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Abstract
Given a sequence of N independent sources X1,X2, . . . ,XN ∼ {0, 1}n, how many of them must

be good (i.e., contain some min-entropy) in order to extract a uniformly random string? This question
was first raised by Chattopadhyay, Goodman, Goyal and Li (STOC ’20), motivated by applications in
cryptography, distributed computing, and the unreliable nature of real-world sources of randomness. In
their paper, they showed how to construct explicit low-error extractors for just K ≥ N1/2 good sources
of polylogarithmic min-entropy. In a follow-up, Chattopadhyay and Goodman improved the number of
good sources required to just K ≥ N0.01 (FOCS ’21). In this paper, we finally achieve K = 3.

Our key ingredient is a near-optimal explicit construction of a new pseudorandom primitive, called a
leakage-resilient extractor (LRE) against number-on-forehead (NOF) protocols. Our LRE can be viewed
as a significantly more robust version of Li’s low-error three-source extractor (FOCS ’15), and resolves
an open question put forth by Kumar, Meka, and Sahai (FOCS ’19) and Chattopadhyay, Goodman,
Goyal, Kumar, Li, Meka, and Zuckerman (FOCS ’20). Our LRE construction is based on a simple new
connection we discover between multiparty communication complexity and non-malleable extractors,
which shows that such extractors exhibit strong average-case lower bounds against NOF protocols.

1 Introduction

Randomness is a surprisingly useful tool, with important applications in algorithm design, combinatorics,
cryptography, distributed computing, and more [Vad12]. This raises the natural question:

Where does this randomness come from?

In the real world, random bits are harvested from a variety of natural phenomena, including atmospheric
noise, thermal noise, radioactive decay, and other quantum phenomena [HG17]. Unfortunately, most appli-
cations of randomness require access to uniformly random bits, while the bits produced in nature can have
various correlations and biases. This motivates the need for a device that can purify these weak sources of
randomness into perfectly random bits. A randomness extractor is exactly such a device.

Definition 0 (Randomness extractor). Let X be a family of distributions over {0, 1}n. A function Ext :
{0, 1}n → {0, 1}m is called an extractor for X with error ε if for every X ∈ X ,

|Ext(X)−Um| ≤ ε,

where Um denotes the uniform distribution over {0, 1}m and | · | denotes statistical distance.
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Ever since the classical work of von Neumann [vN51], extractors have become a central object in com-
plexity theory, finding applications in cryptography [BBR88], combinatorics [Li23], coding theory [Gur04],
and more. Along the way, a beautiful theory has grown around extractors, resulting in a rich literature
spanning four decades and hundreds of papers. The fundamental question underlying much of this work is,

Which family of distributions X should we try to extract from?

Of course, we would like the family X to be as general as possible, but some assumptions are necessary
in order for extraction to actually be possible. First, each source X ∈ X must clearly have some randomness
in it. In the extractor literature, it is common to formalize this using the notion of min-entropy, defined as

H∞(X) := min
x∈support(X)

log (1/Pr[X = x]) .

However, even this assumption is not enough, and a classic impossibility result [CG88] says that it is im-
possible to extract even from the family of distributions with nearly the maximum amount of min-entropy
k = n− 1. As such, researchers have looked towards additional assumptions to make on the family X .

Independent sources

Perhaps the oldest and most well-studied assumption to make on the family X is that each source X ∈ X
actually consists of several independent sources X = (X1, . . . ,XN ), each over n bits, and each guaranteed
to have some min-entropy, k.1 A systematic study of this model began with the seminal works of Vazirani
[Vaz87] and Chor and Goldreich [CG88], and has continued until the present day. Today, after a long line of
work stretching over three decades (e.g., [Vaz87, CG88, BIW06, Bou05, Rao09, Li15, CZ19, Li23]), we now
have near-optimal extractors for the independent source model.2

Adversarial sources

While the study of extractors for independent sources has seen great success, it is not always clear if this
is actually a realistic model. In the real world, natural sources of randomness can be unreliable, and may
sometimes (at unknown times) produce samples with no entropy at all. This motivates the study of a more
general model, where each source need not have a min-entropy guarantee. Such a model was introduced by
Chattopadhyay, Goodman, Goyal and Li [CGGL20], and are known as adversarial sources.3

Definition 1 (Adversarial source). A source X ∼ ({0, 1}n)N is called an (N,K, n, k)-adversarial source if
it is of the form X = (X1,X2, . . . ,XN ), where each Xi is an independent source over n bits, and at least
K of them are good: i.e., there is some set S ⊆ [N ] of size |S| ≥ K such that H∞(Xi) ≥ k for all i ∈ S.

If one could construct explicit extractors for adversarial sources, one could harvest uniform bits in a
much more robust way, which doesn’t completely break down whenever a source fails to output min-entropy.
Moreover, as discussed in [CGGL20], extractors for adversarial sources have applications in cryptography

1In this paper, N and n are completely unrelated variables (unlike many papers in the field that take N to mean 2n).
2In more detail, we now have explicit three-source extractors for k = polylog(n) entropy and exponentially small error [Li15],

explicit two-source extractors for k = polylog(n) entropy and polynomially small error [CZ19], and explicit two-source extractors
for k = O(logn) entropy and constant error [Li23].

3In the original paper [CGGL20], the authors also consider a more general notion of adversarial sources, where each bad source
can depend on up to d good sources. However, the majority of the work [CGGL20], and all of the follow-up work [CG21], focuses
on the fundamental setting of d = 0 (which, as we will see, already enjoys many applications). We take the same focus, here.
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(such as in generating common random strings (CRS) in the presence of adversaries [GK08,GGJS11,GO14])
and distributed computing (i.e., in the execution of collective coin flipping protocols [BOL85,CFG+85]).4 In
these applications, it is often crucial to construct extractors that have negligible error ε = n−ω(1) [DOPS04].
This leads us to our main motivating question:

Can we construct explicit low-error extractors for adversarial sources?

Prior constructions

While the adversarial source model was first introduced in [CGGL20], it was implicitly studied in several
prior works [KM04, KM05, GSV05, LLTT05, CL16]. There, it was shown that a two-source extractor can
be applied in a black-box manner to construct extractors for adversarial sources with K = 2 good sources.
Plugging in the best-known low-error two-source extractors [Bou05,Lew19], this gives low-error extractors
for adversarial sources with K = 2 good sources of min-entropy roughly k ≥ 4

9n. In related work [BGK06,
KRVZ11], it was shown how to extract from K = O(1) good sources of min-entropy k = 0.01n.

Following these early papers, all subsequent work has focused on reducing the entropy requirement of
the good sources (while using many more of them). In particular, Kamp, Rao, Vadhan and Zuckerman
[KRVZ11] showed how to construct low-error extractors for adversarial sources with roughly K =

√
N

good sources of min-entropy k ≥ n0.99. Then, in [CGGL20], it was shown how to reduce the entropy
requirement to just k ≥ polylog(n), while still using roughly K =

√
N good sources. Finally, a follow-up

work [CG21] showed how to extract from just K = N0.01 good sources of min-entropy k ≥ polylog(n).
To date, these remained the best-known low-error extractors for adversarial sources.

1.1 Our results

Extractors for adversarial sources

In this paper, we construct explicit low-error extractors for adversarial sources with just K = 3 good sources,
dramatically improving on the previous best requirement of K = N0.01. We prove the following.

Theorem 1 (Extractors for adversarial sources). There exist universal constants C, γ > 0 such that the
following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m for (N,K, n, k)-adversarial
sources with K = 3 good sources of min-entropy k ≥ logC n, which has output length m = ⌈kγ⌉ and error
ε = 2−⌈kγ⌉.

To summarize, the original paper on adversarial sources required K =
√
N good sources [CGGL20],

while the follow-up work [CG21] improved this requirement to K = N0.01. In this work, we reduce the
number of good sources required to just K = 3, no matter how many sources, N , there are in total (includ-
ing super-constant and beyond). This essentially “finishes off” the problem of extracting from adversarial
sources, as any further improvement is equivalent to constructing improved low-error two-source extractors
– one of the foremost remaining challenges in extractor theory.5

4CRS’s are useful, because they enable the construction of otherwise impossible crytographic primitives, such as non-interactive
zero-knowledge (NIZK) proofs [BFM88] and universally composable (UC) commitment schemes [CF01]. And the ability to generate
a CRS in the presence of adversaries has natural applications in blockchains, where leader election protocols must succeed even if
some players are malicious.

5As alluded to in the footnote preceding Definition 1, there is still a more general notion of adversarial sources (where the bad
sources can depend on the good sources) for which much exciting work remains to be done.
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Theorem 1 has some interesting interpretations in the context of both extractors and cryptography. In
the context of cryptography, this result gives a way for any number N of players to agree on a uniformly
random string, provided that just 3 of them are honest. In the context of extractors, this result gives a way
to extract from just 3 sources of weak randomness, hidden among any number of bad sources. In this way,
it can be thought of as a significantly more robust version of Li’s classical three-source extractor [Li15].

Finally, our construction is significantly simpler than prior constructions of extractors for adversarial
sources. Indeed, Theorem 1 follows immediately from a powerful new object that we construct, called a
leakage-resilient extractor (LRE) against number-on-forehead (NOF) protocols. Such objects lie directly at
the intersection of extractor theory and communication complexity, and we discuss them next.

Leakage-resilient extractors against number-on-forehead protocols

LREs against NOFs are a brand new type of pseudorandom primitive, first introduced in [KMS19] (under
the name cylinder intersection extractors). There are two equivalent ways to define LREs against NOFs:
either as (1) a robust extractor for independent sources, or (2) a strong average-case lower bound against
communication protocols. Let us take a moment to motivate and present definition (2). To do so, we must
briefly recall a rich subfield of complexity theory, called (multiparty) communication complexity [Yao79,
DF92, CFL83].

In multiparty communication complexity, the goal is to understand the amount of communication nec-
essary to compute a function f : ({0, 1}n)N → {0, 1}m when its input is split up among N parties. In
the most well-studied model, the parties must determine the value of f via a number-on-forehead (NOF)
protocol [CFL83] (see Definition 4). Here, each party i ∈ [N ] receives one piece of the input xi ∈ {0, 1}n,
which is metaphorically written on their forehead. Then, the parties take turns writing a bit on a public
chalkboard, using all of the inputs except the one written on their forehead. The protocol continues until
everyone knows the value of f , and the NOF communication complexity of f is the number of bits written
on the chalkboard (in the worst-case over all possible inputs x, for the best possible protocol).

As it turns out, NOF protocols are an incredibly powerful computational model, capable of simulating
many other well-studied models. This means that explicit lower bounds against NOF protocols immediately
yield explicit lower bounds against important models such as ACC0 circuits [Yao90,RW93,BT94] and low-
degree polynomials over F2 [Vio09]. Because of this, researchers have spent a significant amount of effort
trying to construct explicit NOF lower bounds (i.e., explicit functions that have high NOF communication
complexity) [BNS92], in the hopes of achieving bounds that are strong enough to yield breakthrough lower
bounds for these other computational models.

The most basic form of an explicit NOF lower bound that one might hope for is a worst-case bound.
This is an explicit function f such that for every NOF protocol Π computing f , there is some input x for
which Π must write many bits on the blackboard in order to compute f(x).

An even stronger lower bound one might pursue is an average-case bound. This is an explicit function f
such that for every NOF protocol Π computing f , it holds that for many inputs x, Π must write many bits µ
on the blackboard in order to compute f(x). Equivalently, for every protocol Π′ that writes < µ bits on the
blackboard (on every input), it holds that Π′(X) is highly uncorrelated with f(X), where X ∼ ({0, 1}n)N
is a uniform random variable.

This leads us to the strongest of all lower bounds, which we might call a X -average-case lower bound.
This is an explicit function f : ({0, 1}n)N → {0, 1}m such that for all protocols Π′ that write < µ bits on
the blackboard, and all sources X ∈ X , it holds that Π′(X) is highly uncorrelated with f(X).6 Given that

6The average-case lower bound definition corresponds to the case where X consists of a single source, namely the uniform one.
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each X ∼ ({0, 1}n)N consists of N parts X = (X1, . . . ,XN ), it is natural to take X to be the family of
independent sources, where each part Xi ∼ {0, 1}n has min-entropy k.

As it turns out, this is exactly the definition of an LRE against NOF protocols (see Definition 5 for a
formal definition). Indeed, in order for f to be highly uncorrelated with Π′, a trivial requirement is that
f looks uniform on any X ∈ X (for otherwise it is correlated with a trivial protocol that always outputs
a constant). Moreover, it is not too difficult to see that the output f(X) must look uniform and remain
uniform, even conditioned on fixing the “NOF leakage” Π′(X). In this way, since X denotes the family
of independent sources, f can be thought of as a more robust type of extractor for independent sources –
definition (1).

LREs against NOFs were first introduced (under the name cylinder intersection extractors) in the work
[KMS19], and systematically studied in [CGG+20]. It has long been known [CGGL20] that if one could
construct low-error LREs against NOFs for polylogarithmic min-entropy (and three parties), then one would
immediately obtain Theorem 1. However, such an object seemed challenging to construct, as it must not only
be as strong as Li’s classical three-source extractor [Li15], but also offer powerful robustness guarantees. In
this paper, we finally construct them.

Theorem 2 (LREs against NOFs). There exist universal constants C, γ > 0 such that the following holds.
There exists an explicit three-source extractor Ext : ({0, 1}n)3 → {0, 1}m for min-entropy k ≥ logC n,
which is leakage-resilient against number-on-forehead protocols with µ = ⌈kγ⌉ bits of communication, and
which has output length m = ⌈kγ⌉ and error ε = 2−⌈kγ⌉.

Prior to our work, all LREs against NOFs required high min-entropy, k. In the paper that introduced
these objects [KMS19], the authors showed how to construct such LREs for min-entropy k = 0.99n, by
observing that existing average-case NOF lower bounds can handle a little missing entropy in the inputs
for free. In the follow-up work [CGG+20], the authors improve this entropy requirement to k = 0.3n, via
intricate exponential sum estimates. In this paper, we reduce the entropy requirement to k = polylog(n),
via a simple new reduction to non-malleable extractors (in fact, a very weak version of this object - see
Definition 6).

Non-malleable extractors (NMEs) are a different, much more well-studied flavor of robust extractor, and
were first introduced in [DW09, CG17]. We find the fact that there exists a reduction from LREs to NMEs
to be quite surprising, for two reasons:

• First, prior to this work, LREs and NMEs were thought to be incomparable. Indeed, even though they
are both robust flavors of randomness extractors, they are robust in seemingly incomparable ways. In
particular, while an LRE must defend against arbitrary leaks, these leaks can only act on N −1 of the
inputs. An NME, on the other hand, must only defend against “self-leaks” (where the leaks are the
NME itself, called with slightly modified inputs), but these leaks can depend on all N of the inputs.
This work shows that NMEs are, in fact, the stronger object.

• Second, since LREs against NOFs are simply a strong type of lower bound against NOF protocols
(as discussed above), and we show that every non-malleable extractor is such an LRE, our work
also shows that non-malleable extractors witness strong NOF lower bounds. In fact, the parameters
we obtain show that NMEs achieve essentially the best-known lower bounds against NOF protocols
[BNS92], and are even able to do so in the (stronger) low-entropy setting.7 This provides a brand new

7Indeed, while Theorem 2 is stated for just three parties, our full result (Theorem 5) works for any number N of parties with
min-entropy k, and achieves a lower bound of the form kΩ(1)/2N for any k ≥ polylog(n). Since the current best lower bounds
against NOF protocols are of the form Ω(n/2N ), our result comes close to matching these bounds, and does so in the stronger
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family of black-box functions that are hard, and gives further support for a recent blossoming line
of work on extractor-based lower bounds. In particular, prior to this work, it was known that basic
extractors witness the best-known explicit lower bounds against general circuits [LY22], DNFs of
parities [CS16], linear ROBPs [GPT22, CL23], and any model that shrinks under random restrictions
[GG25]. In this paper, we show that essentially the best-known NOF lower bounds are also directly
witnessed by basic extractors - namely, non-malleable extractors.

Finally, we note that the reduction from LREs against NOFs to NMEs is simple. In particular, it just
involves viewing (and slightly rephrasing) standard Cauchy-Schwarz-based proofs of NOF lower bounds in
the language of extractors.8 Thus, beyond this insight, all of the work in constructing our low-entropy LREs
against NOFs (Theorem 2) goes into constructing low-entropy NMEs, which is done via a composition of
basic tools from extractor theory, combined with a slightly clever fixing argument.

Organization

The rest of the paper is organized as follows. In Section 2, we start with some basic preliminaries. Then, in
Section 3, we give the reduction from LREs to NMEs. Then, we construct our explicit NMEs in Section 4.
Finally, in Section 5, we instantiate the reduction with our explicit NMEs to obtain our explicit LREs (The-
orem 2), and recall the standard reduction from extractors for adversarial sources to LREs to immediately
obtain Theorem 1.

2 Preliminaries

Notation First, let us introduce some helpful notation. To start, for an integer n ∈ N, we let [n] :=
{1, 2, . . . , n}. Given a string x ∈ {0, 1}n, we let xi denote the value it holds at its ith coordinate, and for any
subset S ⊆ [n], we let (xi)i∈S denote the concatenation of all bits xi in increasing order of i. Speaking of
concatenation, we sometimes represent it using the symbol ◦, in the sense that x ◦ y := (x, y). In particular,
throughout this paper, ◦ does not denote function composition. Another perhaps unconventional notation
we use throughout is that N,n will always denote completely unrelated integers. Namely, we do not take N
to mean 2n. (The same goes for K and k.)

Now, given a subset S ⊆ [n], we write xS as shorthand for (xi)i∈S , and for any m ∈ [n], we write x≤m

as shorthand for x[m] (i.e., the first m bits of x), and define x<m and x>m and x≥m in the analogous way.
Next, for any i ∈ [n] we define x−i to mean x[n]\{i}. All of this notation extends naturally to larger alphabets.
For example, for any alphabet Σ and x ∈ Σn, we let xi denote the ith symbol in x. If Σ = {0, 1}m, then xi
denotes the ith consecutive chunk of m bits. Finally, for any positive integer t, we let F2t denote the finite
field over 2t elements, and whenever we write x · y for x, y ∈ {0, 1}t, we intend this to mean their product
over F2t . As usual, all logs will be base 2.

2.1 Probability

Throughout, we use bold font, such as X, to denote random variables. The support of X, denoted
support(X), contains all elements x such that Pr[X = x] > 0, and we write X ∼ V if support(X) ⊆ V .

“low-entropy” setting. (In the full min-entropy setting k = n, one can obtain “NME-based” NOF lower bounds that essentially
match the state-of-the-art – for more details, see the full version.)

8In more detail, we show that NMEs (for independent sources) have small cube norm, which implies that they have large NOF
communication complexity. A similar idea can be used to show that NMEs for affine sources (in fact, even just directional affine
extractors [GPT22]) have small Gowers norm, and thus exhibit correlation bounds against low-degree F2-polynomials.
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As per tradition in the extractor literature, we will often refer to random variables as sources. Furthermore,
for any set V and S ⊆ V , we let US denote a uniform random variable over S, and use the shorthand Um

when S = {0, 1}m. That is, Um is a uniform random variable over bitstrings of length m.
Next, when talking about extractors, the canonical distance that is used is called the statistical distance:

Definition 2 (Statistical distance). The statistical distance between two random variables X,Y ∼ V is

|X−Y| := max
S⊆V

|Pr[X ∈ S]− Pr[Y ∈ S]| = 1

2

∑
v∈V

|Pr[X = v]− Pr[Y = v]|.

If |X −Y| ≤ ε, we write X ≈ε Y and say X,Y are ε-close. Otherwise, we say they are ε-far. Moreover,
if |X−Y| = 0, we write X ≡ Y.

Next, we introduce three extremely useful facts about statistical distance. First, when dealing with
extractors, the classical goal is to show that its output is close to uniform, Um. Towards this end, the
following tool is invaluable. It says that two random variables cannot get further apart if you process them
with the same deterministic function.

Fact 1 (Data-processing inequality). For any random variables X,Y ∼ V , and any function f : V → W ,

|X−Y| ≥ |f(X)− f(Y)|.

Second, it is well-known that the triangle inequality also holds for statistical distance:

Fact 2 (Triangle inequality). For any random variables X,Y,Z,

|X−Y| ≤ |X− Z|+ |Z−Y|.

Third, the following fact is very useful when thinking about “fixing” random variables.

Fact 3 (Averaging principle). For any random variables X,Y ∼ V and Z,Z′ ∼ Z such that Z ≡ Z′,

|X ◦ Z−Y ◦ Z′| = Ez∼Z[|(X | Z = z)− (Y | Z′ = z)|].

Speaking of fixing random variables, the following standard lemma will be of great help whenever we
want to argue that fixing one random variable doesn’t cause another to lose too much min-entropy.

Lemma 1 (Min-entropy chain rule [MW97]). For any random variables X ∼ X,Y ∼ Y and any ε > 0,

Pr
y∼Y

[H∞(X | Y = y) ≥ H∞(X)− log |Y | − log(1/ε)] ≥ 1− ε.

Finally, we record one last lemma, which (to the best of our knowledge) is new. The goal of this lemma
is to formally “capture” (or describe) the randomness that is lost after applying a deterministic function f to
a random variable X. It strengthens and simplifies [CGG+20, Lemma 7].

Lemma 2 (Dependency reversal). For any random variable X ∼ X and deterministic function f : X → Y ,
there exists an independent random variable A ∼ A and deterministic function g : Y ×A → X such that

g(f(X),A) ≡ X.

Proof. We define an independent random variable A ∼ A := XY as a sequence of independent random
variables A = (Ay)y∈Y where each Ay ∼ X is defined as

Pr[Ay = x] := Pr[X = x | f(X) = y] for all x ∈ X.

If we then define the deterministic function g : Y ×A → V as

g(y, a) := ay,

it directly follows that g(f(X),A) ≡ X via the law of total probability, as desired.
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2.2 Randomness condensers

We now recall the notion of condensers, which are slightly weaker versions of extractors. While an extractor
guarantees that its output is close to uniform Um, a condenser just guarantees that its output is close to having
high min-entropy. Formally, (two-source) condensers are defined as follows.

Definition 3 (Two-source condensers). A function 2Cond : {0, 1}n × {0, 1}n → {0, 1}m is called an
(n, k) →ε (m, ℓ) two-source condenser9 if for any two independent sources X,Y ∼ {0, 1}n each with
min-entropy at least k, 2Cond(X,Y) is ε-close to some source Z ∼ {0, 1}m with min-entropy at least ℓ.
We say 2Cond is strong if

Pr
y∼Y

[2Cond(X, y) is not ε-close to a source with min-entropy at least ℓ] ≤ ε

and

Pr
x∼X

[2Cond(x,Y) is not ε-close to a source with min-entropy at least ℓ] ≤ ε.

As it turns out, every two-source condenser is also a strong two-source condenser, provided that we feed
it two sources with a little more entropy. In particular, the following is true.

Fact 4 (Every two-source condenser is strong). For any n ≥ k and m ≥ ℓ, if 2Cond : {0, 1}n × {0, 1}n →
{0, 1}m is an (n, k) →ε (m, ℓ) two-source condenser, then it is a strong (n, k +m+ log(1/ε)) →ε (m, ℓ)
two-source condenser.

The proof of this fact is almost identical to a proof, due to Barak, that every two-source extractor
is also a strong two-source extractor (with slightly weaker parameters) [Rao07]. For completeness, we
include its proof below. Beyond the ideas in Barak’s analogous proof for two-source extractors, we need
the following fact, which gives a nice characterization of sources that are close to having high min-entropy.
(See [GLZ24, Lemma 2] for a proof.)

Fact 5 (An alternative characterization for being close to high min-entropy [Zuc07, Lemma 2.2]). For any
n ≥ k, a source X ∼ {0, 1}n is ε-close to a source of min-entropy at least k iff for every S ⊆ {0, 1}n,

Pr[X ∈ S] ≤ |S| · 2−k + ε.

With this characterization in hand, it is now straightforward to extend Barak’s argument about two-
source extractors [Rao07] to also work for two-source condensers, and thereby prove Fact 4.

Proof of Fact 4. We prove that for any independent sources X,Y ∼ {0, 1}n with min-entropy at least k′,

Pr
y∼Y

[2Cond(X, y) is not ε-close to a source with min-entropy at least ℓ] ≤ 2k+m−k′

and

Pr
x∼X

[2Cond(x,Y) is not ε-close to a source with min-entropy at least ℓ] ≤ 2k+m−k′ ,

9Or equivalently, a two-source condenser with input entropy k, output entropy ℓ, output length m, and error ε.
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and the result will follow by setting k′ = k +m+ log(1/ε). Actually, we will just prove the first claim, as
the proof of the second claim is identical. Towards this end, for any S ⊆ {0, 1}m, define

BadS := {y ∈ {0, 1}m : Pr[2Cond(X, y) ∈ S] > |S| · 2−ℓ + ε},

and notice that Fact 5 tells us that 2Cond(X,UBadS ) is not ε-close to a source with min-entropy at least ℓ.
We must therefore have |BadS | ≤ 2k, or else 2Cond is not the condenser it claimed to be. Thus, if we define
Bad :=

⋃
S BadS , we know that |Bad| ≤ 2k+m. Now, again using Fact 5, we have

Pr
y∼Y

[2Cond(X, y) is not ε-close to an (m, ℓ) source]

= Pr
y∼Y

[∃S ⊆ {0, 1}m : Pr[2Cond(X, y) ∈ S] > |S| · 2−ℓ + ε]

= Pr
y∼Y

[y ∈ Bad] ≤ |Bad| · 2−k′ = 2k+m−k′ ,

as desired.

2.3 Communication complexity

Finally, we provide a formal definition of number-on-forehead (NOF) multiparty communication protocols.

Definition 4 (Number-on-forehead protocol). A function Π : ({0, 1}n)N → {0, 1}µ is called a number-
on-forehead protocol if for every i ∈ [µ] there exist functions Si : {0, 1}i−1 → [N ] and gi : {0, 1}i−1 ×
({0, 1}n)N−1 → {0, 1} such that

Πi(x) = gi(Π1(x), . . . ,Πi−1(x), x−Si(Π1(x),...,Πi−1(x))).

We say that Π is non-adaptive if each gi does not depend on its first i− 1 inputs and each Si is a constant.

We say that a function f : ({0, 1}n)N → {0, 1}m has ε-average-case NOF communication complexity
> µ if for any NOF protocol Π with output length µ, it holds that f(X) ◦Π(X) ≈ε U ◦Π(X), where X,U
are independent uniform random variables. Equivalently, we say that f is ε-hard for such protocols.

To conclude this section, we record the following lemma, which says that an average-case NOF-hard
function is still hard even if the input distributions are missing a little bit of min-entropy.

Lemma 3 (NOF-hard functions can tolerate a little missing min-entropy [CGG+20, Lemma 3]). Let NOF :
({0, 1}n)N → {0, 1}m be a function with ε-average-case NOF communication complexity > µ. Then for
any independent sources X1, . . . ,XN ∼ {0, 1}n each with min-entropy at least k, and any number-on-
forehead protocol Π : ({0, 1}n)N → {0, 1}µ−2, it holds that

|NOF(X1, . . . ,XN ) ◦Π(X1, . . . ,XN )−Um ◦Π(X1, . . . ,XN )| ≤ ε · 2N(n−k).

As we will soon see (via Definition 5), another way to summarize this lemma is that any (average-case)
NOF-hard function is automatically a basic LRE against NOF protocols, which can handle slightly less than
full min-entropy.
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3 A reduction from leakage-resilient extractors to non-malleable extractors

In order to construct our extractors for adversarial sources with K = 3 good sources (Theorem 1), we will
build a three-source leakage-resilient extractor (LRE) against number-on-forehead protocols (Theorem 2),
and the adversarial source extractor will easily follow (simply by calling the LRE on all triples of sources
and XORing the results). To get started, we formally introduce LREs against NOFs.

Definition 5 (LREs against NOFs). A function LRE : ({0, 1}n)N → {0, 1}m is called a leakage-resilient
extractor for min-entropy k and error ε against number-on-forehead protocols with µ bits of communication
if the following holds. For any independent sources X1, . . . ,XN ∼ {0, 1}n each with min-entropy at least
k, and any number-on-forehead protocol Π : ({0, 1}n)N → {0, 1}µ,

LRE(X1, . . . ,XN ) ◦Π(X1, . . . ,XN ) ≈ε Um ◦Π(X1, . . . ,XN ).

LREs against NOFs were first introduced by Kumar, Meka and Sahai (under the name cylinder inter-
section extractors) [KMS19], and systematically studied for the first time in [CGG+20] (where the more
general notion of LREs was introduced). Looking at Definition 5, it is easy to see that these are powerful
objects, which simultaneously generalize both (1) extractors for independent sources and (2) average-case
lower bounds against NOF protocols.10 In this section, we take our first step towards constructing them.

In order to build our LREs against NOFs, we provide a simple reduction from these objects to a new,
weak type of non-malleable extractor, which we define below. Then, we will show how to build one.

Definition 6 (Weak NMEs). A function nmExt : ({0, 1}n)N → {0, 1}m is called a weak non-
malleable extractor for min-entropy k and error ε if the following holds. For any independent sources
X0

1, . . . ,X
0
N ,X1

1, . . . ,X
1
N ∼ {0, 1}n, each with min-entropy at least k, and X0

i ≡ X1
i for all i ∈ [N ],

nmExt(X0
1, . . . ,X

0
N ) ◦

(
nmExt(Xb1

1 , . . . ,XbN
N )
)
b ̸=0⃗∈{0,1}N

≈ε Um ◦
(
nmExt(Xb1

1 , . . . ,XbN
N )
)
b ̸=0⃗∈{0,1}N

.

With these definitions in hand, we proceed with the first main lemma of this paper, which shows that
weak NMEs are, in fact, LREs against NOFs.

Lemma 4 (Weak NMEs =⇒ LREs against NOFs). Let nmExt : ({0, 1}n)N → {0, 1}m be a weak non-
malleable extractor for min-entropy k and error ε. Then nmExt is a leakage-resilient extractor against
number-on-forehead protocols with µ bits of communication for min-entropy k and error 2m+µ · (2ε)1/2N .

Proof. The proof, in fact, is not too difficult. It follows from observing that the standard technique for
obtaining NOF lower bounds (i.e., via the cube norm) both (1) automatically work for low entropy, and (2)
can be interpreted as seeking out the non-malleability property put forth by Definition 6. Indeed, the novelty
of the proof is just a shift in perspective.

To make things more formal, let nmExt : ({0, 1}n)N → {0, 1}m be the weak non-malleable extractor
from the lemma statement. We want to upper bound the statistical distance

|nmExt(X) ◦Π(X)−Um ◦Π(X)|,

where Π is an NOF protocol of length µ, and X consists of N independent sources X = (X1,X2, . . . ,XN ),
each over n bits and each with min-entropy at least k. The first issue is that lower-bounding the above ex-
pression amounts to achieving “multi-bit” hardness, whereas standard communication complexity seems to

10Indeed, setting µ = 0 recovers object (1), while setting k = n recovers object (2).
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focus on proving hardness for Boolean-valued functions. However, there are standard tools from cryptogra-
phy and extractor theory that can be exploited to get such a result. Here, we will use a “non-uniform” XOR
lemma of Dodis, Li, Wooley, and Zuckerman [DLWZ14, Lemma 3.8], which says that we can upper bound
the above statistical distance by 2m+µα, provided we can show that∣∣∣∣∣(⊕

i∈S
nmExti(X)⊕

⊕
j∈T

Πj(X)
)
−U1

∣∣∣∣∣ ≤ α,

for all S ̸= ∅ ⊆ [m], T ⊆ [µ]. Fix one such choice of S, T , and define f(x) :=
⊕

i∈S nmExti(x) and
g(x) :=

⊕
j∈T Πj(x). By the data-processing inequality (Fact 1), the above statistical distance can be

upper bounded by
|f(X) ◦ g(X)−U1 ◦ g(X)|,

where U1 is independent of everything else. Applying the data-processing inequality once more, the above
can further be upper bounded by

|f(X) ◦Π(X)−U1 ◦Π(X)|.

The goal is now to upper bound the above, by showing that if nmExt started out as a weak non-malleable
extractor, then f(X) has low correlation with all NOF protocols. To show this, we can simply repeat known
arguments originating in [BNS92]11 through the lens of extractors.

To get started, note that

2|f(X) ◦Π(X)−U1 ◦Π(X)| = 2Eπ∼Π(X)|(f(X) | Π(X) = π)−U1|
= Eπ∼Π(X)|Pr[f(X) = 1 | Π(X) = π]− Pr[f(X) = 0 | Π(X) = π]|
≤ 2µmax

π
|Pr[f(X) = 1 ∧Π(X) = π]− Pr[f(X) = 0 ∧Π(X) = π]|

= 2µ · |Pr[f(X) = 1 ∧Π(X) = π]− Pr[f(X) = 0 ∧Π(X) = π]|,

where the last line just fixes the worst transcript π. Now, define the function f ′ := (−1)f which swaps
the output domain of f from {0, 1} to {−1, 1}, and define the function C : ({0, 1}n)N → {0, 1} as the
indicator of Π(x) = π. Namely, C(x) = 1 iff Π(x) = π. Using this, the most recent equation above is

= 2µ · |E[f ′(X) · C(X)]|.

We now focus on upper bounding |E[f ′(X) · C(X)]|. This part of the argument is now standard, and
we follow the exposition of Lovett [Lov19]. Towards this end, it is well-known (and not too hard to show)
that C is the indicator of a “cylinder intersection” [BNS92]. This means that there exist indicator functions
C1, . . . , CN : ({0, 1}n)N−1 → {0, 1} so that C(x) = C1(x−1) · C2(x−2) · · · · · CN (x−N ). Thus,

|E[f ′(X) · C(X)]| = |E[f ′(X) · C1(X−1) · C2(X−2) · · · · · CN (X−N )]|

Now, the main idea introduced in [BNS92] is to use N iterations of the Cauchy-Schwarz inequality
(for random variables) to get rid of the “NOF leaks” C1, . . . , CN , and replace them with, in our language,
“weak non-malleable leaks.” In more detail, recall that the Cauchy-Schwarz inequality tells us that for any

11Our argument will follow along with the one that appears in the excellent lecture notes of Lovett [Lov19].
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real-valued random variables A,B it holds that |E[A ·B]| ≤
(
E[A2] · E[B2]

)1/2. Applying this once, we
can continue as follows.

=

∣∣∣∣EX−1

[
C1(X−1) · EX1 [f

′(X) · C2(X−2) · · · · · CN (X−N )]

]∣∣∣∣
≤

(
EX−1

[(
C1(X−1)

)2
]
· EX−1

[(
EX1 [f

′(X) · C2(X−2) · · · · · CN (X−N )]

)2
])1/2

≤

(
1 · EX−1

[
EX1,X′

1
[f ′(X) · C2(X−2) · · ·CN (X−N ) · f ′(X−1,X

′
1) · C2(X−1,−2,X

′
1) · · ·CN (X−1,−N ,X′

1)]

])1/2

=

(
EX,X′

1

[
f ′(X) · C2(X−2) · · ·CN (X−N ) · f ′(X−1,X

′
1) · C2(X−1,−2,X

′
1) · · ·CN (X−1,−N ,X′

1)

])1/2

.

The first inequality is an application of the Cauchy-Schwarz inequality, where the random variable B
looks like an expectation. The second inequality is because the range of C1 is {0, 1} (which, in particular,
is at most 1 when squared), and because X1,X

′
1 are independent (and identically distributed). The last

equality is immediate.
Notice that by using the Cauchy-Schwarz inequality once, we were able to “remove” or “condition

away” one NOF leak C1(X−1), and effectively replace it with a “non-malleable leak” f ′(X−1,X
′
1) (i.e.,

instead of an arbitrary function leaking on some of the inputs, we turn it into the specific leak f ′, acting on
all inputs, or at least independent copies of them). To get the Cauchy-Schwarz inequality to work (to remove
this NOF leak), we pulled out an expectation over the random variables on which it depends X−1, leaving
just X1 in the internal expectation. When we execute it again, we’ll once again pull out almost all random
variables, this time leaving just X2 in the internal expectation. This will let us get rid of the next NOF leak,
C2(X−2). Thus, pulling out X−2,X

′
1 and leaving in X2, we can follow the argument above once again to

obtain

≤
(
EX,X′

1,X
′
2

[
f ′(X) · C3(X−3) · · ·CN (X−N )·

f ′(X−1,X
′
1) · C3(X−3,−1,X

′
1) · · ·CN (X−N,−1,X

′
1)·

f ′(X−2,X
′
2) · C3(X−3,−2,X

′
2) · · ·CN (X−N,−2,X

′
2)·

f ′(X−1,−2,X
′
1,X

′
2) · C3(X−3,−2,−1,X

′
2,X

′
1) · · · ·CN (X−N,−2,−1,X

′
2,X

′
1)

])1/22

.

As the notation is getting cumbersome, it will be convenient to switch to something different. In particular,
we define random variables X0

1,X
0
2, . . . ,X

0
N ,X1

1,X
1
2, . . . ,X

1
N that are all independent and such that Xi ≡

X0
i ≡ X1

i . Then, for a fixed string b ∈ {0, 1}N , we let Xb denote (Xb1
1 , . . . ,XbN

N ). With this notation, the
above expression is much easier to write:

= E

 ∏
b∈{0,1}N
:bi=0∀i>2

f ′(Xb) · C3(X
b
−3) · C4(X

b
−4) · · ·CN (Xb

−N )


1/4

Finally, repeating the argument with the remaining leaks {Ci}i≥3 immediately gives
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≤

E

 ∏
b∈{0,1}N

f ′(Xb)

1/2N

=

Pr

 ∏
b∈{0,1}N

f ′(Xb) = 1

− Pr

 ∏
b∈{0,1}N

f ′(Xb) = −1

1/2N

=

Pr

 ⊕
b∈{0,1}N

f(Xb) = 0

− Pr

 ⊕
b∈{0,1}N

f(Xb) = 1

1/2N

=

2

∣∣∣∣∣∣
⊕

b∈{0,1}N
f(Xb)−U1

∣∣∣∣∣∣
1/2N

≤
(
2 ·
∣∣∣f(X) ◦ (f(Xb))b ̸=0∈{0,1}N −U1 ◦ (f(Xb))b̸=0∈{0,1}N

∣∣∣)1/2N
where the last line is a simple application of the data-processing inequality. This almost looks like the
weak non-malleable extractor definition, but recall f itself is of the form f(x) := ⊕i∈SnmExti(x) for some
nonempty S. Since this is just an XOR of some output bits of nmExt, it is clearly a deterministic function
of it, and thus we may apply the data-processing inequality (Fact 1) once more to upper bound the above by

≤

(
2 ·
∣∣∣nmExt(X) ◦ (nmExt(Xb))b̸=0∈{0,1}N −Um ◦ (nmExt(Xb))b ̸=0∈{0,1}N

∣∣∣)1/2N

,

and since we were given that nmExt is a weak-non-malleable extractor for min-entropy k and error ε, it
follows that this is

≤ (2ε)1/2
N
.

To summarize, we have finished showing that∣∣∣∣∣(⊕
i∈S

nmExti(X)⊕
⊕
j∈T

Πj(X)
)
−U1

∣∣∣∣∣ ≤ (2ε)1/2
N
.

As discussed at the beginning of the proof, the non-uniform XOR lemma allows us to therefore conclude

|nmExt(X) ◦Π(X)−Um ◦Π(X)| ≤ 2m+µ · (2ε)1/2N ,

as desired.

4 An explicit construction of weak non-malleable extractors

Now that we know that weak NMEs automatically give LREs against NOFs, we turn our attention to explic-
itly constructing them. We will prove the following lemma.
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Lemma 5 (Explicit weak NMEs). There exist universal constants C, γ > 0 such that the following holds.
There exists an explicit weak non-malleable extractor nmExt : ({0, 1}n)N → {0, 1}m for min-entropy
k ≥ logC n, which has output length m = ⌈kγ/2N⌉ and error ε = 2−⌈kγ/2N ⌉.

In order to prove this lemma, we show a simple way to construct weak NMEs from basic, black-box
tools. As it turns out, one of these tools is itself a function that is hard against number-on-forehead protocols!
Thus, we will have traveled from LREs against NOFs, to weak NMEs, and back to functions that are hard
against NOF protocols (but for one less party). As a result, we ultimately provide a way to convert a black-
box function that is hard for NOF protocols on N − 1 parties into a function that is hard for NOF protocols
on N parties. By iterating this hardness amplification down to just 2 parties, we obtain a reduction that
can convert any function that is hard for two-party communication protocols into a function that is hard for
NOF multiparty communication protocols. We find this reduction to be surprising, and believe it may be of
independent interest. In more detail, we prove the following.

Lemma 6 (A recipe for weak NMEs). Let 2Cond : {0, 1}n×{0, 1}n → {0, 1}r be a two-source condenser
for input entropy k0, output entropy k1, and error ε1. Let NOF : ({0, 1}r)N−1 → {0, 1}m be a function with
ε2-average-case NOF communication complexity > µ2 := 2Nm against non-adaptive number-on-forehead
protocols. Then the function nmExt : ({0, 1}n)N → {0, 1}m defined as

nmExt(x1, . . . , xN ) := NOF(2Cond(x1, xN ), 2Cond(x2, xN ), . . . , 2Cond(xN−1, xN ))

is a weak non-malleable extractor for entropy k = k0+2r+2 log(1/ε1) and error ε = 2Nε1+2N(r−k1)ε2.

Now, in order to actually obtain our explicit weak NMEs, we will just instantiate the above lemma with
well-known NOF lower bounds and two-source condensers. It is worth noting that the NOF-hard function
is just called over N − 1 parties. Thus, in order to construct the NMEs that we actually use for our three-
source LREs, we only need an NOF-hard function over 2 parties. In other words – just a function that is hard
in the standard two-party communication model (such as any two-source extractor, like the inner product
function). We proceed with the proof of the recipe, before instantiating it to get our weak NMEs.

Proof of Lemma 6. Let X0
1, . . . ,X

0
N ,X1

1, . . . ,X
1
N ∼ {0, 1}n be a collection of independent sources, each

with min-entropy at least k, such that X0
i ≡ X1

i for all i ∈ [N ]. For convenience, we refer to X0
1, . . . ,X

0
N

as the good sources, and we refer to X1
1, . . . ,X

1
N as the shadows. The goal is to upper bound∣∣∣∣∣nmExt(X0

1, . . . ,X
0
N ) ◦

(
nmExt(Xb1

1 , . . . ,XbN
N )
)
b̸=0⃗∈{0,1}N

−Um ◦
(
nmExt(Xb1

1 , . . . ,XbN
N )
)
b̸=0⃗∈{0,1}N

∣∣∣∣∣.
To do so, let’s start by making this expression less cumbersome. Towards this end, for each b ∈ {0, 1}N we
define a random variable

Zb := nmExt(Xb1
1 , . . . ,XbN

N ),

so that we may rewrite the original expression as∣∣∣∣nmExt(X0
1, . . . ,X

0
N ) ◦

(
Zb
)
b̸=0⃗∈{0,1}N

−Um ◦
(
Zb
)
b̸=0⃗∈{0,1}N

∣∣∣∣ . (1)

Now, in order to upper bound Equation (1), our analysis will proceed in four phases, in which we gradually
fix randomness until a strong bound comes for free (from the ingredients that make up nmExt).
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Phase I: Fixing the shadows. The first step is to fix the shadows X1
1, . . . ,X

1
N . As these are independent

of the good sources X0
1, . . . ,X

0
N , this fixing does not affect the latter, and can only make our expression

simpler. More formally, using standard fixing arguments, we know there exist fixed strings x11, . . . , x
1
N ∈

{0, 1}n such that if we define Z̃b := (Zb | X1
1 = x11, . . . ,X

1
N = x1N ) for each b ∈ {0, 1}N , we can upper

bound Equation (1) by∣∣∣∣nmExt(X0
1, . . . ,X

0
N ) ◦

(
Z̃b
)
b̸=0⃗∈{0,1}N

−Um ◦
(
Z̃b
)
b̸=0⃗∈{0,1}N

∣∣∣∣ . (2)

As a sanity check, note that Z̃1⃗ is now a fixed constant z ∈ {0, 1}m.

Phase II: Fixing the 1-local condenser calls. Now, recalling the definition of nmExt from the current
lemma statement, the next step is to fix 2Cond(X0

1, x
1
N ), 2Cond(X0

2, x
1
N ), . . . , 2Cond(X0

N−1, x
1
N ). Since

each output is a deterministic function of a single good source, this will not introduce any correlations.
Furthermore, since each condenser doesn’t output too many bits, it will decrease the entropy of each good
source by just a little. More formally, by combining standard fixing arguments with the min-entropy chain
rule (Lemma 1) and a simple union bound, the following holds. There exist fixed strings y1, . . . , yN−1 ∈
{0, 1}r such that if we define (for each b ∈ {0, 1}N and i ∈ [N ]) the random variables

˜̃Zb :=
(
Z̃b | 2Cond(X0

1, x
1
N ) = y1, 2Cond(X

0
2, x

1
N ) = y2, . . . , 2Cond(X

0
N−1, x

1
N ) = yN−1

)
,

˜̃X0
i :=

(
X0

i | 2Cond(X0
1, x

1
N ) = y1, 2Cond(X

0
2, x

1
N ) = y2, . . . , 2Cond(X

0
N−1, x

1
N ) = yN−1

)
,

then we can upper bound Equation (2) by∣∣∣∣∣nmExt( ˜̃X0
1, . . . ,

˜̃X0
N ) ◦

(
˜̃Zb
)
b ̸=0⃗∈{0,1}N

−Um ◦
(
˜̃Zb
)
b ̸=0⃗∈{0,1}N

∣∣∣∣∣+Nδ, (3)

where each ˜̃X0
i is independent and has min-entropy at least k − r − log(1/δ). Now, notice that for every

b ∈ {0, 1}N with bN = 1, it actually holds that ˜̃Zb has been fixed to some constant zb ∈ {0, 1}m. Indeed,
unwrapping the definition ˜̃Zb and then nmExt, observe that every such ˜̃Zb is actually just a deterministic
function of two-source condenser calls of the form 2Cond(X0

i , x
1
N ) (which have been fixed to constants) or

2Cond(x1i , x
1
N ) (which are clearly constant). Thus Equation (3) can be rewritten as∣∣∣∣∣nmExt( ˜̃X0

1, . . . ,
˜̃X0
N ) ◦

(
˜̃Zb
)
b∈{0,1}N :b ̸=0⃗,bN=0

◦
(
zb
)
b∈{0,1}N :b̸=0⃗,bN=1

−Um ◦
(
˜̃Zb
)
b∈{0,1}N :b ̸=0⃗,bN=0

◦
(
zb
)
b∈{0,1}N :b̸=0⃗,bN=1

∣∣∣∣∣+Nδ.

Applying the data-processing inequality (Fact 1), this is at most∣∣∣∣∣nmExt( ˜̃X0
1, . . . ,

˜̃X0
N ) ◦

(
˜̃Zb
)
b∈{0,1}N :b̸=0⃗,bN=0

−Um ◦
(
˜̃Zb
)
b∈{0,1}N :b ̸=0⃗,bN=0

∣∣∣∣∣+Nδ. (4)

Now, let’s analyze the remaining ˜̃Zb. Notice that since b ∈ {0, 1}N satisfies both b ̸= 0⃗ and bN = 0, there
must be some i ∈ [N − 1] such that bi ̸= 0. Since we have fixed all the shadows, this means that ˜̃Zb is
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a deterministic function of ˜̃X0
−i. To make this more formal, we partition the remaining b ∈ {0, 1}N into

buckets according to which coordinate is nonzero. In particular, define for each i ∈ [N − 1] the set

Bi := {b ∈ {0, 1}n : bi = 1, bN = 0}.

To make this into an actual partition, simply define B′
i := Bi \ (∪h<iBh) to only include the strings not yet

accounted for. Using this partition, we can rewrite Equation (4) as∣∣∣∣∣nmExt( ˜̃X0
1, . . . ,

˜̃X0
N ) ◦

(
˜̃Zb
)
b∈B′

i,i∈[N−1]
−Um ◦

(
˜̃Zb
)
b∈B′

i,i∈[N−1]

∣∣∣∣∣+Nδ.

Furthermore, recall from above that if b ∈ B′
i, then bi = 1, which means that ˜̃Zb is a deterministic function

of ˜̃X0
−i. Moreover, note that each ˜̃Zb is over m bits, and the total number of elements across all the B′

i is at
most 2N−1. Thus there exist deterministic functions, g1, . . . , gN−1, which output 2N−1m bits in total, such
that the above expression is exactly∣∣∣∣∣nmExt( ˜̃X0

1, . . . ,
˜̃X0
N ) ◦

(
gi

(
˜̃X0
−i

))
i∈[N−1]

−Um ◦
(
gi

(
˜̃X0
−i

))
i∈[N−1]

∣∣∣∣∣+Nδ. (5)

Finally, we are ready to proceed to the next phase.

Phase III: Boosting the min-entropy. In this phase, our goal is to execute the two-source condenser calls
baked into nmExt in order to boost the min-entropy of the sources ˜̃X0

i , and prepare them for the final phase,
in which we call an NOF-hard function that expects to receive uniformly random input. Towards this end,
define for each i ∈ [N − 1] the random variable

Yi := 2Cond( ˜̃X0
i ,

˜̃X0
N ),

so that we may rewrite Equation (5) as∣∣∣∣∣NOF(Y1, . . . ,YN−1) ◦
(
gi

(
˜̃X0
−i

))
i∈[N−1]

−Um ◦
(
gi

(
˜̃X0
−i

))
i∈[N−1]

∣∣∣∣∣+Nδ. (6)

Then, we recall that since 2Cond : {0, 1}n×{0, 1}n → {0, 1}r is a two-source condenser for input entropy
k0, output entropy k1, and error ε1, it is automatically a strong two-source condenser for input entropy
k0 + r + log(1/ε1), output entropy k1, and error ε1 (Fact 4). Thus, by standard fixing arguments, the
definition of strong condenser (Definition 3), and a simple union bound, the following holds. We may fix
˜̃X0
N to a string x0N ∈ {0, 1}n such that if we define Ỹi := 2Cond( ˜̃X0

i , x
0
N ) for each i ∈ [N − 1], then we

may upper bound Equation (6) by∣∣∣∣∣NOF(Ỹ1, . . . , ỸN−1) ◦
(
gi

(
˜̃X0
−i

))
i∈[N−1]

−Um ◦
(
gi

(
˜̃X0
−i

))
i∈[N−1]

∣∣∣∣∣+Nδ + (N − 1)ε1, (7)

where each gi is now a deterministic function of ˜̃X0
1, . . . ,

˜̃X0
i−1,

˜̃X0
i+1, . . . ,

˜̃X0
N−1, all { ˜̃X0

j} are still inde-

pendent, each Ỹj is a deterministic function of ˜̃X0
j , and each Ỹj has min-entropy at least k1. Now, note that
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since Ỹj is a deterministic function of ˜̃X0
j , we may write Ỹj = fj(

˜̃X0
j ) for some deterministic function fj .

On the other hand, by the dependency reversal lemma (Lemma 2), we know that we can furthermore find
a deterministic function hj and a new random variable Aj (which is completely independent of all random

variables seen so far) such that ˜̃X0
j = hj(fj(

˜̃X0
j ),Aj) = hj(Ỹj ,Aj). This means that any fixing of Aj

does not affect the distribution or independence of the Ỹj’s, and furthermore every such fixing turns ˜̃X0
j into

a deterministic function of Yj . As a result, standard fixing arguments tell us that there exists some fixings
of A1, . . . ,AN−1 such that Equation (7) can be upper bounded by∣∣∣∣∣NOF(Ỹ1, . . . , ỸN−1) ◦

(
gi

(
Ỹ−i

))
i∈[N−1]

−Um ◦
(
gi

(
Ỹ−i

))
i∈[N−1]

∣∣∣∣∣+Nδ + (N − 1)ε1, (8)

where each gi is now a deterministic function of Ỹ−i, all the Ỹi’s are still independent, and all the Ỹi’s still
have min-entropy at least k1.

Phase IV: Executing the NOF-hard function. Finally, notice that the sequence of functions (gi)i is
exactly a (non-adaptive) number-on-forehead protocol over the remaining random variables Ỹ1, . . . , ỸN−1

∼ {0, 1}r, and each of these remaining random variables has min-entropy at least k1. Moreover, recall
that the functions g1, . . . , gN−1 output 2N−1m bits in total. Additionally, the lemma statement asserted
that NOF has ε2-average-case NOF communication complexity > µ2 := 2Nm against number-on-forehead
protocols. Since 2N−1m ≤ 2Nm− 2, Lemma 3 immediately tells us that Equation (8) is at most

ε2 · 2N(r−k1) +Nδ + (N − 1)ε1.

Finally, recall that for the condenser to actually work (and be strong), we needed to feed it sources with
min-entropy k0 + r + log(1/ε1). And furthermore, recall that the sources we fed into it had min-entropy at
least k− r− log(1/δ). Thus we need to have k− r− log(1/δ) ≥ k0+ r+ log(1/ε1). In other words, if we
set δ = ε1 and start with min-entropy at least k ≥ k0 +2r+2 log(1/ε1), Equation (8) is bounded above by

ε2 · 2N(r−k1) +Nε1 + (N − 1)ε1 ≤ ε2 · 2N(r−k1) + 2Nε1,

as desired.

Now that we have completed the recipe, let’s instantiate it to obtain our explicit weak NMEs (which, in
the next section, we’ll use to get our LREs). Recall that the weak NME is built from an NOF-hard function
and a two-source condenser. We import below the ones that we use.

Theorem 3 (Finite field multiplication is NOF-hard [FG13]). There exists a universal constant c > 0 such
that the following holds. Let f : ({0, 1}n)N → {0, 1}m be the function f(x1, . . . , xN ) := (x1·x2 · · ·xN )≤m

that multiplies its inputs over F2n , and outputs the first m bits. As long as m ≤ cn/2N , it holds that f has
2−cn/2N -average-case NOF communication complexity > µ := ⌈cn/2N⌉.12

Theorem 4 (Low-error two-source condenser [BCDT19, Theorem 31]). For every small enough constant
γ > 0, there exists a constant C > 0 such that the following holds. For every n ≥ k ≥ logC n, there
exists an explicit two-source condenser 2Cond : {0, 1}n×{0, 1}n → {0, 1}m for min-entropy k with output
length m ≥ k − 6kγ , output entropy ℓ ≥ m− kγ , and error ε = 2−kγ .

12In the original paper [FG13], this result is only explicitly stated for m = 1. However, it is straightforward to extend to larger
m - for a formal presentation, see [CGG+20].
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Now, let’s obtain our explicit weak NMEs.

Proof of Lemma 5. Simply plug the two-source condenser from Theorem 4 and the NOF-hard function from
Theorem 3 into the recipe for constructing weak NMEs (Lemma 6), and set constants C, γ appropriately.

5 Putting everything together

Now that we have our reduction from LREs against NOFs to weak NMEs, and our explicit construction of
weak NMEs, we are ready to construct our LREs against NOFs.

Theorem 5 (LREs against NOFs - Theorem 2, general version). There exist universal constants C, γ > 0
such that the following holds. There exists an explicit leakage-resilient extractor Ext : ({0, 1}n)N →
{0, 1}m for min-entropy k ≥ logC n against number-on-forehead-protocols with µ = ⌈kγ/2N⌉ bits of
communication, which has output length m = ⌈kγ/2N⌉ and error ε = 2−⌈kγ/2N ⌉.

Proof. Simply combine Lemmas 4 and 5, resetting constants C, γ appropriately.

Setting N = 3 in Theorem 5, we obtain the following LRE against NOF protocols.

Corollary 1 (LREs against NOFs - Theorem 2, restated). There exist universal constants C, γ > 0 such
that the following holds. There exists an explicit three-source extractor Ext : ({0, 1}n)3 → {0, 1}m for
min-entropy k ≥ logC n, which is leakage-resilient against number-on-forehead protocols with µ = ⌈kγ⌉
bits of communication, and which has output length m = ⌈kγ⌉ and error ε = 2−⌈kγ⌉.

Given this LRE against NOFs, it is now straightforward to obtain our extractors for adversarial sources.

Theorem 6 (Extractors for adversarial sources - Theorem 1, restated). There exist universal constants
C, γ > 0 such that the following holds. There exists an explicit extractor Ext : ({0, 1}n)N → {0, 1}m
for (N,K, n, k)-adversarial sources with K = 3 good sources of min-entropy k ≥ logC n, which has
output length m = ⌈kγ⌉ and error ε = 2−⌈kγ⌉.

Proof. Let LRE : ({0, 1}n)3 → {0, 1}m be the LRE against NOFs from Corollary 1, and define the function
Ext : ({0, 1}n)N → {0, 1}m as

Ext(X) :=
⊕

1≤a<b<c≤N

LRE(Xa,Xb,Xc).

Without loss of generality, we may assume that the good sources in X are X1,X2,X3. Fix all Xi, i > 3,
and observe that Ext becomes

Ext(X) = LRE(X1,X2,X3)⊕ f1(X2,X3)⊕ f2(X1,X3)⊕ f3(X1,X2)

for some deterministic functions f1, f2, f3. By combining the definition of LREs against NOFs with a
standard application of the data-processing inequality, it follows that Ext(X) is close to uniform.
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