
When Connectivity Is Hard, Random Walks Are Easy With

Non-Determinism

Dean Doron
Ben-Gurion University
deand@bgu.ac.il

Edward Pyne
MIT

epyne@mit.edu

Roei Tell
University of Toronto
roei@cs.toronto.edu

R. Ryan Williams
MIT

rrw@mit.edu

Abstract

Two fundamental problems on directed graphs are to decide s-t connectivity, and to estimate
the behavior of random walks. Currently, there is no known algorithm for s-t connectivity
running in polynomial time and no(1) space, and no known algorithm for estimating the n-step
random walk matrix running in non-deterministic logspace.

We show that for every directed graph, at least one of these problems is solvable in time and
space that significantly improve on the respective state-of-the-art. In particular, there is a pair
of algorithms A1 and A2 such that for every graph G, either:

1. A1(G) outputs the transitive closure of G in polynomial time and polylogarithmic space.

2. A2(G) outputs an approximation of the n-step random walk matrix ofG in non-deterministic
logspace.

As one application, we show surprisingly tight win-win results for space-bounded complexity.
For example, for certain parameter regimes, either Savitch’s theorem can be non-trivially sped
up, or randomized space can be almost completely derandomized.

We also apply our techniques to significantly weaken the assumptions required to deran-
domize space-bounded computation, and to make non-deterministic space-bounded computa-
tion unambiguous. Specifically, we deduce such conclusions from lower bounds against uniform
circuits of polynomial size, which is an exponential improvement on the required hardness in
previous works (Doron–Pyne–Tell STOC 2024, Li–Pyne–Tell FOCS 2024). We further show
similar results for minimal-memory derandomization (Doron–Tell CCC 2024).

To prove these results, we substantially improve the array of technical tools introduced in re-
cent years for studying hardness-vs.-randomness for bounded-space computation. In particular,
we develop derandomized distinguish-to-predict transformations for new types of distinguishers
(corresponding to compositions of PRGs with weak distinguishers), we construct a derandom-
ized logspace reconstruction procedure for the Shaltiel–Umans generator (JACM 2005) that can
compress hard truth-tables to polylogarithmic size, and we design a version of the Chen–Tell
generator (FOCS 2021) that is particularly suitable for the space-bounded setting.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 77 (2025)

Contents

1 Introduction 1
1.1 Our Results, Part 1: A Pair of Algorithms . 1
1.2 Our Results, Part 2: Derandomization from Very Weak Hardness 3
1.3 The Technical Contributions . 5

2 Overview of Proofs 6
2.1 The Pair of Algorithms . 6
2.2 Tight Win-Win Results in Space-Bounded Complexity 11
2.3 Derandomization from Very Weak Hardness . 12

3 Preliminaries 14
3.1 Distinguish-To-Predict and Prefix-CAPP . 14
3.2 Space-Bounded Computation . 16
3.3 Pseudorandomness Primitives . 17

4 New Distinguish-To-Predict Transformations 18
4.1 Distinguish-To-Predict for Compositions With the Nisan Generator 18
4.2 Distinguish-To-Predict for Compositions With the van-Melkebeek-Prakriya Generator 21
4.3 Distinguish-To-Predict for Compositions With the Forbes–Kelley Generator 24

5 A Generator with Uniform Near-Deterministic Logspace Reconstruction 32
5.1 Arithmetic Setup . 32
5.2 The Generator . 34
5.3 The Reconstruction Procedure for Lv . 35
5.4 The Reconstruction Procedure for L

(q)
0 , ..., L

(q)
v−1 . 37

5.5 Putting It All Together: The Reconstruction Procedure 47

6 Proof of the Main Theorems 48
6.1 A New Bootstrapping System, and the Main Pair of Algorithms 48
6.2 Scaled-Up Results . 52
6.3 Derandomization and Isolation From Weaker Assumptions 53
6.4 Minimal-Memory Derandomization . 56

i

1 Introduction

How much time and space is necessary to simulate randomized small-space algorithms? Or, alterna-
tively, to simulate non-deterministic small-space algorithms? These are two of the most well-studied
questions in space complexity, with particularly clean complete problems:

(1) For BPL = BPSPACE[O(log n)], the corresponding problem is to estimate n-step random
walk probabilities on an n-vertex graph, with small additive error.

(2) For NL = NSPACE[O(log n)], the problem is to decide s-t connectivity on an n-vertex graph.

At the moment, we do not know how to solve either problem in polynomial time and only
logarithmic space. For problem (1), it is widely conjectured that such an algorithm exists (i.e.,
that BPL = L, which follows from conjectured lower bounds [KvM02, DT23, DPT24]). How-

ever, the best known algorithms work either in super-polynomial time 2log(n)
3/2−o(1)

and in space
log(n)3/2−o(1) [SZ99,Hoz21], or in polynomial time and in larger space O(log2 n) [Nis92,CCvM06].
Moreover, it is not even known how to improve these algorithms using non-deterministic computa-
tion (e.g., we do not know whether BPL ⊆ NSPACE[log1.49 n]).

For problem (2), there is seemingly no consensus on a widely believed conjecture, and the
most important reference point is the classical algorithm of Savitch [Sav70], which works in super-

polynomial time 2Θ(log2 n) and in space O(log2 n). A major open problem asks whether Sav-
itch’s algorithm can be improved. For example, already 30 years ago, Wigderson [Wig92] asked
whether an algorithm can achieve polynomial time and space n1−ε for some ε > 0: This prob-
lem is still wide open, and the best known polynomial-time algorithm uses nearly-linear space
n/2Θ(

√
logn) [BBRS98]. In fact, in a natural restricted model encompassing all known determin-

istic, randomized, and non-deterministic algorithms for directed (and undirected) connectivity,1

there is a lower bound ruling out algorithms running in time 2log
1.99 n and space n0.99 [EPA99].

1.1 Our Results, Part 1: A Pair of Algorithms

We prove that for every graph, at least one of these problems can be solved significantly more
efficiently than previously known algorithms:

Theorem 1. There are algorithms A1,A2 such that for every graph G on n vertices, one of the
following holds:

• A1(G) solves s-t connectivity in G in polynomial time and polylogarithmic space.

• A2(G) estimates length-n random walk probabilities in G in non-deterministic logspace.2

Moreover, both algorithms report if they fail to compute the desired answer, and do not exceed their
resource bounds in any case.

1Specifically, this is the Node-Named Jumping Automata on Graphs (NNJAG) model [CR80,Poo93,LZPC05]. This
model captures all known space-bounded directed and undirected connectivity algorithms, including Savitch, BFS,
DFS, Immerman-Szelepcsényi [Imm88,Sze88], Nisan et al. [NSW92], Barnes et al. [BBRS98], Armoni et al. [ATWZ00],
and Reingold [Rei08].

2The estimation is up to an additive 1/poly(n) error. The algorithm runs in logspace, makes non-deterministic
guesses, and either declares fail if the guess sequence is bad, or a single canonical matrix only depends on the graph
G, or a special symbol ⊥ indicating that A2 does not succeed on this input (in which case A1 succeeds on the input).

1

We stress that the constructions of A1 and A2 are explicit (i.e., these are specific algorithms,
and their descriptions will be given in Section 2.1), and that provably, for every graph, at least
one of the algorithms works (and both of them never return an incorrect answer). Moreover, these
algorithms run in time and space that significantly improve on the respective state-of-the-art: The
algorithm A1 runs in polynomial time and uses only polylogarithmic space (compared to n/2

√
logn

space [BBRS98]); and A2 uses only logarithmic space, alas it also uses non-determinism (i.e., it is
akin to BPL ⊆ NL; in comparison, the algorithm of [SZ99,Hoz21] uses log(n)3/2−o(1) space).

Application: Tight win-win results in space-bounded complexity. Since the pair of algo-
rithmsA1 andA2 from Theorem 1 solve the complete problems for forNL and for BPL, respectively,
we can use them to tightly connect the challenges of simulating NL and BPL. As one application,
we leverage the pair of algorithms to show that either Savitch’s theorem can be improved, or
randomized space can be deterministically simulated near-optimally.

Theorem 2. For every constant ε > 0, at least one of the following holds:

• NSPACE [n] ⊆ i.o.TISP
[
2O(n2−ε), nO(1)

]
.

• BPSPACE[n] ⊆ SPACE
[
O(n1+ε)

]
.

We stress that the second item in Theorem 2 does not use non-determinism (i.e., it is a scaled-
up version of BPL ⊆ SPACE[(log n)1+ε)]), in contrast to A2 from Theorem 1. Indeed, Theorem 2
is not an immediate corollary of Theorem 1, but it does use the techniques underlying the proof of
the latter (i.e., a more general construction of a pair of algorithms).

Theorem 2 is particularly meaningful in two parameter regimes, corresponding to choices of
ε > 0. Specifically, the following two instantiations assert that for each of the two problems we
consider (i.e., s-t connectivity and estimating random walks), either we can non-trivially improve
on the state-of-the-art for solving the problem, or we can near-optimally solve the other problem:

• With an arbitrarily small ε > 0: Either Savitch’s algorithm can be non-trivially sped-up (i.e.,
replacing 2n

2
with 2n

2−ε
), or we can near-optimally derandomize BPSPACE[n].

• With ε = 0.49: Either the frontier derandomization of Saks–Zhou can be non-trivially im-
proved (i.e. replacing SPACE[n1.5] with SPACE[n1.49]), or Savitch’s algorithm can be sub-

stantially sped up (i.e. replacing 2n
2
with 2n

3/2+0.01
).

If we are willing to settle for non-deterministic simulation of BPSPACE, we can leverage The-
orem 1 to connect near-optimal solutions to both problems (i.e., rather than connecting a slight
improvement to the state-of-the-art for one problem to a near-optimal solution to the other prob-
lem). For example, either Savitch’s Theorem can be optimally sped up, or we can optimally simulate
probabilistic linear space using non-determinism:

Theorem 3 (informal; see Theorem 6.10). It holds that either NSPACE[n] ⊆ i.o.TISP
[
2O(n), nO(1)

]
,

or BPSPACE[n] ⊆ NSPACE[O(n)].

Interpretation. If one believes that L = NL and BPL = L (i.e., that we can solve s-t connectivity
in logspace and estimate random walk probabilities in logspace), then Theorem 1 and the win-win
results can be interpreted as concrete steps towards proving both statements. Alternatively, if one
believes that (say) Savitch’s algorithm cannot be sped up, then our results can be interpreted as
showing that such a statement implies optimal derandomization. In any case, our results in this
section provide a new algorithmic tool, and connect two fundamental problems.

2

1.2 Our Results, Part 2: Derandomization from Very Weak Hardness

One perspective on the win-win results above is that they convert hardness into randomness:
Specifically, they deduce near-optimal derandomization of small space from hardness of improving
Savitch’s theorem (i.e., of solving s-t connectivity) by uniform, deterministic algorithms. We stress
that typical results in hardness vs. randomness deduce derandomization from stronger assumptions
(i.e., from hardness for non-uniform circuits or for probabilistic algorithms).3

From this perspective (i.e., if the goal is to deduce derandomization from weak hardness), we
want to do better than Theorem 2 and Theorem 3, by deducing optimal derandomization – without
non-determinism, and without an n1+ε space overhead. We are indeed able to do so.

Full derandomization of BPSPACE from very weak hardness. A classical result of Klivans
and van Melkebeek [KvM02] (following [NW94]) showed that BPL = L follows from sufficiently
explicit lower bounds against exponential sized non-uniform circuits (see also [DT23]). Since these
circuit lower bounds currently seem out of reach, a natural direction is to deduce derandomization
from assumptions that are weak enough so that we hope to unconditionally prove them.

Recently, Doron, Pyne, and Tell [DPT24] showed one such result, in which they deduced de-
randomization from lower bounds for exponential-sized circuits that can be printed by uniform,
space-bounded machines (rather than non-uniform circuits). As they point out, proving such a lower
bound seems significantly more tractable , since there are already known lower bounds against uni-
form circuits (see, e.g., Santhanam and Williams [SW13]).

To be more precise, in [DPT24] they proved that BPSPACE[n] ⊆ SPACE[O(n)] follows from
hardness of SPACE[n] against logspace-uniform oracle circuits of size 2εn; that is, against exponential-
sized circuits that can be printed in space O(n). We deduce the same conclusion from lower bounds
against uniform polynomial-sized circuits (equipped with an oracle that uses space εn).

Theorem 4. There is a constant c > 1 such that the following holds. Suppose there exists a
constant ε > 0 such that SPACE[n] is hard for TISP[2cn, nc]-uniform circuits of size nc with oracle
access to SPACE[εn].4 Then, BPSPACE[n] ⊆ SPACE[Oε(n)].

Theorem 4 represents a near-exponential improvement in the size of the circuits against which
we need hardness, at the cost of relaxing the uniformity condition from SPACE[O(n)]-uniformity to
TISP[2O(n), nO(1)]-uniformity. The assumption in Theorem 4 strikes us as very weak, and plausibly
provable: It asserts that there are N -bit strings printable in space O(logN) that cannot be deter-
ministically compressed (in small time and space) to a circuit of size polylog(N) that can make
oracle queries to space ε · log(N).

Derandomization with minimal memory footprint. We also consider the question of de-
randomization with minimal memory overhead, which was introduced by Doron and Tell [DT23]
(following [DMOZ22,CT21b]). The classical conjecture BPL = L asserts that randomized space-S
machines can be simulated in space S′ = C ·S, for some (possibly large) constant C > 1. The more
ambitious goal from [DT23] is to have S′ as close as possible to S; for example, deduce simulation
with S′ ≈ 2S or even S′ ≈ S. Since we do not hope to show this unconditionally at the moment,
the goal is to deduce it under the weakest possible assumptions.

3Only very recently, several works deduced derandomization of small-space computation from hardness for uniform,
deterministic algrithms (see [PRZ23, DPT24, LPT24]). Jumping ahead, we build on these works and significantly
develop the technical machinery introduced in them. For details, see Section 1.3.

4The input length n to the oracle is the same length as the input to the generating algorithm (so we do not let
the machine write longer oracle queries).

3

We base minimal-memory derandomization on assumptions that are qualitatively weaker than
those known to imply standard (i.e. not superfast) derandomization in the time-bounded setting.
To see this, recall that the work of [DT23] deduced derandomization of randomized space-S with
deterministic space S′ = 2S+O(log n) under two assumptions: very efficient cryptographic PRGs,
and strong circuit lower bounds. The subsequent work [DPT24] obtained the same conclusion
without the cryptographic assumption, while still requiring lower bounds for non-uniform circuits.
We go further, deducing the same conclusion from hardness of compression of a multi-output
function by uniform, deterministic machines that run in polynomial time and sublinear space:

Theorem 5 (see Theorem 6.14). Assume that for any large enough constant C there exists a
function f mapping n bits to n2 bits that is computable in space (C + 1) · log(n), but for any
deterministic algorithm R that runs in space n0.01 and time nO(C), there are at most finitely many
x ∈ {0, 1}n such that the following holds: When given input x, the algorithm R(x) prints an O(n)-
length description of a machine M that runs in space C · log(n) and prints f(x). Then, for any
S(n) = Ω(log n) and constant ε > 0,

BPSPACE[S] ⊆ SPACE[(2 + ε) · S].

In the time-bounded regime, deducing extremely efficient (i.e., superfast) derandomization from
a strong circuit lower bound is still an open problem, let alone deducing it from hardness for uniform
deterministic algorithms; currently, all works require either cryptography, or lower bounds for non-
deterministic non-uniform circuits (see, e.g., [DMOZ22,CT21b,CT21a,SV22,CT23]).

Disambiguating nondeterministic logspace. The final question we consider is whether non-
deterministic logspace can be made unambiguous, in the sense that for every NL language, there
is a (one-way logspace) verifier that is only convinced by a unique witness for every x ∈ L. This
is commonly known as the NL = UL question, and it is the space-bounded analogue of the NP
vs. UP question. The disambiguation task reduces to a derandomization task, and specifically
to derandomizing a graph-theoretic variant of the classical isolation lemma by [VV86], where the
variant was introduced by Reinhardt and Allender [RA00] (see also [GW96]).

Allender, Reinhardt, and Zhou [ARZ99] showed that if there is a problem in SPACE[O(n)]
hard for non-uniform exponential-sized circuits, then indeed NL = UL. Very recently, Li, Pyne,
and Tell [LPT24] proved an analogous conclusion in a scaled-up regime (i.e., NSPACE[n] =
USPACE[O(n)]) from hardness for uniform exponential-sized circuits (where the machine printing
the circuit is itself an O(n) space unambiguous machine). In this context too, we deduce the same
conclusion from lower bounds against uniform polynomial-sized circuits.

Theorem 6. There is a constant c > 1 such that the following holds. Suppose there exists a constant
ε > 0 such that USPACE[n] is hard for circuits of size nc with oracle access to USPACE[εcn], where
the circuits are uniformly generated by an algorithm that runs in TISP[2O(n),poly(n)] with oracle
access to USPACE[O(n)].5 Then, NSPACE[n] ⊆ USPACE[Oε(n)].

Similarly to Theorem 4, the hardness assumption in Theorem 6 represents a near-exponential
improvement in the size of the circuits against which we need hardness, at the cost of mildly
increasing the space allowed for the uniform machine.

5Here too, the input length n to the oracle is the same length as the input to the generating algorithm.

4

1.3 The Technical Contributions

Our results are based on substantial improvements to the array of technical tools that have been
introduced in recent years for studying hardness-vs.-randomness for bounded-space computation.
To contextualize this contribution, consider classical constructions of pseudorandom generators
based on a hard function f (e.g., the Nisan-Wigderson [NW94] PRG). The analysis of these PRGs
is based on a reconstruction argument: If an efficient distinguisher is not fooled by the generator
(built from f), then an efficient procedure computes f .

Now, let us view both the pseudorandom generator and the reconstruction as a pair of algo-
rithms “of equal status”, rather than thinking of the reconstruction as only part of the analysis;
similar perspectives have been useful for extractor theory, meta-complexity, learning, and pseu-
dodeterministic algorithms (see, e.g., [TSUZ07, ISW06,CIKK15,Hir23,CLO+23]). Observe that a
generator with respect to f is useful for derandomization, whereas the reconstruction procedure
computes f , and at least one of the two is guaranteed to work (cf., Theorem 1). We will use a
function f such that both the output of the generator (when f is hard) and the output of f itself
(when f is easy) are useful.

A key point for making this approach work is using both a generator and a reconstruction
procedure with low complexity. In recent years, deterministic reconstruction procedures have been
developed, following Pyne, Raz, and Zhan [PRZ23] (see also [DPT24,LPT24]), in which case both
the generator and the reconstruction algorithms are deterministic. Technically, in this work we
develop new efficient generators with deterministic reconstruction procedures, as well as determin-
istic reconstruction procedures for known generators that work in broader contexts than before.
Specifically, our results rely on the following technical contributions:

1. Derandomized D2Ps for PRG+Distinguisher. All known derandomized reconstruction
procedures rely on derandomized transformations of distinguishers to predictors (D2P). In-
formally, a D2P transformation is a mapping from circuits C into short sequences P1, . . . , Pm

of circuits, such that if C distinguishes a distribution D from uniform, then some Pi is a
decent next-bit predictor for D. Yao’s [Yao82] classical lemma can be thought of as a very
general randomized D2P, whereas we are interested in deterministic D2Ps.

Previously, deterministic D2Ps were known either for read-once branching programs [DPT24]
or for specific distinguishers [LPT24]. We develop deterministic D2Ps for compositions of
PRGs with distinguishers, where both the distinguisher and the PRG may be of various
types: Our D2Ps work for compositions of Nisan’s [Nis94] PRG with ROBPs, of the Forbes-
Kelley [FK18] PRG with AOBPs, and of a PRG by van Melkebeek and Prakriya [vMP19] with
a graph-theoretic distinguisher. See Section 2.1.2, Section 2.3, and Section 6.3 for details.

2. SU Generator with deterministic reconstruction. Previous deterministic reconstruc-
tion procedures were for generators or targeted generators based on the Nisan-Wigderson
generator [NW94] (e.g., for the targeted generator of [CT21a] instantiated with [NW94]; see
also [PRZ23,DPT24, LPT24]). However, the NW generator is well-known to have subopti-
mal parameters, and using it in our constructions would not allow us to obtain our results.
We thus develop a deterministic low-space reconstruction procedure for the more efficient
Shaltiel-Umans [SU05] generator, which we use for our results. See Section 2.1.3 for details.

3. A new targeted generator. For the pair of algorithms in Theorem 1, we construct a
new targeted generator with a deterministic reconstruction procedure. This generator can
be thought of as a variant of the Chen–Tell [CT21a] generator that is particularly suited for
space-bounded hardness-vs.-randomness results. The construction is described in Section 2.1.

5

2 Overview of Proofs

In this section we present high-level overviews of our proofs, aiming to present self-contained de-
scriptions (especially for the proof of Theorem 1). In particular, while describing the proofs we
will explain the role of the new complexity-theoretic tools mentioned in Section 1.3 (i.e., the D2P
transformations, the reconstructive generator, and the targeted generator for space-bounded set-
tings), but we will present the constructions of these tools in separate subsections. In particular,
in Section 2.1 we explain the proof of Theorem 1, in Section 2.2 we explain how to deduce the
win-win corollaries, and in Section 2.3 we explain the proofs of results from Section 1.2.

2.1 The Pair of Algorithms

At a high level, our algorithms A1,A2 (for random walk estimation and s-t connectivity respec-
tively) work as follows. Fixing a graph G on n vertices, we consider a reachability bootstrapping
system (à la [CT21a]), which is a sequence of n strings (“layers”) defined as follows. For i ∈ [n],
the ith layer, denoted Pi ∈ {0, 1}n

2
, is defined as:

(Pi)s,t = I [there exists a path from s to t of length at most i] .

We observe two critical properties about this system:

1. Downward self reducibility. There is a (deterministic) logspace algorithm that, given
input (G, (s, t)) and query access to Pi, computes (Pi+1)s,t.

2. Nondeterministic computability. There is a nondeterministic logspace algorithm that,
given (G, i, s, t), computes (Pi)s,t.

The algorithm in Item 1 is direct, whereas the algorithm in Item 2 requires the Immerman-
Szelepcsényi theorem [Imm88,Sze88] that coNL = NL. Note that we could use the first algorithm
to compute any entry in the bootstrapping system (by repeatedly using downward self-reducibility),
but the recursion depth is n, yielding a space-inefficient algorithm. The second algorithm allows
us to “shortcut”, and compute each entry in the bootstrapping system using nondeterminism.

We build the pair of algorithms A1,A2 around the following question: Is there an i such that
Pi allows us to produce pseudorandom walks on G (using complexity-theoretic tools)? Given
such an i, we will estimate random walk probabilities; otherwise, we will solve s-t connectivity.

Specifically, for the purpose of producing pseudorandom walks from Pi, we build a pseudoran-
dom generator GEN with the following properties:

1. Logspace computability. Given P ∈ {0, 1}n2
and a graph G on n vertices, GENP (G)

is computable in logspace. Moreover, the output is either G̃ ∈ Rn×n or ⊥, where G̃ is a
1/n-approximation of Gn, and G is the random walk matrix of G.

2. Deterministic reconstruction. There is an algorithm REC running in polynomial time and
polylogarithmic space that, given P and G such that GENP (G) =⊥, outputs a polylog(n)-size
(oracle) circuit C such that CG(x) = Px for all x ∈ [|P |].

First we explain how to combine these ingredients to obtain Theorem 1, then go further into the
description of the generator. To estimate random walk probabilities in NL, we enumerate over i,
and use GEN(G) with Pi to try to produce G̃ ≈ Gn. When GEN(G) tries to access entries of Pi,

6

we answer using the NL algorithm from Item 2. This yields an NL algorithm A1 such that if there
is an i for which GENPi(G) ̸=⊥, the algorithm outputs an approximation of n-step walks on G.6

Otherwise, it is the case that GENPi(G) =⊥ for every i. In this case, we iterate from i =
1, . . . , n, at each stage using REC to build a compressed representation Ci of Pi. This compressed
representation is of size polylog(n), and can be evaluated in space polylog(n).7 Once we have a
compressed representation Cn of Pn, we can output the transitive closure of G using polylog(n)
space and poly(n) time. In more detail, in each iteration i ∈ [n]:

1. Assume we have a representation Ci−1 such that CG
i−1(s, t) = (Pi−1)s,t for all (s, t) ∈ [n]2.

By Item 1, we can compute (s, t) 7→ (Pi)s,t using queries to Ci−1.

(In the first iteration i = 1 we can compute each entry of P1 directly in logspace.)

2. By our assumption, GENPi(G) =⊥. Hence, we can use the algorithm REC from Item 2 to
obtain Ci such that CG

i (s, t) = (Pi)s,t for all s, t.

3. Finally, delete the representation Ci−1, and increment i.

Since each of the n steps takes polylog(n) space and poly(n) time, and space is reused across steps,
the algorithm A2 runs in SC = TISP[poly(n), polylog(n)] as claimed.

Finally, note that both algorithms can detect failure. Specifically, the NL algorithm A1 outputs
⊥ if no i allowed it to produce G̃ (i.e., if GEN(G) outputs ⊥ with all Pi). Similarly, the SC algorithm
A2 can check at each iteration i that CG

i computes Pi (otherwise, it outputs ⊥).

Outline of Technical Description. In Section 2.1.1, we give an overview of the construction of
GEN. Then, in Sections 2.1.2 and 2.1.3, we describe constructions of two key technical components
that are necessary for the construction of GEN.

2.1.1 A walk generator with deterministic reconstruction

The construction of GEN is based on the hardness vs. randomness paradigm. As explained in Sec-
tion 1.3, this paradigm yields a pair of algorithms GEN and REC such that for every string P ,
either GEN produces pseudorandomness from P or REC efficiently computes P (in this case, REC
produces a small description of P). The pseudorandomness that we need in our setting is very
specific: we just need to approximate walk probabilities on a graph.

A first attempt might be to instantiate a known PRG, such as NW [NW94, IW97], with the
truth table f = Pi, and use the output of the generator to take random walks on G. A line of recent
work [CH22,PRZ23,DT23,DPT24,LPT24] developed deterministic and space-efficient reconstruc-
tion procedures for NW that work in our setting (i.e., when using the output to approximate walks),
but there is a fundamental issue: If we use NW to produce n pseudorandom bits (for an n-step
walk), then we can only guarantee that when NW fails, the reconstruction compresses f to size nc

(for some constant c > 1), which in our case would not compress the reachability matrix at all.
Indeed, we need a generator that will produce n-step pseudorandom walks, such that failure of

this generator allows us to compress f to size polylog(n). This is known to be impossible when

6To ensure the output is consistent for a fixed graph, the algorithm tries i = 1, . . . , in sequence and uses the first
layer that produces an output.

7To be more accurate, the algorithm needs to evaluate CG
i rather than Ci. But since G is given to the algorithm

as input, whenever Ci queries G, the algorithm can answer the query in logspace.

7

using standard black-box techniques to produce n pseudorandom bits,8 but since we only care about
producing pseudorandom walks for a given graph (rather than arbitrary pseudorandom bits), we
are able to bypass this barrier using two technical components.

Technical component 1: Using an unconditional “outer” PRG. Instead of producing
n-step walks, we use the PRG to produce a polylog(n)-bit seed for the pseudorandom generator
NIS of Nisan [Nis91], which stretches its seed to an n-step pseudorandom walk.9 Since our PRG
now only needs to output polylog(n) bits, when it fails we can compress f to size polylog(n).

However, this breaks a key part of the argument. Specifically, the reconstruction REC for our
PRG relies on a transformation of a distinguisher (for the output of the PRG) into a next-bit-
predictor, à la Yao [Yao82], denoted D2P. Since we need REC to be deterministic, we need the
D2P to be deterministic. However, previous works [CH22, PRZ23, DPT24, LPT24] constructed
D2P transformations only for certain classes of distinguishers, and the distinguisher “does the PRG
output a seed for NIS that causes it to produce good pseudorandom walks?” is not in these classes.

Thus, we develop a new deterministic D2P for the latter distinguisher. In fact, this is part of
a broader contribution of this work, in which we develop deterministic D2Ps for various types of
distinguishers of the form “composition of a PRG with a weak distinguisher”. Our D2P for the
current specific distinguisher is described in Section 2.1.2.

Technical component 2: A better “inner” PRG. A well-known limitation of NW is that
when producing polylog(n) output bits and compressing f to size polylog(n), its seed is polyloga-
rithmic rather than logarithmic. Thus, it would not have the properties that we need from GEN
(i.e., logspace and polytime computability). Instead of using NW, we use a generator that does not
suffer from this limitation, namely the Shaltiel–Umans [SU05] generator SU.

However, now another key part in the argument breaks. Recent works developed deterministic
logspace reconstruction algorithms for NW, but no such algorithms are known for SU. In fact,
only very recently Chen et al. [CLO+23] showed a setting in which (a modification of) SU has
reconstruction that can be computed uniformly (rather than by non-uniform circuits), and their
algorithm is neither space-efficient nor randomness-efficient. Thus, we develop a new reconstruction
procedure, which simultaneously achieves both these goals. This is described in Section 2.1.3.

By combining the two foregoing technical components, we obtain GEN = SU such that GEN
and REC have the properties needed to construct the pair of algorithms described in Section 2.1.

2.1.2 A D2P for Nisan’s generator composed with estimating random walks

Let us recall the definitions of distinguishers, predictors, and of D2P transformations (the latter
were formally introduced in [DPT24] and studied more generally in [LPT24]).

Definition 2.1 (distinguisher). We say that C : {0, 1}n → {0, 1} is an ε-distinguisher for a distri-

bution D over {0, 1}n if
∣∣∣E[C(Un)]− E[C(D)]

∣∣∣ ≥ ε, where Un is the uniform distribution.

8To be precise, whenever using the standard hybrid argument (or, more generally, a distinguish-to-predict trans-
form for arbitrary distinguishers) and black-box hardness amplification to produce n pseudorandom bits, an overhead
of poly(n) in compression is unavoidable; see [GSV18,SV22] and [LPT24, Appendix B].

9In this simplified description, we consider NIS as an algorithm that takes as input a random seed and produces a
set of random walks (and for most seeds, the uniform distribution over the set of walks is pseudorandom). This idea
was also used to reduce the catalytic space complexity of producing random walks [Pyn24].

8

Definition 2.2 (next-bit predictor). For i ∈ [n], we say that P : {0, 1}i−1 → {0, 1} is a δ-next-bit-
predictor for a distribution D over {0, 1}n if Prx←D [P (x<i) = xi] ≥ 1

2 + δ.

Definition 2.3 (D2P, simplified; see Definition 3.2). An algorithm A is a distinguish to predict
(D2P) transformation for a class C if A gets as input a description of a circuit C : {0, 1}n → {0, 1}
from C, and prints a list of circuits P1, ..., Pm : {0, 1}⋆ → {0, 1} such that for every distribution D
over {0, 1}n the following holds. If C is a (1/3)-distinguisher for D, then there is an i ∈ [m] such
that Pi is an (1/O(n))-predictor for D.

Several prior works [Nis94,CH22,GRZ23,PRZ23,DPT24] yield deterministic D2P transforma-
tions for the “random walk” distinguisher. In more detail, this distinguisher can be modeled as a
read-once branching program (ROBP), and deterministic D2Ps for ROBPs are known.

Now, recall that Nisan’s PRG NIS chooses at random ℓ = log n hash functions h⃗ = (h1, . . . , hℓ),
each over O(log n) bits, and for every graph G, for almost all collections of hash functions, the
generator NIS

h⃗
produces a pseudorandom distribution of random walks for G. Our distinguisher is

therefore
TG(⃗h) = I

[
NIS

h⃗
produces good random walks for G

]
,

and this is not an ROBP (as the Nisan PRG reads each hash function repeatedly even to produce a
single output). We overcome this issue by constructing a D2P transformation for this distinguisher:

Theorem 2.4 (informal; see Section 4.1). There is a deterministic logspace D2P transformation
for TG. Moreover, each candidate predictor is evaluable in logspace, given access to G.

Our proof uses a reduction from the recent work of Li, Pyne, and Tell [LPT24]. They show
that producing a D2P transformation for a distinguisher T reduces to solving a problem called
“prefix-CAPP” (PCAPP) for T .10 In particular, we say that a logspace machine solves PCAPP for
T if given T : {0, 1}n → {0, 1} and x ∈ {0, 1}≤n, the machine estimates Ez[T (x ◦ z)] to within error
1/n2.

Theorem 2.5 ([LPT24], see Lemma 3.5). Suppose there is a logspace machine that solves PCAPP
for T . Then, there is a logspace computable D2P transformation for T .

Naively, solving such a PCAPP problem may seem as hard as solving CAPP directly for T (which
itself in general is as hard as derandomization). However, we exploit the structure of T to solve
PCAPP more efficiently. In [LPT24] they observed that this is possible if the distinguisher obeys
a certain polarization property, which in our case is as follows. For every G, and prefix of hash
functions (h1, . . . , hi), the following dichotomy occurs:

1. There is a j ≤ i such that hj is a “bad” hash function. In this case, for every suffix z,
Ez[TG(h1, . . . , hi, z)] = 0.

2. There is no j ≤ i such that hj is a bad hash function. In this case, Ez[TG(h1, . . . , hi, z)] ≈ 1.

We show that (a slight modification of) the generator NIS indeed obeys this polarization property.
Hence, when considering the output distribution of this (modified) generator, we can solve PCAPP
in a simple, deterministic way: we only need to test each of the hash functions in the given prefix
(i.e., rather than estimate T on a distribution of suffixes). By the reduction of D2P to PCAPP
from [LPT24], we obtain an efficient D2P transformation for TG.

10CAPP is short for Circuit Approximation Probability Problem [KRC00], the problem of estimating the probability
of acceptance of a given circuit C to within a fixed additive error. In a “prefix-CAPP” problem, we are given a prefix
x along with a device T , and wish to approximate the probability of acceptance of T (x ◦ y) over random suffixes y.

9

2.1.3 A generator with uniform near-deterministic logspace reconstruction

The generator SU maps f ∈ {0, 1}N to a list of strings in {0, 1}M , which are hopefully pseudo-
random. It is coupled with an efficient reconstruction algorithm RSU that converts any next-bit-
predictor P for the list of M -bit strings into a circuit CP

f of size poly(M) ≪ N that computes f .

In our setting N = n2 and M = polylog(n), and it is crucial that RSU is a small-space machine
that uses only O(logN) random coins (so that we can enumerate).

A formal statement appears in Theorem 5.1, and we now describe some of the ideas in our
modification, at a high-level. The generator SU, which we do not change, arithmetizes its input f
as a low-degree polynomial f̂ : Fv

q → Fq, and outputs evaluations of f̂ on “lines” going in a certain
direction A in Fv

q .
11 A simplified version of the reconstruction is as follows: Choose a random

low-degree curve C : Fq → Fv
q , and query f̂ at the m − 1 “preceding” curves going back from C

in direction A−1 (i.e., query f̂ at all points on the curves A−i · C for i ∈ [m − 1]). This curve C
and queried “starting points” define a circuit F , which computes f̂ . Specifically, when given z⃗, the
circuit F starts from C0 = C and repeatedly uses the next-element-predictor – which predict in
“direction” A – to predict the next curve A · Ci+1, until reaching a curve that contains z⃗. (This
simplified description hides many details, among them the fact that D works in several “strides” of
the form Ai for i = q, ..., qv−1, and the fact that C actually uses two interleaved curves and relies
on a list-decoding algorithm at each step.)

Let us briefly explain how we make this reconstruction randomness-efficient. (Making the
reconstruction space-efficient is relatively easier, relying on the efficiency of many of its components
as well as on ideas of Doron and Tell [DT23].)

Randomness-efficient samplers. Following Pyne, Raz, and Zhan [PRZ23], we use randomness-
efficient samplers to reduce the randomness complexity of various parts of the reconstruction. The
underlying observation is that many of the components in the reconstruction repeat a single proce-
dure that uses O(logN) coins multiple times (and take, for example, an OR, or the majority vote).
Instead of repeating the procedure with independent coins, we can use a sampler with O(logN)
coins to output a sample such that (w.h.p.) the procedure behaves on the sample approximately
the same as on a uniformly chosen sample.

Pseudorandom curves, and reusing randomness for defining points. The procedure relies
on the random low-degree curve having sufficiently strong sampling properties. First, it needs
the curve to be a good sampler (i.e., for any subset T ⊆ Fv

q , the points on the curve sample T
approximately correctly, with high probability). A natural idea is to replace a random curve with a
curve sampler, which pseudorandmly outputs a curve with the needed sampling properties. Indeed
such a sampler was designed by Guo [Guo13] (following [TU06]) for this particular purpose – and
in fact with our parameter regime in mind.

Secondly, when considering the defining points for the ℓ-degree curve, which are the points
t1, ..., tℓ ∈ Fq such that we interpolate the curve according to certain values on t1, ..., tℓ, the pro-
cedure splits these points into O(logN) blocks, and needs the points inside each block to be good
samplers (in Fq).

12 A naive approach is to choose the points in each block using a sampler, but
this seemingly requires too much randomness (i.e., O(logN) coins, times the sampler’s randomness

11To be more accurate, consider a matrix A ∈ Fv×v
q representing multiplication by a primitive element in Fqv . Then,

the generator chooses a random x⃗ ∈ Fv
q and outputs the evaluations of f̂ at the points x⃗, A · x⃗, A2 · x⃗, ..., Am−1 · x⃗.

12This sampling property of the defining points of the curve C is used to argue that, with high probability, the
predictor succeeds in predicting sufficiently many points on C (and on each Ai · C).

10

complexity). However, we show that the same randomness can be reused across blocks, since the
analysis boils down to a union-bound over events that each depend on a single block.

Pseudorandom interleaving. The last part of our modification is more subtle. Loosely speak-
ing, in [SU05] they actually use two low-degree curves C1 and C2, where C1 is a random curve
and C2 is obtained by “shifting” the values of C1 on some of the defining points, by a small num-
ber O(logN) of predetermined shift values.13 In their argument, both C1 and C2 have sufficient
sampling properties, since the marginal distribution over each of the curves is that of a random
low-degree curve. However, in our argument, C2 is obtained by applying a sequence of predeter-
mined shifts to the values of a curve sampler C1 on the defining points (and then interpolating),
and it is not clear that this operation preserves the sampling properties of C1.

If C2 would have been obtained by applying shifts to all of the points of C1 (rather than applying
them to the defining points and then interpolating), then we would be able to prove that C2 is
indeed a sampler. Of course, we cannot enforce that all of the points of C2 will be various shifts
of C1, since that is not necessarily a low-degree curve. To get around this, we partition Fq into a
small number O(logN) of large subfields, and for each subfield, we use a sampler to choose defining
points in the subfield, and define C2 using an appropriate shift of C1 on these defining points.
As above, we reuse randomness for the sampler across subfields.14 Since C2 is a shift of C1 on a
pseudorandom set of points within each subfield, we can argue that C2 behaves sufficiently similar
to a shift of C1 on the entire subfield. Further details appear in Section 5.4 and in Proposition 5.20.

2.2 Tight Win-Win Results in Space-Bounded Complexity

We now explain how to obtain the win-win results in space complexity, based on (the proof of) The-
orem 1. For Theorem 2, we first modify the pair of algorithms. Rather than attempting to compute
reachability and random walks on the same graph (equivalently, on two graphs of comparable size),

we instead take a small graph G1 (of size 2log
1/2+ε/2 n), and a large graph G2, and attempt to either

compute reachability on G1, or estimate random walk probabilities on G2. Also, instead of com-
puting the reachability bootstrapping system in NL, we use Savitch’s Theorem [Sav70] to compute
the system deterministically. This yields the following pair of algorithms:

Theorem 2.6 (informal; see Theorem 6.7). For every ε > 0, there are algorithms A1,A2 such

that for every pair of graphs G1 on 2log
1/2+ε/2 n vertices, and G2 on n vertices, at least one of the

following holds:

• A1(G1, G2) computes s-t connectivity in G1 in SC.

• A2(G1, G2) estimates length-n random walk probabilities in G2 in SPACE[log1+ε n].

Moreover, both algorithms report if they fail to compute the desired answer, and do not exceed their
resource bounds in any case.

Indeed, in the proof of Theorem 2.6, the reachability bootstrapping system can be computed in
nondeterministic space O(log1/2+ε/2 n), and hence in deterministic space O(log1+ε n) by Savitch’s
Theorem [Sav70]. As such, in the case that the reachability bootstrapping system does contain a

13That is, if C1 is defined by a small number of conditions of the form “C1(t) = z⃗t” (for a small number of t ∈ Fq

and z⃗t ∈ Fv
q), then C2 is defined by the conditions “C2(t) = At · z⃗t”, where At is an invertible matrix in Fv

q × Fv
q .

14In fact, we set things up so that the O(logN) subfields we use for pseudorandom interleaving are also exactly
the O(logN) blocks mentioned above (when discussing pseudorandom curves).

11

hard truth table, we can compute this truth table (and hence compute random walks on G2) in
space O(log1+ε n), obtaining a small overhead even for deterministic derandomization.

We use the pair of algorithms from Theorem 2.6 to prove Theorem 2. Following the approach
of [DPT24, LPT24], we fix a BPSPACE[n] machine B and a NSPACE[n1/2+ε/2] machine N . For
each pair (x, y) ∈ {0, 1}n × {0, 1}n, consider the following two graphs:

G1(y) = the configuration graph of N (y), G2(x) = the configuration graph of B(x) .

Let us try and simulate B in SPACE[n1+ε] (if we fail, we will show another algorithm that
simulates N in TISP[2m, poly(m)]). Our algorithm gets x ∈ {0, 1}n and enumerates over all
y ∈ {0, 1}n (which it can, since it is allowed to use super-linear space). It then runs A2 on the
pair of graphs G1(y), G2(x); if A2 outputs an estimation of random walks on G2(x), we are done,
and otherwise we continue to the next y. The point is that one of two things happened: Either for
every x there is y such that this algorithm succeeds, in which case we simulated B in SPACE[n1+ε]
on this input length; or there exists x such that for every y this algorithm fails. In the latter case,
a symmetric argument shows that for all y ∈ {0, 1}n we can simulate A1 in TISP[2m, poly(m)]
(i.e., given y, we enumerate over all x and simulate A1 with the two graphs). For further details
see Section 6.2, and in particular, another win-win result appears in Theorem 6.10.

2.3 Derandomization from Very Weak Hardness

The basic idea behind all of our results that deduce derandomization from very weak hardness
(i.e., Theorem 4, Theorem 6 and Theorem 2.7) is the same. Let us describe the idea in general
terms, and then later focus on describing one particular result in more technical detail.

To demonstrate the idea, consider trying to derandomize BPSPACE[O(n)] ⊆ SPACE[O(n)]. We
instantiate a generator with a hard problem L ∈ SPACE[O(n)], say, the Shaltiel–Umans generator
SU from Section 2.1.3. Now, if the derandomization fails on some input, then we can compress the
hard truth-table, as follows. We enumerate over inputs x ∈ {0, 1}n (indeed, we can do this since
we are working in a scaled-up regime of linear space) and run the reconstruction algorithm. This
algorithm is deterministic, and whenever the derandomization fails at x, the reconstruction manages
to compress the truth-table of LO(n). (For simplicity, we ignore for a moment the distinguisher
that is not fooled by SU and whose description is part of the compressed version of LO(n).)

The key question is what is the size of the compressed version of LO(n). For this question, a main
bottleneck is the number of output bits that we ask SU to output; loosely speaking, if it outputs M
bits, then the compressed version will be of size poly(M).15 In settings concerning derandomization
in polynomial time or logarithmic space, we have M = NΩ(1), and thus poly(M) = NΘ(1). For our
results, we are interesting in obtaining a compressed representation of size only polylog(N).

The key: Unconditional PRGs and corresponding D2Ps. The way to achieve this goal
will be similar to an idea from the proof of Theorem 1. In all of our settings, we consider relatively
weak distinguishers, for which unconditional PRGs are known. For example, when derandomizing
BPSPACE[O(n)], the distinguisher D is an ROBP, and we can compose it with Nisan’s [Nis91]
PRG to obtain a distinguisher D ◦ NIS over M = polylog(N) bits.

The main challenge is that we now need to develop derandomized D2P transformations for
distinguishers of the form “compose a weak distinguisher with an unconditional PRG”. Indeed,
one such D2P was presented in Section 4.1, for a composition of ROBPs with NIS. To further

15This is since the reconstruction overhead is affected by the prediction advantage, and the prediction advantage
is at most 1/M whenever using a hybrid argument (or a deterministic D2P; see [LPT24, Appendix B]).

12

demonstrate out approach, we now describe another derandomized D2P, for the composition of
an AOBP with (a modified version of) the Forbes-Kelley [FK18] PRG. The AOBP distinguisher
– which is an any-order branching program, defined in [CLTW23] – comes up when constructing
derandomization algorithms with minimal memory overhead (and when using an idea from [DT23];
see Lemma 6.15), and the FK PRG fools such distinguishers with polylogarithmic seed.

2.3.1 Derandomized D2P for AOBP ◦ FK

Consider an AOBP denoted A and the Forbes-Kelley PRG FK. Note that even if A would have
been an ROBP, the composition A ◦ FK is not an ROBP, and thus we cannot use the known D2P
transformations for ROBPs (e.g., from [DPT24]) for this composition.

We construct a derandomized D2P transform for a modified version of the Forbes-Kelley gen-
erator, where the modification facilitates the D2P transform. For our goal of minimal-memory
overhead it will be crucial that the modified version of FK remains strongly explicit (as is the
original generator), but we can afford a seed length that is nε (rather than polylog(n)). We give
an informal statement of the result here:

Theorem 2.7 (Forbes–Kelley D2P, informal). There is a generator FK : {0, 1}nε → {0, 1}n with
the following properties.

1. Strong Explicitness. The map (x, j) → FK(x)j is computable in space O(ε log n) with
catalytic access to j.16

2. Fooling. The generator fools AOBPs of size n to error 1/n.

3. White-Box D2P. There is a white-box D2P transform that can be computed in time poly(n)
and space O(nε), where each predictor can be evaluated in space log(n) +O(ε log n).17

Our actual construction makes several changes to the Forbes–Kelley generator, but the idea is
the following. The generator is constructed as a sequence of random restrictions, each of which
eliminate some variables while approximately preserving the expectation of the branching program
A. We think of the generator’s input as (A1, B1, . . . , Aℓ, Bℓ), where each Ai, Bi is the output of a
k-wise independent generator over {0, 1}n. We then define FKℓ+1 = 0n, and

FKi = Ai ⊕Bi ∧ FKi+1

In particular, for j ∈ [n] where (Bi)j = 0, we say a variable has been eliminated by level i, and
further levels of the generator do not affect the output of the generator on that bit. Recall that
by [LPT24], to produce a D2P transform, it suffices to solve prefix-CAPP, which in this case is the
following:

Question 2.8. Given an AOBP A and (⃗a, b⃗) = (A1, B1, . . . , Ai−1, Bi−1), estimate

E
a⃗′ ,⃗b′

[A(FK(⃗a, b⃗, a⃗′, b⃗′)].

16The algorithm is given access to a special read-write tape, initialized to (the binary representation of) j. When
the algorithm halts and returns FK(x)j , the tape must be restored to that initial configuration.

17For technical reasons we construct a white-box Yao derandomization [LPT24], where we are given access to the
distribution D that does not fool A ◦ FK and construct a predictor for this distribution.

13

To see how the prefix affects the problem, consider the branching program A
a⃗,⃗b

wherein every
variable that has been eliminated is simply fixed to the value output by the generator at that bit.
Thus, we are now being asked to estimate

E[A
a⃗,⃗b

(z ⊕ FKi(U))].

where z is a fixed vector that accounts for the prior levels of the generator.
The key observation is that the Forbes-Kelley generator fools branching programs, and so this

expectation should itself be close to E[A
a⃗,⃗b

(U)], i.e., filling in all non-eliminated variables with
independent true randomness. Estimating this quantity is easily seen to be in BPL ⊆ SC, and so
we obtain a SC-computable D2P transform with this complexity.

We remark that our actual construction is substantially different from the above due to the
following technical issues: First, we cannot afford k = O(log n)-wise independent restrictions, as
at several steps in our argument we must enumerate over all seeds in a single level of a generator,
which would take time 2log

2 n ≫ n. Because of this, we can only afford O(1/ε)-wise independence,
which requires a generator with nε levels, and a much smaller restriction probability.

The second and larger issue is that it is not actually true that for every prefix of a seed to
the Forbes-Kelley generator, the output of the generator on a random suffix of the generator is
approximately the same as filling in bits uniformly. For example, consider a pathological prefix
that eliminates far fewer variables than it should; then, a random suffix of a seed for the generator
will not eliminate all the variables (with high probability), in which case the generator fills in many
bits with FKℓ+1 = 0n. (Needless to say, this is very far from uniform.)

Our solution is to construct an auxiliary D2P transform such that, if many prefixes are in
deficient in this way, then we can solve PCAPP on these prefixes very efficiently. This modification
requires changing the final level of the generator to behave differently when few variables are left
alive. By itself, this change would destroy strong explicitness, but we are able to use ideas from
catalytic computation to obtain a strongly explicit PRG with catalytic access to the input (which
suffices for the minimal memory overhead application, as explained in Section 6.4). The interested
reader is referred to Section 4.3 for further details about the D2P.

3 Preliminaries

Given x ∈ {0, 1}n, let x<i = x1...i−1 and x>i = xi+1...n, and let x≤i and x≥i be defined analogously.
For convenience we denote x<1 and x>n as the empty string.

Given a set S, let US be the uniform distribution over the set S, and for n ∈ N we denote
Un = U{0,1}n . Also, drawing x ∈ S is a shorthand for x← US .

Graphs. For a directed graph G on n vertices, the transitive closure of G is the n × n matrix
where entry (i, j) is 1 if and only if there is a path from i to j. The random walk matrix, which we
denote G, is the matrix where (i, j) is the probability of transitioning from vertex i to vertex j in
one step. Our matrix norm (which we will use mainly for transition matrices of graphs) will be the

induced ℓ∞-norm on matrices, namely ∥A∥ = maxi∈[n]

∣∣∣∑j∈[n]Ai,j

∣∣∣.
3.1 Distinguish-To-Predict and Prefix-CAPP

We say that a distribution D ε-fools a function f : {0, 1}n → {0, 1} if |E[f(D)] − E[f(Un)]| ≤ ε,
and if |E[f(D)]−E[f(Un)]| ≥ ε we say that f is an ε-distinguisher for D. We say that G : {0, 1}s →
{0, 1}n is an ε-pseudorandom generator (PRG) for a class of functions F : {0, 1}n → {0, 1} if for every

14

f ∈ F , PRG(Us) ε-fools f . We say that G is an ε-hitting set generator (HSG) if for every f ∈ F
such that E[f(Un)] ≥ ε, there exists z ∈ {0, 1}s such that f(G(z)) = 1.

As explained in Section 1.3 and in Section 2, we will be interested in deterministic transforma-
tions of distinguishers to predictors. Let us define this notion, following [DPT24,LPT24]:

Definition 3.1 (predictor). We say that P : {0, 1}i → {0, 1} is an ε-next-bit predictor (resp. ε-
previous-bit predictor) for a distribution D over {0, 1}n if Prx←D[P (x≤i) = xi+1] ≥ 1/2 + ε (resp.
Prx←D[P (x>n−i) = xn−i] ≥ 1/2 + ε).

Definition 3.2 (D2P, formal). For a circuit C : {0, 1}n → {0, 1}, we say a collection of circuits
P : {0, 1}<n → {0, 1} is an α-distinguish to δ-predict (D2P) transformation for C if the following
holds. For every distribution D of size at most m that does not δ-fool C, there is P ∈ P such that
P is an α-predictor for D.

Yao [Yao82] showed what can be thought of as a randomized D2P for general circuits. Let us
recall his result with a formal statement.

Theorem 3.3 ([Yao82]). Let C : {0, 1}n → {0, 1} be an arbitrary function and D be an arbitrary
distribution that does not δ-fool C. Then there is i ∈ [n] and σ ∈ {0, 1}2 such that:

1. Letting Pz,σ,i be defined as Pz,σ,i(x<i) = C(x<i ◦ σ1 ◦ z)⊕ σ2, we have

E
z←Un−i

[Pr[Pz,σ,i(D<i) = Di1]] ≥
δ

n
.

2. Moreover, we have

|E[C(D<i ◦Un−i+1)]− E[C(D≤i ◦Un−i)]| ≥
δ

n
.

Moreover (by the reverse Markov’s inequality), on at least a 2δ/(3n− δ) fraction of z ∈ {0, 1}n−i,
we have Pr[Pz,σ,i(D<i) = Di1] ≥ δ/3n.

Deterministic D2P via PCAPP. We will use the deterministic reduction from [LPT24] of
producing a D2P to solving a problem called PCAPP, where the reduction works instance-wise
(i.e., for every fixed circuit C). Let us define PCAPP and state their result:

Definition 3.4. We say a machine E : {0, 1}≤n → R is an ε-prefix-CAPP (PCAPP) algorithm for
C : {0, 1}n → {0, 1} if for every x ∈ {0, 1}≤n we have∣∣∣E(C, x)− E

r
[C(x ◦ r)]

∣∣∣ ≤ ε.

Lemma 3.5 ([LPT24] Lemma 4.6). Fix δ > 0 and an arbitrary circuit C : {0, 1}n → {0, 1} and
function E that is a (δ/3n)-PCAPP algorithm for C. Let α = δ/3n and A = ⌈1/α⌉. Then the
following is a δ-distinguish to α-predict transformation for C:

P def
= {Pτ,σ,i : i ∈ [n], σ ∈ {0, 1}2, τ ∈ {0, . . . , A}}

where
Pτ,σ,i(x<i) = I

[τ
A
≤ E(C, x<i ◦ σ1)

]
⊕ σ2.

15

3.2 Space-Bounded Computation

We use the standard model of space-bounded computation (see, e.g., [Gol08, Section 5] or [AB09,
Section 4]). In this paper we say that a language is in SPACE[s(n)] if it is accepted by a machine
with space complexity s(n) on inputs of length n, and we stress that we do not allow a linear slack
in the space complexity; that is, the space complexity is bounded by s(n) exactly, rather than by
O(s(n)). We define the space complexity of computing functions analogously.

A probabilistic space-bounded machine is similar to the deterministic machine except that it can
also toss random coins. As usual, we require a space-s(n) probabilistic machine to always halt within
2s

′(n) steps, where s′(n) = s(n) + O(log s(n)) + logn is the number of possible configurations.18

Recall that this runtime bound holds wlog for halting space-s(n) deterministic machines.
We also recall that TISP[t(n), s(n)] is the set of languages accepted by a (deterministic) machine

that runs in time t and space s, and that SC = TISP[poly(n),polylog(n)].

Composition of space-bounded algorithms. We recall, and freely use, the standard result
on composition of space-bounded algorithms.

Proposition 3.6 ([Gol08], Lemma 5.2). Let f1, f2 : {0, 1}⋆ → {0, 1}⋆ be functions that are com-
putable in space s1, s2 : N→ N. Then, f2 ◦ f1 : {0, 1}⋆ → {0, 1}⋆ can be computed in space

s(n) = s2(ℓ1(n)) + s1(n) +O(log(ℓ1(n))) +O(log(s2(ℓ1(n)) + s1(n)))

where ℓ1(n) is a bound on the output length of f1 (i.e., the cells used on the output tape) on inputs
of length n.

3.2.1 Unambiguous space-bounded computation

Definition 3.7 (unambiguous space). A language L is in unambiguous non-deterministic space S(n),
denoted as USPACE[S(n)], if there is a nondeterministic space-S machine M(x, y) ∈ {0, 1,⊥} such
that for every x ∈ L, there is exactly one witness y such that M(x, y) accepts, and for every x /∈ L
and every witness y, M(x, y) rejects. We let UL = ∪cUSPACE[c · log n].

We can also compute a function, rather than accept or reject, in unambiguous non-deterministic
space. We say that f : {0, 1}⋆ → {0, 1}⋆ is computable in unambiguous non-deterministic space S(n)
if there exists a non-deterministic space-S machine M such that for any x there exists exactly one
witness y for which M(x, y) = f(x), whereas for any other y, M(x, y) =⊥. This can be seen as
the search analogue of USPACE[S(n)] ∩ coUSPACE[S(n)]. Importantly, we can space-efficiently
compose, as in Proposition 3.6, functions that are computable in unambigious non-deterministic
space.

3.2.2 Branching Programs

We recall two models of read-once branching program: read-once branching programs (also known
as standard-order branching programs), and (read-once) adaptive order branching programs.

Definition 3.8 (ROBP). A read-once branching program (ROBP) B of width w and length n is
specified by an initial state vst ∈ [w], an accepting state vac ∈ [w] and a sequence of transition

18The machine’s configuration includes the content of its work tapes, its current state, and the location of its heads,
including the head on the input tape. For convenience, we can assume that the heads locations and current state are
written on dedicated worktapes.

16

functions Bi : [w] × {0, 1} → [w] for i ∈ [n]. The ROBP naturally defines a function B : {0, 1}n →
{0, 1}n as follows: Start at v0 = vst, and for i = 1, . . . , n, read the input symbol xi and transition
to the state vi = Bi(vi−1, xi). The ROBP accepts x, i.e., B(x) = 1, if and only if vn = vac.

In the adaptive read-once model, each computation path of the branching program can read
the bits of input r ∈ {0, 1}n in a different order, as long as each bit is read exactly once.

Definition 3.9 (AOBP). A (read-once) adaptive order branching program (AOBP) B of width w and
length n, is a layered 2-out-regular directed graph with n+ 1 layers, each layer having w vertices,
which is also equipped with a labeling function l : V → [n] where V denotes the set of vertices of
B, and includes a start and accept vertices vst, vac.

The AOBP defines a function B : {0, 1}n → {0, 1} as follows. Start at v0 = vst, and for
i = 1, . . . , n, transition to the state vi = B(vi−1, xl(vi−1)), where B(u, σ) denotes the σth neighbor
of u in B. The AOBP accepts x, i.e., B(x) = 1, if and only if vn = vac. Moreover, we require that
for every possible input x ∈ {0, 1}n, every bit of x is read at most once over the computation.

When we refer to the size of a branching program, we mean the number of vertices of the
underlying layered directed graph, namely (n+ 1) · w.

3.3 Pseudorandomness Primitives

We recall several standard definitions here, and mention the explicit constructions in the corre-
sponding technical sections.

Error-correcting codes. We say that an error correcting code C : Σk → Σn has relative distance
δ if for any distinct codewords x, y ∈ C, it holds that δ(x, y) = Pri∈[n][xi ̸= yi] ≥ δ. We say that
C is (ρ, L) list decodable if for any w ∈ Σn there are at most L codewords c ∈ C that satisfy
δ(w, c) ≤ 1− ρ; we then refer to ρ as the agreement parameter. As is customary, we often use C to
denote Im(C) ⊆ Σn.

Samplers. We recall the definition of a (strong) sampler:

Definition 3.10 (strong sampler). A function Samp : {0, 1}m × [t] → {0, 1}n is a strong (ε, δ)
(oblivious) sampler if for any H1, . . . ,Ht ⊆ {0, 1}n it holds that

Pr
x←{0,1}m

[∣∣∣∣ Pri←[t]
[Samp(x, i) ∈ Hi]− E

i←[t]
[ρ(Hi)]

∣∣∣∣ ≤ ε

]
≥ 1− δ,

where we denote by ρ(Hi) =
|Hi|
2n the density of a set. The parameter ε is the accuracy parameter

of the sampler, and δ is its confidence parameter.

k-wise independence. We say that a distribution Z over {0, 1}n is k-wise independent with
marginal p if for any I = {i1, . . . , ik} ⊆ [n] it holds that Z|I = Up

|I|, where Up is i.i.d Bern(p). It

is well-known that one can efficiently sample from a k-wise independent distribution over {0, 1}n
using O(k log n) bits, and this holds even for biased marginals:

Claim 3.11 ([Jof74,ABI86]). For any space-constructible k : N → N and p : N → [0, 1] such that
p(n) can be computed in space O(loglog(1/p)), there is a sequence of k-wise independent distri-
butions Z = {Zn} where Zn is over {0, 1}n and has marginal probability p, such that Z can be
sampled with ℓ(n) = O(k · log(n/p)) bits, and the map (σ, i) → Z(σ)i can be computed in space

O(log(k)+ loglog(1/p)+ loglog(n)), where for σ ∈ {0, 1}ℓ, we denote by Z(σ) the σ
th

element in Z.

17

The space complexity analysis can be found, e.g., in [DPT24, Claim 3.17], where it is analyzed
for p = 1

2 , but is easily extended to an arbitrary p.19

We recall a standard concentration bound for sums of k-wise independent variables.

Theorem 3.12 ([BR94]). Let k be even, let X be a sum of k-wise independent random variables
in [0, 1], and let µ = E[X]. Then

Pr[|X− µ| > a] ≤
(
kµ+ k2

a2

)k/2

.

4 New Distinguish-To-Predict Transformations

In this section, we develop our new distinguish-to-predict transformations. In Section 4.1 we present
the D2P for Nisan’s PRG composed with the “random walks” distinguisher (see Section 2.1.2),
in Section 4.2 we present the D2P for the generator of van Melkebeek and Prakriya composed
with the “unique shortest paths” distinguisher, and in Section 4.3 we present the D2P for the
Forbes-Kelley PRG composed with AOBPs.

4.1 Distinguish-To-Predict for Compositions With the Nisan Generator

We state our results in graph-theoretic terminology, relying on the well-known interpretation of
Nisan’s PRG as a derandomized graph squaring operation. For completeness, after stating the
main D2P result, we explain how to interpret this result using a more classical interpretation
wherein Nisan’s generator fools ROBPs (see comment after Theorem 4.8).

4.1.1 Graph notation and Nisan’s PRG

We now set up how we work with random walks on graphs, and recall the Nisan PRG. For a graph
G on n vertices, we let G ∈ [0, 1]n×n denote its random walk matrix. Let us first recall how to
modify a graph so that it is 2t-outregular.

Definition 4.1 (canonicalization). For a graph G on n vertices, and t ∈ N, we let Gt be the 2t-
outregular graph on n vertices where for σ ∈ {0, . . . , 2t−1}, i ∈ [n] and j ∈ [n], we have Gt[i, σ] = j
if and only if

j−1∑
l=1

Gi,j ≤ 2−t · σ <

j∑
l=1

Gi,j .

Note that Gt can be computed in space O(t + log n) given access to G and t. We recall a
standard bound on the error induced by this edge duplication. Recall that we use the ℓ∞ matrix
norm, which corresponds to the maximum ℓ1 norm of a row of the matrix.

Claim 4.2. For every G and t, we have

∥G−Gt∥ ≤ n · 2−t.

Next, we define the Nisan PRG, which we do in terms of recursive powering of graphs. First,
we recall the hash family we will use:

19Specifically, we utilize the fact that the [Jof74] construction gives us k-wise independence over Fq, and choose
q = 2ℓ so that ℓ = ⌈max {logn, log(1/p)}⌉. The corresponding sample space coordinate is 1 if and only if the first
log(1/p) bits of the Fq-symbol are 1, where we handle marginals which are not powers of 2 in a standard manner.
The seed length and space complexity extends easily.

18

Fact 4.3. For every t ∈ N, there exists a pairwise independent hash family H : {0, 1}t → {0, 1}t
such that |H| = 22t, and h ∈ H (which we associate with h ∈ {0, 1}2t) can be evaluated in space
O(log t).

Next, we define the graph obtained from applying a single hash function.

Definition 4.4. Given a 2t-outregular graph Gt and h : {0, 1}t → {0, 1}t, let Gt,h be the graph
with adjacency function Gt,h[i, σ] = Gt[Gt[i, σ], h(σ)]. For a pair of hash functions (h1, h2), we let
Gt,(h1,h2) = (Gt,h1)h2 , and extend to a sequence of hash functions in the natural way.

We recall that we can compute the walk matrices of such graphs space efficiently:

Claim 4.5. There is a space O(t + ℓ + log n) algorithm that, given G, t, and h1, . . . , hℓ, returns
Gt,(h1,...,hℓ).

Next, we recall what it means for a hash function to be good for a graph.

Definition 4.6. Let H be 2t-outregular graph. We say that h : {0, 1}t → {0, 1}t is ε-good for H if
∥Hh −H2∥ ≤ ε.

Finally, we recall the key result that for every graph, most hash functions are good:

Lemma 4.7 ([Nis92, PP23]). For every ε, and 2t-outregular graph H, we have that, letting h be
drawn uniformly from a pairwise-independent hash family on {0, 1}t,

Pr[h is ε-good for H] ≥ 1− (n/ε)3/2t.

4.1.2 The deterministic D2P transformation

We can now state our main result as follows:

Theorem 4.8. For every n = 2ℓ, let t = 50 log(n). For every graph G on n vertices, let
TG : ({0, 1}2t)ℓ → {0, 1} be defined20 as

TG(h1, . . . , hℓ) =
∧
i∈[ℓ]

I
[
hi is n−3-good for Gt,(h1,...,hi−1)

]
.

Then the following hold:

1. Evaluability. The function TG can be computed in space O(log n), given G.

2. Usefulness. For every h⃗ = (h1, . . . , hℓ) such that TG(⃗h) = 1, it holds that

∥Gt,h1,...,hℓ
−Gn∥ ≤ n−2.

3. Likeliness. We have E[TG(Uℓ·2t)] ≥ 1− n−2.

4. D2P. There is a logspace algorithm that, given G, outputs a δ-distinguish to ρ-predict D2P
transformation (PRED1, . . . ,PREDb=polylog(n)) for TG, where δ = 1/2 and ρ = Ω(1/ log2(n)).
Moreover, there is a logspace algorithm that, given G, i ∈ [b], and x, returns PREDi(x).

20Where we interpret the input as a sequence of hash functions per Fact 4.3.

19

As mentioned above, Theorem 4.8 can be equivalently presented as a D2P for Nisan’s PRG
composed with (any) ROBP (i.e., rather than with the “random walks” distinguisher). To see this,
recall that given an ROBP B of length and width n, we can produce a graph G = GB on n2 vertices
such that if TG(⃗h) = 1 then composing B with NIS

h⃗
approximately maintains the probability of

reaching any vertex v in the last layer of B (i.e., Prr∈{0,1}n [B(r) = v] ≈ Prs∈{0,1}ℓ′ [B(NIS
h⃗
(s)) = v],

where ℓ′ = O(log n) is the seed length of NIS
h⃗
for a fixed h⃗). Thus, for every distribution w over

sequences of hash functions, if B is a distinguisher for NISw(uℓ′), then TG is a distinguisher for w,
in which case Theorem 4.8 transforms TG into a list of predictors.

Proof of Theorem 4.8. For Item 1, we test each condition in sequence, where we can compute
Gt,h1,...,hi−1

and Gt,h1,...,hi
in logspace from Claim 4.5. We can then compute the square of the

former matrix in logspace, and computing the ℓ1 distance between two matrices can likewise be
done in logspace, so the result follows from Proposition 3.6.

For Item 2, fix an arbitraryG and h⃗ = (h1, . . . , hℓ) such that TG(⃗h) = 1, we have that ∥G−Gt∥ ≤
n−3 by our choice of t and Claim 4.2. Then, by the condition of the test we have that for every i,
∥Gt,h1,...,hi

−G2
t,h1,...,hi−1

∥ ≤ n−3, and the claims follows by induction.
Item 3 follows directly from Lemma 4.7 and the fact that we consider a truly uniform distribution

over hash functions, so for an arbitrary prefix (h1, . . . , hi−1), the probability that the next hash
function will be good for H = Gt,h1,...,hi−1

is at least 1− n−3.
Item 4 is the most involved. Here, we appeal to the result of [LPT24] that to construct a D2P

transformation, it suffices to construct a PCAPP algorithm. In more detail, by Lemma 3.5, to prove
our claim it suffices to construct a logspace PCAPP algorithm with error n−2.

Lemma 4.9. There is an (n−2)-PCAPP algorithm for TG that, given G, can be evaluated in logspace.

Thus, to conclude the proof, we just need to prove Lemma 4.9. The algorithm works as follows.
Fix an arbitrary input

h< = (h1, . . . , hi, y),

where y ∈ {0, 1}j denotes the suffix in the final block. We first test for every k ≤ i if hk is n−3-good
for Gt,(h1,...,hk−1), and note that this test can be done in space O(t+log(n)) = O(log n) by Claim 4.5.
If this occurs for any k, note that

TG(h< ◦ z) = 0

for every suffix z, so we return 0 and estimate the expectation with zero error. Otherwise, we
enumerate over s ∈ {0, 1}2t−j , and compute

ρ = Pr
s∈{0,1}2t−j

[
h = (y ◦ s) is n−3-good for Gt,(h1,...,hi).

]
Next, we show that ρ is a good solution for PCAPP, i.e. a good estimate of Ez[TG(h< ◦ z)]. Note
that ∣∣∣ρ− E

z
[TG(h< ◦ z)]

∣∣∣ ≤ max
s∈{0,1}2t−j

{ ∣∣∣bs − E
z
[TG(h< ◦ s ◦ z)

∣∣∣ },
where

bs = I
[
h = (y ◦ s) is n−3-good for Gt,(h1,...,hi)

]
.

For an arbitrary s, if bs = 0 we have that TG(h< ◦ s ◦ z) = 0 for every z so∣∣∣bs − E
z
[TG(h< ◦ s ◦ z)]

∣∣∣ = 0.

20

Otherwise if bs = 1, we have

E
z
[TG(h< ◦ s ◦ z)] ≥ Pr

z
[all subsequent hash functions are good]

≥ 1− ℓ · n−3

so in all cases we have ∣∣∣bs − E
z
[TG(h< ◦ s ◦ z)]

∣∣∣ ≤ n−2

and the error is bounded as claimed. Finally, enumerating over s and computing ρ = Es[bs] can be
done in space O(t+ log n), so we have that the function is logspace computable.

4.2 Distinguish-To-Predict for Compositions With the van-Melkebeek-Prakriya
Generator

Let G = (V,E) be a directed graph over n vertices. The isolation lemma tells us that if we assign
edge weights independently and uniformly at random (where each edge gets assigned a weight
in [nO(1)]), then with high probability, for each s, t ∈ V , there is at most one path of minimum
weight from s to t in G. More precisely, a random W : E → [nc] would be min-isolating with
probability at least 1 − n−(c−4). Li, Pyne, and Tell [LPT24] constructed a deterministic logspace
D2P transformation for a slightly stricter requirement. Namely, given some fixed ordering on the
edges, E = {e1, . . . , em}, they defined

TG(W) =
∧

i∈[m]

I [Wi is min-isolating in Gi] ,

where Gi = (V,Ei = {e1, . . . , ei}) and Wi = W |Ei . However, to obtain Theorem 6, investing
poly(n) random bits to generate W will be too costly for us.

4.2.1 The generator of van Melkebeek and Prakriya

In [vMP19], van Melkebeek and Prakriya showed how to generate a min-isolating weight function
using only O(log2 n) bits, and we now describe their construction.21 For simplicity (and also since
it suffices for Theorem 6), let us assume that our graphs are layered, with number of layers being a
power of 2. Concretely, let V ⊆ [w]×{0, 1, . . . , ℓ} (so n = w(ℓ+1)), E ⊆

⋃
i∈[ℓ] Vi−1×Vi where each

Vi = V ∩ ([w]× {i}), and we assume that ℓ = 2t for some t ∈ N. The generator of [vMP19] assigns
weights iteratively, where in the kth iteration, we assign weights (using the same randomness) to
one in every 2k layers. The weight function will assign weights to vertices rather than edges, but
in the case of layered graphs, we can simply reassign the weight of a vertex to each of its outgoing
edges.

To formally present the generator, let Hn,M ⊆ [n]→ [M] be a universal family of hash functions
for some M = M(n) (think of M = poly(n)).22 For k = 1, . . . , t, at the kth iteration we assign

weights to vertices in V \
⋃2t−k

i=0 Vi·2k as follows.

• Start with W0 ≡ 0.

21In fact, they also gave a weight assignment generator that uses O(log3/2 n) bits, but this saving will be immaterial
for us.

22We want that for every distinct x, y ∈ [n], and any σ1, σ2 ∈ [M], it holds that Prh∼Hn,M [σ1+h(x) = σ2+h(y)] ≤
1/M . Explicit constructions allow us to sample from Hn,M using O(log(nM)) random bits, with each h ∼ Hn,M

being logspace computable.

21

• Assume we already constructed Wk, and think about G as consisting of ℓ/2k+1 consecutive
blocks of length 2k+1, where the ith block is the subgraph induced by the vertices in layers
(i− 1)2k+1 through i · 2k+1. Consider some ith block B = B1 ◦B2 of length 2k+1, where each
Bi is of length 2k, sharing a middle layer M in common. By our assumption, Wk assigned
weights to all layers apart from B’s initial and final layers, and from M .

The assignment Wk+1 extends Wk by assigning weights to all such middle layers, namely, the
vertices in

Lk+1 =
⋃

i∈{1,3,...,2t−k−1}
Vi·2k

as follows. Sample hk+1 ∈ Hn,M uniformly at random, and for every u ∈ Lk+1, assign
Wk+1(u) = hk+1(u).

• The final weight function is given by W = Wt.

Thus, we see that sampling W can be done using s = t · sh bits, where sh = O(log(nM)) is
the number of bits needed to describe a single hash function. Note that s = O(log2 n) when
M, ℓ = poly(n), and moreover, given y ∈ {0, 1}s, we can output the corresponding weight function
in O(log n) space. We denote this weight assignment generator by

GvMP : ({0, 1}sh)t → (E → [M]) .

Keeping the above notation, the following lemma follows from the analysis in [vMP19].

Lemma 4.10. For every k ∈ [t] the following holds. Fix some Wk−1 that is min-isolating for every
subgraph of G induced by the vertices in layers (i − 1)2k−1 to i · 2k−1, where i ∈ [2t−k−1] (this

holds trivially when k = 1). Then, with probability at least 1 − w4ℓ
M over the choice of hk ∈ Hn,M ,

the weight function Wk is min-isolating for every subgraph of G induced by the vertices in layers
(i− 1)2k to i · 2k, where i ∈ [2t−k].

As a corollary, choosing M = n8, for every directed layered graph G over n vertices, GvMP(Us)
is min-isolating for G with probability at least 1− n−2.

We set some additional notation towards the next section. Given a layered graph G, and k ∈ [t],

we let G(k) be the collection of induced subgraphs as above, and let G
(k)
vMP be the generator that

produces the (partial) weight function Wk. Under this terminology, Lemma 4.10 tells us that if

h⃗ = h1, . . . , hk−1 ∈ {0, 1}(k−1)sh are such that G
(k−1)
vMP (⃗h) is min-isolating for G(k−1), then with

probability at least 1 − n−3 over hk ∈ {0, 1}sh , it holds that GvMP(⃗h, hk) is min-isolating for G(k)

(under the choice M = n8, which we fix here onwards).

4.2.2 A D2P trasformation for randomness-efficient weights generation

Given a layered directed graph G with n vertices and ℓ layers, we let TG : ({0, 1}sh)t → {0, 1} be
defined as

TG(h1, . . . , ht) =
∧
k∈[t]

T
(k)
G (h1, . . . , hk) =

∧
k∈[t]

I
[
G

(k)
vMP(h1, . . . , hk) is min-isolating for G(k)

]
.

We will construct a D2P transformation via a PCAPP algorithm, similar to what we did in Sec-
tion 4.1 (and what was done in [LPT24]). And again, we have a polarization effect: If the partial
assignment has already failed to produce a min-isolation assignment, then TG is already 0 for every
suffix, and otherwise, almost all suffixes will successfully generate a min-isolating assignment.

22

Theorem 4.11. For every directed layered graph G = (V,E) with n vertices, and ℓ = 2t layers, let
TG be the above indicator. Then, the following hold.

• Evaluability. Given G, the function TG : {0, 1}m=O(log2 n) → {0, 1} can be computed in
USPACE[O(log n)] ∩ coUSPACE[O(log n)].

• Usefulness. For every h⃗ ∈ {0, 1}s such that TG(⃗h) = 1, it holds that GvMP(⃗h) ∈ (E → [n8])
is min-isolating. Moreover, E[TG(Um)] ≥ 1− n−2.

• D2P. For any δ ≥ n−2, there exists a deterministic logspace algorithm T that, given a layered
directed graph G with n vertices, outputs a (3δm)-distinguish to δ-predict transformation
(P1, . . . , Pb) for TG, where b = O(m2/δ). Moreover, there exists a UL ∩ coUL machine that
on input (G, i, x), computes Pi(x) unambiguously.

The evaluability property follows Allender and Reinhardt’s algorithm [RA00] for testing if a
fixed assignment induces unique shortest paths (see also [LPT24, Theorem 6.6]), and the fact that
the weights can be computed from the hash functions in logspace. The usefulness property follows
from Lemma 4.10. Towards establishing D2P, we start with the following claim.

Claim 4.12. There exists a nondeterministic TMM, that on input G as above, and h1, . . . , hi for
i ≤ t, runs in space O(log n) and satisfies the following.

1. There exists exactly one computation path on whichM does not output ⊥,

2. On that computation path,M outputs T
(i)
G (h1, . . . , hi), and,

3. It holds that ∣∣∣∣∣T (i)
G (h1, . . . , hi)− E

r←U(t−i)sh

[TG(h1, . . . , hi, r)]

∣∣∣∣∣ ≤ n−2.

Proof. The machineM iterates over j = 1, . . . , i, and for each j calls the [RA00] algorithm on the
graph G(j) and the weight function GvMP(h1, . . . , hj).

23 If there exists a j for which the [RA00]
algorithm returned ⊥, M halts and returns ⊥. If not, M returns 1 if all j-s returned 1, and
otherwise returns 0.

For Items 1 and 2, note that if every (h1, . . . , hj) is good for G(j), there exists exactly one
computation path that returns 1 whereas the rest return ⊥, and otherwise one computation path
returns 0 and the rest return ⊥. Also, the fact that M runs in logspace is immediate, since we
invoke at most n logspace algorithms and the weight functions are logspace computable. For Item 3,

if T
(i)
G (h1, . . . , hi) = 0 then TG(h1, . . . , hi, r) = 0 by definition, for all r. Otherwise, Lemma 4.10

tells us that TG(h1, . . . , hi, r) = 1 with probability at least 1− (t− i)n−3 ≥ 1− n−2.

Next, we give a UL∩ coUL PCAPP algorithm for TG. It is almost implied by Claim 4.12 above,
but we need to handle the case of prefixes of every length.

Lemma 4.13. There exists a nondeterministic logspace n−2-PCAPP algorithm for TG, such that
on input G and a prefix x, there exists exactly one computation path on which the algorithm does
not output ⊥, and that output is the PCAPP approximation.

23A subtle technicality is that the [RA00] algorithm also gets two vertices s and t, such that if the weight function
does induce unique shortest paths and there exists a path from s to t, then there exists exactly one computation path
that returns 1. Thus, we feed the algorithm with the endpoints of an edge in G(j). Note that if the weight function
does not induce unique shortest paths, exactly one guess sequence will return 0 regardless of s and t.

23

Proof. We are given G and x = (h1, . . . , hi−1, y), where y ∈ {0, 1}<sh corresponds to the bits of x
that do not yet describe a hash function. The algorithm runs over all s ∈ {0, 1}sh−|y| and runsM
from Claim 4.12 on G and (h1, . . . , hi−1, hi = y ◦ s). If all runs returned a value (either 0 or 1), the
PCAPP algorithm returns the average of those values. Otherwise, it returns ⊥. The fact that the
algorithm is unambiguous and runs in logspace follows from Claim 4.12. Next, we observe that∣∣∣∣ E

s,r←U
[TG(x ◦ s ◦ r)]− E

s←U
[M(G, x ◦ s)]

∣∣∣∣ ≤ max
s

∣∣∣∣ E
r←U

[TG(x ◦ s ◦ r)]−M(G, x ◦ s)
∣∣∣∣

≤ n−2,

where by M(·) we mean the unique non-⊥ value that is guaranteed to exist. Thus, the above
algorithm is indeed a PCAPP one.

Finally, the D2P part of Theorem 4.11 follows readily from Lemma 3.5, recalling that each Pi

calls the PCAPP algorithm once, and accepts if and only if the (non-⊥) output is above a certain
threshold.

4.3 Distinguish-To-Predict for Compositions With the Forbes–Kelley Genera-
tor

Finally, we build a version of the Forbes–Kelley generator [FK18] supporting a deterministic D2P
transformation. For our application (where the predictor must be incredibly space efficient, whereas
the algorithm producing the predictor can use additional space), we actually construct a white-box
Yao transformation instead: we give an algorithm which, given a distribution that does not fool the
distinguisher, finds a suffix such that the Yao predictor with this suffix obtains good advantage. We
remark that a very similar approach would give a D2P transform where the candidate predictors
are SC algorithms.

Theorem 4.14. For every ε > 0, there is a generator FK : {0, 1}nε → {0, 1}n with the following
properties:

• Fooling. FK fools AOBPs of size n to within error 1/n2.

• Computability. The map (x, j)→ FK(x)j can be computed in space O(ε·log n) with catalytic
access to j.24

• White-Box Yao Derandomization. There is an algorithm that runs in space O(nε) and
time poly(n) that works as follows. Given input an AOBP M : {0, 1}n → {0, 1} and a distri-
bution D over {0, 1}nε

such that

|E[M ◦ FK(D)]− E[M ◦ FK(U)]| ≥ 1

10
,

the algorithm outputs one of the following:

1. A machine L : {0, 1}nε → {0, 1} with description size O(log n) that can be computed in
space log(n) +O(ε log n) such that L predicts D with advantage 1/nO(ε).

24The algorithm is given access to a special read-write tape, initialized to (the binary representation of) j. When
the algorithm halts and returns FK(x)j , the tape must be restored to that initial configuration.

24

2. i ∈ [nε], σ ∈ {0, 1}2, and z ∈ {0, 1}nε−i such that

P (x<i) = (M ◦ FK(x<i ◦ σ1 ◦ z))⊕ σ2

predicts D with advantage 1/nO(ε).

We first define the PRG in terms of nε (which we w.l.o.g. assume is a power of two) and then
scale ε by an appropriate constant. Let

p = n−ε, ℓ = 10 log(n)nε

and note that we have chosen ℓ so that

n · (1− p/2)ℓ ≤ n−3.

For s to be set later and τ = n3ε, let

FK : ({0, 1}s × {0, 1}s)ℓ × {0, 1}τ → {0, 1}n

where we denote the input to the generator as

FK(a1, b1, . . . , aℓ, bℓ, v).

We define the generator as follows. LetG : {0, 1}s → {0, 1}n be a ⌈12/ε⌉-wise independent generator
with marginal 1/2, and G′ : {0, 1}s → {0, 1}n be a ⌈12/ε⌉-wise independent generator with marginal
p = 1 − n−ε. We use the generator of Claim 3.11, so we have that s = O(log n) and the maps
(ai, j)→ G(ai)j and (bi, j)→ G′(bi)j can be computed in space O(log log n).

Let Ai = G(ai) and Bi = G′(bi). Then, for i ∈ [ℓ],

FKi = Ai ⊕ (Bi ∧ FKi+1) .

We say that j ∈ [n] is alive at level i if (B1)j = · · · = (Bi−1)j = 1. We say Bi eliminates j if j is
alive at level i but (Bi)j = 0. Moreover, fixing B1, . . . , Bℓ, let

L = {j : j is alive at level ℓ}

be the set of remaining live variables, and let L(j) be the index of j ∈ [n] in this set. Then, define
FK′ = FKℓ+1(v) (recall that v ∈ {0, 1}τ) as follows:

(FK′)j =

vL(j) j ∈ L and L(j) ≤ τ

0 j ∈ L and L(j) > τ

0 j /∈ L
.

Finally, let FK = FK1. Note that the final seed length of the generator is

sFK(n) = 2ℓ ·O(log n) + τ ≤ 2n3ε.

25

Computability. Recall that we have read-only access to (ai, bi)i∈[ℓ] and v, and catalytic access
to j. First, note that

FK(x)j = σ ⊕
⊕
l<k

(Al)j

where k is the largest number such that j is alive at level k, and σ is only nonzero if k = ℓ. We
first compute k, which is easy to do with read-only access to (bi) using 2 counters in [ℓ] and the
computability guarantee of Claim 3.11. Once we have computed k, we compute d = ⊕l<k(Al)j
analogously. If k < ℓ, we then return b, which overall requires space o(log n) = O(ε log n).

Otherwise, we must compute L(j), the index of j in the set of remaining live variables, and
then we let σ = vL(j). We will do so catalytically. We initialize a counter L = 1 for the number
of live variables encountered so far, and iteratively decrease j by 1, and after each decrease test if
j′ < j is alive. If so, we increment L and continue. If L ever reaches τ , we cease decrementing and
prepare to return 0. Otherwise, once j reaches zero, we have that L = L(j). In both cases, we then
initialize a second counter L′ = 0 and begin to increment the catalytic space, and for each j′ that
is live, increment L′. Once L′ = L, we halt, and it is clear from the description that we successfully
restore j. If L = τ , we return 0, and otherwise return d ⊕ vL = G(x)j . As both counters never
exceed τ = n3ε, the workspace usage is as claimed.

Fooling. We recall (a modification of) a lemma in [CLTW23], that states the parameters required
to fool AOBPs.

Lemma 4.15 ([CLTW23], Lemma 17). Let M be a size s AOBP. Let D be 2k-wise independent
and T be a 2k-wise independent distribution with marginal 1− p. Then

|E[M(U)]− E[M(D⊕T ∧U)]| ≤ s · pk/2.

In [CLTW23], the lemma is only proven for p = 1/2. However, inspecting the proof, the only
change needed is in Claim 18, where we use the fact that if T ∼ {0, 1}n is k-wise independent with
marginal p, and α = {i1, . . . , ik} ⊆ [n], then Pr[∀i ∈ [k],Tαi = 0] = pk.

We use this lemma to prove that the PRG construction fools AOBPs. First, every variable is
still alive after level ℓ with probability at most (1−p)ℓ ≤ n−4, so with probability at least 1−1/2n2,
no variables remain alive by stage ℓ (and hence this level fools the remaining AOBP, which depends
on no inputs, with error 0). Furthermore, applying Lemma 4.15 with s = n, p = p, and k = ⌈6/ε⌉,
every preceding level maintains the expectation up to error

n2 · (n−ε)6/2ε ≤ 1

ℓ
· 1

2n2
,

so the final error is as claimed.

White-Box Yao derandomization. Next, we construct the white-box derandomization, which
is the most involved component, and the reason for the changes compared to the standard Forbes–
Kelley instantiation. To do so, we first prove that except with negligible probability, for every
sufficiently large set of variables that are alive at level i, a random Bi decreases the number of live
variables by at least a factor of (1− p/2).

Lemma 4.16. Let S ⊆ [n] be of size at least n3ε. Then with probability at least 1− 1/n2, we have
that at least |S|(p/2) variables of the variables in S are unselected in T = G′(U).

This follows from applying Theorem 3.12 with a = (p/2) · |S| and k = ⌈12/ε⌉.
We will now define a set of distinguishers.

26

Definition 4.17 (live variables distinguisher). For i ∈ [ℓ], let Li : ({0, 1}s)i → {0, 1} be defined as
Li(b1, . . . , bi) = 0 if there are more than n3ε live variables after level i− 1, and dividing these live
variables into sequential blocks P1, . . . , Pd of size n3ε (where the final block is of size at most 2n3ε),
G′(bi) eliminates fewer than |Pj | · (p/2) variables in some block Pj .

We now prove several properties about these distinguishers. We first prove that solving PCAPP
on all but the last indices is trivial.

Claim 4.18 (strong prefix polarization). For every i ∈ [ℓ] and (possibly empty) prefix x ∈ ({0, 1}s)<i,
Ez[Li(x ◦ z)] ≥ 1− 1/n.

Proof. Without loss of generality (as we could consider a worst-case extension of a shorter prefix),
consider a prefix x ∈ ({0, 1}s)i−1. First, suppose this prefix causes fewer than n3ε variables to live.
In this case, we have Ez[L(x◦z)] = 1 by definition. Otherwise, the result follows from Lemma 4.16,
as a random assignment to the final block will eliminate at least |Pj | · (p/2) variables in each Pj

(note that |Pj | ≥ n3ε) with probability at least 1− 1/n2, and there are at most n such blocks.

Next, we show that all these distinguishers can be evaluated very space efficiently.

Claim 4.19 (strong explicitness). Given i ∈ [ℓ] and b⃗ ∈ ({0, 1}s)i, Li(⃗b) can be evaluated in space
log(n) +O(ε log n).

Proof. We maintain four counters:

1. j, which ranges over [n] and tracks the current active bit.

2. L, which tracks the number of live variables in the current block.

3. K and Kprev, which track the number of variables eliminated in the current and previous
blocks respectively.

The algorithm increments j = 1, . . . , n and works as follows. For a fixed j, we determine if j is
still live at level i − 1 (resp. i) and if so increment L (resp. K). This can be performed in space
O(ε log n) via Claim 3.11. Once L reaches n3ε, we first determine if the previous block failed to
eliminate enough variables. In particular, if Kprev < n3ε(1 − p/2) we return 0. Otherwise, set
Kprev = K and L = K = 0 and continue to increment j. Once j reaches n, we reject if and only if
the final block fails to eliminate enough variables, i.e. Kprev +K < (n3ε + L)(1− p/2).

Next, for a string b⃗ = (b1, . . . , bℓ) ∈ ({0, 1}s)ℓ, we say b⃗ is good if every level i in which more
than n3ε variables are alive, Bi eliminates at least a (1− p/2) fraction of variables, and otherwise
call a string bad. For convenience later, we say (⃗a, b⃗) is bad if b⃗ is bad. Note that there is a
straightforward space O(log n) algorithm that tests if b⃗ is bad.

Claim 4.20. Let b⃗ be bad. Then there is an i ∈ [ℓ] such that Li(⃗b) = 0.

Proof. Consider the level i where Bi does not eliminate a sufficient fraction of variables. Next,
consider the blocks P1, . . . , Pd tested by Li. By a simple averaging argument, there is some block
Pl wherein Bi eliminates an insufficient fraction of variables, and so Li will reject.

Theorem 4.21 (PCAPP solver for good restrictions). There is an SC algorithm that, given an
AOBP M and a⃗ = (a1, . . . , ai), b⃗ = (b1, . . . , bi) where b⃗ is good, returns ρ ∈ R so that∣∣∣ρ− E

z

[
M ◦ FK

(
(⃗a, b⃗) ◦ z

)]∣∣∣ ≤ 1

n2
.

27

Proof. Fix an arbitrary such M and a⃗, b⃗. Note that for every variable j that has been eliminated
by level l for l ≤ i, we have

xj = FK((⃗a, b⃗) ◦ z)j = (A1)j ⊕ · · · ⊕ (Al)j ,

i.e., the jth bit of output does not depend on the suffix z. Let M
a⃗,⃗b

be the AOBP where every such
variable j is fixed to xj , and all other variables are left unfixed. We claim that:∣∣∣E[Ma⃗,⃗b

(U)]− E
z
[M ◦ FK((⃗a, b⃗) ◦ z)]

∣∣∣ ≤ 1/2n2. (1)

We first show the result assuming Equation (1). Note that we can produce M
a⃗,⃗b

in logspace

given (⃗a, b⃗), and the white-box problem of estimating the expectation of an AOBP is equivalent to
estimating the expectation of an ROBP (as the variable order does not matter), and hence can be
performed in SC by [Nis92].

Proving Equation (1) We now prove the equation. Let L be the number of variables not
eliminated by b⃗. By the fact that b⃗ is good, we have that

L ≤ max{n3ε, n(1− p/2)i}.

We analyze based on the two cases. In both cases, denote the suffix of the generator seed as

(⃗a′, b⃗′, w) ∈ ({0, 1}s)ℓ−i × ({0, 1}s)ℓ−i × {0, 1}n3ε

and recall that the first section is used for the remaining restrictions and the latter is used for filling
in remaining live variables with true randomness.

1. First, suppose that L ≤ n3ε. Applying Lemma 4.15 iteratively, we have that∣∣∣∣∣E[Ma⃗,⃗b
(U)− E

a⃗′ ,⃗b′
[A

a⃗◦a⃗′ ,⃗b◦⃗b′(U)]

∣∣∣∣∣ ≤ 1

2n2
.

Furthermore, clearly, further restrictions cannot increase the number of live variables, and
hence for every possible a⃗′, b⃗′ we have that A

a⃗◦a⃗′ ,⃗b◦⃗b′ has at most n3ε live variables. Thus,
averaging over the final component w of the generator is exactly equivalent to supplying
random input to M

a⃗◦a⃗′ ,⃗b◦⃗b′ , so the result follows.

2. Next, suppose that L > n3ε (and thus L ≤ n(1− p/2)i).

Claim 4.22. Over a random suffix z, all variables are eliminated with probability at least
1− 1/2n2.

Proof. We claim that i ≤ ℓ/2, and then the result follows since (1 − p)ℓ/2 ≤ n−4, so every
variable is eliminated with the claimed probability by a union bound. Assuming otherwise,
we have L < n(1− p/2)ℓ/2 < 1, which is a contradiction to the case we are in.

Given this, the proof is direct, again using that each of the ℓ− l further restrictions preserves
the expectation of M

a⃗,⃗b
up to error 1/(ℓ · 2n2), and the final level of the generator will affect

0 variables.

28

Finally, we can combine these ingredients and obtain a white-box Yao derandomization that
outputs a predictor with advantage n−cε for some (universal) constant c. Given an AOBP M and
a distribution D that does not (1/10)-fool M ◦ FK, we first determine

δ0 = Pr
(a⃗,⃗b,v)←D

[⃗
b is bad

]
.

If δ0 > n−10ε, we construct a predictor using the tests Li:

Claim 4.23. Suppose δ0 > n−10ε. Then there is i ∈ [ℓ], σ ∈ {0, 1}2 ,and z ∈ {0, 1}<s, such that
the following is an (n−12ε)-predictor for D, letting t = s− |z| − 1:

f(x<t) = Li(x<t ◦ σ1 ◦ z)⊕ σ2.

Proof. Since for every b⃗ = (b1, . . . , bℓ) that is bad contains some index i where bi is bad, we have
by Claim 4.20 and an averaging argument that there is some i where E[Li(D)] < 1 − δ0/ℓ, and
hence by Claim 4.18 we have that D does not (δ0/ℓ − n−1)-fool Li. Then, applying Theorem 3.3
with P = Li and δ = (δ0/ℓ − n−1), we have that a δ/ℓs-predictor of the form Li(x ◦ σ1 ◦ z) ⊕ σ2
exists, and moreover if the predictor is at bit j,

|E[Li(D<j ◦U)]− E[Li(D<j+1 ◦U)]| ≥ δ/ℓs.

But note that δ/ℓs > 1/n, so by Claim 4.18 this can only occur at indices j in the final block, so
the predictor must have that form.

Thus, from now on we assume δ0 ≤ n−10ε. Let D1 = D|
{⃗
b is good

}
be the distribution over

strings (⃗a, b⃗, v) in D such that b⃗ is good, and note that we can enumerate over D1 in space O(log n)
given D, as we can determine if an element of D is in D1 by testing if b⃗ is good in space O(log n).
Moreover, an α-predictor for D1 is an (α− δ0)-predictor for D (and that we can produce D1 from
D in logspace). We will find such a predictor by performing a hybrid argument, then fixing bits.
First, note that

1

10
− δ0 ≤

∣∣∣∣∣E[M ◦ FK(D1)]− E
(a⃗,⃗b)←D1,v←U

[M ◦ FK((⃗a, b⃗), v)]

∣∣∣∣∣
+

∣∣∣∣∣ E
(a⃗,⃗b)←D1,v←U

[M ◦ FK((⃗a, b⃗), v)]− E[M ◦ FK(U)]

∣∣∣∣∣ .
Furthermore, note that we can estimate all of the quantities in this expression up to error n−2

by Theorem 4.21, since we can enumerate over strings in D1, and for every prefix (⃗a, b⃗) of this
string, we are guaranteed that b⃗ is good. Next, we break intro cases depending on which term is
large.

Hybrid Case 1. We first determine if

1

40
≤

∣∣∣∣∣ E
(a⃗,⃗b,v)←D1

[M ◦ FK((⃗a, b⃗), v)]− E
(a⃗,⃗b)←D1,v←U

[M ◦ FK((⃗a, b⃗), v)]

∣∣∣∣∣
By a further hybrid argument (and that we can estimate the quantities to error n−2 ≪ 1/τ in SC),
we can find j ∈ [τ] such that

1

40τ
≤

∣∣∣∣∣ E
(a⃗,⃗b,v)←D1,v′←U

[M ◦ FK((⃗a, b⃗), v≤j ◦ v′>j)]− E
(a⃗,⃗b,v)←D1,v′←U

[M ◦ FK((⃗a, b⃗), v<j ◦ v′≥j)]

∣∣∣∣∣
29

We iteratively fix elements of v′ while approximately preserving this gap in expectation, which
allows us to obtain a predictor. Since we can enumerate over elements (⃗a, b⃗, v) ← D1 (and can
thus create the restricted branching program M

(a⃗,⃗b),v<j
), we can in SC estimate both terms to high

accuracy, so there is a straightforward O(τ)-space algorithm that outputs such a good v′, and hence
we can find a good predictor.

Hybrid Case 2. If this does not occur, we have

1

40
≤

∣∣∣∣∣ E
(a⃗,⃗b)←D1,v←U

[M ◦ FK((⃗a, b⃗), v)]− E[M ◦ FK(U)]

∣∣∣∣∣ .
By a further hybrid argument (and that we can estimate the quantities to error n−2 ≪ 1/ℓ in SC)
we can find i ∈ [ℓ] such that

1

40ℓ
≤

∣∣∣∣∣ E
(a⃗≤i ,⃗b≤i)←D1,(a⃗>i ,⃗b>i,v)←U

[M ◦ FK((⃗a, b⃗), v)]− E
(a⃗<i ,⃗b<i)←D1,(a⃗≥i ,⃗b≥i,v)←U

[M ◦ FK((⃗a, b⃗), v)]

∣∣∣∣∣
We iteratively fix elements of the uniform distribution while approximately maintaining this gap
in expectation, which allows us to obtain a predictor. Formally:

Lemma 4.24. Given z = (ai+1, bi+1, . . . , al, bl) such that

Pr
(a⃗≤i ,⃗b≤i)←D1

[(⃗a≤i, b⃗≤i) ◦ z is bad] ≤ ρ, Pr
(a⃗<i ,⃗b<i)←D1,(ai,bi)←U

[(⃗a≤i, b⃗≤i) ◦ z is bad] ≤ ρ,

and

α ≤

∣∣∣∣∣ E
(a⃗≤i ,⃗b≤i)←D1,(a⃗>l ,⃗b>l,v)←U

[M ◦ FK((⃗a, b⃗), v)]− E
(a⃗<i ,⃗b<i)←D1,(a⃗>l ,⃗b>l,v,ai,bi)←U

[M ◦ FK((⃗a, b⃗), v)]

∣∣∣∣∣
we can find in SC a pair (al+1, bl+1) such that fixing the block to this value results in an expectation
gap of at least α− ρ− 4/n, and moreover

Pr
(a⃗≤i ,⃗b≤i)←D1

[(⃗a≤i, b⃗≤i) ◦ z ◦ (al+1, bl+1) is bad] ≤ ρ+ 1/n,

and
Pr

(a⃗<i ,⃗b<i)←D1,(ai,bi)←U
[(⃗a≤i, b⃗≤i) ◦ z ◦ (al+1, bl+1) is bad] ≤ ρ+ 1/n.

We apply Lemma 4.24 as follows. Initially, we apply it with an empty suffix, and take ρ = 1/n2.
We apply the lemma in ℓ stages, where ρ is eventually bounded by ℓ/n, and at each application
we lose in α the current value of ρ. Thus, in space Õ(nε) and time poly(n) we can find a string
z = (ai+1, bi+1, . . . , aℓ, bℓ) such that

1

40ℓ
− ℓ2/n ≤

∣∣∣∣ E
(a⃗≤i ,⃗b≤i)←D1,v←U

[M ◦ FK((⃗a≤i, b⃗≤i) ◦ z ◦ v)]

− E
(a⃗<i ,⃗b<i)←D1,(ai,bi)←U,v←U

[M ◦ FK((⃗a<i, b⃗<i) ◦ (ai, bi) ◦ z ◦ v)]
∣∣∣∣

30

Next, we attempt to fix bits of v to maintain this gap. For every good prefix, solving PCAPP on v
is clearly in SC (as it is equivalent to estimating the expectation of an ROBP), and so we find in
space O(n3ε) and polynomial time a string v such that

1

40ℓ
− 2ℓ2/n ≤

∣∣∣∣ E
(a⃗≤i ,⃗b≤i)←D1

[M ◦ FK((⃗a≤i, b⃗≤i) ◦ z ◦ v)]

− E
(a⃗<i ,⃗b<i)←D1,(ai,bi)←U

[M ◦ FK((⃗a<i, b⃗<i) ◦ (ai, bi) ◦ z ◦ v)]
∣∣∣∣

Finally, applying Theorem 3.325, we have that enumerating over the poly(n) possible assignments
to (suffixes of) the bits of (ai, bi) and σ ∈ {0, 1}2, at least one such assignment results in a predictor
for D1 with advantage 1

60sℓ , and hence a predictor for D with advantage 1
60sℓ − δ0.

Proof of Lemma 4.24. Let

βa,b = E
(a⃗≤i ,⃗b≤i)←D1,(a⃗>l+1 ,⃗b>l+1,v)←U

[M ◦ FK((⃗a≤i, b⃗≤i) ◦ z ◦ (a, b) ◦ (⃗a>l+1, b⃗>l+1), v)]

and

β′a,b = E
(a⃗<i ,⃗b<i)←D1,(a⃗>l ,⃗b>l,v,ai,bi)←U

[M ◦ FK((⃗a<i, b⃗<i) ◦ (ai, bi) ◦ z ◦ (a, b) ◦ (⃗a>l+1, b⃗>l+1), v)].

Also, let
ρa,b = Pr

(a⃗≤i ,⃗b≤i)←D1

[(⃗a≤i, b⃗≤i) ◦ z ◦ (al, bl) is bad],

and
ρ′a,b = Pr

(a⃗<i ,⃗b<i)←D1,(ai,bi)←U
[(⃗a≤i, b⃗≤i) ◦ z ◦ (al, bl) is bad].

Note that given (a, b), we can estimate βa,b and β′a,b up to error n−2+ρa,b and n−2+ρ′a,b respectively
by Theorem 4.21, and we can compute ρa,b and ρ′a,b in logspace. The algorithm enumerates over
candidates (a, b), verifies if ρa,b ≤ ρ+ 1/n and ρ′a,b ≤ ρ+ 1/n, and if so, estimates |βa,b − β′a,b| and
returns the (a, b) which maximizes this quantity.

To show that this algorithm returns a good enough (a, b) (in fact, that it returns anything at
all), we first establish that almost all (a, b)’s give rise to ρ’s within the desired range. To do so, we
use an auxiliary lemma.

Claim 4.25. For every distribution H supported on good (⃗a, b⃗), at least a 1− 1/n-fraction of pairs
(a, b) satisfy

Pr
(a⃗,⃗b)←H

[(⃗a, b⃗) ◦ (a, b) is bad] ≤ 1/n.

Proof. Let τa,b = E
(a⃗,⃗b)←H

[
I
[
(⃗a, b⃗) ◦ (a, b) is bad

]]
. We have Ea,b[τa,b] ≤ 1/n2, as for every fixed

string (⃗a, b⃗), it follows from Lemma 4.16 that only an n−2 fraction of the (a, b)’s are bad. Then,
the result follows by Markov.

25Technically, we apply the proof, using that an α-gap in expectation on s bits implies an α/s predictor on one
such bit.

31

Applying the claim with H = (D1)≤i ◦ z and H = (D1)<i ◦ U ◦ z (where we remove the ρ
fraction of bad elements in both cases), we have that at least a 1−2/n fraction of the (a, b)’s satisfy
ρa,b ≤ ρ+ 1/n and ρ′a,b ≤ ρ+ 1/n. This gaurantees that the algorithm will always find a valid pair
(a, b). Finally, note that

α ≤
∣∣∣∣Ea,bβa,b − E

a,b
β′a,b

∣∣∣∣ ≤ E
a,b

[|βa,b − βa,b|] ≤ 1

Applying reverse Markov with X = Ea,b [|βa,b − βa,b|], we have that

Pr[X > α− 4/n] ≥ α− (α− 4/n)

1− 4/n
≥ 5

n

so with probability at least 5/n over (a, b), |βa,b − β′a,b| ≥ α − 4/n. Thus there exists (a, b) that
simultaneously satisfies this and has max{ρa,b, ρ′a,b} ≤ ρ + 1/n. Since we will be able to estimate
both quantities to within error ρ+ 1/n, our returned pair will have the required gap.

5 A Generator with Uniform Near-Deterministic Logspace Re-
construction

The main result we prove in this section is a version of the Shaltiel-Umans [SU05] generator
that is computable in logspace, and whose reconstruction procedure is a uniform, logspace, near-
deterministic algorithm. Very recently, Chen et al. [CLO+23] showed a version of the generator in
which the reconstruction procedure is a uniform algorithm (rather than a non-uniform circuit). We
improve their work by showing a procedure with lower randomness complexity and space complex-
ity.

Theorem 5.1 (a somewhere-PRG with uniform near-deterministic logspace reconstruction). Let
M : N→ N be a logspace-computable function such that M(N) ≤ N εSU, where εSU > 0 is a universal
constant. Then, there exist a pair of algorithms SU and RSU that for every f ∈ {0, 1}N satisfy the
following.

1. When SU is given input 1N and oracle access to f it runs in space O(logN) and prints a
collection L1, ..., Lℓ where each Li is a list of poly(N) strings of length M = M(N), where
ℓ = O(log(N)/ log(M)).

2. For each i ∈ [ℓ], let ji ≤ M , and let Pi : {0, 1}ji → {0, 1} be a (1/M2)-next-bit-predictor for
the uniform distribution on Li. Then, when RSU gets input 1N and oracle access to f and to
P1, ..., Pℓ, it runs in space O(logN), uses O(logN) random coins, and prints a (deterministic)
oracle circuit C : {0, 1}log(N) → {0, 1} of size poly(M) such that with probability at least
1/poly(M) over the coin tosses we have CP1,...,Pℓ(x) = f(x) for all x ∈ [N].

In Section 5.1 we present the arithmetic setting for the generator and reconstruction, as well
as a few preliminary technical lemmas. In Section 5.2 we present the generator itself. Then,
in Section 5.3 and Section 5.4 we present two stand-alone parts of the reconstruction procedure,
and in Section 5.5 we present the full reconstruction procedure.

5.1 Arithmetic Setup

Throughout our argument, we will denote the input by x ∈ {0, 1}n (rather than f ∈ {0, 1}N) and
the output length by m instead of M . We also assume without loss of generality that m ≥ log(n)
(otherwise, the generator can trivially output all m-bit strings).

32

5.1.1 Arithmetic setting

For input length n ∈ N and output length m ≤ n, and for a constant ε = εSU > 0:

• (Field.) Let q = Θ(m · log(n))c be a prime power, where c > 1 is a sufficiently large universal
constant. We consider Fq as an extension of a subfield Fq0 of size q0 = Θ(m · log n); note that
the extension degree is a constant ∆ = Θ(c).

• (Degree.) Let d = mε.

• (Number of variables.) Let v = Oε(log(n)/ log(m)) such that v ≥ (1/ε)·log(n/ log(q))/ log(d).

• (Prediction advantage.) Let ρ = 1/2m2.

Given x ∈ {0, 1}n, treat it as a list of ⌊n/ log(q)⌋ coefficients specifying a polynomial x̂ : Fv
q →

Fq of degree d. By our lower bound on v we have
(
d+v
d

)
≥ ⌊n/ log(q)⌋, and therefore all the

coefficients specified by x are useful towards defining x̂; in particular different x’s give rise to
different polynomials x̂.26

Fact 5.2. There is an algorithm that gets input n,m, q,∆ satisfying the constraints above, runs
in space O(log n), and outputs a representation of Fq.

Proof. Let q = pr for a prime p. The algorithm enumerates over degree-(r − 1) polynomials
Fp → Fp, each of which is represented by r · log(p) = log(q) < O(log n) bits, and tests each
polynomial u for irreducibility. The latter test is also done by brute-force, enumerating over all
polynomials Fp → Fp of degree at most r − 2 and checking if there is one that divides u.

Fact 5.3. There is an algorithm that gets as input a representation of Fq and an integer v ∈ N,
runs in space O(v · log(q)), and prints a monic irreducible polynomial u⋆ ∈ Fq[x] of degree v − 1.

Proof. The algorithm works by brute-force, analogously to the proof of Fact 5.2. Each polynomial
Fq → Fq of degree v − 1 is represented by O(v · log(q)) bits.

Due to Fact 5.2 and 5.3, from now on we will assume that all of our space-bounded algorithms
have access to a fixed representation of Fqv , in the form of the irreducible polynomial u⋆ ∈ Fq[x]
produced by the algorithm above.

5.1.2 A generator matrix in logspace

We will need an algorithm that prints powers of a generator matrix for Fv
q in space O(v · log(q)).

We first define this notion, and show that several basic operations in Fqv and in Fv
q can be done in

small space. Then, we construct the algorithm for printing powers of a generator matrix.

Definition 5.4. We say that A ∈ Fv×v
q is a generator matrix for Fv

q if
{
Ai · s⃗

}
i∈[qv−1] = Fv

q \
{
0⃗
}

for any non-zero s⃗ ∈ Fv
q .

Claim 5.5. There is an algorithm that gets input A ∈ Fv×v
q and i ∈ [qv − 1], runs in space

O(log(i) · log(q)), and prints Ai.

26When x is too short to specify all the coefficients of a polynomial of degree d, we consider the polynomial x̂
obtained by padding x with zeroes to the appropriate length.

33

Proof. Consider the binary tree of depth ⌈log(i)⌉ with i leaves labeled by A and 2⌈log(i)⌉− i leaves
labeled by the identity matrix, and each node labeled by the multiplication of the labels of its
children. Computing each entry of the label of each node can be done in space O(log(v)+log(q)) =
O(log q) with query access to the labels of its children. The algorithm prints each entry of the
top node, and simulates the query access of each node by space-efficient composition; the space
complexity is thus O(log(i) · log(q)).

Claim 5.6. There is an algorithm that gets input ω ∈ Fqv , runs in space O(log(v) · log(q)), and
prints the matrix Tω ∈ Fv×v

q that represents multiplication by ω in Fv
q .

27

Proof. Let Cu⋆ ∈ Fv×v
q be the companion matrix of the irreducible u⋆ from Fact 5.3, and recall

that Cu⋆ = Tx where x ∈ Fq[x]/(u
⋆) is the identity polynomial. Also recall that Cu⋆ has a very

simple structure,28 and in particular there is an algorithm that (given u⋆) prints Cu⋆ in space
O(log(v) + log(q)).

Let ω =
∑v−1

i=0 ωix
i. Then, Tω =

∑v−1
i=0 ωiC

i
u⋆ . Using Claim 5.5, we can print each Ci

u⋆ in space
O(log(v) · log(q)), and hence we can also print Tω in such space.

Proposition 5.7. There is a generator matrix A for Fv
q and an algorithm A′ such that A′ gets

input i ∈ [qv − 1], runs in space O(log(n)), and prints Ai.

Proof. The algorithm first finds a primitive element ω ∈ Fqv , by brute-force. That is, it enumerates
over elements of Fqv , and for each element ω′ it raises it to the powers i = 2, 3, ..., qv− 1 and checks
whether any intermediate result is 1. This can readily be done in space O(v log q).

Now, let ω be the first primitive element encountered, and recall that A = Tω is a generator
matrix for Fv

q . The algorithm raises ω to the power i, and then uses Claim 5.6 to compute Tωi =
T i
ω = Ai. The proposition follows, noting that v log q = O(log n).

5.1.3 A standard list-decodable code

Our construction will use a logspace-computable list decodable code. We do not need particularly
tight parameters, and the classical construction of Sudan, Trevisan, and Vadhan [STV01] suffices
for us. (We do not even rely on the locality of the decoder in their construction.)

Theorem 5.8 (a list-decodable code; see [STV01]). There is a universal constant cSTV > 1 and
algorithm EncSTV that maps x ∈ {0, 1}log(q) to EncSTV(x) ∈ {0, 1}ℓq=poly(log(q),1/ρ) such that the
mapping yields a (12 − ρ, ρ̄ = (1/ρ)cSTV)-list-decodable code, EncSTV runs in space O(log q), and the
list-decoder DecSTV runs in time poly(log(q), 1/ρ).

5.2 The Generator

On an input x ∈ {0, 1}n, G first encodes x as a polynomial x̂ : Fv
q → Fq of (total) degree d.

The lists L0, ..., Lv−1. We first define “q-ary lists” whose elements are vectors in Fm
q , and then

define the final output lists Li whose elements are strings in {0, 1}m. For every i = 0, ..., v − 1, the

27That is, consider the Fq-basis
{
1, x, x2, ..., xv−1

}
for Fv

q , and the corresponding bijection ξ : Fqv → Fv
q (i.e., ξ

maps a polynomial
∑

i∈{0,...,v−1} aix
i to (a0, ..., av−1)). Then, for every ω, ν ∈ Fqv we have that Tω · ξ(ν) = ξ(ω · ν).

28Specifically, the coefficients of u⋆ appear in its rightmost column, and otherwise all of the entries in the matrix
are zero except for one subdiagonal whose entries are one.

34

ith q-ary list L
(q)
i ⊆ Fm

q that G(x) outputs is defined as follows. For every s⃗ ∈ Fv
q , the generators

includes in L
(q)
i the m-element string

L
(q)
i (s⃗) = x̂(A1·qi · s⃗) ◦ x̂(A2·qi · s⃗) ◦ ... ◦ x̂(Am·qi · s⃗), (5.1)

where A is the generator matrix given by Proposition 5.7.
Then, for every s⃗ ∈ Fv

q and j ∈ [ℓq], the corresponding m-bit string in Li is

Li(s⃗, j) = EncSTV

(
L
(q)
i (s⃗)1

)
j
◦ EncSTV

(
L
(q)
i (s⃗)2

)
j
◦ ... ◦ EncSTV

(
L
(q)
i (s⃗)m

)
j
.

The list Lv. In addition, the generator outputs the list Lv ⊆ {0, 1}m defined as follows. Let
pow : {0, 1}v·log(q) → {0, 1}v·log(q) be the function that parses its input i ∈ {0, 1}v·log(q) as an integer
i ∈ {0, ..., qv − 1} and outputs pow(i) = Ai · 1⃗ (in binary representation). Then, for every i ∈
{0, 1}v·log(q) and z ∈ {0, 1}v·log(q) the generator outputs

Lv(i, z) =
〈
pow(m−1)(i), z

〉
◦
〈
pow(m−2)(i), z

〉
◦ ... ◦ ⟨pow(i), z⟩ ◦ ⟨i, z⟩ ,

where pow(j) is the j-wise repeated composition of pow.

Complexity. Note that there are v + 1 = O(log(n)/ log(m)) lists, and each list contains at most
q2v · poly(m) = poly(n) strings of m field elements.

Also note that the generator is computable in space O(log n). To see this, for each Li with
i < v, and for each fixed s⃗, observe that computing each output element reduces in space O(log n)
to computing Ai · s⃗, which can be done in space O(log n) using Proposition 5.7. For Lv, given any
fixed (z, i) ∈ {0, 1}v·log(q) × {0, 1}v·log(q), the bottleneck is computing pow(j)(i). To do so, observe
that the output of pow is of length v · log(q); hence, we can iteratively compute pow(j)(i) by storing
the output of each iteration and computing pow again.

5.3 The Reconstruction Procedure for Lv

Let Pv : {0, 1}iv → {0, 1} be the (1/m2)-next-bit-predictor for Lv, where iv < m.

Proposition 5.9 (efficiently printing a circuit that computes discrete log). There is an algorithm
Rdl that on input 1n runs in space O(log n), uses O(log n) random coins, and with probability at
least 1/ poly(m) outputs an oracle circuit Cdl of size poly(m) such that CPv

dl (A
i · 1⃗) = i for all

i ∈ {0, 1}v·log(q).

Proof. The algorithm Rdl will be the combination of three algorithms R1, R2, R3 that print three
corresponding circuits C1, C2, C3. We first describe the three algorithm, and then explain how to
combine them to get a single algorithm and a single circuit.

Consider the oracle circuit C1 that gets y = Ai · 1⃗ = pow(i) ∈ {0, 1}v·log(q) and tries to find i.
The circuit gets an additional input z ∈ {0, 1}v·log(q), computes

wy,z =
〈
pow(iv−1)(y), z

〉
◦
〈
pow(iv−2)(y), z

〉
◦ ... ◦ ⟨pow(y), z⟩ ◦ ⟨y, z⟩ ,

and outputs Pv(wy,z). The distribution obtained by uniformly choosing i ∈ {0, 1}v·log(q) and setting
y = Ai ·⃗1 is identical to the distribution obtained by uniformly choosing y0 ∈ {0, 1}v·log(q) and setting
i = pow(m−1−iv)(y0) and y = Ai · 1⃗. With probability at least 1/2+1/m2 over (y0, i, y) chosen from

35

the latter distribution and over z, the predictor satisfies Pv(wy,z) = pow(m−1−iv)(y0) = i. Since the
distributions are identical, we have that

Pr
i,z
[CPv

1 (Ai · 1⃗, z) = ⟨i, z⟩] ≥ 1/2 + ε1, (5.2)

where ε1 = 1/m2. Observe that C1 is of size poly(m, log(n)) = poly(m) and that it can be printed
by a machine R1 running in space O(log n). For simplicity, we will denote C1 = CPv

1 .
The next procedure will compute the mapping Ai ·⃗1 7→ i correctly on ε2 = poly(ε1) fraction of the

i’s. We will use a space-efficient and randomness-efficient version of the Goldreich-Levin [GL89] de-
coding algorithm, given by Doron, Pyne, and Tell [DPT24] following Pyne, Raz, and Zhan [PRZ23]:

Theorem 5.10 (efficient Goldreich-Levin decoding; see [DPT24, Theorem 5.16]). Let k = v ·log(q).
There is an algorithm DecGL that gets input ε1, δ > 0 and a random seed sGL of length O(k +
log(1/δ)), runs in space O(log(k/ε1)+loglog(1/δ)), and outputs a list of LGL = O((k/ε21) · log(1/δ))
oracle circuits CsGL,1, ..., CsGL,LGL

satisfying the following.

• Each CsGL,i is an oracle TC0 circuit of size poly(k/ε1) with one majority gate that makes
non-adaptive oracle queries.

• For every i ∈ {0, 1}v·log(q) and every C
(i)
1 : {0, 1}v·log(q) → {0, 1} satisfying Prz[C

(i)
1 (z) =

⟨i, z⟩] ≥ 1/2 + ε1/2, we have that

Pr
sGL

[
∃j ∈ [LGL] : ∀u ∈ [k], C

C
(i)
1

sGL,j
(u) = iu

]
≥ 1− δ.

Consider the algorithm R2 that gets input Ai · 1⃗, draws a random sGL ∈ {0, 1}O(k+log(1/δ)) and
j ∈ [LGL], executes DecGL with values ε1/2 and δ = 1/2, and prints an oracle circuit C2 that gets

input Ai · v⃗ and outputs the truth-table of C
C

(i)
1

sGL,j
, where C

(i)
1 (z) = C1(A

i · 1⃗, z). By Eq. (5.2), with

probability at least ε1/2 over i ∈ {0, 1}v·log(q) it holds that Prz[C1(A
i · 1⃗, z) = ⟨i, z⟩] ≥ 1/2 + ε1/2,

and for each such i, by Theorem 5.10, with probability at least (1 − δ)/LGL over sGL, j the truth-

table of C
C

(i)
1

sGL,j
is i. Hence, Pri,sGL,j [C

C1
2 (Ai · 1⃗) = i] ≥ ε1·(1−δ)

2LGL
= Ω(ε1/(m

4 · log(n))). It follows

that with probability at least Ω(ε1/(m
4 · log(n))) over the random choices sGL, j of R2, we have

that Pri[C
C1
2 (Ai · 1⃗) = i] ≥ ε2 = Ω(ε1/(m

4 · log(n))). Note that C2 is of size poly(m, log(n)) =
poly(m), and that R2 can print it in space O(log n) (relying on the fact that DecGL runs in space
O(log(v · log(q) · m2)) = O(log n)). Also, the number of random coins that R2 uses is O(k +
log(1/δ) + log(LGL)) = O(v · log(q) + log(m)) = O(log n).

The next procedure will compute Ai · 1⃗ 7→ i correctly on all inputs i, using the random self-
reducibility of discrete log. This procedure is a space-efficient and randomness-efficient adaptation
of [CLO+23, Lemma 4.6].

For any fixed j ∈ [qv − 1], consider the following oracle circuit C3,j (looking ahead, for some
choices of j, the C3,j ’s will be sub-circuits in C3). Given input Ai · 1⃗ and oracle access to CC1

2 , the
circuit C3,j computes v⃗ = Aj · (Ai · 1⃗), and then computes b = CC1

2 (v⃗). It checks whether Ab · 1⃗ = v⃗,
and rejects otherwise. Now it knows that Ab · 1⃗ = Aj · Ai · 1⃗, and hence A−j · Ab · 1⃗ = Ai · 1⃗,

and the circuit outputs

{
b− j b > j

qv − (b− j) o.w.
. (Recall that A is a generator matrix, and hence A

is invertible.) Note that C3,j is of size polylog(n) and can be printed in space O(log n). (We rely
on Proposition 5.7 to hard-wire a description of A into C3,j .)

To construct R3 and C3 we will need the following space-efficient sampler:

36

Theorem 5.11 (see, e.g. [DPT24, Theorem 3.12]). For every ε, δ : N→ [0, 1] computable in space
O(log(1/εδ)), there is an algorithm Samp that for every n ∈ N computes a strong (ε, δ)-sampler
with sample size poly(log(1/δ), ε) and randomness n̄ = n+O(log(1/εδ)), using space O(n̄).

The machineR3 uses Theorem 5.11 with output length v·log(q), accuracy ε2/2 = 1/ poly(m, log(n)),
and confidence 1/n2, to draw a random sample. Note that the number of random coins for Samp
is O(v · log(q) + log(n)) = O(log n), and that its sample size is poly(m, log(n)). Then, R3 prints an

oracle circuit C3 that gets input Ai · 1⃗, computes C
C

C1
2

3,j (Ai · 1⃗) for every output j ∈ {0, 1}v·log(q) in
the sample of Samp, and if one of the C3,j ’s printed i then C3 prints that i.29 By a union-bound,
with probability at least 1− 1/n, it holds that C3 computes Ai · 1⃗ 7→ i for all i ∈ {0, 1}v·log(q). Note
that R3 is computable in space O(log n), and that C3 is of size poly(m, log(n)).

The final algorithm Rdl combines R1, R2, R3 in a straightforward way to output an oracle circuit

Cdl that implements C
C

C1
2

3 (the oracle queries that Cdl makes are intended to be answered by Pv,
since C1 requires oracle access to Pv). The space complexity of Rdl is O(log n), it uses O(log n)
random coins, and conditioned on R2 being successful (which happens with probability at least
1/poly(m)), with high probability it outputs Cdl of size poly(m, log(n)) = poly(m) that, when
given oracle access to Pv, correctly computes Ai · 1⃗ 7→ i for all i ∈ [qv − 1].

5.4 The Reconstruction Procedure for L
(q)
0 , ..., L

(q)
v−1

In this section we will construct a procedure that gets oracle access to predictors for the q-ary

lists L
(1)
0 , ..., L

(q)
v−1 (in a sense that will be defined in Definition 5.16) and computes the function

y 7→ x̂(Ay · 1⃗). The main result statement appears in Proposition 5.20.

Notation. For i ∈ {0, ..., q0 − 1}, let wi be the (i + 1)th element in Fq0 in lexicographical order.
For consistency, throughout the section we will use the following notation:

• i ranges in {0, ..., v}.

• j ranges in [m− 1].

• k ranges in [qv − 1].

• t is an element in Fq, or an index in a set [r].

For brevity, we will also use the following notation for elements of Fq. Recall that Fq ≡ F∆
q0 ,

and we will frequently parse each t ∈ Fq as a sequence consisting of one element wi ∈ Fq0 and ∆−1
elements u ∈ F∆−1

q0 . Thus, we will frequently denote this by t = (wi, u) ∈ Fq.

5.4.1 Pseudorandom primitives

We now present a few pseudorandomness primitives that we will need for the reconstruction of

the q-ary lists L
(q)
0 , ..., L

(q)
v−1. Specifically, we will need the randomness-efficient curve sampler by

Guo [Guo13], and a space-efficient averaging sampler. We first define curve samplers, state Guo’s
result, and then prove that Guo’s sampler is computable in logspace. Then, we state the averaging
sampler that our proof will use.

29Observe that for every j, the circuit C3,j never errs (i.e., it either aborts or outputs the correct answer), so if
several C3,j ’s print answers, the answers are identical.

37

Throughout this section and the next, we will frequently refer to distributions over subsets S′

of a set S as (ε, δ)-samplers. (Recall that the standard terminology refers to samplers as functions
whose output is a subset S′ ⊆ S, i.e., the set of sampled points.) By this terminology, we mean that
for every T ⊆ S, with probability 1− δ over the choice of S′ we have Prs∈S′ [s ∈ T] ∈ |T |/|S| ± ε.

We will also frequently identify curves C : Fq → Fq with their image C = {C(t)}t∈Fq
, and it

will be clear from context which of the two interpretation of “a curve” we are referring to (i.e., a
function or its image). For a matrix A ∈ Fv×v

q , the notation A · C means {A · C(t)}t∈Fq
.

Definition 5.12 (curve sampler). Let Samp : {0, 1}n̄ × Fq → Fv
q be an (ε, δ)-sampler. We say that

Samp is a degree-t curve sampler if for every fixed z ∈ {0, 1}n̄, the function Sampz(i) = Samp(z, i)
is a curve Fq → Fv

q of degree at most t.

Theorem 5.13 (Guo’s curve sampler [Guo13]). Let ε, δ : N → [0, 1] and q : N → N be space-
computable such that q(v) is a prime power satisfying q(v) ≥ (v · log(1/δ(v))/ε(v))Θ(1). Then, there
is an algorithm that for every v ∈ N computes a strong degree-t curve (ε, δ)-sampler

Samp : {0, 1}n̄ × Fq → Fv
q

with t = (m · logq(1/δ))O(1) and n̄ = O(v · log(q)+log(1/δ)), using space O(v · log(q)+loglog(1/δ))).

Proof. We prove that Guo’s construction is computable in space O(v · log(q) + O(loglog(1/δ))),
and that it yields a strong sampler. Let us first bound the space-complexity. The construction is
the composition of an outer sampler and an inner one, and we first analyze them separately and
then analyze the composition.

Claim 5.13.1. The outer sampler in Guo’s construction Out : FO(v+logq(1/δ))
q × Flog(v)+1

q → Fv
q is

computable in space O(v · log(q) + loglog(1/δ)).

Proof. The outer sampler first transforms its source into a block source, using the condenser
of [GUV09]. Given (x, y) ∈ Fn̄out

q × Fq and a parameter vi, where n̄out = O(v + logq(1/δ)), the
condenser outputs

Condvi(x, y) =
(
y, fx(y), fx(ζ · y), ..., fx(ζvi−2 · y)

)
∈ Fvi

q (5.3)

where ζ ∈ Fq is a primitive element and fx(z) =
∑n̄out−1

i=0 xi · zi. We can find a primitive element
ζ ∈ Fq in space O(log q) (by brute-force), raise it to the power ≤ vi in space O(log(vi) + log(q)),
and compute (x, z) 7→ fx(z) in space O(log(n̄out) + log(q)). The transformation of the source into
a block source is

Blk(x, y1, ..., ys) = (Condv1(x, y1), ...,Condvs(x, ys)) ∈ F4(v−1)
q ,

where s = log(v), vi = 4v · 2−i,
∑

i∈[s] vi = 4(v − 1), and Blk is computable in space O(log(v) +
log(q) + loglog(1/δ)) because Cond is computable in that space.

Now, given a block source ((a1, b1), ..., (as, bs)) where (ai, bi) ∈ Fvi/2
q × Fvi/2

q for all i, and seed
y′s ∈ Fq, the outer extractor works as follows. For each i = s, ..., 1, it prints the first vi/2 − 1
elements of ai · y′i + bi and defines yi−1 to be the last element of ai · y′i + bi. This is computable in
space O(v · log(q)) since the linear function in each block (i.e., ai · y′i + bi) is computable in such
space, and the algorithm only needs to store a single element in Fq when moving from one block
to the next. By composing this algorithm with Blk, we get an (ε, δ)-sampler

Out : FO(v+logq(1/δ))
q × Flog(v)+1

q → Fv
q

computable in space O(v · log(q) + loglog(1/δ)), where the output length is truncated to v (i.e., we
rely on the fact that

∑
i∈[s] vi/2− 1 = 2v − 2− log(v) > v). 2

38

Claim 5.13.2. The inner sampler In : Fpolylog(v)+O(logq(1/δ))
q ×Fq → Flog(v)+1

q is computable in space
O(log(q) · polylog(v)).

Proof. Let ℓ = log(v) + 1. The sampler In is defined recursively, with s′ = log(ℓ) = O(loglog(v))

levels of recursion. For level i, we fix parameters di = ℓ/2i and ti =

{
16i/4 i < s′

16i/4 + 5 · logq(1/δ) i = s′
,

and define an algorithm

Ini : F4ti·di
q × Fdi

q → Fℓ
q.

At the first level In0 just outputs its seed. At level i ≥ 1, the algorithm Ini gets input (xi,1, xi,2) ∈
F3ti·di
q × Fti·di

q and a seed si ∈ Fdi
q , computes (zi,1, zi,2, zi,3) = Curvei(xi,1, si) ∈ F3di

q , and outputs
Ini−1 (Condi(xi,2, zi,1), (zi,2, zi,3))), where the algorithms are defined as follows.

• The algorithm Curvei(xi,1, si) : F3ti·di
q ×Fdi

q → F3di
q parses its input xi,1 as ti triplets of elements

(c0,1, c0,2, c0,3), ..., (cti−1,1, cti−1,2, cti−1,3) ∈ F3
qdi

, parses its seed si as an element y ∈ Fqdi , and

computes
(∑ti−1

j=0 cj,1 · yj ,
∑ti−1

j=0 cj,2 · yj ,
∑ti−1

j=0 cj,3 · yj
)
. It then parses the latter triplet as

3di elements in Fq and outputs these elements.

Note that Curvei is computable in space O(di ·log(q)+log(ti)) ≤ O(log(v)·log(q)+polylog(v)),
and that its output is of length O(di · log(q)) ≤ O(log(v) · log(q))).

• The algorithm Condi : Fdi·ti
q × Fdi

q → F2di·ti−1
q parses its input x1,2 as ti elements in Fqdi and

its seed as an element y ∈ Fqdi , and outputs 2di · ti−1 elements defined as in Eq. (5.3).

This algorithm works over the field of size q′ = qdi , and is computable in space O(log(q′) +
log(di · ti−1)) ≤ O(log(v) · log(q)). Its output length is at most ti−1 · di · log(q) = polylog(v).

Thus, the computation of In = Ins′ amount to computing two strings of total length at most
log(q) · polylog(v), and then passing them on to level s′ − 1 (as the input and seed to Ins′−1);
indeed, at each level, the algorithm maps its input to two strings, and gives these strings as input
to the level below. Since the strings at each level are of length at most log(q) · polylog(v), and the
computation at each level can be done in space O(log(v) · log(q)+ polylog(v)), the inner sampler is
computable in space O(log(q) · polylog(v)). 2

The final sampler uses the inner sampler In : Fn̄in
q × Fq → Flog(v)+1

q to sample from the outputs
of Out, where n̄in = polylog(v) +O(logq(1/δ)); that is, given (x, x′) ∈ Fn̄out

q × Fn̄in
q and y ∈ Fq,

Samp((x, x′), y) = Out(x, In(x′, y)).

The bound on the space complexity follows by combining Claims 5.13.1 and 5.13.2.

Strongness. Having proved that Guo’s curve sampler is computable in small space, let us now
prove that the construction yields a strong sampler. We only give here a proof sketch, and the full
proof involves fully articulating standard techniques from extractor theory.

In [Guo13], the outer and inner samplers are in fact analyzed using the terminology of random-
ness extractors, and indeed, strong samplers are equivalent to strong extractors [Zuc97]. Following
[RSW06, Theorem 8.2], we know that when we compose an outer and an inner extractor, for the
final extractor to be strong, it suffices for the outer one to be strong (with a very minor loss in
parameters, that essentially “sacrifices” the entropy in the seed).

39

The outer extractor Out employs the block-source extraction framework, after a block-source
conversion step. One can verify that if the block-source conversion step is strong (namely, that Blk
is close to a block-source even conditioned on a typical fixing of y1, . . . , ys)), and the extractor used
in the block-source extraction procedure is strong, then the entire process yields a strong extractor.
To argue that the block-source conversion step is strong, one can use the fact that Cond is a strong
condenser (the latter fact is immediate, since it outputs the seed y). For the block-source extraction
step, Out uses the “line extractor” that maps ((a, b), y) to (a1y + b1, . . . , aviy + bvi). The fact that
it is strong readily follows from its analysis as a sampler (see, e.g., [Guo13, Lemma 2.3]).

Having established Theorem 5.13, the following corollary is immediate.

Corollary 5.14. For any ε = poly(ρ) and δ = q−O(v), there is a probabilistic algorithm that
generates a curve C : Fq → Fv

q , using O(log n) random coins and in space O(log n), such that

dcrv ≜ deg(C) = (m·log(n))O(1) and the resulting distribution over curves is a strong (ε, δ)-sampler.

An averaging sampler. Recall that Fq ≡ F∆
q0 . We will also need to sample a set of points

R ⊆ F∆−1
q0 space-efficiently and randomness-efficiently, which we do using the sampler from Theo-

rem 5.11.

Corollary 5.15. For any δ = q−O(v), there is a probabilistic algorithm that generates a set R ⊆
F∆−1
q0 of size r = poly(v, log(q)), using O(log n) random coins and in space O(log n), such that the

distribution over R’s is an (ε, δ)-sampler, for ε = 1
(m·log(n))2 .

Proof. We use Theorem 5.11 with output length ∆ · log(q0) < log(q) and ε = 1/(m · log(n))2 and
δ = q−O(v). The sample size is poly(1/ε, log(1/δ)) = poly(m, log(n)), the required randomness is
log(q) +O(log(1/εδ)) = O(log n), and the space complexity is linear in the randomness.

5.4.2 Learning a single curve

We first show an algorithm analogous to “Learn Next Curve” in [SU05]. Intuitively, the algorithm
uses a predictor and a sequence of “known” points on previous curves to predict points on the next
curve, and then uses a small number of “known” points on the next curve in order to error-correct
its predictions. The crucial part for us is the efficiency of this algorithm (i.e., it is a space-bounded
machine that outputs a small circuit), and distilling the exact properties that this algorithm needs
from the distribution over the relevant curves in order to work.

Definition 5.16 (good predictors). We say that P (i) : Fm−1
q → Fρ̄

q is a ρ-good predictor for L
(q)
i if

Pr
z⃗∈L(q)

i

[P (i)(z⃗1,...,m−1) ∋ z⃗m] > ρ.

Recall that ρ̄ was defined as ρ̄ = (1/ρ)cSTV in Theorem 5.8, and indeed we use the same parameter
when considering predictors in Definition 5.16.

For simplicity of presentation, we will assume throughout this section that all predictors predict

the mth element; that is, for each i ∈ {0, ..., v − 1}, the predictor P (i) : Fji
q → Fρ̄

q for L
(q)
i has

ji = m − 1. This assumption does not meaningfully affect the argument (in fact, it is a “worst-
case” scenario for the reconstruction) and we make it only to reduce notational clutter.

Lemma 5.17 (derandomized learning of a single curve). There is a machine LrnNext that gets
input 1n and i ∈ {0, ..., v − 1} and R ⊆ F∆−1

q0 of size r = |R|, runs in space O(log n), and prints a
circuit CLrnNext,i of size poly(q, 1/ρ) satisfying the following.

40

1. Input. Points
{
(a

(m−1)
t , ..., a

(1)
t) ∈ Fm−1

q

}
t∈Fq

, evaluations {bt ∈ Fq}t∈[r], and i∗ ∈ {0, ..., v}.

2. Output. A set {ot ∈ Fq}t∈Fq
.

3. Functionality. Consider a distribution over curves C : Fq → Fv
q of degree D = dcrv · q0 · r

and an independent distribution over sets R ⊆ F∆−1
q0 of size r such that the distribution over

C is a (ρ/4, q−20v)-sampler and the distribution over R is a (1/2, q−20v)-sampler. Then, for
every (ρ/2)-good predictor P (i), with probability at least 1− q−10v over C,R it holds that:

When a
(j)
t = x̂(A−j·q

i · C(t)) for all t ∈ Fq and j ∈ [m − 1], and bt = x̂(C(wi∗ , Rt)) for all
t ∈ [r], and CLrnNext,i is given as oracle P (i), its output satisfies ot = x̂(C(t)) for all t ∈ Fq.

Proof. Let us first describe CLrnNext,i, and then prove the required properties. The circuit will use
Sudan’s [Sud97] list-decoding algorithm for the Reed-Solomon code:

Theorem 5.18 (list-decoding of the RS code [Sud97]). Given p distinct pairs {(xa, ya) ∈ Fq × Fq}a∈[p],
there are at most 2/µ degree-d′ polynomials g such that g(xa) = ya for at least a µ-fraction of the
pairs, as long as µ >

√
2d′/p. Furthermore, a list of all such polynomials can be computed in time

poly(p, log(q)).

For each t ∈ Fq, the circuit queries its oracle Pj : Fm−1
q → Fρ̄

q on the point (a
(m−1)
t , ..., a

(1)
t) ∈

Fm−1
q , which yields a set St ⊆ Fq of size |St| = ρ̄. It then uses Theorem 5.18 with the set S = ∪t∈FqSt

and with parameter values p = ρ̄ · q and µ = (ρ/4) · ρ̄ and d′ = d · D to obtain a list of 8/(ρ · ρ̄)
polynomials in time poly(q, ρ−1). (Note that µ >

√
2d′/p, since q1−1/∆ > 32d · dcrv · r · poly(1/ρ),

relying on a sufficiently large choice of constant c > 1 in Section 5.1.1.) If the list contains a unique
polynomial p : Fq → Fq such that p(wi∗ , Rt) = bt for all t ∈ [r], output {p(t)}t∈Fq

; otherwise, fail.
Observe that there is a uniform machine that gets a first set of inputs 1n, i, R and a second set

of inputs
{
(a

(m−1)
t , ..., a

(1)
t)

}
, {bt} , i∗, and computes the value of CLrnNext,i (i.e., of the circuit corre-

sponding to the first set of inputs) on the second set of inputs in time tLrnNext = poly(q, ρ−1). Hence,
this functionality is also computable by a O(log(ttLrnNext))-space-uniform circuit of size poly(tLrnNext)
(i.e., by a standard simulation of machines by highly uniform circuits of quadratic size). The ma-
chine LrnNext gets input 1n, i, R, and prints the latter circuit in space O(log(ttLrnNext

)) ≤ O(log n)
while hard-wiring the values of i and of R to the appropriate input gates.

Analysis. We want to prove the claim about the functionality of CLrnNext,i. We first argue that:

Claim 5.18.1. With probability 1− q−20v over the choice of C, it holds that

Pr
t∈Fq

[x̂(C(t)) ∈ St] ≥ ρ/4.

Proof. Consider a uniformly chosen z⃗ ∈ L
(q)
i . By the guarantee on P (i) we know that

Pr[P (i)(z⃗1,...,m−1) ∋ z⃗m] ≥ ρ/2.

However, we also know that z⃗ is distributed identically to

x̂(A−(m−1)·q
i
(y⃗)) ◦ ... ◦ x̂(A−qi · y⃗) ◦ x̂(y⃗)

for a uniformly chosen y⃗ ∈ Fv
q . (This is because Aqi is invertible, and relying on the definition of

L
(q)
i (s⃗) in Eq. (5.1) and on the fact that z⃗ is obtained via a uniform choice of s⃗ ∈ Fv

q .)

41

Hence, when choosing a uniformly random y⃗ ∈ Fv
q , with probability at least ρ/2 we have that

P (i)(x̂(A−(m−1)·q
i
(y⃗)), ..., x̂(A−q

i · y⃗)) ∋ x̂(y⃗). (5.4)

Since the distribution over C is an (ε = poly(ρ), δ = q−20v)-sampler, with probability at least 1− δ,
the fraction of points y⃗ = C(t) on the curve such that Eq. (5.4) holds is at least ρ/2− ε = ρ/4. 2

By Claim 5.18.1, with probability 1− q−20v over the choice of C there are at least µ = (ρ/4) · ρ̄
pairs (t, u) in S = ∪t∈F {t} × St such that u = pC(t), where pC(t) = x̂(C(t)). Also note that pC
is of degree d′ = d · D. Hence, for every C satisfying the above, the list of polynomials that the
algorithm from Theorem 5.18 outputs contains pC .

Now, condition on such a C, and consider any p ̸= pC of degree deg(p) = d · D. Note that
d ·D/q∆−10 < 1/2 (relying on a sufficiently large choice of c > 1 in the definition of q). Hence, by
the Schwartz-Zippel lemma, the fraction of roots of p − pC in any set S ⊆ Fq of size q∆−10 is less
than 1/2. In particular,

Pr
u∈F∆−1

q0

[p(wi∗ , u) ̸= pC(wi∗ , u)] > 1/2.

Since the distribution over R ⊆ F∆−1
q0 is a (1/2, q−20v)-sampler, with probability 1− q−20v there

is t ∈ [r] such that p(wi, Rt) ̸= pC(wi, Rt). By a union-bound over all p’s that the algorithm
of Theorem 5.18 outputs, with probability at least 1 − q−20v · poly(1/ρ) ≥ 1 − q−10v over R the
circuit CLrnNext,i outputs the unique pC .

30

5.4.3 Learning interleaved curves

The next algorithm will construct two interleaved curves, using Corollary 5.14 and Corollary 5.15,
such that one can use the CLrnNext,i’s from Lemma 5.17 repeatedly to learn qv−1 “shifts” of each of
these curves by A. At each step, the previous learned curve will intersect the next curve we want to
learn at sufficiently many locations for the needed error-correction in Lemma 5.17. Our construction
of the interleaved curves is different than that in previous works (e.g., in [SU05,CLO+23]), since
we need a randomness-efficient algorithm.

Lemma 5.19 (derandomized interleaved learning). There is a randomized algorithm that gets input
1n, uses O(log n) random coins and O(log n) space, and outputs two curves C1, C2 : Fq → Fv

q and

a set R ⊆ Fq0 such that for every collection of (ρ/2)-good predictors P (0), ..., P (v), with probability
1 − q−5v the following holds. For every i ∈ {0, ..., v − 1} and k ∈ [qv − 1], when we give LrnNext
input i and R, it prints CLrnNext,i such that:

1. Learning CNxt,1(t) ≜ Ak+qi ·C1(t) from CPrv,1(t) ≜ Ak ·C2(t). When we give CLrnNext,i the

points
{
a
(j)
t = x̂(A−j·q

i · CNxt,1(t))
}
t∈Fq ,j∈[m−1]

and evaluations
{
bt = x̂(CPrv,1(wi, Rt))

}
t∈[|R|]

and i∗ = i and oracle access to P (i), it outputs
{
x̂(CNxt,1(t))

}
t∈Fq

.

2. Learning CNxt,2(t) ≜ Ak·C2(t) from CPrv,2(t) ≜ Ak·C1(t). When we give CLrnNext,i the points{
a
(j)
t = x̂(A−j·q

i · CNxt,2(t))
}
t∈Fq ,j∈[m−1]

and evaluations
{
bt = x̂(CPrv,2(wv, Rt))

}
t∈[|R|] and

i∗ = v and oracle access to P (i), it outputs
{
x̂(CNxt,2(t))

}
t∈Fq

.

30The bound poly(1/ρ) ≤ q10v assumes that m ≤ nζ for a universal constant ζ > 0. We can indeed assume this
without loss of generality, otherwise Theorem 5.1 is trivial.

42

Proof. Let C : Fq → Fv
q be a degree-dcrv curve sampled by Corollary 5.14 with ε = ρ/12 and

δ = q−30v, and let R ⊆ Fq0 be a set sampled by Corollary 5.15 with δ = q−30v. Denote r = |R|.
We let C1 = C, and define C2 : Fq → Fv

q as the unique curve of degree (r · q0 − 1) satisfying the
following:

∀a ∈ {0, ..., q0 − 1} ,∀u ∈ R, C2(wa, u) = Sa · C1(wa, u), (5.5)

where Sa =

{
Aqa a ∈ {0, ..., v − 1}
Id a ∈ {v, ..., q0 − 1}

Observe that max {deg(C1),deg(C2)} < dcrv · q0 · r = D, and that we can sample the curves and
R and print them in space O(log n) and by using O(log n) coins.

Thus, we turn to the analysis. We first claim that the two curves have sufficient “sampling”
properties and “intersection sampling” properties, as follows.

Claim 5.19.1 (each curve is a sampler, marginally). For any fixed k ∈ [qv − 1], when choosing C
from Corollary 5.14 with ε = ρ/12 and δ = q−30v and R from Corollary 5.15 with δ = q−30v,

1. The distribution Ak · C1 is an (ε, δ)-sampler.

2. The distribution Ak · C2 is an (ε′, δ′)-sampler, where ε′ = 3ε = ρ/4 and δ′ = 2δ · q0 < q−20v.

Proof. First observe that C1 is an (ε, δ)-sampler, because C1 = C. Next, for any shift Ak, the curve
Ak · C1 is also an (ε, δ)-sampler; this is since Ak is invertible, and so the mapping of the image of
C1 to the image of Ak · C1 is a bijection.

We prove that C2 is a sampler relying on the fact that C is a strong sampler and on the fact
that R is a sampler. Specifically, fix any choice of C = C1. We first claim that for every T ⊆ Fv

q

and every fixed a ∈ {0, ..., q0 − 1}, with probability at least 1− δ over R it holds that∣∣∣ Pr
u∈R

[C2(wa, u) ∈ T]− Pr
u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T]
∣∣∣ ≤ ε, (5.6)

and ∣∣∣ Pr
u∈R

[C2(wa, u) ∈ T]− Pr
u∈F∆−1

q0

[C2(wa, u) ∈ T]
∣∣∣ ≤ ε. (5.7)

Indeed, the statements in Eqs. (5.6) and (5.7) are true because R is an (ε, δ)-sampler in F∆−1
q0 (and

considering the tests Twa(u) = 1[Sa · C1(wa, u) ∈ T] and T ′wa
(u) = 1[C2(wa, u) ∈ T]).

It follows that for every fixed C1 and T ⊆ Fv
q , with probability at least 1− δ · q0 over R we have∣∣∣ Pr

a∈{0,...,q0−1},u∈F∆−1
q0

[C2(wa, u) ∈ T]− Pr
a∈{0,...,q0−1},u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T]
∣∣∣

=
∣∣∣ E
a∈{0,...,q−1}

[
Pr

u∈F∆−1
q0

[C2(wa, u) ∈ T]− Pr
u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T]

] ∣∣∣
≤ E

a∈{0,...,q−1}

[∣∣∣ Pr
u∈F∆−1

q0

[C2(wa, u) ∈ T]− Pr
u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T]
∣∣∣]

≤ 2ε. (5.8)

Now, consider the joint distribution (C1, R, C2), which is obtained by choosing C = C1 and
R independently, and defining C2 = C2(C1, R) as in Eq. (5.5). Assume towards a contradiction

43

that there is T ⊆ Fv
q such that with probability more than 2δ · q0 over (C1, R, C2) it holds that

Prt∈Fq [C2(t) ∈ T]− |T |/qv > 3ε.31

Now, by Eq. (5.8), for every fixed choice of C1, with probability 1− δ · q0 over R we have that

Pr
a∈{0,...,q0−1},u∈F∆−1

q0

[Sa · C1(wa, u) ∈ T]− |T |/qv > ε. (5.9)

We call every choice of R satisfying Eq. (5.9) good for C1.
Next, consider the following test T ′ ⊆ Fq × Fv

q . Given (t, z⃗), we parse t = (wa, u) ∈ Fq0 × F∆−1
q0 ,

and define M((wa, u), z⃗) ≜ Sa · z⃗ ∈ Fv
q ; we include (t, z⃗) in T ′ iff M(t, z⃗) ∈ T . Note that when (t, z⃗)

is chosen uniformly, the distribution M(t, z⃗) is uniform in Fv
q , and hence

Pr
t,z⃗∈Fq×Fv

q

[(t, z⃗) ∈ T ′] = |T |/qv.

On the other hand, when (t, z⃗) is uniformly chosen from the set {(t, C1(t))}t∈Fq
, the distribution

M(t = (wa, u), z⃗) is the uniform distribution on {Sa · C1(wa, u)}a∈{0,...,q0−1},u∈F∆−1
q0

, and hence

Pr
t∈Fq

[
(t, C1(t)) ∈ T ′

]
= Pr

a∈{0,...,q0−1},u∈F∆−1
q0

[Sa · C1(wa, u) ∈ T] .

Plugging the two equations above into Eq. (5.9), whenever R is good for C1, we have that

Pr
t∈Fq

[
(t, C1(t)) ∈ T ′

]
− Pr

t,z⃗∈Fq×Fv
q

[(t, z⃗) ∈ T ′] > ε. (5.10)

It follows that

Pr
C1

[Eq. (5.10) holds] ≥ Pr
C1,R

[(
Pr
t∈Fq

[C2(t) ∈ T]− |T |/qv > 3ε

)
∧R is good for C1

]
≥ 1− 2δ · q0 − δ · q0,

contradicting the fact that C = C1 is a strong (ε, δ)-sampler. 2

Claim 5.19.2 (interleaved curves agree on the points specified byR). For any fixed i ∈ {0, ..., v − 1}
and any choice of C and R we have that

R ⊆
{
u ∈ F∆−1

q0 : Aqi · C1(wi, u) = C2(wi, u)
}
.

Moreover, for any fixed k ∈ [qv − 1], the claim still holds if we simultaneously replace “C1” by
“Ak · C1” and “C2” by “Ak · C2”.

Proof. The basic claim follows from the definition of C2, and the “moreover” part follows immedi-
ately from the basic claim. 2

Now, for Item (1) of our lemma, fix i and k, and let CNxt,1(t) = Ak+qi ·C1(t). By Lemma 5.17,
with probability at least 1− q−10v over CNxt,1 and R, when we give CLrnNext,i the points{

a
(j)
t = x̂(A−j·q

i · CNxt,1(t))
}
t∈Fq ,j∈[m−1]

31Note that if there is T ′ such that
∣∣∣Prt∈Fq [C2(t) ∈ T ′] − |T ′|/qv

∣∣∣ > 3ε with probability more than 2δ · q0, then
there is T such that Prt∈Fq [C2(t) ∈ T ′]− |T ′|/qv > 3ε with probability more than δ > 0 (i.e., by taking either T = T ′

or T as the complement of T ′). Thus, to rule out the former it suffices to rule out the latter.

44

and the evaluations
{
bt = x̂(CNxt,1(wi, Rt))

}
t∈[|R|] and i∗ = i and oracle P (i), it outputs

{
CNxt,1(t)

}
t∈Fq

,

as long as the distributions over CNxt,1 and R are appropriate samplers. By Claim 5.19.1, the dis-
tribution over CNxt,1 is indeed such a sampler. By Claim 5.19.2, the curves CNxt,1 and CPrv,1(t) =
Ak · C2(t) agree on the point-set {(wi, Rt)}t∈[r], and hence the functionality of CLrnNext,i remains

identical if we replace the set of bt’s above by
{
bt = x̂(CPrv,1(wi, Rt))

}
t∈[r].

For Item (2), similarly, we fix i, k, and let CNxt,2(t) = Ak ·C2(t). We use Lemma 5.17 identically
to the proof above, the only difference being that now we argue about CLrnNext,i when it is given i∗ =
v (rather than i∗ = i). The claim follows relying on the fact that CNxt,2 is an appropriate sampler
(by Claim 5.19.1) and that CNxt,2 and CPrv,2(t) = Ak · C1(t) agree on the point-set {(wv, u)}u∈Fq0

(by the definition of C1 and C2 on {(wv, ·)}, in Eq. (5.5)).
The two paragraphs above established that for every fixed i, k, the statements in Items (2)

and (1) hold with probability at least 1 − q−10v. By a union-bound over i ∈ {0, ..., v − 1} and
k ∈ [qv − 1], with probability at least 1− q−5v the two statements hold for every i, k.

5.4.4 The main reconstruction algorithm

We are now ready to state and prove the main algorithm of the current section. This algorithm
uses O(log n) coins and O(log n) space, makes queries to x̂, and with high probability prints v⃗ ∈ Fv

q

and a circuit that computes the mapping y 7→ x̂(Ay · v⃗).

Proposition 5.20. There is an algorithm that gets input 1n, uses O(log n) random coins and
O(log n) space, makes O(m · q) queries to x̂,32 and for every collection of (ρ/2)-good predictors
P⃗ = P (0), ..., P (v−1), with probability 1 − q−O(v) it prints a circuit R0 : {0, ..., qv − 1} → Fq of size

poly(m, log(n)) such that RP⃗
0 (y) = x̂(Ay · 1⃗).

Proof. We first describe the circuit R0 and then explain how to construct it. The circuit has hard-
wired choices of curves C1, C2 and a set R ⊆ F∆−1

q0 , as well as the circuits CLrnNext,i from Lemma 5.19
with all values of i ∈ {0, ..., v − 1}. Let v⃗ = C1(1).

The circuit receives y ∈ {0, ..., qv − 1} and parses it in basis q as y =
∑v−1

i=0 yi · qi. Denote
y(−1) = 0, and for i ∈ {0, ..., v − 1}, let y(i) =

∑i
i′=0 yi′ ·qi

′
. The circuit works in v iterations, where

in iteration i ∈ {0, ..., v − 1} it has already obtained the values{
x̂
(
Ay(i−1)+j·qi · Cb(t)

)}
t∈Fq ,b∈{1,2},j∈[m−1]

and its goal is to compute the values of{
x̂
(
Ay(i−1)+j′·qi · Cb(t)

)}
t∈Fq ,b∈{1,2},j′∈{m,...,(m−1)·q}

,

where we denote A0 = Id and
∑−1

i′=0 yi′ · qi
′
= 0.

The values
{
x̂
(
Aj · Cb(t)

)}
t∈Fq ,b∈{1,2},j∈[m−1] will be hard-wired into R0, so the first iteration

has the values it needs to start its execution. Observe that after iteration i completes successfully,
the circuit has the values that it needs for iteration i+ 1. Also note that after iteration v − 1 the
circuit has learned the value x̂ (Ay · C1(1)), as we wanted.

Thus, it remains to describe how a single iteration i is executed. The circuit R0 uses the
circuit CLrnNext,i. For j′ ∈ {m, ..., (m− 1) · q}, we first use Item (1) of Lemma 5.19 with value
k = y(i−1) + (j′ − 1) · qi and then use Item (2) of Lemma 5.19 with value k = y(i−1) + j′ · qi. In
both cases, the circuit R0 gives CLrnNext,i access to its oracle P (i).

32The number of queries can be reduces to O(m · d ·D), since the algorithm just needs to learn the values of 2m
degree-d ·D polynomials. However, for simplicity we do not optimize the number of queries.

45

Tedious verification, which may be skipped. To carefully verify the correct use of Lemma 5.19,
for each j′ ∈ {m, ...,m · q}, denote CNxt,j′,1 as CNxt,1 when we use Item (1), and denote CNxt,j′,2 as
CNxt,2 when we use Item (2); analogously, denote CPrv,j′,1, CPrv,j′,2.

Now, fix j′ ∈ {m, ...,m · q}, and recall that we enter step j′ (of iteration i) having already learned{
x̂(Ay(i−1)+j·qi · Cb(t))

}
t,b,j∈[j′−1]

in previous steps (or in iteration i − 1). To reduce notational

clutter, for a curve C : Fq → Fv
q we will denote x̂(C) = {x̂(C(t))}t∈Fq

. We also use the shorthand

notation a⃗(j) = (a
(j)
t)t∈Fq .

• When we use Item (1), we have CNxt,j′,1 = Ay(i−1)+j′·qi ·C1 and CPrv,j′,1 = Ay(i−1)+(j′−1)·qi ·C2.

The evaluations we learned going into step j′ include
{
a⃗(j) = x̂(A−j·q

i · CNxt,j′,1)
}
j∈[m−1]

.

Also, in the previous step j′ − 1 we learned x̂(CNxt,j′−1,2) = x̂(Ay(i−1)+(j′−1)·qi · C2), so in

particular we learned
{
bt = x̂(CPrv,j′,1(wi, Rt))

}
t∈[r]

.

• When we use Item (2), we have CNxt,j′,2 = Ay(i−1)+j′·qi · C2 and CPrv,j′,2 = Ay(i−1)+j′·qi · C1.

The evaluations we learned going into step j′ include
{
a⃗(j) = x̂(A−j·q

i · CNxt,j′,2)
}
j∈[m−1]

, and

in the most recent usage of Item (1) we learned x̂(CNxt,j′,1) ⊇
{
bt = x̂(CPrv,j′,2(wv, Rt))

}
t∈[r]

.

The execution of the two items yields the values x̂(Ay(i−1)+j′·qi · Cb) for b ∈ {1, 2}, so we can
continue to step j′ + 1.

Complexity and success probability. Note that R0 has O(m·q) elements of Fq hard-wired into
it, as well as two curves (i.e., 2q elements of Fv

q), a set of size r, and v circuits of size poly(q, 1/ρ).
For its execution, it works in v iterations, and in each iteration it simulates CLrnNext,i and stores
O(m · q2) values. Thus, overall, R0 can be implemented in size poly(m, log(n)).

Moreover, since the functionality ofR0 (given the hard-wired information) is can be implemented
by a uniform machine, the following holds: There is a (uniform) Turing machine that gets as input
the information that is supposed to be hard-wired into R0 (i.e., the elements of Fq for the first
iteration, the two interleaved curves, the sampled set of size r, and the v circuits CLrnNext,i) as well
as an input y, and computes the value of the corresponding circuit R0 (i.e., the R0 that is obtained
by the given “hard-wired” information) at y in time poly(m, log(n)). Thus, similarly to the proof
of Lemma 5.17, observe that the foregoing functionality can be computed by an O(log(m, log(n)))-
space-uniform circuit family

{
R′0,n

}
n∈N of size poly(m, log(n)).

The machine M that prints R0 simulates the machine that prints R′0 = R′0,n, which uses
space O(log(m,n log(n))) ≤ O(log(n)), and hard-wires the needed information into the correspond-
ing input gates of R′0. Specifically, M samples C1, C2, R using Lemma 5.19, queries x̂ at points{
Aj · Cb(t)

}
j∈[m−1],t∈Fq ,b∈{0,1} , and hard-wires all of this information into the corresponding input

gates for R′0. (Recall that M can compute powers of A in space O(log n), by Proposition 5.7,
and that M can evaluate Cb at any point t in space O(log n), by Lemma 5.19.) In addition, the
machine M computes the descriptions of CLrnNext,i for all i ∈ {0, ..., v − 1}, using Lemma 5.17, and
hard-wires them into the corresponding input gates of R′0. Thus, M runs in space O(log n), and
the circuit that it prints computes the mapping y 7→ R0(y).

Note that with probability 1− q−O(v) over the randomness of M (which was used only for the
algorithm of Lemma 5.19), for all y ∈ [qv − 1], the circuits CLrnNext,i succeed in all the m · q · v < qv

iterations when R0 executes on input y. Hence, with probability at least 1 − q−O(v), the machine
M prints v⃗ and R0 that succeeds in computing y 7→ Ay · v⃗ on all y ∈ [qv − 1].

46

5.5 Putting It All Together: The Reconstruction Procedure

Our goal now is to prove the reconstruction part of Theorem 5.1. That is, we show an algorithm
RSU that gets input 1n, and gets oracle access to x ∈ {0, 1}n and to (1/m2)-next-bit-predictors{
Pi : {0, 1}ji → {0, 1}

}
i∈{0,...,v}, runs in space O(log n), uses O(log n) random coins, and prints an

oracle circuit C : {0, 1}log(n) → {0, 1} of size poly(m) such that with probability at least 1/poly(m)
it holds that CP0,...,Pv(u) = xu for all u ∈ [n].

Discrete log. By Proposition 5.9, we can print in space O(log n) and with O(log n) random coins
an oracle circuit Cdl of size poly(m, log(n)) such that CPv

dl (A
y · 1⃗) = y for all y ∈ {0, 1}v·log(q). The

success probability for printing Cdl is at least 1/ poly(m).

q-ary reconstruction. By Proposition 5.20, given oracle access to x̂, we can print in space
O(log n) and with O(log n) random coins a circuit R0 : [q

v − 1] → Fq of size poly(m, log(n)) such

that RP⃗
0 (y) = x̂(Ay1⃗), when P⃗ is a sequence of (ρ/2)-good predictors for the L

(q)
i ’s. The queries to

x̂ can be answered in space O(log n), given our oracle access to x, and the success probability of
this algorithm is high (i.e., 1− q−O(v) > 1/2).

List-decoding. Now, the list-decoder for EncSTV from Theorem 5.8 runs in time poly(m, log(n)),
and hence a circuit DecSTV of such size implementing its functionality can be printed in space
O(log(m, log(n))) = O(log n). By a standard argument (see, e.g., [SU05, Lemma 4.16], follow-
ing [TZS06]), given oracle access to a (1/m2)-next-bit-predictor Pi : {0, 1}ji → {0, 1} for Li, we can

compute a (ρ/2)-good predictor P
(q)
i : Fji

q → Fρ̄
q for L

(q)
i as follows:

• Given w1, ..., wji ∈ Fq, for each k ∈ [ℓq], compute rk = Pi(EncSTV(w1)k, ...,EncSTV(wij)k).

• Let r = (r1, ..., rℓq), and output the list of decoded messages that DecSTV outputs when given
access to the corrupt codeword r.

Observe that we can implement P
(q)
i by an oracle circuit C

(Dec)
j of size poly(m, log(n)) (which gets

oracle access to Pi), and that this circuit can be constructed in space O(log n).

Combining the ingredients. We print an oracle circuit Cx̂ that computes x̂, as follows:

• Given u ∈ Fv
q , use Cdl(u) to compute y ∈ {0, 1}v·log(q) ≡ [qv − 1] such that u = Ay · 1⃗. (Note

that for every u there exists such y, since A is a generator matrix.)

• Use R0(y) to compute x̂(Ay · 1⃗) = x̂. Whenever R0 queries one of its (ρ/2)-good predictors,

answer using C
(Dec)
j and our oracle access to the next-bit-predictors.

Observe that the size of the circuit Cx̂ is at most poly(m, log(n)), and that it can be printed in
space O(log n) and with O(log n) random coins, with success probability 1/ poly(m).

The final circuit C needs to compute the mapping u 7→ x(u). Recall that u represents the
coefficient of some monomial in x̂ : Fv

q → Fq, say ye11 · y
e2
2 · ... · yevv where

∑
k∈[v] ek ≤ d. The

coefficient of this monomial is determined by the evaluation of x̂ of at most d points, and thus the
circuit C invokes Cx̂ for d times and outputs the corresponding linear combination.

Remark 5.21. An interesting feature of the reconstruction is that it can be split into two parts,
where one part succeeds with high probability, and the other succeeds with low probability but

47

produces a circuit that never outputs the wrong answer. Specifically, the only part that succeeds
with low probability is the reconstruction for Lv from Proposition 5.9, but the output circuit of
this procedure can test whether or not it correctly computed discrete log.

6 Proof of the Main Theorems

6.1 A New Bootstrapping System, and the Main Pair of Algorithms

6.1.1 A Bootstrapping System Based on Reachability

Before proving our main theorems, we first define the key bootstrapping system:

Theorem 6.1 (Reachability Bootstrapping System). There is an n× n bootstrapping system with
the following properties. Let G be an arbitrary graph on n vertices. Let Pi = Pi(G) ∈ {0, 1}n2

be
defined as:

(Pi)s,t = I [There is a path of length at most i from s to t.]

Then the following hold:

1. Layer DSR. There is a space O(log n) algorithm DSR such that DSRG,Pi(i+1) outputs Pi+1.

2. Base Case. Layer 0 is computable in space O(log n) with oracle access to G.

3. Layer NL Computability. There is a nondeterministic logspace algorithm that on input
G, i, s, t, computes (Pi)s,t.

Proof. For the first, consider computing (Pi+1)s,t for arbitrary s, t. A path of length i + 1 from
s→ t exists if and only if there is a vertex v such that there is a path of length i from s→ v, and
(v, t) is an edge in G. Then by enumerating over v and using queries to Pi and G, it is easy to see
the DSR algorithm can compute (Pi+1)s,t. The second item is direct for the same reason. For the
final component, note that

LY = {(G, s, t, i) : there exists an s→ t path of length at most i in G}

is clearly in NL, and

LN = {(G, s, t, i) : there does not exist an s→ t path of length at most i in G}

is clearly in coNL, and by [Imm88,Sze88] likewise lies in NL. Then our NL machine interprets the
first bit of the guess tape as Y or N , and then runs the corresponding NL verifier.

We require one more lemma, combining the D2P for Nisan’s generator with the generator
of Theorem 5.1.

Lemma 6.2 (single layer reconstruction). There are a pair of algorithms GEN and REC that together
work as follows. For a graph G of size n and f ∈ {0, 1}n2

,

• GEN(G, f) runs in space O(log n) and either returns h⃗ such that TG(⃗h) = 1, where TG is
defined as in Theorem 4.8, or ⊥.

• REC(G, f) runs in space polylog(n) and time poly(n), and if GEN(G, f) =⊥, then REC prints
an oracle Turing machine C of description size v(n) = polylog(n) that runs in space O(v(n)),
and satisfies CG = f .

48

Moreover, REC can alternately output a circuit C of size v(n) and the (constant-size) description

of an oracle machine M that runs in space O(log n) so that tt(CMG
) = f .

Proof. First, let SU be the generator of Theorem 5.1 with N = n2 and M = s(n) ≤ (n2)εSU where
s(n) is the seed length of TG (Theorem 4.8), such that SU takes as input a truth table of length
n2, and outputs lists

L1, . . . , Lℓ

for ℓ = O(log n), where Li is a list of strings of length s(n). Note that SU can be computed in
space O(log n).

The algorithm GEN. The algorithm GEN simply computes the output of SUf and returns the
first element of the lists such that TG(⃗h) = 1 (recall that TG can be evaluated in logspace), and if
no such element exists, GEN returns ⊥.

The algorithm REC. We now define the algorithm REC. In the case that GEN(G, f) =⊥, we
have for every list Li, ∣∣∣∣ E

y←Li

[TG (y)]− E [TG(U)]

∣∣∣∣ = E [TG(U)] ≥ 1− o(1),

where the inequality follows from Item 3. In particular, we have that TG is a (1/2)-distinguisher
for every Li. Recall that

(PRED1, . . . ,PREDpolylog(n))

is a δ = 1/2 to ρ = Ω(1/ log2 n)-D2P transformation for TG, and that given G, the predictors can
be evaluated in logspace. We first determine which predictor obtains good advantage for each list,
using that each predictor can be evaluated in logspace.

Claim 6.3. There is a space poly(log n), time polylog(n) algorithm that prints a list K = (k1, . . . , kℓ)
such that for every i, PREDki is a ρ-predictor for Li.

We then store this list K on the worktape in space polylog(n) (and will hardwire it into the
returned circuit). Next, we call the algorithm RSU of Theorem 5.1 with f = f and predictors

PREDK = (PREDk1 , . . . ,PREDkℓ).

We enumerate over all O(log n) random coins used by RSU until we find a set of coins on which it
prints an oracle circuit C ′ which outputs f when given the predictors as oracles (for this test, we
use that we can evaluate the predictors in logspace with oracle access to G). This circuit is of size
v′ = polylog(n) and satisfies

tt(C
′PREDk1

,...,PREDkℓ) = f.

Finally, we let C be the machine that evaluates C ′, and answers oracle queries to the predictors
using the list K and the machine implementing the D2P transform for TG (for which C provides
oracle access to G), which has constant size given the predictor indices and can be evaluated in
space O(log n). By choosing v(n) = polylog(n) large enough, we have that the total description
size of C is v(n) and C can be evaluated in space v, as claimed.

For the moreover claim, we let the machine M be the space O(log n) machine of Theorem 4.8
that on (G, i, x) returns PREDi(x), where we give the machine oracle access to G.

49

6.1.2 The pair of algorithms

We can now prove our main algorithmic result. We state it in a way that can be easily used to
imply both Theorem 1 and Theorem 2.6.

Theorem 6.4. There are algorithms A2,A1 such that for every pair of graphs G1, G2 on n vertices,
at least one of the following holds:

1. A1(G1, G2) outputs the transitive closure of G1. Moreover, A1 runs in space polylog(n) and
time poly(n).

2. A2(P (G1), G2) outputs G̃ such that ∥∥∥G̃−Gn
2

∥∥∥ ≤ 1/n2

where P (G1) = P0, . . . , Pn are the layers of the bootstrapping system of Theorem 6.1. More-
over, A2 runs in space O(log n).

Proof. Let

T
def
= TG2 : {0, 1}s(n)=O(log2 n) → {0, 1}

be the test function of Theorem 4.8, and recall that the function can be computed in space O(log n)
given read-only access to G2 and the input. Next, we instantiate the bootstrapping system of The-
orem 6.1 with G = G1, and denote the layers by P0, . . . , Pn.

We say a layer i is compressible if the algorithm GEN(G2, Pi) of Lemma 6.2 returns ⊥ (i.e., does
not produce a good hash function); recall that GEN is evaluable in logspace.

Finally, we define both algorithms:

• The algorithm A2(P (G1), G2) works as follows. It iterates over i = 0, . . . , n (and recall that
we are given P0, . . . , Pn as input). Fixing a current layer i, we run GEN(G2, Pi) and determine
if it outputs ⊥. If so, we increment i and move to the next layer, and if i = n we abort and
return ⊥.
Otherwise, GEN returns h⃗ so that T (⃗h) = 1 (take h⃗ from the smallest such i). From Item 2,
we have that G̃ = G

t,⃗h
(which we can compute in space O(log n) with access to h⃗) satisfies∥∥∥G̃−Gn

2

∥∥∥ ≤ n−2

so the output is as required.

• The algorithmA1(G1, G2) is a deterministic SC algorithm that builds a small (oracle) machine
for Pi layer by layer. Our inductive claim is as follows:

Claim 6.5. There exists an oracle Turing machine C of description size v(n) = polylog(n)
that runs in space O(v) such that

tt
(
CG2

)
= Pi.

We initialize i = 0, and note that there is a very simple machine of size O(log n) that computes
P0 and hence we satisfy the base case. Fixing the current layer i, assume we have such a
machine C for Pi−1 whose encoding is kept on the work tape. First note that by composing
this machine with the DSR algorithm, Item 1 of Theorem 6.1, we can compute Pi in space
O(v).

50

Next, we run the algorithm GEN(G2, Pi) of Lemma 6.2 (answering queries to Pi using the
DSR) and determine if it outputs a hash function. If so, we abort and return ⊥. Otherwise,
we run the algorithm REC(G2, Pi), which returns a machine C such that tt(CG2) = Pi, which
we store on the work tape. Finally, we delete the machine for Pi−1 and increment i. Note
that C does not need oracle access to the prior machine, so the overall space consumption
does not increase.

Finally, once we obtain such a machine for Pn (and have not aborted), we simply evaluate it
and output the transitive closure. The runtime and space requirements follow from Lemma 6.2.

The fact that at least one such algorithm halts on every pair (G1, G2) follows directly from their
definition. In particular, if every layer is compressible, we have that A1 will output a value, and
otherwise A2 will output a value.

6.1.3 Proofs of Theorem 1 and Theorem 2.6

We next give two instantiations of this result, formalizing Theorem 1 and Theorem 2.6. We begin
with the former.

Theorem 6.6. There are algorithms A2,A1 such that for every pair graphs G1, G2 on n vertices,
at least one of the following holds:

1. A1(G1, G2) computes the transitive closure of G1. Moreover, A1 runs in space polylog(n) and
time poly(n).

2. A2(G1, G2) outputs G̃ such that ∥∥∥G̃−Gn
2

∥∥∥ ≤ 1/n2.

Moreover, A2 runs in nondeterministic space O(log n).

Proof. We apply the result of Theorem 6.4, and every time the algorithm A2 of that theorem
requests a bit of Pi for some i, we use that the layers can be computed in nondeterministic space
O(log n) via Theorem 6.1.

Next, we formalize the first.

Theorem 6.7. For every ε > 0, there are algorithms A2,A1 such that for every pair graphs G1, G2

on m = 2log
1/2+ε/2 n and n vertices respectively, at least one of the following holds:

1. A1(G1, G2) computes the transitive closure of G1. Moreover, A1 runs in space polylog(m)
and time poly(n).

2. A2(G1, G2) outputs W̃ such that ∥∥∥G̃−Gn
2

∥∥∥ ≤ 1/n2.

Moreover, A2 runs in space O(log1+ε n).

Proof. We again apply the result of Theorem 6.4, with a further modification: we first pad G1 to
G′1 of size n by adding n −m dummy vertices with 2 self-loops. When the algorithm A2 queries
Pi for some i, queries corresponding to the dummy vertices are trivial, and other queries can be
computed in nondeterministic space O(logm) via Theorem 6.1 (as the bootstrapping system is
essentially on a graph of size m), and thus deterministic space O(log1+ε(n)) via Savitch [Sav70].
The algorithm A1 is unchanged (except that we perform the same padding).

51

6.2 Scaled-Up Results

We next use the algorithms of Theorems 6.6 and 6.7 to prove the scaled-up tradeoffs. We begin
with Theorem 2, and we now state a stronger technical version of the result:

Theorem 6.8 (stronger version of Theorem 2). For every constant ε > 0, at least one of the
following holds:

• NSPACE [m(n)] ⊆ i.o.TISP
[
2O(m(n)2−ε),m(n)O(1)

]
, for m(n) = n1/2+ε/2.

• BPSPACE[n] ⊆ SPACE
[
O(n1+ε)

]
.

Recall that in Theorem 2, the first item was stated with m(n) = n. This statement follows
from Theorem 6.8 by a padding argument (i.e., if the first item of Theorem 6.8 holds with m(n) =
n1/2+ε/2, then by padding the same statement holds for m(n) = n).

The main lemma we will use to prove Theorem 6.8 is the following:

Lemma 6.9. Let B be an arbitrary BPSPACE[n] machine and N be an arbitrary NSPACE[n1/2+ε/2]
machine. Then, there is a SPACE[n1+ε] machine S and a TISP[2O(n), poly(n)] machine T such
that on every input length n, either S prints the truth table of B on inputs of length n, or T prints
the truth table of N on input of length n.

We first explain why this lemma implies Theorem 6.8. Suppose there exists such a N such that
for every valid B, the machine S prints a truth table on all but finitely many input lengths. In
this case, we have BPSPACE[n] ⊆ SPACE[n1+ε]. Otherwise, for all N there is B such that the
associated machine T decides N on infinitely many input lengths. Hence, at least one part of the
disjunctive statement must hold.

Proof of Lemma 6.9. Fix an input length n. For x, y ∈ {0, 1}n, let G1(y) be the configuration

graph of N (y), and G2(x) be the configuration graph of B(x). Note that G1 has 2n
1/2+ε/2

vertices
and G2 has 2

n vertices (for clarity, we ignore lower order factors in the size of configuration graphs).
The machines S, T work as follows.

• The machine S attempts to compute B(x) for each x ∈ {0, 1}n in sequence. To do so, we
enumerate over y ∈ {0, 1}n and attempt to run the algorithmA2(G1(y), G2(x)) of Theorem 6.7
on these inputs. If the algorithm returns a matrix G̃ that approximates G2n

2 , we use this
matrix to determine the accepting probability of B(x) to within error 1/n, and thus decide x
correctly. If it returns ⊥, we increment y and try again, and if we exhaust all choices for y,
we return ⊥. The space complexity of this algorithm is immediate by Theorem 6.7.

• The machine T attempts to compute N (y) for each y ∈ {0, 1}n in sequence. To do so, we
enumerate over x ∈ {0, 1}n and attempt to run the algorithmA1(G1(y), G2(x)) of Theorem 6.7
on these inputs. If the algorithm returns the transitive closure of G1(y) we decide N (y) using
this information, and otherwise increment x, and if we exhaust y return ⊥. The time and
space complexity of this algorithm is immediate by Theorem 6.7.

We first claim that one algorithm always prints the entire truth table, as the fact that such a
truth table is correct follows from the above description. If for every x there is y such that
A2(G1(y), G2(x)) returns a value, we print the truth table of B(x). Otherwise, there is some x such
that A2(G1(y), G2(x)) =⊥ for every y, and by Theorem 6.7 we must have that A1(G1(y), G2(x))
returns a value for every y, and thus we print the truth table of N .

52

A very similar argument establishes Theorem 6.10:

Theorem 6.10. At least one of the following holds:

• BPSPACE[n] ⊆ NSPACE[O(n)].

• NSPACE[n] ⊆ i.o.TISP
[
2O(n), nO(1)

]
.

Let B be an arbitrary BPSPACE[n] machine and N be an arbitrary NSPACE[n] machine. The
following lemma implies Theorem 6.10 in exactly the same way as Lemma 6.9 implies Theorem 6.8.

Lemma 6.11. There is an NSPACE[O(n)] machine M and a TISP[2O(n), poly(n)] machine T
such that on every input length n, eitherM prints the truth table of B on inputs of length n, or T
prints the truth table of N on input of length n.

Proof. Fix an input length n. For x, y ∈ {0, 1}n, let G1(y) be the configuration graph of N (y), and
G2(x) be the configuration graph of B(x). Note that G1 and G2 both have 2n vertices.

The machinesM, T work as follows.

• The machine M attempts to compute B(x) for each x ∈ {0, 1}n in sequence. To do so, we
enumerate over y ∈ {0, 1}n and attempt to run the algorithmA2(G1(y), G2(x)) of Theorem 6.6
on these inputs, making nondeterministic guesses and halting if the guess sequence is bad. If
the algorithm returns a matrix G̃ that approximates G2n

2 , we use this matrix to determine
the accepting probability of B(x) to error 1/n, and thus decide x correctly. If it returns ⊥, we
increment y and try again, and if we exhaust all choices for y return ⊥. The space complexity
of this algorithm is immediate by Theorem 6.6.

• The machine T attempts to compute N (y) for each y ∈ {0, 1}n in sequence. To do so, we
enumerate over x ∈ {0, 1}n and attempt to run the algorithmA1(G1(y), G2(x)) of Theorem 6.6
on these inputs. If the algorithm returns the reachability matrix of G1(y) we decide N (y)
using this information, and otherwise increment x, and if we exhaust y return ⊥. Similarly,
the time and space complexity of the algorithm readily follows from Theorem 6.6.

The fact that one algorithm always prints the entire truth table follows exactly as in the proof of
Lemma 6.9.

6.3 Derandomization and Isolation From Weaker Assumptions

Our improved hardness for derandomizing space is a direct consequence of Lemma 6.2, as we do
not need to construct a bootstrapping system.

Theorem 4. There is a constant c > 1 such that the following holds. Suppose there exists a
constant ε > 0 such that SPACE[n] is hard for TISP[2cn, nc]-uniform circuits of size nc with oracle
access to SPACE[εn].33 Then, BPSPACE[n] ⊆ SPACE[Oε(n)].

Proof. Let Lhard ∈ SPACE[n] be our hard language, and let S be the machine that computes it.
Let B be an arbitrary machine computing a language in BPSPACE[n]. For an input x ∈ {0, 1}n, let
Gx be the configuration graph of B, over NV = 2O(n) vertices. Denote N = N

1/ε
V – the input length

that we consider for Lhard. We let TGx : {0, 1}O(log2 NV)=O(n2) → {0, 1} be the indicator defined in
Theorem 4.8, and we also use the same t = 50 logNV defined there.

33The input length n to the oracle is the same length as the input to the generating algorithm (so we do not let
the machine write longer oracle queries).

53

The Derandomization. Let f ∈ {0, 1}2N be the truth table of Lhard on inputs of length N . On
input x to B, consider the following deterministic machine D.

• Run GEN(Gx, f), where GEN is the generator from Lemma 6.2.34 We assume here that it
outputs some h⃗ (and not ⊥), as otherwise we will soon see that we get a contradiction to our
hardness assumption.

• Letting G be the transition matrix of Gx, the machine D computes G
t,⃗h
, and accepts iff the

corresponding entry35 in G
t,⃗h

is greater than 1
2 .

For correctness, recall that h⃗ is such that TGx (⃗h) = 1, and so

∥G
t,⃗h
−GNV ∥ ≤ N−2V .

In particular, if E[B(x,U)] ≥ 2
3 then D accepts, and if E[B(x,U)] ≤ 1

3 it rejects. For the space
requirements, recall that GEN is computable in O(logN) = O(1εn) space. Computing G

t,⃗h
takes

O(logNV) = O(n) space (see Claim 4.5), and the rest of the operations are elementary.

The Reconstruction. Now, assuming that there exists an x ∈ {0, 1}n for which GEN(Gx, f) =⊥.
The reconstruction algorithmRf enumerates over all x-s until it finds one. This takesO(polylogN) =
O(poly(n/ε)) space and poly(NV) · polylog(N) = 2O(n) time. Then,

• Rf runs REC(Gx, f), which outputs a circuit C of size polylog(N) = poly(n/ε), and a constant-

size description of an oracle machineM that runs in space O(logNV) = O(n), such that CM
G

computes f .

• We let Rf hard-wire the description of M, B, and x. Oracle calls to the machine MG can
then be simulated by a machine that runs in space O(n), noticing that calls to Gx, given x
and the description of B, can be simulated in space O(logNV) = O(n).

Overall, Rf runs in space O(polylogN) = poly(n/ε) and time 2O(n) and outputs a circuit of size
polylog(N) = polylog(n/ε) with oracle calls to a fixed language in SPACE[O(n)] that computes
f .

Theorem 6.12 (Theorem 6, stronger version). There is a constant c > 1 such that the following
holds. Suppose there exists a constant ε > 0 such that USPACE[n]∩ coUSPACE[n] is hard for uni-
form oracle circuits of size nc with access to a fixed oracle in USPACE[εcn]∩coUSPACE[εcn], where
the circuits themselves are uniformly generated by an algorithm that runs in TISP[2O(n),poly(n)]
with oracle access to a fixed language in USPACE[O(n)]∩coUSPACE[O(n)].36 Then, NSPACE[n] ⊆
USPACE[Oε(n)].

Proof. Letting L0 ∈ NSPACE[n] be the language decidable by a nondeterministic machine N that
we want to decide in unambiguous space, for a fixed input x ∈ {0, 1}n, we let Gx = (V,E) be the
configuration graph of N (x), over NV = 2O(n) vertices. In [LPT24], the indicator TG took as input
a string of length Õ(N2

V) that encoded a weight function E → [poly(|V |)]. Here, recall that TG gets
as input an m = cm · log2NV -bits string z, and outputs GvMP(z) as the candidate weight function.
The proof then follows the proof of [LPT24, Theorem 6.4], with the following three modifications.

34In Lemma 6.2 we use N = N2
V , but it is easy to see that one can use any constant power. Importantly, the

machine M still runs in space O(logNV), rather than O(logN).
35We can assume without loss of generality that B has a unique accepting configuration, and then the entry is

simply (s0, sA), for s0 being the initial configuration, and sA being the accepting one.
36Here too, the input length n to the oracle is the same length as the input to the generating algorithm.

54

1. In [LPT24], they use the Nisan–Wigderson generator NW to output Õ(N2) pseudorandom
bits, whereas we only need to output m ≪ NV bits, which allows us to work with much
weaker hardness assumption. And indeed, at the low-end regime (where the NW generator is
not applicable), we use the SU somewhere-random PRG, similarly to the way we used it in
Lemma 6.2.

2. In [LPT24], the reconstruction procedure computes the advantage of every D2P outcome Pi,
over NWf , and is guaranteed to find one with a large enough advantage. Here, we need to find
several Pi-s, one for each list that the somewhere-PRG outputs, and moreover, the algorithm
that generates CP̄ uses randomness. Again, this is similar to what we did in Lemma 6.2 in
the deterministic setting.

3. Finally, in [LPT24], they hard-wire a graph G to the circuit that computes the hard function
f . We cannot afford to do that.

We begin with addressing Item 1. Set N = N
1/ε
V , and M(N) = cm log2(N ε), noting that

M(N) = m. Let

SUf : {0, 1}d=O(logN) × [ℓ = O(log(N)/ log(M))]→ {0, 1}m

be the SU generator from Theorem 5.1, where f is the hard truth-table given by the language
Lhard ∈ USPACE[n]∩ coUSPACE[n] which we assume is hard, on inputs of length N . Note, more-
over, that d, ℓ = O(1ε · n). For the derandomization algorithm, similarly to [LPT24], we enumerate
over (y, i) ∈ {0, 1}d × [ℓ] and check (using the unambiguous logspace machine of [AM08] that runs
in USPACE[O(logNV)]∩coUSPACE[O(logNV)]) whether the weight function GvMP(SU

f (y, i)) in-
duces unique shortest paths in Gx. The space analysis uses the fact that the generator can be
computed in space O(logN) with oracle calls to f , which also applies to the SU generator, so the
derandomization runs in (unambiguous) space O(logN) = O(1ε · n).

As noted before, the benefit of the SU generator over NW is that its reconstruction procedure
outputs an oracle circuit of size poly(m)≪ N ε that computes the hard function. However, it is also
a somewhere-PRG (in our space-efficient implementation), and also the algorithm that produces
the circuit uses randomness, which brings us to deal with Item 2. For our D2P transformation, we
instantiate Theorem 4.11 with Gx and δ = m−2 (which is what’s needed for Item 2 of Theorem 5.1),
letting P1, . . . , Pb for b = O(m4) = poly(n) be the candidate predictors, and recall that the function
(G, i, x)→ Pi(x) is computable in USPACE[O(n)] ∩ coUSPACE[O(n)], since O(logNV) = O(n).

In [LPT24], they enumerate over all Pi-s until a δ-predictor is found. Here, in a very similar way
(noting that this should be done in an unambiguous way), in space O(logN) we can unambiguously
compute the mapping i→ ki such that for every i, Pki is a δ-predictor for Li = SUf (Uℓ, i). Letting
R be the reconstruction algorithm of the (somewhere-random) PRG, we give it oracle access to
Pk1 , . . . , Pkq via the i→ ki and (Gx, ki, x)→ Pki(x) transformations. Now, for any fixed randomness

of R, call it w ∈ {0, 1}O(logN), all oracles are unambiguous machines so there is exactly one guess
sequence where we output a circuit, which we denote by Cw. To output the correct C, via a machine
which we denote Rf , we enumerate over all w ∈ {0, 1}O(n), and for each one:

• Rf calls R to compute Cw and writes it to the work tape. This can be done in unambiguous
space O(logN), and in particular can be implemented in deterministic space O(logN) = O(n)
and oracle calls to a USPACE[O(n)] ∩ coUSPACE[O(n)] language.

• Rf enumerates over all x0 ∈ [N].37

37Note the difference between x0 and x. Recall that, as in [LPT24], we go over all x’s until we find one such that

55

• It checks whether Cw(x0) = Lhard(x), recalling that Lhard ∈ USPACE[n] ∩ coUSPACE[n].
The evaluation Cw(x0) can be done in poly(n) time using our oracle access. If the computation
of Lhard(x) returned ¬Cw(x0), abort and proceed to the next w.

• When we find a w that succeeds for all x0’s, set C = Cw.

We then have that Rf runs in (deterministic) time 2O(n), uses poly(n) space, and has oracle access to
a (fixed) language in USPACE[O(n)]∩ coUSPACE[O(n)]. Note that, as in [LPT24], we implement
the predictor calls in our circuit C using the

USPACE[O(logNV)] ∩ coUSPACE[O(logNV)] = USPACE[O(ε logN)] ∩ coUSPACE[O(ε logN)]

oracle gates (while our repeated invocations of R is allowed to run in larger unambiguous space,
namely O(logN)).

All that is left is to address Item 3. In [LPT24], the graph Gx (together with a D2P index
i) was hard-wired by R in order to compute the mapping x → Pi(x). For us, hard-wiring the
graph is too costly. Instead, we hard-wire the (assumed towards a contradiction) x ∈ {0, 1}n,
and the (constant-size) encoding of the TM for L0 ∈ NSPACE[n]. We then use the fact that the
transformation (x, L0)→ Gx can be computed in deterministic space O(logNV), and simply utilize
the circuit’s oracle gates to perform the transformation. Overall, Rf runs in

TISP[2O(n), poly(n)]USPACE[O(n)]∩coUSPACE[O(n)]

and prints a circuit of size poly(M) = poly(log2NV) = poly(n), and with oracle gates to

USPACE[O(logNV)] ∩ coUSPACE[O(logNV)].

This concludes the modifications over [LPT24].

6.4 Minimal-Memory Derandomization

We now prove our results that deduce derandomization with minimal memory overhead from hard-
ness of deterministic compression. The main new technical tool that we rely on is the D2P trans-
formation for the FK generator composed with an AOBP, which was presented in Section 4.3.
Specifically, we will prove the following result.

Assumption 6.13. The assumption is parametrized by constants C > 1 and ε, δ > 0. There is a
function f : {0, 1}⋆ → {0, 1}⋆ that maps n bits to n2 bits and is computable in space (C + 1 + ε+
δ) · log(n) that satisfies the following. For every deterministic algorithm R that runs in space nε

and time nO(C), there are at most finitely many x ∈ {0, 1}⋆ for which R(x) prints a Turing machine
M of description size O(|x|) that runs in space (C + 1 + ε) · log(|x|) such that M(x) = f(x).

Theorem 6.14. Suppose that Assumption 6.13 is true for some C, ε, δ. Then, for S(n) = C ·log(n)
we have that

BPSPACE[S] ⊆ SPACE[2S + (1 + δ + (c/ε)) · log(n)],

where c > 1 is a universal constant.

SUf does not induce unique shortest paths in Gx, and that’s the graph we work with. We enumerate over the x0’s
once we fixed an x.

56

The rest of this section contains the proof of Theorem 6.14. The statement in the intro, Theo-
rem 5, follows by a standard padding argument, since the assumption implies that Assumption 6.13
holds for an arbitrarily large constant C, ε = 0.01, and δ = 3. Going forward, we will need two
technical tools. The first is a memory-efficient implementation of randomized space-bounded algo-
rithms, from [DT23]:

Lemma 6.15 ([DT23], see also [DPT24, Lemma 7.1]). For any randomized space-S machine M
there is a randomized oracle machine M̄ that works as follows. The machine M̄ runs in space
S+O(logS), and whenever M̄ queries a random bit while in configuration τ , it queries the random
oracle at position τ . Moreover, for every x ∈ {0, 1}n it holds that

Pr
r
[M(x, r) = 1] = Pr

r′
[M̄ r′(x) = 1],

and the computation of M̄ on x as a function of r′ can be simulated by an AOBP of length and
width 2S.

The second technical component that we need, from [DPT24], is an implementation of the
NW PRG [NW94] whose reconstruction is a logspace-uniform TC0 circuit (this uses a code for the
hardness amplification step with highly efficient decoding).

Theorem 6.16 (NW PRG with a deterministic TC0 reconstruction; see [DPT24, Theorem 7.4]).
There is a universal constant cNW > 1 such that for every sufficiently small constant εNW > 0 the
following holds. There is an algorithm NW computing

NWf : {0, 1}(cNW/εNW)·log(N) → {0, 1}M

such that for any f ∈ {0, 1}N and for M = N εNW the following holds.

1. Efficiency. The mapping (s, i) 7→ NWf (s)i is computable in space (cNW/εNW) · log(N).

2. Reconstruction. There is a deterministic space-O(logN) algorithm R that, given oracle
access to f and oracle access to a (1/M2)-next-bit-predictor P for NWf , prints a constant-
depth oracle circuit C of size M cNW that has majority gates, makes non-adaptive queries, and
satisfies CP (x) = fx for all x ∈ [N].

Let us now turn to the proof of Theorem 6.14. Let L ∈ BPSPACE[S], and letM be a randomized
space-S machine deciding L. Let M̄ be as in Lemma 6.15. Let N = n2 and ℓ = log(N), and
εNW = ε/2cNW, where cNW is the universal constant from Theorem 6.16.

The deterministic machine A that decides L is defined as follows. On input x let f = f(x) ∈
{0, 1}N , and let

NWf : {0, 1}(cNW/εNW)·ℓ → {0, 1}n
εNW

be the NW PRG from Theorem 6.16. For C ′ = C + c′ where c′ > 1 is a sufficiently large universal
constant, also let

FK : {0, 1}n
εNW → {0, 1}nC

be the generator from Theorem 4.14 with output length N = nC and parameter εNW/C ′. Denoting
N̄ = 2(cNW/εNW)·ℓ = N cNW/εNW , the algorithm A is defined as

A(x) = MAJs∈[N̄]

{
M̄FK(NWf (s))(x)

}
.

57

Space complexity. We implement A using standard space-efficient composition. Since some
steps will require extra care, let us spell out parts of the construction.

• Enumerate over s ∈ [N̄] while keeping a counter for the outcomes of M̄ .

• For a fixed s, run M̄ on input x.

• Whenever M̄ queries its oracle at location j ∈ [nC], simulate FK on input NWf (s).

• Whenever FK queries its virtual input, compute f and NW using standard space-bounded
composition (i.e., simulate NW on input s and answer its queries to f by computing each bit
of f on-the-fly).

The first key point to remember is that any query j that M̄ makes to its oracle is the configu-
ration of M̄ . In other words, M̄ does not write queries using additional workspace, and to answer
its query we simply compute the oracle on the configuration of M̄ that is written on the worktape.
The second key point to remember is that FK runs in space O(εNW/C) · log(N) with catalytic access
to the query location j. Thus, whenever M̄ makes a query j ∈ [nC] to the oracle, FK will change
the configuration j of M̄ , but will return it to its original state after its computation is over (and
when M̄ receives the oracle answer and is ready to resume its execution).

Hence, on any input x, the algorithm A can be implemented in space

2 log(N̄)︸ ︷︷ ︸
enumerating s and outcomes of M̄

+ c0 · (εNW/C ′) · log(N)︸ ︷︷ ︸
FK

+S +O(logS)︸ ︷︷ ︸
M̄

+(cNW/εNW) · log(N)︸ ︷︷ ︸
NW

+
C + 1 + ε+ δ

2
· log(N)︸ ︷︷ ︸

f

+ c0 · (logN)︸ ︷︷ ︸
compositional overheads

≤ (2C + 1 + ε+ δ + (c/ε)) · log(n)

for some universal constants c0, c > 1. Recalling that S = C · log(n), the space complexity of this
algorithm is at most

2S + (1 + δ + 2c/ε) · log(n).

Analysis. Let x such that A(x) ̸= L(x). We will show that in this case, f(x) can be compressed
in space nε and time poly(nC) to a Turing machine of description length n + nε that uses space
at most (1 + ε) · C · log(n). By our assumption, this cannot be done for more than finitely many
inputs.

For any input x such that A(x) ̸= L(x) we have that Dx(r) = M̄ r(x) is a (1/10)-distinguisher
for the mapping s 7→ FK(NWf (s)). Since Dx is an AOBP of size 2S = nC , the generator FK fools
it up to error 1/n2C . Thus,∣∣∣ Pr

r←U
[Dx(r) = 1]− Pr

s←U
[Dx(FK(NW

f (s))) = 1]
∣∣∣ > 1/6,∣∣∣ Pr

r←U
[Dx(r) = 1]− Pr

w←U
[Dx(FK(w)) = 1]

∣∣∣ ≤ 1/n2C ,

which implies that, denoting D′x(w) = Dx(FK(w)), we have∣∣∣ Pr
w←U

[D′x(w) = 1]− Pr
s←U

[D′x(NW
f (s)) = 1]

∣∣∣ > 1/10.

58

Given x, to compress f(x) we run the reconstruction algorithm R from Theorem 6.16. Recall
that R needs query access to f and to a (1/N2εNW)-next-bit-predictor P ; we answer queries to f by
computing f(x), and we answer queries to a predictor P using the D2P algorithm from Theorem 4.14
(and simulating the output of the D2P on the query; see more on that below). In turn, the D2P
algorithm needs query access to NWf , which we provide by simulating NW and computing f(x) as
needed. The reconstruction then prints a TC0 circuit B of size N cNW·εNW such that tt(BP) = f(x),
where P is the predictor given by the D2P algorithm.

Note that the D2P algorithm runs in space O(nεNW) and time poly(nC), and thus its space and
time complexity dominates the entire compression algorithm. In particular, whenever R queries P ,
since we are using space O(nεNW) anyway to evaluate the D2P algorithm, we can store the entire
output of the D2P algorithm, which is a predictor P , and evaluate P at the given query location.
Thus, overall, the compression algorithm runs in space O(nεNW) < nε and time poly(nC).

Turning to correctness, note that in both cases spelled out in Theorem 4.14, the D2P algorithm
can print a description of length at most n+nε/3 of an n−c

′·(εNW/C′)-next-bit-predictor, where c′ > 1
is a universal constant from Theorem 4.14 (i.e., either the machine L whose size is logarithmic, or
a description of Dx along with the suffix z and (b, i), which can be specified using at most n+nε/3

bits38). Relying on a sufficiently large choice of C ′ > C + c′, this is a 1/N2εNW-next-bit-predictor
The total length needed to describe B and the predictor P is thus at most n + nε/2. The

compression algorithm prints a description of a Turing machineM that has B and P hard-wired,
and given input j ∈ [N] it evaluates B on j using the standard space-efficient DFS simulation,
while answering queries using P . The total description length is at most n + nε, and the space
complexity ofM is nO(εNW) + Space(P), where in both cases of Theorem 4.14 we have Space(P) ≤
(C + 1 +O(εNW)) · C · log(n) < (C + 1 + ε) · log(n).

Acknowledgments

E.P. thanks Joshua Cook, Oded Goldreich, and Dana Moshkovitz for helpful conversations. This
work benefited from the participation of Dean Doron and of Roei Tell in Dagstuhl Seminar 24381,
where part of the work on this project was conducted.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: A modern approach. Cam-
bridge University Press, Cambridge, 2009.

[ABI86] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algo-
rithm for the maximal independent set problem. Journal of algorithms, 7(4):567–583,
1986.

[AM08] Vikraman Arvind and Partha Mukhopadhyay. Derandomizing the isolation lemma and
lower bounds for circuit size. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2008.

[ARZ99] Eric Allender, Klaus Reinhardt, and Shiyu Zhou. Isolation, matching, and counting
uniform and nonuniform upper bounds. J. Comput. Syst. Sci., 59(2):164–181, 1999.

38Specifically, to specify Dx we just need to specify x and the machines M and FK, where the latter two have
constant-sized descriptions.

59

[ATWZ00] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, and Shiyu Zhou. An O(log(n)4/3)
space algorithm for (s, t) connectivity in undirected graphs. J. ACM, 47(2):294–311,
2000.

[BBRS98] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber. A sublinear
space, polynomial time algorithm for directed s-t connectivity. SIAM J. Comput.,
27(5):1273–1282, 1998.

[BR94] M. Bellare and J. Rompel. Randomness-efficient oblivious sampling. In Proc. 35th
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 276–
287, 1994.

[CCvM06] Jin-yi Cai, Venkatesan T. Chakaravarthy, and Dieter van Melkebeek. Time-space trade-
off in derandomizing probabilistic logspace. Theory Comput. Syst., 39(1):189–208, 2006.

[CH22] Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of
small space. Theory Comput., 18:1–32, 2022.

[CIKK15] Marco Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Tighter connections between derandomization and circuit lower bounds. In Proc. 19th
International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 645–658, 2015.

[CLO+23] Lijie Chen, Zhenjian Lu, Igor Carboni Oliveira, Hanlin Ren, and Rahul San-
thanam. Polynomial-time pseudodeterministic construction of primes. arXiv preprint
arXiv:2305.15140, 2023.

[CLTW23] Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu. New PRGs for unbounded-
width/adaptive-order read-once branching programs. In Proc. 50 International Col-
loquium on Automata, Languages and Programming (ICALP), volume 261 of LIPIcs,
pages 39:1–39:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[CR80] Stephen A. Cook and Charles Rackoff. Space lower bounds for maze threadability on
restricted machines. SIAM J. Comput., 9(3):636–652, 1980.

[CT21a] Lijie Chen and Roei Tell. Hardness vs randomness, revised: Uniform, non-black-box,
and instance-wise. In Proc. 62nd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 125–136, 2021.

[CT21b] Lijie Chen and Roei Tell. Simple and fast derandomization from very hard functions:
Eliminating randomness at almost no cost. In Proc. 53st Annual ACM Symposium on
Theory of Computing (STOC), pages 283–291, 2021.

[CT23] Lijie Chen and Roei Tell. When Arthur has neither random coins nor time to spare:
Superfast derandomization of proof systems. In Proc. 55th Annual ACM Symposium
on Theory of Computing (STOC), pages 60–69, 2023.

[DMOZ22] Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal
pseudorandomness from hardness. Journal of the ACM, 69(6):1–55, 2022.

[DPT24] Dean Doron, Edward Pyne, and Roei Tell. Opening up the distinguisher: A hardness to
randomness approach for BPL = L that uses properties of BPL. In Proc. 56th Annual
ACM Symposium on Theory of Computing (STOC), 2024.

60

[DT23] Dean Doron and Roei Tell. Derandomization with minimal memory footprint. In Proc.
38 Annual IEEE Conference on Computational Complexity (CCC). Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2023.

[EPA99] Jeff Edmonds, Chung Keung Poon, and Dimitris Achlioptas. Tight lower bounds for
st-connectivity on the NNJAG model. SIAM J. Comput., 28(6):2257–2284, 1999.

[FK18] Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branch-
ing programs, in any order. In Proc. 59th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 946–955, 2018.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions.
In Proc. 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32,
1989.

[Gol08] Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge
University Press, New York, NY, USA, 2008.

[GRZ23] Uma Girish, Ran Raz, and Wei Zhan. Is untrusted randomness helpful? In Proc.
14 Conference on Innovations in Theoretical Computer Science (ITCS), volume 251 of
LIPIcs, pages 56:1–56:18, 2023.

[GSV18] Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive
procedures with advice, and lower bounds on hardness amplification proofs. In Proc.
59th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
956–966, 2018.

[Guo13] Zeyu Guo. Randomness-efficient curve samplers. In Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM),
pages 575–590. Springer, 2013.

[GUV09] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced ex-
panders and randomness extractors from Parvaresh-Vardy codes. Journal of the ACM,
56(4):Art. 20, 34, 2009.

[GW96] Anna Gál and Avi Wigderson. Boolean complexity classes vs. their arithmetic analogs.
Random Struct. Algorithms, 9(1-2):99–111, 1996.

[Hir23] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP.
SIAM Journal on Computing, 52(6):FOCS18–349–FOCS18–382, 2023.

[Hoz21] William M. Hoza. Better pseudodistributions and derandomization for space-bounded
computation. In Proceedings of the 25th International Conference on Randomization
and Computation (RANDOM), pages 28:1–28:23, 2021.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput., 17(5):935–938, 1988.

[ISW06] Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Reducing the seed length in
the Nisan-Wigderson generator. Combinatorica, 26(6):647–681, 2006.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
derandomizing the XOR lemma. In Proc. 29th Annual ACM Symposium on Theory of
Computing (STOC), pages 220–229, 1997.

61

[Jof74] Anatole Joffe. On a set of almost deterministic k-independent random variables. the
Annals of Probability, 2(1):161–162, 1974.

[KRC00] Valentine Kabanets, Charles Rackoff, and Stephen A. Cook. Efficiently approximable
real-valued functions. Electron. Colloquium Comput. Complex., TR00-034, 2000.

[KvM02] Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM Journal on
Computing, 31(5):1501–1526, 2002.

[LPT24] Jiatu Li, Edward Pyne, and Roei Tell. Distinguishing, predicting, and certifying: On
the long reach of partial notions of pseudorandomness, 2024.

[LZPC05] Pinyan Lu, Jialin Zhang, Chung Keung Poon, and Jin-yi Cai. Simulating undirected
st-connectivity algorithms on uniform JAGs and NNJAGs. In Proceedings of 16th
International Symposium on Algorithms and Computation (ISAAC), volume 3827 of
Lecture Notes in Computer Science, pages 767–776. Springer, 2005.

[Nis91] Noam Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–
70, 1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinator-
ica, 12(4):449–461, 1992.

[Nis94] Noam Nisan. RL ⊆ SC. Computational Complexity, 4:1–11, 1994.

[NSW92] Noam Nisan, Endre Szemerédi, and Avi Wigderson. Undirected connectivity in
o(log1.5 n) space. In Proc. 33rd Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 24–29, 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and
System Sciences, 49(2):149–167, 1994.

[Poo93] Chung Keung Poon. Space bounds for graph connectivity problems on node-named
jags and node-ordered jags. In 34th Annual Symposium on Foundations of Computer
Science (FOCS), pages 218–227. IEEE Computer Society, 1993.

[PP23] Aaron (Louie) Putterman and Edward Pyne. Near-optimal derandomization of medium-
width branching programs. In Proc. 55 Annual ACM Symposium on Theory of Com-
puting (STOC), pages 23–34, 2023.

[PRZ23] Edward Pyne, Ran Raz, and Wei Zhan. Certified hardness vs. randomness for log-space.
In 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023,
2023.

[Pyn24] Edward Pyne. Derandomizing logspace with a small shared hard drive. In Proc. 39th
Annual IEEE Conference on Computational Complexity (CCC), pages 4:1–4:20, 2024.

[RA00] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM J.
Comput., 29(4):1118–1131, 2000.

[Rei08] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):17:1–
17:24, 2008.

62

[RSW06] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via re-
peated condensing. SIAM Journal on Computing, 35(5):1185–1209, 2006.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape com-
plexities. Journal of Computer and System Sciences, 4:177–192, 1970.

[STV01] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the XOR lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a
new pseudorandom generator. Journal of the ACM, 52(2):172–216, 2005.

[Sud97] Madhu Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. J.
Complex., 13(1):180–193, 1997.

[SV22] Ronen Shaltiel and Emanuele Viola. On hardness assumptions needed for “extreme
high-end” PRGs and fast derandomization. In Proc. 13 Conference on Innovations in
Theoretical Computer Science (ITCS), 2022.

[SW13] Rahul Santhanam and R. Ryan Williams. On medium-uniformity and circuit lower
bounds. In Proc. 28th Annual IEEE Conference on Computational Complexity (CCC),
pages 15–23. IEEE, 2013.

[SZ99] Michael E. Saks and Shiyu Zhou. BPHSPACE[S] ⊆ DSPACE[S3/2]. Journal of Com-
puter and System Sciences, 58(2):376–403, 1999.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26(3):279–284, 1988.

[TSUZ07] Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers,
unbalanced expanders, and extractors. Combinatorica, 27(2):213–240, 2007.

[TU06] Amnon Ta-Shma and Christopher Umans. Better lossless condensers through deran-
domized curve samplers. In Proc. 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 177–186, 2006.

[TZS06] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. Extractors from Reed-Muller
codes. Journal of Computer and System Sciences, 72(5):786–812, 2006.

[vMP19] Dieter van Melkebeek and Gautam Prakriya. Derandomizing isolation in space-bounded
settings. SIAM J. Comput., 48(3):979–1021, 2019.

[VV86] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.
Theor. Comput. Sci., 47(3):85–93, 1986.

[Wig92] Avi Wigderson. The complexity of graph connectivity. In Mathematical Foundations of
Computer Science (MFCS), volume 629 of Lecture Notes in Computer Science, pages
112–132. Springer, 1992.

[Yao82] Andrew C. Yao. Theory and application of trapdoor functions. In Proc. 23rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 80–91, 1982.

[Zuc97] David Zuckerman. Randomness-optimal oblivious sampling. Random Structures &
Algorithms, 11(4):345–367, 1997.

63
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

