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Abstract
We study several problems in the intersection of cryptography and complexity theory based

on the following high-level thesis.
1. Obfuscation can serve as a general-purpose worst-case to average-case reduction, reducing

the existence of various forms of cryptography to corresponding worst-case assumptions.
2. We can therefore hope to overcome barriers in cryptography and average-case complexity

by (i) making worst-case hardness assumptions beyond P ̸= NP, and (ii) leveraging worst-
case hardness reductions, either proved by traditional complexity-theoretic methods or
facilitated further by cryptography.

Concretely, our results include:
• Optimal Hardness. Assuming sub-exponential indistinguishability obfuscation, we give

fine-grained worst-case to average case reductions for circuit-SAT. In particular, if finding
an NP-witness requires nearly brute-force time in the worst case, then the same is true for
some efficiently sampleable distribution. In fact, we show that under these assumptions,
there exist families of one-way functions with optimal time-probability security tradeoffs.

Under an additional, stronger assumption – the optimal non-deterministic hardness of
refuting circuit-SAT – we construct additional cryptographic primitives such as PRGs and
public-key encryption that have such optimal time-advantage security tradeoffs.

• Direct Product Hardness. Again assuming 𝑖𝒪 and optimal non-deterministic hardness
of SAT refutation, we show that the “(search) 𝑘-fold SAT problem” – the computational
task of finding satisfying assignments to 𝑘 circuit-SAT instances simultaneously – has
(optimal) hardness roughly (𝑇/2𝑛)𝑘 for time 𝑇 algorithms. In fact, we build “optimally
secure one-way product functions” (Holmgren-Lombardi, FOCS ’18), demonstrating that
optimal direct product theorems hold for some choice of one-way function family.

• Single-Input Correlation Intractability. Assuming either 𝑖𝒪 or LWE, we show a
worst-case to average-case reduction for strong forms of single-input correlation intractabil-
ity. That is, powerful forms of correlation-intractable hash functions exist provided that a
collection of worst-case “correlation-finding” problems are hard.

• Non-interactive Proof of Quantumness. Assuming sub-exponential 𝑖𝒪 and OWFs, we
give a non-interactive proof of quantumness based on the worst-case hardness of the white-
box Simon problem. In particular, this proof of quantumness result does not explicitly
assume quantum advantage for an average-case task.

To help prove our first two results, we show along the way how to improve the Goldwasser-
Sipser “set lower bound” protocol to have communication complexity quadratically smaller in
the multiplicative approximation error 𝜀.
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1 Introduction
Since its inception in the 1980s, the theory of cryptography has delivered remarkable conceptual
and mathematical justifications for the security of cryptographic protocols. Its justifications come
in at least two different forms.

1. Constructions based on “standard assumptions.” Cryptographers have carefully accu-
mulated computational hardness assumptions that we have some confidence in – such as the
hardness of learning with errors [Reg05], the hardness of factoring [RSA78, Rab79], and the
hardness of discrete logarithms [DH76] – and built a vast collection of cryptographic primi-
tives and protocols under these assumptions. Over time, these assumptions have come to be
labeled as “standard.”

2. Constructions based on generic primitives. On the other hand, there is a wide web
of cryptographic constructions and security reductions between cryptographic primitives. As
a result, we know that several implications follow generically from the existence of one-way
functions [HILL99], oblivious transfer [GMW87], or strong cryptographic primitives such as
indistinguishability obfuscation [SW14, JLS21].

In recent years, indistinguishability obfuscation (𝑖𝒪) [BGI+01, GGH+13] has played an especially
important role in “existential” theoretical cryptography. It is a powerful enough primitive that it,
in combination with one-way functions, implies a large fraction of “standard cryptography” (see
[SW14] and many subsequent works); on the other hand, as the result of a decade-long effort, it
has a candidate construction based on “well-founded” cryptographic assumptions [JLS21]. This
suggests the possibility of viewing 𝑖𝒪 as a central hub for cryptography.

However, over time, we have also identified some limitations on our ability to carry out both
(1) and (2):

Some problems lie beyond standard assumptions. Despite our best efforts, there are plenty
of cryptographic primitives that still lie beyond the reach of “standard assumptions.” In this
paper, we focus on cryptographic primitives that unconditionally exist relative to a random oracle
[BR93] but lack convincing standard-model constructions. Indeed, for some of these tasks – such
as building cryptographic primitives with optimal security [HL18], correlation-intractable hashing
[CCR16, KRR17, CCH+19], and extremely lossy functions [Zha16], it is either known or believed
to be impossible to solve them with standard cryptographic assumptions alone.

𝑖𝒪 and OWFs do not always suffice. There are black-box impossibility results ruling out
constructions of very simple forms of cryptographic hardness – collision-resistant hash functions
[AS15] and hardness in SZK [BDV17] – from 𝑖𝒪 and one-way functions. Thus, it is not even the
case that “𝑖𝒪 plus OWFs” is complete for “standard cryptography.”

In this paper, we ask what can be done in the face of these obstacles.

Question 1.1 (Informal). Can we find new, “reasonable” hardness assumptions that allow us to go
beyond the reach of standard assumptions – in particular, to instantiate some of these random-oracle
security properties?

Question 1.2 (Informal). Assuming the existence of 𝑖𝒪, what forms of computational hardness
are sufficient to imply the existence of standard cryptography?
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1.1 This work: cryptography questions

We make progress on Question 1.1 and Question 1.2 in the context of the following problems.

Cryptography with Optimal Security. Typically, we say that a cryptographic primitive (such
as an encryption scheme) is secure if polynomial-time algorithms cannot break its security property
with better than negligible advantage. However, in practice, one needs concrete security guarantees
about algorithms running in a specific running time achieving a specific quantitative advantage. For
example, the best-known attack on AES-128 runs in time roughly 2126.1 [BKR11], and its real-world
security relies on it having strong quantitative hardness.

A natural idea for theoretically capturing these strong forms of hardness is the notion of optimal
security. Informally, a cryptographic primitive is optimally secure if the naive brute-force attack
(which, of course, depends on the cryptographic primitive) is optimal up to polynomial factors.
In fact, we will be interested in time-probability tradeoffs, and therefore consider “brute-force at-
tacks” with bounded running time. Naive brute-force attacks for common cryptographic primitives
include:

• One-way functions: given a OWF 𝑓 and output 𝑦 = 𝑓(𝑥), sample 𝑇 i.i.d. inputs 𝑥𝑖 and
check if 𝑦 = 𝑓(𝑥𝑖).

• Pseudorandom generators: given a PRG 𝐺 and output 𝑦 (either pseudorandom or ran-
dom), sample 𝑇 i.i.d. inputs 𝑥𝑖 and check if 𝑦 = 𝐺(𝑥𝑖). If yes, output “pseudorandom.”
Otherwise, output a random bit.

• Public-key encryption: there are actually two incomparable brute-force attacks for a PKE
scheme. Given a public key pk and ciphertext ct = Enc(pk,𝑚; 𝑟), one can either:

– Search over the space of secret keys sk, checking whether (pk, sk) is a valid key pair.
– Search over the space of encryption randomness 𝑟′, checking if ct = Enc(pk,𝑚; 𝑟′).

Such attacks will allow for distinguishing between an encryption of a known message 𝑚 and
an encryption of the all zeroes string.

• Indistinguishability obfuscation: given an obfuscated program ̃︀𝐶 and circuits 𝐶0, 𝐶1,
search over the space of obfuscation randomness and check if ̃︀𝐶 = 𝑖𝒪(𝐶𝑏; 𝑟) for some 𝑏.

For example, a family1 of one-way functions is optimally secure [HL18] if for any time 𝑇 algorithm
for OWF inversion, the success probability of the algorithm is at most 𝑇

2𝑛 · poly(𝑛), where 𝑛
denotes the OWF input length. One can similarly define optimal hardness families of pseudorandom
generators and public-key encryption schemes (where one can ask for either one or both of the
brute-force attacks to be optimal).

In this work, we ask:

Question 1.3. Under what assumptions can we build cryptography with optimal security?
1In the non-uniform security model, it is known that any fixed OWF can be broken by a better-than-brute-force

algorithms [HIW24, MP24]. In this work, we focus on (keyed) families of OWFs, where no such attack is known.
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We observe that PRGs appear to be “complete” for a large class of primitives here: given
any sub-exponentially secure cryptographic primitive (such as public-key encryption or indistin-
guishability obfuscation), one can combine a family of PRGs mapping {0, 1}𝑛 → {0, 1}poly(𝑛) with
optimal security with an instantiation of the (sub-exponentially secure) primitive using randomness
complexity (sufficiently large) poly(𝑛) to obtain a hybrid scheme with optimal security.

One-Way Product Functions. Question 1.3 concerns the quantitative security of standard
cryptographic primitives. We now turn to a non-standard security property: product one-wayness
[DJMW12, HL18]. For an integer 𝑘 (either constant or depending on the security parameter 𝑛),
given a one-way function 𝑓 as well as 𝑘 outputs 𝑦𝑖 = 𝑓(𝑥𝑖), is it hard to simultaneously invert
all 𝑘 instances? It is certainly as hard as the task of inverting a single instance. Unfortunately,
[DJMW12] gives counterexamples showing that for certain OWF families, receiving 𝑘 independent
challenges does not amplify the quantitative hardness of inversion.

Nevertheless, we say that a OWF family is (𝑇, 𝜀)-product one-way if given a function 𝑓 as
well as 𝑘 outputs (𝑦1, . . . , 𝑦𝑘), the probability of simultaneous inversion is at most 𝜀. The time 𝑇
brute-force attack for this problem achieves 𝜀 ≈ ( 𝑇

2𝑛 )𝑘 for OWF inputs of length 𝑛. In general,
we are interested in the regime where 𝜀 < 𝑇

2𝑛 , so that hardness cannot follow from (even optimal)
hardness of inverting a single OWF challenge. Indeed, an informal intuition dating back to Rudich
suggests that it will be difficult for “black-box reductions” to prove that any candidate OWPF has
this property under standard assumptions. As a result, we ask:

Question 1.4. Under what assumptions can we build OWPFs?

Intriguingly, a work of Holmgren and Lombardi [HL18] shows that if sufficiently quantitatively
strong OWPFs exist, they can be used to build families of hash functions satisfying forms of multi-
input correlation intractability that (1) we do not know how to build from standard assumptions
and (2) overcome the Asharov-Segev barrier for constructing CRHFs from 𝑖𝒪 and OWFs. We
do not discuss this implication further here, but our final question concerns related questions on
single-input correlation intractability.

Correlation-Intractable Hash Functions Given a binary relation 𝑅(𝑥, 𝑦), we say that a hash
function family ℋ is 𝑅-correlation intractable [CGH98] if it is computationally hard, given a hash
key 𝑘, to find an input 𝑥 such that 𝑅(𝑥,𝐻𝑘(𝑥)) = 1. Such a security property is plausible whenever
(1) the size of the hash key is allowed to grow with the input length (which we will assume
throughout this paper), and (2) the relation is sparse meaning that for every 𝑥, the probability
that a random 𝑦 satisfies 𝑅(𝑥, 𝑦) = 1 is negl(𝑛).

In recent years, correlation intractability has received a large amount of attention due to its
connection to the security of the Fiat-Shamir heuristic [CCR16, CCRR18, HL18, CCH+19, JKKZ21,
CJJ22]. In particular, a wide variety of cryptographic protocols have been constructed by proving
the existence of CI hash functions for specific kinds of relations based on standard assumptions,
and then making use of these hash functions in a protocol.

However, it has remained wide open to construct hash functions that are correlation-intractable
for all sparse relations.

Question 1.5. Under what assumptions can we construct hash functions that are CI for all sparse
relations?
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Two prior works [KRR17, CCRR18] build such hash functions under extremely strong and
poorly understood assumptions, such as the existence of encryption schemes that are “optimally
unbounded KDM-secure.”

Subsequent works avoided the difficulties of this question by considering (sub-classes of) relations
that are decidable in polynomial time. However, even this easier question is poorly understood.

Question 1.6. Under what assumptions can we construct hash functions that are CI for all sparse,
efficiently decidable relations?

The biggest difficulty in resolving this question concerns what is referred to as “compactness:”
Question 1.6 is asking for a single family of hash functions – in particular, whose evaluation time
is some fixed polynomial in 𝑛 – that is CI for relations that can be decided in polynomial time, but
time longer than it takes to evaluate the hash function. Very little is known in this setting: besides
the two mentioned works, [CCH+19] gives a construction based on the optimal circular security of
a fully homomorphic encryption scheme.

1.2 This work: relationship to complexity theory

Our main thesis is that (worst-case) complexity theory offers us powerful tools to help answer these
cryptographic questions. Even better, we find that a combination of cryptographic and complexity
theoretic reasoning helps us to overcome barriers and improve our understanding of both fields.

A new perspective on obfuscation. At the center of our new perspective is the following basic
phenomenon.

𝑖𝒪 reduces the existence of cryptographic objects to their worst-case hardness.

Indeed, this has featured prominently in a prior work [KMN+14] showing that 𝑖𝒪 reduces the
existence of one-way functions to the worst-case hardness of solving SAT. It turns out that for
other cryptographic objects, while they may not reduce to the hardness of SAT (at least directly),
they do reduce to other worst-case problems.

We carefully examine how to use 𝑖𝒪 to reduce cryptographic primitives to worst-case problems.
This includes both sharpening connections to SAT and also reducing to other worst-case prob-
lems. By doing so, we can then make progress on cryptographic questions by applying complexity-
theoretic tools. Indeed, our work suggests the following general framework for using 𝑖𝒪:

1. Reduce a cryptographic object to a worst-case hardness assumption.

2. Use complexity theory tools and/or assumptions (perhaps beyond P versus NP) to show that
worst-case problem is hard.

Intriguingly, in the process of doing (2) for cryptographic purposes, we make progress on indepen-
dently interesting questions in complexity theory, as described below.

How hard is NP? The P versus NP question asks whether every NP problem can be solved
in polynomial time [Coo71, Lev73]. Over fifty years since P versus NP was first asked, the best
known algorithm for solving a generic NP problem is still the trivial one [Wil13]: 2𝑤 · poly(𝑡)
time, where 𝑤 and 𝑡 are the bits of non-determinism and time the NP algorithm uses respectively.
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Moreover, this trivial 2𝑤 · poly(𝑡) is the best known even for algorithms that are equipped with
non-uniformity2 and/or co-non-determinism and even if one just considers average-case problems.
By the Cook-Levin theorem, these questions are completely characterized (up to a poly(𝑡) factor)
by the corresponding complexity of Circuit SAT (henceforth, SAT).3

A fundamental question is whether the bounds in these models are optimal and understand-
ing how they are related. Perhaps the most prominent of these problems is understanding the
relationship between worst-case and average-case complexity.

Question 1.7 (Connecting the Worst-case and Average-case Hardness of NP). Are the worst-case
and average-case complexities of NP tightly related?

For example, it is consistent with current state-of-knowledge that NP is easy on average, but
exponentially hard in the worst case [Hir21]. Indeed, positive progress on this question immediately
implies progress on eliminating Heuristica [Imp95], a longstanding open problem in complexity
theory. We also mention that for other NP-complete problems such as 𝑘-SAT, the best known
worst-case and average-case (for natural “hard” distributions) algorithms do not have tightly related
complexity [VW21].

Question 1.7 is even unclear under powerful assumptions like the existence of indistinguishability
obfuscation. While we know that 𝑖𝒪 and the worst-case hardness of SAT implies one-way functions
(and hence average-case hardness of SAT) [KMN+14], the proof of this only gives average-case
hardness that is upper bounded by the security 𝑆 of the obfuscation scheme (and in particular, not
the worst-case hardness of SAT). Moreover, all known constructions of obfuscation with security
𝑆 require assumptions that already imply that NP is hard on average with security 𝑆, so this
argument seems circular.

Besides Question 1.7, we mention two other interesting open problems in worst-case complexity
theory.

Time-probability tradeoffs for decisional SAT. As stated above, we do not know a better
algorithm for SAT than the 2𝑤 · poly(𝑡) brute force algorithm. What if we allow the algorithm to
be probabilistic? If a probabilistic algorithm runs in time 𝑇 , what is the largest probability with
which it can solve SAT on worst-case instances?

Again, the brute force algorithm is the best we know, which achieves:

• Success probability roughly 𝑇
2𝑤 for the search problem.

• Success probability roughly 1
2 + 𝑂( 𝑇

2𝑤 ) for the decision problem (by guessing uniformly if it
fails to find a witness).

For the search problem, it is clear that (𝑇, 𝜀)-hardness follows from the time 𝑇/𝜀-hardness of SAT
by naive repetition. However, the tradeoff for the decisional version is harder to reason about:
essentially, this is because both known success probability amplification and known search-to-
decision reductions for SAT do not have good dependence on the advantage 𝜀.

2For non-uniform circuits, there is also trivial 𝑂(2𝑛/𝑛) bound, by essentially memorizing the function.
3Specifically, given an instance of any such NP problem, one can reduce it in poly(𝑡) time to an instance of SAT

with 𝑤-inputs and poly(𝑡) size.
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𝑘-fold Search-SAT. Even less is known about another type of hardness, the direct product hard-
ness of Search-SAT. Specifically, given 𝑘 distinct satisfiable circuits, what is best possible success
probability 𝜀 a time 𝑇 algorithm can achieve at simultaneously producing satisfying assignments
for all of them? This is the complexity of what we call the “𝑘-fold SAT problem.”

The trivial brute-force algorithm for this problem achieves 𝜀 ≈ ( 𝑇
2𝑤 )𝑘. To the best of our

knowledge, there are no results in the literature in the regime where 𝜀 ≪ 2−𝑤; see discussion by
Drucker [Dru13] for more details.

Question 1.8. Does solving multiple instances of Search-SAT obey a direct product theorem?

1.3 Our Results

We now describe our results on the questions stated above.

Optimally Secure Cryptography. We give new constructions of OWF and PRG families with
optimal security. Our constructions are based on sub-exponentially secure 𝑖𝒪, sub-exponentially
secure OWFs, and worst-case assumptions about the quantitative hardness of SAT. Specifically, we
introduce the following worst-case hardness assumptions.

Assumption 1.9 (Optimal Hardness of NP). There exists a polynomial 𝑝(𝑛) such that SAT on
circuits of size 𝑝(𝑛) and input length 𝑛 requires circuits of size at least 2𝑛 · 1

𝑝(𝑛) for all 𝑛.

Assumption 1.10 (Optimal Non-Deterministic Hardness of coNP). There exists a polynomial
𝑝(𝑛) such that UNSAT (the complement of SAT) on circuits of size 𝑝(𝑛) and input length 𝑛 requires
non-deterministic circuits of size at least 2𝑛 · 1

𝑝(𝑛) for all 𝑛.

We remark that these assumptions make no reference to time-probability tradeoffs; they are
about the (non-uniform or non-deterministic) time complexity of solving SAT and UNSAT on all
inputs. The assumptions state that there are no worst-case algorithms for these problems beating
naive brute-force search by a superpolynomial factor.

Given that there have been no non-trivial algorithms for these problems discovered so far, we
find Assumption 4.1 and Assumption 4.2 to be simple and plausible. We briefly mention that the
recent non-uniform algorithms of [HIW24, MP24] seem to be specific to the setting of “compression
problems” and do not have implications for general circuit-SAT.

With these assumptions in hand, we are ready to state our main results.

Theorem 1.11 (Informal, see Theorem 5.1). Suppose that sub-exponentially secure 𝑖𝒪 and OWFs
exist. If, in addition, Circuit-SAT is optimally hard (Assumption 4.1), then there exist optimally
secure OWF families.

Theorem 1.12 (Informal, see Theorem 5.1). Suppose that sub-exponentially secure 𝑖𝒪 and OWFs
exist. If, in addition, refuting Circuit-SAT is optimally hard (Assumption 4.2), there exist optimally
secure PRG families.

We make a few remarks on these theorems:

• By [KMN+14], the assumption that sub-exponential OWFs exist in Theorems 1.11 and 1.12
is redundant and is included only for convenience.
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• Assumption 4.1 is necessary for the existence of optimally secure OWFs. This is a complex-
ity theoretic barrier to building optimally secure OWFs that likely cannot be overcome with
standard assumptions alone. What we show is that, under sub-exponential standard assump-
tions, there is a worst-case to average-case reduction taking us from the complexity-theoretic
barrier all the way to (optimally secure) OWFs.

• Even if Assumption 4.1 is false, our cryptographic construction preserves the fine-grained
hardness of circuit SAT up to polynomial factors.

• By the “PRG-completeness” mentioned earlier, Assumption 4.2 (along with sub-exponential
standard assumptions) implies the existence of optimally secure cryptographic primitives such
as public-key encryption and 𝑖𝒪.

• As stated, these results pertain to classical security. In Section 5, we extend Theorem 1.11
to the post-quantum setting, but extending Theorem 1.12 remains open.

In order to prove Theorem 1.12, we prove the following purely complexity-theoretic result.

Theorem 1.13 (Informal, see Theorem 4.9). If decisional Unique-SAT is solvable in time 𝑇 with
(1/2 + 𝜀)-success, then UNSAT can be solved in non-deterministic time 𝑇/𝜀 · poly(𝑛).

Here, Unique-SAT denotes SAT when promised there is at most one satisfying assignment. This
is a non-deterministic refutation to (unique) decision reduction with optimal parameters. Even
without uniqueness, such a reduction was not known (to our knowledge), and it seems unlikely to
be able to give a search-to-decision reduction with similar parameters.

We prove Theorem 4.9 by giving an improved Goldwasser-Sipser “set lower bound” protocol
with communication complexity quadratically smaller in the multiplicative approximation error
𝜀 (see Theorem 3.2). Essentially, this gives a “non-deterministic” solution to the coin problem
(distinguishing an unbiased coin from a 𝜀-biased coin) with only 1/𝜀 “samples.” This result is also
crucial for our next main results on OWPFs.

Direct Product Hardness. Fascinatingly, it turns out that Assumption 4.2 is also sufficient to
construct optimal OWPFs, resolving the hardness amplification problem!

Theorem 1.14 (Informal, see Corollary 6.3). If refuting Circuit-SAT is optimally hard (Assump-
tion 4.2), then for every 𝑘 = 𝑘(𝑛), there exists an optimally secure 𝑘-OWPF family.

As before, we actually give a fine-grained security reduction relating the (𝑇, 𝜀)-hardness of
OWPFs to the 𝑇

𝜀1/𝑘 -hardness of refuting SAT. Thus, we obtain interesting results even assuming
relaxations of Assumption 4.2. For example, taking 𝑘 = 𝑛, we can obtain 2−𝑛-secure 𝑛-OWPFs
assuming only that NP ̸⊆ i.o.-coNP/poly (in addition to 𝑖𝒪). See Theorem 6.2 for details.

One major difference between the proofs of Theorem 1.14 and of Theorems 1.11 and 1.12 are
that the worst-case complexity-theoretic reductions involved in Theorem 1.14 only hold under
cryptographic assumptions! That is, we prove:

Theorem 1.15 (Informal, see Theorem 6.1). Assume subexponentially secure 𝑖𝒪 and subexponen-
tially secure puncturable PRFs exist. Then, under Assumption 4.2, the 𝑘-fold Search-SAT problem
is optimally hard (for probabilistic algorithms) in the worst case.

Thus, we have used cryptography (𝑖𝒪) as a catalyst for a worst-case complexity-theoretic re-
duction.
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Implications for Multi-Input Correlation Intractability and CRHFs. By combining The-
orem 1.14 with the results of [HL18], we obtain new constructions of several kinds of multi-input
correlation intractable hash functions from sub-exponential 𝑖𝒪 and Assumption 4.2. While some of
these forms of CI are “beyond standard assumptions,” others are more familiar, including collision-
resistant hash functions. Although CRHFs are known based on standard assumptions, they are
known to be black-box separated from 𝑖𝒪 and (even optimally secure) OWFs [AS15, HL18]. We
circumvent this barrier by making an assumption about the non-deterministic hardness of coNP.

For this special case of CRHFs, it is reasonable to ask if one really needs the full power of
Assumption 4.2. In fact, we show (with a different proof, but somewhat related ideas) that one
can drastically weaken Assumption 4.2 and still construct a distributional collision-resistant hash
function family ([DI06]).

Theorem 1.16 (See Theorem 7.1). Assume subexponentially secure indistinguishably obfuscation
exists, subexponentially secure OWFs exist, and that NP ̸⊆ i.o.-coNP/poly. Then a distributional
collision resistant hash function family exists.

We leave it as an open problem to improve Theorem 1.16 to construct a full-fledged CHRF.

1.3.1 More worst-case to average-case reductions

Several of our results above use 𝑖𝒪 to help give a worst-case to average-case reduction for com-
putational problems. To conclude the paper, we give a variety of additional applications of this
high-level randomization technique.

Single-input correlation intractability. We give a worst-case to average-case reduction for
the problem of constructing (single-input) CI hash functions. To do this, we define the “worst-case
correlation finding problem” Search𝑅[𝑠] (Definition 8.4) and prove the following two theorems:

Theorem 1.17 (Informal, see Theorem 8.9). Assume that sub-exponential 𝑖𝒪 and OWFs exist.
Then, if Search𝑅[𝑠] is worst-case hard for every sparse relation 𝑅, then there exists a hash

function family that is correlation-intractable for all sparse relations.

Theorem 1.18 (Informal, see Theorem 8.8). Assume that sub-exponential 𝑖𝒪 and OWFs exist, or
that LWE is hard.

Then, if Search𝑅[𝑠] is worst-case hard for every sparse and efficiently decidable relation 𝑅, then
there exists a hash function family that is correlation-intractable for all sparse, efficiently decidable
relations.

Thus, we have reduced the existence of CI hash functions to questions about the worst-case
complexity of these computational problems. Moreover, we hope that in the future, using some
combination of cryptographic and complexity-theoretic techniques, it will be possible to prove these
new worst-case hardness conjectures under simpler complexity-theoretic assumptions.

(Extremely) Lossy functions. A distribution 𝒟 over circuits 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 is a lossy
function family [PW08] if 𝐶 ← 𝒟 computes an injective function with high probability but 𝒟 is
computationally indistinguishable from a distribution over circuits with significantly smaller range.
Lossy functions can be built under specific algebraic assumptions like DDH or LWE, but are known
to be impossible to build from 𝑖𝒪 and OWFs alone. Extremely lossy functions [Zha16] are a

8



strengthening of the primitive that demands the existence of (𝑇, 𝜀)-lossy modes that are (𝑇, 𝜀)-
indistinguishable from injective mode but have ranges of size poly(𝑇, 1/𝜀). ELFs are currently only
known to exist based on the exponential hardness of DDH.

In Section 9, we give a worst-case to average-case reduction for lossy functions (see Theorems 9.6
and 9.14), showing that assuming sub-exponential 𝑖𝒪 and OWFs, lossy functions exist under the
additional assumption that there is no efficient algorithm distinguishing worst-case injective and
lossy circuits. This reduction holds both in the setting of mild lossiness and extreme lossiness. In
the “mild” case, the resulting worst-case problem seems fairly similar to variants of the entropy
approximation problem that are known to be hard for NISZK [GSV99, AHT23, MNRV24], but we
leave establishing a formal connection as an open problem.

Non-interactive proofs of quantumness. A non-interactive proof of quantumness is a challenge-
response protocol in which an efficient quantum prover can make an efficient classical verifier accept
with high probability, while any polynomial-time classical prover would be rejected with high prob-
ability. Such protocols are known to exist unconditionally in oracle models [Sim97, CCD+03, YZ22],
but in the standard model, such protocols are only known under computational assumptions;
namely, assumptions that some quantumly easy NP problem is classically hard, such as the factoring
or discrete logarithm problems.

In more detail, subject to being in the standard model and having efficient verification, two
natural protocol types come to mind:

1. Protocols whose security is proven under a tautological assumption, such as those based on
factoring and discrete log.

2. Protocols obtained by heuristically obfuscating a computational problem that is uncondition-
ally hard in an oracle model. This type of protocol does not come with a formal security
proof, except under idealized assumptions such as black-box obfuscation.

In Section 10 (Theorem 10.2), we construct a non-interactive proof of quantumness of type (2) and
prove its security assuming sub-exponential 𝑖𝒪, sub-exponential OWFs, as well as a new worst-case
hardness assumption about Simon’s problem [Sim97]. Briefly, Simon’s oracle problem is to find a
hidden period 𝑠 with black-box access to a function 𝑓 : {0, 1}𝑛 → {0, 1}𝑚 that is injective modulo 𝑠.
Our hardness assumption is that the white-box version of this problem – where the algorithm is given
a circuit 𝐶 computing 𝑓 – is hard in the worst case; that is, there is no efficient algorithm 𝐴 that
outputs 𝑠 on every 𝐶 of bounded polynomial size. Using 𝑖𝒪, we give a worst-case to average-case
reduction for this white-box problem, which immediately yields a proof of quantumness.

We remark that although Theorem 10.2 assumes 𝑖𝒪 and OWFs, these are not “quantum ad-
vantage” assumptions in that they do not assume any separation between efficient quantum and
classical algorithms; the worst-case white-box Simon assumption is the only quantum advantage as-
sumption that is needed. In contrast, protocols such as those based on factoring explicitly make an
average-case quantum advantage assumption. Theorem 10.2 can also be composed with worst-case
complexity theoretic reductions, yielding proofs of quantumness assuming 𝑖𝒪 and the worst-case
hardness of generalizations of Simon’s problem (see Theorem 10.6). We hope that this approach will
lead to proofs of quantumness based on even weaker worst-case quantum advantage assumptions,
ideally even a generic assumption such as BQP ̸⊂ BPP.
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1.4 Prior work using complexity theory in cryptography

Our work is not the first to use strong worst-case complexity assumptions in cryptography. One
general technique, pioneered by Barak, Ong, and Vadhan [BOV07], is to use complexity theory as-
sumptions (e.g., E lacks sub-exponential size non-deterministic circuits) for derandomization pur-
poses. For instance, Barak, Ong, and Vadhan use this framework to remove interaction from
commitment schemes and witness indistinguishable proof systems.

Moreover, indistinguishability obfuscation has been used to build average-case hardness in at
least two notable settings. Komargodski et al. [KMN+14] show that assuming 𝑖𝒪, if NP ̸⊂ 𝑖.𝑜.BPP,
then one-way functions exist; we discuss the relationship between this work and [KMN+14] below.
In addition, [BGJ+16] construct time-lock puzzles assuming 𝑖𝒪 and that there exist languages that
do not parallelize in the worst case.

Another relevant prior work is by Ilango, Li, and Williams [ILW23]. They prove hardness for a
problem (circuit range avoidance [KKMP21]) assuming indistinguishability obfuscation and NP ̸=
coNP. While their assumptions (indistinguishability obfuscation and non-deterministic hardness)
are similar to ours, the techniques used by Ilango, Li, and Williams appear specific to the range
avoidance problem and have a different flavor than ours. For example, while worst-case to average-
case reductions and puncturable PRFs are key components in our proofs, their proofs involve
neither.

1.5 Technical Overview

To give a taste of our techniques, we give an overview of Theorems 1.11, 1.12 and 1.14. The proofs
of Theorems 1.16 to 1.18 as well as Theorems 9.6 and 10.2 are deferred to Sections 7 to 10.

1.5.1 A Fine-Grained Worst-Case to Average-Case Reduction for Search-SAT

We start with a “warm-up” fine-grained worst-case to average-case reduction for Search-SAT using
𝑖𝒪, and explain in Section 1.5.2 how to extend this to an optimally secure OWF.

Our goal is to construct a distribution 𝒟 such that solving Search-SAT on 𝒟 is roughly as hard
as solving SAT in the worst-case.

Why isn’t this already solved? At first glance, one might think that this is already solved by
the prior work of [KMN+14]. In particular, [KMN+14] show that if SAT is worst-case hard and 𝑖𝒪
exists, then a one-way function 𝑓 exists (and, hence, Search-SAT is hard on average). Unfortunately,
this approach fundamentally does not preserve fine-grained hardness.

In more detail, the corresponding hard Search-SAT distribution 𝒟 = {𝐷𝜆} guaranteed by
[KMN+14] is the following:

1. Sample 𝐵 ← 𝑖𝒪(0𝜆), where 0𝜆 is the all zeroes circuit padded to length 𝜆.

2. Output the Search-SAT instance given by the circuit 𝐶(𝑟) = 1[𝑖𝒪(0𝜆; 𝑟) = 𝐵].

Suppose we wanted to prove that this Search-SAT instance distribution is optimally hard. The key
questions are

• What is the length of the NP witness? It is the randomness complexity of the 𝑖𝒪 scheme.
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• How quantitatively hard is this Search-SAT distribution? Roughly speaking, it is the quanti-
tative security of the 𝑖𝒪 scheme.

Thus, in order to obtain an optimally hard Search-SAT distribution, one would need to assume
optimally hard 𝑖𝒪, a much stronger assumption than the conclusion we wanted.

In summary, it is not clear how to use [KMN+14] to get the desired result. Indeed, our fine-
grained reduction from worst-case Search-SAT to average-case Search-SAT takes a different approach
based on the following two ideas.

Idea 1: Valiant-Vazirani. First, we use the seminal work of Valiant and Vazirani [VV86].
Valiant and Vazirani show that solving Search-SAT reduces to the case where one is guaranteed
that a circuit has exactly one satisfying assignment, which we will refer to as Search-Unique-SAT.
Importantly, their reduction is fine-grained and preserves optimal hardness.

Idea 2: Uniquely Satisfiable Circuits are Rerandomizable. Our next idea is that uniquely
satisfiable circuits are rerandomizable in a certain sense. Given an arbitrary uniquely satisfiable
circuit 𝐶, one may not know where the unique satisfying assignment 𝑤⋆ is. However, even without
knowing 𝑤⋆, one can move the uniquely satisfying assignment to a random place. To do this,
choose a random shift 𝑧 ← {0, 1}𝑛 and consider the new circuit 𝐶𝑧(𝑥) = 𝐶(𝑥⊕ 𝑧). Now the unique
satisfying assignment for 𝐶𝑧 is at 𝑧 ⊕ 𝑤⋆.

Restating the above in different notation, we have that the following two distributions are
statistically identical:

Truth Table of Rerandomized Circuit:
∙ Sample 𝑧 ← {0, 1}𝑛
∙ Output the truth table of 𝐶𝑧

≡
Truth table of Random Point Function:
∙ Sample 𝑥⋆ ← {0, 1}𝑛
∙ Output the truth table of 𝑥 ↦→ 1[𝑥 = 𝑥⋆]

.

Thus, the security guarantee of 𝑖𝒪 says that the following two distributions are computationally
indistinguishable

Obfuscated Rerandomized Circuit:
∙ Sample 𝑧 ← {0, 1}𝑛
∙ Output 𝑖𝒪(𝐶𝑧)

≈
Obfuscated Random Point Function:
∙ Sample 𝑥⋆ ← {0, 1}𝑛
∙ Output 𝑖𝒪(𝑥 ↦→ 1[𝑥 = 𝑥⋆])

.

Hence, assuming subexponentially secure 𝑖𝒪 and setting the security parameter appropriately, we
get that any 𝑇 -time 𝜀-successful algorithm for Search-SAT on an obfuscated random point function
is also a (roughly) 𝑇 -time 𝜀-successful algorithm for Search-SAT on the distribution 𝑖𝒪(𝐶𝑧). Because
one can extract a satisfying assignment for 𝐶 from a satisfying assignment for 𝐶𝑧 (just xor with
𝑧), this further means there is a roughly 𝑇 -time 𝜀-successful algorithm for Search-Unique-SAT. By
success amplification, this yields a 𝑇

𝜀 -time algorithm for Search-Unique-SAT.
Putting all this together, we get a fine-grained reduction from worst-case solving Search-Unique-SAT

in time roughly 𝑇
𝜀 to solving Search-SAT on average on obfuscated random point functions in 𝑇 -time

with 𝜀-success.
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1.5.2 Optimally Secure Cryptography.

Our proofs of Theorems 1.11, 1.12 and 1.14 all proceed in two steps:

1. A worst-case to average-case reduction showing that the desired cryptographic object exists
assuming the worst-case hardness of an analogous complexity theoretic problem.

2. A worst-case reduction from the hardness of SAT (or the non-deterministic hardness of
UNSAT) to the worst-case hardness of the problem from Step (1).

Step (2) is different for each of our three theorems. However, the cryptographic construction in
Step (1) is the same for all three cases: just obfuscate a puncturable pseudorandom function (with
the appropriate output length).

Optimal One-Way Functions. In more detail, the construction is 𝑓 ← 𝑖𝒪(𝐹sk) where 𝐹sk :
{0, 1}𝑛 → {0, 1}10𝑛 is a puncturable PRF. Observe that the parameters have been chosen so that
𝑓 is injective with very high probability. We now sketch the proof of one-wayness.

Suppose a 𝑇 -time inverter 𝐼 succeeds at inverting 𝑓 on a random point 𝑦⋆ = 𝑓(𝑥⋆) with 𝜀
probability. Then, by 𝑖𝒪 security and puncturable PRF security, 𝐼 must also succeed at inverting
𝑓𝑥⋆,𝑟 on 𝑦⋆ = 𝑟 with probability about 𝜀, where we sample 𝑟 ← {0, 1}10𝑛 and run the inverter on

𝑓𝑥⋆,𝑟 ← 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝑟, if 𝑥 = 𝑥⋆

𝐹sk(𝑥), otherwise

)︃
.

Now, we can invoke the idea of our “warm-up” reduction: we use such an 𝐼 to solve Search-Unique-SAT
on a worst-case Search-Unique-SAT instance 𝐶 by sampling a random mask 𝑧 and running the in-
verter on the obfuscated program

𝑖𝒪
(︃
𝑥 ↦→

{︃
𝑟, if 𝐶(𝑥⊕ 𝑧) = 1
𝐹sk(𝑥), otherwise

)︃
.

By the argument above, this implies we can solve Search-SAT in the worst-case with a circuit of
size roughly 𝑇

𝜀 .

Optimal PRGs. The argument for PRGs is similar, with one major difference. While one-way
function security is defined in terms of the hardness of a search problem, PRG security is defined
in terms of a decision problem. As a result, a 𝑇 -time 𝜀-distinguisher for the PRG now implies a
𝑇 -time algorithm for (decisional) Unique-SAT that is correct with 1

2 + 𝜀 probability on all inputs.
Now we face two related problems.

• Distinguishing an unbiased coin from a 𝜀-biased coin requires Θ( 1
𝜀2 ) many samples. As a

result, success amplification only gives a roughly 𝑇
𝜀2 -time algorithm for SAT. This extra

squared dependence on 𝜀 would mean our PRG has not been proven optimally secure, even
if SAT has optimal hardness.

• Alternatively, it would be nice if one could even just reduce from the (𝑇, 𝜀)-hardness of
decisional SAT. However, the Valiant-Vazirani reduction also does not work in this parameter
regime.

12



Thus, it is unclear how to base PRG security on anything simpler than the (𝑇, 𝜀)-hardness of
decisional Unique-SAT.

To get around these issues, we turn to a different assumption: the hardness of refuting SAT.
We show that the aforementioned 𝑇 -time (1

2 + 𝜀)-successful algorithm 𝐴 for Unique-SAT can be
converted into a 𝑇

𝜀 -size non-deterministic circuit for UNSAT. The main idea is that, by using non-
determinism, one can certify 𝐴 rejects too often for a circuit to have been satisfiable and hence
must be unsatisfiable. This uses the fact that one can non-deterministically certify a lower bound
on the size of a set via Goldwasser-Sipser’s set lower bound protocol [GS89].

Unfortunately, this still does not work, as Goldwasser-Sipser also incurs an 𝜀−2 blowup – in-
deed, for our setting of parameters, the Goldwasser-Sipser protocol simply estimates the bias of 𝐴
using the standard solution to the “coin problem” (estimate 𝐴’s success probability with 𝑂(1/𝜀2)
samples). Instead, we actually give an improvement to the Goldwasser-Sipser protocol that only
has an 𝜀−1 dependence. Our key idea (which generalizes to the full setting of Goldwasser-Sipser)
is a method for solving the coin problem in 1

𝜀 “non-deterministic” samples. We give more intuition
for this protocol in Section 1.5.4 and give the formal protocol in Section 3.

1.5.3 One-Way Product Functions and 𝑘-fold SAT

By essentially the same argument as for (non-product) one-way functions, one can convert a 𝑇 -time
𝜀-successful inverter for a one-way product function into a roughly 𝑇 -time 𝜀-successful algorithm for
an analogous worst-case problem we call Search-Unique-𝑘-fold-SAT. In Search-Unique-𝑘-fold-SAT,
one is given 𝑘 satisfiable instances of Search-Unique-SAT and the goal is to output satisfying assign-
ments to all of them. To complete our proof of Theorem 1.14, it now suffices to prove Theorem 1.15:
that one can convert such an algorithm for Search-Unique-𝑘-fold-SAT into a roughly 𝑇

𝜀1/𝑘 -time non-
deterministic algorithm for UNSAT.

The hardness of Search-Unique-𝑘-fold-SAT. Our goal is to non-deterministically reduce UNSAT
to Search-Unique-𝑘-fold-SAT. Our strategy will be as follows. Recall, Goldwasser-Sipser (and our
improvement of it) lets us non-deterministically certify a lower bound on the probability that an
event occurs. Our strategy is to use any algorithm for Search-Unique-𝑘-fold-SAT in order to produce
an event that occurs with (multiplicatively) (1 + 𝜀−1/𝑘) higher probability when 𝜙 is unsatisfiable
than when it is satisfiable. Then, by certifying this event occurs with higher probability, we prove
that circuit is unsatisfiable.

In more detail, suppose 𝐴 is a probabilistic algorithm that given 𝑘 satisfiable circuits Φ =
(𝜙1, . . . , 𝜙𝑘) outputs a satisfying assignment to all of them with probability 𝜀.

We begin by making a strong simplifying assumption that 𝐴 is oblivious in both of the following
ways:

• Success Probability Oblivious: This roughly says that success probability of the algorithm
only depends on the number of satisfying assignment its input has. Formally, there is a
function 𝑝 : [2𝑛] → [0, 1] such that if 𝜙1, . . . , 𝜙𝑘 each have the same number 𝑖 of satisfying
assignments, then we have that the probability that 𝐴(𝜙1, . . . , 𝜙𝑘) succeeds (i.e., outputs
satisfying assignments to all of 𝜙1, . . . , 𝜙𝑘) exactly equals 𝑝(𝑖).

• Witness Oblivious: This roughly says that the witnesses 𝐴 produces are uniformly random.
When 𝐴(Φ) succeeds and outputs a tuple of satisfying assignments to Φ, it outputs a uniformly
random such tuple among the satisfying assignments of 𝜙1, . . . , 𝜙𝑘.
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Although this assumption on 𝐴 appears to be strong, we give a cryptographic reduction showing
that any 𝐴 for Search-Unique-𝑘-fold-SAT can be converted into an “oblivious” 𝐴, by replacing each
input circuit 𝜙𝑖 with a carefully randomized circuit 𝑖𝒪(𝜙𝑖 ∘ 𝑃𝑅𝐹 )). See Section 6.1 for details.

We will now use this oblivious 𝐴 to create an event that occurs with higher probability when
𝜙 is unsatisfiable. Let 𝑖 ∈ [2𝑛] be a parameter we choose later. Let 𝜙′(𝑥) = 𝜙(𝑥) ∨ 1 [ 𝑥 ∈ [𝑖] ],
where we interpret 𝑗 ∈ [2𝑛] as an element of {0, 1}𝑛 in the natural way. We can then look at the
probability

𝛼 = Pr
𝐴

[𝐴(𝜙′, . . . , 𝜙′) ∈ [𝑖]𝑘].

Now if 𝜙 were unsatisfiable, then the satisfying assignments to 𝜙′ are exactly [𝑖]. Hence, because 𝐴
is oblivious, we get that 𝛼 = 𝑝(𝑖). On the other hand, if 𝜙 is satisfiable at exactly one point outside
of [𝑖] (we can reduce to this case using Valiant-Vazirani and brute forcing over the elements of [𝑖]),
we would have that

𝛼 = 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1).

because 𝐴 is oblivious.
A careful argument reveals we can choose an 𝑖 ≤ 𝑂(𝜀−1/𝑘) such that the ratio between 𝛼 in

the unsatisfisable case and the satisfiable case is roughly (1 + 𝜀1/𝑘). Then by using our improved
Goldwasser-Sipser lower bound protocol, we can certify that 𝛼 is large for unsatisfiable 𝜙 with a
proof of length length roughly 𝜀−1/𝑘|𝐴|, as desired.

1.5.4 Improved Goldwasser-Sipser

Finally, we describe our improvement to Goldwasser-Sipser. It turns out our algorithm is best
understood as a non-deterministic algorithm for solving the coin problem. Recall that, in the coin
problem, the goal is to distinguish between a fair coin and a coin that has 1/2 + 𝜀 probability of
being heads.

We can formalize this as follows. Let 𝑝 ∈ {1/2, 1/2 + 𝜀}. Let 𝑓 : N → {0, 1} be the random
variable where for each 𝑛 ∈ N we independently set 𝑓(𝑛) = 1 with probability 𝑝 and 𝑓(𝑛) = 0 with
probability 1− 𝑝.

Our goal is, given oracle access to 𝑓 , to distinguish whether 𝑝 = 1/2 or 𝑝 = 1/2 + 𝜀. A standard
result in information theory is that one requires Ω( 1

𝜀2 ) queries in order to distinguish the two cases
with constant probability. In contrast, we show that if one is allowed non-deterministic queries,
then 𝑂(1

𝜀 ) queries suffice, a quadratic improvement.
The idea is to use the non-determinism to look for an extremely rare event. Let 𝑞 be a parameter

set later (it will be the number of queries we use). Let 𝐸𝑖 be the event that there is a run of 𝑞 ones
starting at 𝑖, i.e., that 𝑓(𝑖) = · · · = 𝑓(𝑖+ 𝑞 − 1) = 1. It is easy to see that

Pr[𝐸𝑖] = 𝑝𝑞.

Now let 𝐸 be the event that 𝐸𝑖 occurs for some 𝑖 ∈ [2𝑤], where 𝑤 is a parameter we set later (it
will correspond to the bits of non-determinism we use).

We will use the approximation that Pr[𝐸] ≈ 2𝑤𝑝𝑞 (which turns out to give the right answer).
If 𝑝 = 1/2, we have that

Pr[𝐸] ≈ 2𝑤2−𝑞 ≤ .01
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by setting 𝑤 = Θ(𝑞) sufficiently small. On the other hand, when 𝑝 = 1/2 + 𝜀, we have

Pr[𝐸] ≈ 2𝑤(1/2 + 𝜀)𝑞 = 2𝑤2−𝑞(1 + 2𝜀)𝑞 ≈ 2𝑤2−𝑞𝑒2𝜀𝑞 ≈ 1

by setting 𝑞 = 𝑂(1/𝜀) sufficiently large.
In other words, 𝐸 occurs with small probability when 𝑝 = 1/2 and with high probability when

𝑝 = 1/2 + 𝜀. Thus, we have the following non-deterministic algorithm for the coin problem using
𝑂(1/𝜀) bits of non-determinism and 𝑂(1/𝜀) queries. Non-deterministically guess an 𝑖 ∈ [2𝑤] and use
𝑞 queries to check that 𝐸𝑖 holds (i.e., that 1 = 𝑓(𝑖) = . . . 𝑓(𝑖+ 𝑞− 1)). If so then say “𝑝 = 1/2 + 𝜀.”

In Section 3, we show how to use (a derandomized version of) this argument to show that
nmCAPP (the non-deterministic multiplicative circuit acceptance probability problem) has an Arthur-
Merlin protocol with an 1/𝜀 dependence.

2 Preliminaries

2.1 Circuits and SAT

In this work, we consider the following types of circuits:

• Non-deterministic circuit. A non-deterministic circuit is a circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑤 →
{0, 1} where we treat the second input as “non-determinism.” In particular, 𝐶(𝑥) = 1[𝐶(𝑥, 𝑧) =
1 for some 𝑧].

• Probabilistic circuit. A probabilistic circuit is a circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑟 → {0, 1} where
we treat the second input as “randomness.” In particular, we say that 𝐶 computes a function
𝑓 : {0, 1}𝑛 → {0, 1} if

Pr
𝑟

[𝐶(𝑥, 𝑟) = 𝑓(𝑥)] ≥ 2/3

for all 𝑥 ∈ {0, 1}𝑛.

• Aruthur-Merlin circuit. An Arthur-Merline circuit is a circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑟 × {0, 1}𝑤
where we treat the second input as “randomness” and the third input as “non-determinism.”
In particular, we say that 𝐶 computes a function 𝑓 : {0, 1}𝑛 → {0, 1} if we have that

Pr
𝑟

[𝐶(𝑥, 𝑟, 𝑤) = 0 for all 𝑤] ≥ 2/3

whenever 𝑓(𝑥) = 0 and if we have that

Pr
𝑟

[𝐶(𝑥, 𝑟, 𝑤) = 1 for some 𝑤] ≥ 2/3

whenever 𝑓(𝑥) = 1.

Adleman [Adl78] shows that one can always remove randomness from a probabilistic circuit or
Arthur-Merlin circuit with a small blow-up.

Lemma 2.1 (“Adleman’s trick” [Adl78] ). Assume a probabilistic circuit (respsectively, Arthur-
Merlin circuit) 𝐶 computes a function 𝑓 : {0, 1}𝑛 → {0, 1}. Then there is a deterministic (respec-
tively, non-deterministic) circuit computing 𝑓 of size at most 𝑂(𝑛 · |𝐶|).
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Proof. First consider a probabilistic circuit 𝐶 : {0, 1}𝑛 × {0, 1}𝑟 → {0, 1}. Let 𝑘 ∈ N be an odd
number that we set later. Sample 𝑦1, . . . , 𝑦𝑘 ← {0, 1}𝑟. Consider the (deterministic) circuit 𝐶 ′ that
on input 𝑥 outputs the majority value of 𝐶(𝑥, 𝑦𝑖) over all 𝑖 ∈ [𝑘]. Because Majority has linear-sized
circuits [MP75], we have that |𝐶 ′| = 𝑘 · |𝐶|+𝑂(𝑘).

We claim that with positive probability that 𝐶 ′ computes 𝑓 . We do this by a union bound
argument. For any fixed 𝑥, a Chernoff bound says that

Pr
𝑦1,...,𝑦𝑘

[𝐶 ′(𝑥) ̸= 𝑓(𝑥)] ≤ 𝑒−Ω(𝑘) < 2−2𝑛

by setting 𝑘 = 𝑂(𝑛) sufficiently large. Union bounding over all 2𝑛 many 𝑥, we get that 𝐶 ′ computes
𝑓 with positive probability. This completes the proof for probabilistic circuits. The argument for
an Arthur-Merlin circuit is similar.

Variants of SAT. We use the following notation for variants of circuit satisfiability:

• SAT refers to (decisional) circuit satisfiability.

• UNSAT refers to the complement of SAT.

• Unique-SAT refers to SAT restricted to instances where one is promised the circuit has at
most one satisfying assignment.

• Unique-UNSAT refers to UNSAT restricted to the promise of at most one satisfying assignment.

• Search-SAT refers to the search version of SAT (where one needs to output a satisfying as-
signment if the circuit has one)

• Search-Unique-SAT refers to the restriction of Search-SAT to instances with exactly one satis-
fying assignment.

• Search-𝑘-fold-SAT refers to the following search problem: given a tuple Φ = (𝜙1, . . . , 𝜙𝑘) of
circuits, output a tuple (𝑤1, . . . 𝑤𝑘) of satisfying assignments (𝜙𝑖(𝑤𝑖) = 1 for all 𝑖).

• Search-Unique-𝑘-fold-SAT refers to the restriction of Search-𝑘-fold-SAT to instances Φ where
each circuit 𝜙𝑖 has exactly one satisfying assignment.

For any of these problems Π, we let Π[𝑛, 𝑠] correspond to the problem on 𝑛-input circuits of size 𝑠.
We say Π[𝑛, 𝑠] is solvable in 𝑡-time with 𝜀-success if there is a 𝑡-size probabilistic circuit that solves
the problem with probability at least 𝜀.

For problems where the input is a circuit, there are two natural parameters with respect to
which one would like to measure hardness: the description size 𝑠 of the circuit and the number of
inputs 𝑛 to the circuit. We measure hardness in the following way.

Definition 2.2 (Hardness of Circuit Problems). Let 𝑓 : {0, 1}⋆ → {0, 1}⋆ be a function from
𝑠-length 𝑛-input circuits 𝜙 to strings.

Let 𝑡 : N → N. Let 𝜀 : N → R. We say that 𝑓 is (𝑡, 𝜀)-hard if there exists 𝑠(𝑛) = poly(𝑛) such
that is no family of 𝑡(𝑛) ·poly(𝑠) size probabilistic circuits that solves 𝑓 on 𝑛-input 𝑠(𝑛)-description-
length circuits with probability at least 𝜀(𝑛) for infinitely many 𝑛.
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2.2 Pairwise independence

For our “faster Goldwasser-Sipser” protocol (Theorem 3.2), we make use of linear-time computable
pairwise independent hash functions.

Lemma 2.3 (Efficient Pairwise Independent Hashing). There is a pairwise independent hash family
{𝐻𝑘 : {0, 1}𝑛 → {0, 1}𝑚}𝑘∈{0,1}𝑛+𝑚 that is computable in time (𝑛+𝑚) · poly(log(𝑛𝑚)).4

2.3 Cryptographic Primitives

In this paper, we work with keyed families of one-way functions (OWFs) and pseudorandom genera-
tors (PRGs): the OWF/PRG has a public evaluation key sampled from some (efficiently sampleable)
distribution. We give the formal definitions below.

Definition 2.4 (Keyed family of functions). A keyed family of functions ℱ with input length 𝑛
and output length 𝑚 = 𝑚(𝑛) is described by the following algorithms:

• Gen(1𝑛) → pp is a randomized algorithm taking as input a security parameter 𝜆 and out-
putting public parameters pp.

• Eval(pp, 𝑥) → 𝑦 is a deterministic algorithm taking as input public parameters pp and and
input 𝑥 ∈ {0, 1}𝑛, returning an output 𝑦 ∈ {0, 1}𝑚.

We say that ℱ is efficiently computable if Gen,Eval are polynomial-time algorithms. We use the
notation 𝑓pp(𝑥) to denote the output of Eval(pp, 𝑥).

Definition 2.5 ((𝑇, 𝜀)-one way function family). We say that an efficiently computable function
family ℱ is a (𝑇 (𝑛), 𝜀(𝑛))-one way function if for all 𝑇 (𝑛)-time adversaries 𝒜, we have that

Pr
pp←Gen(1𝑛)

𝑥←{0,1}𝑛

[︁
𝑓(𝒜(pp, 𝑓pp(𝑥))) = 𝑓pp(𝑥)

]︁
= 𝑂(𝜀(𝑛)).

Definition 2.6 ((𝑇, 𝜀)-pseudorandom generator family). We say that an efficiently computable
function family ℱ is a (𝑇 (𝑛), 𝜀(𝑛))-pseudorandom generator if the ensembles of distributions

(pp← Gen(1𝑛), 𝑦 ← 𝑓pp(𝑈𝑛)) ≈𝑇,𝜀 (pp← Gen(1𝑛), 𝑦 ← 𝑈𝑚)
are (𝑇, 𝜀)-computationally indistinguishable.

2.3.1 One-Way Product Functions

Following [HL18], we define families of one-way product functions, which are OWFs that are (𝑇, 𝜀)-
hard to simultaneously invert on batches of 𝑘 outputs.

Definition 2.7 (OWPF Family). Let 𝑇 (𝑛), 𝜀(𝑛), 𝑘(𝑛) be functions of 𝑛. An efficiently computable
function family ℱ is a (𝑇, 𝜀) 𝑘-OWPF family if for all 𝑇 (𝑛)-time adversaries 𝒜,

Pr
pp←Gen(1𝑛)

𝑥1,...,𝑥𝑘←{0,1}𝑛

(𝑥′
1,...,𝑥′

𝑘)←𝐴(pp,𝑓pp(𝑥1),...,𝑓pp(𝑥𝑘))

[︁
𝑓pp(𝑥′𝑖) = 𝑓pp(𝑥𝑖) for all 𝑖

]︁
= 𝑂(𝜀(𝑛)).

4For concreteness, our model of computation for this lemma statement is a multi-tape Turing machine. For our
applications, it suffices for the lemma to be true in the circuit model.
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2.3.2 Indistinguishability Obfuscation

The following preliminaries on 𝑖𝒪 and puncturable PRFs are based on [LV22].
Definition 2.8 (Indistinguishability Obfuscation [BGI+01]). An indistinguishability obfuscation
scheme consists of a probabilistic polynomial-time algorithm 𝑖𝒪(1𝜆, 𝐶) that takes as input a security
parameter 𝜆 as well as a circuit 𝐶. It outputs another circuit ̃︀𝐶 with the same input and output
length. An 𝑖𝒪 scheme must satisfy two properties:

• Correctness: for all circuits 𝐶 and inputs 𝑥, we have that 𝐶(𝑥) = ̃︀𝐶(𝑥) with probability 1.

• (𝑇, 𝛿)-security: for all pairs of functionally equivalent circuits 𝐶0 ≡ 𝐶1 of size |𝐶0| = |𝐶1| =
poly(𝜆), and all adversaries 𝒜 of size 𝑇 (𝜆, |𝐶|), it holds that

Pr
[︁
𝒜(1𝜆, 𝑖𝒪(1𝜆, 𝐶0)) = 1

]︁
− Pr

[︁
𝒜(1𝜆, 𝑖𝒪(1𝜆, 𝐶1)) = 1

]︁
≤ 𝑂(𝛿(𝜆)).

Complexity leveraging. Let 𝑛 denote the input length of a given circuit 𝐶. As long as an 𝑖𝒪
scheme is sub-exponentially secure (meaning we can take 𝑇 (𝜆,𝐶) = poly(|𝐶|) · 2𝜆𝜀 and 𝛿(𝜆) = 2−𝜆𝜀

for some 𝜀 > 0, we may set 𝜆 = 𝑛𝑂(1/𝜀) sufficiently large so that the scheme is secure against
algorithms running in time 2𝑂(𝑛) · poly(|𝐶|) with advantage 2−𝑂(𝑛) · negl(𝑛).

2.3.3 Puncturable Pseudorandom Functions

Definition 2.9 (Puncturable PRF [BW13, BGI14, KPTZ13, SW14]). A puncturable PRF family
is a family of functions

ℱ =
{︁
𝐹𝜆,sk : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)

}︁
𝜆∈N,sk∈{0,1}ℓ(𝜆)

with associated (deterministic) polynomial-time algorithms (ℱ .Eval,ℱ .Puncture,ℱ .PuncEval) sat-
isfying

• For all 𝑥 ∈ {0, 1}𝑛(𝜆) and all sk ∈ {0, 1}ℓ(𝜆), ℱ .Eval(sk, 𝑥) = 𝐹𝜆,sk(𝑥).

• For all distinct 𝑥, 𝑥′ ∈ {0, 1}𝑛(𝜆) and all 𝑠 ∈ {0, 1}ℓ(𝜆),

ℱ .PuncEval(ℱ .Puncture(sk, 𝑥), 𝑥′) = ℱ .Eval(sk, 𝑥′)

For ease of notation, we write 𝐹sk(𝑥) and ℱ .Eval(sk, 𝑥) interchangeably, and we write sk⟨𝑥⟩ to
denote ℱ .Puncture(sk, 𝑥).
ℱ is said to be (𝑠, 𝛿)-secure if for every {𝑥(𝜆) ∈ {0, 1}𝑛(𝜆)}𝜆∈N, the following two distribution

ensembles (indexed by 𝜆) are 𝛿(𝜆)-indistinguishable to circuits of size 𝑠(𝜆):

(sk⟨𝑥(𝜆)⟩, 𝐹sk(𝑥(𝜆))) where sk← {0, 1}ℓ(𝜆)

and
(sk⟨𝑥(𝜆)⟩, 𝑈) where sk← {0, 1}ℓ(𝜆), 𝑈 ← {0, 1}𝑚(𝜆).

Theorem 2.10 ([GGM84, KPTZ13, BW13, BGI14, SW14]). If {polynomially secure, subexponen-
tially secure} one-way functions exist, then for all functions 𝑚 : N→ N (with 1𝑚(𝑛) polynomial-time
computable from 1𝑛), and all 𝛿 : N → [0, 1] with 𝛿(𝑛) ≥ 2−poly(𝑛), there are polynomials ℓ(𝜆), 𝑛(𝜆)
and a {polynomially secure, ( 1

𝛿(𝑛(𝜆)) , 𝛿(𝑛(𝜆)))-secure} puncturable PRF family

ℱ𝑚 =
{︁
𝐹𝜆,𝑠 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝑛(𝜆))}𝜆∈N,𝑠∈{0,1}ℓ(𝜆)

}︁
.
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Puncturing Arguments. Throughout this paper, we will frequently make use of “puncturing
arguments” [SW14], which capture the fact that for an indistinguishability obfuscator 𝑖𝒪 and
puncturable pseudorandom function 𝐹sk : {0, 1}𝑛 → {0, 1}𝑚, for every input 𝑥* ∈ {0, 1}𝑛, the
distribution on obfuscated programs

𝑃 ← 𝑖𝒪
(︃
𝑥 ↦→ 𝐹sk(𝑥)

)︃

for uniformly random sk is computationally indistinguishable from the following distribution on
obfuscated programs

𝑃𝑥*,𝑟 ← 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝑟, if 𝑥 = 𝑥*,

𝐹sk(𝑥), otherwise

)︃

for uniformly random sk and uniformly random 𝑟 ← {0, 1}𝑚.
This indistinguishability holds by a simple hybrid argument involving the following additional

distributions:

𝐻1 ← 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝐹sk(𝑥*), if 𝑥 = 𝑥*,

𝐹sk⟨𝑥*⟩(𝑥), otherwise

)︃
,

𝐻2 ← 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝑟, if 𝑥 = 𝑥*,

𝐹sk⟨𝑥*⟩(𝑥), otherwise

)︃
.

3 Faster Goldwasser-Sipser
In this section, we give an efficient non-deterministic algorithm for the following computational
problem.

Definition 3.1 (Non-Deterministic Multiplicative Circuit Approximation Probability Problem).
nmCAPP is the following problem:

• Given: a non-deterministic circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑤 → {0, 1}, a 𝛽 ∈ [2𝑛] and an 1
𝜀 ∈ N

• Accept: if Pr𝑥[𝐶(𝑥) = 1] ≥ (1 + 𝜀) 𝛽
2𝑛 .

• Reject: if Pr𝑥[𝐶(𝑥) = 1] < 𝛽
2𝑛 .

Goldwasser and Sipser [GS89] showed nmCAPP can be solved by an efficient Arthur-Merlin
protocol with proof length and verification time poly(𝑛,𝑤) · 𝜀−2. We improve the dependence on 𝜀
to 𝜀−1, which is important for our later results.

Theorem 3.2 (Improved Goldwasser-Sipser). There is an Arthur-Merlin algorithm for solving
nmCAPP that runs in time 1

𝜀 · |𝐶| · poly(𝑛). Consequently,5 there is a non-deterministic circuit
solving nmCAPP of size 1

𝜀 · |𝐶| · poly(𝑛).
5This follows from Lemma 2.1
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Proof. We first give some intuition, focusing on the case 𝛽 = 2𝑛−1. In this case, a protocol running
in time |𝐶| · 1/𝜀2 is trivial: the verifier samples 1/𝜀2 instances 𝑥1, . . . , 𝑥1/𝜀2 and asks the prover to
send witnesses for at least a 1/2 + 𝜀 fraction of them. The key point is that 𝑂(1/𝜀2) samples are
necessary and sufficient to distinguish the two cases with constant probability.

We improve on this complexity by making more non-trivial use of the prover’s non-determinism,
inspired by [GS89], who do this in order to handle arbitrary choices of 𝛽. The way in which we
use the prover’s non-determinism is in identifying rare events about a pseudorandom sequence of
instances. Roughly speaking, the verifier specifies a long pseudorandom sequence of instances to
the prover (using a pairwise-independent hash function (Lemma 2.3)), and the prover searches for
ℓ = 𝑂(1/𝜀) consecutive instances that have valid witnesses. The prover communicates the index of
the first instance in this subsequence as well as all ℓ witnesses, and the verifier checks the validity
of the ℓ witnesses.

Formally, the AM-protocol is described as follows:

Given 𝐶 : {0, 1}𝑛 × {0, 1}𝑤 → {0, 1} and 𝑘 and 𝜀:

1. Set ℓ = 𝑐/𝜀 + 𝑐 and 𝑚 = (2𝑛

𝛽 )ℓ−𝑐 where 𝑐 ∈ N is a sufficiently large constant we choose
later.

2. Arthur samples a key 𝑘 ∈ {0, 1}�̃�(ℓ·𝑛) for the pairwise independent hash function 𝐻𝑘 :
[𝑚]→ ({0, 1}𝑛)ℓ from Lemma 2.3. Arthur sends this key to Merlin.

3. Arthur accepts if Merlin sends back an index 𝑖 ∈ [𝑚] and witnesses 𝑤1, . . . , 𝑤ℓ such that
for all 𝑗 ∈ [ℓ] we have 𝐶(𝐻𝑘(𝑖)𝑗 , 𝑤𝑗) = 1 where 𝐻𝑘(𝑖)𝑗 is the 𝑗’th entry of the tuple 𝐻𝑘(𝑖).

Since 𝐶 : {0, 1}𝑛×{0, 1}𝑤 → {0, 1}, we assume (without loss of generality) that 𝜀 ≥ 2−𝑛 and hence
log
(︁

1
𝜀

)︁
≤ 𝑛. Then it is easy to see that this algorithm runs in time

�̃�(ℓ · 𝑛) +𝑂(ℓ · |𝐶|) = 1
𝜀
·
(︁
poly(𝑛) +𝑂(|𝐶|)

)︁
,

as desired.
It remains to argue for correctness. For 𝑖 ∈ [𝑚], let 𝑋𝑖 be the indicator event that 𝐶(𝐻𝑘(𝑖)𝑗) = 1

for all 𝑗 ∈ [ℓ]. Let 𝑋 = ∑︀
𝑖∈[𝑚]𝑋𝑖. Let 𝑝 = Pr𝑥[𝐶(𝑥) = 1]. By the pairwise independence of 𝐻𝑘,

we get that
E[𝑋] =

∑︁
𝑖∈[𝑚]

E[𝑋𝑖] = 𝑚𝑝ℓ

and
Var[𝑋] =

∑︁
𝑖∈[𝑚]

Var[𝑋𝑖] = 𝑚 · 𝑝ℓ · (1− 𝑝ℓ) ≤ 𝑚𝑝ℓ = E[𝑋].

By Chebyshev’s inequality,
Pr
𝑘

[︂
|𝑋 − E[𝑋]| ≥ 2

√︁
E[𝑋]

]︂
≤ 1

4 .

Thus, when 𝑝 ≤ 𝛽
2𝑛 , we get that

E[𝑋] = ( 𝛽2𝑛
)ℓ𝑚 ≤ 2−𝑐,
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so
Pr
𝑘

[𝑋 ≥ 1] ≤ 1
4

by setting 𝑐 to be a sufficiently large constant. This shows the protocol is sound.
On the other hand, when 𝑝 ≥ (1 + 𝜀) 𝛽

2𝑛 , we get that

E[𝑋] = 𝑝ℓ𝑚 ≥ (1 + 𝜀)ℓ( 𝛽2𝑛
)ℓ𝑚 = (1 + 𝜀)(1+1/𝜀)𝑐2−𝑐 ≥ 𝑒𝑐2−𝑐 ≥ 2Ω(𝑐)

so
Pr
𝑘

[𝑋 < 1] ≤ 1
4

by setting 𝑐 to be a sufficiently large constant. This shows the protocol is complete.

4 Fine-grained hardness reductions for SAT
In this section, we discuss various forms of hardness for SAT and give fine-grained relationships
between them.

4.1 Hardness Assumptions for SAT
We begin by listing two of the strongest forms of hardness that may hold. The first is optimal
hardness for (the decision version) of SAT.

Assumption 4.1 (Optimal Hardness of SAT). There exists a polynomial 𝑝(𝑛) such that SAT on
circuits of size 𝑝(𝑛) and input length 𝑛 requires time at least 2𝑛 · 1

𝑝(𝑛) for all 𝑛.

The second, stronger assumption is optimal co-non-deterministic hardness of SAT.

Assumption 4.2 (Optimal Hardness of Refuting Circuit SAT). There exists a polynomial 𝑝(𝑛)
such that UNSAT on circuits of size 𝑝(𝑛) and input length 𝑛 requires non-deterministic circuits of
size at least 2𝑛 · 1

𝑝(𝑛) for all 𝑛.

For our result on post-quantum one-way functions, we additionally make use of the following
incomparable assumption: optimal quantum hardness of SAT.

Assumption 4.3 (Optimal Quantum Hardness of SAT). There exists a polynomial 𝑝(𝑛) such that
SAT on circuits of size 𝑝(𝑛) and input length 𝑛 requires quantum time at least 2𝑛/2 · 1

𝑝(𝑛) for all 𝑛.

As in the case of probabilistic algorithms, we say that a quantum algorithm solves SAT if it is
correct on all inputs with probability 2/3. We remark that Grover’s algorithm runs in quantum
time roughly 2𝑛/2 · 𝑝(𝑛), so the assumption asserts that this runtime is optimal up to polynomial
factors.

4.2 Reductions to Unique Versions

The celebrated work of Valiant and Vazirani [VV86] gives a probabilistic reduction from SAT to
Unique-SAT (where one is promised that a circuit has at most one satisfying assignment). They do
this by giving a probabilistic polynomial time algorithm that, given a satisfiable circuit, outputs
another circuit that with 1/poly(𝑛) probability has exactly one satisfying assignment.
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Theorem 4.4 (Valiant-Vazirani [VV86]). There is a probabilistic polynomial-time algorithm VV
that given a circuit 𝜙 : {0, 1}𝑛 → {0, 1} outputs a circuit 𝜙′ : {0, 1}𝑛 → {0, 1} with the following
properties:

• |𝜙′| = |𝜙|+ poly(𝑛).

• If 𝜙 is unsatisfiable, then 𝜙′ is unsatisfiable.

• If 𝜙 is satisfiable, then with probability at least 1
poly(𝑛) there is a unique satisfying assignment

to 𝜙′.

An immediate corollary of Valiant-Vazirani is a fine-grained reduction from Search-SAT to
Search-Unique-SAT.

Corollary 4.5 (Search Hardness implies Unique Search Hardness). If Search-Unique-SAT[𝑛, 𝑠] is
solvable in 𝑡-time with 𝜀-success, then Search-SAT[𝑛, 𝑠 − poly(𝑛)] is solvable in (𝑡 + poly(𝑛))-time
with 𝜀

poly(𝑛) success.

Proof. Let 𝐴 be the 𝑡-time 𝜀-success circuit for Search-Unique-SAT[𝑛, 𝑠]. Consider the circuit 𝐵
that given an instance 𝜙 of Search-SAT[𝑛, 𝑠′] outputs 𝐴(VV(𝜙)) where VV is the Valiant-Vazirani
procedure from Theorem 4.4. Set 𝑠′ = 𝑠− poly(𝑛) so that the output of VV(𝜙) has size at most 𝑠.

𝐵 clearly has size 𝑡 + poly(𝑛). Since VV transforms a satisfiable circuit to a uniquely satisfi-
able circuit with probability 1/poly(𝑛), we have that 𝐵 solves Search-SAT[𝑛, 𝑠′] with probability
𝜀/poly(𝑛)).

Similarly, another corollary is a fine-grained reduction from UNSAT to Unique-UNSAT.

Corollary 4.6 (Refutation Hardness implies Unique Refutation Hardness). If there is a 𝑡-size non-
deterministic circuit for Unique-UNSAT[𝑛, 𝑠], then there is a 𝑡 · poly(𝑛, 𝑠)-size non-deterministic
circuit for UNSAT[𝑛, 𝑠− poly(𝑠)].

Proof. Let 𝐴 be the 𝑡-size non-deterministic circuit for Unique-UNSAT. Let 𝐵 the Arthur-Merlin
circuit that works as follows. It uses its randomness to sample 𝜙′1, . . . , 𝜙′𝑞 ← VV(𝜙), where 𝑞 =
poly(𝑛) is sufficiently large. It accepts if it is given witnesses that 𝐴(𝜙′𝑖) = 1 for all 𝑖.

First, we show completeness. If 𝜙 is unsatisfiable, then 𝜙′𝑖 is unsatisfiable for all 𝑖. Hence
𝐴(𝜙′𝑖) accepts for all 𝑖. So in particular, there are witnesses that 𝐴(𝜙′𝑖) = 1 for all 𝑖. This proves
completeness.

Next, we show soundness. If 𝜙 is satisfiable, then by setting 𝑞 = poly(𝑛) sufficiently large, we
have that at least one of 𝜙′𝑖 is uniquely satisfiable with high probability. For that 𝑖, we have that
𝐴(𝜙′𝑖) = 0, so there are no witnesses that 𝐴(𝜙′𝑖) = 1. This proves soundness.

Finally, we argue for efficiency. It is easy to see that |𝐵| = poly(𝑞)𝑡 = poly(𝑛)𝑡. Using Adleman’s
trick (Lemma 2.1), we can convert 𝐵 from an Arthur-Merlin circuit to a non-deterministic circuit
of size 𝑡 · poly(𝑛, 𝑠).

4.3 Success Probability Amplification for Search-SAT
Assumption 4.1 and Assumption 4.3 were stated for algorithms that are correct with constant
probability. We briefly remark that such assumptions easily imply optimal hardness of Search-SAT
(but not SAT!) for algorithm with low success probability.
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Remark 4.7. Given a time 𝑇 algorithm solving Search-SAT with probability 𝜀, there is a time
𝑂(𝑇/𝜀) algorithm solving Search-SAT with probability .99.

The reduction is trivial: run the low success probability algorithm 𝑂(1/𝜀) times and check if a
satisfying assignment is found.

The quantum case is not as simple, but is also well-understood.

Remark 4.8. Given a time 𝑇 algorithm (classical or quantum) solving Search-SAT with probability
𝜀, there is a time 𝑂(𝑇/

√
𝜀) quantum algorithm solving Search-SAT with probability .99.

This can be accomplished by emplying a variant of amplitude amplification [BHMT02] that is
oblivious to the initial success probability (see [BHMT02] Theorem 3).

Since both of these reductions work with respect to a fixed Search-SAT instance, they also apply
to restricted versions of the problem such as Search-Unique-SAT.

4.4 Hardness of Unique SAT in the Low Success Regime

For our applications, it will be useful to have hardness of solving Unique-SAT even with probability
1/2 + 𝜀 for very small 𝜀 (e.g., 𝜀 = 2−.99𝑛). In this regime of parameters, the standard search-to-
decision reduction for SAT breaks down (it seems to require running the Unique-SAT algorithm at
least 1

𝜀2 times, which is too much). Relatedly, we do not know how to do a fine-grained Valiant-
Vazirani transformation from SAT to Unique-SAT in this setting.

Instead, we show that there is a fine-grained reduction from non-deterministically solving
UNSAT to low-success algorithms for Unique-SAT. The reduction crucially relies on our improved
Goldwasser-Sipser result. Intuitively, this makes sense as we would like to avoid paying a 𝜀−2 cost.

Theorem 4.9 (Refutation Hardness implies Decisional Unique Hardness). If Unique-SAT[𝑛, 𝑠] is
solvable in 𝑡-time with (1/2 + 𝜀)-success, then there is a non-deterministic circuit for UNSAT[𝑛, 𝑠]
of size at most poly(𝑛) · 𝑡 · 1

𝜀 .

Proof. Let 𝐴 be the 𝑡-time (1/2+𝜀)-success circuit for Unique-SAT[𝑛, 𝑠]. We will show how to solve
Unique-UNSAT[𝑛, 𝑠] and then appeal to Corollary 4.6.

If 𝜙 is unsatisfiable, then
Pr
𝐴

[𝐴(𝜙) = 0] ≥ 1/2 + 𝜀. (1)

On the other hand, if 𝜙 is uniquely satisfiable, we have that

Pr
𝐴

[𝐴(𝜙) = 0] ≤ 1/2− 𝜀. (2)

Thus consider the following non-deterministic circuit 𝐵 for solving Unique-UNSAT[𝑛, 𝑠−poly(𝑛)]
on input 𝜙:

• Accept if running the improved Goldwasser-Sipser non-deterministic circuit (Theorem 3.2)
for nmCAPP to distinguish whether Pr𝐴[𝐴(𝜙) = 0] is at most 1/2 or at least 1/2 + 𝜀 outputs
“at least 1/2 + 𝜀.”

By construction 𝐵 is a non-deterministic circuit of size 𝑡 · 1
𝜀 · poly(𝑛). 𝐵 accepts all unsatisfiable

circuits with probability 2/3 because of (1). 𝐵 rejects all satisfiable circuits with probability 2/3
because of (2). The theorem then follows from Corollary 4.6.
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5 Optimal Hardness of OWFs, PRGs, and OWPFs
In this section, we prove our fine-grained worst-case to average-case reduction for SAT in the search,
decision, and 𝑘-fold search settings. We prove the following theorem.

Theorem 5.1. Suppose that sub-exponentially secure 𝑖𝒪 and OWFs exist. Then:

• If SAT is optimally hard (Assumption 4.1), then for all (𝑇, 𝜀) such that 𝑇 (𝑛)
𝜀(𝑛) ≤ 2𝑛 · 𝑛−𝜔(1),

there exist (𝑇, 𝜀)-secure OWF families.

• If refuting Circuit-SAT is optimally hard (Assumption 4.2), then for all (𝑇, 𝜀) such that
𝑇 (𝑛)
𝜀(𝑛) ≤ 2𝑛 · 𝑛−𝜔(1), there exist (𝑇, 𝜀)-secure PRG families.

• Let 𝜀(𝑛) ≥ 2−𝑛. If Search-Unique-𝑘-fold-SAT is (𝑇, 𝜀𝑘)-hard for all 𝑘 ≤ ℓ, then there exist
(𝑇, (𝜀+ 2−𝑛)ℓ)-secure OWPF families.

• If SAT is optimally hard for quantum algorithms (Assumption 4.3), and post-quantum sub-
exponentially secure 𝑖𝒪 and OWFs exist, then for all (𝑇, 𝜀) such that 𝑇 (𝑛)2

𝜀(𝑛) ≤ 2𝑛 · 𝑛−𝜔(1),
there exist (𝑇, 𝜀)-secure post-quantum OWF families.

The construction of our candidate OWF/PRG/OWPF family is described as follows:

• Gen(1𝑛, 1𝑘): sample public parameters

pp = 𝑃 ← 𝑖𝒪
(︁
𝑥 ↦→ 𝐹sk(𝑥)

)︁
,

where 𝑖𝒪 is an indistinguishability obfuscator and {𝐹sk : {0, 1}𝑛 → {0, 1}10𝑛𝑘} is a punc-
turable PRF family. To obtain a OWF or PRG, the parameter 𝑘 is set to 1.

• Eval(pp, 𝑥): to evaluate the function on 𝑛, simply run the program:

Eval(pp, 𝑥) = 𝑃 (𝑥).

where 𝑃 (𝑥) denotes obfuscated program evaluation.

Throughout this section, we assume that the 𝑖𝒪 scheme is subexponentially secure, and that {𝐹sk}
is a subexponentially secure puncturable PRF. The security parameters for these schemes are set
to be a sufficiently large poly(𝑛, 𝑘) to obtain exponential indistinguishability in the security proofs
below. In particular, the PRF security parameter is chosen large enough so that 𝑓pp is injective
with probability at least 1− 2−10𝑘𝑛 over the choice of pp.

We now proceed to prove Theorem 5.1. Specifically, we prove the second and third bullet points
of the theorem statement. The first and fourth bullet points follow from the third bullet point,
observing (for the fourth bullet point) that the security proof applies equally well to quantum
adversaries.
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5.1 Proof of Pseudorandomness

In this section, we additionally assume the (𝑇 + poly(𝑛), 𝜀 − 𝑂(2−2𝑛))-hardness of Unique-SAT.
By Theorem 4.9, this assumption follows from the (𝑇 + poly(𝑛)) · 1/𝜀-hardness of refuting SAT,
whenever 𝜀 ≥ 2−𝑛.
Lemma 5.2. 𝑓(crs, ·) is a (𝑇,𝑂(𝜀))-secure PRG.

Proof. We want to show that for a uniformly random 𝑥* ← {0, 1}𝑛, 𝑟 ← {0, 1}𝑚,

(𝑃, 𝑃 (𝑥*)) ≈𝑇,𝑂(𝜀) (𝑃, 𝑟).

If 𝐹sk(·) is a (22𝑛, 2−2𝑛)-secure puncturable PRF and 𝑖𝒪 is (22𝑛, 2−2𝑛)-secure, then we know by a
puncturing argument that (even given 𝑥*)

𝑃 ≈𝑇,𝜀 𝑃𝑥*,𝑟* ,

where 𝑃𝑥*,𝑟* is an obfuscated program of the form

𝑃𝑥*,𝑟* ← 𝑖𝒪
(︁
𝑥 ↦→ 𝐹sk(𝑥) if 𝑥 ̸= 𝑥*, else 𝑟*

)︁
and 𝑟* ← {0, 1}𝑚 is a uniformly random string.

We now show that if our claimed indistinguishability does not hold, then there is a time 𝑇 +
poly(𝑛, 𝜆) algorithm solving decisional unique-SAT with advantage 𝜀. Given any distinguisher 𝐷,
the worst-case algorithm is described as follows.

Algorithm 𝒜 for Unique-SAT

Given 𝜙 : {0, 1}𝑛 → {0, 1}:

1. Sample randomness 𝑎← {0, 1}𝑛, 𝑟* ← {0, 1}𝑚, 𝑟 ← {0, 1}𝑚.

2. Sample an obfuscated program

𝑃𝜙,𝑎,𝑟* ← 𝑖𝒪
(︁
𝑥 ↦→ 𝐹sk(𝑥) if 𝜙(𝑥⊕ 𝑎) = 0, else 𝑟*

)︁
.

3. Sample a bit 𝑏. If 𝑏 = 0, set 𝑦 = 𝑟*. If 𝑏 = 1, set 𝑦 = 𝑟.

4. Run the distinguisher
𝐷(𝑃𝜙,𝑎,𝑟* , 𝑦),

obtaining an outcome 𝑏′.

5. Output “satisfiable” if 𝑏′ = 𝑏, else output “unsatisfiable.”

Claim 5.3. If 𝜙 is unsatisfiable, then the algorithm 𝒜(𝜙) accepts with probability at most ≤ 1/2 +
𝑂(2−2𝑛).

Claim 5.3 holds because of the following computational indistinguishability in the presence of
(𝑎, 𝑟*, 𝑟):

𝑃𝜙,𝑎,𝑟* ≈210𝑛,2−10𝑛 𝑖𝒪
(︁
𝑥 ↦→ 𝐹sk(𝑥)

)︁
,

which holds by 𝑖𝒪 security and the unsatisfiability of 𝜙. The latter obfuscated program does not
depend on 𝑟 or 𝑟*, completing the proof of the claim.
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Claim 5.4. If 𝜙 is uniquely satisfiable, then the algorithm 𝒜(𝜙) accepts with probability at least
≤ 1/2 + 𝜀−𝑂(2−2𝑛).

For any uniquely satisfiable 𝜙, let 𝑤 ∈ {0, 1}𝑛 denote the unique satisfying assignment to
𝜙. Claim 5.4 holds because of the following computational indistinguishability in the presence of
(𝑎, 𝑟*, 𝑟):

𝑃𝜙,𝑎,𝑟* ≈210𝑛,2−10𝑛 𝑃𝑤⊕𝑎,𝑟* ,

which holds by 𝑖𝒪 security and the fact that 𝜙(𝑥 ⊕ 𝑎) is functionally equivalent to the indicator
function 𝜒(𝑥 = 𝑤 ⊕ 𝑎).

Thus, the circuit-output pair (𝑃𝜙,𝑎,𝑟* , 𝑟*) is distributionally (210𝑛, 2−10𝑛)-indistinguishable from
(𝑃𝑥*,𝑟* , 𝑟*), while (𝑃𝜙,𝑎,𝑟* , 𝑟) is distributionally (210𝑛, 2−10𝑛)-indistinguishable from (𝑃𝑥*,𝑟* , 𝑟). This
completes the proof of the claim.

Combining Claim 5.3 and Claim 5.4, we conclude the proof of Lemma 5.2.

5.2 Proof of Product One-Wayness

In this section, we assume that Search-Unique-𝑘-fold-SAT is (𝑇 + poly(𝑘, 𝑛), 𝜀𝑘 − 2−𝑘𝑛)-hard for
every 𝑘 ≤ ℓ.

Lemma 5.5. ℱ is (𝑇, (𝜀+ 2−𝑛)ℓ)-hard to invert ℓ times in parallel.

Proof. We have set parameters so that the probability that 𝑓pp is not injective is at most 2−10𝑘𝑛.
We prove a slightly modified definition of product one-wayness.

Claim 5.6. For all time-𝑇 adversaries 𝐴 run on random distinct OWF outputs, we have:

Pr
pp←Gen(1𝑛)

distinct 𝑥*
1,...,𝑥*

𝑘←{0,1}𝑛

[︁
𝐴(pp, 𝑓pp(𝑥*1), . . . , 𝑓pp(𝑥*𝑘)) = (𝑥*1, . . . , 𝑥*𝑘)

]︁
= 𝑂(𝜀𝑘).

This claim implies the lemma by the following calculation:

Pr
pp←Gen(1𝑛)

i.i.d. 𝑥*
1,...,𝑥*

ℓ←{0,1}𝑛

𝑦*
𝑖 =𝑓pp(𝑥*

𝑖 )

[︁
𝐴(pp, (𝑦*𝑖 )ℓ

𝑖=1) = (𝑥*𝑖 )ℓ
𝑖=1

]︁
=
∑︁
𝑘≤ℓ

Pr
pp←Gen(1𝑛)

i.i.d. 𝑥*
1,...,𝑥*

ℓ←{0,1}𝑛

𝑦*
𝑖 =𝑓pp(𝑥*

𝑖 )

[︁
|{𝑥*𝑖 }ℓ𝑖=1| = 𝑘 ∧𝐴(pp, (𝑦*𝑖 )ℓ

𝑖=1)) = (𝑥*𝑖 )ℓ
𝑖=1

]︁

≤
∑︁
𝑘≤ℓ

(︃
𝑘

ℓ

)︃
2−𝑛(ℓ−𝑘) ·𝑂(𝜀𝑘)

≤ 𝑂((𝜀+ 2−𝑛)ℓ).

The second-to-last inequality holds by the claim (since the information of which 𝑥*𝑖 are equal can
be hard-coded as polynomial-length advice in a reduction), and the last inequality holds by the
binomial theorem.

Thus, it suffices to prove the claim.
Suppose that a time 𝑇 adversary 𝒜(pp, 𝑦*1, . . . , 𝑦*𝑘) → (𝑥*1, . . . , 𝑥*𝑘) that, given pp and 𝑦*𝑖 =

𝐹sk(𝑥*𝑖 )) for distinct inputs 𝑥*𝑖 , successfully 𝑘-fold inverts the OWF with probability ≥ 𝜀𝑘. By a
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puncturing argument, up to a 2−10𝑛𝑘 additive loss, the adversary must still succeed on an obfuscated
program 𝑃𝑥*

1,𝑟*
1 ,...,𝑥*

𝑘
,𝑟*

𝑘
of the form

𝑃𝑥*
1,𝑟*

1 ,...,𝑥*
𝑘

,𝑟*
𝑘
← 𝑖𝒪

(︁
𝑥 ↦→ 𝑟*𝑖 if 𝑥 = 𝑥*𝑖 , else 𝐹sk(𝑥)

)︁
,

where each 𝑟*𝑖 is sampled uniformly at random. Using this, we construct an algorithm for Search-Unique-𝑘-fold-SAT:

Algorithm 𝒜 for Search-Unique-𝑘-fold-SAT

Given Φ = (𝜙1 : {0, 1}𝑛 → {0, 1}, . . . , 𝜙𝑘 : {0, 1}𝑛 → {0, 1}
)︁
:

1. Sample uniformly random strings 𝛼𝑖 ← {0, 1}𝑛 and 𝑟*𝑖 ← {0, 1}𝑛.

2. Sample an obfuscated program

𝑃Φ,𝛼1,...,𝛼𝑘,𝑟*
1 ,...,𝑟*

𝑘
← 𝑖𝒪

(︁
𝑥 ↦→ 𝐹sk(𝑥) if 𝜙𝑖(𝑥⊕ 𝛼𝑖) = 0 for all 𝑖, else output 𝑟*𝑖 for the

smallest 𝑖 such that 𝜙𝑖(𝑥⊕ 𝛼𝑖) = 1
)︁
.

3. Run the algorithm
𝐴(𝑃𝜙,𝛼1,...,𝛼𝑘,𝑟*

1 ,...,𝑟*
𝑘
, 𝑟*1, . . . , 𝑟

*
𝑘),

obtaining inputs 𝑥′1, . . . , 𝑥′𝑘.

4. Return 𝑥′1 ⊕ 𝛼1, . . . , 𝑥
′
𝑘 ⊕ 𝛼𝑘.

We claim that 𝒜 succeeds with probability at least 1
2

(︁
𝜀𝑘 − 10 · 2−10𝑛𝑘

)︁
. Indeed, letting 𝑤1, . . . , 𝑤𝑘

denote the unique witnesses for 𝜙1, . . . , 𝜙𝑘, we show:

Pr
[︁
𝒜 succeeds and |{𝑤𝑖 ⊕ 𝛼𝑖}| = 𝑘

]︁
≥ 1

2
(︁
𝜀𝑘 − 10 · 2−10𝑛𝑘

)︁
.

To see this, we observe that Pr
[︁
|{𝑤𝑖 ⊕ 𝛼𝑖}| = 𝑘

]︁
≥ 1/2 and the conditional probability of success

is, by definition, the probability that 𝒜 succeeds when 𝛼1, . . . , 𝛼𝑘 are sampled uniformly random
subject to the strings 𝛼𝑖 ⊕ 𝑤𝑖 being distinct. For such strings, the program 𝑃Φ,𝛼1,...,𝛼𝑘,𝑟*

1 ,...,𝑟*
𝑘

is
2−10𝑛𝑘-indistinguishable from the obfuscated program

𝑃 ′Φ,𝛼1,...,𝛼𝑘,𝑟*
1 ,...,𝑟*

𝑘
← 𝑖𝒪

(︁
𝑥 ↦→ 𝑟𝑖 if 𝑥 = 𝛼𝑖 ⊕ 𝑤𝑖, else 𝐹sk(𝑥)

by 𝑖𝒪 security. In the above description, the strings 𝛼𝑖⊕𝑤𝑖 are hard-coded (rather than computed).
This distribution on obfuscated programs is identical to 𝑃𝑥*

1,...,𝑥*
𝑘

,𝑟*
1 ,...,𝑟*

𝑘
for uniform distinct 𝑥*𝑖 and

uniform 𝑟*𝑖 , completing the proof.

6 Hardness of 𝑘-fold SAT
In this section, we prove the following theorem.
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Theorem 6.1. Assume subexponentially secure iO and subexponentially secure puncturable PRFs
exist. Whenever Search-Unique-𝑘-fold-SAT[𝑛, 𝑠′ = poly(𝑠, 𝑛, 𝑘)] is solvable in 𝑇 -time with 𝜀-success,
there is a 1

𝜀1/𝑘 · 𝑇 · poly(𝑛, 𝑘, 𝑠)-size non-deterministic circuit for UNSAT[𝑛, 𝑠].

By combining this with Theorem 5.1, we obtain the following result.

Theorem 6.2. If refuting Circuit-SAT is 1
𝜀1/𝑘 · 𝑇 · poly(𝑛, 𝑠)-hard, then there exist (𝑇, 𝜀)-secure

(injective) 𝑘-OWPF families.

In the “optimal” parameter regime, this gives the following corollary.

Corollary 6.3. If refuting Circuit-SAT is optimally hard (Assumption 4.2), then there exists a
𝑘-OWPF family with

(︁
𝑇,
(︁

𝑇 ·poly(𝑛,𝑘)
2𝑛

)︁𝑘)︁
-security for all 𝑇 .

We will prove Theorem 6.1 in two parts.

• Section 6.1: First, we show than any algorithm solving Search-Unique-𝑘-fold-SAT can be made
“oblivious.” This roughly means that the success probability of the algorithm only depends
on the number of satisfying assignments of the underlying formulas and nothing else. To
do this, we will use ideas from cryptography, specifically indistinguishability obfuscation and
puncturable pseudorandom functions.

• Section 6.2: Next, we show how to use an oblivious algorithm for Search-Unique-𝑘-fold-SAT
to non-deterministically solve UNSAT. This will crucially rely on the optimal parameters in
our our improved Goldwasser-Sipser algorithm.

6.1 Making 𝑘-fold SAT Solvers Oblivious

First, we introduce some helpful notation:

• For 𝑥, 𝑦, 𝛿 ∈ R, we write 𝑥 ≈𝛿 𝑦 to mean that |𝑥− 𝑦| < 𝛿.

• Let SIZE𝑛[𝑠] denote the set of 𝑠-size circuits with 𝑛-inputs.

• Let Φ denote the tuple of circuits (𝜙1, . . . , 𝜙𝑘). We will write |Φ| = |Φ′| if |𝜙𝑖| = |𝜙′𝑖| for all 𝑖.

• Let #SAT(𝜙) denote the number of satisfying assignments to 𝜙. Let #SAT(Φ) denote the
corresponding tuple (#SAT(𝜙1), . . . ,#SAT(𝜙𝑘))

• Let SAT(Φ) denote the set of 𝑘-tuples of satisfying assignments to the corresponding 𝜙𝑖. In
other words,

SAT(Φ) = {(𝑤1, . . . , 𝑤𝑘) : 𝜙𝑖(𝑤𝑖) = 1 ∀𝑖 ∈ [𝑘]}.

Next, we make a definition of what it means for a 𝑘-fold SAT solver to be oblivious. Informally,
it means that the chance of outputting any 𝑤 ∈ SAT(Φ) only depends on #SAT(Φ) and nothing
else about Φ or 𝑤.

Definition 6.4 (Oblivious 𝑘-fold SAT solver). A probabilistic circuit 𝐶 for 𝑘-fold SAT is 𝛽-oblivious
if whenever |Φ| = |Φ′|, #SAT(Φ) = #SAT(Φ′), 𝑤 ∈ SAT(Φ) and 𝑤′ ∈ SAT(Φ′), we have

Pr[𝐶(Φ) = 𝑤] ≈𝛽 Pr
[︀
𝐶(Φ′) = 𝑤′

]︀
.
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Equivalently, there exists a function 𝑝 : ([2𝑛])𝑘 → R such that

Pr[𝐶(Φ) = 𝑤] ≈𝛽/2
𝑝(#SAT(Φ))
|#SAT(Φ)|

for all 𝑤 ∈ SAT(𝜑).

Lemma 6.5 (Oblivious is Without Loss of Generality). Assume subexponentially secure iO and
subexponentially secure puncturable PRFs exist. Let 𝐶 ′ : (SIZE𝑛[𝑠′])𝑘 → ({0, 1}𝑛)𝑘 be a probabilistic
circuit. There is another probabilistic circuit 𝐶 : (SIZE𝑛[𝑠])𝑘 → ({0, 1}𝑛)𝑘 where 𝑠 = ( 𝑠′

poly(𝑛,𝑘))Ω(1)

and |𝐶| = |𝐶 ′|+ poly(𝑛, 𝑘, 𝑠) such that

1. For all Φ, we have

Pr[𝐶(Φ) ∈ SAT(Φ)] ≥

⎛⎝∏︁
𝑖∈[𝑘]

1
4 ·#SAT(𝜙𝑖)

⎞⎠ min
Φ′:#SAT(Φ′)=#SAT(Φ)

Pr
[︀
𝐶 ′(Φ′) ∈ SAT(Φ′)

]︀
−2−10𝑛𝑘

2. 𝐶 is a 2−10𝑛𝑘-oblivious 𝑘-fold SAT solver

Proof. First we construct 𝐶. Let 𝜆 = 𝜆(𝑛, 𝑘) = poly(𝑛, 𝑘) be a sufficiently large polynomial we set
later.

Circuit 𝐶
Given 𝜙1, . . . , 𝜙𝑘 : {0, 1}𝑛 → {0, 1}:

1. For each 𝑖 ∈ [𝑘], sample a secret key sk𝑖 for a puncturable PRF 𝐹𝑖 = 𝐹sk𝑖
: {0, 1}𝑛 →

{0, 1}𝑛 with security parameter 𝜆

2. Define Φ′ by 𝜙′𝑖 ← 𝑖𝒪(𝑥 ↦→ 𝜙𝑖(𝐹𝑖(𝑥)) with security parameter 𝜆 and where we pad the
circuit being obfuscated to size at least 𝜆.

3. Let 𝑤′ = (𝑤′1, . . . , 𝑤′𝑘)← 𝐶 ′(Φ′).

4. Output 𝑤 = (𝐹1(𝑤′1), . . . , 𝐹𝑘(𝑤′𝑘)).

Note that by construction |𝐶| = |𝐶 ′| + poly(𝑛, 𝜆, 𝑘, 𝑠) = |𝐶| + poly(𝑛, 𝑘, 𝑠). Also, we need 𝑠′ =
|𝜙′| = poly(|𝜙|, 𝜆, 𝑛) = poly(|𝜙|, 𝑛) = poly(𝑠, 𝑛). Hence we have that 𝑠 = ( 𝑠′

poly(𝑛))Ω(1). It remains
to show that 𝐶 has properties (1) and (2).

Claim 6.6. 𝐶 has property (1).

Proof. Fix Φ and let 𝑖 ∈ [𝑘] be arbitrary. If 𝐹𝑖 were a truly random function, then the random
variable #SAT(𝜙′𝑖) would be a binomial random variable with 𝑁 = 2𝑛 trials and probability 𝑞 =
#SAT(𝜙𝑖)

2𝑛 of success in each trial. The binomial distribution has the property that if 𝑁 · 𝑞 ∈ Z (as
it is in our case), then its mean, median, and mode is exactly 𝑁 · 𝑞, which in our case is exactly
#SAT(𝜙). Thus, we get that

Pr
truly random 𝐹𝑖

[#SAT(𝜙′𝑖) = #SAT(𝜙𝑖)] ≥
1

4#SAT(𝜙𝑖)
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by applying a Markov inequality and averaging argument and using that #SAT(𝜙) is both the
mean and the mode of the distribution. Hence, we get that

Pr
truly random 𝐹1, . . . , 𝐹𝑘

[#SAT(Φ′) = #SAT(Φ)] ≥
∏︁

𝑖∈[𝑘]

1
4#SAT(𝜙𝑖)

.

Since 𝐹𝑖 is subexponentially secure, we can set 𝜆 = poly(𝑛, 𝑘) sufficiently large, so that

Pr
𝐹1,...,𝐹𝑘←𝑃 𝑅𝐹

[#SAT(Φ′) = #SAT(Φ)] ≥

⎛⎝∏︁
𝑖∈[𝑘]

1
4#SAT(𝜙𝑖)

⎞⎠− 2−10𝑛𝑘.

Thus, we have
Pr[𝐶(Φ) ∈ SAT(Φ)] = Pr

[︀
𝐶 ′(Φ′) ∈ SAT(Φ′)

]︀
≥

⎛⎝∏︁
𝑖∈[𝑘]

1
4#SAT(𝜙𝑖)

⎞⎠ min
Φ′′:#SAT(Φ′′)=#SAT(Φ)

Pr
[︀
𝐶 ′(Φ′′) ∈ SAT(Φ′′)

]︀
− 2−10𝑛𝑘.

Now, it remains to show property (2).

Claim 6.7. 𝐶 has property (2).

Proof. For this proof, we introduce some convenient notation for tuples of circuits:
• Given PRF instances 𝐹1, . . . , 𝐹𝑘 : {0, 1}𝑛 → {0, 1}𝑛, we define 𝐹 : ({0, 1}𝑛)𝑘 → ({0, 1}𝑛)𝑘 as
𝐹 (𝑤) = (𝐹1(𝑤1), . . . , 𝐹𝑘(𝑤𝑘)).

• For a tuple Φ of circuits (𝜙1, . . . , 𝜙𝑘), we define Φ ∘ 𝐹 to be the tuple (𝜙1 ∘ 𝐹1, . . . , 𝜙𝑘 ∘ 𝐹𝑘).

• For a tuple Φ = (𝜙1, . . . , 𝜙𝑘), we define the notation 𝑖𝒪(Φ) to mean (𝑖𝒪(𝜙1), . . . , 𝑖𝒪(𝜙𝑘)) for
independent choices of obfuscation randomness.

Fix any Φ1 and Φ2 with #SAT(Φ1) = #SAT(Φ2) and let 𝑤1 ∈ SAT(Φ1) and 𝑤2 ∈ SAT(Φ2).
Our goal is to show that

Pr
[︁
𝐶 ′(𝑖𝒪(Φ1 ∘ 𝐹 )) = 𝑤1

]︁
≈2−10𝑛𝑘 Pr

[︁
𝐶 ′(𝑖𝒪(Φ2 ∘ 𝐹 )) = 𝑤2

]︁
.

As an intermediate step, we will show that for any 𝑤′ = (𝑤′1, . . . , 𝑤′𝑘) ∈ ({0, 1}𝑛)𝑘 that

Pr
[︁
𝐶 ′(𝑖𝒪(Φ1 ∘𝐹 )) = 𝑤′ and 𝐹 (𝑤′) = 𝑤1

]︁
≈2−11𝑛𝑘 Pr

[︁
𝐶 ′(𝑖𝒪(Φ2 ∘𝐹 )) = 𝑤′ and 𝐹 (𝑤′) = 𝑤2

]︁
. (3)

Assuming we can show (3), we are done since then

Pr
[︁
𝐶 ′(Φ1′) = 𝑤1

]︁
=
∑︁
𝑤′

Pr
𝐹←𝑃 𝑅𝐹

[𝐶 ′(𝑖𝒪(Φ1 ∘ 𝐹 )) = 𝑤′ and 𝐹 (𝑤′) = 𝑤1]

≈2−10𝑛𝑘

∑︁
𝑤′

Pr
𝐹←𝑃 𝑅𝐹

[𝐶 ′(𝑖𝒪(Φ2 ∘ 𝐹 )) = 𝑤′ and 𝐹 (𝑤′) = 𝑤2]

= Pr
[︁
𝐶 ′(Φ2′) = 𝑤2

]︁
.

Now we focus on (3). Fix such a 𝑤′. We go argue via a hybrid argument that goes input by
input. Below, we often interpret 𝑥 as an integer in the set {0, . . . , 2𝑛 − 1}

• Hybrid 1: Here the distribution is
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1. Sample sk1, . . . , sk𝑘, defining 𝐹1, . . . , 𝐹𝑘.
2. Output

– The bit 1[𝐹1(𝑤′1) = 𝑤1
1] ∧ · · · ∧ 1[𝐹𝑘(𝑤′𝑘) = 𝑤1

𝑘]
– 𝑖𝒪(Φ1 ∘ 𝐹 ).

• Hybrid (2, 𝑖): Here the distribution is

1. Sample sk1, . . . , sk𝑘, defining 𝐹1, . . . , 𝐹𝑘.

2. Let 𝑏𝑗 =
{︃
1[𝑤2

𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 < 𝑖

1[𝑤1
𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 ≥ 𝑖

3. Output
– The bit 𝑏1 ∧ · · · ∧ 𝑏𝑘

– 𝑖𝒪
(︃
𝑥 ↦→

{︃
Φ2 ∘ 𝐹, if 𝑥 < 𝑖

Φ1 ∘ 𝐹, if 𝑥 ≥ 𝑖

)︃
.

• Hybrid (3, 𝑖): Here the distribution is

1. Sample sk1, . . . , sk𝑘 to be keys punctured at the point 𝑖+ 1.
2. Sample 𝑣 ← ({0, 1}𝑛)𝑘 and set 𝑐 = Φ1(𝑣) ∈ {0, 1}𝑘. For all 𝑗, set 𝑑𝑗 = 1[𝑤1

𝑗 = 𝑣𝑗 ].

3. Let 𝑏𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1[𝑤2

𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 < 𝑖

𝑑𝑗 , if 𝑤′𝑗 = 𝑖+ 1
1[𝑤1

𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 ≥ 𝑖+ 2.
4. Output

– The bit 𝑏1 ∧ · · · ∧ 𝑏𝑘

– 𝑖𝒪

⎛⎜⎜⎝𝑥 ↦→
⎧⎪⎪⎨⎪⎪⎩

Φ2 ∘ 𝐹, if 𝑥 < 𝑖

𝑐, if 𝑥 = 𝑖+ 1
Φ1 ∘ 𝐹, if 𝑥 ≥ 𝑖+ 2

⎞⎟⎟⎠.

• Hybrid (4, 𝑖): Let 𝐵𝑒𝑟(𝑝) denote the Bernoulli distribution with probability 𝑝 of being one.
In this hybrid, the distribution is

1. Sample sk1, . . . , sk𝑘 to be keys punctured at the point 𝑖+ 1.
2. Sample 𝑐← 𝐵𝑒𝑟(#SAT(Φ1)

2𝑛 ) ∈ {0, 1}𝑘. For all 𝑗, set 𝑑𝑗 ← 𝑐𝑗 ∧𝐵𝑒𝑟( 1
#SAT(𝜙1

𝑗 )).

3. Let 𝑏𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1[𝑤2

𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 < 𝑖

𝑑𝑗 , if 𝑤′𝑗 = 𝑖+ 1
1[𝑤1

𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 ≥ 𝑖+ 2.
4. Output

– The bit 𝑏1 ∧ · · · ∧ 𝑏𝑘
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– 𝑖𝒪

⎛⎜⎜⎝𝑥 ↦→
⎧⎪⎪⎨⎪⎪⎩

Φ2 ∘ 𝐹, if 𝑥 < 𝑖

𝑐, if 𝑥 = 𝑖+ 1
Φ1 ∘ 𝐹, if 𝑥 ≥ 𝑖+ 2

⎞⎟⎟⎠.

• Hybrid (5, 𝑖): 𝑖 ∈ {0, 2𝑛 + 1}. Here the distribution is

1. Sample sk1, . . . , sk𝑘 to be keys punctured at the point 𝑖+ 1.
2. Sample 𝑣 ← ({0, 1}𝑛)𝑘 and set 𝑐 = Φ1(𝑣) ∈ {0, 1}𝑘. For all 𝑗, set 𝑑𝑗 = 1[𝑤2

𝑗 = 𝑣𝑗 ].

3. Let 𝑏𝑗 =

⎧⎪⎪⎨⎪⎪⎩
1[𝑤2

𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 < 𝑖

𝑑𝑗 , if 𝑤′𝑗 = 𝑖+ 1
1[𝑤1

𝑗 = 𝐹𝑗(𝑤′𝑗)], if 𝑤′𝑗 ≥ 𝑖+ 2.
4. Output

– The bit 𝑏1 ∧ · · · ∧ 𝑏𝑘

– 𝑖𝒪

⎛⎜⎜⎝𝑥 ↦→
⎧⎪⎪⎨⎪⎪⎩

Φ2 ∘ 𝐹, if 𝑥 < 𝑖

𝑐, if 𝑥 = 𝑖+ 1
Φ1 ∘ 𝐹, if 𝑥 ≥ 𝑖+ 2

⎞⎟⎟⎠.

• Hybrid 6: Here the distribution is

1. Sample sk1, . . . , sk𝑘, defining 𝐹1, . . . , 𝐹𝑘.
2. Output

– The bit 1[𝐹1(𝑤′1) = 𝑤2
1] ∧ · · · ∧ 1[𝐹𝑘(𝑤′𝑘) = 𝑤2

𝑘]
– 𝑖𝒪(Φ2 ∘ 𝐹 ).

We now show that the following pairs of hybrids is 2−𝜆Ω(1) indistinguishable:

• Hybrid 1 to Hybrid (2, 0): This is by construction. The distributions are identical.

• Hybrid (2, 𝑖) to (3, 𝑖): This is by puncturing the PRFs 𝐹1, . . . , 𝐹𝑘 at 𝑖 + 1 and hard-coding
uniformly random values 𝑣𝑗 .

• Hybrid (3, 𝑖) to (4, 𝑖): This is because the output distribution only depends on 𝑣 through the
bits 𝑏 and 𝑐, so it suffices to sample the bits from the distribution induced by 𝑏 and 𝑐.

• Hybrid (4, 𝑖) to (5, 𝑖): This is because the new distribution on 𝑏 and 𝑐 is statistically identical
to the previous distribution on 𝑏 and 𝑐.

• Hybrid (5, 𝑖) to (2, 𝑖+ 1): This is by unpuncturing and replacing each 𝑣𝑗 with 𝐹𝑗(𝑖+ 1).

• Hybrid (2, 2𝑛+1) to Hybrid 6: This is by construction. The distributions are identical.

Hence, we get that Hybrid 1 and 6 are indistinguishable up to 𝑂(2𝑛2−𝜆Ω(1)) < 2−11𝑛𝑘 by setting 𝜆
sufficiently large. (3) follows immediately from this indistiguishability.
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6.2 Refuting SAT Using an Oblivious 𝑘-fold SAT Solver

Now we show how to use an oblivious k-fold SAT solver to non-deterministically solve UNSAT.

Lemma 6.8. Let 𝐶 : (SIZE𝑛[𝑠′])𝑘 → ({0, 1}𝑛)𝑘 be a probabilistic circuit. Assume that 𝐶 is 2−10𝑛𝑘-
oblivious and hence there exists a function 𝑝 : ([2𝑛])𝑘 → R such that for every all Φ ∈ (SIZE𝑛[𝑠′])𝑘

and all 𝑤 ∈ SAT(Φ)

𝑝(#SAT(Φ))
|SAT(Φ)| − 2−10𝑛𝑘 ≤ Pr

𝐶
[𝐶(Φ) = 𝑤] ≤ 𝑝(#SAT(Φ))

|SAT(Φ)| . (4)

There there is a non-deterministic circuit 𝐷 for UNSAT[𝑛, 𝑠− poly(𝑛)] with

|𝐷| ≤ 𝜀−1/𝑘 · |𝐶| · poly(𝑛, 𝑘, 𝑠),

where 𝜀 = 𝑝(1, . . . , 1).

Proof. First, we note that 𝑝 roughly gives the probability that 𝐶 outputs an element of SAT(Φ).
(This is just unraveling definitions.)

Claim 6.9. For all Φ,

𝑝(#SAT(Φ))− 2−9𝑛𝑘 ≤ Pr
𝐶

[𝐶(Φ) ∈ SAT(Φ)] ≤ 𝑝(#SAT(Φ)).

Consequently, we have 𝑝(#SAT(Φ)) ≤ 1.1.

Proof. This immediately follows from (4) and the fact that |SAT(Φ)| ≤ 2𝑛𝑘.

Next, we introduce some more notation. For 𝑖 ∈ [2𝑛], let 𝑝(𝑖) = 𝑝(𝑖, . . . , 𝑖). Recall, we set
𝜀 = 𝑝(1). We show there must be an 𝑖 where 𝑝(𝑖) is not too much smaller than 𝑝(𝑖+ 1).

Claim 6.10. There exists an 𝑖 ≤ 2𝜀−1/𝑘 such that

𝑝(𝑖) > (1 + 𝜀1/𝑘

4 ) 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1).

Proof. Suppose not. Then we have that

𝑝(𝑖) ≤ (1 + 𝜀1/𝑘

4 ) 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1)

for all 𝑖 ≤ 2𝜀−1/𝑘. Rearranging, we get that

𝑝(𝑖+ 1)
𝑝(𝑖) ≥ (𝑖+ 1)𝑘

𝑖𝑘
(1 + 𝜀1/𝑘

4 )−1.

Then for 𝑖⋆ = 2𝜀−1/𝑘 we have

𝑝(𝑖⋆) = 𝜀 ·
𝑖⋆−1∏︁
𝑖=1

𝑝(𝑖+ 1)
𝑝(𝑖)

≥ 𝜀 · (1 + 𝜀1/𝑘

4 )−𝑖⋆ ·
𝑖⋆−1∏︁
𝑖=1

(𝑖+ 1)𝑘

𝑖𝑘
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= 𝜀 · (1 + 1
2𝑖⋆ )−𝑖⋆ · (𝑖⋆)𝑘

= 𝜀 · (1 + 1
2𝑖⋆ )−𝑖⋆ · (2𝜀−1/𝑘)𝑘

= (1 + 1
2𝑖⋆ )−𝑖⋆ · 2𝑘

≥ 3
5 · 2 = 1.2,

which contradicts that 𝑝(𝑖⋆) ≤ 1.1.

Indeed, we can extend Claim 6.10 to hold even with a 2−9𝑛𝑘 additive loss.

Claim 6.11. There exists an 𝑖 ≤ 2𝜀−1/𝑘 such that

𝑝(𝑖)− 2−9𝑛𝑘 > (1 + 𝜀1/𝑘

16 ) 𝑖𝑘

(𝑖+ 1)𝑘
𝑝(𝑖+ 1).

Proof. We have

𝑝(𝑖)− 2−9𝑛𝑘 > (1 + 𝜀1/𝑘

4 ) 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1)− 2−9𝑛𝑘

> (1 + 𝜀1/𝑘

4 − 2−7𝑛𝑘) 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1)

> (1 + 𝜀1/𝑘

8 ) 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1)

where the each line comes from

• Claim 6.10

• Without loss of generality, 𝑝(𝑖 + 1) ≥ 2−𝑛𝑘. (This is because we can modify 𝐶 to also try a
uniformly random guess (𝑤1, . . . , 𝑤𝑘) and output that if those are a satisfying assignment.)
Thus,

2−7𝑛𝑘 · 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1) ≥ 2−8𝑛𝑘 · ( 𝑖

𝑖+ 1)𝑘 = 2−8𝑛𝑘 · (1− 1
𝑖+ 1)𝑘 ≥ 2−8𝑛𝑘2−𝑘 ≥ 2−9𝑛𝑘.

• Without loss of generality, 𝜀 ≥ 2−𝑛𝑘. (If not, the theorem is trivial.) Thus,

𝜀1/𝑘

4 − 2−7𝑛𝑘 ≤ 𝜀1/𝑘

4 − 2−𝑛𝑘

8 ≤ 𝜀1/𝑘

4 − 𝜀

8 ≤
𝜀1/𝑘

16 ,

where the last inequality comes from the following case analysis. If 𝜀 ≤ 1, then we have

𝜀1/𝑘

4 − 𝜀

8 ≤
𝜀1/𝑘

4 − 𝜀1/𝑘

8 ≤ 𝜀1/𝑘

8 .

Otherwise we have 1 ≤ 𝜀 = 𝑝(1) ≤ 1.1 so

𝜀1/𝑘

4 − 𝜀

8 ≤
1
4 −

1.1
8 ≤

1
16 ≤

𝜀1/𝑘

16 .

34



Now we construct 𝐷. By Corollary 4.6, it suffices to solve Unique-UNSAT. Fix an 𝑖 ≤ 2𝜀−1/𝑘

with the guarentee from Claim 6.11.

Non-deterministic circuit 𝐷 for Unique-UNSAT

Given an 𝑛-input 𝑠′-size formula 𝜓 with at most one satisfying assignment:

1. Using brute force check if 𝜓 is satisfiable on any 𝑥 with 𝑥 < 𝑖 (interpreting 𝑥 as a
non-negative integer using binary). If so, reject.

2. Otherwise, let 𝜓′ be the formula given by 𝜓′(𝑥) = 𝜓(𝑥) ∨ 1[𝑥 < 𝑖]. Note that |𝜓′| ≤
𝑠′ + poly(𝑛) ≤ 𝑠 by setting 𝑠′ = 𝑠− poly(𝑛).

3. Output the output of the improved Goldwasser-Sipser non-deterministic circuit (Theo-
rem 3.2) for nmCAPP that accepts when 𝛼 ≥ (1 + 𝜀1/𝑘

16 ) · 𝑖𝑘

(𝑖+1)𝑘 · 𝑝(𝑖 + 1) and rejects if
𝛼 ≤ 𝑖𝑘

(𝑖+1)𝑘 · 𝑝(𝑖+ 1), where

𝛼 := Pr
𝐶

[𝐶(𝜓′, . . . , 𝜓′) outputs (𝑤1, . . . 𝑤𝑘) such that all 𝑤𝑗 satisfy 𝜓′ but none satisfy 𝜓 ].

By construction 𝐷 has size

poly(𝑖, 𝑛, 𝑠) + poly(𝑛, 𝑠) + 𝜀−1/𝑘 · |𝐶| · poly(𝑛, 𝑘, 𝑠) = 𝜀−1/𝑘 · |𝐶| · poly(𝑛, 𝑘, 𝑠).

Now we show correctness. If 𝜓 is unsatisfiable, then 𝜓′ has exactly 𝑖 satisfying assignments and
none of them satisfy 𝜓. Thus, by Claim 6.11 and Claim 6.9, we get

𝛼 ≥ 𝑝(𝑖)− 2−9𝑛𝑘 ≥ (1 + 𝜀1/𝑘

16 ) · 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1).

This gives us completeness.
On the other hand, if 𝜓 has exactly one satisfying assignment 𝑤, then either 𝑤 < 𝑖 and we

reject, or the probability we want to lower bound in step 3 is, by (4), at most

∑︁
(𝑤1,...,𝑤𝑘)∈[𝑖]𝑘

Pr
𝐶

[𝐶(𝜙′, . . . , 𝜙′) = (𝑤1, . . . , 𝑤𝑘)] ≤
∑︁

(𝑤1,...,𝑤𝑘)∈[𝑖]𝑘

𝑝(𝑖+ 1)
(𝑖+ 1)𝑘

≤ 𝑖𝑘

(𝑖+ 1)𝑘
· 𝑝(𝑖+ 1)

so we reject. This gives soundness.

6.3 Putting It Together

Now we complete the proof of Theorem 6.1.

Proof of Theorem 6.1. By Lemma 6.5, there is a circuit 𝐶 ′ of size 𝑇 ′ = 𝑇 + poly(𝑛, 𝑘, 𝑠) that is
2−10𝑛𝑘-oblivious and 𝜀′-successful on Search-Unique-𝑘-fold-SAT[𝑛, 𝑠′′], where 𝜀′ ≥ 4−𝑘𝜀−2−10𝑛𝑘 and
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𝑠′′ = ( 𝑠′

poly(𝑛,𝑘))Ω(1). Then by Lemma 6.8, there is a non-deterministic circuit 𝐷 for UNSAT[𝑛, 𝑠] of
size

(𝜀′)−1/𝑘 · 𝑇 ′ · poly(𝑛, 𝑘, 𝑠) = 𝜀−1/𝑘 · 𝑇 · poly(𝑛, 𝑘, 𝑠),

where we use 𝜀 ≥ 2−𝑛𝑘 (otherwise the theorem is trivial) and that 𝑠′′ − poly(𝑛) = ( 𝑠′

poly(𝑛,𝑘))Ω(1) −
poly(𝑛) ≥ 𝑠 by setting 𝑠′ = poly(𝑠, 𝑛, 𝑘) sufficiently large.

7 Distributional CRHFs from 𝑖𝒪 and NP ̸⊂ i.o.-coNP/poly
In this section, we prove the following theorem.

Theorem 7.1. Assume subexponentially secure indistinguishably obfuscation exists, subexponen-
tially secure puncture pseudorandom functions exist, and that NP ̸⊆ i.o.-coNP/poly. Then a dis-
tributional collision resistant hash function family exists.

We begin by recalling the definition of a distribution collision resistant hash function.

Definition 7.2 (dCRHFs, [DI06, BHKY19]). Let ℋ = {𝐻𝑛} be a distribution on polynomial-sized
circuits. We say ℋ is a distributional collision resistant hash function if there exists a polynomial
𝑝 = 𝑝(𝑛) such that the following holds. For every probabilistic polynomial-time algorithm 𝐴,

Δ((ℎ← 𝐻𝑛, 𝐴(ℎ, 1𝑛)), (ℎ← 𝐻𝑛, Simon(ℎ)) > 1
𝑝(𝑛) ,

for all but finitely many 𝑛, where Δ denotes statistical distance and Simon(ℎ) denotes the (ineffi-
cient) probabilistic algorithm that samples 𝑥← {0, 1}𝑛, samples 𝑦 ← ℎ−1(𝑥) and outputs (𝑥, 𝑦).

Our construction is very simple: it is (again) an obfuscated puncturable PRF.

Construction 7.3 (Candidate dCRHF ℋ). Let 𝑛, 𝜆 = poly(𝑛) ∈ N. 𝜆 is chosen so that the 𝑖𝒪
and puncturable PRF families are (2𝑂(𝑛), 2−𝑂(𝑛))-secure.

The construction is the distribution ℋ = {𝐻𝑛} on circuits, where 𝐻𝑛 is given by

• Sample 𝑠← {0, 1}poly(𝜆)

• 𝐹𝑠 : {0, 1}𝑛 → {0, 1}𝑛−1 is a subexponentially secure puncturable PRF with key 𝑠

• The circuit 𝐻𝑛 ← 𝑖𝒪(𝐹𝑠), where 𝑖𝒪 is a subexponentially secure indistinguishability obfus-
cation scheme.

We now prove Theorem 7.1.

Proof. We will prove that the dCRHF property holds with 𝑝(𝑛) = 𝑛3. Let 𝜀 = 1/𝑝(𝑛). For
contradiction, assume that there is a polynomial time probabilistic adversary 𝐴 and a constant 𝑐
such that

Δ((ℎ,𝐴(ℎ, 1𝑛)), (ℎ,Simon(ℎ))) > 𝜀

for infinitely many 𝑛. We will show that NP ⊆ i.o.-coNP/poly. By Corollary 4.6, it suffices to give
an polynomial-size refutation for Unique-UNSAT[𝑛, 𝑛].
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Now we define some notation. For 𝑦 ∈ {0, 1}𝑛−1, 𝑧 ∈ {0, 1}𝑛, and an 𝑛-input circuit 𝜙, we
define

ℎ𝜙,𝑦,𝑧 = 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝑦, if 𝜙(𝑥⊕ 𝑧) = 1,
𝐹𝑠(𝑥), otherwise

)︃

where 𝐹𝑠 : {0, 1}𝑛 → {0, 1}𝑛−1 is the PRF from our construction.
We will be concerned with analyzing the following probability

𝑝*𝜙 = Pr
𝑦←{0,1}𝑚

𝑧←{0,1}𝑛

(𝑥0,𝑥1)←𝐴(ℎ𝜙,𝑦,𝑧)

[︁
ℎ𝜙,𝑦,𝑧(𝑥0) = ℎ𝜙,𝑦,𝑧(𝑥1) = 𝑦 and 𝜙(𝑥0 ⊕ 𝑧) = 𝜙(𝑥1 ⊕ 𝑧) = 0

]︁
.

Claim 7.4. Assume (poly(𝑛), 2−2𝑛)-security of the 𝑖𝒪 scheme. Then, for all 𝜙 ∈ UNSAT, we have
that 𝑝𝜙 ≥ (1− 𝜀)2−𝑚 − 2−2𝑛.

Proof. To prove this claim, we define the additional quantity

𝑝𝜙 = Pr
𝑦←{0,1}𝑚

𝑧←{0,1}𝑛

(𝑥0,𝑥1)←𝐴(ℎ)

[︁
ℎ(𝑥0) = ℎ(𝑥1) = 𝑦 and 𝜙(𝑥0 ⊕ 𝑧) = 𝜙(𝑥1 ⊕ 𝑧) = 0

]︁
.

We observe that for all 𝜙 ∈ UNSAT, 𝑝*𝜙 ≥ 𝑝𝜙 − 2−2𝑛 by the security of the 𝑖𝒪 (as the condition
𝜙(𝑥⊕ 𝑧) = 1 is not satisfied by any input 𝑥).

We now also claim that 𝑝𝜙 ≥ (1− 𝜀) · 2−𝑚. To see this, we observe that:

• The probability that 𝐴(ℎ) outputs a collision such that 𝜙(𝑥0 ⊕ 𝑧) = 𝜙(𝑥1 ⊕ 𝑧) = 0 is at least
1− 𝜀 by assumption on 𝐴 (the additional condition is always true because 𝜙 ∈ UNSAT).

• The string 𝑦 is independent of the view of 𝐴.

This completes the proof of Claim 7.4.

Claim 7.5. Assume the (22𝑛, 2−2𝑛)-security of the 𝑖𝒪 and puncturable PRF. Then, if 𝜙 ∈ Unique-SAT,
we have 𝑝*𝜙 ≤ 2−𝑚 · (1− Ω(1)) +𝑂(2−2𝑛).

Proof. We prove this by a hybrid argument.
Let 𝑤 denote the unique satisfying assignment to 𝜙. We define the following auxiliary probability

𝑝𝜙:

𝑝𝜙 = Pr
𝑧←{0,1}𝑛

(𝑥0,𝑥1)←𝐴(ℎ)

[︁
ℎ(𝑥0) = ℎ(𝑥1) = ℎ(𝑤 ⊕ 𝑧) and 𝑤 ⊕ 𝑧 ̸∈ {𝑥0, 𝑥1}

]︁
. (5)

We first observe that
𝑝*𝜙 ≤ 𝑝𝜙 +𝑂(2−2𝑛)

by the following hybrid argument: define the circuit distribution

ℎ𝑥*,𝑦 = 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝑦, if 𝑥 = 𝑥*,

𝐹𝑠(𝑥), otherwise

)︃
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and associated probability

𝑝(1)
𝜙 = Pr

𝑦←{0,1}𝑚

𝑧←{0,1}𝑛

(𝑥0,𝑥1)←𝐴(ℎ𝑤⊕𝑧,𝑦)

[︁
ℎ𝑤⊕𝑧,𝑦(𝑥0) = ℎ𝑤⊕𝑧,𝑦(𝑥1) = ℎ𝑤⊕𝑧,𝑦(𝑤 ⊕ 𝑧) and 𝑤 ⊕ 𝑧 ̸∈ {𝑥0, 𝑥1}

]︁

= Pr
𝑦←{0,1}𝑚

𝑧←{0,1}𝑛

(𝑥0,𝑥1)←𝐴(ℎ𝑤⊕𝑧,𝑦)

[︁
ℎ𝑤⊕𝑧,𝑦(𝑥0) = ℎ𝑤⊕𝑧,𝑦(𝑥1) = 𝑦 and 𝑤 ⊕ 𝑧 ̸∈ {𝑥0, 𝑥1}

]︁

We then see that

• 𝑝
(1)
𝜙 ≤ 𝑝𝜙 +𝑂(2−2𝑛) by puncturing the PRF 𝐹𝑠(·) at the point 𝑤 ⊕ 𝑧.

• 𝑝*𝜙 ≤ 𝑝
(1)
𝜙 +𝑂(2−2𝑛) because:

– The condition 𝑤⊕𝑧 /∈ {𝑥0, 𝑥1} is equivalent to the condition that 𝜙(𝑥0⊕𝑧) = 𝜙(𝑥1⊕𝑧) =
0, and

– The functions computed by ℎ𝑤⊕𝑧,𝑦 and ℎ𝜙,𝑦,𝑧 are equal.

It remains to prove that 𝑝𝜙 ≤ 2−𝑚(1−Ω(1)). We next note that in (5), the inputs (𝑥0, 𝑥1)← 𝐴(ℎ)
are independent of the random string 𝑧. We analyze 𝑝𝜙 by defining the following two quantites:

• Define loadℎ(𝑥0) =
⃒⃒
ℎ−1(ℎ(𝑥0))

⃒⃒
.

• Define the event Colℎ(𝑥0, 𝑥1) to be the predicate checking that (𝑥0, 𝑥1) forms a non-trivial
collision in ℎ: that is, ℎ(𝑥0) = ℎ(𝑥1) and 𝑥0 ̸= 𝑥1.

With this in mind, we see that for a fixed hash function ℎ and fixed strings (𝑥0, 𝑥1),

Pr
𝑧←{0,1}𝑛

[︁
ℎ(𝑥0) = ℎ(𝑥1) = ℎ(𝑤⊕𝑧) and 𝑤⊕𝑧 ̸∈ {𝑥0, 𝑥1}

]︁
≤ Pr

𝑧←{0,1}𝑛

[︁
ℎ(𝑥0) = ℎ(𝑤⊕𝑧) and 𝑤⊕𝑧 ̸∈ {𝑥0, 𝑥1}

]︁
,

which is equal to

Colℎ(𝑥0, 𝑥1) ·
(︁
2−𝑛 · (loadℎ(𝑥0)− 2)

)︁
+ (1− Colℎ(𝑥0, 𝑥1)) ·

(︁
2−𝑛 · (loadℎ(𝑥0)− 1)

)︁
.

This is true because if Colℎ(𝑥0, 𝑥1) = 1:

• The probability that ℎ(𝑤 ⊕ 𝑧) is equal to ℎ(𝑥0) is loadℎ(𝑥0)
2𝑛 , and

• The conditional probability that 𝑤⊕𝑧 /∈ {𝑥0, 𝑥1} is 1− 2
loadℎ(𝑥0) , because 𝑤⊕𝑧 is (conditionally)

uniform over ℎ−1(ℎ(𝑥0)) ⊃ {𝑥0, 𝑥1}.

On the other hand, if Colℎ(𝑥0, 𝑥1) = 0:

• The probability that ℎ(𝑤 ⊕ 𝑧) is equal to ℎ(𝑥0) is loadℎ(𝑥0)
2𝑛 , and

• The conditional probability that 𝑤⊕𝑧 /∈ {𝑥0, 𝑥1} is 1− 1
loadℎ(𝑥0) , because 𝑤⊕𝑧 is (conditionally)

uniform over ℎ−1(ℎ(𝑥0)), and in this case |ℎ−1(ℎ(𝑥0)) ∩ {𝑥0, 𝑥1}| = 1.
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Rewriting, we have

Pr
𝑧←{0,1}𝑛

[︁
ℎ(𝑥0) = ℎ(𝑤 ⊕ 𝑧) and 𝑤 ⊕ 𝑧 ̸∈ {𝑥0, 𝑥1}

]︁
= 2−𝑛 ·

(︁
loadℎ(𝑥0)− 1− Colℎ(𝑥0, 𝑥1)

)︁
.

Thus, we conclude that

𝑝𝜙 ≤ 2−𝑛 · E
(𝑥0,𝑥1)←𝐴(ℎ)

[︁
loadℎ(𝑥0)

]︁
− 2−𝑛 − 2−𝑛· Pr

(𝑥0,𝑥1)←𝐴(ℎ)

[︁
Colℎ(𝑥0, 𝑥1)

]︁
.

By assumption on 𝐴, we have that

Pr
(𝑥0,𝑥1)←𝐴(ℎ)

[︁
Colℎ(𝑥0, 𝑥1)

]︁
≥ 1/2− 𝜀,

because the event occurs with probability at least 1/2 for the Simon distribution.
Finally, we claim that

2−𝑛 E
(𝑥0,𝑥1)←𝐴(ℎ)

[︁
loadℎ(𝑥0)

]︁
≤ 2−𝑚 + 2−𝑛 + 4 · 𝜀 · 𝑛2 · 2−𝑛 +𝑂(2−2𝑛).

To see this, we upper bound

E
(𝑥0,𝑥1)←𝐴(ℎ)

[︁
loadℎ(𝑥0)

]︁
≤Pr

ℎ

[︁
ℎ has an 2𝑛-collision

]︁
+ E

(𝑥0,𝑥1)←𝐴(ℎ)

[︁
loadℎ(𝑥0)∧ℎ has no 2𝑛-collision

]︁
.

The first summand is at most 2−2𝑛 by the (22𝑛, 2−2𝑛)-security of 𝐹𝑠(·) and the fact that such a
bound holds for random functions, in the setting setting 𝑚 = 𝑛− 1.

To bound the second summand, we write

E
(𝑥0,𝑥1)←𝐴(ℎ)

[︁
loadℎ(𝑥0) ∧ ℎ has no 2𝑛-collision

]︁
=

2𝑛−1∑︁
𝑖=1

Pr
(𝑥0,𝑥1)←𝐴(ℎ)

[︁
loadℎ(𝑥0) = 𝑖

]︁
· 𝑖.

Since (ℎ, 𝑥0) is 𝜀-close to (ℎ, 𝑟) for a uniformly random 𝑟 by assumption on 𝐴, the above is upper
bounded by

4𝑛2 · 𝜀+
2𝑛−1∑︁
𝑖=1

Pr
ℎ←𝐻𝑛

𝑟←{0,1}𝑛

[︁
loadℎ(𝑟) = 𝑖

]︁
· 𝑖 ≤ 4𝑛2 · 𝜀+ 4𝑛2 · 2−2𝑛 + E

𝐹 :{0,1}𝑛→{0,1}𝑚

𝑟←{0,1}𝑛

[︁
load𝐹 (𝑟)

]︁
,

where 𝐹 : {0, 1}𝑛 → {0, 1}𝑚 is a uniformly random function, by the 2−2𝑛-security of the PRF.
Finally, we have that 2−𝑛 · E

𝐹 :{0,1}𝑛→{0,1}𝑚

𝑟←{0,1}𝑛

[︁
load𝐹 (𝑟)

]︁
is exactly the expected collision probability

of a uniformly random 𝐹 , which is equal to 2−𝑛 + 2−𝑚.
To conclude, we have that

𝑝𝜙 ≤ 2−𝑚 + 2−𝑛 + 4 · 𝜀 · 𝑛2 · 2−𝑛 − 1
2𝑛

(3
2 − 𝜀) +𝑂(2−2𝑛) (6)

= 2−𝑚 − 1
2 · 2

−𝑛 +𝑂(𝜀𝑛2 · 2−𝑛) (7)

= 2−𝑚(1− Ω(1)). (8)
This completes the proof of Claim 7.5.

With the achieved gap between the UNSAT and SAT instances (under the promise), this implies
the existence of an infinitely-often correct AM/poly protocol for Unique-UNSAT by Goldwasser-
Sipser.
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8 Worst-Case to Average-Case Reduction for Correlation Intractabil-
ity

In this section, we prove a worst-case to average-case reduction for various forms of single-input
correlation intractability [CGH98], defined as follows.

We consider binary relations𝑅 that are subsets of⋃︀𝜆∈N{0, 1}𝑛(𝜆)×{0, 1}𝑚(𝜆) where 𝑛(𝜆),𝑚(𝜆) =
poly(𝜆). Throughout, 𝑛 and 𝑚 denote the functions implicitly associated with the relation 𝑅.

Definition 8.1 (Single-input Correlation Intractability). Let 𝑅 ⊂ {0, 1}* be a binary relation.
A hash function family ℋ = (Gen,Hash) with domain {0, 1}𝑛(𝜆) and range Z𝑚(𝜆)

𝑝 is defined to
be 𝑅-correlation intractable (CI) if for all polynomial time adversaries 𝒜(𝑘) given a hash key
𝑘 ← Gen(1𝜆), the probability that 𝒜(𝑘) → 𝑥 such that 𝑥 ∈ {0, 1}𝑛(𝜆) and (𝑥,𝐻𝑘(𝑥)) ∈ 𝑅 is
negligible.

Of particular interest are hash families that are correlation-intractable for entire classes of
relations. We focus on two specific cases of interest:

• The class ℛSparse of all sparse relations, which are relations 𝑅 = {𝑅𝜆 ⊂ {0, 1}𝑛(𝜆) × Z𝑚(𝜆)
𝑝 }

such that for all 𝑥 ∈ {0, 1}𝑛(𝜆), the probability that a uniformly random 𝑌 satisfies (𝑥, 𝑌 ) ∈ 𝑅
is negl(𝜆).

• The class ℛpoly of all sparse relations such that the computational task of deciding whether
(𝑥, 𝑦) ∈ 𝑅 has a poly(𝜆)-time algorithm.

For both of these relation classes, we have very few candidate hash families that are plausibly CI
for the entire class of relations [KRR17, CCRR18, CCH+19], and they all rely on extremely strong
assumptions such as optimally unbounded KDM-secure encryption and optimally circular-secure
FHE.

In this section, we construct hash function families that are CI for either ℛSparse or ℛpoly under
two assumptions: one standard cryptographic assumption (shift-hiding shiftable functions), and
one worst-case hardness assumption about correlation-finding tasks (Definition 8.4).

8.1 Shift-Hiding Shiftable Functions

The following preliminaries are due to [LV22] (although we remove unnecessary public parameters
from the definition).

Definition 8.2 (Shift-Hiding Shiftable Functions [PS18, LV22]). Let 𝑝 = 𝑝(𝜆) be an efficiently
computable function of 𝜆. We define a family of shift-hiding shiftable functions with input space
{0, 1}𝑛(𝜆) and output space Z𝑚(𝜆)

𝑝 ≃ {0, 1}𝑚(𝜆) log 𝑝(𝜆) for arbitrary polynomial functions (𝑛(𝜆),𝑚(𝜆)).
For a given class 𝒞 of function ensembles ℱ = {𝑓𝜆 : {0, 1}𝑛(𝜆) → Z𝑚(𝜆)

𝑝 }, a shift-hiding shiftable
function family SHSF = (Gen,Shift,Eval,SEval) consists of four PPT algorithms:

• Gen(1𝜆) outputs a master secret key msk.

• Shift(msk, 𝑓) takes as input a secret key msk and a function 𝑓 ∈ ℱ . It outputs a shifted key
sk𝑓 .
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• Eval(msk, 𝑥), given a secret key msk and input 𝑥 ∈ {0, 1}𝑛(𝜆), outputs an evaluation 𝑦 ∈ Z𝑚(𝜆)
𝑝 .

• SEval(sk𝑓 , 𝑥), given a shifted key sk𝑓 and input 𝑥 ∈ {0, 1}𝑛(𝜆), outputs an evaluation 𝑦 ∈
Z𝑚(𝜆)

𝑝 .

We will sometimes use the notation 𝐹sk(𝑥) to mean either Eval(sk, 𝑥) or SEval(sk, 𝑥) when the
context is clear.

We require that SHSF satisfies the following two properties:

• Computational Correctness: for every polynomial-time adversary 𝐴, there is a negligible
function negl(𝜆) such that for any function 𝑓 ∈ 𝒞, given a shifted key sk𝑓 ← Shift(msk, 𝑓)
(for msk ← Gen(1𝜆)), the probability that 𝐴(sk𝑓 ) finds an input 𝑥 ∈ {0, 1}𝑛(𝜆) such that
Eval(sk𝑓 , 𝑥) ̸= Eval(msk, 𝑥) + 𝑓(𝑥) (mod 𝑝) is negl(𝜆).

• Shift Hiding: for any polynomial-time adversary 𝐴, there is a negligible function negl(𝜆)
such that for any pair of functions 𝑓, 𝑔 ∈ 𝒞, the distinguishing advantage achieved by 𝐴
between sk𝑓 and sk𝑔 is negl(𝜆), where sk𝑓 ← Shift(msk, 𝑓), sk𝑔 ← Shift(msk, 𝑔), and msk ←
Gen(1𝜆).

Lemma 8.3 ([PS18, LV22]). Suppose one of the following two pairs of assumptions holds:

• Sub-exponentially secure 𝑖𝒪 and sub-exponentially secure OWFs exist, OR

• The learning with errors and 1D-R-SIS problems (see [LV22]) are computationally hard.

Then, there exists an efficiently computable function 𝑝(𝜆) such that for any polynomial functions
𝑛(𝜆),𝑚(𝜆), 𝑠(𝜆), there exists a family of SHSFs mapping {0, 1}𝑛(𝜆) → Z𝑚(𝜆)

𝑝 and supporting the
class 𝒞𝑠 of all circuits of size 𝑠. Specifically,

• For the 𝑖𝒪-based construction, 𝑝(𝜆) can be an arbitrary power of 2. (we will simply take
𝑝(𝜆) = 2 in this case). Moreover, the 𝑖𝒪-based construction can be made to have 2𝑛+𝑚-
security.

• For the lattice-based construction, 𝑝(𝜆) ≤ 2𝜆𝜀 can be taken to be a product of 𝜆𝜀/2 sufficiently
large distinct primes. However, this construction only has (poly, negl)-security.

8.2 The Correlation Finding Problem

Definition 8.4 (Correlation Finding Problem). Let 𝑅 be a relation and 𝑠 : N→ N be a function.
Search𝑅[𝑠] is the following search problem:

• Given: a circuit 𝐶 : {0, 1}𝑛(𝜆) → Z𝑚(𝜆)
𝑝(𝜆) of size at most 𝑠(𝜆)

• Output: an 𝑥 such that (𝑥,𝐶(𝑥)) ∈ 𝑅, provided one exists.

We observe that Search𝑅[𝑠] is not necessarily a total search problem: some instances 𝐶 may have
no valid output. In the worst-case setting, we declare by convention that any output is a valid
solution, although it will turn out that we work with total Search𝑅[𝑠].
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We now consider three notions of hardness for Search𝑅[𝑠]: mild worst-case hardness, strong
worst-case hardness, and average-case hardness.

Definition 8.5. We say that Search𝑅[𝑠] is mildly worst-case hard if no non-uniform polynomial-
sized (deterministic) circuit family solves Search𝑅[𝑠] for infinitely many 𝜆.

Definition 8.6. We say that Search𝑅[𝑠] is strongly worst-case hard if for every polynomial-sized
family of probabilistic circuits 𝐴, there are infinitely many 𝜆 and circuits 𝐶𝜆 of size 𝑠(𝜆) such that

Pr
[︁
𝐴(𝐶𝜆) outputs an 𝑥 where (𝑥,𝐶𝜆(𝑥)) ∈ 𝑅

]︁
= 𝜆−𝜔(1).

Definition 8.7 (Average-case Hardness of Search𝑅). Let 𝒟 = {𝐷𝜆} be a distribution on circuits
with 𝑛(𝜆)-length inputs and 𝑚(𝜆)-length outputs. We say that Search𝑅 is hard on 𝒟 if for every
non-uniform polynomial-time adversary 𝐴

Pr
𝐶←𝐷𝜆

[︁
𝐴(𝐶) outputs an 𝑥 where (𝑥,𝐶(𝑥)) ∈ 𝑅

]︁
= 𝜆−𝜔(1).

Remark: in the average-case setting, we no longer count the case where there is no 𝑥 with
(𝑥,𝐶(𝑥)) ∈ 𝑅 as a “success” for the algorithm.

Worst-Case Assumption: Correlation Finding is Worst-Case Hard. For any class ℛ of
sparse relations, one can conjecture the worst-case hardness of Search𝑅[𝑠] for all 𝑅 ∈ ℛ such that
Search𝑅[𝑠] is a total search problem. Indeed, one can conjecture both mild and strong worst-case
hardness.

Conjecture 1 (ℛ-Correlation Finding is Mildly Worst-Case Hard). For all 𝑚,𝑛 = poly(𝜆) there
is an 𝑠 = poly(𝜆) such that Search𝑅[𝑠] is mildly worst-case hard for all relations 𝑅 ∈ ℛ for which
Search𝑅[𝑠] is total.

Conjecture 2 (ℛ-Correlation Finding is Strongly Worst-Case Hard). For all 𝑚,𝑛 = poly(𝜆) there
is an 𝑠 = poly(𝜆) such that Search𝑅[𝑠] is strongly worst-case hard for all relations 𝑅 ∈ ℛ for which
Search𝑅[𝑠] is total.

We briefly give some remarks on these conjectures.

• Conjecture 2 implies Conjecture 1.

• Conjecture 2 is implied by the existence of an efficiently computable hash family that is CI
for all 𝑅 ∈ ℛ.

• Worst-case hardness may hold for even more choices of 𝑅, but this suffices for our purposes.
Moreover, some assumption must be made on 𝑅 to rule out trivial counterexamples where
Search𝑅 is efficiently solvable: e.g., the empty relation, or relations that are “ultra sparse” in
that they only have support on a polynomial number of 𝑥.

• The order of quantifiers is important: there needs to be a single 𝑠 = poly(𝜆) for which
Search𝑅[𝑠] is hard for all applicable 𝑅.
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8.3 The worst-case to average-case reduction: theorem statements

We prove two worst-case to average-case reductions; one is specific to the relation class ℛpoly, while
one also holds for various larger relation classes.

Theorem 8.8. Let 𝑛(𝜆),𝑚(𝜆), 𝑝(𝜆) be efficiently computable functions of a security parameter.
Assume that the following are both true:

• For all 𝑠(𝜆) = poly(𝜆), a family of SHSFs with input length 𝑛(𝜆) and output Z𝑚(𝜆)
𝑝 exists

supporting 𝒞𝑠.

• Conjecture 1 holds for the class ℛpoly.

Then, there exists a hash family that is CI for all 𝑅 ∈ ℛpoly.

Theorem 8.9. Let ℬ be a class of algorithms that is closed under polynomial-time composition,
and let ℛ denote the corresponding class of sparse relations that can be decided by some algorithm
in ℬ. Let 𝑛(𝜆),𝑚(𝜆), 𝑝(𝜆) be efficiently computable functions of a security parameter.

Assume that the following are both true:

• For all 𝑠(𝜆) = poly(𝜆), a family of 2𝑛+𝑚-secure SHSFs with input length 𝑛(𝜆) and output
Z𝑚(𝜆)

𝑝 exists supporting 𝒞𝑠.

• Conjecture 2 holds for the class ℛ.

Then, there exists a hash family that is CI for all 𝑅 ∈ ℛ.

In particular, this gives new feasibility results for ℛSparse- and ℛpoly- correlation intractability.
In fact, since the existence of any CI function implies Conjecture 2 we get that our construction

is universal in the following sense.

Corollary 8.10. [Informal] Assume the existence of SHSFs as in Theorem 8.8 or Theorem 8.9.
Then, if any function family is correlation intractable for the appropriate relation class ℛ, then
our explicit construction (depending on the SHSF) is correlation intractable for ℛ.

This universality result is an improvement over the universality result of [CCH+19], which
assumed the existence of ℛSparse-CI and only concluded ℛpoly-CI of the universal construction.
Thus, this corollary is new for both ℛ = ℛpoly and ℛ = ℛSparse.

8.4 Proof of Theorems 8.8 and 8.9

Our construction is identical to that of [LV22], although our assumptions, conclusions, and security
proof are different. Given a SHSF family (Gen,Shift,Eval,SEval), the construction is as follows.

Construction 8.11 (Candidate Correlation Intractable Family 𝐶𝐼[𝑛,𝑚, 𝑠]). Let 𝑛 = poly(𝜆),
𝑚 = poly(𝜆), and 𝑠 = 𝑠(𝜆) be arbitrary parameters. The construction 𝐶𝐼[𝑛,𝑚, 𝑠] is a distribution
𝒟 = {𝐷𝜆} on circuits, where 𝐷𝜆 is given by

• Sample a master secret key msk← Gen(1𝜆).

• Sample a shifted key sk𝑍 ← Shift(msk, 𝑍) for an all-zero circuit 𝑍.
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• The circuit is given by 𝑥 ↦→ SEval(sk𝑍 , 𝑥). The hash key is sk𝑍 .

Theorem 8.12. Under the assumptions of Theorem 8.8 or Theorem 8.9, we have that for all
𝑛,𝑚 = poly(𝜆), there exists an 𝑠 = poly(𝜆) such that 𝐶𝐼[𝑛,𝑚, 𝑠] is ℛ-correlation intractable for
the ℛ specified in the theorem statements.

In fact, we prove a stronger statement about specific relations 𝑅 (rather than classes of relations)
that implies Theorem 8.12.

Theorem 8.13. Under the cryptographic assumptions of Theorem 8.8 (respectively, Theorem 8.9),
we have that for all 𝑛,𝑚 = poly(𝜆) and all 𝑅 ⊂ ℛ ∩

⋃︀
𝜆{0, 1}𝑛(𝜆) × Z𝑚(𝜆)

𝑝 , if 𝐶𝐼[𝑛,𝑚, 𝑠] is not
𝑅-correlation intractable, then there exists a non-trivial relation 𝑅′ ⊂ ℛ∩

⋃︀
𝜆{0, 1}𝑛(𝜆)×Z𝑚(𝜆)

𝑝 such
that Search𝑅′ [𝑠] is not mildly (respectively, strongly) worst-case hard.

Proof. The two main ideas are:

1. for any circuit 𝐶⋆ with the appropriate size and input/output length, an adversary for
𝐶𝐼[𝑛,𝑚, 𝑠] must still find 𝑅-correlations for 𝐻sk𝐶* . This produces an 𝑅msk-correlation for
𝐶* with non-negligible probability, where 𝑅msk is some msk-dependent relation.

2. The problem with Item 1 is that any given adversary may only succeed on an inverse polyno-
mial fraction of msk, and the subset of “good msk” may depend on the adversary. However,
a variant of Adleman’s trick can be used to construct a relation 𝑅′ that is not adversary-
dependent, on which the adversary violates correlation intractability.

Now, we give the formal proof. Assume that the hash family is not 𝑅-correlation intractable; this
means that for some efficient adversary 𝐴, we have that

Pr
msk←Gen(1𝜆)

sk𝑍←Shift(msk,𝑍)

[︁
[𝐴(sk𝑍) outputs an 𝑥 satisfying (𝑥,𝐻sk𝑍

(𝑥)) ∈ 𝑅] ≥ 1
𝜆𝑂(1) (9)

for infinitely many 𝜆. Without loss of generality (by an averaging argument), we assume 𝐴 is
deterministic.

We now begin to build our worst-case algorithm for correlation-finding (although we have yet
to specify 𝑅′). For a worst-case circuit 𝐶⋆ : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) of size at most 𝑠(𝜆), let
sk𝐶* ← Shift(msk, 𝐶*) for msk← Gen(1𝜆).

Claim 8.14. For infinitely many 𝜆, we have that for all circuits 𝐶⋆ : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) of
size at most 𝑠(𝜆)

Pr
sk𝐶*

[𝐴(sk𝐶*) outputs an 𝑥 satisfying (𝑥,𝐻sk𝐶* (𝑥)) ∈ 𝑅] ≥ 1
𝜆𝑂(1) (10)

This follows immediately from the shift-hiding property of the SHSF. (Either polynomial or expo-
nential security is required depending on whether 𝑅 is polynomial-time decidable.)

Claim 8.15. For infinitely many 𝜆, we have that for all circuits 𝐶⋆ : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) of
size at most 𝑠(𝜆)

Pr
sk𝐶*

[𝐴(sk𝐶*) outputs an 𝑥 satisfying (𝑥, 𝐹msk(𝑥) + 𝐶*(𝑥) (mod 𝑝(𝜆))) ∈ 𝑅] ≥ 1
𝜆𝑂(1) (11)
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This follows immediately from the computational correctness property of the SHSF. (Again, ei-
ther polynomial or exponential security is required depending on whether 𝑅 is polynomial-time
decidable.)

The failure probability in (11) is 1− 1
𝜆𝑂(1) . We will now repeat this sampling procedure indepen-

dently polynomially many times (using fresh msk each time), so that the failure probability becomes
exponentially small. In more detail, let 𝑞 = poly(𝜆) be a sufficiently large polynomial. For a circuit
𝐶⋆ : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) of size at most 𝑠(𝜆), consider sampling sk𝐶*,1, . . . , sk𝐶*,𝑞 independent
shifted keys. We then get that for infinitely many 𝜆, for all circuits 𝐶⋆ : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) of
size at most 𝑠(𝜆) that, we have

Pr
sk𝐶*,1,...,sk𝐶*,𝑞

[for some 𝑖 ∈ [𝑞], 𝐴(sk𝐶*,𝑖)→ 𝑥 with (𝑥,𝐶⋆(𝑥) + 𝐹msk𝑖
(𝑥) (mod 𝑝𝜆)) ∈ 𝑅] ≥ 1−𝑂(2−𝑠2).

Then, since the number of circuits 𝐶⋆ of size at most 𝑠 is 2𝑂(𝑠 log 𝑠) = 𝑜(2𝑠2), an averaging argument
implies that for each input length 𝜆 we can fix a choice of msk1, . . . ,msk𝑞 as well as sampling
randomness for the Shift(msk𝑖, ·) operations to obtain a non-uniform polynomial-time deterministic
algorithm 𝐷(𝐶*) → (msk1, sk𝐶*,1,msk2, sk𝐶*,2, . . . ,msk𝑞, sk𝐶*,𝑞) such that the following holds: for
infinitely many 𝜆, for all circuits 𝐶⋆ : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) of size at most 𝑠(𝜆), there exists an 𝑖
such that 𝐴(sk𝐶*,𝑖) outputs an 𝑥 with (𝑥,𝐶⋆(𝑥) + 𝐹msk𝑖

(𝑥)(mod 𝑝𝜆)) ∈ 𝑅.
This analysis gives us our desired relation 𝑅′ = 𝑅′msk1,...,msk𝑞

:

𝑅msk1,...,msk𝑞 = {(𝑥, 𝑦) : (𝑥, 𝑦 + 𝐹msk𝑖
(𝑥) (mod 𝑝𝜆)) ∈ 𝑅 for some 𝑖 ∈ [𝑞(𝜆)]}.

By construction, we have that 𝑅′ is sparse: its sparsity is at most 𝑞(𝜆) times that of 𝑅. Moreover, we
claim that 𝑅′ ∈ ℛ. To see this, we recall that ℛ is the class of all relations decidable by algorithms
in ℬ, and ℬ is closed under polynomial composition. By construction, whether (𝑥, 𝑦) ∈ 𝑅′ can be
decided in polynomial time given oracle access to an algorithm deciding membership in 𝑅, so we
conclude that 𝑅′ ∈ ℛ for all 𝑅 ∈ ℛ.

Finally, we have to specify an algorithm solving Search𝑅′ [𝑠]. The algorithm is as follows:

• Hard-coded: the keys msk1, . . . ,msk𝑞, and randomness 𝑟1, . . . , 𝑟𝑞 for key generation.

• Input: a circuit 𝐶* of size at most 𝑠.

• For all 𝑖 ∈ [𝑞], construct the key sk𝐶*,𝑖 = Shift(msk𝑖, 𝐶
*; 𝑟𝑖).

• For all 𝑖 ∈ [𝑞], run 𝐴(sk𝐶*,𝑖) to obtain input string 𝑥𝑖.

• For ℛpoly: for all 𝑖, check if (𝑥𝑖, 𝐶
*(𝑥𝑖)) ∈ 𝑅′ and output the first 𝑥𝑖 for which this is true.

• For general ℛ: sample a random 𝑖 and output 𝑥𝑖.

In both cases, our algorithm runs in polynomial time. Moreover, our earlier analysis shows that
for infinitely many 𝜆, for all circuits 𝐶⋆ : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) of size at most 𝑠(𝜆) the algorithm
will violate weak (respectively, strong) worst-case hardness6 of Search𝑅′ [𝑠], as claimed.

6Observe that we have implicitly proved that Search𝑅′ [𝑠] is total, as our algorithm finds valid solutions on every
circuit 𝐶* of size at most 𝑠.
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8.5 Open Problems

We end this section by stating two interesting open research directions related to Theorems 8.8
and 8.9.

• Are there interesting ℛ for which one can base Conjecture 1 or Conjecture 2 on a stan-
dard complexity assumption? One possible avenue for this is to try to show NP-hardness of
Search𝑅[𝑠], or even to show coNP-hardness of Search𝑅[𝑠] under non-deterministic reductions.

• Can Theorems 8.8 and 8.9 be extended to forms of multi-input correlation intractability
[LV22]?

We hope that further work in these directions will result in better feasibility results for powerful
forms of correlation-intractability.

9 Worst-Case to Average-Case Reduction for Lossy Functions
We begin by recalling the definition of a lossy function.

Definition 9.1 (Lossy Functions). A (cryptographic) ℓ = ℓ(𝑛)-lossy function 𝐿 consists of a pair
of probabilistic polynomial-time algorithms (𝐿.inj, 𝐿.lossy) with the following properties:

• Injective Functionality: Pr𝐶←𝐿.inj(𝑛)[𝐶 is an 𝑛-input injective circuit] ≥ 1− 𝑛−𝜔(1).

• Lossy Functionality: Pr𝐶←𝐿.lossy(𝑛)[𝐶 is an 𝑛-input circuit whose range has size at most 2ℓ] ≥
1− 𝑛−𝜔(1).

• Indistinguishability: 𝐿.inj(𝑛) ≈𝑛−𝜔(1) 𝐿.lossy(𝑛).

Next, we describe the construction we will work with in this section. For a circuit 𝐶, let Pad𝑠(𝐶)
denote Padding 𝐶 to size 𝑠 if |𝐶| < 𝑠 and the identity map otherwise.

Construction 9.2. For a function ℓ = ℓ(𝑛) and a polynomial 𝑠 = 𝑠(𝑛) ≥ 𝑛 and a subexponentially-
secure indistinguishability obfuscator 𝑖𝒪, we let 𝐿 = 𝐿ℓ,𝑠 be the following construction.

• 𝐿.inj(𝑛) → 𝑖𝒪(Pad𝑠(𝐹 )) where 𝐹 : {0, 1}𝑛 → {0, 1}4𝑛 is a subexponentially-secure punc-
turable PRF and where we use security parameter 𝜆 = 𝑠 for both the 𝑖𝒪 and the puncturable
PRF.

• 𝐿.lossy(𝑛) → 𝑖𝒪(Pad𝑠(𝐺 ∘ 𝐻)) where 𝐻 : {0, 1}𝑛 → {0, 1}ℓ and 𝐺 : {0, 1}ℓ → {0, 1}4𝑛 are
subexponentially-secure puncturable PRFs and where we use security parameter 𝜆 = 𝑠 for
both the 𝑖𝒪 and the puncturable PRFs.

It is easy to see that this construction has injective functionality (because a random function
length quadrupling function is injective with very high probability) and lossy functionality (by
construction). Formally, we have the following proposition.

Proposition 9.3. The lossy function 𝐿 in Construction 9.2 with parameters ℓ and 𝑠 has both the
injective functionality and the lossy functionality properties (as defined in Definition 9.1) of being
an ℓ-lossy function .
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Proof. Lossy functionality is by construction. In more detail, 𝐿.lossy(𝑛)→ 𝑖𝒪(Pad𝑠(𝐺∘𝐻)), where
𝐻 : {0, 1}𝑛 → {0, 1}ℓ. Hence, 𝐿.lossy(𝑛) always outputs a circuit with a range of size at most 2ℓ.

Next, we show injective functionality. Recall 𝐿.inj(𝑛) → 𝑖𝒪(Pad𝑠(𝐹 )) where 𝐹 : {0, 1}𝑛 →
{0, 1}4𝑛 is a subexponentially-secure puncturable PRF. If 𝐹 were a truly random function, then it
is injective with probability at least 1−2−4𝑛22𝑛 = 1−2−2𝑛, by union bounding over the event that
two inputs collide. Hence, by the subexponential security of 𝐹 , we get that injective functionality
holds with probability at least 2−2𝑛 + 2−𝑛Ω(1) = 𝑛−𝜔(1), as desired.

Thus, to show that Construction 9.2 is a lossy function, we just need to show the indistinguisha-
bility property (i.e., 𝐿.inj(𝑛) ≈𝑛−𝜔(1) 𝐿.lossy(𝑛)). We will show that it holds under the assumption
that the Lossy problem (defined next) is worst-case hard. Roughly, Lossy asks one to determine if
a given circuit is injective or has a small range.

Definition 9.4 (Lossy Problem). Let ℓ = ℓ(𝑛) < 𝑛 and 𝑠 = 𝑠(𝑛) be functions of 𝑛. Then Lossy[ℓ, 𝑠]
is the following problem:

• Given: an 𝑛-input circuit 𝐶 of size at most 𝑠

• Accept: if 𝐶 is injective

• Reject: if the range of 𝐶 has size at most 2ℓ

One can easily solve Lossy[ℓ, 𝑠] in poly(2ℓ, 𝑠) time.

Proposition 9.5. For every ℓ and 𝑠, there is a circuit for Lossy[ℓ, 𝑠] of size poly(2ℓ, 𝑠).

Proof. Consider the following algorithm: evaluate the given 𝐶 on 2ℓ(𝑛) + 1 different inputs, and
look at whether all the outputs are pairwise distinct. If 𝐶 is injective, then all the outputs will be
pairwise distinct. If 𝐶 has a range of size at most 2ℓ, then two outputs must be the same (by the
pigeonhole principle).

We are now ready to prove the main theorem of this section: that Construction 9.2 is indeed a
lossy function if Lossy is worst-case hard.

Theorem 9.6 (Lossy Functions from 𝑖𝒪 and Worst-Case Hardness). If Lossy[ℓ, 𝑠′] is not in P/poly
infinitely often for some polynomial 𝑠′ = poly(𝑛), then, for some 𝑠 = poly(𝑛), Construction 9.2
with parameters 4ℓ and 𝑠 is a 4ℓ-lossy function.

Proof. Let 𝑠 be a sufficiently large polynomial we set later. Let 𝐿 denote Construction 9.2 with
parameters 4ℓ and 𝑠. We already showed injective and lossy functionality in Proposition 9.3. So,
we just need to show indistinguishability.

We do this by the contrapositive. Let 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 be an arbitrary 𝑛-input circuit
of size at most 𝑠′. Let 𝐹,𝐺,𝐻,𝐺′, 𝐻 ′ be subexponentially secure puncturable PRFs with security
parameter 𝜆 = 𝑠 and with 𝐹 : {0, 1}𝑛 → {0, 1}4𝑛, 𝐺 : {0, 1}4ℓ → {0, 1}4𝑛, 𝐻 : {0, 1}𝑛 → {0, 1}4ℓ,
𝐻 ′ : {0, 1}𝑚 → {0, 1}4ℓ and 𝐹 ′ : {0, 1}𝑚 → {0, 1}4𝑛. Recall that 𝐿.inj ≡ 𝑖𝒪 ∘ Pad𝑠(𝐹 ) and
𝐿.lossy ≡ 𝑖𝒪 ∘ Pad𝑠(𝐺 ∘𝐻).

Define 𝐿𝐶 .inj ≡ 𝑖𝒪(Pad𝑠(𝐹 ′ ∘ 𝐶)) and 𝐿𝐶 .lossy ≡ 𝑖𝒪(Pad𝑠(𝐺 ∘ 𝐻 ′ ∘ 𝐶)). The reason for our
naming of 𝐿𝐶 .inj and 𝐿𝐶 .lossy is because we will show that the following claim holds.

Claim 9.7. Assume 𝐶 is injective. Then 𝐿𝐶 .inj ≈2−𝑠Ω(1) 𝐿.inj and 𝐿𝐶 .lossy ≈2−𝑠Ω(1) 𝐿.lossy.
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On the other hand, when 𝐶 is lossy, we will show that 𝐿𝐶 .lossy and 𝐿𝐶 .inj are indistinguishable.

Claim 9.8. Assume 𝐶 has a range of size at most 2ℓ. Then 𝐿𝐶 .inj ≈𝑛−𝜔(1) 𝐿𝐶 .lossy. 𝐿𝐶 .inj ≈2−𝑛Ω(1) +2−2ℓ

𝐿𝐶 .lossy.

Together, the claims mean that if an adversary 𝐴 distinguishes 𝐿.lossy from 𝐿.inj with poly-
nomial advantage, then one can use 𝐴 to solve Lossy[ℓ, 𝑠′]. This is because if 𝐶 is injective, 𝐴
distinguishes 𝐿𝐶 .lossy from 𝐿𝐶 .inj (by Claim 9.7), but, when 𝐶 is lossy, 𝐴 does not distinguish
𝐿𝐶 .lossy from 𝐿𝐶 .inj (by Claim 9.8). Thus, we can use 𝐴 to solve Lossy[ℓ, 𝑠′].

It remains to show the two claims. First, we prove Claim 9.7.

Proof of Claim 9.7. First we show that 𝐿𝐶 .inj ≈2−𝑠Ω(1) 𝐿.inj. We do this by an input-by-input
puncturing argument. Define

𝐸𝑖(𝑥) = 𝑖𝒪 ∘ Pad𝑠

(︃
𝑥 ↦→

{︃
𝐹 (𝑥), if 𝐶(𝑥) ≤ 𝑖
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃
,

where we interpret 𝐶(𝑥) ∈ [2𝑠′ ] in the natural way (note that 𝐶 has size at most 𝑠′ so it has at
most 𝑠′ output bits). Our goal is to show that 𝐿𝐶 .inj ≡ 𝐸0 is computationally indistinguishable
from 𝐸2𝑠′

≡ 𝐿𝐶 .inj. We do this by showing that 𝐸𝑖 is computationally indistinguishable from 𝐸𝑖+1

for an arbitrary 𝑖.
Indeed, letting 𝑟 ← {0, 1}4𝑛, we have that

𝐸𝑖(𝑥) ≡ 𝑖𝒪 ∘ Pad𝑠

(︃
𝑥 ↦→

{︃
𝐹 (𝑥), if 𝐶(𝑥) ≤ 𝑖
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃

≈2−𝑠Ω(1) 𝑖𝒪 ∘ Pad𝑠

⎛⎜⎜⎝𝑥 ↦→
⎧⎪⎪⎨⎪⎪⎩
𝐹 (𝑥), if 𝐶(𝑥) ≤ 𝑖
𝐹 ′ ∘ 𝐶(𝑥), if 𝐶(𝑥) = 𝑖+ 1
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

⎞⎟⎟⎠

≈2−𝑠Ω(1) 𝑖𝒪 ∘ Pad𝑠

⎛⎜⎜⎝𝑥 ↦→
⎧⎪⎪⎨⎪⎪⎩
𝐹 (𝑥), if 𝐶(𝑥) ≤ 𝑖
𝑟, if 𝐶(𝑥) = 𝑖+ 1
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

⎞⎟⎟⎠
≈2−𝑠Ω(1) 𝑖𝒪 ∘ Pad𝑠

(︃
𝑥 ↦→

{︃
𝐹 (𝑥), if 𝐶(𝑥) ≤ 𝑖+ 1
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃
≡ 𝐸𝑖+1(𝑥).

The first line is by definition; the second is by functional equivalence (and setting 𝑠 sufficiently
large for padding); the third is by the puncturable PRF security of 𝐹 ′ (and setting 𝑠 sufficiently
large for padding); the fourth is by the puncturable PRF security of 𝐹 and 𝐶 being injective (and
setting 𝑠 sufficiently large for padding); the last is by definition.

Furthermore, note that if {𝑖+ 1, 𝑖+ 2, . . . , 𝑖+𝑘} does not intersect the range of 𝐶, we have that

𝐸𝑖(𝑥) ≡ 𝑖𝒪 ∘ Pad𝑠

(︃
𝑥 ↦→

{︃
𝐹 (𝑥), if 𝐶(𝑥) ≤ 𝑖
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃

48



≈2−𝑠Ω(1) 𝑖𝒪 ∘ Pad𝑠

(︃
𝑥 ↦→

{︃
𝐹 (𝑥), if 𝐶(𝑥) ≤ 𝑖+ 𝑘

𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃
≡ 𝐸𝑖+𝑘

by functional equivalence (and setting 𝑠 sufficiently large for padding). Hence, since there are at
most 2𝑛 strings in the range of 𝐶, we get that 𝐿𝐶 .inj ≈𝜀 𝐿.inj, where 𝜀 = 2−𝑠Ω(1)+𝑛 = 2−𝑠Ω(1) by
setting 𝑠 to be a sufficiently large polynomial. This completes our proof that 𝐿𝐶 .inj ≈2−𝑠Ω(1) 𝐿.inj.

The proof that 𝐿𝐶 .lossy ≈2−𝑠Ω(1) 𝐿.lossy is similar.

Next, we establish a claim that will be helpful in the proof of Claim 9.8.

Claim 9.9. If 𝐶 has a range of size at most 2ℓ, then

Pr
𝐻′

[𝐻 ′is injective on the range of 𝐶] ≥ 1− 2−2ℓ − 2−𝑠Ω(1)
.

Proof. If 𝐻 ′ were a truly random function, then the probability that 𝐻 ′ is not injective on the
range of 𝐶 is at most 22ℓ2−4ℓ = 2−2ℓ, by a union bound argument. The claim then follows by the
subexponential security of the PRF.

Finally, we prove Claim 9.8. Actually, we will prove a more general version of Claim 9.8, which
will be useful in the next subsection. After we prove the more general version, we will show that it
indeed does imply Claim 9.8.

Claim 9.10. Assume 𝐶 has a range of size at most 2ℓ. Then 𝐿𝐶 .inj ≈2−𝑛Ω(1) +2−2ℓ 𝐿𝐶 .lossy.

Proof. We do this by an input-by-input puncturing argument. Define

𝐸𝑖(𝑥) = 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝐺 ∘𝐻 ′ ∘ 𝐶(𝑥), if 𝐻 ′ ∘ 𝐶(𝑥) ≤ 𝑖
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃
,

where we interpret 𝐻 ′ ∘ 𝐶(𝑥) ∈ [24ℓ] in the natural way. Our goal is to show that 𝐸0 ≡ 𝐿𝐶 .inj is
computationally indistinguishable from 𝐸24ℓ ≡ 𝐿𝐶 .lossy. We do this by arguing that 𝐸𝑖 and 𝐸𝑖+1

are computationally indistinguishable for an arbitrary 𝑖.
Indeed, letting 𝑟 ← {0, 1}4𝑛, we have that

𝐸𝑖 ≡ 𝑖𝒪
(︃
𝑥 ↦→

{︃
𝐺 ∘𝐻 ′ ∘ 𝐶(𝑥), if 𝐻 ′ ∘ 𝐶(𝑥) ≤ 𝑖
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃

≈2−𝑠Ω(1) 𝑖𝒪

⎛⎜⎜⎝𝑥 ↦→
⎧⎪⎪⎨⎪⎪⎩
𝐺 ∘𝐻 ′ ∘ 𝐶(𝑥), if 𝐻 ′ ∘ 𝐶(𝑥) ≤ 𝑖
𝐹 ′(𝐶(𝑥)), if 𝐻 ′ ∘ 𝐶(𝑥) = 𝑖+ 1
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

⎞⎟⎟⎠

≈2−𝑠Ω(1) +2−2ℓ 𝑖𝒪

⎛⎜⎜⎝𝑥 ↦→
⎧⎪⎪⎨⎪⎪⎩
𝐺 ∘𝐻 ′ ∘ 𝐶(𝑥), if 𝐻 ′ ∘ 𝐶(𝑥) ≤ 𝑖
𝑟, if 𝐻 ′ ∘ 𝐶(𝑥) = 𝑖+ 1
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

⎞⎟⎟⎠
≈2−𝑠Ω(1) 𝑖𝒪

(︃
𝑥 ↦→

{︃
𝐺 ∘𝐻 ′ ∘ 𝐶(𝑥), if 𝐻 ′ ∘ 𝐶(𝑥) ≤ 𝑖+ 1
𝐹 ′ ∘ 𝐶(𝑥), otherwise.

)︃
≡ 𝐸𝑖+1.
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where the first line is by definition, the second is by functional equivalence (and setting 𝑠 sufficiently
large), the third is by puncturable PRF security of 𝐹 ′ combined with the fact that 𝐻 ′ is injective
on the range of 𝐶 (Claim 9.9), the fourth is by puncturable PRF security of 𝐺, and the last is by
definition. Putting this all together, we get that 𝐿𝐶 .inj ≈2−𝑠Ω(1) +2−2ℓ 𝐿𝐶 .lossy.

Finally, we need to show that Claim 9.10 implies Claim 9.8. Because Lossy[ℓ, 𝑠′] is not in P/poly
infinitely often and because of the trivial upper bound (Proposition 9.5) on Lossy[ℓ, 𝑠′], it must be
that ℓ = 𝜔(log𝑛). Thus, 2−2ℓ = 𝑛−𝜔(1). Plugging this into Claim 9.10 and setting 𝑠 sufficiently
large, we get that 𝐿𝐶 .inj ≈𝑛−𝜔(1) 𝐿𝐶 .lossy, which proves Claim 9.8.

Having proved Claim 9.7 and Claim 9.8, we have completed the proof of Theorem 9.6.

In light of Theorem 9.6, it would be nice to connect the (worst-case) hardness of Lossy to
the (worst-case) hardness of some standard complexity class. Intruigingly, Lossy does seem some-
what related to the following problem, which is complete for NISZK (the complexity class for
non-interactive statistical zero-knowledge).

Theorem 9.11 ([GSV99] [AHT23, Lemma 13]). There is an 𝜀 > 0 such that the following problem
is complete for NISZK:

• Given: a circuit 𝐶 : {0, 1}𝑚 → {0, 1}𝑛

• Accept: if 𝐶 samples a distribution with entropy at least 𝑛− 2

• Reject: if the range of 𝐶 has size at most 2𝑛−𝑛𝜀

We leave connections between NISZK and Lossy (or variants of either) as an interesting direction
for future work. One concrete direction is to study variants of NISZK with perfect completeness.

9.1 ELFs from worst-case extreme lossiness

Our techniques for lossy function also extend to extremely lossy functions (ELFs).

Definition 9.12 (Extremely Lossy Functions [Zha16]). An extremely lossy function (ELF) 𝐿
consists of a pair of probabilistic polynomial-time algorithms (𝐿.inj, 𝐿.lossy) and a polynomial 𝑝(·, ·)
with the following properties:

• Injective Functionality:

Pr
𝐶←𝐿.inj(𝑛)

[𝐶 is an 𝑛-input injective circuit] ≥ 1− 𝑛−𝜔(1).

• Lossy Functionality:

Pr
𝐶←𝐿.lossy(𝑛,𝑇,𝜀)

[𝐶 is an 𝑛-input circuit whose range has size at most 𝑝(𝑇, 1/𝜀)] ≥ 1− 𝑛−𝜔(1).

• Indistinguishability: For all polynomial functions 𝑇 (𝑛, 𝜆), 𝜀(𝑛, 𝜆), the injective and (𝑇, 𝜀)-
lossy modes are 𝜀-indistinguishable to time 𝑇 adversaries:

𝐿.inj(𝑛) ≈𝑇,𝜀 𝐿.lossy(𝑛, 𝑇, 𝜀).
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In particular, we observe that Claim 9.7 and Claim 9.10 can also be used to prove a worst-case to
average-case reduction for ELFs. We make use of the following worst-case computational hardness
assumption.

Assumption 9.13 (Worst-case extreme lossiness). There exists polynomials 𝑠(·) and 𝑝(·, ·) such
that for every polynomial 𝑇 (·) and every 𝑇 -time randomized algorithm 𝐴 that is given an 𝑛-input
𝑠-size circuit 𝐶 of size 𝑠 and outputs a bit 𝑏, there exists a pair of 𝑛-input 𝑠-size circuits (𝐶inj, 𝐶lossy)
with the following properties:

• 𝐶inj is injective.

• 𝐶lossy has a range of size at most 𝑝(𝑛, 𝑇 (𝑛)), and

• E[𝐴(𝐶inj)] ≈1/𝑇 E[𝐴(𝐶lossy)].

Using this assumption, we get the following theorem.

Theorem 9.14. Assuming sub-exponentially secure 𝑖𝒪, sub-exponentially secure OWFs, and As-
sumption 9.13, there exist ELFs.

Proof. The proof is similar to the proof of Theorem 9.6. In detail, let 𝑠′ and 𝑝 be the polynomials
for which Assumption 9.13 holds. As before, let 𝑠 be a sufficiently large polynomial we choose later.
Our ELF construction is as follows. 𝐿.inj is the same as the 𝐿.inj in Construction 9.2 with parameter
𝑠. We construct 𝐿.lossy so that 𝐿.lossy(𝑛, 𝑇, 𝜀) is the same as 𝐿.lossy(𝑛) from Construction 9.2 but
with parameter settings 𝑠 and ℓ = 𝑝(𝑇, 1/𝜀). This construction satisfies the injective and lossy
functionality parts of the ELF definition by the same arguments as before.

It remains to show the indistinguishability part of the ELF definition holds for all polynomials
𝑇 and 𝜀. To do so, we fix an arbitrary 𝑇 and 𝜀. Now that 𝑇 and 𝜀 have been fixed, observe that
𝐿.lossy(𝑛, 𝑇, 𝜀) is exactly the old 𝐿.lossy(𝑛) from Construction 9.2 with parameter settings 𝑠 and
ℓ = 𝑝(𝑇, 1/𝜀). This means we can reuse our analysis from before. In particular, Claim 9.7 and
Claim 9.10 both hold. Finally, similar to before, Claim 9.7 and Claim 9.10 imply that an attack
on ELF security can be used as a distinguisher for the worst-case extreme lossiness problem.

10 Proofs of Quantumness from the White-Box Simon Problem
We consider search and decision variants of the white-box Simon problem.

Definition 10.1 (White-Box Simon Problem). Let 𝑚, 𝑡 : N → N denote a efficiently computable
unary functions. We define the search promise problem Search-Simon = Search-Simon𝑚(·),𝑡(·) as
follows:

• Input: a circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) of size 𝑡(𝑛).

• Promise: there exists a nonzero string 𝑠 ∈ {0, 1}𝑛 such that 𝐶(𝑥) = 𝐶(𝑦) if and only if
𝑦 ∈ {𝑥, 𝑥⊕ 𝑠}.

• Output: the (unique) string 𝑠 guaranteed to exist by the promise.

We define the decisional promise problem Simon = Simon𝑚(·),𝑡(·) as follows:
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• Input: a circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑚 of size 𝑡.

• Promise: there exists a string 𝑠 ∈ {0, 1}𝑛 such that 𝐶(𝑥) = 𝐶(𝑦) if and only if 𝑦 ∈ {𝑥, 𝑥⊕ 𝑠}.

• Output: 0 if 𝑠 = 0𝑛 and 1 otherwise.

We prove the following worst-case to average-case reductions for Search-Simon and Simon.

Theorem 10.2. Assume the existence of sub-exponentially secure 𝑖𝒪 and sub-exponentially secure
one-way functions. Then, there is a polynomial 𝑝(𝑛) such that if Search-Simon𝑚(·),𝑡(·) (respectively,
Simon𝑚(·),𝑡(·)) is hard for BPP or P/poly in the worst case, there is an efficiently sampleable distri-
bution of inputs on which Search-Simon3𝑛,𝑡(𝑛)·𝑝(𝑛) (respectively, Simon3𝑛,𝑡(𝑛)·𝑝(𝑛)) is hard on average
for BPP or P/poly.

As a corollary, this implies a non-interactive proof of quantumness assuming sub-exponential
𝑖𝒪, sub-exponential OWFs, and the worst-case hardness of Search-Simon:

• The verifier samples a circuit 𝐶 from the specified distribution and sends 𝐶 to the prover.

• The honest quantum prover runs Simon’s algorithm to obtain 𝑠.

• The verifier checks that 𝐶(𝑠) = 𝐶(0𝑛).

Notably, the 𝑖𝒪 and OWF assumptions are agnostic to the adversary’s computational model; the
worst-case hardness of Search-Simon is the only “quantum advantage assumption” made in our
protocol.

Proof of Theorem 10.2. Let 𝑖𝒪 denote a 2−𝑛-secure indistinguishability obfuscator, and let {𝐹sk :
{0, 1}𝑛 → {0, 1}3𝑛} denote a 2−4𝑛-secure puncturable PRF family. We then define the circuit
family

𝐶*𝑠,sk(𝑥) = 𝐹sk(min(𝑥, 𝑠⊕ 𝑥))

where min is the efficient operation choosing the lexicographically first string out of an input pair.
The circuit 𝐶*𝑠,sk will be padded to a sufficiently large 𝑝(𝑛) · 𝑡(𝑛) size to facilitate the below security
proof. Our hard Search-Simon distribution is given by

̃︀𝐶* ← 𝑖𝒪(𝐶*𝑠,sk)

for uniformly random 𝑠← {0, 1}𝑛 ∖ {0𝑛} and sk sampled according to the PRF scheme.
We claim that if an efficient adversary 𝐴( ̃︀𝐶*) outputs 𝑠 with non-negligible probability, then

Search-Simon has a BPP (or P/Poly, if 𝐴 is non-uniform) algorithm. To prove this, let 𝐶 : {0, 1}𝑛 →
{0, 1}𝑚 denote an arbitrary circuit satisfying the Search-Simon promise. Let 𝑀 : {0, 1}𝑛 → {0, 1}𝑛
denote a random full-rank matrix in Z𝑛×𝑛

2 . Let 𝐹 ′sk′ : {0, 1}𝑚 → {0, 1}3𝑛 denote another 2−4𝑛-secure
puncturable PRF family, and define the following distribution on obfuscated circuits:

̃︀𝐶 ← 𝑖𝒪(𝐶sk′,𝑀 )

for
𝐶sk′,𝑀 = 𝐹 ′sk′ ∘ 𝐶 ∘𝑀

We are now ready to state the main claim.
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Claim 10.3. ̃︀𝐶* ≈𝑐
̃︀𝐶.

To prove the claim, we first observe that for every fixed circuit 𝐶, 𝐶∘𝑀 satisfies the Search-Simon
promise with respect to a uniformly random 𝑠← {0, 1}𝑛∖{0𝑛}. We now claim that for every matrix
𝑀 such that 𝐶 ∘𝑀 has period 𝑠,

𝑖𝒪(𝐶*sk,𝑠) ≈𝑐 𝑖𝒪(𝐶sk′,𝑀 )

for uniformly sampled sk, sk′. To prove this, we consider the following intermediate circuits

𝐶sk,sk′,𝑠,𝑀,𝑖(𝑥) =
{︃
𝐹sk(min(𝑥, 𝑥⊕ 𝑠)), if min(𝑥, 𝑥⊕ 𝑠) ≤ 𝑖
𝐹sk′ ∘ 𝐶 ∘𝑀(𝑥), otherwise.

,

as well as the following hybrid distributions over obfuscated circuits:

̃︀𝐶𝑖 ← 𝑖𝒪(𝐶sk,sk′,𝑠,𝑀,𝑖)

for uniformly random sk, sk′. The indistinguishability ̃︀𝐶𝑖 ≈𝑐
̃︀𝐶𝑖+1 follows by a standard puncturing

argument. Thus, if the 𝑖𝒪 and puncturable PRFs are 2−𝑛 · negl(𝑛)-secure, the claim follows.
As a result, if 𝐴( ̃︀𝐶*) outputs 𝑠 such that ̃︀𝐶*(𝑠) = ̃︀𝐶*(0) with non-negligible probability, then

the same must be true for ̃︀𝐶. Now, let 𝑠𝐶 denote the Search-Simon solution for 𝐶. By the security
of 𝐹sk′ , we have that with overwhelming probability, ̃︀𝐶(0) only collides with ̃︀𝐶(𝑠) for 𝑠 = 𝑀−1 · 𝑠𝐶 .
Thus, we have obtained a polynomial-time algorithm for Search-Simon: run 𝐴( ̃︀𝐶)→ 𝑠 and output
𝑀 · 𝑠.

For the decision problem Simon, the argument is almost identical: the worst-case hardness of
Simon implies that ̃︀𝐶* is computationally indistinguishable from the distribution 𝑖𝒪(𝑥 ↦→ 𝐹sk(𝑥)),
which is injective with overwhelming probability.

10.1 Generalized Simon Problem

One benefit of the worst-case to average-case reduction in Theorem 10.2 is that it allows for com-
position with simple worst-case reductions between different forms of Simon’s problem. As a result,
we obtain proofs of quantumness making use of an even weaker worst-case assumption.

Definition 10.4 (Generalized White-Box Simon Problem). Let 𝑚, 𝑡 : N → N denote a effi-
ciently computable unary functions. We define the search promise problem Search-GenSimon =
Search-GenSimon𝑚(·),𝑡(·) as follows:

• Input: a circuit 𝐶 : {0, 1}𝑛 → {0, 1}𝑚(𝑛) of size 𝑡(𝑛).

• Promise: there exists a subgroup ℒ ⊂ Z𝑛
2 such that 𝐶(𝑥) = 𝐶(𝑦) if and only if 𝑦 − 𝑥 ∈ ℒ.

• Output: any nonzero string 𝑠 ∈ ℒ (equivalently, a nonzero 𝑠 such that 𝐶(𝑠) = 𝐶(0)).

We observe that in the worst case, the generalized Simon problem is no harder than Search-Simon.

Claim 10.5. There is a polynomial-time randomized reduction from Search-GenSimon to Search-Simon.

Proof. Let 𝐴 be an algorithm for Search-Simon, and let 𝐶 be an arbitrary circuit satisfying the
promise of Search-GenSimon. To find a period of 𝐶, one can do the following:
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• sample a uniformly random index 𝑖 ≤ 𝑛,

• sample a uniformly random full-rank matrix 𝑀 ← Z𝑛×(𝑛−𝑖+1)
2 ,

• run 𝐴(𝐶 ∘𝑀)→ 𝑠 on the circuit 𝐶 ∘𝑀 ,

• output 𝑀 · 𝑠 if 𝑠 ̸= 0 and 𝐶(𝑀 · 𝑠) = 𝐶(0), otherwise repeat.

This algorithm works (and only has polynomial overhead over 𝐴) because the index 𝑖 will be equal
to the dimension of ℒ = ℒ𝐶 with probability 1/𝑛, and conditioned on this event, the circuit 𝐶 ∘𝑀
will satisfy the promise of Search-Simon with constant probability by the following analysis:

• 𝐶 ∘𝑀 always satisfies the Search-GenSimon promise with respect to subgroup 𝑀−1(ℒ𝐶)

• 𝑀−1(ℒ𝐶) = 𝑀−1(ℒ𝐶 ∩ im(𝑀)), and this subspace always has dimension equal to dim(ℒ𝐶 ∩
im(𝑀)) since 𝑀 is full rank.

• The probability that a random dimension 𝑛 − 𝑖 + 1 subspace of Z𝑛
2 intersects a fixed 𝑖-

dimensional subspace on exactly a line is Ω(1).

Since the success condition is efficiently checkable, this procedure can indeed be repeated, complet-
ing the analysis.

Using this worst-case hardness reduction, Theorem 10.2 implies the following.

Theorem 10.6. Assume the existence of sub-exponentially secure 𝑖𝒪 and sub-exponentially secure
one-way functions. Then, there is a polynomial 𝑝(𝑛) such that if Search-GenSimon𝑚(·),𝑡(·) is hard
for BPP or P/poly in the worst case, there is an efficiently sampleable distribution of inputs on
which Search-Simon3𝑛,𝑡(𝑛)·𝑝(𝑛) is hard on average for BPP or P/poly.
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