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Abstract

We obtain new explicit pseudorandom generators for several computational models
involving groups. Our main results are as follows:

1. We consider read-once group-products over a finite group G, i.e., tests of the
form

∏n
i=1 g

xi
i where gi ∈ G, a special case of read-once permutation branching

programs. We give generators with optimal seed length cG log(n/ε) over any
p-group. The proof uses the small-bias plus noise paradigm, but derandomizes
the noise to avoid the recursion in previous work. Our generator works when the
bits are read in any order. Previously for any non-commutative group the best
seed length was ≥ log n log(1/ε), even for a fixed order.

2. We give a reduction that “lifts” suitable generators for group products over G to a
generator that fools width-w block products, i.e., tests of the form

∏
gfii where the

fi are arbitrary functions on disjoint blocks of w bits. Block products generalize
several previously studied classes. The reduction applies to groups that are mixing
in a representation-theoretic sense that we identify.

3. Combining (2) with (1) and other works we obtain new generators for block
products over the quaternions or over any commutative group, with nearly optimal
seed length. In particular, we obtain generators for read-once polynomials modulo
any fixed m with nearly optimal seed length. Previously this was known only for
m = 2.

4. We give a new generator for products over “mixing groups.” The construction
departs from previous work and uses representation theory. For constant error,
we obtain optimal seed length, improving on previous work (which applied to any
group).

This paper identifies a challenge in the area that is reminiscent of a roadblock in
circuit complexity – handling composite moduli – and points to several classes of groups
to be attacked next.

∗Work done in part at Harvard University, supported by Madhu Sudan’s and Salil Vadhan’s Simons
Investigator Awards.
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1 Introduction

The construction of explicit pseudorandom generators is a fundamental research goal that
has applications in many areas of theoretical computer science. For background we refer
to the recent survey [HH23]. We first define pseudorandom generators, incorporating the
variants of any order (reflected in the permutation π) and non-Boolean tests (reflected in the
range set R).

Definition 1 (Pseudorandom generators (PRGs)). An explicit function P : {0, 1}s → {0, 1}n
is a pseudorandom generator (PRG) with seed length s and error ε for a class of functions F
mapping {0, 1}n to a set R if for every f ∈ F the statistical distance between f(P (Us)) and
f(Un) is ≤ ε, where Us denotes the uniform distribution over {0, 1}s. We say P fools F in
any order if π(P ) fools F for any permutation π of the positions of the n input bits. A PRG
is explicit if it is computable in time nc.

PRGs for branching programs, and group programs. A main agenda is obtaining
explicit pseudorandom generators for read-once branching programs (ROBPs), with an
ultimate goal of proving BPL = L. However, even for constant-width, permutation ROBPs,
the best known seed length is ≥ log n log(1/ε). This is ≥ log2 n when ε = 1/n, and thus
falls short of the optimal seed length c log(n/ε). For permutation ROBPs of width w, seed
length cw log(n/ε) log(ε−1 log n) follows from instantiating the “Polarizing Random Walks”
[CHHL19] with a bound from [RSV13, LPV22]. These generators work in any order ; thus
they essentially match the seed length cw log(n/ε) log(1/ε) that was already available for
fixed-order in a sequence of exciting works culminating in [Ste12].

The class of permutation ROBPs is equivalent to group programs (see e.g. [KNP11]):

Definition 2. A program (or product) p of length n over a group G is a tuple (g1, g2, . . . , gn) ∈
Gn. The program computes the function fp : {0, 1}n ∋ x 7→

∏
i∈[n] g

xi
i ∈ G.

No generator with seed length less than log n log(1/ε) was available for any non-commutative
group. While optimal seed length c log(n/ε) was known for Z2 since [NN90], it took nearly
20 years and different techniques to have the same seed length over Z3 [LRTV09b, MZ09a],
and remarkably that seed length is still not available even for Z6 (see [GKM18] for the best
known construction).

PRGs for read-once polynomials. Another model that has received significant attention
is read-once polynomials. Intuitively, this model can serve as a bridge between permutation
and non-permutation ROBPs. The available generators for non-permutation ROBPs have
significantly worse seed length than for permutation programs, see e.g. [MRT19a] and the
discussion there.

A sequence of works [LV20a, MRT19a, DHH20] culminated in PRGs with seed length
c log n+ log(1/ε) logc log(1/ε) for read-once polynomials over Z2. But for other domains such
as Z3 such good seed lengths were not known.
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PRGs for block-products. A more general model that generalizes and unifies the previous
ones is what we call block-products of width w over a group G. Here, the input bits are
arbitrarily partitioned in blocks of w bits, arbitrary Boolean functions are then applied to
each block, and finally the outputs are used as exponents to group elements. For our results,
we will need to allow one block to be larger; we call this spill and incorporate it in the
following definition.

Definition 3 (Block-product with spill). A function f : {0, 1}n → G is computable by a
w-block product with ℓ terms and a spill of q bits, written as (ℓ, w, q)-product, over a group
G if there exist ℓ+ 1 disjoint subsets I0, I1, . . . , Iℓ ⊆ [n], where |I0| ≤ q and |Ii| ≤ w for each
i ∈ [ℓ] such that

f(x) =
ℓ∏

i=1

g
fi(xIi

)

i

for some group elements gi ∈ G, functions fi : {0, 1}Ii → {0, 1}. Here xIi are the |Ii| bits of x
indexed by Ii.

Note that block products are unordered by definition. They are a generalization of
several function classes that have been studied, including modular sums [LRTV09a, MZ09b,
GKM18] (when G is a cyclic group and w = 1), product tests with outputs in {−1, 1}
(a.k.a. combinatorial checkerboards) [Wat13, HLV18, LV18, LV20b, Lee19] (when G = Z2),
themselves a generalization of combinatorial rectangles [ASWZ96, Lu02, GMR+12], and
unordered combinatorial shapes [GMRZ13, GKM18] (when G = Zm+1). Block products also
generalize read-once polynomials because one can show (for the uniform and typically also
pseudorandom distributions) that monomials of degree ≥ log(n/ε) do not affect the result
significantly, and so one can simulate these polynomials with blocks of size log(n/ε).

In terms of generators, a series of works culminating in [Lee19] gives nearly-optimal seed
length (i.e., w+ log(ℓ/ε) up to lower-order factors) over Z2. But such a result was not known
over other groups such as Z3 or any non-commutative group.

1.1 Our results

In this work we bring new techniques, notably from group theory, to bear on these problems,
and use them to obtain new pseudorandom generators.

First, we obtain optimal seed length for products over p-groups.

Definition 4. A finite p-group is a group of order pk for an integer k and a prime p.

Equivalently, the order of every element is a power of p. (The latter definition makes
sense for infinite groups, but we only consider finite groups.) The class of p-groups is rich
and has been studied in various areas of theory of computation. For example, p-groups
remain a candidate for good group-theoretic algorithms for matrix multiplication [BCC+17];
the isomorphism testing for a subclass of p-groups has been identified as a barrier to faster
group isomorphism algorithms [Sun23]; p-groups (specifically, unitriangular groups) are used
for cryptography in NC0 [AIK06] (see [Vio09a] for an exposition emphasizing these groups);
finally, p-groups (specifically, quaternions) are used in computer graphics to express 3D
rotations [Kui02].
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We now give a few examples of such groups, all of which are non-commutative.

• The quaternion group Q8 of order 8 is a 2-group.

• Unitriangular groups over Fp are p-groups. They consist of upper-triangular matrices
(of some fixed dimension), with 1 on the diagonal and entries in Fp.

• Wreath products give natural examples of p-groups. For example, the wreath product
Zp ≀Zp is a group of order pp+1, hence a p-group. This group is the direct product Zp

p with
another element in Zp acting on the tuple by shifting the coordinates. For concreteness,
the case p = 2 can be presented as (a, b; z) where a, b, z ∈ Z2, (a, b; 0)(a

′, b′; z′) = (a+
a′, b+ b′; z′), and (a, b; 1)(a′, b′; z′) = (a+ b′, b+a′; 1+ z′). Wreath product constructions
(not necessarily p-groups) have been studied in a variety of contexts ranging from group-
theoretic algorithms for matrix multiplication [CKSU05], to construction of expander
graphs [ALW01, RSW06], to mixing in non-quasirandom groups [GV22].

• The dihedral group Dn is the group of order 2n of symmetries of a regular polygon with
n sides. When n = 2t, Dn is a 2-group.

We give pseudorandom generators for programs over p-groups, with optimal seed length.
Throughout this paper, we use cx to denote a constant that depends on the variable x.

Theorem 5. Let G be a p-group. There is an explicit pseudorandom generator that fools
programs of length n over G in any order, with seed length cG log(n/ε).

In fact, the same result holds even for block-products over p-groups with constant block
length w.

Polynomials and block-products. We give a general reduction that “lifts” a PRG P for
group products over G to a PRG P ′ for block-products (and read-once polynomials) over G.
The reduction applies to any group G that is mixing :

Definition 6 (Mixing groups). A group G is mixing if it has a complete set of unitary
irreducible representations where every non-identity matrix does not have 1 as an eigenvalue.

Remark 7. Our results for mixing groups (Theorems 10 and 12) apply more generally to
fooling words over a mixing subset H of a (not necessarily mixing) group G. The property we
need is that Definition 6 holds for every element in H. There are many examples of mixing
subsets of non-mixing groups which generate the entire group G. For example, for S3 = D3, it
suffices to exclude the “flip” element, i.e. the non-identity element r, where r2 = 1. Moreover,
one can have natural examples for infinite groups. However for simplicity we focus on finite
mixing groups.

We note that mixing groups are exactly the class of Dedekind groups.

Definition 8. (Finite) Dedekind groups are groups of the form Q8 × Zt
2 ×D for any integer

t and commutative group D of odd order. A non-commutative Dedekind group is also called
a Hamiltonian group.
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Lemma 9 (Mixing characterization of Dedekind groups). A finite group is mixing if and
only if it is Dedekind.

A proof of Lemma 9 is in Section 9.
We can now state our reduction:

Theorem 10. Let G be a mixing group. Suppose there is a PRG P1 with seed length s1 that ε-
fools (ℓ, 1, 3 log(1/ε))-products over G. Then there is a PRG that

(
cG log(w+log(ℓ/ε))·ε

)
-fools

(ℓ, w, log(1/ε))-products over G, with seed length

cG
(
s1 + log(ℓ/ε) + w

)
· logc

(
w + log(nℓ/ε)

)
.

Note that if P1 has nearly optimal seed length (i.e., log(ℓ/ε) times lower-order terms)
then also the final PRG has nearly optimal seed length (i.e., w + log(ℓ/ε), times lower-order
terms).

Applying the reduction (Theorem 10) we obtain near-optimal PRGs for block products
over commutative or Dedekind 2-groups (in particular, the quaternions).

Corollary 11. Let G be either a commutative group, or a Dedekind 2-group, that is, G =
Q8 ×Zt

2 for some t. There is an explicit PRG that ε-fools (ℓ, w, 0)-block products over G with
seed length cG(w + log(ℓ/ε)) logc(w + log(ℓn/ε)).

Proof. We use the reduction (Theorem 10). For commutative groups we use the PRG in
[GKM15] for P1; for Dedekind 2-groups we use our Theorem 5 for P1. Actually, in both cases
the generators were only stated for group products while we need to handle the spill. The
simple modification is in Section 8.

As remarked earlier, as a consequence of Corollary 11, we obtain PRGs for read-
once polynomials over n variables over any finite field F with near-optimal seed length
cF log(n/ε) log

c log(n/ε). Again, this was not known even for F3.
This result is also a step towards handling group programs over more general groups, for

example nilpotent groups, which are direct products of p-groups (for different p). Jumping
ahead, our techniques imply that generators for such groups follow from generators for
(non-read-once) polynomials over composites.

Finally, we give a new generator for products over mixing groups.

Theorem 12. Let G be a mixing group. There is an explicit PRG P that ε-fools length-n
programs over G with seed length cG log(n/ε) log(1/ε), in any order.

The parameter improvement over previous work appears tiny: As remarked earlier,
[CHHL19] gives seed length cG log(n/ε) log(ε−1 log n), and moreover for any G. Still, for
constant error we obtain optimal seed length which was known only in the fixed-order case
(cf. [Ste12]). Also note that mixing groups of the form Q8 × Zt

2 (i.e., m = 1) are 2-groups,
for which we gave optimal seed length in Theorem 5. But the techniques there do not even
apply to the commutative (mixing) group Z2 × Z3.

Our main interest in this result is that its proof is different from previous work: it showcases
how we can use information on the representation theory to improve the parameters, pointing
to several open problems.
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1.2 Future directions and open problems

This work suggests that the difficulty of handling more general classes of groups lies in
composite moduli. For example, we do not have new generators for D3 = S3, a group of order
6, even though we have optimal seed length for Dn when n is a power of two. Thus, a challenge
emerging from this work is to improve the seed length over any non-commutative group of
composite order. Again, S3 is an obvious candidate, which is equivalent to fooling width-3
permutation ROBPs. But other groups could be easier to handle, for example Dedekind
groups or the direct product of a p-group and a q-group where p ̸= q are primes.

Also, the techniques in this paper point to several other questions. Can we extend our
reduction to block products where instead of gf for Boolean f we more generally have gf

replaced by a function with range G? For what other groups can we exploit representation
theory to obtain better PRGs?

2 Proof of Theorem 5

We use the fact that programs over p-groups can be written as polynomials. Elements in a
group of order pk will be written as k-tuples over Fp.

Lemma 13. Let G be a group of order pk, and k an integer. There is a 1-1 correspondence
between G and Fk

p and a polynomial map f = (f1, . . . , fk) : (Fk
p)

n → Fk
p over Fp where the

fi : (Fk
p)

n → Fp have degree cG such that for any g := (g1, g1, . . . , gn) ∈ Gn and x ∈ {0, 1}n,
we have

n∏
i=1

gxi
i =

(
f1(g), f2(g), . . . , fk(g)

)
(x1, . . . , xn).

This lemma is essentially in the previous work [PT01]. However the statement there is
for nilpotent groups and cannot be immediately used. Also, the proof relies on previous work
and is somewhat indirect. So we give a direct proof of the result we need (i.e., Lemma 13).

Before the proof we illustrate it via an example.

Example 14. Let G := Z2 ≀ Z2 from the introduction. Consider a product
∏

i(ai, bi; zi). Via
a polynomial map we can rewrite this product into a normal form where all the zi are in one
element only: (∏

i

(a′i, b
′
i; 0)

)
(0, 0; z′).

Computing this product is then immediate, via a linear map. The key observation is that
a′i = ai if the sum of the zj with j < i is even, and a′i = bi otherwise, and that this computation
is a quadratic polynomial (in the input bits ai, bi, zi).

Proof of Lemma 13. We proceed by induction on k. If k = 1, then G is cyclic. We can take
a generator a ∈ G and define the 1-1 mapping G ∋ az ↔ z ∈ Fp. So

∏n
i=1 g

xi
i =

∏n
i=1 a

zixi

can be written as the degree-1 polynomial
∑n

i=1 zixi.
Otherwise, G has a normal subgroup H of order pk−1 [DF04, Chapter 6, Theorem 1.(3)].

The corresponding quotient group Q = G/H has order p and is therefore cyclic. So we can
write gi ∈ G as

gi = aeihi
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where hi ∈ H and a is a generator of Q. Applying the induction hypothesis on H, we can
identify each element gi = aeihi with a k-tuple (ei, e

′
i) ∈ Fk

p, where e′i ∈ Fk−1
p corresponds to

hi ∈ H.
Now we apply the conjugation trick as in [Bar89], and use induction. That is, let

bi := a
∑

j≤i ejxj and write
n∏

i=1

gxi
i =

( n∏
i=1

(
bih

xi
i b

−1
i

))
bn.

Note that bi and b−1
i can be computed by some degree-1 polynomials over Fp, and hxi

i can be
(trivially) computed by a degree-cH polynomial over Fp.

Therefore, each term bih
xi
i b

−1
i can be computed by some degree-cG polynomial map

fH,i = (f1, . . . , fk) over Fp. Moreover, these terms lie in H because H is a normal subgroup
of G. Hence we have reduced to a product over H, which by induction hypothesis, can be
computed by some degree-cH polynomial, and the result follows.

Given Lemma 13, it suffices to construct a bit-generator that fools low-degree read-once
polynomials over Fp.

The case p = 2. For this case, we can simply combine Lemma 13 with known generators
for polynomials over F2 [BV10, Lov09, Vio09b]. In fact, we obtain results for non-read-once
programs as well, and of any length. (Indeed, such polynomials are equivalent to low-degree
polynomials over F2.)

The case p > 2. Here we need additional ideas because bit-generators that output bits and
fool polynomials over Fq with q ̸= 2 are not known. However, the works [BV10, Lov09, Vio09b]
do give generators that output field elements that fool such polynomials.

Lemma 15 ([Vio09b]). There are distributions Y over Fn
p that can be explicitly sampled from

a uniform seed of cp(2
d log(1/ε) + log n) bits such that for any degree-d polynomial f in n

variables over Fp, we have ∆(f(Y ), f(U)) ≤ ε.

However, we need distributions over {0, 1}n. This distinction is critical and arises in a
number of previous works. Currently, for domain {0, 1}n only weaker results with seed length
≥ log2 n are known [LMS10].

Still, as pointed out in [LRTV09b, MZ09a], Lemma 15 implies results over the domain
Fn
2 for biased bits:

Definition 16. We denote by Np a vector of n i.i.d. bits coming up 1 with probability 1/p.

Corollary 17 ([LRTV09b, MZ09a]). There are distributions X over {0, 1}n that can be
explicitly sampled from a uniform seed of cp(2

d log(1/ε)+ log n) bits such that for any degree-d
polynomial f in n variables over Fp we have ∆(f(X), f(Np)) ≤ ε.

Proof. Let Y = (Y1, Y2, . . . , Yn) be the distribution from Lemma 15, for degree d(p − 1).
Define X := (Y p−1

1 , Y p−1
2 , . . . , Y p−1

n ). Note X is over {0, 1}n. Also, if U is uniform in Fp then
Up−1 = Np. The result follows.
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We will show how to use biased bits. For this we use that the program is read-once.

Lemma 18. Let X fool degree-1 polynomials over F2 with error εcG,p. Then X +Np fools
programs of length n over G with error ε.

Proof. This follows from Lemma 7.2 in [FK18] combined with the Fourier bound in [RSV13,
LPV22]. The proof in [FK18] is for the fixed noise parameter p = 4, but the generalization
to any p is immediate (replace 1/2 with 1− 2/p in the last two lines of the proof).

We now have all the ingredients.

Proof of Theorem 5. Use Lemma 18. Averaging over X, it suffices to derandomize Np. By
Lemma 13 it suffices to do this for low-degree polynomials. This follows from Corollary 17.

3 Representation theory and matrix analysis

In this section, we present the fragment of representation theory and matrix analysis that we
need. The books by Serre [Ser77], Diaconis [Dia88], and Terras [Ter99] are good references for
representation theory and non-commutative Fourier analysis. The Barbados notes [Wig10],
[Gow17, Section 13], [GV22], or [DLV24] provide briefer introductions.

Matrices. Let M be a square complex matrix. We denote by tr(M) the trace of M , by M
the conjugate of M , by MT the transpose of M , and by M∗ the conjugate transpose MT (aka
adjoint, Hermitian conjugate, etc.). The matrix M is unitary if the rows and the columns
are orthonormal; equivalently M−1 = M∗.

The Frobenius norm, (a.k.a. Schatten 2-norm, Hilbert–Schmidt operator) of a square
matrix M , denoted ∥M∥F, is

∑
i,j|Mi,j|2 = tr(MM∗).

The operator norm of a matrix M , denoted ∥M∥op, is the square root of the largest
eigenvalue of the matrix MM∗. In particular, if M is a normal matrix, i.e. MM∗ = M∗M ,
then ∥M∥op equals its largest eigenvalue in magnitude.

Fact 19. ∥AB∥op ≤ ∥A∥op∥B∥op.

Fact 20. For a d× d matrix M with eigenvalues λ1, . . . , λd, we have ∥M∥2F =
∑d

i=1|λi|2 ≤
d∥M∥2op.

Representation theory. Let G be a group. A representation ρ of G with dimension d
maps elements of G to d× d unitary, complex matrices so that ρ(xy) = ρ(x)ρ(y). Thus, ρ is
a homomorphism from G to the group of linear transformations of the vector space Cd. We
denote by dρ the dimension of ρ.

If there is a non-trivial subspace W of Cd that is invariant under ρ, that is, ρ(x)W ⊆ W
for every x ∈ G, then ρ is reducible; otherwise it is irreducible. Irreducible representations are
abbreviated irreps and play a critical role in Fourier analysis. We denote by Ĝ a complete
set of inequivalent irreducible representations of G.
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Let Ĝ be the set of irreducible representations of G (i.e. the dual group of G). We have∑
ρ∈Ĝ

d2ρ = |G|. (1)

For a random variable Z we also use Z to denote its probability mass function.
For an irrep ρ ∈ Ĝ, the ρ-th Fourier coefficient of Z is

Ẑ(ρ) :=
∑
g∈G

Z(g)ρ(g) = E
[
ρ(Z)

]
.

The Fourier expansion of Z : G → R is

Z(g) =
1

|G|
∑
ρ∈Ĝ

dρ tr
(
Ẑ(ρ)ρ(g)

)
.

Parseval’s identity gives ∑
g∈G

Z(g)2 =
1

|G|
∑
ρ∈Ĝ

dρ∥Ẑ(ρ)∥2F.

Claim 21. Suppose X and Y are two random variables over G such that for every irreducible
representation ρ of G, we have ∥E[ρ(X)]−E[ρ(Y )]∥op ≤ ε. Then X and Y are (

√
|G|·ε)-close

in statistical distance.

Proof.

1

2

∑
g∈G

∣∣X(g)− Y (g)
∣∣ ≤ √

|G|
2

(∑
g∈G

(
X(g)− Y (g)

)2)1/2

(Cauchy–Schwarz)

=

√
|G|
2

(
1

|G|
∑
ρ∈Ĝ

dρ
∥∥X̂(ρ)− Ŷ (ρ)

∥∥2

F

)1/2

(Parseval)

=
1

2

(∑
ρ∈Ĝ

dρ · (dρε2)
)1/2

(Fact 20)

=
ε

2
·
(∑
ρ∈Ĝ

d2ρ

)1/2

=
√

|G| · ε/2. (Equation (1))

4 Proof of Theorem 12

Again, besides the parameter improvement, our main point here is to illustrate how we
use representation theory to obtain pseudorandom generators. These ideas will then be
generalized to the more general and complicated setting of block products in the next section.

Let ρ be an irreducible representation of a mixing group (Definition 6). By definition
of mixing, if ρ is a non-identity matrix then it does not have 1 as its eigenvalues. A main
observation is that if there are many non-identity matrices ρ(gi) in the program, then the
bias ∥E[

∏n
i=1 ρ(gi)

Ui ]∥op is small. This is proved in the next two claims.
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Claim 22. Let M be a unitary matrix with eigenvalues eiθj for some θj ∈ [−π, π] on the unit
circle. Suppose |θj| ≥ θ for every j. Then ∥(I +M)/2∥op ≤ 1− θ2/8.

Proof. As M is unitary, we can write M = Q∗DQ, where D is a diagonal matrix with M ’s
eigenvalues on its diagonal and Q is unitary. The eigenvalues of (I +M)/2 = Q∗( I+D

2
)Q are

1+eiθj

2
= eiθj/2 · e−iθj/2+eiθj/2

2
= eiθj/2 cos(θj/2), which have magnitudes at most |cos(θj/2)| ≤

1− θ2/8.

Claim 23. Let G be a mixing group. Let ρ be an irreducible representation of G of dimension
dρ. Let fρ(x) =

∏n
i=1 ρ(gi)

xi be the representation of a group program. Suppose ρ(gi) ̸= Idρ
for t ≥ cG log(1/ε) many i’s. Then ∥E[fρ(U)]∥op ≤ ε.

Proof. Let T be the t coordinates j where ρ(gj) ̸= Idρ . For every fixing of the other coordinates,
we can write fρ(U) as

B
∏
j∈T

ρ(gj)
UjBj

for some unitary matrices B and Bj’s. So

∥fρ(U)∥op ≤ ∥B∥op
∏
j∈T

∥E[ρ(gj)Uj ]∥op∥Bj∥op ≤ (1− cG)
t ≤ ε.

We now proceed with the proof of the main result. The proof extends to handle the spill,
but for simplicity we do not discuss it here. We fool each irreducible representation of G
separately and then appeal to Claim 21. Fix a representation ρ and consider the product

fρ(x) :=
ℓ∏

j=1

ρ(gj)
xj .

Let t be the number of non-identity elements ρ(gj) : j ∈ [n] and S be their coordinates.
Let us sketch the construction. First, XORing with an almost 2cG log(1/ε)-wise uniform

distribution takes care of the case t ≤ cG log(1/ε), so we may assume that t is larger. In this
case, by Claim 23, we have that the bias ∥E[fρ(U)]∥op is small under the uniform distribution.
Our goal is to set ct bits in S to uniform and apply Claim 23 again.

Let ℓ := cG log(1/ε). Let M be a (log n)× 10ℓ matrix filled with uniform bits.
We will make log n guesses of t. For each guess v = 2i · ℓ : i ∈ {0, . . . , log n− 1} of t, we

select a subset of size ℓ of the input positions using a hash function hi, and then hash these ℓ
positions to row i of M using another hash function h, and assign input bits correspondingly.
The final generator is obtained by trying all guesses, using the same seed for each guess hi,
and XORing together the bits.

In more detail, for each i ∈ {0, . . . , log n−1}, let hi : [n] → {0, 1} be a 10ℓ-wise independent
hash family with Prhi

[hi(j) = 1] = 2−i for each j ∈ [n]. Let h : [n] → [10ℓ] be another 5ℓ-wise
uniform hash family. The output of our generator is

D := D(0) ⊕ · · · ⊕D(logn−1),

where the j-th bit of D(i) is
hi(j) ·Mi,h(j).

10



We use the same seed to sample h0, . . . , hlogn−1, which costs at most OG(log n log(1/ε))
bits [Vad12, Corollary 3.34]. Sampling h uses another OG(log(n/ε) log(1/ε)) bits. This uses
a total of OG(log(n/ε) log(1/ε)) bits.

We now show that ∥E[fρ(D)]∥op ≤ O(ε). Suppose t ∈ [2iℓ, 2i+1ℓ]. Recall that S are the
coordinates corresponding to the non-identity matrices in the product. Let J := h−1

i {1} ∩ S.
As Pr[hi(j) = 1] = 2−i, we have E[|J |] ∈ [ℓ, 2ℓ]. Applying tail bounds for bounded
independence (see Lemma 36), we have |J | ∈ [ℓ/2, 3ℓ] except with probability ε. Conditioned
on this event, as |J | ≤ 3ℓ and h is 5ℓ-wise uniform, we can think of h as a random function
from J to [10ℓ]. Hence, for each j ∈ [10ℓ], we have

Pr
[
|J ∩ h−1(j)| = 1

]
= |J | · 1/(10ℓ) · (1− 1/(10ℓ))|J |−1 ≥ (ℓ/2) · (1/10ℓ) · (1/2) ≥ 1/40.

By a Chernoff bound, we have that except with probability at most ε, the number of j such
that |J ∩ h−1(j)| = 1 is at least ℓ/10.

Let T be these coordinates. Fixing all the bits in M except the ones in row i that are fed
into T , we can write the conditional expectation of fρ(G) over the bits in T as

B
∏
j∈T

E
xj

[A
xj

j ]Bj,

for some unitary matrices B, Aj ’s and Bj ’s, and in particular, Aj has its eigenvalues bounded
away from 1 on the complex unit circle. Therefore, by Claim 22,∥∥∥B∏

j∈T

E
xj

[
A

xj

j

]
Bj

∥∥∥
op

≤
∏
j∈T

∥∥∥∥(I + Aj)

2

∥∥∥∥
op

≤ ε.

5 Proof of Theorem 10

In this section we prove Theorem 10. This type of reductions goes back to the work of
[GMR+12] on read-once CNFs (itself building on [AW89]), and have been refined in several
subsequent works. The work [LV20a] extended the techniques to read-once polynomials. It
exploited the observation that when the number of monomials is significantly larger than its
degree, the bias of the polynomial is small, and therefore the bias of the restricted function
remains small. Building on this observation, [MRT19b] showed that one can aggressively
restrict most of the coordinates, while keeping the bias of the restricted function small. In
addition, a typical restricted product is a low-degree polynomial (plus a spill), for which we
have optimal generators [BV10, Lov09, Vio09b].

However, [MRT19b] reduces to non-linear polynomials (degree 16). As discussed earlier,
bit-generators with good seed lengths are only known over Z2. We give a refined reduction
that reduces to polynomials of degree one, for which we have generators over Zm for any m
[LRTV09b, MZ09a, GKM18].

At the same time, we show that the reduction can be carried over any mixing group, by
working with representations of the group.

Definition 24. Let Uθ(d) be the set of d× d unitary matrices with eigenvalues e2πiθj where
|θj| ≥ θ.

11



Definition 25. A group G is θ-mixing if it has a complete set of unitary irreducible
representations where each non-identity matrix lies in Uθ(d) for some d.

The following theorem will serve as the basis of our iterative construction of the PRG.

Theorem 26. Let w ≥ log log(1/ε) + logm. Suppose there is a PRG P with seed length s
that ε-fools (m5230w, 2w, 2 log(1/ε))-products over G. Let P1 be a PRG with seed length s1
that ε-fools (ℓ, 1, 3 log(1/ε))-products over a group G of order m that is (1/m)-mixing. Then
there is a PRG that O(ε)-fools (m5245w, 3w, 2 log(1/ε))-products over G with seed length

s+
(
s1 +Om((log(1/ε) + w) logw + log log n)

)
.

We first show how to apply Theorem 26 iteratively to obtain Theorem 10.

Proof of Theorem 10. We iterate Theorem 26 repeatedly for some t times to reduce the
problem to fooling an O(log(m/ε))-junta which can be done using an almost bounded
uniform distribution.

Given an (ℓ, w, log(1/ε))-product f , let w′ = max{w, log ℓ, logm} so that we can view f
as an (m5245w

′
, 3w′, 2 log(1/ε))-product. We first apply Theorem 26 for t1 = O(logw′) times

until we have a (
(m · log(1/ε))C , log log(1/ε) + logm, 2 log(1/ε)

)
-product,

for some constant C.
Let b := log(1/ε)+logm

log log(1/ε)+logm
. We will apply the following repeatedly for some r = Om(1) steps.

We divide the fi : i ≥ 1 into groups of b functions and view the product of functions in each
group as a single function, this way we can think of the above product as a(

(m·log(1/ε))C
b

, log(1/ε) + logm, 2 log(1/ε)
)
-product.

So we can continue applying Theorem 26 for t2 = O(log(log(1/ε)+logm)) ≤ Om(log log(1/ε))
times and the restricted function becomes a(

(m·log(1/ε))C
b

, log log(1/ε) + logm, 2 log(1/ε)
)
-product.

Repeating this process for

r = logb

((
m · log(1/ε)

)C) ≤
2C

(
logm+ log log(1/ε)

)
log log(1/ε)

= Om(1)

times, we are left with a(
O(1), log log(1/ε) + logm, 2 log(1/ε)

)
-product

which can be fooled by an ε-almost O(log(m/ε))-wise uniform distribution that can be
sampled using s′ = O(log(m/ε) + log log n) bits [NN93, AGHP92]. Therefore, in total we
apply Theorem 26 for

t := t1 + r · t2 ≤ O(logw′) +Om(log log(1/ε)) = Om

(
log(w + log(ℓ/ε))

)
12



times, each with a seed of

s = s1 +Om((log(ℓ/ε) + w) logw + log log n).

bits. Hence in total it uses

s · t+ s′ ≤ Om

(
s1 + log(ℓ/ε) + w

)
· polylog

(
w, log ℓ, log n, log(1/ε)

)
bits.

5.1 Analysis of one iteration: Proof of Theorem 26

We now prove Theorem 26. Given an (m5 · 245w, 3w, 2 log(1/ε))-product f =
∏ℓ

i=0 fi over G
of order m that is (1/m)-mixing, let ℓ be the number of non-constant fi. We say f is a long
product if ℓ ≥ m5 · 230w, otherwise f is short. At a high-level, we apply Theorem 30 to P1

to obtain a PRG that fools long products in one shot, and use Lemma 27 and 29 below to
reduce fooling a short product to fooling a product of smaller width w.

Lemma 27. Let w ≥ logm and C be a sufficiently large constant. Define

k := C(w + log(ℓ/ε))

δ := (m · w)−k

p := 2−C .

There exist two δ-almost k-wise independent distributions D and T with E[Di] = 1/2 and
E[Ti] = p for every i ∈ [n], such that for every (ℓ, w, 0)-product f over G of order m, we have
|ED,T [f(D + T ∧ U)]− E[f(U)]| ≤ ε.

Moreover, D and T can be efficiently sampled with a seed of length Om((log(ℓ/ε) +
w) logw + log log n).

Lemma 27 follows from the following lemma, which can be obtained from applying a
variant of a result of Forbes and Kelley [FK18] to the Fourier bounds on functions computable
by block products over groups, which was established in [LPV22]. (Block products are called
generalized group products in [LPV22].)

Lemma 28 ([FK18, LPV22]). Let f : {0, 1}n → {0, 1} be computable by an (ℓ, w, 0)-block
product over a group G. Let D and T be two independent δ-almost 2(k+w)-wise independent
distributions on {0, 1}n with E[Di] = 1/2 and E[Ti] = p, and U be the uniform distribution
on {0, 1}n. Then∣∣E[f(D + T ∧ U)]− E[f(U)]

∣∣ ≤ ℓ ·
(√

δ · (w · |G|)k+w + (1− 2p)k/2 +
√
γ
)
.

We remark that for every constant p, one can show that n−ω(1)-bias plus noise Np is
necessary to fool programs over groups of order poly(n) with any subconstant error ε. This
follows from [DILV24], where it shows that there exists such a distribution which puts 2ε
more probability mass on strings whose Hamming weight is greater than n/2 + Op(

√
kn)

than the uniform distribution.

13



Lemma 29 (Width reduction for short products). Let G be any group of order m. Let
D and T be the two distributions defined in Lemma 27. Let w ≥ logm. Let f be an
(ℓ, 3w, 2 log(1/ε))-product over G, where ℓ ≤ m5 · 230w. Then with probability at least 1− ε
over D and T , the restricted function fD,T is an (ℓ, 2w, 2 log(1/ε))-product over G.

We prove Lemma 29 in Section 7.

Theorem 30. Let w ≥ log log(1/ε) + 2 log(1/θ). Suppose there is a PRG P1 with seed
length s1 that ε-fools (ℓ, 1, 3 log(1/ε))-product f :=

∏ℓ
i=0 fi over a matrix group M supported

on Uθ(d), where ℓ ≥ 23wθ−2 and each fi is non-constant. Then there is a PRG that fools
(ℓ, 3w, 2 log(1/ε))-products f =

∏ℓ
i=0 fi over M, where ℓ ∈ [230wθ−5, 245wθ−5] and every fi is

non-constant, with seed length s = s1 +Oθ

(
log(1/ε) + w + log log n

)
.

Corollary 31. Theorem 30 applies to products over any θ-mixing group G with ε replaced by
ε/
√

|G|.

Proof. By definition, all its irreps ρ belong to Uθ(dρ). It follows from Claim 21 that it suffices
to fool all its irreps.

We prove Theorem 30 in Section 6. We now show how Theorem 26 follows from Lemma 27
and 29 and Theorem 30.

Proof of Theorem 26. Let P1 be the PRG that ε-fools (ℓ, 1, 3 log(1/ε))-products with seed
length s1. Applying Theorem 30 with P1, we obtain a PRG Plong that ε-fools every

(ℓ, 3w, 2 log(1/ε))-product f =
∏ℓ

i=0 fi, where ℓ ∈ [m5230w,m5245w] and every fi is non-
constant, with seed length slong = s1 + Om(log(1/ε) + w + log log n). We now sample the
distributions D,T in Lemma 27, and output

(D + T ∧ P (U)) + Plong.

Using Lemma 27 and ℓ ≤ 2Om(w), sampling D and T uses sshort = Om((log(1/ε) + w) logw +
log log n) bits. So altogether this takes s+ slong + sshort = s+ s1 +Om((log(1/ε) + w) logw +
log log n) bits.

Let f be an (m5245w, 3w, 2 log(1/ε))-product with ℓ many non-constant fi’s. If ℓ ≥ m5230w,
then Plong ε-fools it. Otherwise, ℓ ≤ m5230w and so f is an (m5230w, 3w, 2 log(1/ε))-product.
So by Lemma 29, with probability at least 1− ε over the choices of D and T , the function
fD,T is an (m5230w, 2w, 2 log(1/ε))-product, and therefore can be ε-fooled using the generator
P given by the assumption. The total error is O(ε).

6 Width reduction for long products: Proof of Theo-

rem 30

In this section, we prove Theorem 30. Let f =
∏ℓ

i=0 fi be an (ℓ, 3w, 2 log(1/ε))-product over
a matrix group M ⊆ Uθ(d), where ℓ ∈ [230wθ−5, 245wθ−5] and each fi is non-constant. Note
that when a product f has this many non-constant functions, the “bias” ∥E[f(U)]∥op of f is
doubly exponentially small in w, i.e. at most exp(−22w) (see Claim 33, which is at most ε

14



whenever w ≥ log log(1/ε)). Following [MRT19b], we will pseudorandomly restrict most of
the coordinates of f and show that the bias of a typical restricted product remains bounded
by ε. More importantly, we will show that this restricted product has width 1 (with a small
spill). Therefore, it suffices to construct a PRG for width-1 products (with a small spill).

We remark that previous works showed that a typical restricted product has degree at
most 16, as opposed to 1. This difference is already crucial in fooling products over Zm

for composites m with good seed lengths, as we do not have (bit)-PRGs even for degree-2
polynomials over Z6.

6.1 The reduction

We will use the following standard construction of δ-almost k-wise independent distributions
with marginals p.

Claim 32. There exists an explicit δ-almost k-wise independent distribution T on {0, 1}n
with E[Ti] = 2−b for every i ∈ [n] which can be sampled using O(b+ k + log(1/δ) + log log n)
bits.

Proof. We sample an (δ, kb)-biased distribution D on {0, 1}nb and b uniform bits Ub. By
standard construction [NN93, AGHP92], D can be sampled using O(b+ log(k/ε) + log log n)
bits. Write D = (D1, . . . , Dn) where each Di ∈ {0, 1}b. We output T ∈ {0, 1}n, where
Ti = ANDb(D⊕Ub), where ANDb is the AND function on b bits. We have E[Ti] = 2−b because
Ub is uniform. By [MRT19b, Claim 3.7], T is (ε ·2k)-almost k-wise uniform. Setting ε = 2−k ·δ
proves the claim.

Let C be a sufficiently large constant. Let

k = C(log(1/ε) + w)

δ = θk (2)

p = 2−23wθ3.

Let D and T be two δ-almost k-wise independent distributions, with E[Di] = 1/2 and
E[Ti] = p for every i ∈ [n], and let P1 be the PRG given by the theorem. The generator is

P := D + T ∧ P1.

By Claim 32, this uses s1 +Oθ(log(1/ε) + w + log log n) bits.

6.2 Analysis

We first state a claim showing that if the number of non-constant fi’s ℓ in a block product f
is much greater than its width w, then the bias ∥E[f(U)]∥op is small. We defer its proof to
Section 6.2.1.

Claim 33. For integers w and q, let f =
∏ℓ

i=0 fi be an (ℓ, w, q)-product over some matrix
group M supported on Uθ(d) for some ℓ ≥ 22w+2θ2 log(1/ε), where each fi is non-constant.
Then ∥E[f(U)]∥op ≤ ε.
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Recall that ℓ ∈ [230wθ−5, 245wθ−5]. Given D,T , let fD,T : {0, 1}T → M be the restricted
product

fD,T (x) := f(D + T ∧ x) =
ℓ∏

i=0

fi(D + T ∧ x).

We use fD,T,i(x) to denote fi(D + T ∧ x).
The following lemma shows that with high probability over D and T , the function fD,T

is an (ℓ, 1, 3 log(1/ε))-product, that is, a group program with a small spill. Note that this
lemma is true for products over any group.

Lemma 34. Let D and T be two distributions on {0, 1}n defined in (2). Let w ≥ log log(1/ε)+
2 log(1/θ) and f =

∏
i fi be an (ℓ, 3w, 2 log(1/ε))-product, where ℓ ∈ [230wθ−5, 245wθ−5] and

each fi is non-constant. Then with probability 1− ε over D and T , the function fD,T is an
(ℓ, 1, 3 log(1/ε))-product, where ℓ ≥ 23wθ−2 and each fD,T,i is non-constant.

Theorem 30 follows from Claims 33 and 42 and Lemma 34.

Proof of Theorem 30. As ℓ ≥ 22w+2θ−2 log(1/ε), by Claim 33, we have ∥E[f(U)]∥op ≤ ε. By
Lemma 34, with probability 1 − ε over D and T , the restricted function fD,T =

∏
i fD,T,i

is an (ℓ, 1, 3 log(1/ε))-product, where ℓ ≥ 23wθ−2 and each fD,T,i is non-constant. As
w ≥ log log(1/ε), again by Claim 33, we have ∥E[fD,T (U)]∥op ≤ ε. By our assumption,
we have ∥E[fD,T (P1)]∥op ≤ ∥E[fD,T (U)]∥op + ε ≤ 2ε. So altogether we have ∥E[f(U)] −
E[f(G(U))]∥op ≤ O(ε). The seed length follows from the construction.

Proof of Lemma 34. To get some intuition, think of θ as a constant. Recall that the
number of functions ℓ is roughly between 230w and 245w, and T is keeping each bit free with
probability p = 2−25w. Therefore, under a typical restriction, we expect for most functions in
the product, only 1 bit is set to free, and very few functions have 2 free bits.

We first need to lower-bound the probability that a non-constant function remains
non-constant under a random restriction.

Claim 35. Let g be a non-constant function on w bits. For p ∈ [0, 1], let T be the distribution
on {0, 1}w, where the coordinates Ti’s are independent and E[Ti] = p for each i ∈ [w]. With
probability at least p · ((1− p)/2)w−1 the function gU,T (x) := g(U + T ∧ x) is a non-constant
function on 1 bit.

Proof. Since g is non-constant, there is an x ∈ {0, 1}w and a coordinate j ∈ [w] such that
g(x+ ej) ̸= g(x). The probability that only the coordinate Tj is 1 (and the rest are 0), and
U agrees with x on the rest of the w − 1 coordinates is

Pr
[(
T = {j}

)
∧
∧
i ̸=j

Ui = xi

]
= Pr

[
T = {j}

]
·Pr

[∧
i ̸=j

Ui = xi

]
= p · (1− p)w−1 · 2−(w−1) = p ·

(
1− p

2

)w−1

.

We will use the following standard tail bound for almost k-wise independent random
variables.
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Lemma 36 (Lemma 8.1 in [LV20a]). Let X1, . . . , Xℓ be γ-almost t-wise independent random
variables supported on [0, 1]. Let X :=

∑
i Xi, and µ := E[X]. We have

Pr
[
|X − µ| ≥ µ/2

]
≤ O

(
t

µ

)t

+O

(
ℓ

µ

)t

γ.

Proof of Lemma 34. We will show that for most choices of D and T , at least 23wθ−2 of the
fD,T,i depend on only 1 coordinate, and the ones that depend on at least 2 coordinates
together form a log(1/ε)-junta.

We first consider the set of functions fD,T,i that are restricted to 1-bit non-constant
functions. Let

J1 := {i ∈ [ℓ] : |T ∩ Ii| = 1 and fT,D,i is non-constant}.

If D and T were exactly independent instead of almost-independent, then applying Claim 35
with our choice of p ≥ 2−23wθ3, we would have

E
D,T

[
|J1|

]
≥ ℓ · p ·

(
1− p

2

)3w−1

≥ (230wθ−5) · (2−23wθ3) · 2−3w ≥ 24wθ−2.

As (D,T ) is δ-almost k-wise independent and |Ii| ≤ 3w for i ∈ [ℓ], the indicators 1(i ∈
J1) : i ∈ [ℓ] are δ-almost ⌊k/(3w)⌋-wise independent. So applying Lemma 36 with t =
C(log(1/ε)+w)

300w
≤ ⌊k/(3w)⌋ and γ = δ = θk, and recalling k = C(log(1/ε) + w), ℓ ≤ 245wθ−5,

and w ≥ log log(1/ε) + log(1/θ), we have

Pr
D,T

[
|J1| ≤ 23wθ−2

]
≤ O

(
t

24wθ−2

)t

+O
(
241wθ−3

)t · θk
≤ 2−Ω

(
w·C(log(1/ε)+w)

300w

)
+ θk/2

≤ ε. (3)

We now consider the fD,T,i’s that depend on at least two coordinates. We will show that
these functions altogether depend on at most log(1/ε) coordinates. As a result, we can think
of these functions as a single log(1/ε)-junta.

Let J≥2 := {i ∈ [ℓ] : |Ii ∩ T | ≥ 2} be the set of functions fD,T,i’s that depend on at least 2
coordinates, and Q :=

⋃
i∈J≥2

Ii ∩ T be the collection of coordinates these functions depend

on. Suppose |Q| ≥ log(1/ε). Then as |Ii ∩ T | ≥ 2 for i ∈ J≥2, it must be the case that some

u ≤ ⌈ log(1/ε)
2

⌉ of the subsets Ii∩T : i ∈ J≥2 together contain at least 2u many free coordinates.
The probability of the latter event is at most(

ℓ

u

)
·
(
u · 3w
2u

)
·
(
p2u + δ

)
.

Setting u = log(1/ε)
2w

+ 1, and recalling ℓ ≤ 245wθ−5, p = 2−23wθ3 and δ = θk ≤ p2u, the above
is at most

ℓu · (6w)2u · 2p2u ≤ (245wuθ5u) · 23u logw · (2 · 2−46wθ6)

≤ (2−2wθ)u ≤ ε. (4)
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Let I ′0 := (T ∩ I0) ∪ Q. By (3) and (4), with probability 1 − 2ε over (D,T ), we have
|J1| ≥ 23wθ−2 and |I ′0| ≤ 3 log(1/ε). In this case, the function fD,T is a product of at least
23wθ−2 non-constant 1-bit functions and a (3 log(1/ε))-junta. In other words, fD,T =

∏
i fD,T,i

is a (ℓ, 1, 3 log(1/ε))-product, where ℓ ≥ 23wθ−2, and each fD,T,i : i ∈ [ℓ] is non-constant.

6.2.1 Long products have small bias: Proof of Claim 33

In this section, we prove Claim 33. We start with bounding the bias of a single arbitrary
non-constant function on w bits.

Claim 37. Let M be a group of matrices supported on Uθ(d). We have ∥E[g(U)]∥op ≤
1− 2−(2w+2)θ2 for every non-constant function g : {0, 1}w → M.

Proof. Let T be the uniform distribution on {0, 1}n. Note that E[g(U)] = EU,T [EU ′ [g(U +
T ∧ U ′)]]. Applying Claim 35 with p = 1/2, with probability at least 2−(2w−1), the function
gU,T (x) := g(U +T ∧x) is a non-constant 1-bit function. Suppose M1 =: gU,T (1) ̸= gU,T (0) :=
M0. By Claim 22, we have ∥(M1 +M0)/2∥op = ∥M1(I +M−1

1 M0)/2∥op ≤ 1− θ2/8. So∥∥E[g(U)]
∥∥
op

≤ (1− 2−(2w−1)) · 1 + 2−(2w−1) · ∥(M1 +M0)/2∥op
≤ 1− 2−(2w−1) ·

(
1− (1− θ2/8)

)
= 1− 2−(2w+2)θ2.

Proof of Claim 33. By Claim 37, we have ∥E[fi(U)]∥op ≤ 1 − 2−(2w+2)θ2 for each i ∈ [ℓ].
Hence, for ℓ ≥ 22w+2θ2 log(1/ε), we have∥∥E[f(U)]

∥∥
op

≤
∏
i∈[ℓ]

∥∥E[fi(U)]
∥∥
op

≤
(
1− 2−(2w+2)θ2

)ℓ ≤ exp
(
−ℓ · 2−(2w+2)θ2

)
≤ ε.

7 Width reduction of short products: Proof of Lemma 29

In this section, we prove Lemma 29. Recall that D,T are δ-almost k-wise independent
distributions with E[Di] = 1/2 and E[Ti] = p, where

k = C
(
w + log(m/ε)

)
δ = (m · w)−k

p = 2−C .

for a sufficiently large constant C.
Given T , say a coordinate i ∈ [n] is fixed if Ti = 0 and is free if Ti = 1. Let f(x) :=∏ℓ

i=0 fi(xIi) be a (ℓ, 3w, 2 log(1/ε))-product, where ℓ = m5 · 230w. We will show that with
high probability over T , (1) at most log(1/ε) of the 2 log(1/ε) coordinates in I0 are free; (2)
for most of the Ii : i ≥ 1, at most 2w coordinates in each of them are free, and (3) in the
remaining Ii’s, there are at most log(1/ε) many free coordinates in total.

To proceed, let

J := {i ∈ [ℓ] : |T ∩ Ii| ≥ 2w} and Q :=
⋃
j∈J

Ij ∩ T.

It suffices to show the following two claims.
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Claim 38. |Q| ≤ log(1/ε) with probability 1− ε over T .

Claim 39. |T ∩ I0| ≤ log(1/ε) with probability 1− ε over T .

Proof of Lemma 29. Let I ′0 = (T ∩ I0) ∪ Q. By Claims 38 and 39, with probability 1− 2ε
over T , we have |I ′0| ≤ 2 log(1/ε), and for every i ∈ [ℓ] \ J , we have |T ∩ Ii| ≤ 2w. Therefore,
the function fD,T is a (ℓ, 2w, 2 log(1/ε))-product.

Proof of Claim 38. Suppose |Q| ≥ log(1/ε). Then as |T ∩ Ij| ≥ 2w for j ∈ J , it must be

the case that some u ≤ ⌈ log(1/ε)
2w

⌉ subsets T ∩ Ij : j ∈ J altogether contain 2w · u many free
coordinates. This happens with probability at most(

ℓ

u

)
·
(
3w · u
2w · u

)
·
(
p2w·u + δ

)
.

Setting u = log(1/ε)
3w

+ 1, and recalling ℓ ≤ m5230w and δ = (m · w)−k ≤ p2w·u, the above is at
most

ℓu · 23w·u · 2p2w·u ≤
(
m5230w

)u · 23w·u · 2−C·2w·u+1

≤ 2u
(
33w+5 logm−C·2w

)
≤ 2−u·3w ≤ ε

where in the second last inequality we used w ≥ logm.

Proof of Claim 39. Recall that |I0| ≤ 2 log(1/ε), and δ = (m · w)−k ≤ plog(1/ε). So

Pr
[
|T ∩ I0| ≥ log(1/ε)

]
≤

(
|I0|

log(1/ε)

)(
plog(1/ε) + δ

)
≤ 22 log(1/ε) · 2−C log(1/ε)+1

≤ ε/2.

8 Fooling (1, w, 3 log(1/ε))-products over groups

In this section, we show how to extend the PRGs for (ℓ, 1, 0)-products over p-groups (Theo-
rem 5) and commutative groups [GKM15] to fool (ℓ, 1, 3 log(1/ε))-products.

8.1 p-groups

We use the fact that our generator in Theorem 5 is simply the XOR of independent copies of
small-bias distributions. The following claim shows that conditioning on a small number of
bits of a small-bias distribution remains small bias.

Claim 40. Let D be an ε-biased distribution on {0, 1}n. For any set S and y ∈ {0, 1}S, the
distribution of D conditioned on DS = y is (2|S|+1ε)-biased on {0, 1}[n]\S.
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Proof. We may assume ε ≤ 2−(|S|+1), for otherwise the claim is vacuous. For a subset T ⊆ [n],
let χT (x) := (−1)

∑
i∈T xi be any parity test. Let T be any nonempty subset of [n] \ S. First

observe that

1(DS = y) =
∏
i∈S

1− χ{i}(D)

2
= 2−|S|

∑
S′⊆S

(−1)|S
′|χS′(D).

Taking expectations on both sides and applying the triangle inequality, we have Pr[DS =
y] ≥ 2−|S| − ε ≥ 2−(|S|+1). Note that

E[χT (D) | DS = y]Pr[DS = y] = E[χT (D) · 1(DS = y)]

= E
[
χT (D) ·

∏
i∈S

1− χ{i}(D)

2

]
= 2−|S|

∑
S′⊆S

(−1)|S
′| E

[
χT∪S′(D)

]
.

So its magnitude is bounded by ε. Therefore,
∣∣E[χT (D) | DS = y]

∣∣ ≤ Pr[DS = y]−1ε ≤
2|S|+1ε.

Corollary 41. There is a PRG that ε-fools (n, 1, 3 log(1/ε))-products over any p-groups of
order m with seed length Om(log(n/ε)).

Proof. Recall our generator for p-groups in Theorem 5 is simply the XOR of independent
copies of (ε/n)c-biased distributions. By Claim 40, for any fixing of the input bits of f0 in
each copy, each distribution remains (2/ε)(ε/n)c-biased.

8.2 Commutative groups

We now show that the Gopalan–Kane–Meka PRG fools (ℓ, 1, 3 log(1/ε))-products. We will
use the following PRG by Gopalan, Kane, and Meka [GKM18] that fools (ℓ, 1, 0)-products
over C. A simple argument shows that the same PRG also fools (ℓ, 1, 3 log(1/ε))-products.

Claim 42. There is an explicit PRG P that ε-fools (ℓ, 1, 3 log(1/ε))-products over commutative
groups of order m with seed length Om(log(ℓ/ε)(log log(ℓ/ε)

2).

Lemma 43 (Theorem 1.1 and Lemma 9.1 in [GKM18]). There is an explicit PGKM : {0, 1}s →
{0, 1}n where s = O(log(ℓ/ε))(log log(ℓ/ε))2 such that the following holds. If w ∈ Rn satisfies∑

i|wi| ≤ W , then

distTV

(
⟨w,U⟩, ⟨w,PGKM(U)⟩

)
≤ O(

√
W ) · ε.

Proof of Claim 42. By Claim 21, it suffices to fool the product over each irreducible repre-
sentation of G with error ε/

√
m. Since G is commutative, all its irreps are 1-dimensional.

Moreover, they are supported on subsets of Cm := {z ∈ C : |z|m = 1}. Let f =
∏ℓ

i=0 fi be an
(ℓ, 1, 3 log(1/ε))-product over Cm.

Let ω := ei
2π
m . Note that for any 1-bit function g : {0, 1} → Cm we can write g as

g(y) = ωa1y+a0(1−y) = ωa0 · ω(a1−a0)y
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for some a0, a1 ∈ {0, . . . ,m− 1}. We can also write f0(xI0) as ω
h(xI0

), for some h : {0, 1}I0 →
{0, . . . ,m− 1}. Therefore, f has the form of

f(x) = ωb · ω
∑

j∈J ajxj+h(xI0
),

for some coefficients b and aj’s taking values from {0, . . . ,m− 1}, and J and I0 are disjoint
subsets of [n]. Write I0 = {r1 < · · · < r|I0|} for some rj ∈ [n]. Consider the integer-valued
function F : {0, 1}ℓ → Z defined by

F (x) :=
∑
j∈J

ajxj + 2⌈log(mℓ)⌉
|I0|∑
j=1

2j−1xrj .

So the first ⌈logmℓ⌉ bits of F (x) encode the first sum, and the last |I0| bits are the decimal
encoding of the binary string xI0 . Note that we can compute f(x) given F (x). Moreover,
F (x) = ⟨w, x⟩ for some w ∈ Rn with

∑
i|wi| ≤ O(mℓ/ε3). Therefore, if we let P be the PRG

in Lemma 43 with error O( ε3

mℓ
), which uses a seed of O(log(mℓ/ε))(log log(mℓ/ε))2 bits, then

it follows that distTV (F (U), F (PGKM(U)) ≤ ε/
√
m.

9 Proof of mixing characterization of Dedekind groups,

Lemma 9

This proof is provided by Yves de Cornulier on https://mathoverflow.net/a/482286/8271.

Lemma 44. A finite group is mixing if and only if it is Dedekind.

We first prove the following equivalent condition of mixing.

Claim 45. For any group element g and representation ρ of a group G, ρ(g) has no eigenvalue
1 if and only if ker(ρ(g)− I) is a subrepresentation.

Proof. Consider the subspace Wg := {v : ρ(g)v = v}. Wg is a subrepresentation if and
only if ρ(g′)Wg ⊆ Wg for every g′ ∈ G. By the definition of Wg, this is equivalent to
ρ(g)(ρ(g′)v) = ρ(g′)v for every v ∈ Wg, which means ρ(g′)v is an eigenvector of ρ(g) with
eigenvalue 1, unless v = 0.

The proof of Lemma 9 follows from the following two claims. Here we use the equivalence
that a group G is Dedekind if and only if every subgroup of G is normal.

Claim 46. If G is Dedekind, then ker(ρ(g)− I) is a subrepresentation for every g and ρ.

Proof. Take an element g ∈ G. By definition of Dedekind, every subgroup in G is normal. In
particular ⟨g⟩ is also normal.

Take v ∈ Wg := {v : ρ(g)v = v}. To show that Wg is a subrepresentation, we need to
show that ρ(g)(ρ(h)v) = ρ(h)v for every h. But this is equivalent to showing

ρ(h)−1ρ(g)ρ(h)v = ρ(h−1gh)v = v.

Since ⟨g⟩ is normal, we have h−1gh = gi for some i. It is clear that ρ(gi)v = ρ(g)iv =
ρ(g)i−1(ρ(g)v) = ρ(g)i−1v = · · · = v. So indeed Wg is a subrepresentation.

21

https://mathoverflow.net/a/482286/8271


Claim 47. If ker(ρ(g)− I) is a subrepresentation for every g and ρ of G, then G is Dedekind.

Proof. As in the previous claim, we consider Wg = ker(ρ(g)− I) = {v : ρ(g)v = v}. Note that
for v ∈ Wg, we have ρ(gi)v = ρ(g)iv = v. Suppose Wg is a subrepresentation. Take h ∈ G
and v ∈ Wg. Since ρ(h)Wg ⊆ Wg, we have ρ(g)ρ(h)v = ρ(h)v. That means ρ(h−1gh)v = v for
every v ∈ Wg. This implies ⟨h−1gh⟩ = ⟨g⟩, meaning h−1gh ∈ ⟨g⟩ and thus ⟨g⟩ is normal.
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