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Abstract

A generalized polymorphism of a predicate P ⊆ {0, 1}m is a tuple of functions f1, . . . , fm : {0, 1}n →
{0, 1} satisfying the following property: If x(1), . . . , x(m) ∈ {0, 1}n are such that (x

(1)
i , . . . , x

(m)
i ) ∈ P for

all i, then also (f1(x
(1)), . . . , fm(x(m))) ∈ P .

We show that if f1, . . . , fm satisfy this property for most x(1), . . . , x(m) (as measured with respect to
an arbitrary full support distribution µ on P ), then f1, . . . , fm are close to a generalized polymorphism
of P (with respect to the marginals of µ).

Our main result generalizes several results in the literature:

• Linearity testing (Blum, Luby, and Rubinfeld): P = {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}.
• Quantitative Arrow theorems (Kalai; Keller; Mossel): P = {x ∈ {0, 1}3 : x ̸= (0, 0, 0), (1, 1, 1)}.
• Approximate intersecting families (Friedgut and Regev): P = {(0, 0), (0, 1), (1, 0)}.
• AND testing (Filmus, Lifshitz, Minzer, and Mossel): P = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)}.
• f -testing (Chase, Filmus, Minzer, Mossel, and Saurabh): P = {(x, f(x)) : x ∈ {0, 1}m}.

In particular, we extend linearity testing to arbitrary distributions.
We use our techniques to significantly improve the parameter dependence in the work of Friedgut and

Regev on approximately intersecting families, from tower type to exponential.
We also extend our results to predicates on arbitrary finite alphabets in which all coordinates are

“flexible” (for each coordinate j there exists w ∈ P such that wj←σ ∈ P for all σ).
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1 Introduction

The classical BLR linearity test [BLR90] states that if f : {0, 1}n → {0, 1} satisfies Prx,y∼µ1/2
[f(x)⊕ f(y) =

f(x⊕ y)] ≥ 1− ϵ then there exists a linear function g : {0, 1}n → {0, 1} satisfying Prx∼µ1/2
[g(x) ̸= f(x)] ≤ ϵ;

here µ1/2 is the uniform distribution over {0, 1}n. Linearity testing is a special case of a more general
problem, approximate polymorphisms, introduced in [CFM+22], which unifies several other related results in
the literature, including Kalai’s quantitative Arrow theorem [Kal02] and AND testing [FLMM20].

Definition 1.1 (Polymorphism). A function f : {0, 1}n → {0, 1} is a polymorphism of a predicate P ⊆
{0, 1}m if the following holds: Given any vectors x(1), . . . , x(m) ∈ {0, 1}n such that (x

(1)
i , . . . , x

(m)
i ) ∈ P for

all i ∈ [n], also (f(x(1)), . . . , f(x(m))) ∈ P .
Given a probability distribution µ on P , the function f is a (µ, ϵ)-approximate polymorphism of P if

Pr
(x

(1)
1 ,...,x

(m)
1 )∼P
···

(x(1)
n ,...,x(m)

n )∼P

[(f(x(1)), . . . , f(x(m))) ∈ P ] ≥ 1− ϵ.

Using this terminology, we can reformulate the BLR linearity test as follows:

Theorem 1.2 (Linearity testing). Let P⊕ = {(a, b, a ⊕ b) : a, b ∈ {0, 1}}, and let µ⊕ be the uniform
distribution over P⊕.

If f : {0, 1}n → {0, 1} is a (µ⊕, ϵ)-approximate polymorphism of P⊕ then there exists a polymorphism
g : {0, 1}n → {0, 1} of P⊕ such that Prx∼µ1/2

[g(x) ̸= f(x)] ≤ ϵ.

In this paper, we extend Theorem 1.2 to arbitrary predicates P ⊆ {0, 1}m (for all m) and to arbitrary
distributions µ on P with full support.

One might hope for a result of the following form: Any approximate polymorphism of P is close to a
polymorphism of P . While this holds for some predicates P , it fails for others, as the following counterexample
from [CFM+22] demonstrates.

Example 1.3. Let PNAND = {(a, b, a ∧ b) : a, b ∈ {0, 1}} and let µNAND be the uniform distribution over
PNAND. One can show that the only polymorphisms of PNAND are dictators: f(x) = xi.

For large n, let f : {0, 1}n → {0, 1} be the following function:

f(x) =

{
x1 ∧ x2 if x1 + · · ·+ xn ≤ 0.6n,

x1 ∨ x2 otherwise.

If x, y ∼ µ1/2({0, 1}n) then x1+· · ·+xn ≈ n/2 and y1+· · ·+yn ≈ n/2, while x1 ∧ y1+· · ·+xn ∧ yn ≈ (3/4)n.
Since

(x1 ∧ x2) ∧ (y1 ∧ y2) = x1 ∧ y1 ∨ x2 ∧ y2,

the function f is a (µNAND, o(1))-approximate polymorphism of PNAND. However, f is not close to any exact
polymorphism of PNAND.

While we cannot guarantee that an approximate polymorphism of P is close to a polymorphism of P ,
we are able to guarantee that it is close to a generalized polymorphism of P .

Definition 1.4 (Generalized polymorphism). A tuple of functions f1, . . . , fm : {0, 1}n → {0, 1} is a gener-
alized polymorphism of a predicate P ⊆ {0, 1}m if the following holds: Given any vectors x(1), . . . , x(m) ∈
{0, 1}n such that (x

(1)
i , . . . , x

(m)
i ) ∈ P for all i ∈ [n], also (f1(x

(1)), . . . , fm(x(m))) ∈ P .
Given a probability distribution µ on P , the tuple f1, . . . , fm is a (µ, ϵ)-approximate generalized polymor-

phism of P if
Pr

(x
(1)
i ,...,x

(m)
i )∼µ

[(f1(x
(1)), . . . , fm(x(m))) ∈ P ] ≥ 1− ϵ,

where each tuple (x
(1)
i , . . . , x

(m)
i ) is sampled independently according to µ.
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Using this concept, we can state our main theorem:

Theorem 1.5 (Main). Let P ⊆ {0, 1}m be a non-empty predicate, and let µ be a distribution on P with full
support. For every ϵ > 0 there exists δ > 0 such that the following holds for all n.

If f1, . . . , fm : {0, 1}n → {0, 1} is a (µ, δ)-approximate generalized polymorphism of P then there exists a
generalized polymorphism g1, . . . , gm : {0, 1}n → {0, 1} of P such that

Pr
µ|j

[gj ̸= fj ] ≤ ϵ for all j ∈ [m],

where µ|j is the marginal distribution of the j’th coordinate.

In the remainder of the introduction, we first state several other results that we prove in the paper
(Section 1.1), and then review some of the relevant literature (Section 1.2).

1.1 Other results

Theorem 1.5 has an unspecified dependence between δ and ϵ; the dependence arising from our current proof
is of tower type. In two special cases we can improve this dependence.

Theorem 1.6 (Linearity testing for general distributions). Let Pm,b = {(a1, . . . , am) ∈ {0, 1}m : a1 ⊕ · · · ⊕
am = b}, where m ≥ 3 and b ∈ {0, 1}, and let µ be a distribution on Pm,b with full support. The following
holds for δ = Θ(ϵ).

If f1, . . . , fm : {0, 1}n → {0, 1} is a (µ, δ)-approximate generalized polymorphism of Pm,b then there exists
a generalized polymorphism g1, . . . , gm : {0, 1}n → {0, 1} of Pm,b such that Prµ|j [gj ̸= fj ] ≤ ϵ for all j ∈ [m].

Moreover, there exist a set S ⊆ [m] and b1, . . . , bm ∈ {0, 1} such that gj(x) =
⊕

i∈S xi ⊕ bj.
Furthermore, if fi = fj and µ|i = µ|j then gi = gj.

Theorem 1.7 (Monotone case). Let P ⊆ {0, 1}m be a non-empty monotone predicate: if x ∈ P and y ≤ x
(pointwise) then y ∈ P . Let µ be a distribution on P with full support. There exists a constant C = C(P, µ)
such that the following holds for δ = 1/ expΘ(1/ϵC).

If f1, . . . , fm : {0, 1}n → {0, 1} is a (µ, δ)-approximate generalized polymorphism of P then there exists
a generalized polymorphism g1, . . . , gm : {0, 1}n → {0, 1} of P such that Prµ|j [gj ̸= fj ] ≤ ϵ for all j ∈ [m].
Moreover, gj ≤ fj pointwise for all j ∈ [m].

Furthermore, if fi = fj and µ|i = µ|j then gi = gj.

In both cases we get the additional guarantee that if fi = fj and the corresponding marginals of µ coincide,
then gi = gj . This implies that if all marginals of µ are identical then an approximate polymorphism is close
to an exact polymorphism.

Intersecting families Friedgut and Regev [FR18] proved the following result on almost intersecting fam-
ilies (see also [DT16]).

Theorem 1.8 (Friedgut–Regev). Fix 0 < p < 1/2. For every ϵ > 0 there exist δ > 0 and j ∈ N such that
the following holds for all n such that pn is an integer.

If F ⊆
(
[n]
pn

)
contains a δ-fraction of the edges of the Kneser graph then there exists an intersecting family

G ⊆
(
[n]
pn

)
depending on j points such that |F \ G| ≤ ϵ

(
n
pn

)
.

The dependence of δ, j on ϵ is of tower type. We improve the dependence to exponential, at the cost of
considering shallow decision trees rather than juntas. (We can convert the decision tree to a junta, losing
another exponential in the size of the junta.)

Theorem 1.9 (Improved Friedgut–Regev). Fix 0 < p < 1/2. For every ϵ > 0 the following holds for all n
such that pn is an integer.

If F ⊆
(
[n]
pn

)
contains a 1/ expΘ(1/ϵC)-fraction of the edges of the Kneser graph then there exists an

intersecting family G ⊆
(
[n]
pn

)
computed by a decision tree of depth O(1/ϵC) (for some global constant C) such

that |F \ G| ≤ ϵ
(
n
pn

)
.

4



Polymorphisms over larger alphabets So far, we have considered predicates over the binary alphabet.
However, the notion of polymorphisms makes sense for every finite alphabet. We conjecture that Theorem 1.5
extends to this setting. While we are unable to prove this conjecture in full generality, we are able to prove
the following special case.

Theorem 1.10 (Larger alphabets). Let Σ be a finite set, let P ⊆ Σm, and let µ be a distribution on P with
full support. Suppose that for each j ∈ [m] there exists w ∈ P such that w remains in P even if we modify
its j’th coordinate arbitrarily. For every ϵ > 0 there exists δ > 0 such that the following holds for all n.

If f1, . . . , fm : Σn → Σ is a (µ, δ)-approximate generalized polymorphism of P then there exists a gener-
alized polymorphism g1, . . . , gm : Σn → Σ of P such that Prµ|j [gj ̸= fj ] ≤ ϵ for all j ∈ [m].

Input/output predicates The proofs of Theorems 1.7 and 1.10 immediately generalize to a setting which
involves two predicates P,Q. Given two predicates P ⊆ Σm and Q ⊆ ∆m, a tuple f1, . . . , fm : Σn → ∆ is
a (P,Q)-generalized polymorphism if the following holds: Given any vectors x(1), . . . , x(m) ∈ Σn such that

(x
(1)
i , . . . , x

(m)
i ) ∈ P for all i ∈ [n], we have (f1(x

(1)), . . . , fm(x(m))) ∈ Q. This setting arises natural in
the study of promise CSPs [AGH17, BG21, BBKO21], where such polymorphisms are often called weak
polymorphisms.

In the case of Theorem 1.7, we require P to be monotone but Q can be arbitrary, and similarly, in the case
of Theorem 1.10, the stated condition need only hold for P . While we do not work out these generalizations
explicitly, they follow immediately from the proofs. In contrast, the proof of Theorem 1.5 does rely on the
assumption P = Q.

1.2 Related work

Arrow’s theorem Arrow’s celebrated theorem [Arr50] can be expressed in the language of polymorphisms.

Let m ≥ 3. For every permutation π ∈ Sm, let I(π) ∈ {0, 1}(
m
2 ) be the following vector: I(π)(i, j) = [π(i) >

π(j)]. Arrow’s theorem states that if fi,j is a generalized polymorphism of Pm := {I(π) : π ∈ Sm} and each
fi,j is unanimous (satisfies fi,j(b, . . . , b) = b for b ∈ {0, 1}) then there exists k ∈ [n] such that fi,j(x) = xk
for all i, j.

Kalai [Kal02] considered the case m = 3. He showed that if f1,2, f2,3, f3,1 is a (µ, ϵ)-approximate
polymorphism of P3, where µ is the uniform distribution, and furthermore the fi,j are balanced (satisfy
Prµ1/2

[fi,j = 1] = 1/2), then there exists k ∈ [n] such that either fi,j(x) = xk for all i, j, or fi,j = 1 − xk
for all i, j. In this case the predicate P3 consists of all triples (a, b, c) such that a, b, c are not all equal.
Keller [Kel10] extended Kalai’s result to arbitrary m ≥ 3 and to arbitrary distributions, under various
(severe) restrictions on the fi,j .

Mossel [Mos12a] determined all generalized polymorphisms of Pm for all m ≥ 3 (without assuming
unanimity), and proved that approximate generalized polymorphisms of these predicates (with respect to
the uniform distribution) are close to exact generalized polymorphisms. His techniques in fact work for
arbitrary distributions (the missing piece, reverse hypercontractivity for arbitrary distributions, was proved
in [MOS13]). Keller [Kel10] improved on Mossel’s result in the case of the uniform distribution by determining
the optimal dependence between ϵ and δ.

Linearity testing Blum, Luby and Rubinfeld [BLR90] were the first to propose the BLR test. They
analyzed it using self-correction. Bellare et al. [BCH+96] later gave a different argument using Fourier
analysis. The test was generalized to arbitrary prime fields by Kiwi [Kiw03].

David et al. [DDG+17] extended the BLR test to the setting of constant weight inputs, which is analogous
to the setting of Theorem 1.9. Translated to the setting of Theorem 1.6, they extended the BLR test to a
natural distribution µ with Pr[µ|i = 1] = p for all i. Dinur et al. [DFH25] analyzed the related “affine test”
f(x ⊕ y ⊕ z) = f(x) ⊕ f(x ⊕ y) ⊕ f(x ⊕ z) for the same distribution. Both of these works used agreement
theorems to reduce the biased case to the unbiased case: David et al. used the agreement theorem of Dinur
and Steurer [DS14], and Dinur et al. proved their own agreement theorem, which we also use to prove
Theorem 1.6.
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Functional predicates Filmus et al. [FLMM20], prompted by work of Nehama [Neh13] on judgment
aggregation, proved Theorem 1.5 for the predicate P∧ = {(a, b, a ∧ b) : a, b ∈ {0, 1}} and various distribu-
tions. Their analysis combined Bourgain’s tail bound [Bou02, KKO18] with a study of the “one-sided noise
operator”.

Chase et al. [CFM+22] proved Theorem 1.5 for all predicates of the form Pf = {(a1, . . . , am, f(a1, . . . , am)) :
a1, . . . , am ∈ {0, 1}} for an arbitrary function f : {0, 1}m → {0, 1}, with respect to the uniform distribution.
They asked whether Theorem 1.5 extends to arbitrary predicates, a question we answer in the affirmative
in this paper. Their general approach was similar to the approach taken in this paper, combining Jones’
regularity lemma with the It Ain’t Over Till It’s Over theorem.

Paper organization

We give an outline of our proof techniques in Section 2. We prove Theorem 1.7 in Section 3, Theorem 1.5
in Section 4, Theorem 1.6 in Section 5, Theorem 1.9 in Section 6, and Theorem 1.10 in Section 7. Our
proofs require several versions of Jones’ regularity lemma [Jon16], proved in Section 8. We close the paper
in Section 9 with a few open questions.

Acknowledgments This research was supported by ISF grant no. 507/24.

2 Proof outline

In this section we give a brief overview of the proof of Theorem 1.5. We start with the proof in the monotone
case (corresponding to Theorem 1.7), which is more intuitive, and then describe the general case.

2.1 Monotone case

Triangle removal lemma The proof of Theorem 1.7 has the same general outline as the proof of the
triangle removal lemma [RS78] using Szémeredi’s regularity lemma [Sze78].

Theorem 2.1 (Triangle removal lemma). For every ϵ > 0 there exists δ > 0 such that the following holds
for all n.

If G is a graph on n vertices with at most δ
(
n
3

)
triangles, then we can make G triangle-free by removing

at most ϵ
(
n
2

)
edges.

The proof requires Szémeredi’s regularity lemma, which we state in a qualitative fashion.

Theorem 2.2 (Regularity lemma for graphs). For every ϵ > 0 there is M > 1/ϵ such that the following
holds for all graphs G.

The vertex set of G can be partitioned into M parts V1, . . . , VM of almost equal size such that all but an
ϵ-fraction of pairs (i, j) are ϵ-regular: there exists pi,j ∈ [0, 1] such that the edges of G connecting Vi to Vj
“behave like” a random bipartite graph with edge density pi,j, up to an error ϵ.

Given the regularity lemma, the proof of the triangle removal lemma is quite simple. Given a graph G,
we apply the regularity lemma with an appropriate parameter η > 0, obtaining a partition V1, . . . , VM in
which all but an η-fraction of pairs is η-regular. We remove all edges between Vi and Vj if either (i) i = j, or
(ii) the pair (i, j) is not η-regular, or (iii) pi,j ≤ η. In total, we have removed at most an (1/M +2η)-fraction
of edges. Choosing η so that η = ϵ/3, this fits within our budget.

For an appropriate choice of δ > 0, the resulting graph is triangle-free. Indeed, any remaining triangle
must involve three different parts Vi, Vj , Vk. Since the triangle survived the pruning process, we must have
pi,j , pi,k, pj,k ≥ η. The triangle counting lemma shows that the subgraph of G induced by Vi, Vj , Vk contains
Ω(η3) of the possible triangles between these vertices, and so G contains Ω((η/M)3)

(
n
3

)
triangles. Choosing

δ appropriately, this contradicts the assumption on G.
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Approximate polymorphisms of monotone predicates The proof of Theorem 1.7 follows the same
plan. Szémeredi’s regularity lemma is replaced by Jones’ regularity lemma [Jon16].

Theorem 2.3 (Jones’ regularity lemma). For every ϵ, τ > 0, d ∈ N, and p ∈ (0, 1) there exists M ∈ N such
that the following holds for all n and all functions f : {0, 1}n → {0, 1}.

There exists a set J ⊆ [n] of size at most M such that

Pr
x∼µp

[f |J←x is not (d, τ)-regular with respect to µp] ≤ ϵ,

where µp is the product distribution on {0, 1}J with Pr[xj = 1] = p, and a function g : {0, 1}Jc → {0, 1} is
(d, τ)-regular if Infi[g

≤d] ≤ τ for all i ∈ Jc, where the influence is computed with respect to µp.

Jones’ lemma is proved by a simple potential function argument. In applications we need a variant of
this lemma for several functions, and also allowing an initial set as a starting point. We also need two
extensions of the lemma, one to functions f : {0, 1}n → [0, 1], for proving Theorem 1.9, and another to
functions f : Σn → Σ, for proving Theorem 1.10. Moreover, in order to obtain better parameters, in the full
proof of Theorem 1.7 we use a version of Jones’ lemma which approximates f by a decision tree rather than
by a junta. We prove all of these different versions of Jones’ regularity lemma in Section 8.

The notion of regularity promised by Jones’ regularity lemma is geared toward a result known as It Ain’t
Over Till It’s Over [MOO10], which is key to our counting lemma.

Theorem 2.4 (It Ain’t Over Till It’s Over). For every p, q ∈ (0, 1) and ϵ > 0 there exist parameters
d ∈ N and τ, δ > 0 such that the following holds for all n and all functions f : {0, 1}n → {0, 1} which are
(d, τ)-regular with respect to µp.

Let ρ be a random restriction obtained as follows: for each coordinate independently, leave it free with
probability q, and otherwise sample it according to µp. If Eµp [f ] ≥ ϵ then

Pr
ρ
[E
µp
[f |ρ] ≥ δ] ≥ 1− ϵ.

Applying the theorem to both f and 1−f , it implies that if f is regular and its expectation is in [ϵ, 1− ϵ],
then even if we sample all but a q-fraction of inputs, its expectation still lies in [δ, 1− δ] (where δ could be
much smaller than ϵ), with probability 1− ϵ. This explains its moniker.

We outline the proof of Theorem 1.7 in the special case of the predicate PNAND = {(0, 0), (1, 0), (0, 1)};
the general case involves no further complications. Let us recall what we would like to prove.

Theorem 2.5 (NAND testing). Let µ be a distribution on PNAND with full support. For every ϵ > 0 there
exists δ > 0 such that the following holds for all n.

If f1, f2 : {0, 1}n → {0, 1} is a (µ, δ)-approximate generalized polymorphism of PNAND then there exists a
generalized polymorphism g1, g2 : {0, 1}n → {0, 1} of PNAND such that

Pr
µ|j

[gj ̸= fj ] ≤ ϵ for j ∈ {1, 2}.

Furthermore, if f1 = f2 and µ|1 = µ|2 then g1 = g2.

Suppose we are given f1, f2. Apply Jones’ regularity lemma with p := µ|1, ϵ := ϵ/4, and appropriate d, τ
to f1 and with p := µ|2 to f2, obtaining a set J of size at most M , for a parameter M depending on µ, ϵ, d, τ .
Then

Pr
(x(1),x(2))∼µJ

[f1|J←x(1) and f2|J←x(2) are (d, τ)-regular] ≥ 1− ϵ/2.

We define g1, g2 by zeroing outputs of f1, f2 as follows. We set gj |J←x(j) ≡ 0 if either (i) fj |J←x(j) is not
regular, or (ii) E[fj |J←x(j) ] ≤ ϵ/2. By construction, Pr[gj ̸= fj ] ≤ ϵ. Also, if f1 = f2 and µ|1 = µ|2 then
g1 = g2.
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For an appropriate choice of δ, the resulting pair (g1, g2) is a generalized polymorphism of PNAND. Indeed,
if this is not the case, then there exist some x(1), x(2) ∈ {0, 1}J such that g1|J←x(1) , g2|J←x(2) are both non-
zero. If this happens then g1|J←x(1) , g2|J←x(2) are both (d, τ)-regular and their expectations are at least ϵ/2.
We will prove a counting lemma which states that for an appropriate choice of d, τ ,

Pr
(y(1),y(2))∼µJc

[g1|J←x(1)(y(1)) = g2|J←x(2)(y(2)) = 1] ≥ γ,

where γ depends on µ and ϵ. Since g1, g2 agree with f1, f2 on these inputs, this implies that

Pr
(z(1),z(2))∼µn

[f1(z
(1)) = f2(z

(2)) = 1] ≥ min(µ)Mγ, where min(µ) = min
w∈PNAND

µ(w).

Choosing δ to be smaller than the right-hand side, we obtain a contradiction to the assumption that (f1, f2)
is a (µ, δ)-approximate generalized polymorphism.

It remains to prove the counting lemma.

Lemma 2.6 (Counting lemma for NAND). Let µ be a distribution on PNAND with full support. For every
ϵ > 0 there exist d ∈ N and τ, γ > 0 such that the following holds for all n.

If ϕ1, ϕ2 : {0, 1}n → {0, 1} are (d, τ)-regular (with respect to µ|j) and have expectation at least ϵ/2 (with
respect to µ|j) then

Pr
(y(1),y(2))∼µn

[ϕ1(y
(1)) = ϕ2(y

(2)) = 1] ≥ γ.

In order to prove this lemma, we will sample µ in two steps. In the first step, we sample a restriction ρ:

ρ =



(0, 0) w.p. (1− q)µ(0, 0)− q,

(1, 0) w.p. (1− q)µ(1, 0),

(0, 1) w.p. (1− q)µ(0, 1),

(∗, 0) w.p. q,

(0, ∗) w.p. q.

We choose the parameter q > 0 to be such that all probabilities are positive.
In the second step, if we sampled (∗, 0), then we sample the first coordinate using µ|1. Similarly, if we

sampled (0, ∗), then we sample the second coordinate using µ|2. The end result has the same distribution as
µ by design. Also, the distribution of ρ|1 given that ρ|1 ̸= ∗ is the same as µ|1, and similarly for ρ|2.

We apply It Ain’t Over Till It’s Over to the function ϕ1 with ϵ := ϵ/2 and q := q to obtain d1, τ1, δ1,
and to the function ϕ2 to obtain d2, τ2, δ2. Choosing d = max(d1, d2) and τ = (τ1, τ2), It Ain’t Over Till It’s
Over implies that

Pr
(u(1),u(2))∼ρn

[ E
µ|1

[ϕ1|ρ|1 ] ≥ δ1 and E
µ|2

[ϕ2|ρ|2 ] ≥ δ2] ≥ 1− ϵ.

After apply the restriction ρ, the events ϕ1|ρ|1 = 1 and ϕ2|ρ|2 = 1 are independent. It follows that

Pr
(y(1),y(2))∼µn

[ϕ1(y
(1)) = ϕ2(y

(2)) = 1] ≥ (1− ϵ)δ1δ2.

Setting γ := (1− ϵ)δ1δ2 completes the proof.

2.2 General case

In the monotone case, we obtained gj from fj by zeroing out certain “subfunctions” fj |J←x(j) . In the general
case, we also need to fix some subfunctions to one. This suggests the following counting lemma, for a given
predicate P ⊆ {0, 1}m.
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Lemma 2.7 (Counting lemma for P ). Let µ be a distribution on P with full support. For every ϵ > 0 there
exist d ∈ N and τ, γ > 0 such that the following holds for all n.

Let ϕ1, . . . , ϕm : {0, 1}n → {0, 1} be functions such that ϕj is (d, τ)-regular with respect to µ|j for all
j ∈ [m]. Define a function χϵ : [m] → {0, 1, ∗} as follows:

χϵ(j) =


0 if Eµ|j [ϕj ] ≤ ϵ,

1 if Eµ|j [ϕj ] ≥ 1− ϵ,

∗ otherwise.

Let α : [m] → {0, 1} be any assignment consistent with χϵ. Then

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = α] ≥ γ.

Given such a counting lemma, we could hope to complete the proof as in the monotone setting, this time
obtaining gj from fj by setting subfunctions to constants according to χϵ. There are two main issues with
this plan:

1. The counting lemma does not hold for all predicates P .

A simple example is the predicate P= = {(0, 0), (1, 1)} with respect to the uniform distribution. If ϕ1 =
ϕ2 then the lemma holds only for α ∈ {(0, 0), (1, 1)}. The same problem occurs for P̸= = {(0, 1), (1, 0)}.
A more complicated example is the predicate P⊕ = {(a, b, a ⊕ b) : a, b ∈ {0, 1}} with respect to the
uniform distribution. If ϕ1(x) = ϕ2(x) = ϕ3(x) = x1 ⊕ · · · ⊕ xn (which is (d, τ)-regular for any d < n)
then the lemma holds only for α ∈ P⊕.

These examples are not surprising: the argument in the monotone case shows that every approximate
generalized polymorphism is close to a generalized polymorphism in which moreover each function is
a junta, implying in particular that every polymorphism is close to a junta. However, this is not the
case for the predicates P=, P̸=, P⊕.

2. It is not clear how to handle subfunctions which are not regular.

In the monotone case, it was safe to zero them out, but for general predicates, there is no safe direction.

It turns out that the counting lemma does hold (under the additional assumption that (ϕ1, . . . , ϕm) is
a (µ, γ)-approximate generalized polymorphism) as long as P satisfies no affine relations: there is no non-
empty set S such that P |S = {x ∈ {0, 1}S :

⊕
j∈S xj = b}. If P satisfies the premise of Theorem 1.10 (for

each j ∈ [m] there is x(j) ∈ P which remains in P after flipping the j’th coordinate) then this can be proved
along the lines of the counting lemma for NAND. The general case requires an argument similar to the one
used in [CFM+22], and also uses some ideas from [Mos12b].

In order to handle predicates with affine relations, we first prove Theorem 1.6, a generalization of linearity
testing for arbitrary distributions. The proof uses the techniques of [DFH25]. Theorem 1.6 shows that if j
is a coordinate involved in an affine relation, then fj is close to a (possibly negated) XOR, and we fix gj to
be this XOR. We then remove coordinates from P until all affine relations disappear, enabling us to use the
counting lemma.

We handle irregular subfunctions using an approach similar to the proof of the counting lemma for NAND.
We find a way to sample µ in two steps, first sampling a restriction ρ on the coordinates Jc which leaves at
most one coordinate free, and then sampling the free coordinate (if any) according to the correct marginal.
We show that

(a) With constant probability over the choice of ρ, if we define gj |J←x(j) by “rounding” fj |J←x(j),Jc←ρ
according to χη (for an appropriate η) then (g1, . . . , gm) is a generalized polymorphism of P .

(b) For every (x(1), . . . , x(m)) ∈ P J such that all fj |J←x(j) are regular, the coloring χη (defined according
to fj |J←x(j),Jc←ρ) is compatible with the coloring χϵ (defined according to fj |J←x(j)) with probability
1− ϵ.
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The second property guarantees that on average Prµ|j [gj ̸= fj ] = O(ϵ), allowing us to find a restriction ρ
for which both (g1, . . . , gm) is a generalized polymorphism of P and Prµ|j [gj ̸= fj ] = O(ϵ), completing the
proof.

Flexible coordinates During the proof of Theorem 1.5, we distinguish between two types of coordinates.
A coordinate j ∈ [m] is flexible if there exists a partial input, leaving only the j’th coordinate unset, both
of whose completions belong to the predicate. If no such input exists, then the coordinate is inflexible.

If the predicate is monotone and no coordinate is constant, then all of its coordinates are flexible. For
functional predicates, which are predicates of the form {(x, f(x)) : x ∈ {0, 1}m} for some f : {0, 1}m → {0, 1},
the first m coordinates are flexible, and the final one is not. For the predicates {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
and Pm,b (all m-ary vectors with parity b), all coordinates are inflexible.

The counting lemma implies that if (ϕ1, . . . , ϕm) is a regular generalized polymorphism of a predicate
without affine relations then ϕj is almost constant for every inflexible coordinate j. This is in fact the only
part of the counting lemma which is employed in the rest of the proof.

The counting lemma is proved by induction on m and on the number of coordinates j such that ϕj is far
from constant. It uses the following dichotomy for almost full predicates, which are predicates P such that
P |[m]\{j} = {0, 1}[m]\{j} for all j:

Either one of the coordinates that P depends on is flexible, or P satisfies an affine relation.

The lack of an analogous property for larger alphabets precludes us from extending Theorem 1.5 to that
setting in full generality. Instead, Theorem 1.10 assumes that all coordinates are flexible, and its proof is a
simplification of the proof of Theorem 1.5.

3 Monotone case

In this section we prove Theorem 1.7.

Theorem 1.7 (Monotone case). Let P ⊆ {0, 1}m be a non-empty monotone predicate: if x ∈ P and y ≤ x
(pointwise) then y ∈ P . Let µ be a distribution on P with full support. There exists a constant C = C(P, µ)
such that the following holds for δ = 1/ expΘ(1/ϵC).

If f1, . . . , fm : {0, 1}n → {0, 1} is a (µ, δ)-approximate generalized polymorphism of P then there exists
a generalized polymorphism g1, . . . , gm : {0, 1}n → {0, 1} of P such that Prµ|j [gj ̸= fj ] ≤ ϵ for all j ∈ [m].
Moreover, gj ≤ fj pointwise for all j ∈ [m].

Furthermore, if fi = fj and µ|i = µ|j then gi = gj.

The proof closely follows the outline in Section 2.1: we first prove an appropriate counting lemma using
It Ain’t Over Till It’s Over, and then deduce the result using Jones’ regularity lemma. Both of these results
use the concept of (d, τ)-regularity.

Definition 3.1 (Regularity). Let d ∈ N, τ > 0, and p ∈ (0, 1), and recall that µp is the product distribution
with Prx∼µp [xi = 1] = p.

A function f : {0, 1}n → {0, 1} is (d, τ)-regular with respect to µp if Infi[f
≤d] ≤ τ for all i ∈ [n], where

Infi[f
≤d] =

∑
|S|≤d
i∈S

f̂(S)2,

and f̂(S) is the Fourier expansion of f with respect to µp, that is

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi − p√
p(1− p)

.

We already stated It Ain’t Over Till It’s Over in Section 2.1. Here we restate it with explicit parameters,
which can be read from the proof in [MOO10].
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Theorem 3.2 (It Ain’t Over Till It’s Over). For every p, q ∈ (0, 1) and ϵ > 0 the following holds for some
constant C = C(p, q) and d = Θ(log(1/ϵ)), τ = Θ(ϵC), and δ = Θ(ϵC).

Let ρ be a random restriction obtained by sampling each coordinate i ∈ [n] independently according to the
following law:

ρi =


0 w.p. (1− p)(1− q),

1 w.p. p(1− q),

∗ w.p. q.

If f : {0, 1}n → {0, 1} is (d, τ)-regular with respect to µp and Eµp [f ] ≥ ϵ then

Pr
ρ
[E
µp
[f |ρ] ≥ δ] ≥ 1− ϵ.

In order to obtain the best possible parameters, we use Jones’ regularity lemma in the following form,
essentially proved in [CFM+22]. For definiteness, we reprove it in Section 8.

Theorem 3.3 (Jones’ regularity lemma). For every ϵ, τ > 0, m, d ∈ N and p1, . . . , pm ∈ (0, 1), the following
holds for M = O(md/ϵτ).

For all functions f1, . . . , fm : {0, 1}n → {0, 1} there exists a decision tree T of depth at most M such that
for all j,

Pr
ρ∼T

[fj |ρ is (d, τ)-regular with respect to µpj ] ≥ 1− ϵ,

where ρ is sampled by following T , sampling each variable encountered according to µpj .

3.1 Counting lemma

We start by stating and proving the counting lemma that we use.

Lemma 3.4 (Counting lemma for monotone predicates). Let P ⊆ {0, 1}m be a non-empty monotone pred-
icate in which no coordinate is constant (i.e., for every j ∈ [m] there is x ∈ P with xj = 1). Let µ be
a distribution on P with full support. For every ϵ > 0 there exists a constant C = C(P, µ) such that the
following holds for d = Θ(log(1/ϵ)), τ = Θ(ϵC), and γ = Θ(ϵCm).

Let ϕ1, . . . , ϕm : {0, 1}n → {0, 1} be functions such that ϕj is (d, τ)-regular with respect to µ|j. Define
α : [m] → {0, 1} as follows:

α(j) =

{
0 if Eµ|j [ϕj ] ≤ ϵ,

1 otherwise.

If α /∈ P then
Pr

(y(1),...,y(m))∼µn
[(ϕ1(y

(1)), . . . , ϕm(y(m))) /∈ P ] ≥ γ.

We first prove the lemma in the special case where P is a NAND predicate, and then deduce the general
case.

Lemma 3.5 (Counting lemma for NAND). Let m ≥ 2 and let PNAND = {x ∈ {0, 1}m : x ̸= (1, . . . , 1)}. Let
µ be a distribution on PNAND with full support. For every ϵ > 0 there exists a constant C = C(P, µ) such
that the following holds for d = Θ(log(1/ϵ)), τ = Θ(ϵC), and γ = Θ(ϵCm).

Let ϕ1, . . . , ϕm : {0, 1}n → {0, 1} be functions such that ϕj is (d, τ)-regular with respect to µ|j and
Eµ|j [ϕj ] ≥ ϵ. Then

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = (1, . . . , 1)] ≥ γ.

Proof. The proof closely follows the proof of the counting lemma in Section 2.1.
Let q > 0 be a small enough parameter. We sample a random restriction ρ ∈ ({0, 1, ∗}m)n by sampling

each coordinate independently according to the following law, where pj = Pr[µ|j = 1], 0 is the zero vector,
e1 = (1, 0, . . . , 0), s1 = (∗, 0, . . . , 0), and ej , sj are defined analogously by making the special coordinate the
j’th one:
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• ρi = 0 with probability µ(0)−
∑
j(1− pj)q.

• For each j, ρi = ej with probability µ(ej)− pjq.

• For each w ̸= 0, e1, . . . , em, ρi = w with probability µ(w).

• For each j, ρi = sj with probability q.

Given ρ, we can obtain a sample of µ by sampling a star in position j according to µ|j . We denote this
distribution by µ|ρ.

Another crucial property of ρ is that the distribution of ρ|j given that ρ|j ̸= ∗ is the same as the
distribution of µ|j . Indeed,

Pr[ρ|j = 1 | ρ|j ̸= ∗] = pj − pjq

1− q
= pj .

Apply Theorem 3.2 (It Ain’t Over Till It’s Over) to each ϕj with p := pj , q := q, ϵ := ϵ to obtain dj , τj , δj
such that if ϕj is (dj , τj)-regular and Eµ|j [ϕj ] ≥ ϵ then

Pr
ρ
[ E
µ|j

[ϕj |ρ|j ] ≥ δj ] ≥ 1− ϵ.

Choose d = max(d1, . . . , dm), τ = min(τ1, . . . , τm), so that each ϕj is (dj , τj)-regular. Applying the union
bound,

Pr
ρ
[ E
µ|j

[ϕj |ρ|j ] ≥ δj for all j] ≥ 1−mϵ,

and so
Pr

(y(1),...,y(m))∼µn
[(ϕ1(y

(1)), . . . , ϕm(y(m))) = (1, . . . , 1)] ≥ (1−mϵ)δ1 · · · δm.

The proof concludes by taking γ = (1−mϵ)δ1 · · · δm.

We prove Lemma 3.4 by applying Lemma 3.5 to each maxterm of P (recall that a maxterm is x /∈ P
such that y ∈ P for all y ⪇ x).

Proof of Lemma 3.4. Let M be the collection of maxterms of P . Since no coordinate is constant, each
maxterm is of the form 1S for |S| ≥ 2.

For each 1S ∈ M, apply Lemma 3.5 with µ = µ|S and ϵ := ϵ to obtain dS , τS , γS such that the following
holds: if ϕj is (dS , τS)-regular and αj = 1 for all j ∈ S then

Pr
(y(1),...,y(m))∼µn

[ϕj = 1 for all j ∈ S] ≥ γS .

We choose d = max(dS : 1S ∈ M), τ = min(τS : 1S ∈ M), and γ = min(γS : 1S ∈ M).
If α /∈ P then there exists a maxterm 1S ∈ M such that αj = 1 for all j ∈ S. Lemma 3.5 implies that

Pr
(y(1),...,y(m))∼µn

[ϕj(y
(j)) = 1 for all j ∈ S] ≥ γS ≥ γ.

Since 1S is a maxterm, this completes the proof.

3.2 Main result

In this section we complete the proof of Theorem 1.7 using Jones’ regularity lemma. We first assume that
no coordinate of P is constant, and then show how to get rid of this assumption.
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Proof of Theorem 1.7 assuming no coordinate of P is constant. Since no coordinate of P is constant, we can
apply Lemma 3.4 (the counting lemma) with ϵ := ϵ/2 to obtain d, τ, γ for which the lemma holds. Note
d = O(log(1/epsilon)), τ = Ω(ϵC), and δ = Ω(ϵC).

We apply Theorem 3.3 (Jones’s regularity lemma) with ϵ := ϵ/2, p1, . . . , pm given by pj = Pr[µ|j = 1], and
the values of d, τ obtained from Lemma 3.4 to obtain a decision tree T of depth M = O(d/ϵτ) = O((1/ϵ)C).

We define the functions gj via the tree T as follows. For each leaf ρ ∈ T and x ∈ {0, 1}(dom ρ)c ,

gj |ρ(x) =

{
0 if fj |ρ is not (d, τ)-regular or Eµ|j [fj |ρ] ≤ ϵ/2,

fj |ρ(x) otherwise.

If we sample ρ according to µ|j then according to Jones’ regularity lemma, fj |ρ is (d, τ)-regular (with
respect to µ|j) with probability at least 1− ϵ/2. This shows that Prµ|j [gj ̸= fj ] ≤ ϵ/2 + ϵ/2 = ϵ.

It remains to show that (g1, . . . , gm) is an extended polymorphism of P for small enough δ. If this is
not the case, then there exists a partial assignment ρ ∈ T such that (g1|ρ|1 , . . . , gm|ρ|m) is not an extended
polymorphism of P .

Apply Lemma 3.4 (the counting lemma) to ϕj = fj |ρ|j . Observe that for all (y(1), . . . , y(m)) ∈ {0, 1}(dom ρ)c ,

(g1|ρ1(y(1)), . . . , gm|ρm(y(m))) ≤ α, where α is the assignment defined in the lemma. Since (g1|ρ|1 , . . . , gm|ρ|m)
is not an extended polymorphism of P and P is monotone, necessarily α /∈ P . Therefore the lemma shows
that

Pr
(y(1),...,y(m))∼µ(dom ρ)c

[(f1|ρ|1(y
(1)), . . . , fm|ρ|m(y

(m))) /∈ P ] ≥ γ,

implying that (f1, . . . , fm) is not a (µ, δ)-approximate generalized polymorphism for δ = min(µ)Mγ/2 =
1/ expΘ(1/ϵC), where min(µ) = minw∈µ(µ(w)). Choosing this value of δ completes the proof.

The proof of Theorem 1.7 in full generality readily follows. Let C0 be the set of coordinates j such that
xj = 0 for all x ∈ P . The premise of the theorem implies that fj(0, . . . , 0) = 0 for all j ∈ C0.

Let Q be the predicate obtained by removing the coordinates in C0. We apply the foregoing to the
predicate Q, obtaining functions gj for all j /∈ C0. Defining gj = fj for all j ∈ C0 completes the proof.

4 Main theorem

In this section we prove Theorem 1.5.

Theorem 1.5 (Main). Let P ⊆ {0, 1}m be a non-empty predicate, and let µ be a distribution on P with full
support. For every ϵ > 0 there exists δ > 0 such that the following holds for all n.

If f1, . . . , fm : {0, 1}n → {0, 1} is a (µ, δ)-approximate generalized polymorphism of P then there exists a
generalized polymorphism g1, . . . , gm : {0, 1}n → {0, 1} of P such that

Pr
µ|j

[gj ̸= fj ] ≤ ϵ for all j ∈ [m],

where µ|j is the marginal distribution of the j’th coordinate.

The proof relies on Theorem 1.6, the special case of Theorem 1.5 for the predicates Pm,b = {x ∈ {0, 1}m :
x1 ⊕ · · · ⊕ xm = b} for m ≥ 3.

The proof also relies on a two-sided version of It Ain’t Over Till It’s Over, which immediately follows
from the one-sided version, Theorem 3.2, by applying it to both f and 1− f .

Theorem 4.1 (It Ain’t Over Till It’s Over). For every p, q ∈ (0, 1) and ϵ > 0 the following holds for some
constant C = C(p, q) and d = Θ(log(1/ϵ)), τ = Θ(ϵC), and δ = Θ(ϵC).
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Let ρ be a random restriction obtained by sampling each coordinate i ∈ [n] independently according to the
following law:

ρi =


0 w.p. (1− p)(1− q),

1 w.p. p(1− q),

∗ w.p. q.

If f is (d, τ)-regular with respect to µp and ϵ ≤ Eµp [f ] ≤ 1− ϵ then

Pr
ρ
[δ ≤ E

µp
[f |ρ] ≤ 1− δ] ≥ 1− ϵ.

We also use a junta version of Jones’ regularity lemma, which we prove in Section 8.

Theorem 4.2 (Jones’ regularity lemma). For every ϵ, τ > 0, d,m ∈ N, and p1, . . . , pm ∈ (0, 1) there exists
a function M : N → N such that the following holds for all n and all functions f : {0, 1}n → {0, 1}.

For every J0 ⊆ [n] there exists a set J ⊇ J0 of size at most M(|J0|) such that for all j,

Pr
x∼µpj

[fj |J←x is not (d, τ)-regular] ≤ ϵ.

The proof consists of several parts:

• We prove a counting lemma for predicates without affine relations in Section 4.1.

• We outline the rounding procedure in Section 4.2.

• We prove Theorem 1.5 under the assumption that no coordinates are constant or duplicate in Sec-
tion 4.3.

• We prove Theorem 1.5 in full generality in Section 4.4.

4.1 Counting lemma

A predicate P ⊆ {0, 1}m has no affine relations if there do not exist a non-empty subset S and b ∈ {0, 1}
such that

⊕
i∈S wi = b for all w ∈ P . In particular, this implies that no coordinate of P is constant, and no

two coordinates are always equal or always non-equal.

Lemma 4.3 (Counting lemma for predicates without affine relations). Let P be a predicate without affine
relations, and let µ be a distribution on P with full support. For every ϵ > 0 there exist d ∈ N and τ, γ > 0
such that the following holds for all n.

Let ϕ1, . . . , ϕm : {0, 1}n → {0, 1} be functions such that (ϕ1, . . . , ϕm) is a (µ, γ)-approximate generalized
polymorphism of P and ϕj is (d, τ)-regular with respect to µ|j for all j ∈ [m]. Define a function χϵ : [m] →
{0, 1, ∗} as follows:

χϵ(j) =


0 if Eµ|j [ϕj ] ≤ ϵ,

1 if Eµ|j [ϕj ] ≥ 1− ϵ,

∗ otherwise.

Let α : [m] → {0, 1} be any assignment consistent with χϵ. Then α ∈ P and

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = α] > γ.

The proof of the case χϵ ≡ ∗ will require the following lemma, whose proof is adapted from [Mos12a].

Lemma 4.4 (Hitting lemma). Let µ be a distribution over {0, 1}m with full support. For every ϵ > 0 there
exists γ > 0 such that the following holds.

Let ϕ1, . . . , ϕm : {0, 1}n → {0, 1} be functions satisfying ϵ ≤ Eµ|j [ϕj ] ≤ 1− ϵ for all j ∈ [m]. Then for all
α ∈ {0, 1}m,

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = α] > γ.
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Proof. The proof is by induction on m. If m = 1 then we can take γ = ϵ/2, so suppose m ≥ 2.
Applying the inductive hypothesis with µ := µ|{2,...,m} and ϵ := ϵ gives γm−1 > 0 such that for all

β ∈ {0, 1}m−1,
Pr

(y(2),...,y(m))∼µ|n{2,...,m}
[(ϕ2(y

(2)), . . . , ϕm(y(m))) = β] > γm−1.

We now appeal to [MOS13, Lemma 8.3], whose statement is as follows. Suppose that X,Y are finite sets
and that ν is a distribution over X × Y with full support. For every η > 0 there exists ζ > 0 such that
the following holds. If A ⊆ Xn and B ⊆ Y n have measure at least η (with respect to the corresponding
marginals of νn) then νn(A×B) ≥ ζ.

Given α ∈ {0, 1}m, we apply the lemma with X = {0, 1}, Y = {0, 1}m−1, ν = µ and η := min(ϵ, γm−1)
to obtain ζ > 0. Taking A = {y(1) : ϕ1(y

(1)) = α1}, B = {(y(2), . . . , y(m)) : (ϕ2(y
(2)), . . . , ϕm(y(m))) =

(α2, . . . , αm)}, the lemma implies that

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = α] > ζ,

completing the proof (taking γ := ζ/2).

We can now prove the counting lemma.

Proof of Lemma 4.3. The proof is by double induction: first on m, and then on the set of non-∗ inputs in
χϵ. We also assume, without loss of generality, that ϵ < 1/2.

If m = 1 then necessarily P = {0, 1}, since otherwise P has a constant coordinate. Therefore the lemma
trivially holds with γ = ϵ. From now on, we assume that m ≥ 2, and induct on the number of non-∗ inputs
in χϵ.

Base case Suppose that χϵ(j) = ∗ for all j ∈ [m]. We will find d′ ∈ N and τ ′, γ′ > 0 such that whenever
d ≥ d′, τ ≤ τ ′ and γ ≤ γ′, the assumptions imply that P = {0, 1}m. Applying Lemma 4.4 with µ := µ and
ϵ := ϵ gives us γ′′ > 0 such that

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = α] > γ′′

for all α ∈ {0, 1}m. Taking γ = min(γ′, γ′′) will conclude the proof.

Suppose therefore that P ̸= {0, 1}m. We first show that for appropriate d′, τ ′, γ′ there exists an index
j0 ∈ [m] and two inputs u, v ∈ P such that u⊕j0 ∈ P and v⊕j0 /∈ P , where the inputs u⊕j0 , v⊕j0 are obtained
from the inputs u, v by flipping the j0’th coordinate. This is where we use the assumption that P has
no affine relations. We then show that the probability that (ϕ1, . . . , ϕm) evaluates to v⊕j0 is bounded
from below, and obtain a contradiction by setting γ′ small enough.

For each j ∈ [m], we apply the inductive hypothesis to the predicate P |[m]\{j}, the distribution µ|[m]\{j},
and ϵ := ϵ to obtain dj , τj , γj such that the following holds. If for all k ̸= j, the function ϕk is (dj , τj)-regular
with respect to µ|k and satisfies ϵ ≤ Eµ|k [ϕk] ≤ 1− ϵ, then α ∈ P |[m]\{j} for every α ∈ {0, 1}[m]\{j}, implying

that P |[m]\{j} = {0, 1}[m]\{j}.
Choose d′′′ = max(d1, . . . , dm), τ ′′′ = min(τ1, . . . , τm), γ′′′ = min(γ1, . . . , γm). If d ≥ d′′′, τ ′′′ ≤ τ , γ′′′ ≤ γ

then the assumptions of the lemma imply that P |[m]\{j} = {0, 1}[m]\{j} for all j. This implies that for every
w ∈ {0, 1}m and every j ∈ [m], either w ∈ P or w⊕j ∈ P (or both).

Let J be the set of variables that P depends on: there is w ∈ P such that w⊕j /∈ P . By assumption,
∅ ̸= P ̸= {0, 1}m, and so J is non-empty. If for every w ∈ P and every j ∈ J we have w⊕j /∈ P then
P |J consists of all inputs with a given parity, contradicting the assumption that P has no affine relations.
Therefore there must exist j0 ∈ J and u ∈ P such that u⊕j0 ∈ P . Since j0 ∈ J , there also exists v ∈ P such
that v⊕j0 /∈ P .

The remainder of the argument is reminiscent of the corresponding argument in [CFM+22]. As in the
proof of the counting lemma for NAND (Lemma 3.5), we will sample µ using a two-step process. Let u∗ be
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obtained from u by setting the j0’th coordinate to ∗. First, we sample a restriction ρ ∈ ({0, 1}m ∪{u∗})n by
sampling each coordinate independently according to the following law, where q = min(µ(u), µ(u⊕j0)):

• ρi = u with probability µ(u)− Pr[µ|j0 = uj0 ]q.

• ρi = u⊕j0 with probability µ(u⊕j0)− Pr[µ|j0 = u⊕j0j0
]q.

• ρi = w with probability µ(w) for any w ̸= u, u⊕j0 .

• ρi = u∗ with probability q.

Given ρ, we can obtain a sample of µ by sampling the j0’th coordinate according to µ|j0 if ρi = u∗. As
in Lemma 3.5, the distribution of ρ|j given that ρ|j ̸= ∗ is the same as µ|j .

Apply Theorem 4.1 (It Ain’t Over Till It’s Over) to ϕj0 with p := Pr[µ|j0 = 1], q := q, ϵ := ϵ to obtain
d′′′′, τ ′′′′, δ, and take d′′ = max(d′′′, d′′′′) and τ ′′ = min(τ ′′′, τ ′′′′). The assumptions of the lemma imply that

Pr
ρ

[
Pr
µ|j0

[ϕj0 |ρ|j0 = v⊕j0j0
] ≥ δ

]
≥ 1− ϵ.

Since P |[m]\{j0} = {0, 1}[m]\{j0}, we can apply Lemma 4.4 to µ|[m]\{j0} and ϵ := ϵ to obtain γ′′′′ > 0 such
that

Pr
y∼(µ|[m]\{j0})

n
[ϕj(y

(j)) = vj for all j ̸= j0] > γ′′′′.

It follows that
Pr

(y(1),...,y(m))∼µn
[(ϕ1(y

(1)), . . . , ϕm(y(m))) = v⊕j0 ] > (1− ϵ)δγ′′′′.

Setting γ′ = min(γ′′′, (1 − ϵ)δγ′′′′) contradicts the assumption that (ϕ1, . . . , ϕm) is a (µ, γ)-approximate
generalized polymorphism of P for some γ ≤ γ′, and we conclude that necessarily P = {0, 1}m, as claimed
above. This concludes the proof of the base case.

Inductive case Suppose that χϵ(j0) ̸= ∗ for some j0 ∈ [m].
Let us try to reduce the statement of the lemma to the same statement for P |[m]\{j0}. We apply the

inductive hypothesis to the predicate P |[m]\{j0}, the distribution µ|[m]\{j0}, and ϵ := ϵ to obtain d′, τ ′, γ′

such that if d ≥ d′, τ ≤ τ ′, γ ≤ γ′ then the assumptions imply that for every α consistent with χϵ,
α|[m]\{j0} ∈ P |[m]\{j0}, and moreover

Pr
y∼(µ|[m]\{j0})

n
[ϕj(y

(j)) = αj for all j ̸= j0] > γ′.

If Prµ|j0 [ϕj0 = αj0 ⊕ 1] ≤ γ′/2 then

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = α] > γ′/2,

implying that the lemma holds if γ ≤ γ′/2; we automatically get that α ∈ P since (ϕ1, . . . , ϕm) is a (µ, γ′/2)-
approximate generalized polymorphism of P .

If Prµ|j0 [ϕj0 = αj0 ⊕ 1] > γ′/2 (implying that γ′/2 < ϵ) then we first observe that the set of ∗-inputs
of χγ′/2 strictly contains the set of ∗-inputs of χϵ. Indeed, if χϵ = ∗ then χγ′/2 = ∗ since γ′/2 < ϵ, and
moreover χϵ(j0) ̸= ∗ whereas χγ′/2(j0) = ∗.

This allows us to apply the inductive hypothesis to P := P , µ := µ, and ϵ := γ′/2. We obtain d′′, τ ′′, γ′′

such that if d ≥ d′′, τ ≤ τ ′′, γ ≤ γ′′ then the assumptions imply that for every α consistent with χγ′/2 (in
particular, every α consistent with χα) we have α ∈ P and

Pr
(y(1),...,y(m))∼µn

[(ϕ1(y
(1)), . . . , ϕm(y(m))) = α] > γ′′.

Choosing d = max(d′, d′′), τ = min(τ ′, τ ′′), γ = min(γ′/2, γ′′) completes the proof.
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4.2 Rounding

The proof of Theorem 1.5 (for predicates without affine relations) follows the main plan of the proof of
Theorem 1.7: we apply Jones’ regularity lemma on f1, . . . , fm to construct a junta J such that on average,
fj |J←x(j) is regular. Lemma 4.3 suggests a “rounding” procedure to construct the generalized polymorphism
(g1, . . . , gm): we define gj |J←x(j) ≡ b if Pr[fj |J←x(j) = b] ≥ 1−ϵ for some b ∈ {0, 1}, and gj |J←x(j) = fj |J←x(j)

otherwise. The lemma implies (for an appropriate choice of parameters) that (g1|J←x(1) , . . . , gm|J←x(m)) is
a generalized polymorphism whenever all of the involved subfunctions are regular, but gives no information
otherwise.

In the monotone setting, we handle this difficulty by setting gj |J←x(j) ≡ 0 whenever fj |J←x(j) is not
regular. In the general case, there is no such safe direction. Instead, we use a two-step sampling procedure,
along the lines of the proof of Lemma 3.5 (the counting lemma for NAND), to define g1, . . . , gm, and use
Lemma 4.3 to show that gj is close to fj .

The two-step sampling procedures in Lemma 3.5 and Lemma 4.3 rely on the existence of inputs w(j) ∈ P

such that w⊕j(j) ∈ P . If such inputs exist for all j then the proof of Theorem 1.5 can be simplified considerably;

we take this route when we prove Theorem 1.10. However, in general this is not the case. As an example, if
P = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} then no such inputs exist for any j. Our argument will need to distinguish
between these two types of coordinates.

Definition 4.5 (Flexible coordinates). Let P ⊆ {0, 1}m be a non-empty coordinate. A coordinate j ∈ [m]
is flexible if there exists w(j) ∈ P such that w⊕j(j) ∈ P , and inflexible otherwise.

If j is a flexible coordinate, let w(j,0) ∈ P be some fixed input such that (w(j,0))j = 0 and w(j,1) :=

w⊕j(j,0) ∈ P . Also, let w(j,∗) be the restriction obtained by changing the j’th coordinate to ∗.

We can now describe the distribution of the restriction ρ in the first step of the two-step sampling process.
Each of its coordinates will be sampled according to the following distribution ν on P ∪ {w(j,∗) : j flexible},
for a small enough q > 0:

• For w ∈ P , sample w with probability

µ(w)−
∑

j : w=w(j,0)

(1− pj)q −
∑

j : w=w(j,1)

pjq,

where the sum is over all flexible coordinates j, and pj = Pr[µ|j = 1].

• For every flexible j, sample w(j,∗) with probability q.

We can sample µ by first sampling ν, and in case w(j,∗) was sampled, sampling the j’th coordinate according
to µ|j . Also, the distribution of ν|j conditioned on ν|j ̸= ∗ coincides with µ|j .

We start by explaining how to use the two-step sampling process to construct a generalized polymorphism
(g1, . . . , gm). In the lemma below, J is the set which will be constructed using Jones’ regularity lemma. This
rounding procedure prevents us from ensuring that gi = gj even if fi = fj and µ|i = µ|j. In this
lemma and below, we use min(µ) := minw∈P µ(w).

Lemma 4.6 (Rounding lemma). Let P ⊆ {0, 1}m be a non-empty predicate, and let µ be a distribution on
P having full support. For every ϵ, ζ > 0 there exists δ > 0 such that the following holds.

Let f1, . . . , fm : {0, 1}n → {0, 1}, and let J ⊆ [n]. For a restriction ρ : Jc → {0, 1, ∗}m, define functions
gρ,ϵ1 , . . . , gρ,ϵm : {0, 1}n → {0, 1} as follows: for each j ∈ [m] and each x(j) ∈ {0, 1}J ,

gρ,ϵj |J←x(j) =


0 if E |µ|j [fj |J←x(j),ρ|j ] ≤ ϵ,

1 if E |µ|j [fj |J←x(j),ρ|j ] ≥ 1− ϵ,

fj |J←x(j) otherwise.

For fixed x(1), . . . , x(m), this corresponds to a coloring χρ,ϵ : [m] → {0, 1, ∗} in a natural way.
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If (f1, . . . , fm) is a (µ,min(µ)|J|δ)-approximate generalized polymorphism of P then

Pr
ρ∼νJc

[(gρ,ϵ1 , . . . , gρ,ϵm ) is a generalized polymorphism of P ] ≥ 1− ζ.

If j is inflexible then ρ|j ∈ {0, 1}Jc , and so fj |J←x(j),ρ|j is a constant. In this case gρ,ϵj |J←x(j) always gets
set to a constant. As we show later, Lemma 4.3 explains why this is a sound choice.

Proof. Suppose that (f1, . . . , fm) is a (µ,min(µ)|J|δ)-approximate generalized polymorphism of P , where we
set δ later on. This means that

E
ρ∼νJc

Pr
(x(1),...,x(m))∼µJ

(y(1),...,y(m))∼µJ
c
|ρ

[(f1|J←x(1)(y(1)), . . . , fm|J←x(m)(y(m))) /∈ P ] ≤ min(µ)|J|δ,

and so with probability at least 1− ζ over the choice of ρ,

Pr
(x(1),...,x(m))∼µJ

(y(1),...,y(m))∼µJ
c
|ρ

[(f1|J←x(1)(y(1)), . . . , fm|J←x(m)(y(m))) /∈ P ] ≤ min(µ)|J|δ/ζ.

Therefore for every (x(1), . . . , x(m)) ∈ P J we have

Pr
(y(1),...,y(m))∼µJc |ρ

[(f1|J←x(1)(y(1)), . . . , fm|J←x(m)(y(m))) /∈ P ] ≤ δ/ζ.

We will show that if δ is small enough, then this implies that (gρ1 , . . . , g
ρ
m) is a generalized polymorphism.

If (gρ,ϵ1 , . . . , gρ,ϵm ) is not a generalized polymorphism of P then there exists (x(1), . . . , x(m)) ∈ P J such that
(gρ,ϵ1 |J←x(1) , . . . , gρ,ϵm |J←x(m)) is not a generalized polymorphism of P . This means that the corresponding
coloring χρ,ϵ can be extended to some α /∈ P . Observe that

Pr
(y(1),...,y(m))∼µJc |ρ

[(f1|J←x(1)(y(1)), . . . , fm|J←x(m)(y(m))) = α] ≥ ϵm.

Choosing δ = ϵmζ/2 completes the proof.

The next step is to show that on average (over ρ), the function gρ,ηj is close to fj , for an appropriate
choice of η. For flexible coordinates, this follows immediately from Theorem 4.1. For inflexible coordinates,
we will appeal to Lemma 4.3, which implies that for such coordinates, fj |J←x(j) is close to constant. Since
we apply Lemma 4.3, this argument will only work for certain subfunctions.

Definition 4.7 (Good subfunctions). Let P ⊆ {0, 1}m be a predicate, and let µ be a distribution over P
having full support. Let d ∈ N and τ > 0. Let f1, . . . , fm : {0, 1}n → {0, 1}, and let J ⊆ [n].

A subfunction fj |J←x is (µ, d, τ)-good if there exists (x(1), . . . , x(m)) ∈ P J with x(j) = x such that
fk|J←x(k) is (d, τ)-regular with respect to µ|k for all k ∈ [m].

Lemma 4.8 (Most subfunctions are good). Let P ⊆ {0, 1}m be a predicate, and let µ be a distribution over
P having full support. Let d ∈ N and τ > 0. Let f1, . . . , fm : {0, 1}n → {0, 1}, and let J ⊆ [n].

Suppose that for all j,
Pr

x∼µ|Jj
[fj |J←x is (d, τ)-regular wrt µ|j ] ≥ 1− ϵ.

Then for all j,
Pr

x∼µ|Jj
[fj |J←x is (µ, d, τ)-good] ≥ 1−mϵ.

Proof. Fix j ∈ [m]. The assumption implies that

Pr
(x(1),...,x(m))∼µJ

[fk|J←x(k) is (d, τ)-regular wrt µ|k for all k] ≥ 1−mϵ.

If the event happens then fj |J←x(j) is (µ, d, τ)-good. The lemma immediately follows.
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We can now show that on average, gρ,ηj is close to fj , for an appropriate choice of η. Recall that
min(µ) = minw∈P µ(w).

Lemma 4.9 (Soundness of rounding). Let P ⊆ {0, 1}m be a non-empty predicate without affine relations
and let µ be a distribution on P having full support. For every ϵ > 0 there exist d ∈ N and δ, η, τ > 0 such
that the following holds.

Let f1, . . . , fm : {0, 1}m → {0, 1}, and let J ⊆ [n]. Suppose that for all j ∈ [m],

Pr
x(j)∼µ|Jj

[fj |J←x(j) is (d, τ)-regular] ≥ 1− ϵ.

If (f1, . . . , fm) is a (µ,min(µ)|J|δ)-approximate generalized polymorphism of P then for all j ∈ [m],

E
ρ∼νJ

Pr
µ|j

[gρ,ηj ̸= fj ] = O(ϵ).

Proof. Apply Lemma 4.3 with ϵ := ϵ to obtain d′, τ ′, γ′ such that the assumptions imply the following,
assuming d ≥ d′, τ ≤ τ ′, δ ≤ γ′. For all (x(1), . . . , x(m)) ∈ P J , if f1|J←x(1) , . . . , f |J←x(m) are all (d, τ)-regular
then all assignments extending χϵ belong to P .

For every flexible j, apply Theorem 3.2 (the one-sided version of Theorem 4.1) with p := Pr[µ|j = 1],
q := q (the parameter used to define ν) and ϵ := ϵ to obtain dj , τj , δj such that for b ∈ {0, 1} and x(j) ∈ {0, 1}J ,
if χϵ(j) ̸= b and η ≤ δj then

Pr
ρ∼νJ

[χρ,η(j) ̸= b] ≥ 1− ϵ.

(Note that χϵ(j) ̸= b iff Prµ|j [fj |J←x(j) = b⊕ 1] > ϵ, and χρ,η(j) ̸= b iff Prµj [fj |J←x(j),ρ|j = b⊕ 1] > η.)
Let F be the set of flexible coordinates. We take d = max(d′, (dj)j∈F ), τ = min(τ ′, (τj)j∈F ), δ = γ′,

η = min(ϵ, (δj)j∈F ).
Given j, observe that

E
ρ∼νJ

[Pr
µ|j

[gρ,ηj ̸= fj ]] ≤ Pr
x(j)∼µ|Jj

[fj |J←x(j) is not (µ, d, τ)-good]+∑
x(j) : fj |J←x(j) is (µ, d, τ)-good

µ|j(x(j)) E
ρ∼νJ

Pr
µ|j

[gρ,ηj |J←x(j) ̸= fj |J←x(j) ].

The first summand is at most mϵ, and so it suffices to show that for all x(j) such that fj |J←x(j) is (µ, d, τ)-
good,

E
ρ∼νJ

Pr
µ|j

[gρ,ηj |J←x(j) ̸= fj |J←x(j) ] = O(ϵ).

Unpacking the definition of gρ,ηj , the left-hand side is

Pr
ρ∼ν|Jj

[E[fj |J←x(j),ρ] ≤ η] · E
µ|j

[fj |J←x(j) ] + Pr
ρ∼ν|Jj

[E[1− fj |J←x(j),ρ] ≤ η] · E
µ|j

[1− fj |J←x(j) ].

The two summands are similar, so it suffices to bound the first one.
We consider two cases, according to whether j is flexible or not. If j is flexible then either χϵ(j) = 0, in

which case E[fj |J←x(j) ] ≤ ϵ, or χϵ(j) ̸= 0, in which case Prρ[χ
ρ,η = 0] ≤ ϵ, that is, Prρ∼ν|Jj [E[fj |J←x(j),ρ] ≤

η] ≤ ϵ. In both cases, the summand is bounded by ϵ.
If j is inflexible then we need to use the fact that every extension of χϵ belongs to P . Since j is inflexible,

this implies that χϵ(j) ̸= ∗. We consider two subcases, according to the value of χϵ(j). If χϵ(j) = 0 then
E[fj |J←x(j) ] ≤ ϵ. If χϵ(j) = 1 then E[fj |J←x(j) ] ≥ 1− ϵ. Since j is inflexible, ν|j = µ|j , and so fj |J←x(j),ρ is
a constant, which equals 0 with probability at most ϵ. In both cases, the summand is bounded by ϵ.
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4.3 Proof without short affine relations

If P has no affine relations then we can complete the proof as in Section 3 as follows. First, we apply
Jones’ regularity lemma on f1, . . . , fm to obtain J . We then combine Lemma 4.6 and Lemma 4.9 to find a
restriction ρ such that (gρ,η1 , . . . , gρ,ηm ) is a generalized polymorphism and gρ,ηj is close to fj for all j. In this
section, we show how to modify this argument to handle linear relations of size at least 3; handling smaller
linear relations is easier and will be done in the next section.

For the remainder of the section, we assume that P has no small affine relations, meaning no affine
relations of length smaller than 3.

The first step is to peel off all affine relations. Below we use the notation

χS,b(x) = b⊕
⊕
i∈S

xi.

Lemma 4.10 (Peeling affine relations). Let P be a predicate without small affine relations, and let µ be a
distribution on P with full support. There exist ϵ0 > 0 and sets F ⊆ I ⊆ [m] such that P |I has no affine
relations, and the following holds for all ϵ ≤ ϵ0.

Let f1, . . . , fm : {0, 1}n → {0, 1} be a (µ, ϵ)-approximate generalized polymorphism of P .

(a) For each j /∈ F there exist bj ∈ {0, 1} and Sj ⊆ [n] such that Prµ|j [fj ̸= χSj ,bj ] = O(ϵ).

(b) If (gj)j∈I is a generalized polymorphism of P |I such that gj = χSj ,bj for all j ∈ I \F , then we can extend
it to a generalized polymorphism of P by taking gj = χSj ,bj for j /∈ I.

The proof uses Theorem 1.6, proved in Section 5, which is the special case of Theorem 1.5 for affine
relations.

Proof. We construct F, I using an iterative process. During the process, each coordinate can be active or not
active; originally all are active. Furthermore, each coordinate has a list of characters χS,b, initially empty.
The process ends once there is no affine relation involving only active coordinates.

Each step of the iteration proceeds as follows. Choose an affine relation involving the coordinates in some
set A, all of them active. Since P has no small affine relations, |A| ≥ 3. Therefore we can apply Theorem 1.6
to obtain, for each j ∈ A, a character χSj ,bj such that Prµ|j [fj ̸= χSj ,bj ] = O(ϵ). For each j ∈ A, we add the
character χSj ,bj to the list of characters for coordinate j. We also pick a coordinate j0 ∈ A arbitrarily, and
render it inactive.

After the process ends, some of the lists are empty, and they comprise the set F . The set I contains all
active coordinates. Property (a) is automatically satisfied.

The list of characters for each j /∈ F could contain more than one character. We can rule this out by
taking ϵ0 small enough. Indeed, if the list for j contains two different characters χS′,b′ , χS′′,b′′ then

Pr
µ|j

[χS′,b′ ̸= χS′′,b′′ ] = O(ϵ).

If ϵ0 is smaller than a constant, this rules out S′ = S′′. Take any i ∈ S′△S′′, and sample coordinate i
last. Whether χS′,b′ ̸= χS′′,b′′ or not depends on the value of coordinate i, and so the probability that
χS′,b′ ̸= χS′′,b′′ is at least min(µ|j(0), µ|j(1)). Therefore, choosing ϵ0 = cminj,b µ|j(b) for an appropriate
c > 0 ensures that every non-empty list contains precisely one character.

It remains to prove Property (b). For this, we observe that if w ∈ P |I then there is a unique way to extend
it to an element in P . This is precisely how we extend the generalized polymorphism in Property (b).

We would like to apply the argument outlined in the beginning of the section to P |I in such a way that
guarantees that gρ,ηj = χSj ,bj for all j ∈ I \ F . We do this in two steps. First, we change fj to f ′j = χSj ,bj
for all j ∈ I \ F , which increases the error probability in a controlled way. Second, we ensure somehow that
gρ,ηj = f ′j for all j ∈ I \ F . This can be done in two ways: either J contains Sj , or Sj \ J is so large that
χρ,η = ∗ is very likely, as given by the following lemma.
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Lemma 4.11 (Large characters are balanced). Let µ be a full support distribution on {0, 1}. For every
q ∈ (0, 1) and η, ζ > 0 there exists M ∈ N such that the following holds.

Let ν be the distribution on {0, 1, ∗} given by ν(∗) = q and ν(b) = (1 − q)µ(b). If f = χS,b for |S| ≥ M
and b ∈ {0, 1} then

Pr
ρ∼ν

[η < E
µ
[f |ρ] < 1− η] ≥ 1− ζ.

Proof. The proof is straightforward, so we only outline it. Since µ has full support, we can find M ′ ∈ N such
that if f ′ = χS′,b′ for |S′| ≥ M ′ then η < Eµ[f ′] < 1− η. We can find M for which f |ρ is of this form with
probability 1− ζ.

We now put everything together.

Proof of Theorem 1.5 for predicates without short affine relations. Apply Lemma 4.10 to obtain F ⊆ I ⊆
[m] and ϵ0 > 0. Recall that the lemma states that P |I has no affine relations, and that the following holds
for every (µ, δ)-approximate polymorphism of P , whenever δ ≤ ϵ0.

First, for each j /∈ F , the function fj is O(δ)-close to some χSj ,bj . Second, any generalized polymorphism
(gj)j∈I of P |I which satisfies gj = χSj ,bj for j ∈ I \ F can be extended to a generalized polymorphism of P
by taking gj = χSj ,bj for j /∈ I.

We can assume without loss of generality that ϵ ≤ ϵ0 (otherwise replace ϵ with ϵ0). We will prove the
theorem with an error probability of O(ϵ) rather than ϵ for convenience.

Constructing the junta The junta is constructed by applying various lemmas proved in this section.
In order to make the argument more readable, we briefly recall the statement of each lemma. We use
the following notation: a random J-subfunction of f ′j is obtained from f ′j by restricting the coordinates
in J according to µ|j . Also, ρ is a random restriction of the coordinates in Jc sampled according to the
distribution ν defined in Section 4.2.

Apply Lemma 4.9 (Soundness of rounding) with the predicate P |I , the distribution µ|I , and ϵ := ϵ to
obtain d′, δ′, η′, τ ′ such that the following holds. Given a set J , suppose that for each j ∈ I, a random
J-subfunction of f ′j is (d′, τ ′)-regular w.p. 1 − ϵ; and that (f1, . . . , fm) is a (µ,min(µ)|J|δ′)-approximate

polymorphism of P |I . Then for all j, Eρ Pr[gρ,η
′

j ̸= f ′j ] = O(ϵ).
Apply Theorem 4.2 (Jones’ regularity lemma) with ϵ := ϵ, d = d′, τ = τ ′, and pj = Pr[µ|j = 1] for all

j ∈ F to obtain M : N → N such that the following holds. For each set J0 there exists a set J ⊆ J0 of size
at most M(|J0|) such that for all j ∈ F , a random J-subfunction of f ′j is (d

′, τ ′)-regular w.p. 1− ϵ.
For every j ∈ I \F , apply Lemma 4.11 with µ := µ|j , η := η′, ζ := 1/(2m), and the q in the definition of

ν (Section 4.2) to obtain Mj . The lemma implies that if |Sj \ J | ≥Mj then for every x(j) ∈ {0, 1}J we have
η′ < E[χSj ,bj |J←x(j),ρ|j ] < 1− η′ with probability 1− 1/(2m) over the choice of ρ.

The set J0 that we construct will be based on an application of Lemma 4.10, which will yield us a set Sj
for each j /∈ F . We would like the set J constructed by Jones’ regularity lemma to satisfy the following, for
each j ∈ I \F : either J contains Sj , or |Sj \ J | ≥Mj . Later on, we determine a value of M , depending only
on the function M and the parameters Mj for j ∈ I \ F , such that such a set J can be constructed of size
at most M .

Apply Lemma 4.6 (Rounding lemma) with the predicate P |I , the distribution µ|I , ϵ := η′, and ζ :=
1/(2m) to obtain δ′′ such that the following holds. If (f ′1, . . . , f

′
m) is a (µ,min(µ)|J|δ′′)-approximate poly-

morphism of P |I then (gρ,η
′

j )j∈I is a generalized polymorphism of P |I w.p. 1 − 1/(2m) over the choice of
ρ.

In order to apply Lemmas 4.6 and 4.9, we will need the error probability to be at most min(µ)|J|min(δ′, δ′′).
Consequently we choose

δ = cmin(µ)M min(δ′, δ′′, ϵ)/(m+ 1),

for an appropriate constant c ∈ (0, 1); we will see where the additional m+1 factor comes from in a moment.
(Recall that δ is the parameter such that (f1, . . . , fm) is a (µ, δ)-approximate polymorphism of P .)
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Apply Lemma 4.10 to f1, . . . , fm to obtain, for each j /∈ F , a function gj = χSj ,bj such that Prµ|j [gj ̸=
fj ] ≤ min(µ)M min(δ′, δ′′, ϵ)/(m+ 1) (this is where we get c from). Define

f ′j =

{
gj if j /∈ F,

fj if j ∈ F.

Observe that (f ′j)j∈I is a (µ|I ,min(µ)M min(δ′, δ′′, ϵ))-approximate generalized polymorphism of P |I ,
summing up the probability that (fj)j∈I /∈ P |I with the probabilities that fj and f

′
j differ.

We can now construct J . First, we construct J0. Start with J0 := ∅, and while some j ∈ I \ F satisfies
|Sj \ J0| < Mj +M(|J0|), add Sj to J0. The process terminates with a set J0 such that for each j ∈ I \ F ,
either J0 ⊇ Sj , or |Sj \ J0| ≥Mj +M(|J0|).

We proceed to bound the size of J0. Let M ′ = maxj∈I\F Mj , and assume without loss of generality
that M is monotone (otherwise, replace it with M′(s) := maxt≤sM(t)). Taking B0 = 0 and Bt+1 =
Bt +M ′ + M(Bt), a simple induction shows that after adding t many Sj ’s, we have |J0| ≤ Bt. Thus the
final size of J0 is at most B|I\F |.

Finally, we obtain J by applying Jones’ regularity lemma to the functions f ′j for j ∈ F . Observe that
|J | ≤ M := M(B|I\F |). Furthermore, for each j ∈ I \ F , either J0 ⊇ Sj , in which case J ⊇ Sj , or
|Sj \ J0| ≥Mj +M(|J0|) ≥Mj + |J |, in which case |Sj \ J | ≥Mj .

Finding a good restriction We would like to find a restriction ρ such that all of the following hold:

(a) (gρ,ηj )j∈I is a generalized polymorphism of P |I .

(b) For each j ∈ I \ F , gρ,ηj = f ′j .

(c) For each j ∈ F , Prµ|j [g
ρ,η
j ̸= f ′j ] = O(ϵ).

Given such ρ, we define gj = gρ,ηj for j ∈ I to complete the proof via Lemma 4.10.
Lemma 4.6 implies that the first property holds with probability 1 − 1/(2m). We go on to the second

property. Let j ∈ I \ F . If Sj ⊆ J then gρ,ηj = f ′j always. Otherwise, |Sj \ J | ≥ Mj , and so Lemma 4.11
implies that gρ,ηj = f ′j with probability at least 1− 1/(2m) (crucially, the property χρ,ηj = ∗ doesn’t depend

on the input x(j) to J). In total, the first two properties hold with probability at least 1/2.
Lemma 4.9 implies that

E
ρ

∑
j∈F

Pr
µ|j

[gρ,ηj ̸= f ′j ] = O(ϵ).

Conditioning on the first two properties, this still holds (with the right-hand side doubled). Hence there
exists a restriction ρ satisfying all three properties, completing the proof.

4.4 Concluding the proof

In this short section, we complete the proof of Theorem 1.5 by handling short affine relations.

Proof of Theorem 1.5. We prove the theorem with an error term of O(ϵ) rather than ϵ, for simplicity.
By negating coordinates, we can assume that all short affine relations are of the following forms: (i)

wj = 0 for all w ∈ P , (ii) wj = wk for all w ∈ P .
Let Z be the set of coordinates in P that are always 0. Let I consist of a choice of one coordinate from

each set of equivalent non-constant coordinates. For each j ∈ I, let Ij be the coordinates equivalent to j;
possibly Ij = {j}. The sets Z, (Ij)j∈I thus partition [m].

The predicate P |I has no short affine relations, and so the special case handled in Section 4.3 applies to
it, giving us a value of δ. We will prove the theorem for δ := min(δ, ϵ, 1).
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Let (f1, . . . , fm) be a (µ, δ)-approximate generalized polymorphism of P . Applying the special case, we
obtain a generalized polymorphism (gj)|j∈I of P |I . We complete it to a generalized polymorphism of P by
taking gj = 0 for j ∈ Z and gk = gj for k ∈ Ij (where j ∈ I).

It remains to bound the distance between fj and gj for j /∈ I. If j ∈ Z then fj(0, . . . , 0) = 0 since
(f1, . . . , fm) is an approximate polymorphism, and so Prµ|j [gj ̸= fj ] = 0. If k ∈ Ij then Prµ|j [fk ̸= fj ] ≤ δ
and so Prµ|j [gk ̸= fk] ≤ ϵ+ δ ≤ 2ϵ. This completes the proof.

5 Linearity testing

In this section we prove Theorem 1.6, which extends the BLR test to arbitrary distributions. The proof uses
ideas from [DFH25], which extended a related test to a specific family of distributions.

Theorem 1.6 (Linearity testing for general distributions). Let Pm,b = {(a1, . . . , am) ∈ {0, 1}m : a1 ⊕ · · · ⊕
am = b}, where m ≥ 3 and b ∈ {0, 1}, and let µ be a distribution on Pm,b with full support. The following
holds for δ = Θ(ϵ).

If f1, . . . , fm : {0, 1}n → {0, 1} is a (µ, δ)-approximate generalized polymorphism of Pm,b then there exists
a generalized polymorphism g1, . . . , gm : {0, 1}n → {0, 1} of Pm,b such that Prµ|j [gj ̸= fj ] ≤ ϵ for all j ∈ [m].

Moreover, there exist a set S ⊆ [m] and b1, . . . , bm ∈ {0, 1} such that gj(x) =
⊕

i∈S xi ⊕ bj.
Furthermore, if fi = fj and µ|i = µ|j then gi = gj.

Before describing the proof, we observe when ϵ is small enough (an assumption we can make without loss
of generality), we can guarantee the “furthermore” clause. Indeed, if fi = fj and µ|i = µ|j then

Pr
µ|i]

[gi ̸= gj ] ≤ 2ϵ.

As shown during the course of the proof of Lemma 4.11, for small enough ϵ (as a function only of µ|i) this
implies that gi = gj .

The starting point of the proof is the case in which µ is the uniform distribution over Pm,b, which we
denote by π. This case is standard, but for completeness we prove it in Section 5.1.

The general case is handled by reduction to the uniform distribution, using an agreement theorem
from [DFH25]. The basic idea is to sample x ∼ µ in two steps. In the first step, we sample x ∼ ν
with probability 1− q (for appropriate ν, q), and leave it unsampled with probability q. In the second case,
if x wasn’t sampled, we sample it according to π.

If we stop after the first step, we are in a position to apply the result of Section 5.1, deducing that the
resulting subfunctions are close to characters. We show that these characters agree with each other, and
apply the agreement theorem to deduce that on average, they are restrictions of the same character (up to
sign).

Our argument will require two agreement theorems: one from [DFH25], and a folklore result about mixing
Markov chains which we prove in Section 5.2. The reduction itself is described in Section 5.3, where we also
provide a more detailed outline.

5.1 Uniform distribution

In this section we prove Theorem 1.6 in the case of the uniform distribution. The proof follows the classical
argument of [BCH+96].

Proof of Theorem 1.6 for the uniform distribution. Since we are going to use Fourier analysis, it will be more
convenient to switch from {0, 1} to {−1, 1}. Accordingly, we assume that f1, . . . , fm : {−1, 1}n → {−1, 1}
satisfy

Pr
x(1),...,x(m)

[f1(x
(1)) · · · fm(x(m)) = B] ≥ 1− δ,
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where B = (−1)b and x(1), . . . , x(m) are sampled as follows: the first m − 1 are sampled uniformly and

independently, and x
(m)
i = Bx

(1)
i · · ·x(m−1)i .

The assumption is equivalent to

E
x(1),...,x(m)

[Bf1(x
(1)) · · · fm(x(m))] ≥ 1− 2δ.

Substituting the Fourier expansions gives

1− 2δ ≤
∑

S1,...,Sm

Bf̂1(S1) · · · f̂m(Sm) E
x(1),...,x(m−1)

[χS1
(x(1)) · χSm−1

(x(m−1))χSm(Bx
(1) · · ·x(m−1))],

where χS(x) =
∏
i∈S xi. Multiplicativity and orthogonality of characters shows that the expectation vanishes

unless all Sj are equal, and so we obtain

1− 2δ ≤
∑
S

B|S|+1f̂1(S) · · · f̂m(S) ≤ max
S

|f̂1(S)|
∑
S

|f̂2(S) · · · f̂m(S)| ≤ max
S

|f̂1(S)|
∑
S

|f̂2(S)f̂3(S)|,

where we used m ≥ 3.
At this point, we apply the Cauchy–Schwarz inequality to bound the second factor on the right:

1− 2δ ≤ max
S

|f̂1(S)|
√∑

S

f̂2(S)2
√∑

S

f̂3(S)2 = max
S

|f̂1(S)|.

Therefore there exists S1 such that |f̂1(S1)| ≥ 1− 2δ. Let B1 be the sign of f̂1(S1). Then

Pr[f1 = B1χS1
] ≥ 1− δ.

Accordingly, we choose δ = ϵ.
In exactly the same way, we can find BiχSi approximating f2, . . . , fm:

Pr[fi = BiχSi ] ≥ 1− δ.

It follows that for B′ = B1 · · ·Bm,

Pr
x(1),...,x(m)

[f1(x
(1)) · · · fm(x(m)) = B′χS1

(x(1)) · · ·χSm(x(m))] ≥ 1−mδ,

and so
Pr

x(1),...,x(m)
[B′χS1(x

(1)) · · ·χSm(x(m)) = B] ≥ 1− (m+ 1)δ.

At this point we recall the definition of x(m), which implies that

B′χS1(x
(1)) · · ·χSm(x(m)) = B′B|Sm|χS1△Sm(x

(1)) · · ·χSm−1△Sm(x
(m−1)).

If not all Si are equal then

Pr
x(1),...,x(m)

[B′χS1
(x(1)) · · ·χSm(x(m)) = B] =

1

2
,

which we can rule out by ensuring, without loss of generality, that ϵ = δ < 1/(2(m + 1)). Thus all Si are
equal, concluding the proof.
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5.2 Agreement lemma for mixing Markov chains

During the proof of Theorem 1.6 we will encounter the following situation. There is a function f : X → Σ
and a way to sample x, y ∈ X in a coupled fashion such that (x, y) and (y, x) have the same distribution.
Given Pr[f(x) ̸= f(y)] ≤ ϵ, we would like to deduce that Pr[f(x) ̸= σ] = O(ϵ) for some σ ∈ Σ.

We can describe the coupling as a symmetric bistochastic X ×X matrix M whose entries describe the
coupling. We denote by λ(M) the second largest eigenvalue of M . If λ(M) < 1 then M has a unique
stationary distribution µ(M).

Lemma 5.1 (Agreement lemma for Markov chains). Let X,Σ be finite sets, and let M be a symmetric
bistochastic X ×X matrix with λ = λ(M) < 1 and stationary distribution µ = µ(M).

If a function f : X → Σ satisfies
Pr

(x,y)∼M
[f(x) ̸= f(y)] ≤ ϵ

then there exists σ ∈ Σ such that
Pr
x∼µ

[f(x) ̸= σ] ≤ ϵ

1− λ
.

Proof. For σ ∈ Σ, let

fσ(x) =

{
1 if f(x) = σ,

0 if f(x) ̸= σ.

Let gσ(x) = fσ(x)− Eµ[fσ], so that Eµ[gσ] = 0. The assumptions on M imply that

E
(x,y)∼M

[gσ(x)gσ(y)] ≤ λ E
x∼µ

[gσ(x)
2].

We can relate the left-hand side to agreement for fσ:

Pr
(x,y)∼M

[fσ(x) ̸= fσ(y)] = E
(x,y)∼M

[(fσ(x)− fσ(y))
2]

= E
(x,y)∼M

[(gσ(x)− gσ(y))
2] = 2 E

x∼µ
[gσ(x)

2]− 2 E
(x,y)∼M

[gσ(x)gσ(y)].

It follows that

Pr
(x,y)∼M

[fσ(x) ̸= fσ(y)] ≥ 2 E
x∼µ

[gσ(x)
2]− 2 E

(x,y)∼M
[gσ(x)gσ(y)] ≥ 2(1− λ) E

x∼µ
[gσ(x)

2].

In a completely analogous way, we obtain

Pr
x,y∼µ

[fσ(x) ̸= fσ(y)] = 2 E
x∼µ

[gσ(x)
2]− 2 E

x,y∼µ
[gσ(x)gσ(y)] = 2 E

x∼µ
[gσ(x)

2] ≤
Pr(x,y)∼M [fσ(x) ̸= fσ(y)]

1− λ
.

We now circle back to f . Summing the above inequality over all σ, we obtain∑
σ∈Σ

Pr
x,y∼µ

[fσ(x) ̸= fσ(y)] ≤
1

1− λ

∑
σ∈Σ

Pr
(x,y)∼M

[fσ(x) ̸= fσ(y)] =
2Pr(x,y)∼M [f(x) ̸= f(y)]

1− λ
,

since given that f(x) ̸= f(y), we obtain fσ(x) ̸= fσ(y) for precisely two choices of σ, namely f(x) and f(y).
As for the left-hand side, it is equal to

2
∑
σ∈Σ

Pr
x∼µ

[f(x) ̸= σ] Pr
y∼µ

[f(y) = σ] ≥ 2min
σ∈Σ

Pr
x∼µ

[f(x) ̸= σ]
∑
σ∈Σ

Pr
y∼µ

[f(y) = σ] = 2min
σ∈Σ

Pr
x∼µ

[f(x) ̸= σ].

Plugging this in the previous inequality, we conclude that

min
σ∈Σ

Pr
x∼µ

[f(x) ̸= σ] ≤
Pr(x,y)∼M [f(x) ̸= f(y)]

1− λ
≤ ϵ

1− λ
.
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In our application, M will be a product chain where each factor has full support (a condition which can
be replaced by ergodicity) and there are finitely many types of factors. In this case we can bound λ(M)
irrespective of the number of factors.

Lemma 5.2 (Agreement lemma for product chains). Let Y,Σ be finite sets, and let M1, . . . ,Mt be a finite
number of symmetric bistochastic Y ×Y matrices with strictly positive entries. There exists C > 0 such that
the following holds.

Given ψ : [n] → [t], define the distribution Mψ on Y n × Y n by sampling the i’th coordinate indepen-
dently according to Mψ(i). Let µψ be the corresponding stationary distribution, obtained by sampling the i’th
coordinate independently according to µ(Mψ(i)).

If a function f : Y n → Σ satisfies

Pr
(x,y)∼Mψ

[f(x) ̸= f(y)] ≤ ϵ

then there exists σ ∈ Σ such that
Pr
x∼µψ

[f(x) ̸= σ] ≤ Cϵ.

Proof. Given Lemma 5.1, it suffices to find λ such that λ(Mψ) ≤ λ for all ψ; we can then take C = 1/(1−λ).
Since all entries of M1, . . . ,Mt are positive, we can find λ < 1 such that all eigenvalues of M1, . . . ,Mt

other than the top ones are bounded by λ in absolute value. It immediately follows that λ(Mψ) ≤ λ.

5.3 Arbitrary distributions

In this section we prove Theorem 1.6 in full generality, by reduction to the special case µ = π (recall that π
is the uniform distribution over Pm,b).

For small enough q > 0, we can find a distribution ν such that

µ = qπ + (1− q)ν.

Indeed, such a distribution exists whenever q ≤ minw∈Pm,b µ(w)/π(w). We furthermore choose q so that 1/q
is an integer (this will slightly simplify some future argument).

We can sample x ∼ µn using a three-step process:

1. Let S ∼ µnq . This means that S is a subset of [n] chosen by including each i with probability q
independently.

2. If i /∈ S, sample xi according to ν.

3. If i ∈ S, sample xi according to π.

If we stop after the first two steps, then the remaining step is a sample from πS , which we can analyze using
the special case of Theorem 1.6.

Lemma 5.3 (Reduction to uniform distribution). For every S ⊆ [m] and α ∈ PSm,b there exist b1(S, α), . . . , bm(S, α) ∈
{0, 1} and A(S, α) ⊆ S such that for all j ∈ [m],

E
(S,α)∼(µnq ,νS

c )
Pr
π|j

[fj |Sc←α|j ̸= χA(S,α),bj(S,α)] = O(ϵ).

Here χA,b(x) = b⊕
⊕

i∈A xi. We also use χA = χA,0.

Proof. For every S and every α ∈ PSm,b, define

ϵ(S, α) = Pr
β∼πS

[(f1|Sc←α|1(β|1), . . . , fm|Sc←α|m(β|m)) /∈ Pm,b],
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observing that
E

(S,α)∼(µnq ,νS
c )
[ϵ(S, α)] = Pr

µS
[(f1, . . . , fm) /∈ Pm,b] ≤ ϵ.

Apply the special case of the uniform distribution to every (S, α) to obtain b1(S, α), . . . , bm(S, α) ∈ {0, 1}
and A(S, α) ⊆ S such that for all j ∈ [m],

Pr
π|j

[fj |Sc←α|j ̸= χA(S,α),bj(S,α)] = O(ϵ(S, α)).

The result immediately follows.

The rest of the proof comprises the following steps:

1. Using the agreement theorem of [DFH25] we show that for each α ∈ Pnm,b there exists a consensus set
A(α) such that typically A(S, α|Sc) = A(α) ∩ S.

2. Using Lemma 5.2 we show that there exists a consensus set A such that typically A(α) = A.

3. Using Lemma 5.2 we show that the functions fj ⊕ χA,bj are close to constant, completing the proof.

5.3.1 Step 1

The first step constitutes the following lemma.

Lemma 5.4 (Agreement over S). For every α ∈ Pnm,b there exists A(α) ⊆ [n] such that

E
α∼νn

Pr
S∼µq

[A(S, α|Sc) ̸= A(α) ∩ S] = O(ϵ).

The proof will require an agreement theorem essentially proved in [DFH25]. The theorem concerns the
distribution µnq,r, where 0 < q < r < 1. This is the distribution on triples (S1, S2, T ) defined as follows:

• Sample T ∼ µnr .

• Sample S1 ⊇ T so that S1 ∼ µnq .

• Sample S2 ⊇ T so that S2 ∼ µnq .

The sampling in the second and third steps can be performed as follows. If i ∈ T , then we always put i ∈ S1,
and otherwise, we put it in S1 with probability q−r

1−r .

Theorem 5.5 (Agreement theorem). Let 0 < r < q < 1. Suppose that for every S ⊆ [n] we have a function
ϕS : S → Σ, where Σ is some finite alphabet. If

Pr
(S1,S2,T )∼µnq,r

[ϕS1
|T ̸= ϕS2

|T ] ≤ ϵ

then there exists ψ : [n] → Σ such that

Pr
S∼µnq

[ϕS ̸= ψ|S ] = O(ϵ).

Proof. The slice version of this result is [DFH25, Theorem 3.1]. This version can be proved using the “going
to infinity” argument which is used to prove [DFH25, Theorem 5.4].

We can now prove the lemma.
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Proof of Lemma 5.4. We would like to get into the setting of Theorem 5.5, for q := q, an appropriate r, and
ϕS := A(S, α|S), for various values of α.

For small enough c > 0 we can find a distribution λ such that

π = cν + (1− c)λ.

We take r = (1− c)q. We will show that

E
α∼νn

Pr
(S1,S2,T )∼µnq,r

[A(S1, α|Sc1 ) ∩ T ̸= A(S2, α|Sc2 ) ∩ T ] = O(ϵ). (1)

Applying Theorem 5.5 for each α separately then immediately implies the lemma.
In order to show that Equation (1) holds, we use the fact that f1|S1←α|S1 is close to χA(S1,α|S1 ) (up to

negation), and similarly f1|S2←α|S2 is close to χA(S2,α|S2 ) (up to negation). Fixing the elements outside of
T , we obtain that the same function is close to both χA(S1,α|S1 )∩T and χA(S2,α|S2 )∩T (up to negation), which
can only happen if A(S1, α|S1

) ∩ T = A(S2, α|S2
) ∩ T (since different characters are far from each other).

The first step in this plan is to massage the conclusion of Lemma 5.3 using the equation for π:

E
(S,α′)∼(µnq ,ν

Sc )

(T,α′′)∼(µS1−c,ν
S\T )

min
B∈{0,1}

Pr
λ|T1

[f1|Sc←α′|1,S\T←α′′|1 ̸= χA(S,α′)∩T,B ] = O(ϵ).

(We could determine B explicitly, but this is not necessary.)
An equivalent way to sample (S, α′), (T, α′′) is to first sample S, T , then sample α ∼ νn, and take

α′ = α|Sc and α′′ = α|S\T . In particular, for t ∈ {1, 2},

E
α∼νn

E
(S1,S2,T )∼µn

q,(1−c)q

min
Bt∈{0,1}

Pr
λ|T1

[f1|T c←α|Tc,1 ̸= χA(St,α|Sct )∩T,Bt
] = O(ϵ).

Combining this for t = 1 and t = 2 gives

E
α∼νn

E
(S1,S2,T )∼µn

q,(1−c)q

min
B1,B2∈{0,1}

Pr
λ|T1

[χA(S1,α|Sc1 )∩T,B1
̸= χA(S2,α|Sc2 )∩T,B2

] = O(ϵ).

At this point we use the fact that different characters are far from each other: if A1 ̸= A2 then for all
B1, B2,

Pr
λ|T1

[χA1,B1 ̸= χA2,B2 ] ≥ min(λ|1(0), λ|1(1)).

Since λ is fixed, this immediately implies Equation (1), completing the proof.

5.3.2 Step 2

The second step constitutes the following lemma.

Lemma 5.6 (Agreement over α). There exists A ⊆ [n] such that

Pr
α∼νn

[A(α) ̸= A] = O(ϵ).

Proof. The proof relies on the fact that while A(α) is a function of all of α, A(S, α|Sc) only depends on part
of α. In particular, suppose that we sample two copies of νn by sampling α ∼ νn and then obtaining α′

by only resampling the coordinates in S. Denote this distribution by ν(S). Since α|Sc = α′|Sc , Lemma 5.4
shows that

Pr
(S,α,α′)∼(µnq ,ν(S))

[A(α) ∩ S ̸= A(α′) ∩ S] = O(ϵ).

In order to proceed, we introduce a conceit:

Pr
(S,α,α′)∼(µnq ,ν(S))

T∼µ1/2(S)

[A(α) ∩ T ̸= A(α′) ∩ T ] ≤ Pr
(S,α,α′)∼(µnq ,ν(S))

[A(α) ∩ S ̸= A(α′) ∩ S] = O(ϵ).

28



If we marginalize over S, the distribution of (α, α′), which we denote ν′(T ), becomes the following. First,

sample α ∼ νn. Then, sample S ⊇ T by including any i /∈ T with probability q/2
1−q/2 . Finally, resample all

coordinates in S. We deduce

Pr
(T,α,α′)∼(µn

q/2
,ν′(T ))

[A(α) ∩ T ̸= A(α′) ∩ T ] = O(ϵ).

In contrast to the distribution ν(S), which only mixes the coordinates in S, the distribution ν′(T ) mixes
all coordinates. Moreover, there are only two types of coordinates: those in T (which always get resampled)

and the rest (which get resampled with probability q/2
1−q/2 ). This allows us to apply Lemma 5.2, obtaining

A′(T ) ⊆ T satisfying
E

T∼µn
q/2

Pr
α∼νn

[A(α) ∩ T ̸= A′(T )] = O(ϵ).

Now it’s time for the final trick. Recall that 1/q is an integer. Choose c : [n] → [2/q] uniformly at random,
and for t ∈ [2/q], let Tt(c) = c−1(t). Since Tt ∼ µnq/2 for each t, we have

E
c

Pr
α∼νn

[A(α) ∩ Tt(c) ̸= A′(Tt(c)) for some t] = O(ϵ).

We can find c such that the probability above is O(ϵ). Define A via A ∩ Tt(c) = A′(Tt(c)); this makes
sense since T1(c), . . . , T2/q(c) partition [n]. The lemma immediately follows.

5.3.3 Step 3

In the final step, we complete the proof of Theorem 1.6.

Proof of Theorem 1.6. The main idea is to “factor out” the set A found in Lemma 5.6. Accordingly, we
define functions h1, . . . , hm : {0, 1}n → {0, 1} by

hj = fj ⊕ χA.

We will complete the proof by showing that hj is O(ϵ)-close to a constant.
As our starting point, we combine Lemmas 5.3, 5.4 and 5.6 to obtain

E
(S,α)∼(µnq ,νS

c )
Pr
π|Sj

[fj |Sc←α|j ̸= χA∩S,bj(S,α)] = O(ϵ).

Plugging in hj , we obtain

E
(S,α)∼(µnq ,νS

c )
Pr
π|Sj

[hj |Sc←α|j ̸= χA∩Sc,bj(S,α)(α|Sc,j)] = O(ϵ).

The expression χA∩Sc,bj(S,α)(α|Sc,j) doesn’t depend on the coordinates in S, and so

E
(S,α)∼(µnq ,νS

c )
Pr

β,β′∼π|Sj
[hj |Sc←α|j (β) ̸= hj |Sc←α|j (β

′)] = O(ϵ).

Let γ ∈ Pnm,b be the vector defined by γ|Sc = α and γ|S = β, and let γ′ ∈ Pnm,b be defined similarly with
γ′|S = β′. The inputs to hj in the formula above are thus γ|j and γ′|j .

We can sample γ, γ′ as follows. First, sample γ ∈ µn. Next, sample S given γ; the (non-zero) probability
that i ∈ S depends only on γi, and can be calculated using Bayes’ law. Finally, γ′ is obtained by resampling
the coordinates in S according to π. This means that the distribution of (γ, γ′) corresponds to some product
chain in the sense of Lemma 5.2, with a single type of factor. The same holds for (γ|j , γ′|j), and so Lemma 5.2
implies that there exists bj ∈ {0, 1} such that

Pr
µn

[hj ̸= bj ] = O(ϵ).

29



Finally, we take gj = χA,bj . Observe that Prµ|nj [gj ̸= fj ] = O(ϵ), and so

Pr
µn

[(g1, . . . , gm) /∈ Pm,b] = O(ϵ).

Whether (g1, . . . , gm) ∈ Pm,b or not depends only on b1, . . . , bm (the dependence on the input cancels out).
We can assume without loss of generality that ϵ is small enough to make the right-hand side smaller than 1.
This implies that (g1, . . . , gm) is a generalized polymorphism of Pm,b, completing the proof.

6 Intersecting families

In this section we prove Theorem 1.9, which improves on results of Friedgut and Regev [FR18] (their paper,
in turn, improves on [DFR08, DF09]).

Theorem 1.9 (Improved Friedgut–Regev). Fix 0 < p < 1/2. For every ϵ > 0 the following holds for all n
such that pn is an integer.

If F ⊆
(
[n]
pn

)
contains a 1/ expΘ(1/ϵC)-fraction of the edges of the Kneser graph then there exists an

intersecting family G ⊆
(
[n]
pn

)
computed by a decision tree of depth O(1/ϵC) (for some global constant C) such

that |F \ G| ≤ ϵ
(
n
pn

)
.

The proof relies on the machinery of Friedgut and Regev, which reduces it to the following statement.

Theorem 6.1 (Fractional improved Friedgut–Regev). Fix p ∈ (0, 1/2). Let PNAND = {(0, 0), (1, 0), (0, 1)},
and let µ be the following distribution: µ(0, 0) = 1 − 2p, µ(1, 0) = µ(0, 1) = p. For every ϵ > 0 there exist
δ = 1/ expΘ(1/ϵC) and M = O(1/ϵC) (for some global constant C) such that the following holds.

Suppose that f1, f2 : {0, 1}n → [0, 1] satisfy

E
(x(1),x(2))∼µn

[f1(x
(1))f2(x

(2))] ≤ δ.

Then there exist g1, g2 : {0, 1}n → {0, 1}, computed by a decision tree of depth at most M , such that (g1, g2)
is a generalized polymorphism of PNAND, and moreover for j ∈ {1, 2},

E
x(j)∼µ|nj

[(1− gj(x
(j)))fj(x

(j))] ≤ ϵ.

Furthermore, if f1 = f2 then g1 = g2.

Notice that in this statement, the functions f1, f2 are not necessarily Boolean, but they take values in
the interval [0, 1].

Let us briefly explain how Theorem 1.9 follows from Theorem 6.1. Given F , which we identify with the
corresponding Boolean function, we define

f1(x) = f2(x) =

E x′≤x
|x′|=k

[F(x′)] if |x| ≥ k,

0 otherwise.

[FR18, Lemma 7.3] shows that the assumption of Theorem 1.9 implies that of Theorem 6.1. We apply
Theorem 6.1, and convert g1 = g2 to a family G in the natural way. [FR18, Lemma 7.4] shows that the
conclusion of Theorem 6.1 implies the conclusion of Theorem 1.9.

The proof of Theorem 6.1 is very similar to the proof of Theorem 1.7. First, we need versions of
Theorem 3.2 (It Ain’t Over Till It’s Over) and Theorem 3.3 (Jones’ regularity lemma) for functions taking
values in [0, 1].

The original proof of Theorem 3.2 [MOO10] was in fact formulated for functions taking values in [0, 1].
(Note that our definition of regularity makes sense for arbitrary real-valued functions.)
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Theorem 6.2 (Fractional It Ain’t Over Till It’s Over). Theorem 3.2 holds for functions f : {0, 1}n → [0, 1]
(with the same parameters).

A simple modification of the proof of Jones’ regularity lemma, which we present in Section 8, extends it
to the same setting.

Theorem 6.3 (Fractional Jones’ regularity lemma). Theorem 3.3 holds for functions f : {0, 1}n → [0, 1]
(with the same parameters).

Upon inspection, the proof of Lemma 3.5 (Counting lemma for NAND) translates to the following state-
ment.

Lemma 6.4 (Fractional counting lemma for NAND). Fix p ∈ (0, 1/2), and let PNAND, µ be as in Theorem 6.1.
For every ϵ > 0 there exists a constant C = C(P, µ) such that the following holds for d = Θ(log(1/ϵ)),
τ = Θ(ϵC), and γ = Θ(ϵ2C).

Let ϕ1, . . . , ϕm : {0, 1}n → [0, 1] be functions such that ϕj is (d, τ)-regular with respect to µ|j and Eµ|j [ϕj ] ≥
ϵ. Then

E
(y(1),...,y(2))∼µn

[ϕ1(y
(1))ϕ2(y

(2))] ≥ γ.

Proof sketch. In the proof of Lemma 3.5 we define a random restriction ρ ∼ νn, where ν is supported
on inputs in {0, 1, ∗}m with at most one free coordinate. We show that for an appropriate choice of d =
Θ(log(1/ϵ)) and τ, δ1, δ2 = Θ(1/ϵC),

Pr
ρ
[ E
µ|j

[ϕj |ρ|j ] ≥ δj ] ≥ 1− ϵ for j ∈ {1, 2}.

If we sample (y(1), y(2))|ρ then ϕ1(y
(1)), ϕ2(y

(2)) are independent since they depend on disjoint sets of coor-
dinates. Therefore

E
(y(1),...,y(2))∼µn

[ϕ1(y
(1))ϕ2(y

(2))] ≥ (1− ϵ)δ1δ2.

We can now prove Theorem 6.1, closely following the proof of Theorem 1.7.

Proof of Theorem 6.1. Apply Lemma 6.4 with ϵ := ϵ/2 to obtain d = Θ(log(1/ϵ)) and τ, γ = Θ(1/ϵC).
We apply Theorem 6.3 with ϵ := ϵ/2 and the parameters d, τ to f1, f2 to obtain a decision tree T of depth

M = O(d/ϵτ) = Õ(1/ϵ2C). We define the functions g1, g2 : {0, 1}n → {0, 1} as follows. For each leaf ρ ∈ T ,

gj |ρ =

{
0 if fj |ρ is not (d, τ)-regular or Eµ|j [fj |ρ] ≤ ϵ/2,

1 otherwise.

If we sample ρ according to µ|j then according to Jones’ regularity lemma, fj |ρ is (d, τ)-regular with
probability at least 1− ϵ/2. This shows that Eµ|j [(1− gj)fj ] ≤ ϵ/2 + ϵ/2 = ϵ.

It remains to show that (g1, g2) is a generalized polymorphism of PNAND for small enough δ. If this
is not the case, then there exists a partial assignment ρ ∈ T such that (g1|ρ|1 , g2|ρ|2) is not a generalized
polymorphism of PNAND, which implies that f1|ρ|1 , f2|ρ|2 are both regular and have expectation at least
ϵ/2. Lemma 6.4 thus implies that Eµ[f1|ρ|1f2|ρ|2 ] ≥ γ, which is ruled out by defining δ = min(µ)Mγ/2 =

1/ exp Θ̃(1/ϵ2C).

The proofs of Theorems 1.9 and 6.1 extend to other predicates. We leave this to future work.
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7 General alphabets

In this section we prove Theorem 1.10, an analog of Theorem 1.5 for some predicates over larger alphabets.

Theorem 1.10 (Larger alphabets). Let Σ be a finite set, let P ⊆ Σm, and let µ be a distribution on P with
full support. Suppose that for each j ∈ [m] there exists w ∈ P such that w remains in P even if we modify
its j’th coordinate arbitrarily. For every ϵ > 0 there exists δ > 0 such that the following holds for all n.

If f1, . . . , fm : Σn → Σ is a (µ, δ)-approximate generalized polymorphism of P then there exists a gener-
alized polymorphism g1, . . . , gm : Σn → Σ of P such that Prµ|j [gj ̸= fj ] ≤ ϵ for all j ∈ [m].

The proof follows the general outline of the proof of Theorem 1.5, but is much simpler. First, the counting
lemma is direct rather than inductive. Second, there is no need to accommodate affine relations.

Before starting the proof proper, we need to generalize the notion of regularity to the setting of functions
f : Σn → Σ. The original proof of It Ain’t Over Till It’s Over [MOO10] actually works for arbitrary
alphabets. Given a function f : Σn → {0, 1} and a distribution µ over Σ with full support, the Efron–Stein
decomposition is the unique decomposition

f =
∑
S

fS

in which fS depends only on the coordinates in S, the functions fS are orthogonal, and fS has zero expec-
tation if we fix the values of coordinates in some set T ̸⊇ S. The definition of low-degree influences readily
extends:

Infi[f
≤d] =

∑
|S|≤d
i∈S

∥fS∥2,

where the norm is computed according to µ.
This prompts the following definition of regularity.

Definition 7.1 (Regularity for arbitrary alphabets). Let Σ be a finite alphabet of size at least 2, let µ be
a distribution on Σ with full support, and let d ∈ N and τ > 0.

A function f : Σn → Σ is (d, τ)-regular with respect to µ if Infi[(f
=σ)≤d] for all i ∈ [n] and σ = Σ, where

f=σ(x) =

{
1 if f(x) = σ,

0 otherwise.

With this definition, we can extend both It Ain’t Over Till It’s Over and Jones’ regularity lemma.

Theorem 7.2 (It Ain’t Over Till It’s Over for arbitrary alphabets). For every alphabet Σ, full support
distribution µ, q ∈ (0, 1) and ϵ > 0 the following holds for some constant C and d = Θ(log(1/ϵ)), τ = Θ(ϵC),
and δ = Θ(ϵC).

Let ρ be a random restriction obtained by sampling each coordinate i ∈ [n] independently according to the
following law: with probability 1− q, draw a sample from µ, and otherwise, draw ∗.

If f : Σn → Σ is (d, τ)-regular with respect to µ then for every σ ∈ Σ such that Prµ[f = σ] ≥ ϵ we have

Pr
ρ
[Pr[f |ρ = σ] ≥ δ] ≥ 1− ϵ.

Proof. Follows immediately from [MOO10] by considering the functions f=σ.

Jones’ regularity lemma can also be extended, as we show in Section 8.

Theorem 7.3 (Jones’ regularity lemma for arbitrary alphabets). For every alphabet Σ, m ∈ N, full support
distributions µ1, . . . , µm, and every ϵ, τ > 0, d ∈ N the following holds for some function M ∈ N.

For all functions f1, . . . , fm : Σn → Σ there exists a set J of size at most M such that for all j,

Pr
x∼µj

[f |J←x is (d, τ)-regular with respect to µj ] ≥ 1− ϵ.
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While we can prove a counting lemma in the style of Lemma 3.4 or Lemma 4.3, the counting lemma that
is useful here is similar to the one implicitly used to prove Lemma 4.6. We prove this lemma in Section 7.1,
where we also prove an analog of Lemma 4.9. Combining these with Jones’ regularity lemma, we complete
the proof of Theorem 1.10 in Section 7.2.

For the rest of this section, we fix P and µ.

7.1 Counting lemma

The counting lemma that we prove uses a restriction similar to the one appearing in Section 4.2. In that
section, we had to distinguish between flexible coordinates and inflexible coordinates. In our case, all
coordinates are flexible by assumption.

Definition 7.4 (Restriction). For every j ∈ [m], let w(j,∗) be a partial input, missing only the j’th coordinate,
such that all of its completions w(j,σ) belong to P .

The distribution ν is a distribution on Q := P ∪ {w(j,∗) : j ∈ [m]} defined as follows, for a small enough
q > 0:

• For w ∈ P , sample w with probability

µ(w)− q
∑

(j,σ) : w=w(j,σ)

µ|j(σ).

• For every j ∈ [m], sample w(j,∗) with probability q.

Concretely, it suffices to take q = min(µ)/m, where min(µ) = minw∈P µ(w).
Given ρ ∈ Q, the distribution µ|ρ is obtained by sampling the missing coordinate in w(j,∗) using µ|j .
By construction, if ρ ∼ ν and x ∼ µ|ρ then x ∼ µ. Moreover, the marginal distribution of ρj given ρj ̸= ∗

is µ|j .

Lemma 7.5 (Counting lemma). Let ϕ1, . . . , ϕm : Σn → Σ, and let ρ ∈ Qn. Let w ∈ Σm be such that for
each j ∈ [m],

Pr
µ|j

[ϕj |ρ|j = wj ] ≥ ϵ.

Then
Pr
µ|ρ

[(ϕ1, . . . , ϕm) = w] ≥ ϵm.

Proof. Since ρ is supported on inputs with at most one free coordinate, the events ϕj |ρ|j = wj are indepen-
dent. The lemma immediately follows.

We will eventually choose ρ and δ (a bound on Prµ[(f1, . . . , fm) /∈ P ]) so that the counting lemma
implies that any w satisfying the conditions in the lemma belongs to P . This suggests the following rounding
procedure.

Definition 7.6 (Rounding). Let ϕ1, . . . , ϕm ∈ Σn → Σ and let ρ ∈ Qn.
For a parameter ϵ ∈ (0, 1), we define roundρ,ϵj (ϕj) : Σ

n → Σ as follows. First, let

Σ≥ϵ := {σ ∈ Σ : Pr
µ|j

[ϕj |ρj = σ] ≥ ϵ},

and choose σ0 ∈ Σ≥ϵ arbitrarily (say the symbol with the largest probability). Then

roundρ,ϵj (ϕj)(x) =

{
ϕj(x) if ϕj(x) ∈ Σ≥ϵ,

σ0 otherwise.

The following lemma bounds the error in rounding, and roughly corresponds to Lemma 4.9.
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Lemma 7.7 (Rounding lemma). For every ϵ > 0 there exist d ∈ N and τ, η > 0 such that the following
holds.

Let ϕ1, . . . , ϕm : Σn → Σ. If ϕj is (d, τ)-regular with respect to µ|j for all j then for all j,

E
ρ∼νn

[
Pr
µ|j

[roundρ,ηj (ϕj) ̸= ϕj ]
]
≤ ϵ.

Proof. Apply Theorem 7.2 (It Ain’t Over Till It’s Over) with Σ, µ, q and ϵ := ϵ/|Σ| to obtain d, τ, δ. We
take η := δ.

Recall the definition of Σ≥η in Definition 7.6. By definition,

Pr
µ|j

[roundρ,ηj ̸= ϕj ] =
∑

σ/∈Σ≥η

Pr
µ|j

[ϕj = σ].

Therefore
E

ρ∼νn

[
Pr
µ|j

[roundρ,ηj ̸= ϕj ]
]
=

∑
σ∈Σ

Pr[σ /∈ Σ≥η] Pr
µ|j

[ϕj = σ].

For each σ ∈ Σ, we consider two cases. If Prµ|j [ϕj = σ] < ϵ/|Σ| then the summand is clearly at most
ϵ/|Σ|. Otherwise, Pr[σ /∈ Σ≥η] ≤ ϵ/|Σ| by Theorem 7.2. In both cases, the summand is at most ϵ/|Σ|.
Summing over all σ ∈ Σ yields the result.

7.2 Main result

We are now ready to prove Theorem 1.10.

Proof of Theorem 1.10. We prove the theorem with an error probability of O(ϵ) rather than ϵ.
Apply Lemma 7.7 with ϵ to obtain d, τ, η. Apply Theorem 7.3 with alphabet Σ, distributions µ|1, . . . , µ|m,

and parameters ϵ, d, τ to obtain M and a set J of size at most M such that for all j,

Pr
x∼µJj

[f |J←x is (d, τ)-regular with respect to µj ] ≥ 1− ϵ.

As in the proof of Theorem 1.5, we say that a subfunction fj |J←x is good if there exist (x(1), . . . , x(m)) ∈
P J such that x(j) = x and fk|J←x(k) is (d, τ)-regular for all k. A simple argument (written down explicitly
as Lemma 4.8) shows that for all j,

Pr
x∼µ|j

[fj |J←x is good] ≥ 1−mϵ.

With hindsight, define
δ = min(µ)Mηm/3.

We have

E
ρ∼νJc

E
(x(1),...,x(m))∼µJ

Pr
µJc |ρ

[(f1|J←x(1) , . . . , fm|J←x(m)) /∈ P ] = Pr
µn

[(f1, . . . , fm) /∈ P ] ≤ δ.

Therefore with probability at least 1/2 over the choice of ρ,

E
(x(1),...,x(m))∼µJ

Pr
µJc |ρ

[(f1|J←x(1) , . . . , fm|J←x(m)) /∈ P ] ≤ 2δ < min(µ)Mηm.

In this case, we say that ρ is good.
If ρ is good then for any (x(1), . . . , x(m)) ∈ P J ,

Pr
µ|ρ

[(f1|J←x(1) , . . . , fm|J←x(m)) /∈ P ] < ηM .
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Applying Lemma 7.5, this shows that (roundρ,η1 (f1|J←x(1)), . . . , round(ρ,ηm (fm|J←x(m))) is a generalized poly-
morphism of P . Accordingly, we define gρ1 , . . . , g

ρ
m by

gρj |J←x = round
(ρ,η)
j (fj |J←x).

For every good ρ, the functions (g1, . . . , gm) are a generalized polymorphism of P .
If fj |J←x is good then Lemma 7.7 shows that

E
ρ∼νJ

c

ρ good

[
Pr
µ|Jcj

[gρj |J←x ̸= fj |J←x]
]
≤ ϵ/Pr[ρ is good] ≤ 2ϵ.

Since the probability that fj |J←x is not good is at most mϵ, it follows that

m∑
j=1

E
ρ∼νJ

c

ρ good

[
Pr
µnj

[gρj ̸= fj ]
]
≤ m(m+ 2)ϵ.

In particular, we can find ρ for which this sum is at most m(m+2)ϵ. Taking gj = gρj for all j completes the
proof.

8 Regularity lemmas

In this section we prove the various versions of Jones’ regularity lemma: Theorems 3.3, 4.2, 6.3 and 7.3.
We derive all of them from the following two versions.

Theorem 8.1 (Jones’ regularity lemma (decision tree version)). For every alphabet Σ, every m ∈ N, every
full support distributions µ1, . . . , µm, and every ϵ, τ > 0, d ∈ N the following holds for M = O(md/ϵτ).

For all functions f1, . . . , fm : Σn → [0, 1] and every decision tree T0 there exists a decision tree T extending
T0 with additional depth at most M such that for all j,

Pr
ρ∼T

[fj |ρ is (d, τ)-regular with respect to µj ] ≥ 1− ϵ,

where ρ is sampled by following T , sampling each variable encountered according to µj.

Theorem 8.2 (Jones’ regularity lemma (junta version)). For every alphabet Σ, every m ∈ N, every full
support distributions µ1, . . . , µm, and every ϵ, τ > 0, d ∈ N the following holds for some function M : N → N.

For all functions f1, . . . , fm : Σn → [0, 1] and set J0 ⊆ [n] there exists set J ⊇ J0 of size at most M(|J |)
such that for all j,

Pr
x∼µj

[fj |J←x is (d, τ)-regular with respect to µj ] ≥ 1− ϵ.

Theorems 3.3 and 6.3 follow from Theorem 8.1, and Theorems 4.2 and 7.3 follow from Theorem 8.2.

The proofs proceed via a different notion of regularity, using noisy influences.

Definition 8.3 (Noisy influences). For ρ ∈ (0, 1), let Nρ be the distribution of pairs x, y ∈ Σn sampled as
follows. We sample x ∼ µn. We sample y by resampling each coordinate of x with probability 1 − ρ. The
noise stability of a function f : Σn → R is defined as

Stabρ[f ] = E
(x,y)∼Nρ

[f(x)f(y)] =
∑
S

ρ|S|∥fS∥2,

where fS are the components of the Efron–Stein decomposition of f , and the norm is computed according
to µ.
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For a coordinate i, let Eif be obtained by averaging over the coordinate i:

Eif(x) = E
a∼µ

[f(x|i←a)] =
∑
i/∈S

fS .

The noisy influences of f are

Infρi [f ] = Stabρ[f − Eif ] =
∑
i∈S

ρ|S|∥fS∥2.

We say that f is (ρ, τ)-noisy-regular if Infρi [f ] ≤ τ for all i.

We derive Theorem 8.1 from the following version for noisy influences.

Theorem 8.4 (Jones’ regularity lemma for noisy influences (decision tree version)). For every alphabet Σ,
every m ∈ N, every full support distributions µ1, . . . , µm, and every ϵ, τ > 0, d ∈ N the following holds for
M = m/ϵτ · ρ/(1− ρ).

For all functions f1, . . . , fm : Σn → [0, 1] and every decision tree T0 there exists a decision tree T extending
T0 with an additional depth at most M such that for all j,

Pr
ρ∼T

[fj |ρ is (ρ, τ)-noisy-regular with respect to µj ] ≥ 1− ϵ,

where ρ is sampled by following T , sampling each variable encountered according to µj.

The proof of Theorem 8.4 uses a potential argument. For a decision tree T , we define

Φρf,µ(T ) = E
ℓ∈T

[Stabρ[f |ℓ]],

where ℓ is a random leaf of T sampled using µ. The potential function we use is the sum of these potentials
for all fj :

Φ(T ) =
∑
j

Φρfj ,µj (T ).

All properties of this potential function follow from the following simple calculation, which corresponds
to splitting a node in the tree.

Lemma 8.5 (Splitting a node). For every i we have

E
a∼µ

[Stabρ[f |i←a]] = Stabρ[f ] +
1− ρ

ρ
Infρi [f ].

Proof. The definition of noise stability shows that

Stabρ[f ] = ρ E
a∼µ

[Stabρ[f |i←a]] + (1− ρ) E
a,b∼µ

(x′,y′)∼Nρ

[f |i←a(x′)f |i←b(y′)].

Similarly, the noisy influence is

Infρi [f ] = E
(x,y)∼Nρ
a,b∼µ

[(f(x)− f(x|i←a))(f(y)− f(y|i←b)] = Stabρ[f ]− E
a,b∼µ

(x′,y′)∼Nρ

[f |i←a(x′)f |i←b(y′)],

where the second term is the result of summing three identical terms with different signs. Substituting the
earlier formula gives

Infρi [f ] = ρ E
a∼µ

[Stabρ[f |i←a]]− ρ E
a,b∼µ

(x′,y′)∼Nρ

[f |i←a(x′)f |i←b(y′)].

The lemma immediately follows.
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We can now prove Theorem 8.4.

Proof of Theorem 8.4. We construct a sequence of trees Tt as follows. The starting point is T0. If Tt doesn’t
satisfy the conclusion of the lemma for fj , then Lemma 8.5 implies that we can add one level to Tt, forming
a tree Tt+1 satisfying

Φρfj ,µj (Tt+1) ≥ Φρfj ,µj (Tt) +
1− ρ

ρ
ϵτ.

For k ̸= j, the lemma gives the guarantee

Φρfk,µk(Tt+1) ≥ Φρfk,µk(Tt),

and so

Φ(Tt+1) ≥ Φ(Tt) +
1− ρ

ρ
ϵτ.

Since Stabρ[f ] ≤ ∥f∥2 for every function f , it is easy to check that 0 ≤ Φ(T ) ≤ m for all T . In particular,
the process above must terminate after at most m/ϵτ · ρ/(1 − ρ) steps. Taking the last tree to be our T
completes the proof.

We deduce Theorem 8.1 by relating low-degree influences and noisy influences.

Proof of Theorem 8.1. If a function g : Σn → [0, 1] is (ρ, τ)-noisy-regular then for every ρ ∈ (0, 1) and every
i ∈ [n] we have

Infi[g
≤d] =

∑
|S|≤d
i∈S

∥fS∥2 ≤ ρ−d
∑
i∈S

ρ|S|∥fS∥2 = ρ−d Infρi [g].

We choose ρ = 1 − 1/d and apply Theorem 8.4 with τ := ρdτ to complete the proof, observing that
ρd = Θ(1).

The proof of Theorem 8.2 similarly follows from a version for noisy influences.

Theorem 8.6 (Jones’ regularity lemma for noisy influences (junta version)). For every alphabet Σ, every
m ∈ N, every full support distributions µ1, . . . , µm, and every ϵ, τ > 0, d ∈ N the following holds for some
function M : N → N.

For all functions f1, . . . , fm : Σn → [0, 1] and every J0 ⊆ [n] there exists a set J ⊇ J0 of size at most
M(|J0|) such that for all j,

Pr
x∼µj

[fj |J←x is (ρ, τ)-noisy-regular with respect to µj for all j] ≥ 1− ϵ.

The proof is a modification of the proof of Theorem 8.4.

Proof. For a set J , let C(J) be the decision tree querying all coordinates in J .
We construct a sequence of sets Jt as follows. The start point is J0. If Jt doesn’t satisfy the conclusion

of the lemma for fj , by Lemma 8.5 we can add one more level to C(Jt) to obtain a tree T ′ such that

Φ(T ′) ≥ Φ(C(Jt)) +
1− ρ

ρ
ϵτ.

Let Jt+1 consist of all variables appearing in T ′. We can obtain a tree with the same set of leaves as C(Jt+1)
by splitting nodes of T ′, and so Lemma 8.5 implies that

Φ(C(Jt+1)) ≥ Φ(T ′) ≥ Φ(C(Jt)) +
1− ρ

ρ
ϵτ.

As in the proof of Theorem 8.4, the process terminates within 1/ϵτ · ρ/(1 − ρ) steps. Since |Jt+1| ≤
|Jt|+ |Σ||Jt|, the final size of the resulting set J can be bounded independently of n.

The proof makes it clear that the dependence of M on the parameters is much worse in Theorem 4.2
than in Theorem 3.3. For this reason, it would be interesting to find a proof of Theorem 1.5 which uses the
decision tree version rather than the junta version.
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9 Open questions

We would like to highlight the following open questions:

1. Extend Theorem 1.10 to cover all predicates P ⊆ Σm.

The simplest predicate that our techniques cannot handle is {(a, b, c) ∈ Z3 : a+ b+ c ̸= 0}.

2. Prove Theorem 1.5 with the additional guarantee that if fi = fj and µ|i = µ|j then gi = gj .

This guarantee follows from Theorem 1.5 when all generalized polymorphisms g1, . . . , gm of P are such
that if µ|i = µj then either gi = gj or Prµ|i [gi ̸= gj ] = Ω(1). This is the case for the predicates
Pm,b considered in Theorem 1.6. We are also able to provide this guarantee in the monotone setting
(Theorem 1.7).

There are other situations in which we can prove this guarantee as a corollary of Theorem 1.5. One
example is the predicate P∧ = {(a, b, a∧ b) : a, b ∈ {0, 1}}. In this case the generalized polymorphisms
g1, g2, g3 come in two types: (i) g1 = g2 = g3 =

∧
i∈S xi for some S; (ii) g1 = g3 = 0 or g2 = g3 = 0. In

the first case, we automatically get the guarantee. In the second case, say g1 = g3 = 0, the only claim
which doesn’t automatically hold is that if f1 = f2 and µ|1 = µ|2 then g1 = g2. In this case g2 is close
to g1 (since f1 = f2 and g1, g2 are close to f1, f2), and so we can set g2 ≡ 0 to satisfy the guarantee
while maintaining the other properties in the theorem.

Many predicates satisfy a similar but more restricted type of guarantee: every generalized polymor-
phism (g1, . . . , gm) is such that either (i) all functions are of the form xi or 1− xi (for the same i), or
(ii) some of the functions are constant, and these constants constitute a “certificate” for the predicate.
This case can be handled just as the case of P∧. A characterizations of this type of behavior can be
found in [Fil25].

3. Determine the optimal relation between ϵ and δ in Theorem 1.5. We conjecture that the optimal
dependence is polynomial or even linear. This holds in the case of the predicates Pm,b of Theorem 1.6,
and also for many functional predicates (see [CFM+22, Appendix D] for an illustrative example).
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