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Abstract

We study connections between two fundamental questions from computer science theory. (1)
Is witness encryption possible for NP [Gar+13]? That is, given an instance x of an NP-complete
language L, can one encrypt a secret message with security contingent on the ability to provide
a witness for x ∈ L? (2) Is computational learning (in the sense of [Val84; KSS94]) hard for
NP? That is, is there a polynomial-time reduction from instances of L to instances of learning?

Our main contribution is that certain formulations of NP-hardness of learning characterize
the existence of witness encryption for NP. More specifically, we show:

• witness encryption for a language L ∈ NP is equivalent to a half-Levin reduction from L
to the Computational Gap Learning problem (denoted CGL [ABX08]),

where a half-Levin reduction is the same as a Levin reduction but only required to preserve
witnesses in one direction, and CGL formalizes agnostic learning as a decision problem. We show
versions of the statement above for witness encryption secure against non-uniform and uniform
adversaries. We also show that witness encryption for NP with ciphertexts of logarithmic length,
along with a circuit lower bound for E, are together equivalent to NP-hardness of a generalized
promise version of MCSP.

We complement the above with a number of unconditional NP-hardness results for agnostic
PAC learning. Extending a result of [Hir22] to the standard setting of boolean circuits, we show
NP-hardness of “semi-proper” learning. Namely:

• for some polynomial s, it is NP-hard to agnostically learn circuits of size s(n) by circuits

of size s(n) · n1/(log logn)O(1)

.

Looking beyond the computational model of standard boolean circuits enables us to prove NP-
hardness of improper learning (ie. without a restriction on the size of hypothesis returned by
the learner). We obtain such results for:

• learning circuits with oracle access to a given randomly sampled string, and

• learning RAM programs.

In particular, we show that a variant of MINLT [Ko91] for RAM programs is NP-hard with
parameters corresponding to the setting of improper learning. We view these results as partial
progress toward the ultimate goal of showing NP-hardness of learning boolean circuits in an
improper setting.

Lastly, we give some consequences of NP-hardness of learning for private- and public-key
cryptography. Improving a main result of [ABX08], we show that if improper agnostic PAC
learning is NP-hard under a randomized non-adaptive reduction (with some restrictions), then
NP ⊈ BPP implies the existence of i.o. one-way functions. In contrast, if CGL is NP-hard under
a half-Levin reduction, then NP ⊈ BPP implies the existence of i.o. public-key encryption.
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1 Introduction and Background

It has long been recognized that learning and cryptography are two sides of the same coin. As
Valiant already observed in his paper introducing PAC learning, its easiness would preclude the
existence of pseudorandom functions [Val84]. In 1993, building on a work of Impagliazzo and Levin
[IL90], Blum, Furst, Kearns, and Lipton sharpened Valiant’s observation by showing that private-
key cryptography can be broken if and only if PAC learning is easy in an average-case setting
[Blu+94]. A number of more recent results have developed such connections further (eg. [OS17;
Nan21; HN23]).

In the present work, we turn to more structured kinds of hardness of learning (namely, NP-
hardness) and cryptography (namely, witness encryption), which we show to be likewise equivalent.

NP-hardness of PAC learning. Learning theory asks whether an efficient entity can hope to
learn general truths about reality from necessarily limited input from experience. Valiant formalized
this idea in 1984 with his definition of Probably Approximately Correct (PAC) Learning [Val84]. In
this framework, a learner for some representation class C gets access to labeled examples (x, f(x))
for some unknown concept f ∈ C and x randomly sampled according to an arbitrary distribution
D. The learner is asked to produce, with high probability, a hypothesis that approximates f well
over D. One can distinguish between “proper” and “improper” settings: in proper learning, the
learner should produce a hypothesis that also belongs to C, whereas in improper learning, there is
no restriction on the complexity of the hypothesis. One can also consider various “semi-proper”
settings, in which the hypothesis must belong to some specific concept class C′ containing C. Lastly,
one can relax the model of learning to be “agnostic” in that the labeled examples (x, b) do not
necessarily reflect the values of a function f ∈ C, and the learner is only asked to do as well as the
best function in C does [KSS94].

A long line of work has established NP-hardness of PAC learning for various concept classes (eg.
[PV88; Ale+01; Hir22; KST23]). Early results obtained NP-hardness of proper learning of restricted
circuit classes. Over time, progress has pushed toward NP-hardness of “less proper” learning of
less restricted circuit classes. However, NP-hardness of learning unrestricted boolean circuits in
the improper setting remains elusive. By this, we refer to the problem of learning the concept
class SIZE[s(n)] for some fixed polynomial s by a hypothesis of arbitrary polynomial size. Proving
NP-hardness in this setting seems especially challenging in light of a 2008 result of Applebaum et
al.:

Theorem 1.1 ([ABX08]). Suppose there is a randomized non-adaptive honest1 reduction R and
a polynomial s : N → N such that, for every constant c ∈ N, R reduces SAT to agnostically
PAC learning SIZE[s(n)] by SIZE[s(n)c]. Then, if NP is hard on average, infinitely-often one-way
functions exist.

Of course, there are various ways in which one could formulate reductions to PAC learning. The
aforementioned paper [ABX08] describes two (of many) possibilities. The statement of Theorem 1.1
refers to one kind of NP-hardness reduction described in which a randomized oracle machine on
an input of length n ∈ N makes non-adaptive queries E to its oracle, with E being a poly(n)-size

circuit sampling example-label pairs (x, b) ∈ {0, 1}nΩ(1) ×{0, 1}. The oracle returns, for each query,

1Roughly, “honest” means that the input length of the learning instance is polynomially related to the length of
the input to the reduction. See Definition 2.10.
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a polynomial-size circuit h having high agreement over E (i.e. Pr(x,b)∼E [h(x) = b] close to 1), which
the reduction may use in any way.

In the other kind of NP-hardness reduction that [ABX08] describes, the reduction only uses its
learning oracle to decide if a small circuit consistent with E exists. The relevant decision problem
introduced by [ABX08] is the Computational Gap Learning Problem (CGL). The authors show
that if CGL is NP-hard under a deterministic many-one reduction, then every language in NP has
a statistical zero-knowledge argument.

Remark 1.2. The results in [ABX08] indicate it is a challenge to show NP-hardness of agnostic
PAC learning, as it would prove breakthrough results in cryptography, which, although conjectured
to be true, seem beyond our reach at the moment. However, we should note that the assumption
in Theorem 1.1 is actually quite strong in its requirement that the same reduction must work for
every constant c ∈ N. Theorem 1.1 also requires that queries E made by the reduction sample pairs
(x, b) with the length of x polynomially related to the length of the given SAT instance. It is possible
that PAC learning is NP-hard in the improper setting without either of these conditions being met.
For example, if a different reduction exists for each c ∈ N (perhaps taking longer time for larger c),
then the easiness of improper learning would still imply the easiness of NP.

Witness encryption for NP. First introduced in a 2013 paper of Garg, Gentry, Sahai, and Wa-
ters [Gar+13], witness encryption (WE) is a cryptographic primitive in which security is contingent
on the ability to provide a proof of an answer to a hard problem. As Garg et al. put it,

What if we don’t really care if [the receiver] knows a secret key, but we do care if he
knows a solution to a crossword puzzle that we saw in the Times? [Gar+13]

More formally, the functionality of a witness encryption scheme is based on the structure of a
particular language L ∈ NP. An instance x of L is made public, and anyone can encrypt a secret
message using the witness encryption scheme along with x. It is guaranteed that if x belongs to L,
then anyone with a witness proving x ∈ L can decrypt, but if x does not belong to L, then no one
can do so.

Witness encryption is intimately connected to another cryptographic primitive known as in-
distinguishability obfuscation (iO) [Bar+12], which has been studied extensively (eg. [Kom+14;
Gar+16; IKV23; Lu+24]) and has many candidate constructions (see [JLS24]). iO is known to
imply WE, though the converse is not known [Gar+16]. (We give a sketch of the proof that iO
implies WE in Appendix A.) WE is also closely related to secret-sharing, another important cryp-
tographic tool [Bei11; KNY14]. In fact, the candidate construction of WE in [Gar+13] also yields
a Rudich-type secret sharing scheme. As with much of cryptography, we have no unconditional
proof that WE is possible.

WE alone does not imply the existence of one-way functions, since it is trivially possible if
NP ⊆ BPP. However, WE along with one-way functions becomes very powerful, together yielding
public key encryption, as demonstrated in [Gar+13]. By combining this result with two subsequent
works, one obtains the following.

Theorem 1.3 ([Gar+13; Kom+14; HN24]; see [LMP24a]). Assume NP ⊈ io-P/poly. If P/poly-
secure witness encryption exists for NP, then public-key encryption is possible.

In this paper, we show that CGL is NP-hard if and only if witness encryption exists for NP. We
prove statements along these lines for a few different settings: WE secure against PPT adversaries,

2



WE secure against polynomial-size circuits, and WE with logarithmic-length ciphertexts; the latter
roughly characterizes the NP-hardness of a promise version of the Minimum Circuit Size Problem
[KC00].

In contrast to the aforementioned results of [ABX08] (such as Theorem 1.1), not only do we show
that proving NP-hardness of learning is a challenge as it would imply a breakthrough cryptographic
construction (namely, WE), but we also show the converse: progress in cryptography (showing
that WE is possible) would imply that agnostic PAC learning is NP-hard. Hence, if one believes
in cryptography such as iO or WE, then one should also believe in the NP-hardness of improper
agnostic learning, even in the extremely restrictive sense of a deterministic, many-one, half-Levin
reduction to CGL. We interpret our results as evidence that improper learning is likely NP-hard.

As a complement, we prove a number of unconditional NP-hardness results for agnostic PAC
learning. For one, we obtain NP-hardness of agnostic learning for unrestricted boolean circuits in
a semi-proper setting that improves on the previous state of the art. In other settings, we obtain
NP-hardness of improper agnostic learning. Though we have made some partial progress toward
showing NP-hardness unconditionally, we feel that it remains a promising direction for further
research.

Lastly, we give some applications of our results for the possibility of private- and public-key
cryptography. We improve Theorem 1.1 to conditionally obtain infinitely-often one-way functions
from worst-case hardness of NP. In contrast, if learning is NP-hard in a more restricted sense
(namely, a half-Levin reduction to CGL), then one obtains infinitely-often public-key encryption
assuming NP ⊈ BPP. Along the way, we prove Theorem 1.3 under the weaker uniform assumption
NP ⊈ BPP.2

1.1 Our Results

Connections between witness encryption and NP-hardness of learning. We first discuss
a set of results that characterize witness encryption in terms of NP-hardness reductions to PAC
learning.

Witness encryption for an NP language L consists of a pair of algorithms (Enc,Dec) such that,
for an L-instance x and a secret bit b ∈ {0, 1}, Enc(x, b) outputs a ciphertext string c using some
randomness. It is guaranteed that, if x ∈ L and w is a witness for the membership of x under
a fixed witness relation for L, then Dec(c, x, w) deterministically recovers the bit b. On the other
hand, if x /∈ L, then Enc(x, 0) and Enc(x, 1) are indistinguishable (within a negligible difference)
for polynomial-size circuits (if the witness encryption is P/poly-secure) or PPT algorithms (if the
witness encryption is BPP-secure). See Definition 2.21.

Our first result characterizes P/poly-secure witness encryption in terms of a deterministic
many-one reduction to a promise problem known as CGL, introduced in a work of Applebaum et
al. [ABX08]. Inputs to CGL are distributions E over string-label pairs (x, b) ∈ {0, 1}n×{0, 1}, where
E is represented by a poly(n)-size sampling circuit. For parameters s1 < s2 ∈ N and 0 < ε < 1/2,
a distribution E is a yes-instance of CGLs2s1 [ε] if there is a circuit C of size at most s1 such that, for
(x, b) ∼ E , Pr[C(x) = b] = 1; E is a no-instance of CGLs2s1 [ε] if for every circuit C ′ of size at most
s2, for (x, b) ∼ E , Pr[C ′(x) = b] < 1/2 + ε.

2We believe that this last statement follows from a combination of techniques used in prior work ([Gar+13;
Kom+14; HN24]; see [LMP24a]), but we have not seen the uniform version stated. In any case, we offer an alternative
proof that does not rely on properties of statistical zero-knowledge arguments.

3



Note that a many-one reduction to CGL is quite a restrictive notion of reducibility to agnostic
PAC learning: the reduction only uses its learning oracle to decide if a small circuit exists for the
given distribution. As discussed earlier, one can imagine other kinds of reduction to learning that
make more robust use of a learner: for example, actually examining the circuits returned by the
learning oracle.

We further restrict the definition of a many-one reduction to CGL by requiring that it be a half-
Levin reduction. This is a term that we introduce here for a kind of reduction that is intermediate
between a many-one reduction and a Levin reduction. A half-Levin reduction (R,Rwit) from L1 to
L2 is a pair of polynomial-time machines such that R is a many-one reduction from L1 to L2, and
Rwit transforms witnesses for x ∈ L1 into witnesses for R(x) ∈ L2. In contrast to a standard Levin
reduction, we do not require a third algorithm transforming L2-witnesses into L1-witnesses. We
emphasize that the half-Levin reductions considered in this work are deterministic unless stated
otherwise.

We call a reduction to CGL honest if, on inputs of length n ∈ N, it outputs a distribution E
supported over {0, 1}nΩ(1) × {0, 1}.

We are now ready to state our main result. In general, fixing parameters s1, s2, and ε, we show
that a half-Levin reduction from a language L to CGLs2s1 [ε] is equivalent to a witness encryption
scheme for L with running time roughly s1, security against circuits of size roughly s2, and with
advantage parameter roughly ε; see Lemmas 3.1 and 3.3. For the special case of P/poly-secure
witness encryption, we get the following.

Theorem 1.4. Consider any language L ∈ NP. The following are equivalent.

1. P/poly-secure witness encryption exists for L;

2. there exists a polynomial s1 and a pair of machines (R,Rwit) such that, for all polynomials
s2, ε

−1, (R,Rwit) is an honest half-Levin reduction from L to CGLs2s1 [ε].

We also note that the above characterization is related to a very recent result from Liu, Mazor,
and Pass, which shows that P/poly-secure witness encryption for an NP-language L is equivalent to
the existence of a laconic special-honest verifier zero-knowledge argument for L [LMP24b]. We refer
to that paper for the definition of this kind of protocol, though we mention that the term “laconic”
means that the total length of the prover’s messages is bounded by O(log n). As a corollary of
[LMP24b] and our Theorem 1.4 above, we obtain the following.

Corollary 1.5. Consider any language L ∈ NP. The following are all equivalent.

1. P/poly-secure witness encryption exists for L;

2. there exists a polynomial s1 and a pair of machines (R,Rwit) such that, for all polynomials
s2, ε

−1, (R,Rwit) is an honest half-Levin reduction from L to CGLs2s1 [ε];

3. there exists a laconic special-honest verifier zero-knowledge argument for L.

One may also be interested in the possibility that NP has witness encryption schemes secure
against PPT algorithms but not against polynomial-size circuits. We therefore present a kind of
reduction to learning that is equivalent to BPP-secure witness encryption. This kind of reduction
is intermediate between a half-Levin reduction to CGL and the more general kind of reduction
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described in [ABX08] wherein the reduction may actually inspect the hypotheses returned by the
learner and use them in any way.

More specifically, in our case, the reduction makes a single query E to the search version of
CGL, getting back a small circuit consistent with E if E is a yes-instance of CGL. We still require
the reduction to be half-Levin. Furthermore, we require the reduction to be BPP-black-box;3 see
Definition 2.14.

Theorem 1.6. Consider any language L ∈ NP. The following are equivalent.

1. BPP-secure witness encryption exists for L;

2. there exist a polynomial s1 and a pair of machines (R,Rwit) such that, for all polynomials s2
and ε−1, (R,Rwit) is an honest BPP-black-box half-Levin reduction from L to search-CGLs2s1 [ε].

So far, we have only discussed learning in the “polynomial regime”, where the distribution E
over pairs (x, b) is in PSAMP/poly. However, the original PAC learning framework of Valiant makes
no such restriction: a PAC learner should be able to learn over arbitrary distributions [Val84]. We
thus consider reductions to learning that make further use of this capacity. In particular, imagine
a polynomial-time reduction that, on input length n, queries a learner for a function on O(log n)-
length inputs. In this case, it will be possible to ask the learner to work on inefficiently samplable
distributions, and a truth-table of the function in question can be given to the learner explicitly.
In this particular setup, the distributions queried represent well-defined functions, which may not
be the case in the setup above with CGL. In this sense, we get closer to standard PAC learning
rather than agnostic PAC learning.

This notion of learning in the “exponential regime” is closely related to MCSP, which asks,
given a truth-table T and a size threshold s, whether there exists a circuit of size s consistent with
T . We generalize the problem to the context of learning by providing, along with T , a probability
distribution µ represented as a table. We call this problem “Gap Distributional MCSP”, denoted
GapDistMCSP. Specifically, (T, µ) is a yes-instance of GapDistMCSPs2

s1 [ε] if there exists a circuit C
of size at most s1 such C is consistent with T , and (T, µ) is a no-instance if for every circuit C ′ of
size at most s2, the probability over x ∼ µ that C(x) = T (x) is at most 1/2 + ε. Note that this
definition naturally generalizes AveMCSP as defined in [San20] (and in [Car+17], denoted MACSP),
where the definition is the same except the distribution fixed to uniform.

We show that NP-hardness of learning in this sense is equivalent to witness encryption for NP
such that the ciphertexts output by Enc have only logarithmic length, along with a circuit lower
bound for E. Below we use SIZE[s(n)] to denote the class of n-input boolean functions computable
by circuits of size s(n); for 0 ≤ α ≤ 1, we use SIZEα

D[s(n)] to denote the class of n-input boolean
functions that can be computed by circuits of size s(n) on average, with probability at least α over
inputs x ∈ {0, 1}n sampled according to the distribution D.

Theorem 1.7. Consider any language L ∈ NP, constant c ∈ N, polynomial s1, and s2, ε
−1 : N → N.

The following are equivalent.

1. • (SIZE[Ω(s2(n))], O(ε(n)))-secure (c log n+O(1))-length Õ(s1(n))-decryption-time witness
encryption exists for L; and

3The standard notion of a class-specific black-box reduction from a language L1 to a language L2 was defined by
[GT07] as a way to formalize an intermediate case between treating L2 as an oracle (“black box”) and requiring a
source code for an L2 algorithm implemented in some complexity class (“white box”); see Definitions 2.12 and 2.13.
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• E ⊈ io-SIZE
1
2
+O(ε(n))

D [Ω(s2(n))] for some E-computable distribution family D.

2. There is a half-Levin reduction (R,Rwit) mapping n-length instances of L to O(nc)-length

instances of GapDistMCSP
Ω(s2(n))

Õ(s1(n))
[O(ε)], where Rwit runs in time at most Õ(s1(n)).

Note that we obtain correspondences between the output length of the reduction R and the out-
put length of Enc, the s1 parameter of GapDistMCSP and the running time of Dec, the s2 parameter
of GapDistMCSP and the security of witness encryption, and the ε parameter of GapDistMCSP and
the advantage parameter of witness encryption.

Unconditional NP-hardness of semi-proper learning for P/poly. As discussed in the in-
troduction, NP-hardness of proper agnostic PAC-learning for polynomial-size circuits is known.
However, NP-hardness of improper learning is a major open question that remains elusive. In this
section, we advance toward NP-hardness of “less proper” agnostic PAC learning for polynomial-size
circuits.

First, we show that for polynomials s1 and ε−1, letting s2(n) = s1(n) · n1/(log logn)O(1)
, CGLs2s1 [ε]

is NP-hard under a randomized many-one reduction. In particular,

Theorem 1.8. For some constant c ∈ N and g : N → N with g(n) = n1/(log logn)O(1)
for n ∈ N, for

any polynomials ε−1 and s1 such that s1(n) ≥ ε−c(n) for n ∈ N, there is a randomized many-one
reduction from SAT to CGLs1·gs1 [ε].

As a straightforward consequence of Theorem 1.8, we obtain NP-hardness of agnostic PAC-
learning in the semi-proper setting of learning size-s(n) circuits by size-s(n) ·n1/(log logn)O(1)

circuits.

Corollary 1.9. For some polynomial s, it is NP-hard under a randomized one-query reduction
to agnostically PAC learn SIZE[s(n)] by SIZE[s(n) · n1/(log logn)O(1)

] over a flat P/poly-samplable
distribution.

This improves on a prior work of Hirahara [Hir22], which contains two main results. The first
shows that, for polynomials s, it is NP-hard to agnostically learn programs of size s(n) by programs

of size s(n) · n1/(log logn)O(1)
. This is accomplished by reduction from the “minimum monotone

satisfying assignment” problem, MMSA, which is known to be NP-hard to approximate by way
of a PCP theorem [DHK15; DS04]. We note that Hirahara’s proof makes use of efficient secret
sharing schemes, a cryptographic primitive closely related to witness encryption and known to exist
unconditionally (with statistical security) for access structures that are monotone formulae [ISN93;
BL88a] (see [Bei11; Gar+13]).

The second main result of [Hir22] shows that MCSP∗, a partial function version of MCSP,
is likewise NP-hard. This proof requires even more sophisticated techniques in order to produce
a truth-table on logarithmic-length inputs. In particular, Hirahara reduces from a gap version
of the “collective minimum (weight) monotone satisfying assignment problem” (CMMSA), which
generalizes MMSA. Using the techniques of that proof and padding the inputs to have polynomial
length, one can obtain NP-hardness of learning P/poly, but with a smaller gap.

Theorem 1.10 (Implicit in [Hir22]). For any constant β > 0, there exists a constant α > 0 such
that for some polynomial s, it is NP-hard under a randomized one-query reduction to agnostically
PAC learn SIZE[s(n)] by SIZE[s(n) · 2α(logn)1−β

] over a flat P/poly-samplable distribution.
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However, those ideas do not extend to obtain the larger s(n) vs. s(n) · n1/(log logn)O(1)
gap for

circuits rather than programs as in Corollary 1.9.

Remark 1.11. We note that Theorem 1.8 is in fact proved by a randomized half-Levin reduction
from GapMMSA to CGL! That is, there is a poly-time machine Rwit such that, with high probability
over r, if Er is the output of the reduction of Theorem 1.8 run on a GapMMSA instance φ with
randomness r, and α is a witness for φ, then Rwit(φ, α, r) outputs a circuit certifying that Er is
a yes-instance of CGL. However, unfortunately, we do not know how to extend the results of the
previous section to obtain non-trivial witness encryption from a randomized half-Levin reduction,
particularly since the amount of randomness required is greater than the parameter s2 (which trans-
lates to the security of the witness encryption scheme). In any case, our results show that if the
reduction of Theorem 1.8 can be suitably derandomized (with the running time of Rwit less than the
parameter s2) then one would unconditionally obtain non-trivial witness encryption.

Unconditional NP-hardness of improper learning for other concept classes. Though in
the case of P/poly we are unable to obtain NP-hardness with a gap greater than n1/(log logn)O(1)

,
we show in this section that for some related concept classes, improper learning is NP-hard. We
demonstrate such results for learning oracle circuits and learning RAM programs.

In the following, for a fixed λ : N → N and distribution family D = {Dm}m∈N, where each Dm is
supported over strings of length 2m and samplable uniformly in time poly(2m), D-oracle-CGLs2s1 [ε, λ]
is a generalization of CGLs2s1 [ε] in which all circuits and samplers take access to an oracle O ∈
{0, 1}2λ(n)

randomly sampled from Dλ(n). E is a yes-instance of D-oracle-CGLs2s1 [ε, λ] if there exists
a circuit C of size s1(n) such that for every O in the support of Dλ(n),

Pr
(x,b)∼EO

[CO(x) = b] = 1,

and E is a no-instance of D-oracle-CGLs2s1 [ε, λ] if, with probability 1− ε(n) over O ∼ Dλ(n), for any
circuit C of size s2(n),

Pr
(x,b)∼EO

[CO(x) = b] <
1

2
+ ε(n).

We prove the following NP-hardness of oracle-CGL, from which we will derive further corollaries.

Theorem 1.12. There exist a distribution family D ∈ PSAMP, an NP-complete language L, and
a polynomial s1 such that, for all polynomials s2, ε

−1, there is a function λ : N → N such that
λ(n) = O(log n) for n ∈ N and L reduces to D-oracle-CGLs2s1 [ε, λ] under an honest half-Levin
reduction.

Theorem 1.12 is proved using a framework developed by Huang, Ilango, and Ren for “witness en-
cryption in oracle worlds” [HIR23]. More specifically, drawing on the candidate witness encryption
scheme proposed in [Gar+13], the authors show that there exist an NP-complete language L and a
distribution family D ∈ PSAMP such that, with high probability over oracles O sampled randomly
from D, witness encryption for L exists with respect to O. That is, Enc, Dec, and adversaries all
get oracle access to O.

We may then apply the techniques of one direction of our main equivalence, Theorem 1.4, to
obtain NP-hardness of learning with respect to O. Crucially, in [HIR23], an oracle O with truth-
table length n gives rise to a witness encryption scheme secure against non-uniform adversaries

7



of size polynomially related to n. So, to achieve NP-hardness of oracle-CGL with an arbitrary
polynomial gap, one only requires oracle truth-tables of polynomial length.

As a consequence of Theorem 1.12, we show that agnostic learning is NP-hard in an “oracle-
PAC” model that we introduce here, which generalizes standard agnostic PAC learning of P/poly.
In this model, a learner for SIZE[s] on input length n is explicitly given the whole truth table of an
oracle function O : {0, 1}O(logn) → {0, 1} sampled randomly from some distribution D ∈ PSAMP.
The learner is asked to output an oracle circuit h such that hO approximates the target function
almost as well as the best size-s O-oracle circuit; see Definition 2.5.

Corollary 1.13. For every constant c ∈ N and sufficiently large polynomial s, it is NP-hard under
a randomized one-query reduction to agnostically oracle-PAC learn SIZE[s(n)] by SIZE[s(n)c].

We stress that the above holds under a standard polynomial-time reduction that does not itself
require any oracle.

As a second consequence of the NP-hardness of oracle-CGL, we show that it is NP-hard to
agnostically learn RAM programs in an improper setting. In particular, we focus on a decision
problem based on the problem MINLT defined in [Ko91]. In Ko’s definition, the input to MINLT
consists of pairs (xi, bi)i∈[m] ∈ ({0, 1}n×{0, 1})m for some m = poly(n) along with size and running
time parameters s, t ∈ N represented in unary. The input is a yes-instance if and only if there exists
a program M of size at most s and running time at most t such that M(xi) = bi for all i ∈ [m].
Ko exhibited an oracle relative to which MINLT is not NP-hard [Ko91].

Hirahara, using non-relativizing techniques, showed that a certain generalization of MINLT
(called GapLearn) is in fact NP-hard [Hir22]. In this promise-problem, the pairs (xi, bi) are rep-
resented implicitly by a sampling circuit (as in the definition of CGL), and there is a gap, eg., in
program size between yes-instances and no-instances. It is easy to see that NP-hardness of this
problem (Theorem 1.1 in [Hir22]) implies NP-hardness of Ko’s MINLT.

We formulate our definition of GapRAM-MINLT analogously to the definition of GapLearn in
[Hir22] but considering programs that are granted random access to their inputs. Namely, the
input to Gapg,εRAM-MINLT is a sampler E over pairs (x, b) along with parameters s, t ∈ N. The
input (E , 1s, 1t) is a yes-instance if there exists a program of size at most s and running in time at
most t such that Pr(x,b)∼E [M

x = b] = 1, and (E , 1s, 1t) is a no-instance if for any program of size

at most g(s) and running in time at most g(t), Pr(x,b)∼E [M
x = b] < 1

2 + ε(n). Here, Mx denotes
the program M with random access to its input x.

We obtain the following NP-hardness of GapRAM-MINLT. Note that the parameters we obtain
imply NP-hardness of learning RAM programs in an improper setting.

Corollary 1.14. For all polynomials g and ε−1, Gapg,εRAM-MINLT is NP-hard under a randomized
many-one reduction.

In contrast, [Hir22] considers programs that do not require random access to their inputs; the

gap in program size achieved there is small (namely, s(n) vs. s(n) · n1/(log logn)O(1)
), though the

no-instances extend to time-unbounded programs.

Applications for the possibility of cryptography. Finally, we prove a few results demon-
strating what cryptography is possible assuming worst-case hardness of NP along with various
assumptions concerning witness encryption and NP-hardness of learning.
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Assuming a randomized non-adaptive reduction from SAT to improper agnostic learning as
described in [ABX08] (see Definition 2.10), we show that the worst-case assumption NP ⊈ BPP is
sufficient to imply one-way functions secure infinitely often against uniform PPT adversaries. This
improves a main result of [ABX08] (Theorem 1.1 in the introduction), which requires average-case
hardness of NP. In terms of Impagliazzo’s five worlds [Imp95], the result of [ABX08] conditionally
excludes Pessiland. In contrast, we conditionally exclude both Heuristica and Pessiland.

Theorem 1.15. Suppose there is a randomized non-adaptive honest reduction R and a polynomial
s : N → N such that, for every constant c ∈ N, R reduces SAT to agnostically PAC learning
SIZE[s(n)] by SIZE[s(n)c]. Then, unless NP ⊆ BPP, there exist infinitely-often one-way functions.

As discussed in the introduction, Garg et al. show that WE for an NP-complete language
along with a one-way function is sufficient for public-key encryption [Gar+13]. Combining this
result, our main equivalence in Theorem 1.4, and Theorem 1.15, we obtain that witness encryption
simultaneously excludes Heuristica, Pessiland, and Minicrypt.

Theorem 1.16. Suppose P/poly-secure witness encryption exists for NP. Then, unless NP ⊆ BPP,
there exists public-key encryption secure infinitely often against polynomial-time adversaries.

We believe that this statement can also be proved by combining prior works [Kom+14; HN24;
Gar+13] (see also [LMP24a]), though we have not seen the uniform version stated (ie. the version
with the assumption NP ⊈ BPP rather than NP ⊈ P/poly). In any case, we provide an alternative
proof that does not rely on properties of zero-knowledge, such as the “SZK/OWF” characterization
from [OV07].

Theorem 1.16 and our our main equivalence in Theorem 1.4 together imply that if learning is
NP-hard under a half-Levin reduction to CGLs2s1 [ε] working for arbitrary polynomials s2 and ε−1, one
can rule out Minicrypt in addition to Heuristica and Pessiland. Thus, we obtain a stark distinction
between the two kinds of reduction to learning defined in [ABX08]. Namely, assuming worst-case
hardness of NP, a randomized non-adaptive reduction to agnostic learning over PSAMP/poly yields
one-way functions, whereas a deterministic many-one reduction to CGL, provided it is half-Levin,
yields public-key encryption.

Theorem 1.17. Suppose there exist a polynomial s1 and a pair of machines (R,Rwit) such that,
for all polynomials s2, ε

−1, (R,Rwit) is an honest half-Levin reduction from SAT to CGLs2s1 [ε]. Then,
unless NP ⊆ BPP, there exists public-key encryption secure infinitely often against polynomial-time
adversaries.

1.2 Related Work

As mentioned above, a very recent work of Liu, Mazor, and Pass shows that witness encryption for
NP is equivalent to “laconic special-honest verifier zero-knowledge arguments” for NP [LMP24b].
Our main result shows that half-Levin reductions from NP to CGL are equivalent to both. This
sharpens the result of Applebaum et al. showing that NP-hardness of CGL under a many-one (not
necessarily half-Levin) reduction implies NP ⊆ SZKA [ABX08].

Huang, Ilango, and Ren [HIR23] used an assumption of the existence of witness encryption
secure against subexponential-size circuits to conclude the NP-hardness of approximating the time-
bounded conditional Kolmogorov complexity Kt(x | y), in the regime where t > |y|, with essentially
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optimal gap parameters. This is similar to one direction of our Theorem 1.4 showing an equiv-
alence between the existence of witness encryption (secure against P/poly) and NP-hardness of a
learning problem CGL (under restricted reductions). We note that in our framework, proving such
a connection between witness encryption and NP-hardness of learning is much simpler than in the
setting considered by [HIR23].

Our Theorem 1.12 relies on a framework for “witness encryption in oracle worlds” developed
in [HIR23] (building on ideas from [Gar+13]). The authors of [HIR23] obtain NP-hardness of the
Minimum Oracle Circuit Size Problem with a large circuit size gap [HIR23]. This is somewhat
like an “exponential regime” analogue of our oracle-PAC learning model, but we stress that, in
[HIR23], an algorithm for MOCSP needs to work in the worst case over oracle truth-tables. In our
case, a learner only needs to work with high probability over oracle truth-tables sampled from some
distribution in PSAMP.

An earlier example of an equivalence between NP-hardness of a meta-complexity problem and
the existence of a secure cryptographic primitive is the result by Hirahara [Hir23]. It shows an
equivalence between the existence of one-way functions and NP-hardness of distributional time-
bounded Kolmogorov complexity dKt under a certain kind of restricted reductions.

An earlier example of an equivalence between hardness of PAC learning and the existence of
a cryptographic primitive is due to Nanashima [Nan21]. In that work, Nanashima shows that
auxiliary-input one-way functions exist if and only if a certain average-case, or “heuristic”, variant
of PAC learning is hard for efficient algorithms. In contrast, we focus on NP-hardness of worst-case
agnostic PAC learning.

1.3 Overview of Techniques

Proof of Theorem 1.4. We start with an informal overview of the proof of our main equiva-
lence, Theorem 1.4. In both directions, the constructions employed and the proofs of correctness
are straightforward. We first show how to obtain a half-Levin reduction from L to CGL from a
P/poly-secure witness encryption scheme (Enc,Dec) for L. In particular, given an L-instance z, the
reduction outputs a distribution E as follows.

Sample b ∼ U . Let x := Enc(z, b). Output (x, b).

Note that we can assume that the output length of Enc is at least nΩ(1) without loss of generality,
so the reduction described here is honest.

In the case that z ∈ L with witness w, E is a yes-instance of CGL, since the circuit defined
by Dec(−, z, w) recovers the bit b from x with probability 1 over E . This is true by the correct-
ness of (Enc,Dec). Also note that, since Dec is a uniform polynomial-time algorithm, the circuit
Dec(−, z, w) can be constructed in polynomial time given z and w. Thus, our reduction is half-
Levin. In the case that z /∈ L, we observe that if there were a circuit C of polynomial size such
that

Pr
(x,b)∼E

[C(x) = b] ≥ 1

2
+

1

poly(|x|)
,

then by definition of E ,

Pr[C(Enc(z, 1)) = 1]− Pr[C(Enc(z, 0)) = 1] ≥ 1

poly(n)
,

violating the security of Enc. So, E must be a no-instance of CGL.
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Now we show how to obtain a P/poly-secure witness encryption scheme from a half-Levin
reduction (R,Rwit) to CGL. We define a witness encryption scheme as follows. Let z be an instance
of L, and if z ∈ L, let w be a witness. Let a be a secret bit to encrypt.

Enc(z, a) computes E = R(z), samples (x, b) ∼ E and then outputs (x, a⊕ b).

Dec((x, c), z, w) computes A := Rwit(z, w) and then outputs A(x)⊕ c.

The correctness of (Enc,Dec) follows from the fact that, for z ∈ L, Rwit(z, w) is a witness for
E = R(z) being a yes-instance of CGL: that is, a circuit A of polynomial size such that

Pr
(x,b)∼E

[A(x) = b] = 1.

It follows that A(x) ⊕ c = b ⊕ (a ⊕ b) = a. The security of Enc follows from Yao’s argument that
a distinguisher implies a next-bit predictor. Specifically, for (x, b) ∼ E , from a circuit of size s(n)
distinguishing Enc(z, 0) = (x, b) from Enc(z, 1) = (x, 1⊕b), we would obtain a circuit of size O(s(n))
predicting (with inverse polynomial advantage) b from x. By the honesty of the reduction, we have
O(s(n)) = poly(|x|). This violates the fact that E is a no-instance of CGLs2s1 for every polynomial
s2, a contradiction.

Proof of Theorem 1.6. To modify the argument above for the case of BPP-secure witness
encryption, we note that, in the first direction discussed, the security of WE is only violated if the
circuit C can be constructed uniformly in polynomial time. Therefore, we consider BPP-black-box
reductions to search-CGL. That is, roughly, the reduction is only guaranteed to work when its
oracle is a PPT algorithm, and we require the oracle to actually construct a small circuit with
inverse polynomial advantage over the queried distribution E if one exists. For the other direction,
we employ the observation that, from a uniform PPT distinguisher algorithm A, one can construct
a next-bit predictor PA uniformly.

Proof of Theorem 1.7. For the case of GapDistMCSP in Theorem 1.7, a challenge is that an
arbitrary witness encryption scheme (Enc,Dec) may not yield a distribution E that represents a
well-defined function. On one hand, if z ∈ L, then there is guaranteed to be a unique bit bx such
that (x, bx) is in the support of E , by the correctness of the witness encryption scheme. However,
if z /∈ L, this may not be true. Luckily, since E is supported over logarithmic-length strings, we
can check in polynomial time whether each x has a unique label. If not, we use our assumption of
a circuit lower bound for E to output a no-instance of GapDistMCSP. In the other direction, from
a (deterministic) half-Levin reduction from SAT to GapDistMCSP, we obtain a circuit lower bound
for E by applying the reduction to a trivial no-instance of SAT, as in [KC00].

Proof of Theorem 1.8 and corollary. Our proof of NP-hardness of CGL with parameters
corresponding to semi-proper learning works within the framework developed in [Hir22]. It differs
from Theorem 7.2 in that paper mainly in the “completeness” argument. Referring to the notation
in the proof of that theorem and of our Lemma 3.13, we need to construct a circuit of size not
exceeding O(θλ).

For one thing, in the proof of [Hir22], using DPk generators to encode the high-complexity
truth-tables fi, the number of input gates to the circuit alone would exceed the desired threshold.
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Therefore, we use Nisan-Wigderson generators rather than DPk generators to allow for a short
random seed. (A similar idea is used elsewhere in [Hir22].)

More importantly, we apply a recent result of Holmgren and Rothblum showing that “mul-
tiselection” of t indices from a string of length m ∈ N can be done by a circuit of size at most
O(m + t · log3(m)) [HR24]. See Lemma 3.10. So, we can make poly(n) queries to θ truth-tables
fj , each of length λ, with total circuit size at most O(θ · (λ + o(λ))). This allows us to compute

values of the amplified functions f̂j and recover the secret labels b without exceeding the desired
size threshold. Note that Uhlig’s Theorem as in [Hir22] cannot accommodate poly(n) queries.

To obtain Corollary 1.9, which states that semi-proper agnostic learning is NP-hard, we give
a simple randomized reduction from CGL to learning that works by empirical estimation of the
success probability of the hypothesis produced by the learner. See Lemma 2.15.

Proof of Theorem 1.12 and corollaries. To obtain NP-hardness of oracle-CGL, we apply an
argument analogous to the first direction of our main equivalence, along with the fact that, for
some distribution family D ∈ PSAMP, witness encryption for NP exists unconditionally (with high
probability) with respect to oracles sampled from D. This was demonstrated in [HIR23]. More
specifically, the authors show the following.

Lemma 1.18 ([HIR23] (informal; see Lemma 2.23 and definition 2.22)). For some NP-complete
language L, distribution D ∈ PSAMP, and constant ℓ ∈ N, there is a witness encryption scheme
(Enc,Dec) for L such that, for all m ∈ N, with high probability over O ∼ Dm (with O ∈ {0, 1}m),
(EncO,DecO) is secure against O-oracle adversaries of size m1/ℓ.

Our idea is to apply the foregoing “oracle witness encryption” along with our main technique
for proving that witness encryption implies NP-hardness of CGL. We modify the definition of CGL
accordingly so that all circuits and samplers have access to an oracle randomly sampled from D.

See Definition 2.7. Crucially, to achieve NP-hardness of D-oracle-CGL
s(n)c

s(n) for a constant c ∈ N, we
require witness encryption with security against adversaries of size s(n)c, and thus we require an
oracle O with truth-table length only s(n)c·ℓ = poly(n).

Corollary 1.13 follows from Theorem 1.12 analogously to Corollary 1.9 and Theorem 1.8, as
discussed above: a straightforward reduction from oracle-CGL to oracle-PAC learning.

To prove Corollary 1.14, we give a randomized reduction fromD-oracle-CGL to GapRAM-MINLT.
Given an instance E(−) of D-oracle-CGL, the reduction starts by sampling a random truth-table
O ∼ D. Then, it defines an instance E ′ of GapRAM-MINLT which always outputs the entire truth-
table O along with a string (x, b) sampled according to EO; one can think of E ′ as sampling pairs
(x′, b) with x′ = (x,O). Clearly, this results in a non-oracle instance of GapRAM-MINLT. In the
proof of correctness, we also rely on the fact that a program of size and running time at most s′ can
be simulated by a circuit of size poly(s′) (and vice versa). Since the oracles obtained from [HIR23]
require length polynomially greater than the size of adversary they are secure against, we need to
consider machines running in time less than the length of their inputs. Given these observations
and the definitions of oracle-CGL and GapRAM-MINLT, the corollary follows easily.

Proof of Theorem 1.15. We prove Theorem 1.15 with an argument from [ABX08] as a starting
point.4 Let R be a randomized non-adaptive reduction from an NP-complete language L to agnostic

4Note that we include a proof below for the reader’s convenience; see Lemma 3.21
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learning over PSAMP/poly. Assume that i.o. one-way functions do not exist. Then, for any
D ∈ PSAMP and auxiliary-input function {fz}z∈{0,1}∗ , there is a machine I that distributionally
inverts fz with high probability over auxiliary inputs z ∼ D. We think of instances z of L as
auxiliary inputs for the function fz that, roughly, simulates R(z) to obtain a sampling circuit E over
string/label pairs and then samples from E . Applebaum et al. show that there is a polynomial-time-
computable hypothesis h, using a distributional inverter for fz, having near-maximum agreement
over E . Running the reduction R and answering oracle queries with hypotheses h defined in this
way, we obtain

DistNP ⊆ HeurBPP,

where “Heur”, informally, refers to average-case heuristics that may err by incorrectly outputting
1 or 0.

We next use the fact that the inversion of polynomial-time-computable functions is verifiable.
That is, if a machine fails to invert on some instance, it can be defined to “realize this” in polynomial
time. More concretely, the machine I above can be defined to output ⊥ on input z if it fails to
invert often on some particular fz, using empirical estimation. From this observation, we further
obtain

DistNP ⊆ AvgBPP,

where Avg refers to heuristics that do not err but may output ⊥ rather than 1 or 0 with inverse
polynomial probability. Lastly, we apply a recent result of [Gol+22], which, from DistNP ⊆ AvgBPP,
yields worst-case easiness of agnostic PAC learning over distributions in PSAMP/poly. We then run
the reduction R for a second time, answering oracle queries with the worst-case agnostic learner
guaranteed by [Gol+22], to obtain NP ⊆ BPP.

Proofs of Theorem 1.16 and Theorem 1.17. To obtain Theorem 1.16, start by assuming
the existence of witness encryption for an NP-complete language. Then, apply the characterization
given by Theorem 1.4 to obtain a half-Levin reduction from NP to CGL. Since CGL reduces to
agnostic PAC learning, we may apply Theorem 1.15 as described above to exclude Heuristica and
Pessiland. To summarize, informally,

WE =⇒ NP ≤hl CGL (Theorem 1.4)

=⇒ NP ≤tt agnostic PAC-learning over PSAMP/poly

=⇒ (NP ⊈ BPP =⇒ i.o. OWF), (Theorem 1.15)

where ≤hl refers to a half-Levin reduction and ≤tt refers to a randomized non-adaptive (ie. “truth-
table”) reduction. Furthermore, Garg et al. show that witness encryption for NP, together with
the existence of a one-way function, yields public-key encryption [Gar+13]. This, together with the
above, conditionally yields public-key encryption. To summarize,

WE and NP ⊈ BPP =⇒ WE and i.o. OWF

=⇒ i.o. PKE ([Gar+13])

Theorem 1.17 is immediate from the reasoning above together with another application of the
characterization in Theorem 1.4. That is,

NP ≤hl CGL =⇒ WE (Theorem 1.4)

=⇒ (NP ⊈ BPP =⇒ i.o. PKE) (Theorem 1.16)
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2 Preliminaries

Definition 2.1. We say that a distribution is flat if it is equal to the uniform distribution over its
support.

Definition 2.2. For a distribution family D = {Dn}n∈N, s : N → N, and δ : N → [0, 1], SIZEδ
D[s]

denotes the class of function families f = {fn : {0, 1}n → {0, 1}}n∈N such that, for all sufficiently
large n ∈ N, there exists a circuit Cn of size at most s(n) such that

Pr
x∼Dn

[Cn(x) = fn(x)] ≥ δ(n).

2.1 PAC Learning Problems

Definition 2.3 (Optimal hypotheses). For n ∈ N, a function s : N → N, a distribution family En
supported over {0, 1}n × {0, 1}, a parameter ε > 0, and a hypothesis h : {0, 1}n → {0, 1}, we say
that h is (s, ε)-optimal for En if

Pr
(x,b)∼En

[h(x) = b] ≥ max
f∈SIZE[s(n)]

{
Pr

(x,b)∼En
[f(x) = b]

}
− ε.

For λ ∈ N, an oracle function O : {0, 1}λ → {0, 1}, and a hypothesis g(−) : {0, 1}n → {0, 1}, we
say that g is (s, ε,O)-optimal for En if

Pr
(x,b)∼En

[gO(x) = b] ≥ max
f∈SIZE[s(n)]

{
Pr

(x,b)∼En
[fO(x) = b]

}
− ε.

Definition 2.4 (Agnostic PAC learning circuits). Consider s1, s2 : N → N. We say that an
algorithm A agnostically PAC learns SIZE[s1(n)] by SIZE[s2(n)] if, for every n ∈ N, δ > 0, ε > 0,
and joint distribution family E = {En}n∈N where each En is supported over {0, 1}n × {0, 1}, the
following holds. With probability at least 1− δ, AEn outputs an (s1, ε)-optimal hypothesis h for En
of size at most s2(n).

A is given the parameters n, 1/ε, and 1/δ in unary.
We say that A agnostically PAC learns SIZE[s1] in the improper setting if the above is true

except there is no restriction on the complexity of h (except that it cannot exceed size the run time
of A).

Definition 2.5 (Agnostic Oracle-PAC learning circuits). The definition is analogous to Defini-
tion 2.4, except we also consider distribution families D = {Dλ}λ∈N for sampling oracle truth-

tables, where Dλ is supported over {0, 1}2λ and uniformly samplable in time poly(2λ). We say that
an algorithm A agnostically oracle-PAC learns SIZE[s1] by SIZE[s2] if, for any such D, for every
ε, δ > 0 and n, λ ∈ N, the following holds with probability at least 1− δ over O ∼ Dλ.

For any joint distribution family E = {En}n∈N where each En is supported over {0, 1}n ×{0, 1},
with probability at least 1 − δ over the randomness of A, AEn(tt(O)) outputs an (s1, ε, O)-optimal
hypothesis h for En of circuit size at most s2(n).

A is also given the parameters n, 1/ε, and 1/δ in unary.

Applebaum et al. define the following decision version of the PAC learning problem for circuits.

14



Definition 2.6 (Computational gap-learning problem (CGL) [ABX08]). The computational gap-
learning problem with size parameters s1, s2 : N → N and security parameter ε : N → [0, 1], denoted
CGLs2s1 [ε], is the promise problem defined as follows.5 The input consists of a distribution E over
pairs (x, b) ∈ {0, 1}n × {0, 1} represented as a circuit of size poly(n).6

• E is a yes-instance if there exists a circuit C of size at most s1(n) such that

Pr
(x,b)∼E

[C(x) = b] = 1.

• E is a no-instance if for every circuit C of size at most s2(n),

Pr
(x,b)∼E

[C(x) = b] <
1

2
+ ε(n).

Definition 2.7 (Oracle computational gap-learning problem (oracle-CGL)). Let D = {Dλ}λ∈N be
a polynomial-time-samplable distribution family such that each Dλ is supported over truth-tables of
oracle functions Oλ : {0, 1}λ → {0, 1}. The D-oracle computational gap-learning problem with size
parameters s1, s2 : N → N, security parameter ε : N → [0, 1], and oracle parameter λ : N → N,
denoted D-oracle-CGLs2s1 [ε, λ], is defined analogously to CGLs2s1 [ε] except all circuits (including the
sampler E) have access to an oracle randomly drawn from Dλ(n). More specifically,

• E(−) is a yes-instance if there exists an oracle circuit C(−) of size at most s1(n) such that,
for every oracle O in the support of Dλ(n),

Pr
(x,b)∼EO

[
CO(x) = b

]
= 1.

• E(−) is a no-instance if, with probability at least 1 − ε(n) over O ∼ Dλ(n), for every oracle

circuit C(−) of size at most s2(n),

Pr
(x,b)∼EO

[
CO(x) = b

]
<

1

2
+ ε(n).

Definition 2.8 (Gapg,εRAM-MINLT). GapRAM-MINLT with gap parameter g : N → N and sound-
ness parameter ε−1 : N → N, denoted Gapg,εRAM-MINLT, is the decision problem defined as follows.
The input consists of a distribution E over pairs (x, b) ∈ {0, 1}n × {0, 1} represented as a circuit of
size poly(n). The input also includes a threshold parameter s ∈ N and a running time parameter
t ∈ N represented in unary.

• (E , 1s, 1t) is a yes-instance of Gapg,εRAM-MINLT if there exists a t-time program M of size
at most s such that Mx = b for all (x, b) in the support of E.

• (E , 1s, 1t) is a no-instance of Gapg,εRAM-MINLT if for every g(t)-time program M of size at
most g(s),

Pr
(x,b)∼E

[Mx = b] <
1

2
+ ε(n)

5We note that [ABX08] define CGL for a given completeness parameter α : N → [0, 1] (ie. a yes-instance has C
such that Pr[C(x) = b] ≥ α(n)). In this work, we only consider α = 1.

6In this work, we abuse notation by taking E to refer both to the distribution and the circuit sampling it.
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2.2 Reductions to Learning

Here we define a form of reduction that is intermediate between the standard notions of a Karp
reduction and a Levin reduction.

Definition 2.9 (Half-Levin reduction). Consider languages L1, L2 ∈ NP with witness relations
VL1 , VL2. A half-Levin reduction from L1 to L2 consists of polynomial-time machines R and Rwit

with the following properties.

• For any L1-instance x, x ∈ L1 ⇐⇒ R(x) ∈ L2;

• For any (x,w) ∈ VL1, it holds that (R(x), Rwit(x,w)) ∈ VL2.

A number of the results in this paper involve half-Levin reductions to CGL, which belongs to (a
promise version of) MA but not necessarily NP. Note that the definition of a half-Levin reduction
can be extended to CGL in the natural way. Specifically, in a half-Levin reduction from L ∈ NP to
CGLs2s1 [ε], the machine Rwit, given some z ∈ L and witness w, is required to produce a circuit C of
size at most s1 such that

Pr
(x,b)∼E

[C(x) = b] = 1,

where E is the output of R(z). In addition, we say that a reduction to CGL is honest if, on an input

z of length n, it outputs a distribution E supported over {0, 1}nΩ(1) × {0, 1}.

Definition 2.10 (Reduction to agnostic PAC learning circuits [ABX08]). For polynomials s1 and s2
and δ : N → [0, 1], a reduction from a language L to agnostic PAC learning SIZE[s1] by SIZE[s2] over
PSAMP/poly with failure probability δ consists of a PPT machine R, which on input z ∈ {0, 1}n,
makes queries that are joint distributions E(i) over {0, 1}m(n) × {0, 1} for some m : N → N, each
represented by a sampling circuit. The oracle provides a hypothesis hi, represented as a poly(n)-size
circuit, as a response to each query. Based on the hypotheses hi and its own computation, R accepts
or rejects the input z.

It is guaranteed that, for some inverse polynomial ε, if the oracle returns an (s1, ε)-optimal
hypothesis h of size s2(m(n)) for each query E(i), then with probability at least 1−δ(n), R(z) = L(z).

If the failure probability is omitted, we take it to be 1/3.
If m(n) ≥ nΩ(1), we call the reduction honest.

Definition 2.11 (Reduction to agnostic oracle-PAC learning circuits). We define reductions to
agnostic oracle-PAC learning analogously with Definition 2.10. Specifically, the reduction samples
random O(i) ∼ Dλ(n) and then queries pairs (E(i), tt(O(i))) to its oracle. The guarantee of the

reduction holds if the oracle responds with an (s1, ε, O
(i))-optimal hypothesis of size at most s2(m(n))

for each query E(i).

For our results concerning BPP-secure witness encryption, we will require non-black-box notions
of reduction. We start by recalling the standard definition of a class-specific black-box reduction.

Definition 2.12 (Class-specific black-box reduction [GT07]). For a complexity class C and lan-
guages L1 and L2, a PPT oracle machine R is a C-black-box reduction from L1 to L2 if, for any
oracle O ∈ C deciding L2, R

O decides L1.

16



We will actually require a slightly less strict kind of reduction: rather than insisting L2 ∈ C
everywhere, to be correct on a given input z, the reduction will only require that an oracle O ∈ C
agree with L2 on the queries actually made given that input z. For our purposes, we only need to
consider the case of a reduction that generates its queries deterministically.

Definition 2.13 (Instance-wise class-specific black-box reduction). Consider a complexity class C,
languages L1 and L2, and a non-adaptive oracle machine R that generates its queries determinis-
tically but may use randomness elsewhere. R is an instance-wise C-black-box reduction from L1

to L2 if the following holds. For any oracle O ∈ C and instance z of L1, if q1, ..., qm are the oracle
queries made by R on input z and O(qi) = L2(qi) for all i ∈ [m], then RO(z) correctly decides
L1(z).

We now explicitly define our required notion of an instance-wise BPP-black-box half-Levin
reduction to the search version of CGL. Note that we may drop the qualifier “instance-wise”
elsewhere in the presentation. Also note that the definition is extended from those above to the
case of a reduction to a search problem.

Definition 2.14 (Instance-wise BPP-black-box half-Levin reduction to search-CGLs2s1 [ε]). For poly-
nomials s1 and s2 and a language L, an instance-wise BPP-black-box half-Levin reduction from L
to search-CGLs2s1 [ε] is an oracle machine R as follows. On an input z ∈ {0, 1}∗, R deterministically

makes one query, Ez: a joint distribution supported on {0, 1}m(|z|) ×{0, 1} for some polynomial m,
represented by a sampling circuit.

(Instance-wise BPP-black-box) Consider an input z ∈ {0, 1}n for some n ∈ N, and suppose
the oracle A is a PPT algorithm meeting the following condition:

Given the query (z, Ez) made by R on input z, if Ez is not a no-instance of CGLs2s1 [ε], then

with probability at least 1− 2−Ω(n) over its internal randomness, A returns a hypothesis
h of size at most s2(m(n)) such that

Pr
(x,b)∼Ez

[h(x) = b] ≥ 1

2
+

ε(m(n))

2
.

Then, the following are guaranteed for such z.

• if z ∈ L, Ez is a yes-instance of CGLs2s1 [ε], and RA(z) accepts with probability 1− 2−Ω(n);

• if z /∈ L, Ez is a no-instance of CGLs2s1 [ε], and RA(z) rejects with probability at least n−O(1).

(Half-Levin) Further, there exists a polynomial-time computable function Rwit such that, for
any input z′ ∈ {0, 1}∗, if z′ is a yes-instance of L with witness w, then Rwit(z

′, w) outputs a witness
for Ez′ ∈ CGLs2s1 [ε]: that is, a circuit C of size at most s1(m(n)) such that Pr(x,b)∼Ez′ [C(x) = b] = 1.

The lemma below shows that a reduction to CGL implies a reduction to agnostic PAC learning
as in Definition 2.10.

Lemma 2.15. For a language L, δ : N → [0, 1], and polynomials s1, s2, ε
−1 with ε(n) ≤ 1/8 for

n ∈ N, suppose there is a randomized many-one reduction from L to CGLs2s1 [ε] with failure probability
δ. Then, there is a randomized poly-time reduction from L to agnostic PAC learning SIZE[s1] by
SIZE[s2] with failure probability δ′, where δ′(n) := δ(n) + 2−Ω(n) for n ∈ N.
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Proof. Let R be the assumed reduction to CGLs2s1 [ε]. Define a reduction R′ as follows:

On input an instance z ∈ {0, 1}n of L and a choice of randomness r, simulate R(z, r)
to produce a polynomial-size sampling circuit E supported over {0, 1}m×{0, 1}. Query
E to the oracle, obtaining a hypothesis h in return. If the size of h is greater than
s2(m), reject. By sampling poly(ε−1(m) ·n) times from E , obtain an empirical estimate
of Pr(x,b)∼E [h(x) = b]. If the value obtained is less than 1− 2 · ε(m), reject. Otherwise,
accept.

We will show that R′ constitutes a reduction to agnostic PAC learning SIZE[s1] by SIZE[s2].
Consider an L-instance z. First suppose z ∈ L. Then, with probability at least 1− δ(n) over r,

E is a yes-instance of CGLs2s1 [ε]. In this case,

max
C∈SIZE[s1(m)]

{
Pr

(x,b)∼E
[C(x) = b]

}
= 1.

Assume that the oracle A returns an (s1, ε(m))-optimal hypothesis h of size s2(m): that is,

Pr
(x,b)∼E

[h(x) = b] ≥ 1− ε(m).

Then, by a Chernoff bound, with probability at least 1− 2−Ω(n), R′ accepts. Overall, for z ∈ L, R′

accepts with probability greater than 1− (δ(n) + 2−Ω(n)).
Now suppose z is a no-instance of L. In this case, with probability at least 1 − δ(n) over r, E

is a no-instance of CGLs2s1 [ε]: that is, for every circuit C of size at most s2(m),

Pr
(x,b)∼E

[C(x) = b] <
1

2
+ ε(m).

Thus, A cannot return a hypothesis h ∈ SIZE[s2(m)] with success better than (1/2) + ε(m) <
1−2 · ε(m) over E . So R′ rejects with probability at least 1−2−Ω(n). Overall, for z /∈ L, R′ accepts
with probability at most δ(n) + 2−Ω(n), as desired.

By a very similar argument, we obtain the following for the oracle-PAC setting. We omit the
proof here.

Lemma 2.16. For a language L, δ : N → [0, 1], D ∈ PSAMP, λ : N → N with λ(n) = O(log n)
for n ∈ N, and polynomials s1, s2, ε

−1 with ε(n) ≤ 1/8 for n ∈ N, suppose there is a randomized
many-one reduction from L to D-oracle-CGLs2s1 [ε, λ] with failure probability δ. Then, there is a
randomized poly-time reduction from L to agnostic oracle-PAC learning SIZE[s1] by SIZE[s2] with
failure probability δ′, where δ′(n) := δ(n) + ε(n) + 2−Ω(n) for n ∈ N.

2.3 Meta-complexity

The following is a natural generalization of MCSP to the distributional version, where in addition
to the truth table of a function f : {0, 1}n → {0, 1}, one is also given an explicit distribution µ
over {0, 1}n (as a table of probabilities), and is asked to distinguish “easy” f ’s that can be well
approximated by small boolean circuits from “hard” f ’s that are almost impossible to approximate
even by much larger boolean circuits.

18



Definition 2.17 (GapDistMCSP). The gap Distributional Minimum Circuit Size problem with
size parameters s1, s2 : N → N and advantage parameter ε : N → [0, 1], denoted GapDistMCSPs2

s1 [ε],
is the decision problem defined as follows. The input consists of the truth table of a function
f : {0, 1}n → {0, 1} (represented as a truth-table of length 2n bits) and a probability distribution
µ : {0, 1}n → [0, 1] (represented as a table of length 2O(n) bits).

• (f, µ) is a yes-instance if there exists a circuit C of size at most s1(n) such that

Pr
x∼µ

[C(x) = f(x)] = 1.

• (f, µ) is a no-instance if for every circuit C of size at most s2(n),

Pr
x∼µ

[C(x) = f(x)] <
1

2
+ ε(n).

We note that, for an appropriate choice of the approximation parameters and distribution µ,
GapDistMCSP generalizes other variants of MCSP, e.g., MCSP∗ of [Hir22] and an average-case
version AveMCSP of [San20].

2.4 Secret Sharing

See [Bei11] for a survey.

Definition 2.18 (Access Structures Represented by Monotone Formulae). An access structure is a
monotone collection A ⊆ 2[n] of non-empty subsets of [n]. For T ⊆ [n], we say that T is authorized
if it belongs to A and unauthorized otherwise. We say that a monotone formula φ : {0, 1}n → {0, 1}
represents A if φ(χT ) = 1 exactly when T ∈ A, where χT is the characteristic vector of T .

Definition 2.19 (Efficient Secret Sharing Scheme). An efficient secret sharing scheme for an
access structure A ⊆ 2[n] represented by a monotone formula φ consists of a pair of poly-time
algorithms Share and Rec with the following properties. Share takes three inputs; the first is
the formula φ : {0, 1}n → {0, 1}, the second is a “secret” b ∈ {0, 1}, and the third is a choice
of “randomness” r ∈ {0, 1}|φ|. Rec also takes three inputs: the formula φ, a subset of “shares”

vT = (vi)i∈T ∈
(
{0, 1}|φ|

)|T |
, and the set T ⊆ [n].

• Correctness: Authorized parties can recover the secret. Consider any b ∈ {0, 1} and r ∈
{0, 1}|φ|, let (v1, ..., vn) be the output of Share(φ, b; r), and let T be an authorized set. Then
Rec(φ, vT , T ) = b.

• Privacy: Unauthorized parties cannot learn anything about the secret, in an information
theoretic sense. Let T be an unauthorized set. Then, for b ∼ {0, 1} and r ∼ {0, 1}|φ|, the
random variable Share(φ, b; r)T is statistically independent from the random variable b.

Lemma 2.20 ([ISN93; BL88b]). For every access structure A, there exists an efficient secret
sharing scheme as in Definition 2.19. The circuit size required to simulate Rec is at most O(|vT |2).

Proof sketch. We will describe the construction given in [BL88b]. Let φ : {0, 1}n → {0, 1} be a
monotone formula representing A. Starting at the root of the tree representation of φ, the Share
algorithm assigns values to the nodes in a recursive manner as follows. For a secret b ∈ {0, 1},
assign b to the root, and instantiate all shares vi for i ∈ [n] to be empty. Then:

19



• If the current gate is ∨ and the current value is s, assign s to both children.

• if the current gate is ∧ and the current value is s, randomly choose t ∼ {0, 1}. Assign t to
one child and t⊕ s to the other.

• If the current gate is a variable i ∈ [n] and the current value is s, include s in the share vi.

Note that the amount of randomness required is at most |φ|. The Rec algorithm proceeds from
the leaves of the tree back to the root. Start by assigning shares (vi)i∈T to leaves using the set T .
Then:

• If the current gate is ∨ and both children have value s, assign s to the parent.

• If the current gate is ∧ and the children have values s and t, assign t⊕ s to the parent.

• If the current gate is the root, return the value assigned.

2.5 Witness Encryption

Definition 2.21 (Witness Encryption [Gar+13]). Consider a language L ∈ NP with witness re-
lation RL, a class of function families Γ, a security function ε : N → [0, 1], and a length function
ℓ : N → N. A (Γ, ε)-secure ℓ-length witness encryption scheme for L consists of polynomial-time
algorithms Enc and Dec as follows.

• Given an L-instance x ∈ {0, 1}n, a message bit b ∈ {0, 1}, and randomness r ∼ Upoly(n),
Enc(x, b; r) outputs a ciphertext c of length at most ℓ(n).

• Given a ciphertext c and an instance/witness pair (x,w) ∈ R, Dec(c, x, w) deterministically
outputs a bit b ∈ {0, 1}.

Moreover, Enc and Dec have the properties below.

• Correctness: For all sufficiently large n ∈ N, any b ∈ {0, 1}, x ∈ {0, 1}n ∩ L, and w such
that (x,w) ∈ RL,

Pr
r
[Dec(Enc(x, b; r), x, w) = b] = 1.

• Security: For any A = {An}n∈N ∈ Γ, sufficiently large n ∈ N, and x ∈ {0, 1}n\L,

|Pr[An(x,Enc(x, 1; r)) = 1]− Pr[An(x,Enc(x, 0; r)) = 1]| < ε(n).

If ε is omitted, we assume it is some negligible function. If ℓ is omitted, we allow the output length
of Enc to be any polynomial.

Definition 2.22 (Witness Encryption in Oracle Worlds [HIR23]). Consider a language L ∈ NP
with witness relation RL, a class of function families Γ, a security function ε : N → [0, 1], and a

family of distributions D = {Dλ}λ∈N, where each Dλ is supported over {0, 1}2λ. A (Γ, ε)-secure
witness encryption scheme for L with respect to D is defined as in Definition 2.21, except the
algorithms Enc and Dec both take an oracle, and they satisfy the following properties.
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• Correctness: For all sufficiently large n, λ ∈ N, O in the support of Dλ, b ∈ {0, 1}, x ∈
{0, 1}n ∩ L, and w such that (x,w) ∈ RL,

Pr
r

[
DecO(1λ,EncO(1λ, x, b; r), x, w) = b

]
= 1.

• Security: For all sufficiently large n, λ ∈ N, with probability 1− ε(λ) over O ∼ Dλ, for any
A = {An,λ}n,λ∈N ∈ Γ and any x ∈ {0, 1}n\L,∣∣∣Pr

r
[AO

n,λ(Enc
O(1λ, x, 1; r)) = 1]− Pr

r
[AO

n,λ(Enc
O(1λ, x, 0; r)) = 1]

∣∣∣ < ε(λ).

The following result from Huang, Ilango, and Ren was originally stated with security against
oracle programs of polynomial size and query complexity; we observe that the same holds for
polynomial-size circuits.

Lemma 2.23 ([HIR23]). There exist an NP-complete language L, a constant ℓ ∈ N, and a family

of distributions D = {Dλ}λ∈N, where each Dλ is supported over {0, 1}2λ and samplable in time
poly(2λ), such that there is a (SIZE[2λ/ℓ], 2−λ/ℓ)-secure witness encryption scheme for L with respect
to D.

2.6 Hardness of Approximation

Definition 2.24 (MMSA). For g, θ,∆ : N → N, GapgMMSA∆
θ denotes the following promise

problem. The input consists of a monotone formula φ over variables [n] and of length at most ∆(n)

as a binary string. Let MMSA(φ) denote min
{ ∑

i∈[n] α(i)
∣∣∣ α : [n] → {0, 1} satisfies φ

}
.

• ΠY = {φ | MMSA(φ) ≤ θ(n)}

• ΠN = {φ | MMSA(φ) > g(n) · θ(n)}

Lemma 2.25 ([DHK15; DS04; Hir22]). There exist g, θ,∆ : N → N with g(n) = n(log logn)−O(1)
,

θ(n) ≤ n, and ∆ a polynomial with ∆(n) ≥ n for n ∈ N as follows. For every language L ∈ NP,
there is a half-Levin reduction from L to GapgMMSA∆

θ .

Definition 2.26 (CMMSA [Hir22]). For g, ε−1, θ,∆ : N → N, Gapg,εCMMSA∆
θ denotes the following

promise problem. The input consists of a collection Φ = {φ1, ..., φm} of monotone formulas over
variables [n], where each φi has length at most ∆(n) as a binary string, along with a weight function
w : [n] → N. For an assignment α : [n] → {0, 1}, let w(α) denote

∑
i∈[n] α(i) · w(i).

• ΠY = {(Φ, w) | there exists α : [n] → {0, 1} such that w(α) ≤ θ(n) and Prφ∼Φ[φ(α) = 1] = 1}

• ΠN = {(Φ, w) | for all α : [n] → {0, 1} such that w(α) ≤ θ(n) · g(n), Prφ∼Φ[φ(α) = 1] < ε}

Lemma 2.27 ([DS04; Hir22]). There exists a constant γ > 0 and a function θ : N → N such that
for all ∆ : N → N with ∆(n) = O(log n), for every language L ∈ NP, there is a half-Levin reduction
from L to Gap∆γ ,∆−γCMMSA∆

θ .
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2.7 One-way functions and Inversion

Definition 2.28 (δ-invertible (auxiliary-input) functions). For n,m ∈ N, a function f : {0, 1}n →
{0, 1}m, a PPT algorithm A, and δ : N → [0, 1], we say that A is a δ-inverter for f if

Pr
x∼Un

[A(1n, f(x)) ∈ f−1(f(x))] ≥ 1− δ(n).

In the case of an auxiliary-input function fz : {0, 1}ℓ → {0, 1}m, where ℓ,m ∈ N, we say that A
is a δ-inverter for fz if

Pr
x∼Un

[A(z, fz(x)) ∈ f−1
z (fz(x))] ≥ 1− δ(|z|).

Definition 2.29 (Infinitely-often one-way function). A polynomial-time computable function family
f = {fn : {0, 1}n → {0, 1}m(n)}n∈N is an infinitely-often one-way function if, for every PPT
algorithm A, there exists an inverse polynomial δ such that, for infinitely many n ∈ N, A is not a
δ-inverter for fn.

7

Definition 2.30 (Auxiliary-input one-way function). A polynomial-time computable auxiliary-
input function family f = {fz : {0, 1}ℓ(|z|) → {0, 1}m(|z|)}z∈{0,1}∗ is an auxiliary-input one-way
function if, for every PPT algorithm A, there exists an inverse polynomial δ such that, for in-
finitely many z ∈ {0, 1}∗, A is not a δ-inverter for fz.

Definition 2.31 (Statistical Distance). The statistical distance between two probability distribu-
tions D(1) and D(2) over domain {0, 1}n, denoted ∆(D(1), D(2)), is defined as

1

2

∑
x∈{0,1}n

∣∣∣D(1)(x)−D(2)(x)
∣∣∣ ,

or equivalently,

max
T⊆{0,1}n

∣∣∣∣ Pr
x∼D(1)

[x ∈ T ]− Pr
x∼D(2)

[x ∈ T ]

∣∣∣∣ .
Definition 2.32 (Distributionally invertible auxiliary-input functions). Consider an auxiliary in-
put function fz computable uniformly in polynomial time given z ∈ {0, 1}n and an input x ∈
{0, 1}ℓ(n). The function fz is said to be distributionally invertible if for every constant b > 0 there
is a PPT algorithm I such that

∆((x, fz(x)), (I(z, fz(x)), fz(x))) ≤ 1/nb,

where x ∼ Uℓ(n). We refer to the machine I as an n−b-distributional inverter for fz.

Lemma 2.33 (Strong inversion implies distributional inversion [IL89]). For every polynomial-time
computable auxiliary-input function fz and constant b ∈ N, there is a constant c ∈ N such that
the following holds. If there exists an n−c-inverter for fz, then there exists an n−b-distributional
inverter for fz.

7It is known that a weak one-way function is equivalent to a standard (strong) one-way function [Yao82], so we
will not distinguish between the two in this work.
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3 Proofs of Main Results

3.1 Connections between WE and learning

3.1.1 Proof of Theorem 1.4

Lemma 3.1. Consider a language L ∈ NP. For s2, ε
−1, ℓ : N → N, suppose a (SIZE[s2], ε)-secure

ℓ-length witness encryption scheme (Enc,Dec) exists for L. Let the polynomial s1 be such that s1(n)
upper bounds the running times of Enc and Dec on L-instances of length n. Let s′1(ℓ(n)) = s1(n)

2,
s′2(ℓ(n)) = s2(n), and 2 · ε′(ℓ(n)) = ε(n).

Then, there is a half-Levin reduction from L to CGL
s′2
s′1
[ε′] mapping L-instances of length n to

distributions supported over {0, 1}ℓ(n) × {0, 1}.

Proof. Given an L-instance z ∈ {0, 1}n, the reduction to CGL
s′2
s′1
[ε′] will output a distribution E as

follows.

Sample b ∼ U . Let x := Enc(z, b) ∈ {0, 1}ℓ(n). Output (x, b).

First consider the case that z ∈ L. Let w be a witness for z. Let C be the circuit that, with z
and w hard-wired, given x as input, outputs b := Dec(x, z, w). Note that the size of C is less than
s1(n)

2 = s′1(ℓ(n)). Moreover, since C is efficiently computable given z and w, the reduction is a
half-Levin reduction. By the correctness of the witness encryption scheme, we have

Pr
(x,b)∼E

[C(x) = b] = 1.

Thus, E is a yes-instance of CGL
s′2
s′1
[ε′].

Now consider the case that z /∈ L. Toward a contradiction, suppose there exists a circuit C of
size at most s′2(ℓ(n)) = s2(n) such that

Pr
(x,b)∼E

[C(x) = b] ≥ 1

2
+ ε′(ℓ(n)) =

1

2
+

ε(n)

2
.

Then,

1

2
+

ε(n)

2
≤ 1

2
· Pr
Enc,b

[C(x) = 0 | b = 0] +
1

2
· Pr
Enc,b

[C(x) = 1 | b = 1]

=
1

2
+

1

2
· (Pr[C(x) = 1 | b = 1]− Pr[C(x) = 1 | b = 0]) ,

which implies that

|Pr[C(Enc(z, 1)) = 1]− Pr[C(Enc(z, 0)) = 1]| ≥ ε(n),

contradicting the security of the witness encryption scheme. Thus, E is a no-instance of CGL
s′2
s′1
[ε′].

This completes the proof of the lemma.

Observe that a P/poly-secure encryption scheme is (SIZE[s], ε)-secure for all polynomials s and
ε−1. Thus, we obtain the corollary below, which gives the first direction of Theorem 1.4.
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Corollary 3.2. Consider any language L ∈ NP, and suppose a P/poly-secure witness encryption
scheme (Enc,Dec) exists for L. Then, there exist a polynomial s1 and a pair of machines (R,Rwit)
such that, for all polynomials s2, ε

−1, (R,Rwit) is an honest half-Levin reduction from L to CGLs2s1 [ε].

Lemma 3.3. Consider any polynomials s1,m : N → N, any s2, ε
−1 : N → N, and any language

L ∈ NP. Suppose there is a half-Levin reduction (R,Rwit) from L to CGLs2s1 [ε], where on L-instances

of length n ∈ N, R outputs distributions supported over {0, 1}m(n) × {0, 1} in time tR(n), and Rwit

runs in time tRwit(n).
Then, there is a (SIZE[s′2], ε

′)-secure (m(n) + 1)-length witness encryption scheme for L, where
s′2(n) = s2(m(n))/2, ε′(n) = 2 · ε(m(n)), Enc runs in time O(tR(n)), and Dec runs in time
O(tRwit(n)).

Proof. We define a witness encryption scheme for L as follows.

For z ∈ {0, 1}n and a ∈ {0, 1}, Enc(z, a) computes E = R(z), samples (x, b) ∼ E and
then outputs (x, a⊕ b).

Dec((x, c), z, w) computes A := Rwit(z, w) and then outputs A(x)⊕ c.

We first show the correctness of (Enc,Dec). Suppose z is a yes-instance of L with witness w.
Then, by the correctness of the half-Levin reduction, A = Rwit(z, w) is a witness for E = R(z) ∈
CGLs2s1 [ε]; that is, A is a circuit of size at most s1(m(n)) such that

Pr
(x,b)∼E

[A(x) = b] = 1.

Then, for any a ∈ {0, 1} and any random choice of (x, b) made by Enc, it holds that A(x) = b, so
Dec((x, a⊕ b), z, w) correctly outputs a = b⊕ (a⊕ b).

We now argue for security. Suppose z is a no-instance of L. Then E = R(z) is a no-instance of
CGLs2s1 [ε]; that is, for any circuit A of size at most s2(m(n)),

Pr
(x,b)∼E

[A(x) = b] <
1

2
+ ε(m(n)).

Let A′ be any circuit of size at most s′2(n) = s2(m(n))/2. Toward a contradiction, suppose8

Pr[A′(Enc(z, 0)) = 1]− Pr[A′(Enc(z, 1)) = 1] ≥ ε′(n) = 2 · ε(m(n)).

By definition of Enc, the above can be written as

Pr
(x,b)∼E

[A′(x, b) = 1]− Pr
(x,b)∼E

[A′(x, 1⊕ b) = 1] ≥ 2 · ε(m(n)).

Let PA′
denote Yao’s next-bit predictor applied to A′. In particular,

On input x ∈ {0, 1}n, PA′
samples a random bit c ∼ U and outputs c iff A′(x, c) = 1.

8We have removed the absolute value signs without loss of generality: a similar argument can be applied if the
left-hand side is at most −ε′(n).
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By a standard argument, it holds for some fixed choice of c ∈ {0, 1} that

Pr
(x,b)∼E

[PA′
(x) = b] ≥ 1

2
+ ε(m(n)).

Finally, observe that PA′
with randomness fixed as above can be implemented as a circuit of size at

most s2(m(n)). This contradicts the assumption that E is a no-instance of CGLs2s1 [ε]. We conclude
that Enc is (SIZE[s′2], ε

′)-secure.
This completes the proof of the lemma.

Since a witness encryption scheme that is (SIZE[s], ε)-secure for all polynomials s and ε−1 is
P/poly-secure, we obtain the corollary below, which gives the second direction of Theorem 1.4.

Corollary 3.4. Consider any language L ∈ NP. Suppose there exist a polynomial s1 and a pair of
machines (R,Rwit) such that, for all polynomials s2, ε

−1, (R,Rwit) is an honest half-Levin reduction
from L to CGLs2s1 [ε]. Then, there is a P/poly-secure witness encryption scheme for L.

3.1.2 Proof of Theorem 1.6

Lemma 3.5. Consider any language L ∈ NP, and suppose a BPP-secure witness encryption scheme
(Enc,Dec) exists for L.

Then, there exist a polynomial s1 and a pair of machines (R,Rwit) such that, for all polynomials
s2 and ε−1, (R,Rwit) is an honest BPP-black-box half-Levin reduction from L to search-CGLs2s1 [ε]

Proof. Consider a language L ∈ NP with witness relation RL ⊆ {0, 1}n×{0, 1}nc
for some constant

c ∈ N and an L-instance z ∈ {0, 1}n. Let (Enc, Dec) be a BPP-secure ℓ-length witness encryption
scheme for L. Let the polynomial s1 be such that s1(ℓ(n)) upper bounds both nc and the running
time of Dec on L-instances of length n. As in Lemma 3.1, we consider the following distribution E .

Sample b ∼ U . Let x := Enc(z, b) ∈ {0, 1}ℓ(n) and output (x, b).

Our reduction R will make one query to its oracle: namely, (z, E). After receiving a hypothesis h in
return, R will sample from E and simulate h to obtain an empirical estimate of Pr(x,b)∼E [h(x) = b].
R will accept iff the estimate of this value is greater than 1/2 + ε(ℓ(n))/3.

Let A be a PPT algorithm, z ∈ {0, 1}n an instance of L, and s2, ε
−1 arbitrary polynomials.

Assume that A meets the condition in Definition 2.14 on z: namely, letting (z, E) be the query
made by R(z), if E is not a no-instance of CGLs2s1 [ε], then with probability at least 1− 2−Ω(n) over
its internal randomness, A returns a hypothesis h with agreement at least 1/2 + ε(ℓ(n))/2 over E .

First consider the case that z ∈ L. Let w ∈ {0, 1}nc
be a witness for z. Let C be the circuit

that, with z and w hard-wired, given x as input, outputs b := Dec(x, z, w). Note that the size of C
is at most s1(ℓ(n))

2. Without loss of generality, assume s2(ℓ(n)) ≥ s1(ℓ(n))
2. By the correctness

of the witness encryption scheme, we have

max
C′∈SIZE[s2(ℓ(n))]

{
Pr

(x,b)∼E
[C ′(x) = b]

}
≥ max

C′∈SIZE[s1(ℓ(n))2]

{
Pr

(x,b)∼E
[C ′(x) = b]

}
≥ Pr

(x,b)∼E
[C(x) = b]

= 1.
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This implies that E is a yes-instance of CGLs2
(s1)2

[ε]. Moreover, by the assumption on A, A outputs

a hypothesis with agreement at least 1/2 + ε(ℓ(n))/2 over E with probability at least 1 − 2−Ω(n),
so the reduction accepts with probability at least 1− 2−Ω(n) overall.

Now consider the case that z /∈ L. Toward a contradiction, suppose that with probability at
least 1− ε(ℓ(n))/4, A returns a hypothesis h such that

Pr
(x,b)∼E

[h(x) = b] ≥ 1

2
+

ε(ℓ(n))

4
.

Let A′ be the algorithm that, on input (z, x), constructs the distribution E from z as above,
simulates A on (z, E) to obtain a hypothesis h, and then outputs h(x). Then,

Pr
A ; (x,b)∼E

[A′(z, x) = b] ≥
(
1− ε(ℓ(n))

4

)
·
(
1

2
+

ε(ℓ(n))

4

)
>

1

2
+

ε(ℓ(n))

16
.

By the reasoning in Lemma 3.1 and the definition of E , this implies that

∣∣Pr[A′(z,Enc(z, 1)) = 1]− Pr[A′(z,Enc(z, 0)) = 1]
∣∣ ≥ ε(ℓ(n))

8
,

contradicting the security of the witness encryption scheme on input z. So, with probability greater
than ε(ℓ(n))/4, A returns a hypothesis h with agreement over E less than 1/2+ ε(ℓ(n))/4, in which
case the reduction rejects with probability 1−2−Ω(n). Overall, the reduction rejects with probability
greater than ε(ℓ(n))/8 = n−O(1), as desired. Finally, by the assumption on A, E must be a no-
instance of CGLs2

(s1)2
[ε].

Also note: it is easy to see that the reduction is half-Levin, since a circuit C simulating Dec
can always be constructed from an instance z′ and witness w′ in polynomial time.

The correctness of BPP-black-box half-Levin reduction follows. This completes the proof of the
lemma.

Lemma 3.6. Consider any language L ∈ NP. Suppose there exist a polynomial s1 and a pair
of machines (R,Rwit) such that, for all polynomials s2, ε, (R,Rwit) is a BPP-black-box half-Levin
reduction from L to search-CGLs2s1 [ε]. Then, BPP-secure witness encryption exists for L.

Proof. Let (R,Rwit) be a BPP-black-box half-Levin reduction from L to search-CGL, and let the
polynomial m : N → N be such that R maps L-instances of length n to distributions E supported
over {0, 1}m(n)×{0, 1}. We define a witness encryption scheme for L as in Lemma 3.3. In particular:

For z ∈ {0, 1}n and a ∈ {0, 1}, Enc(z, a) computes the query E made by R(z), samples
(x, b) ∼ E and then outputs (x, a⊕ b) ∈ {0, 1}m(n)+1.

Dec((x, b′), z, w) computes C := Rwit(z, w) and then outputs C(x)⊕ b′.

We will first show the correctness of (Enc,Dec). Suppose z ∈ {0, 1}n is a yes-instance of L with
witness w. By the definition of a half-Levin reduction to search-CGL, C = Rwit(z, w) is a circuit of
size at most {0, 1}s1(m(n)) such that

Pr
(x,b)∼E

[C(x) = b] = 1.
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Then, for any a ∈ {0, 1},
Pr

(x,b)∼E
[Dec((x, a⊕ b), z, w) = a] = 1,

as desired.
We will now show the security of (Enc,Dec). Toward a contradiction, suppose that for some

PPT algorithm A and polynomial q, for infinitely many n ∈ N and no-instances z ∈ {0, 1}n of L,

Pr[A(z,Enc(z, 0)) = 1]− Pr[A(z,Enc(z, 1)) = 1] ≥ 1

q(n)
.

Let the polynomial s2 be such that s2(m(n))1/2 upper bounds the running time of A on inputs of
length m(n) + 1 + n, and let ε(m(n)) := 1/(2 · q(n)).

Consider the PPT algorithm A′ that, on input (z, E), outputs a circuit describing PA as in
Lemma 3.3, fixing the bit c that maximizes success probability over E , which A′ determines by
sampling from E and taking empirical estimates. By the same reasoning as in Lemma 3.3, with
probability at least 1− 2−Ω(n), A′ outputs a hypothesis PA of size at most s2(m(n)) such that

Pr
(x,b)∼E

[PA(x) = b] ≥ 1

2
+ ε(m(n)).

Thus, for infinitely many inputs z, A′ meets the condition on the oracle of an instance-wise BPP-
black-box reduction to search-CGLs2s1 [ε]: namely, given the query (z, E) made by R(z), A′ returns a
hypothesis with non-trivial success probability over E . However, E is not a no-instance of CGLs2s1 [ε]
for the no-instance z of L. This contradicts the correctness of R.

3.1.3 Proof of Theorem 1.7

Lemma 3.7. Consider a language L ∈ NP. For s2, ε
−1 : N → N and a constant c ∈ N, assume

that (SIZE[s2], ε)-secure c log n-length witness encryption exists for L. Let the polynomial s1 be
such that s1(n) upper bounds the running time of Dec on L-instances of length n. Let s′1(c log n) =
4 · s1(n) · log n, s′2(c log n) = s2(n), and 2 · ε′(c log n) = ε(n). Assume, for some E-computable

distribution family D, that E ⊈ io-SIZE
1
2
+ε′(n)

D [s′2(n)].

Then, there is a half-Levin reduction (R,Rwit) from L to GapDistMCSP
s′2
s′1
[ε′] mapping L-instances

of length n to truth-tables of length nc, where Rwit runs in time at most s′1(c log n).

Proof. The reduction R will first define a distribution E as in the proof of Lemma 3.1: namely,

Sample b ∼ U . Let x := Enc(z, b) ∈ {0, 1}c logn. Output (x, b).

Let E ′ denote the marginal distribution of E over x ∈ {0, 1}c logn.
The reduction R then proceeds as follows. If, for all x ∈ supp(E ′), there is a unique bx ∈ {0, 1}

such that (x, bx) ∈ supp(E), R constructs a truth-table f : {0, 1}c logn → {0, 1} such that

f(x) =

{
bx x ∈ supp(E ′)

0 otherwise

and outputs (f, E ′). If, for any x, both (x, 0), (x, 1) ∈ supp(E), then R outputs (f ′
c logn, Dc logn),

where f ′ ∈ E and f ′ /∈ SIZE
1
2
+ε′(n)

D [s′2(n)]. This function exists by our assumption, and both it and a
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table representing Dc logn can be constructed uniformly in time poly(n). Note that (f ′
c logn, Dc logn)

is a no-instance of GapDistMCSP
s′2
s′1
[ε′].

In the case that z ∈ L, for all x ∈ supp(E ′), there is a unique bx ∈ {0, 1} such that (x, bx) ∈
supp(E); this follows from the correctness of the witness encryption scheme. Thus, using a circuit

for Dec as in the proof of Lemma 3.1, we get that (f, E ′) is a yes-instance of GapDistMCSP
s′2
s′1
[ε′].

Let Rwit be the function that, given z and a witness w for z ∈ L, outputs a circuit describing
Dec(−, z, w). It follows that (R,Rwit) is a half-Levin reduction. Note that Rwit runs in time at
most 4 · s1(n) · log n.

In the case that z /∈ L, if both (x, 0), (x, 1) ∈ supp(E), then R correctly outputs a no-instance
of GapDistMCSP. Now supposing that the labels associated with strings x are unique, let C be any
circuit of size s′2(c log n) = s2(n). Toward a contradiction, suppose

Pr
(x,bx)∼E

[C(x) = bx] = Pr
x∼E ′

[C(x) = f(x)] ≥ 1

2
+ ε′(c log n).

As in Lemma 3.1, this implies∣∣∣Pr
r
[C(Enc(z, 1, r)) = 1]− Pr

r
[C(Enc(z, 0, r)) = 1]

∣∣∣ ≥ ε(n),

contradicting the security of the witness encryption scheme. Thus, (f, E) is a no-instance of

GapDistMCSP
s′2
s′1
[ε′].

This completes the proof of the lemma.

Lemma 3.8. Consider a constant c ∈ N and s1, s2, ε
−1 : N → N. Suppose that there is a half-Levin

reduction (R,Rwit) from SAT to GapDistMCSPs2
s1 [ε], where R maps SAT-instances of length n ∈ N

to truth-tables of length nc, and Rwit runs in time at most Õ(s1(c log n)) on L-instances of length
n. Let s′1(n) = s1(c log n), s

′
2(n) = s2(c log n)/2, and ε′(n) = 2 · ε(c log n).

Then, there is a (SIZE[s′2], ε
′)-secure Õ(s′1(n))-decryption-time (c log n + 1)-length witness en-

cryption scheme for SAT. Moreover, there exists an E-computable distribution family D such that

E ⊈ io-SIZE
1
2
+ε(n)

D [s2(n)].

Proof. We argue as in the proof of Lemma 3.3. In particular, the witness encryption scheme for
SAT is defined as follows.

For φ ∈ {0, 1}n and a ∈ {0, 1}, Enc(φ, a) computes (f,D) = R(φ), samples x ∼ D and
then outputs (x, a⊕ f(x)).

Dec((x, c), φ, w) computes A := Rwit(φ,w) and then outputs A(x)⊕ c.

Note that, the output length of Enc is c log n + 1 and that the running time of Dec is at most
Õ(s′1(n)).

For φ ∈ SAT, A = Rwit(φ,w) is a circuit of size at most s1(c log n) such that

Pr
x∼D

[A(x) = f(x)] = 1.

The correctness of (Enc,Dec) follows as in Lemma 3.3.
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For φ /∈ SAT, by the same reasoning as in Lemma 3.3, we have that Enc is (SIZE[s′2], ε
′)-secure.

To see the second conclusion of the lemma, let φ ∈ {0, 1}n be a trivial no-instance of SAT,
constructible uniformly in time O(n). Let (f,D) = R(φ). By the correctness of the reduction
(R,Rwit) and the definition of GapDistMCSP, we have that, for all circuits C of size s2(c log n),

Pr
x∼D

[C(x) = f(x)] ≤ 1

2
+ ε(c log n).

Also note that tables representing both f and D are uniformly constructible in time 2O(c logn), as
desired.

3.2 NP-hardness of learning polynomial-size circuits

We start with the following auxiliary lemmas.

Lemma 3.9 ([NW94; RRV02]). For all sufficiently large ℓ,m ∈ N with m < 2ℓ, for some d =
O(ℓ2 logm) there are sets S1, ...,Sm ⊆ [d] constructible in time poly(m, d) such that |Si| = ℓ and∑

j<i

2|Si∩Sj | ≤ m− 1

for all i ∈ [m].

Lemma 3.10 ([HR24]). For n, t ∈ N, consider the “multiselector” function Seln→t that, given a
string x ∈ {0, 1}n and indices i1, ..., it ∈ [n], outputs (xi1 , ..., xit).

For all n, t ∈ N, there is a logspace-uniform boolean circuit of size O(n+ t · log3(n)) computing
Seln→t.

Lemma 3.11 ([IW97]; see [Hir22] and [Hir20]). There exist constants a, c ∈ N as follows. Consider
a function f : {0, 1}n → {0, 1} and a parameter ε = o(1). There is a function f̂ : {0, 1}a·n → {0, 1}
such that the truth-table of f̂ can be computed from that of f in time poly(2n/ε) given ε, and f̂ has
the following properties.

• Local encodability: There is a non-adaptive f -oracle circuit of size at most (n/ε)c computing
f̂ , making at most 1/ε2 queries to f .

• Decodability: For any oracle O : {0, 1}∗ → {0, 1} and sufficiently large time bound t ∈ N,

K(2n·t/ε)c, O(f) ≤ Kt, O
1
2
+ε

(f̂) + 2n/2 · (1/ε)c + o(2n).

The following is the “algorithmic information extraction” lemma of [Hir22] modified to give a
set B defined in terms of Kpoly rather than K. It is easy to see from the proof in [Hir22] that B can
be defined in this way.

Lemma 3.12. Consider an algorithm D running in time tD, parameters n,∆, ε−1, ℓ, d ∈ N, and
gi : {0, 1}ℓ → {0, 1} for i ∈ [n]. Let((

S(1)
1 , ...,S(1)

∆

)
, ...,

(
S(n)
1 , ...,S(n)

∆

))
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be a family of ℓ-sized subsets of [d]. Define

G(z) =
(
z, w(1)(z), ..., w(n)(z)

)
,

where for z ∈ {0, 1}d,

w(i)(z) =
(
gi

(
z|S(i)

1

)
, ..., gi

(
z|S(i)

∆

))
∈ {0, 1}∆.

Define a set

B :=

 i ∈ [n]

∣∣∣∣∣∣ K4·2ℓ·tD, D
1
2
+ε

(gi) ≤ 4 · (∆n) ·
∑
j<i

2|Si∩Sj |

 .

Then, for any advice string β ∈ {0, 1}O(∆n),

|Pr [D(β,G(z))]− Pr [D(β,G(z)|B)]| < 2∆n · ε,

where G(z)|B = (z, u(1), ..., u(n)) is such that u(i) = w(i)(z) for i ∈ B and u(i) ∼ U∆ for i /∈ B. The
probabilities above are over z ∼ Ud and u(i) ∼ U∆.

Lemma 3.13. For some polynomial p and constant k ∈ N, for any polynomials g,∆, θ, γ−1 with
θ(n) ≤ n, ∆(n) ≥ n, and γ(n) ≤ 4n−4 for n ∈ N, there exists a polynomial-time machine R
satisfying the following. For a polynomial s1 with s1(n) ≥ γ−1(∆(n))k for n ∈ N, let

λ(n) =
s1(n)

θ(n) · log n
,

and consider an advice string f = (fi ∈ {0, 1}λ(n))i∈[n] such that, for every subset B ⊆ [n],

Kp(λ(n))(fB) ≥ |B| · λ(n)− 2n · log n.

Then, given as input f and an instance φ of GapgMMSA∆
θ over n variables, R outputs a circuit E

sampling a flat distribution supported over {0, 1}2∆(n)·n × {0, 1} as follows.

• If φ is a yes-instance of GapgMMSA∆
θ , then there exists a circuit C of size at most s1(n) such

that
Pr

(x,b)∼E
[C(x) = b] = 1.

• If φ is a no-instance of GapgMMSA∆
θ , then for every circuit C ′ of size at most

s2(n) := s1(n) · g(n)/(log n)3,

it holds that

Pr
(x,b)∼E

[C ′(x) = b] <
1

2
+ γ(n).

Proof. Let φ be a given instance of GapgMMSA∆
θ , where φ is over n variables. Let a, c ∈ N be as in

Lemma 3.11. Consider an arbitrary polynomial s1 such that s1(n) ≥ γ(∆)−8c. Define ℓ := a log(λ).
Let f = (fi ∈ {0, 1}λ)i∈[n] satisfy the condition stated in the lemma.
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The reduction R. Identifying each fi with a function fi : {0, 1}log λ → {0, 1}, let f̂i : {0, 1}ℓ →
{0, 1} be the encoded function as in Lemma 3.11 with ε = γ(∆)/(2∆2). Let

(
S(1)
1 , ...,S(1)

∆

)
, ...,(

S(n)
1 , ...,S(n)

∆

)
be the sets of size ℓ guaranteed by Lemma 3.9 with d = O(ℓ2 · log(∆n)) = o(∆n).

For any choice of z ∈ {0, 1}d, r ∈ {0, 1}∆, and b ∈ {0, 1}, define (v1, ..., vn) = Share(φ, b; r) ∈
({0, 1}∆)n, and define the string x(z, r, b) as(

z ,
(
f̂1

(
z|S(1)

1

)
, ..., f̂1

(
z|S(1)

∆

))
⊕ v1 , ... ,

(
f̂n

(
z|S(n)

1

)
, ..., f̂n

(
z|S(n)

∆

))
⊕ vn

)
∈ {0, 1}d+∆·n,

padded to have length 2∆n. The output of the reduction is a circuit sampling the following
distribution E :

For uniformly random z ∼ Ud, r ∼ U∆, and b ∼ {0, 1}, output (x(z, r, b), b).

Note that E has a poly(n)-size sampling circuit and that the marginal distribution of E over x is
flat.

Completeness. To see the completeness of the reduction, suppose MMSA(φ) ≤ θ, and let Tα =
{j ∈ [n] | α(j) = 1} where α : [n] → {0, 1} is an assignment of Hamming weight at most θ satisfying
φ.

We will construct a circuit C of size at most s1(n) such that C(x) = b for all (x, b) in the
support of E . C takes as input a string x = (z, w1, ..., wn) with z ∈ {0, 1}d and wi ∈ {0, 1}∆ for
i ∈ [n], padded to have length 2n∆. C uses θ∆ encoding circuits as in Lemma 3.11 to compute the
values {

f̂j

(
z|S(j)

m

) ∣∣∣ j ∈ Tα , m ∈ [∆]
}

by making at most θ∆ · (1/ε)2 < γ−4(∆) total queries to fTα . C answers these queries with the
string fTα hard-wired along with a multiselector circuit as in Lemma 3.10. C then XORs the
outputs of the encoding circuits with the appropriate inputs wj to obtain an authorized set of
shares (vj)j∈Tα . Finally, C applies Rec with φ and Tα hard-wired to obtain the secret b.

C consists of 2n∆ input gates, θλ gates hard-wiring fTα , O(θλ + γ−4(∆) · log3(θλ)) = O(θλ)
gates for multiselection, θ∆ encoding circuits each of size (log λ/ε)c = o(λ), O(θ∆) gates to XOR,
and O((θ∆)2) gates for Rec. This amounts to at most O(θλ) < s1(n) gates in total.

Thus, there exists a circuit C of size at most s1(n) such that

Pr
(x,b)∼E

[C(x) = b] = 1.

Soundness. We now argue for the soundness of the reduction. Suppose MMSA(φ) > θ · g(n).
For a fixed circuit C ′ of size s2(n) = s1(n) · g(n)/(log n)3 , define a program D as follows. D takes
as advice a string β(b, r) := (b, v1, ..., vn) ∈ {0, 1}O(n·∆), where (v1, ..., vn) = Share(φ, b; r), and
accepts its input (z, w1, ..., wn) if and only if

C ′(z, w1 ⊕ v1, ..., wn ⊕ vn) = b.

Note that D runs in time at most tD := 4 ·s2(n) · log(s2(n)). Now, define a set B as in Lemma 3.12,
applying the lemma with gi = f̂i for i ∈ [n]. In particular,

B :=

{
i ∈ [n]

∣∣∣∣ K4·λa·tD, D
1
2
+ε

(f̂i) ≤ (∆n)2
}
.
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By Lemma 3.12,

|Pr[D(β,G(z))]− Pr[D(β,G(z)|B)]| < 2∆2 · ε
= γ(∆), (1)

where G and G(z)|B are as defined in that lemma.
We claim that B is not too large. Note that for i ∈ B, by the decodability statement of

Lemma 3.11, for some polynomial q,

Kq(λ), D(fi) ≤ K4·λa·tD, D
1
2
+ε

(f̂i) + λ1/2 · (1/ε)c + o(λ)

< o(λ). (definition of B)

Thus, for p(λ) := n2 · q(λ) · tD,

|fB| = |B| · λ ≤ Kp(λ)(fB) + 2n · log n

≤ Kn2·q(λ), D(fB) + |D|+ 2n · log n

≤
∑
i∈B

(
Kq(λ), D(fi)

)
+O(|C ′| · log |C ′|) + |β|+O(n · log n)

<
s1(n) · g(n)

2 log n
+ o(|B| · λ)

=
λ · θ · g(n)

2
+ o(|B| · λ).

It follows that

|B| ≤ θ · g(n)
2 · (1− o(1))

< θ · g(n),

so B is not an authorized set.
Now observe that

Pr
z,r,b

[C ′(x(z, r, b)) = b] = Pr[D(β(b, r), G(z)) = 1] (definition of D)

< Pr[D(β(b, r), G(z)|B) = 1] + γ(∆) (Eq. (1))

≤ 1

2
+ γ(∆),

where the last line follows from the security of Share. We conclude that for any circuit C ′ of size
at most s2(n),

Pr
(x,b)∼E

[C ′(x) = b] <
1

2
+ γ(∆) ≤ 1

2
+ γ(n).

This completes the proof of the lemma.

Lemma 3.14 (Claim 7.3 of [Hir22]). For a uniformly random string f = (fi)i∈[n] ∼ (Uλ)
n, it holds

with probability 1− 2−n that for all subsets B ⊆ [n],

K(fB) ≥ |B| · λ− 2n · log n.
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Theorem 3.15 (Restatement of Theorem 1.8). For some constant c ∈ N and g : N → N with

g(n) = n1/(log logn)O(1)
for n ∈ N, for any polynomials γ−1, s1 such that s1(n) ≥ γ−c(n) for n ∈ N,

there is a randomized many-one reduction from SAT to CGLs1·gs1 [γ].

Proof. By Lemma 2.25, there is a reduction R0 from SAT to Gapg0MMSA∆
θ for some

g0(n) = n
1

(log logn)O(1) ,

polynomial ∆(n) ≥ n, and θ(n) ≤ n. Let k ∈ N be the constant of Lemma 3.13, and define the
constant c ∈ N such that nc > ∆(n)k. For arbitrary polynomials γ−1, s1, define γ

′(n) := γ(2n·∆(n))
and s′1(n) := s1(2n ·∆(n)) for n ∈ N. We will apply Lemma 3.13 with parameters s′1, γ

′, g0, ∆, and
θ.

More specifically, our reduction will first apply R0 to obtain an instance φ of Gapg0MMSA∆
θ on

n variables, and then it will sample a random string f = (fi)i∈[n] ∼ (Uλ)
n. It will then apply R as

in Lemma 3.13 to obtain an instance E of CGLs2s1 [γ] supported over {0, 1}2n·∆(n) × {0, 1}, where

s2(n ·∆(n)) =
s1(2n ·∆(n)) · g0(n)

(log n)3

= s1(2n ·∆(n)) · g(2n ·∆(n)),

where we define g(2n ·∆(n)) := g0(n)/(log n)
3.

By Lemma 3.14, with probability 1 − 2−n over the choice of f , f satisfies the condition of
Lemma 3.13. The desired statement is then immediate from the correctness of R and the definition
of CGL.

Corollary 1.9 now follows by combining Theorem 1.8 with Lemma 2.15.

3.3 NP-hardness of improper learning in other settings

Theorem 3.16 (Restatement of Theorem 1.12). There exist a distribution D ∈ PSAMP, an NP-
complete language L, and a polynomial s1 such that, for all polynomials s2, ε

−1, there is a function
λ : N → N such that λ(n) = O(log n) for n ∈ N and L reduces to D-oracle-CGLs2s1 [ε, λ] under an
honest half-Levin reduction.

Proof. Let D = {Dλ}λ∈N ∈ PSAMP be the distribution family and L the NP-complete language of
Lemma 2.23 with witness relation VL. That is, each Dλ is supported over truth-tables of functions
O : {0, 1}λ → {0, 1}, and there is an oracle witness encryption scheme (Enc,Dec) for L with respect
to D secure against programs of size and query complexity 2λ/ℓ and with advantage 2−λ/ℓ for some
constant ℓ ∈ N.

Let d ∈ N be such that nd upper-bounds the running time of Dec(−) on L-instances of length n,
and define s1(n) = n2d. Let s2 and ε be given, and define λ(n) = ℓ · log(s2(n) · ε(n)−1) = O(log n)
for n ∈ N.

We now give a reduction from L to D-oracle-CGLs2s1 [ε, λ]. Given an L-instance z ∈ {0, 1}n for

some n ∈ N, the reduction outputs E(−) as follows.

Given access to an oracleO : {0, 1}λ(n) → {0, 1}, sample b ∼ U , and let x = EncO(1λ(n), z, b).
Output (x, b).
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First suppose z ∈ L. Let w be such that (z, w) ∈ VL. Consider the oracle circuit C(−) that,
with (z, w) hard-wired, given input x and oracle O, simulates DecO(1λ(n), x, z, w) and returns its
output b. Note that C(−) has size at most s1(n). By the correctness guarantee of (Enc,Dec), for
every O in the support of Dλ(n) and every (x, b) in the support of E , it holds that CO(x) = b.
Therefore, in this case, the reduction outputs a yes-instance of D-oracle-CGLs2s1 [ε, λ].

Now suppose z /∈ L, and let C(−) be any oracle circuit of size at most s2(n). Note that

2λ/ℓ = s2(n) · ε(n)−1 > s2(n),

so (Enc,Dec) is secure against C. Suppose for some oracle O that

Pr
(x,b)∼E

[CO(x) = b] ≥ 1

2
+ ε(n).

By the same reasoning as in Lemma 3.1,∣∣∣Pr[CO(EncO(1λ(n), z, 1)) = 1]− Pr[CO(EncO(1λ(n), z, 0)) = 1]
∣∣∣ ≥ ε(n) >

1

2λ(n)/ℓ
.

By the security of the witness encryption scheme, this occurs with probability at most 2−λ(n)/ℓ <
ε(n) over O ∼ Dλ(n). Thus, in this case, the reduction outputs a no-instance of D-oracle-CGLs2s1 [ε, λ].

By combining Theorem 1.12 with Lemma 2.16, we obtain the following.

Corollary 3.17 (Restatement of Corollary 1.13). For some polynomial s, for any constant c ∈ N,
it is NP-hard under a randomized one-query reduction to agnostically oracle-PAC learn SIZE[s(n)]
by SIZE[s(n)c].

Theorem 1.12 also implies NP-hardness of learning RAMs in the improper setting, as indicated
below.

Corollary 3.18 (Restatement of Corollary 1.14). For all polynomials g and ε−1, Gapg,εRAM-MINLT
is NP-hard under a randomized many-one reduction.

Proof. We show that D-oracle-CGL as in Theorem 1.12 reduces to GapRAM-MINLT. The main idea
is to include the whole truth-table of an oracle O sampled from Dλ(n) in all the inputs to a RAM.

Let the polynomials g and ε−1 be given. Let s1 be as in Theorem 1.12. Let s2(n) = g(s1(n))
4,

and let λ be as in Theorem 1.12 applied with s2 and ε. Let D be the distribution guaranteed by
Theorem 1.12, and recall that Dλ(n) is supported over truth-tables of length 2λ(n), where s2(n) ·
ε−1(n) < 2λ(n) ≤ poly(n).

The reduction, given an instance E(−) of D-oracle-CGLs2s1 [ε, λ], samples O ∼ Dλ(n) and then
defines the following distribution E ′:

Sample (x, b) ∼ EO, let x′ = (x,O), and output (x′, b).

The reduction outputs (E ′, 1s1(n)
2
, 1s1(n)

2
).

First suppose that E(−) is a yes-instance of D-oracle-CGL. In this case, there is an oracle circuit
C(−) of size at most s1(n) such that, for all O in the support of Dλ(n) and all (x, b) in the support
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of EO, CO(x) = b. Note that C can be simulated by a program M of size and running time at most
s1(n)

2. We obtain that for all (x′, b) ∈ supp(E ′),

Mx′
= Mx,O = b,

so (E ′, 1s1(n)
2
, 1s1(n)

2
) is a yes-instance of Gapg,εRAM-MINLT.

Now suppose that E(−) is a no-instance of D-oracle-CGL. Consider any random-access machine
M of size and running time at most g(s1(n)

2). Note that M can be simulated by an oracle circuit C

of size at most s2(n), where we may let the “x” part of the input x′ = (x,O) ∈ {0, 1}n ×{0, 1}2λ(n)

be a standard (non-oracle) input to C. Then, since E(−) is a no-instance of D-oracle-CGL, with
probability at least 1− ε(n) over O ∼ Dλ(n),

Pr
(x,b)∼EO

[
CO(x) = b

]
<

1

2
+ ε(n).

This implies, for such oracles O, that

Pr
(x′,b)∼E ′

[
Mx′

= b
]
<

1

2
+ ε(n).

Thus, with probability at least 1 − ε(n) over the randomness of the reduction, (E ′, 1s1(n)
2
, 1s1(n)

2
)

is a no-instance of Gapg,εRAM-MINLT, as desired.

3.4 Excluding Pessiland, Heuristica, and Minicrypt

We show that if the hardness of learning can be based on the hardness of NP (under a non-adaptive
reduction), then so can the existence of OWFs. Applying our main results connecting witness
encryption and the NP-hardness of learning, we obtain Theorems 1.16 and 1.17 as consequences.

3.4.1 Proof of Theorem 1.15

We will make use of the following lemmas.

Lemma 3.19. Let f = {fz}z∈{0,1}∗ be a polynomial-time computable auxiliary input function. If
infinitely-often one-way functions do not exist, then for every distribution family D ∈ PSAMP and
constant b ∈ N, there exists a PPT machine I such that for all sufficiently large n ∈ N,

Pr
z∼Dn

[ I is an n−b-inverter for fz ] ≥ 1− 1

nb
.

Moreover, if I does not n−b-invert fz for some z ∈ {0, 1}n, then for any y ∈ {0, 1}∗,

Pr
I
[ I(z, y) outputs ⊥ ] ≥ 1− 2−n.

Proof. Assume that i.o. one-way functions do not exist. Let S be a sampler for D. For a constant
b ∈ N, let A be an n−4b-inverter for the function g defined as g(r, x) := fS(r)(x). Define the PPT
machine I as follows.

On input (z, y), sample uniformly random strings y1, ..., yn8b . Compute the fraction γ
of i ∈ [n8b] such that A(z, yi) fails to output a pre-image of its input under g. If γ is
less than 2/n4b, output A(z, y). Otherwise, output ⊥.
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We first claim that, with probability at least 1−n−2b over z ∼ D, A(z,−) is an n−b inverter for fz.
Toward a contradiction, suppose the claim does not hold. That is, with probability greater than
n−2b over z ∼ Dn, A(z,−) only inverts fz with success probability 1 − n−b. But then the overall
probability of A inverting g, for uniformly random r and y, is at most

1− n−2b + n−2b · (1− n−b) < 1− n−4b,

contradicting our assumption on A. Moreover, by a Chernoff bound, the probability that γ is
greater than 2/n4b is less than 2−n. By the definition of I and a union bound, this proves the first
part of the lemma.

For the second part, suppose that A(z,−) does not n−b-invert fz. Then the expected value of
γ in the definition of I is at least n−b. By a Chernoff bound, the probability that γ is less than
2/n4b is less than 2−n. This completes the proof of the lemma.

We will require the following lemma, which states that if NP is easy on average for randomized
algorithms, then agnostic PAC learning over efficiently samplable distributions is possible.

Lemma 3.20 ([Gol+22]). If DistNP ⊆ AvgBPP, then there is a PPT machine that, for any poly-
nomial s, for all sufficiently large n ∈ N, agnostically learns SIZE[s(n)] in the improper setting over
distributions in PSAMP/poly.

It remains to exhibit a reduction from SAT to inverting an auxiliary input one-way function,
assuming NP-hardness of learning. The following lemma is as in [ABX08]. We include a proof for
completeness.

Lemma 3.21 ([ABX08]). Suppose there is a randomized non-adaptive honest reduction R and
a polynomial s : N → N such that, for every constant c ∈ N, R reduces SAT to agnostically PAC
learning SIZE[s(n)] by SIZE[s(n)c]. Then there exist a poly-time computable auxiliary input function
family f = {fφ}φ∈{0,1}∗, a constant b ∈ N, and a PPT oracle machine A satisfying the following:

for any n ∈ N, φ ∈ {0, 1}n, and PPT machine I that n−b-distributionally inverts fφ,

AI(φ) = SAT(φ).

Proof. Let R be the assumed reduction from SAT to agnostic PAC learning, let the polynomial
tR denote its running time, and let the inverse polynomial ε be such that R requires an (s, 2 · ε)-
optimal hypothesis in response to each query. Define δ(n) := ε(n)/tR(n)

2. Define an auxiliary-input
function

fφ(r0, i, r) := (r0, i, E(φ,r0)
i (r)[1]),

where E(φ,r0)
i (henceforth denoted Ei) is the ith query of R on input φ and randomness r0, sampling

a distribution (Xi, Yi). In particular, for r ∼ UtR , Ei(r)[1] represents a random sample x ∼ Xi.
Note that all such samplers Ei can be simulated uniformly in polynomial time given (φ, r0, i), by
the efficiency of R.

Let I be a PPT machine that distributionally inverts fφ. In particular, we require the success
probability of I to be such that, with probability 1− o(1) over r0 ∼ UtR(n), for every i ∈ [tR(n)], I
δ(n)10-distributionally inverts fφ(r0, i,−).

For i ∈ [tR(n)], define hypotheses hi as follows:
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On input x, invoke I to find a pre-image r under fφ(r0, i,−) of (r0, i, x), and then return
y := Ei(r)[2],

and define a machine A (taking oracle access to I) as follows:

On input φ ∈ {0, 1}n and randomness r0 ∈ {0, 1}tR(n), simulate R(φ; r0), obtaining
queries E1, ..., Em. Answer the ith query of R with the hypothesis Hi, which evaluates
hi on δ(n)−8 independent choices of randomness (used by I) and then outputs the
majority output y ∈ {0, 1}. After answering all the queries this way and completing the
simulation of R, accept φ iff R accepts.

For i ∈ [tR(n)], let f
(i)
opt be a fixed function (of arbitrary complexity) that maximizes

Pr
(x,y)∼(Xi,Yi)

[f
(i)
opt(x) = y].

We will argue that Hi(x) predicts y almost as well as f
(i)
opt over (Xi, Yi).

For any x ∈ supp(Xi), let the random variable Y x
i denote the conditional distribution y ∼

Ei(r)[2] given that Ei(r)[1] = x, for r ∼ UtR(n). For simplicity, start by considering the hypotheses ĥi

and Ĥi, which are the same as hi and Hi except taking an oracle Î that “perfectly” distributionally
inverts fφ(r0, i,−). That is,

∆
(
(r, fφ(r0, i, r)) , (Î(φ, fφ(r0, i, r)), fφ(r0, i, r))

)
= 0,

for r ∼ UtR(n). Observe that for x ∼ Xi, outputs of ĥi(x) are distributed exactly according to Y x
i .

In particular, for r ∼ UtR(n) and x = Ei(r)[1],

∆
(
(x, Y x

i ) , (x, ĥi(x))
)
= ∆

(
(x, Ei(r)[2]) , (x, Ei(Î(φ, (r0, i, x)))[2])

)
(def. of ĥi)

≤ ∆
(
(x, r) , (x, Î(φ, (r0, i, x))))

)
= ∆

(
(r, fφ(r0, i, r)) , (Î(φ, fφ(r0, i, r)), fφ(r0, i, r))

)
= 0. (2)

Now, for i ∈ [tR(n)] and strings x in the support of Xi, define

αi(x) := max
y∈{0,1}

{Pr[Y x
i = y]} .

That is, y ∈ {0, 1} is the label most likely to be associated with x by (Xi, Yi), and αi(x) is the

corresponding conditional probability. Note that f
(i)
opt(x) must always output this optimal label y,

so αi(x) is the success probability of f
(i)
opt on input x. Moreover, by Eq. (2), for every x ∈ supp(Xi),

Pr
ĥi

[
ĥi(x) = f

(i)
opt(x)

]
= αi(x). (3)

We now fix i and x and break the subsequent analysis into two cases: either f
(i)
opt predicts the

label of x with probability substantially bounded away from 1/2, or not.
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Case I: αi(x) ≥ 1/2 + δ(n)2. For j ∈ [δ(n)−8], let zj be the Bernoulli random variable that

equals 1 if ĥi(x) = f
(i)
opt(x) in the jth iteration of Ĥi(x), and 0 otherwise. Recall that Ĥi(x) = f

(i)
opt(x)

iff the former event holds in a majority of trials j ∈ [δ(n)−8]. Let

Z :=
∑

j∈[δ(n)−8]

zj ,

and note that, by Eq. (3),

E[Z] = δ(n)−8 · αi(x) ≥ δ(n)−8 ·
(
1

2
+ δ(n)

)
.

Then, by a Chernoff bound,

Pr
[
Ĥi(x) ̸= f

(i)
opt(x)

]
= Pr

[
Z ≤ δ(n)−8/2

]
≤ Pr

[
Z ≤ E[Z] · (1− δ(n)3)

]
≤ 2−Ω(n).

Case II: αi(x) < 1/2 + δ(n)2. Now,

Pr
y∼Y x

i

[Ĥi(x) ̸= y]− Pr
y∼Y x

i

[f
(i)
opt(x) ̸= y] ≤ 1

2
− (1− αi(x))

≤ δ(n)2.

Thus, in both Cases I and II, it holds that

Pr
y∼Y x

i

[Ĥi(x) ̸= y]− Pr
y∼Y x

i

[f
(i)
opt(x) ̸= y] ≤ δ(n)2.

Moreover,
∆(Ĥi(x), Hi(x)) ≤ δ(n)−8 · δ(n)10 = δ(n)2.

for x ∼ Xi. Overall, by a union bound and the definition of δ,

Pr
A
[A(φ) = SAT(φ)] ≥ 2

3
− 2 · tR(n) · δ(n)2 − o(1) =

2

3
− o(1),

as desired.

We are now ready to finish the proof of Theorem 1.15, restated below.

Theorem 3.22 (Restatement of Theorem 1.15). Suppose there is a randomized non-adaptive honest
reduction R and a polynomial s : N → N such that, for every constant c ∈ N, R reduces SAT to
agnostically PAC learning SIZE[s(n)] by SIZE[s(n)c]. Then, unless NP ⊆ BPP, there exist infinitely-
often one-way functions.

Proof. Assume the non-existence of i.o. one-way functions. Let R be the assumed randomized non-
adaptive reduction from SAT to agnostic learning SIZE[s] running in polynomial time tR. Let the
inverse polynomial ε be such that R requires (s, ε)-optimal hypotheses in response to each query,
and let the constant b ∈ N be as in Lemma 3.21. Combining Lemma 3.19 with Lemma 2.33, for
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every distribution family D ∈ PSAMP, there exists a PPT machine I such that, for all sufficiently
large n ∈ N,

Pr
z∼Dn

[ I is an n−b-distributional inverter for fz ] ≥ 1− 1

nb
,

and if I does not n−b-invert fz for some z ∈ {0, 1}∗, then for any y ∈ {0, 1}∗,

Pr
I
[ I(z, y) outputs ⊥ ] ≥ 1− 2−n.

Along with Lemma 3.21, this implies DistNP ⊆ AvgBPP. Let B be the PPT agnostic learner for
SIZE[s] guaranteed by Lemma 3.20, with accuracy and confidence parameters δ chosen such that
δ−1(n) ≥ max{tR(n)2, ε−1(n)} for all n ∈ N.

Now consider the PPT machine RB defined as follows.

On input φ ∈ {0, 1}n and randomness r0 ∼ UtR(n), simulate R(φ; r0), obtaining queries
E1, ..., Em, where each Ei samples a distribution (Xi, Yi). For each such i ∈ [m], let hi be
the output of B on input Ei. Answer the ith query of R with hi. Accept iff R accepts.

By Lemma 3.20, for all sufficiently large n ∈ N, for each i ∈ [m], with probability 1− δ(n) over the
randomness of B, B returns an (s, ε)-optimal hypothesis hi for Ei.

By a union bound and the definition of R,

Pr
RB

[RB(φ) = SAT(φ)] ≥ 2

3
− 1

tR(n)
.

We conclude that SAT ∈ BPP, as desired.

3.4.2 Proofs of Theorems 1.16 and 1.17

We will need the following lemma. For the reader’s convenience, we give a sketch of the proof in
Appendix B. Though not originally stated for the infinitely-often setting, it is easily seen to follow
from the same argument.

Lemma 3.23 ([Gar+13]). Suppose BPP-secure witness encryption exists for NP. Then, if infinitely-
often one-way functions exist, there exists public-key encryption secure infinitely often against
polynomial-time adversaries.

Theorem 1.16 is now immediate from Theorem 1.4, Lemma 2.15, Theorem 1.15, and Lemma 3.23.
Theorem 1.17 follows from Theorem 1.4 and Theorem 1.16.

4 Concluding Remarks

We have shown that the existence of secure witness encryption is equivalent to NP-hardness of
a certain learning problem (CGL) under restricted deterministic reductions. This may be taken
as evidence that computational learning is indeed NP-hard, if one believes in cryptography. At
the same time, this result also suggests that one may want to consider a more general kind of
reductions when trying to prove NP-hardness of learning, as establishing the existence of secure
witness encryption seems hard. On the other hand, actually proving NP-hardness of learning for
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restricted deterministic reductions would imply a breakthrough result that public-key cryptography
can be based on the worst-case assumption that NP ̸⊆ BPP.

There are many interesting research directions to explore in the context of cryptography and
NP-hardness of meta-complexity problems. For example, Mazor and Pass [MP24] have recently
showed that the existence of secure Indistinguishability Obfuscation (a cryptographic primitive
that implies Witness Encryption) would mean that a polynomial-gap version of MCSP cannot be
shown NP-complete under Levin reductions, unless NP ⊆ BPP. Can one get similar results for
some computational learning problems? What if one has secure Witness Encryption only? An-
other possible research direction is to find out whether existing tools from NP-hardness of learning
could unconditionally yield new non-trivial forms of witness encryption (eg. with security against
restricted circuit classes).

Lastly, of course, the NP-hardness of improper learning for P/poly remains open. We have made
some partial progress, and we have demonstrated cryptographic consequences of NP-hardness under
certain strong formulations, but we are optimistic that further progress can be made.
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A WE from Indistinguishability Obfuscation

In this section, we give a sketch of the construction showing that indistinguishability obfuscation
for P/poly implies witness encryption for NP.

Definition A.1 (Indistinguishability obfuscation (iO)). A PPT algorithm iO is an indistinguisha-
bility obfuscator for a circuit class C if the following conditions are met.
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• Correctness: for all C ∈ C and all inputs x, letting C ′ = iO(C), it holds that C ′(x) = C(x).

• Security: for any efficient adversary A, for any circuits C0 and C1 computing the same
function, iO(C0) and iO(C1) are indistinguishable for A.

Theorem A.2 ([Gar+16]). For any L ∈ NP, iO for P/poly implies WE for L.

Proof sketch. Let V be a poly-time verifier for L. For an instance x of L and a bit b ∈ {0, 1}, define

Fx,b(w) =

{
b V (x,w) = 1

0 otherwise

Consider the witness encryption scheme defined as follows:

• Enc(x, b) = iO(Fx,b);

• Dec(c, x, w) = c(w).

By the correctness of the iO, if V (x,w) = 1, then for C := Enc(x, b) = iO(Fx,b), it holds that
Dec(C, x,w) = C(w) = b. Therefore, the correctness of WE is satisfied.

We leave the proof of security to the reader, but we note that if x /∈ L, then Fx,0 and Fx,1 are
the same function.

B Public-key Encryption from WE and OWFs

In this section, we give a sketch of the construction showing that witness encryption, together with
the existence of a one-way function, implies the possibility of public-key encryption.

Definition B.1 (Public-key encryption). A public-key encryption scheme is a triple of algorithms
(Gen,Enc,Dec) meeting the following conditions.

• Correctness: for all sufficiently large λ ∈ N and any bit b ∈ {0, 1},

Pr
(sk,pk)∼Gen(1λ)

[ Dec(sk,Enc(pk, b)) = b ] = 1.

• Security: for all sufficiently large λ ∈ N and any efficient adversary A,

Pr
(sk,pk)∼Gen(1λ) ; b∼U

[ A(pk,Enc(pk, b)) = b ] ≤ 1

2
+ negl(λ).

Theorem B.2 ([Gar+13]). Suppose that WE exists for every language in NP and that a one-way
function exists. Then, public-key encryption exists.

Proof sketch. By [H̊as+99], we may assume the existence of a PRG G : {0, 1}λ → {0, 1}2λ for all
sufficiently large λ ∈ N. Consider the language

L = {t ∈ {0, 1}2λ | ∃s ∈ {0, 1}λ, t = G(s)},

and let (EncWE ,DecWE) be a witness encryption scheme for L. Define a public-key encryption
scheme as follows.
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• Gen(1λ): sample s ∼ Uλ and let t = G(s). Let sk = s and pk = t.

• Enc(pk, b): return ( EncWE(pk, b) , pk ).

• Dec(sk, c′ = (c, pk)): return the output of DecWE(c, pk, sk).

By the correctness of the witness encryption, for any pair (sk, pk) = (s, t) in the support of Gen, it
holds that s is a witness for t ∈ L. Therefore, Dec(sk,Enc(pk, b)) = DecWE(EncWE(t, b), t, s) = b.
This shows the correctness of the PKE scheme.

We leave the proof of security to the reader.
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