determining that S̃(w) = u for some w < u. They
forget these equalities which are not relevant to enforcing that S̃(u) = v, and the Prover moves to node v.

This process terminates as the current node u increases by at least 1 at each step. We now calculate the number
of possible states (and hence the number of lines in the corresponding Freged proof). As the auction procedure is
performed once per round, and there are at most m2-many choices for the memory at each round (corresponding to
the value of i∗1 and the node pointing to v), the total size of the strategy is at most O(md+8), which is O(n4) where n
is the number of variables of the formula.

It remains to argue that this is a valid strategy for the Prover; that is, when the Prover halts, at least one axiom of
the formula is violated by all assignments which satisfy their memory. There are several cases based on the reason for
halting:

− If u = v = 1: then the memory contains [[Si∗1
(1) ≤ 1]] for some i∗1 ∈ [m]. This is incompatible with the axiom

[[bad(i∗1) ∨ S̃(1) ̸= 1]].
− If v < u: there are two possibilities based on the value of v. If v = 1, then the memory contains [[Si∗1

(u) ≤ 1]]

for some i∗1 ∈ [m], contradicting the axiom [[bad(i∗1)∨S̃(u) ̸= 1]]. Otherwise, if v ̸= 1 then the memory contains
¬[[Si(u) ≤ v − 1]] for all i ∈ [m] and [[Si∗1

(u) ≤ v]] for some i∗1, contradicting the axiom [[bad(i∗1)∨ S̃(u) ̸= v]].
− If S̃(u) = S̃(v) = v: then there are two cases based on whether v = m. If v ̸= m then the memory contains

[[Si∗1
(u) ≤ v]] and [[Sj∗1

(v) ≤ v]] for some i∗1, j
∗
1 ∈ [m] along with the formulas ¬[[Si(u) ≤ v − 1]] and

¬[[Sj(v) ≤ v − 1]] for all i, j ∈ [m]. This contradicts the axiom [[bad(i∗1) ∨ S̃(u) ̸= v]] ∨ [[bad(j∗1 ) ∨ S̃(v) ̸= v]].
Otherwise, the memory contains ¬[[Si(u) ≤ m − 1]] and ¬[[Si(v) ≤ m − 1]] for all i, j ∈ [m] which

contradicts the axiom [[bad(i∗1) ∨ S̃(u) ̸= m]] ∨ [[bad(j∗1 ) ∨ S̃(m) ̸= m]] for all values of i∗1 and j∗1 . Indeed, for
any node u, if S̃(u) = m then i∗1 will always be an argument of the minimum, regardless of its value.

Hence, the Prover strategy is correct.
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