
Improved Bounds on the Space Complexity of Circuit Evaluation

Yakov Shalunov
University of Chicago
yasha@uchicago.edu

June 19, 2025

Abstract

Williams (STOC 2025) recently proved that time-t multitape Turing machines can be sim-
ulated using O(

√
t log t) space using the Cook-Mertz (STOC 2024) tree evaluation procedure.

As Williams notes, applying this result to fast algorithms for the circuit value problem implies
an O(

√
s · polylog s) space algorithm for evaluating size s circuits.

In this work, we provide a direct reduction from circuit value to tree evaluation without
passing through Turing machines, simultaneously improving the bound to O(

√
s log s) space

and providing a proof with fewer layers of abstraction.
This result can be thought of as a “sibling” result to Williams’ for circuit complexity instead

of time; in particular, using the fact that time-t Turing machines have size O(t log t) circuits, we
can recover a slightly weakened version of Williams’ result, simulating time-t machines in space
O(
√
t log t).

1 Introduction

Recently, Williams proved an extremely counterintuitive result:

Theorem 1.1 (Williams [Wil25]). All time-t(n) ≥ n multitape Turing machines can be simulated
using O(

√
t log t) bits of space.

This holds no matter how they use the Ω(t) cells of space they can touch and improves dramat-
ically on the 50-year-old best-known simulation using space O(t/ log t) due to Hopcroft, Paul, and
Valiant [HPV77].

This simulation can be composed with Turing machine algorithms for evaluating circuits to
obtain space-efficient algorithms for circuit evaluation. In particular, the best known algorithm for
circuit simulation on Turing machines is due to Pippenger [Pip77] (Theorem 2.1) and yields a space
O(
√
s · log3/2 s) algorithm for evaluating arbitrary size-s circuits.
Motivated by the fact that circuits themselves are an appealing model of fine-grained complexity,

we directly prove an improved bound on the space complexity of circuit evaluation:

Theorem 1.2 (Main theorem). Given a size s circuit C on n ≤ s inputs and an input x ∈ {0, 1}n,
the output C(x) can be evaluated in space O(

√
s log s).

The uniform formulation immediately implies a nonuniform version:

Corollary 1.3. If f : {0, 1}n → {0, 1} can be computed by a size s circuit then f can be computed
by a size-2O(

√
s log s) branching program.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 78 (2025)

mailto:yasha@uchicago.edu

Additionally, Theorem 1.2 together with standard results for simulating Turing machines with
circuits (see Theorem 2.2) gives TIME [t] ⊆ SPACE

[√
t log t

]
, re-proving Williams’ result up to log

factors.

1.1 Technique outline

Similarly to Williams’, our result is based on a reduction to the tree evaluation problem. Roughly
speaking, the tree evaluation problem (definition 2.2) is the task of evaluating a height h, d-ary
tree where each leaf is a b-bit value and each internal node is function {0, 1}db → {0, 1}b, given as
an explicit table of 2db b-bit entries.

The natural depth-first approach requires space O(hdb) to evaluate the tree, storing db bits at
each of h recursive levels. Though this depth-first approach intuitively seems “inherent” to the
problem (indeed, the problem was originally posed to attempt to separate L from P), Cook and
Mertz came up with an O(h log db + db)-space algorithm for the problem, improving the space
complexity quadratically when h ≈ db [CM24].1

Williams’ result reduces Turing machine computation to a tree evaluation instance of arity
d = O(1) with height h = Θ(t/b) and value-size b for some parameter b—evaluating this instance
naively earns nothing, since Θ

(
t
b

)
· b = Ω(t), but balancing t/b and b and then applying the Cook-

Mertz tree evaluation procedure yields quadratic savings.
We provide a direct reduction from circuit evaluation to tree evaluation which bypasses reasoning

about the motion of Turing machine heads. For intuition, we first sketch a warm-up result:

Proposition 1.4. Size s circuits can be evaluated in space Õ(s2/3).

Proof sketch. Similar to the approach used for Turing machines, we partition our circuit into blocks
of size b. This, in particular, ensures that the number of blocks (and thus depth) is s

b . Our “blocks”
will be intervals of consecutive vertices under a topological ordering, thus ensuring that the quotient
graph2 is a DAG.

We can view this quotient DAG as a “circuit” over values from {0, 1}b instead of over individual
bits: the value at each vertex in the quotient graph is the list of values of all b gates in the
corresponding block of the original circuit and each wire carries all b of those bits.

Since the quotient DAG connects blocks together when any pair of underlying gates have a
connection, all gates in the block have sufficient information to be evaluated and our “quotient
circuit” is able to simulate the original circuit.

Now we observe that in much the same way that one can expand a circuit into a formula, we can
expand this quotient circuit into a tree evaluation instance (i.e., duplicating each vertex once for
every path to reach it from the root). This increases the size exponentially (which is fine, because
we’ll never write down the whole tree, instead computing it on-demand) but, crucially, does not
affect the depth.

Since the depth of the original quotient circuit was bounded by the number of blocks in it,
which in turn was s

b , the height of our tree evaluation instance is h = s
b , and since each block has

b gates, the value-size parameter is exactly b.

1It is worth noting that several years prior to this O(logn · log logn) result, Cook and Mertz first showed that the
problem can be solved in space O(log2 n/ log logn) [CM20, CM21]. (Here, n = Θ̃(dh · 2db) so logn = Θ(h log d+ db).)

2Here, when we say “quotient” we mean a graph with a vertex for each part of the partition and a single edge
between any two parts whose components have any edges in the original graph. A more formal definition can be
found in the preliminaries in Section 2.

2

In order to get Õ(
√
s), we ultimately need an arity of d = O(1); unfortunately the naive

construction given here only allows a trivial bound on the in-degree: given a block B, each wire
coming into B (i.e., edges (u, v) with v ∈ B) in the original circuit connects to one vertex and thus
adds at most one block (the block B(u) containing u) to the list of blocks with wires to B. Since
there are b gates and each has two inputs (we work with binary circuits), there are at most 2b total
incoming wires, and thus at most 2b connected blocks.

This gives us d ≈ b and so the Cook-Mertz procedure gives us space O(sb log b
2 + b2). Setting

b ≈ 3
√
s gives Õ(s2/3).

In order to get Õ(
√
s), we will need the key technical contribution of this work: a trick for

reducing the in-degree of the quotient graph, expressed (in slightly simplified form3) in the following
graph-theoretic lemma:

Lemma 1.5 (Low-degree DAG partition (simplified)). For any directed acyclic graph G of size s
and maximum in-degree d > 1 and any integer choice of b ∈ [d, s], there is a subdivision4 G′ of G
and a partition P of G′ such that:

• Every part in P has at most b vertices.

• Every vertex in the quotient graph G′/P has in-degree at most 2.

• All directed paths in G′/P have length less than d · sb .

Since we consider binary circuits, our application will have d = 2, and b = Θ̃(
√
s), yielding a

depth of 2 · sb − 1 = Õ(
√
s) and giving us the desired result.

Intuitively, we are “buying” a lower depth by “paying” with increased block size—were we doing
a naive depth-first evaluation, this would get us nothing, but using Cook-Mertz tree evaluation
procedure allows us to have increased block size “for free” (up to the point where it exceeds depth).

We remark that when we reduce the depth of the graph in the proof of the lemma, we do so by
“brute-force,” of a sort: we first create a quotient graph on the original graph G which has a total
size (and thus depth) of d · sb and then use subdivision to reduce the in-degree without increasing
the depth. This allows us to reduce the depth of an arbitrary graph without care for its structure
since the depth of the quotient graph cannot possibly exceed its size.

Outline

In section 2, we give some preliminaries on the circuit and tree evaluation problems. In section 3,
we prove the partition lemma (Lemma 1.5). Finally, in section 4, we apply the partition lemma to
reduce circuit evaluation to an appropriate tree evaluation instance.

3The full version is stated as Lemma 3.1; it provides additional complexity guarantees and allows for trading off
between the final in-degree and depth. (In particular, a final in-degree d+ 1 allows a depth of s/b.)

4A subdivision of a graph subdivides some edges by inserting vertices into them (i.e., replacing e = (u, v) with
a vertex ve and edges (u, ve), (ve, v)). In the context of circuits specifically, these will be additional identity gates
spliced into some wires, which trivially does not affect behavior.

3

2 Preliminaries

Model relationships First, the following pair of results together illustrate the close connection
between circuits and Turing machine time:

Theorem 2.1 (Pippenger [Pip77]). Given a size s circuit C and an input x, the output C(x) can
be evaluated in multitape Turing machine time O(s log2 s).

Remark. Pippenger’s proof of this result does not appear to be available online; correspondingly,
we have included an exposition of the algorithm in appendix A. See also Williams’ discussion of
the result [Wil25].

Theorem 2.2 (Pippenger, Fischer [PF79], Koucký [BKST23]). For every t(n) ≥ n and L ∈
TIME [t], the log-space-uniform circuit complexity of L is O(t log t).

Remark. While this result is originally due to Pippenger and Fischer (proven by passing through an
oblivious Turing machine simulation), Michal Koucký developed a simpler direct proof [BKST23];
this result appears not to be available digitally either and has been reproduced in appendix B.

Additionally, we follow Williams and remark that unlike for time complexity (where best-known
simulations incur polylogarithmic or even quadratic overhead) the case of space complexity is much
cleaner: all standard models (e.g., single tape, multitape, and random access Turing machines as
well as register-based random access machines) can be mutually simulated with only constant-
factor space overhead [EMD90, SE88, Wil25]. Correspondingly, we do not worry about the exact
computational model underlying our algorithms.

Circuits Formulations of the circuit evaluation/circuit value problem differ. However, all that
we are aware of reduce trivially to the FullCircuitEval formulation below. The following lemma
justifies working with the simplified CircuitEval.

Definition 2.1 (Circuit Evaluation). FullCircuitEval instances take the form (x,C) where x
is an m-bit string and C is an s-gate circuit in the full binary basis on m inputs, provided as a list
of triples of the form (ℓi, ri, φi) where φi : {0, 1}2 → {0, 1} is a binary function and each of ℓi and
ri is either a gate index j ̸= i or a variable index k for some k ≤ m.

The objective is to output the value vi of each gate. For simplicity, assume s ≥ m.
A CircuitEval instance C is an s-gate circuit in the full binary basis provided as a list of

triples of the form (ℓi, ri, φi) where φi : {0, 1}2 → {0, 1} is a binary function and each of ℓi and ri
are either a gate index j < i (i.e., the input is in topologically sorted order) or a constant bit.

The objective is to output the value of the last gate.

Lemma 2.3 (CircuitEval is good enough). If there is a space S algorithm for CircuitEval
then there is a space S + log2 s algorithm for FullCircuitEval.

Proof. First, observe that given an instance of FullCircuitEval, we can replace every reference
to variable k with the value xk in space log s by simply scanning over the gates of C and for
each one, if ℓi is a gate index, outputting it as is, and if it is a variable index k then storing the
current gate in log s bits and the variable index in logm ≤ log s bits and scanning back to find xk,
outputting that value instead of k. Similarly for ri.

Next, observe that it is possible to topologically sort a graph in O(log2 s) space [Coo85].

4

Finally, suppose M computes CircuitEval in space S. We use space-efficient composition and
the above procedures to run M on gates {0, . . . , i} for each i, sorting with respect to the sink i.
Between computations we only need to store which gate we are on using log s bits and everything
else can be reused.

Graphs When we refer to a quotient graph with respect to a partition, we refer to a graph which
collapses together all vertices inside a part of the partition and then deduplicates all the edges.
That is, if G = (V,E) is a graph and P : V → [k] is a partition into k parts, we say that for
i, j ∈ [k], parts i, j are connected in G/P if there exist u, v ∈ V such that P (u) = i, P (v) = j, and
(u, v) ∈ E. There is at most one edge between any pair of parts and we will discard self-loops. We
will also use the term “block” to refer to parts of the partition.

Given a graph G = (V,E), an “edge subdivision at e” is the operation of taking an edge
e = (u, v) ∈ E and removing it, adding in its place a vertex ve and edges (u, ve) and (ve, v). The
subdivided graph then has V ′ = V ∪ {ve} and E′ = E ∪ {(u, ve), (ve, v)} \ {e}. A subdivision G′ of
G is any graph created by 0 or more edge subdivisions.

For the purposes of the complexity of operations, we make some comments about representations
of objects: partitions are specified as an explicit function mapping vertices to the labels of their
part and the set of labels of vertices in a subdivided graph is a superset of the labels in the original
graph. This allows us to maintain the gate information of the circuit and to identify all subdivision
vertices to assign them identity gates.

Tree evaluation Formally, the tree evaluation problem is defined as follows:

Definition 2.2 (Tree Evaluation). TreeEval instances are full d-ary trees of height h where each
leaf ℓ ∈ {0, . . . , d− 1}h is labeled with a b-bit value vℓ and each internal node u ∈ {0, . . . , d− 1}<h

is labeled with an explicit function (provided as a table of values) fu : {0, 1}db → {0, 1}b.
We recursively define the value vu at each internal node u in the natural way to be

vu := fu(vu0, . . . , vu(d−1))

. The objective is to evaluate vroot ∈ {0, 1}b, the value of the root.

(For the history and broader significance of the tree evaluation problem, see Cook and Mertz
work [CM24]. We use the formulation of the problem exposited by Goldreich [Gol24].)

Theorem 2.4 (Cook-Mertz [CM24, Gol24]). TreeEval instances of height h, arity d, and value-
size b can be evaluated in space O(h log db+ db).

3 Graph partitioning

First, let us state the lemma in its general form:

Lemma 3.1 (Low-degree DAG partition). For any directed acyclic graph G of size s and maximum
in-degree d > 1, for any integer choice of parameters d′ ∈ [2, d + 1] and b ∈ [d/d′, s], there is a
subdivision G′ of G and a partition P of G′ such that:

• Every part in P has size at most b.

5

• Every vertex in the quotient graph G′/P has in-degree at most d′.

• G′/P is a layered DAG with layer count at most d
d′−1 ·

s
b .

• Given G in topologically sorted order, d′, and b, the subdivision G′ and partition P can be
computed in O(log s) space.

Remark. By allowing an additional “vertex subdivision”5 operation, one can obtain a slightly
stronger version of the lemma, obtaining optimal depth s/b when d = d′ = 2. However, the factor-
of-2 savings on depth do not change the bottom line result (Theorem 1.2), the construction is
somewhat more convoluted, and it is not immediately clear how it generalizes to arbitrary d and
d′.

We also believe it should be possible to improve the d
d′−1 factor to either d−1

d′−1 or d
d′ without

the introduction of a new operation, but this seems to significantly increase the complexity of the
proof.

As in the statement of the lemma, let G be a size-s DAG of max in-degree d and let d′ ∈ [2, d+1],
b ∈ [d/d′, s] be parameters.

Symbols and indices Throughout the proof: s refers to the size of the input graph G; d is the
max in-degree of G; d′ is the target in-degree of the quotient graph; b is the maximum size of blocks
and the value-size in the tree evaluation instance; b0 refers to the size of the initial blocks; i and
j refer to indices of blocks or directly comparable values; ℓ is used to index incoming edges in the
quotient graph; finally t refers to the index of the final initial block and is the depth of the graph.

3.1 Construction

Initial partition Though ultimately we produce a subdivision and a partition of that subdivision,
we start with a partition of the original graph. We will use this initial partition to describe the
subdivision and ultimate partition. In particular, the mappings of the vertices in G will in the final
partition will be the same as the initial partition: we will simultaneously add subdivision vertices
and blocks to contain them.

While blocks in the ultimate partition are allowed size up to b, the initial blocks have to be

somewhat smaller: specifically, they will be size b0 =
⌊
d′−1
d · b

⌋
. Let V = (v0, . . . , vs−1) be a

topological ordering of G and let t = ⌈s/b0⌉ − 1. Then for i < t, we define

Bi := (vib0 , . . . , v(i+1)b0−1)

where for the final block Bt we truncate to vtb0 , . . . , vs−1. In the notation of a mapping of vertices
to parts, this is the mapping V = {0, 1, . . . , s− 1} → {0, 1, . . . , t} given by k 7→ ⌊k/b0⌋. Note that
the resulting quotient graph is a DAG and the ordering Bi is a topological sort since if i < j,
vk ∈ Bi and vk′ ∈ Bj then k < k′. Thus, there is no edge (k′, k) and so there can be no edge (j, i).6

5That is, replacing a v with two vertices vin and vout which are connected by an edge (vin, vout) and replacing all
edges (u, v) with edges (u, vin) and edges (v, w) with (vout, w). In the context of circuits, vin is the original gate and
vout is a forwarding identity gate.

6Note that any partition P of G such that G/P is a DAG must have the property that each block in P represents
an interval in some topological sort.

6

B0

B1

Bj−2

Bj−1

Bj

B0

B1

Bj−2

Bj−1

Bj

Bj,j−1

Bj,j−2

Bj,1

Figure 1: Addition of “cable” blocks to reduce in-degree of block Bj in the d′ = 2 case. In the full
construction, the other Bi blocks have their own cables, which are omitted here for clarity.

Observe that we have chosen b0 such that each block has at most b0 · d = b · (d′ − 1) incoming
edges in the original graph. As some intuition: in order to manage the in-degree of the quotient
graph, we will subdivide incoming edges and group the newly created vertices into d′ − 1 blocks
which funnel them into the block (with the final d′th block being the immediately preceding block).

As in the sketch, we have successfully created a quotient DAG where the maximum depth is
t + 1 = s

b0
= d

d′−1 ·
s
b and all parts have size at most b. Now we must address the key issue: the

in-degree. The source vertices of those b · (d′− 1) edges have no reason to be confined to d′ blocks.7

Cables In order to resolve this, we will introduce “cables” to “gradually gather together” the
incoming edges into a small number of blocks. For every edge e = (u, v) with u ∈ Bi and v ∈ Bj

for i < j, we will subdivide e j − i− 1 times, creating vertices ve,k for 1 ≤ k < j − i. This gives us
our graph G′.

Now we need to partition the newly-created vertices. For simplicity, let us first consider the
case where d′ = 2. To get the desired result: for every edge e starting outside Bj and terminating
in Bj , we will add the vertex ve,k (if it exists) to block called Bj,k for k < j. Since, in this case,
there are at most db0 = b · (d′ − 1) = b edges e terminating in Bj , the size of each block Bj,k is at
most b.

As suggested by the notation Bj,k, the blocks Bj,1 through Bj,j−1 form a sort of “tail” or “cable”
connected to Bj ; they run along the preceding blocks of the graph, connecting to each one at the
appropriate point in the cable (specifically, block Bi is connected to the cable at block Bj,j−i−1).
The cable carries all the edges terminating in block Bj from earlier blocks (see Figure 1).

Now we consider the case where d′ > 2. The “bandwidth” of the cable is b, and that becomes

7In fact, it is possible to construct graphs where this procedure will yield max in-degree of min(d′ · b, t− 1) (i.e.,
every incoming edge leads to a different block, as long as enough blocks exist for that). As an explicit example,
consider d = 2, d′ = 3, and s = b2, with edges (k, k + 1) for all 0 ≤ k < s− 1 and edges (k, tb+ k/b) for k < t where
b|k. That is, a graph where a “spine” of edges enforces a specific topological ordering and then the first vertex of
each block Bi connects to vertex i in block Bt. Then Bt has in-degree t− 1 ≫ d′.

7

insufficient when there are up to (d′− 1)b incoming edges. We solve this problem in a very natural
way: add more cables. Formally: in the case where d′ > 2, we will instead have blocks Bℓ

j,k where
k < j indexes the “layer” as before and 1 ≤ ℓ < d′ indexes the cable. We can enumerate the edges{
e1, . . . , eb·(d′−1)

}
coming into Bj . Then ver,k will be placed into block B

⌊r/b⌋
j,k .

For ease of computation, we will define this enumeration of the edges to be indexed by first the
index of the terminal vertex and then by which of ≤ d incoming edges it corresponds to (sorted by
whatever order they appear in in the input representation). We will allow indices to be skipped:
for example, ed will be reserved for the dth incoming edge of vertex vjb, even if the in-degree of vjb
is strictly less than d and that edge does not exist. This completes the description of the partition
P of G′.

3.2 Analysis

Recall that we want the following properties:

• Every part in P has size at most b.

• Every vertex in the quotient graph G′/P has in-degree at most d′.

• G′/P is a strictly layered DAG with depth (i.e., layer count) at most d
d′−1 ·

s
b .

• Given G in topologically sorted order, d′, and b, the subdivision G′ and partition P can be
computed in O(log s) space.

Size The first condition is trivially satisfied for the initial blocks which have size b0 = d′−1
d b ≤ b.

It is satisfied for the cable blocks since each cable block gets at most b gates assigned to it
because the map [b · (d′ − 1)]→ [d′ − 1] given by r 7→ ⌊r/b⌋ is b-to-1.

In-degree The second condition is satisfied for the cable blocks since each Bℓ
j,k has incoming edges

only from Bℓ
j,k+1 and Bj−k−1 and is satisfied by construction for the initial blocks since Bj

has incoming edges only from Bℓ
j,1 for ℓ ∈ [d′ − 1] and from Bj−1.

Layering The third condition can be seen similarly to the second: there are t+1 layers L0, . . . , Lt

where Bj belongs to Lj and Bℓ
j,k belongs to Lj−k. Since each block Bj ∈ Lj has incoming

edges from only Bℓ
j,1 ∈ Lj−1 and Bj−1 ∈ Lj−1 and each block Bℓ

j,k ∈ Lj−k connects only to

Bj−k−1 ∈ Lj−k−1 and Bℓ
j,k+1 ∈ Lj−k−1. Thus, blocks in Li connect only to blocks in Li+1,

and so the partition {L0, . . . , Lt} represents a “strict layering.” In particular, this trivially
implies that the maximum directed path length is at most t = s

b0
− 1 = d

d′−1 ·
s
b − 1.

Complexity First, note that the parameter b0 can be computed from b, d, and d′. Since d is not
given, it needs to be computed from the graph G but this can be done by iterating over all
vertices and keeping a running max of their in-degrees (which in turn can be computed by
iterating over all other vertices and counting how many have an edge to the given vertex).

The computation of the subdivision is arithmetic: for each edge e = (vm, vn) we compute
i = ⌊m/b0⌋ and j = ⌊n/b0⌋ and then subdivide that edge j − i − 1 times. Since this is all
arithmetic on indices, it is logspace computable.

The computation of the partition is similarly efficient: vm is assigned to B⌊m/b0⌋ and ve,k for

e = (vm, vn) is assigned to Bℓ
j,k where ℓ = ⌊r/b⌋ and r = d · (n mod b0) + p where p is the

8

index of e among the incoming edges of vn (which is logspace computable since we define the
ordering on the edges for a given sink vertex to be whatever order they appear in in the input
representation).

When outputting the subdivision, we can trivially output all vertices of the original graph
first followed by the subdivision vertices, satisfying the condition that labels of vertices be
preserved.

4 Circuit evaluation reduction

Our reduction to tree evaluation can be stated as follows:

Theorem 4.1. Given a topologically sorted circuit of size s and any b ∈ [2, s], we can produce
an equivalent TreeEval instance8 with arity d = 2, height h = O(sb) and word-size b as chosen.
Further, this reduction is locally computable in space O(b+ log s).

That is, there is a space O(b + log s) procedure which, on input (C, b, u, x, y) (where C is a
circuit, b ∈ [2, s], u ∈ {0, 1}≤h specifies a node in the tree, x, y ∈ {0, 1}b) computes fu(x, y) where
fu is from the TreeEval instance equivalent to C.

In particular, choosing b =
√
s log s and applying Theorem 2.4 immediately gives Theorem

1.2; further, a space O(h + b) procedure for TreeEval would immediately imply a space O(
√
s)

procedure for CircuitEval.
At a high level, we apply the DAG partition lemma (vertices introduced by subdivision become

identity gates) to C and expand C ′/P into a tree, letting the function fB(x, y) computed at a node
B ∈ C ′/P be simply the subcircuit B evaluated with the external input wires taken from x, y.
Note that B may be smaller than size b and may have fewer than 2b external input wires. We can
embed each part into a value by saying that the values of gates fill the bits in the {0, 1}b values in
topologically sorted order.

Further, the part of computing fB(x, y) corresponding to actually evaluating the subcircuit B
can be done by naively evaluating each gate in topological order from previous ones and writing it
down, yielding the O(b) component of the space.

It turns out that there are no pitfalls, and the above description just works. Nonetheless, it is
stated somewhat more rigorously below for completeness.

Proof. First, note that we can efficiently identify the children of a given block (e.g., by iterating
over all blocks and checking whether they are connected, which can in turn be done by iterating
over all pairs of vertices in the two blocks being considered). We can identify the root block by
finding which block the vertex vs−1 maps to. We will consider the “left” child of a block to be the
child block whose label is lexicographically first and the “right” child to be the one whose label is
lexicographically second.

Given as input a circuit C in the full binary basis, the parameter b, and (u, x, y), using space-
efficient composition, we:

8Technically, the TreeEval instance outputs b bits while the circuit outputs 1; we actually produce a TreeEval
instance where the output of the circuit is bit s mod b of the output.

9

1. Apply the DAG partition lemma with b as given and d′ = 2. Initialize B ← root.

2. For each bit ui of u, identify the left or right child of B based on whether ui = 0, 1 and update
B to that child.

3. Once we have found the block B corresponding to the tree node u, we must evaluate it. If it
is a leaf block, it must have no inputs, so we compute it by naive dynamic programming.9

Otherwise, since we defined values to fill the b-bit values in topologically sorted order, for
each input v ∈ Bc (for c ∈ {x, y}) to a gate w ∈ B, we iterate over G′ and count how many
gates we find in Bc before reaching v (call it ℓ); we then take bit cℓ as the corresponding input
to w. This allows us to locally compute the circuit B with external inputs substituted in.

4. Having computed (or rather, expressed a procedure by which we can space-efficiently compute
bits of) the circuit B and which bit of x, y each input to B corresponds to, we compute the
values of B via naive dynamic programming.

In order to extract the value of the circuit from the reduction, we then ultimately take bit s
mod b0 of vroot, since that is the location of the last gate in the final block.

The correctness of the reduction is straightforward: the behavior of the circuit C ′ is the same
as C since we just inserted some identity gates into wires. Further, the value of a block B ∈ C ′/P
can be computed using the values of all the gates some gate in B takes input from, which by
construction are just the 2 children of B.

For complexity, observe that on-demand computing bits of G′ and P as needed takes space
O(log n); step 2 requires holding a label B and index i into u, which also takes space O(log n);
iterating over G′ in step 3 requires a single log-sized counter and counting gates in Bc similarly
requires logspace since we just compute for each gate which block it belongs to (which we are given
explicitly) and maintain a counter of how many have been in Bc; step 4 is done via naive dynamic
programming, which requires space O(b) to evaluate a size-b circuit.

5 Acknowledgments

I would like to thank William Hoza for suggesting this research direction, helping review this article,
and general guidance. I am also grateful to Alexander Razborov for feedback on presentation.

References

[BKST23] Markus Bläser, Valentine Kabanets, Ronen Shaltiel, and Jacobo Torán. Algebraic and
Analytic Methods in Computational Complexity (Dagstuhl Seminar 22371). Dagstuhl
Reports, 12(9):41–59, 2023.

[CM20] James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem. In Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, page 752–760, New York, NY, USA, 2020. Association for Computing Machinery.

9The space complexity of the reduction could be improved to O(
√
b log b+ log s) by recursing, but this would not

improve the bottom line space complexity of circuit evaluation since the space is already dominated by the evaluation
of the tree evaluation instance.

10

[CM21] James Cook and Ian Mertz. Encodings and the tree evaluation problem. Electron.
Colloquium Comput. Complex., TR21, 2021.

[CM24] James Cook and Ian Mertz. Tree evaluation is in space O(log n · log logn). In Proceed-
ings of the 56th Annual ACM Symposium on Theory of Computing, STOC 2024, page
1268–1278, New York, NY, USA, 2024. Association for Computing Machinery.

[Coo85] Stephen A. Cook. A taxonomy of problems with fast parallel algorithms. Information
and Control, 64(1):2–22, 1985. International Conference on Foundations of Computation
Theory.

[EMD90] Peter van EMDE BOAS. Chapter 1 - machine models and simulations. In JAN VAN
LEEUWEN, editor, Algorithms and Complexity, Handbook of Theoretical Computer
Science, pages 1–66. Elsevier, Amsterdam, 1990.

[Gol24] Oded Goldreich. On the Cook-Mertz tree evaluation procedure. Electron. Colloquium
Comput. Complex., TR24, 2024.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM,
24(2):332–337, April 1977.

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, April 1979.

[Pip77] Nicholas Pippenger. Fast simulation of combinational logic networks by machines without
random-access storage. IBM Thomas J. Watson Research Division, 1977.

[SE88] Cees Slot and Peter van Emde Boas. The problem of space invariance for sequential
machines. Information and Computation, 77(2):93–122, 1988.

[Wil25] Ryan Williams. Simulating time with square-root space. arXiv preprint, 02 2025.

A Fast circuit evaluation

Because it is not digitally available, we provide an exposition of Pippenger’s algorithm below. We
make no claims of originality. Note that this exposition is not intended to be rigorous so much as
explanatory, so we have omitted a proof of correctness or runtime analysis.

Theorem (Pippenger [Pip77]). Given a size s circuit C and an input x, the output C(x) can be
evaluated in multitape Turing machine time O(s log2 s).

We will first describe the high-level recursive algorithm; in order to implement it on a multitape
Turing machine, one simply needs to create a tape for each “local variable” and treat this tape as
a stack, pushing the new value of each local variable to its stack when recursing. By, for example,
using a marker to separate layers of the stack, any “well-behaved” recursive algorithm (i.e., one
which does not try to read back up into the caller’s stack frames) can be expressed using a constant
number of tapes, since the “current level” of each stack can function as an arbitrary (one-sided)
Turing machine tape.

11

We will work with lists of “records,” which will be various tuples of indices (i.e., all entries in
the list have the same size which is O(log s) = O(log(input length))). We will use the following
high-level operations:

Classify Given a list of n records and a linear-time predicate, “classify” the records into two lists
based on whether they satisfy the predicate. On a multitape Turing machine, we can perform
this operation in time O(n log s) trivially if the source list and two destination lists are all on
separate tapes.

Merge Given a linear-time comparison operation and two lists of lengths n and m records sorted
according to the comparator, “merge” the two lists into one sorted list of length n+m. On
a multitape Turing machine, we can perform this operation in time O((n + m) log s) if the
source lists and destination list are all on different tapes.

Sort Given a list of n records and a linear-time comparator, sort the list of n records according to
the comparator. On a multitape Turing machine, this can be done recursively with a constant
number of auxiliary tapes in time O(n log n log s).

Much like in the FullCircuitEval problem, we will assume that the input is a pair (x,C) of
input and circuit, with the circuit encoded as a list of s records. However, we will assume that C
is provided in topologically sorted order. We will adopt the convention that 0 < 1 < x1 < · · · <
xn < v1 < · · · < vs. Note that unlike in the space-bounded computation case, we cannot simply
assume that the caller only wants the last bit, since rerunning the algorithm for each prefix of the
circuit would make the running time quadratic. Correspondingly, the algorithm outputs the value
of all gates.

The first step is to eliminate the input x and bake it into the circuit as constants: first, we copy
x and C to separate tapes. In the process of copying C, we will replace each record (ℓi, ri, φi) with
the record (ℓi, ri, φi, i) (which we can do by keeping the counter i on an auxiliary tape).

Then we sort C by the field ℓ. Then scan C and x in parallel, advancing the x head whenever
ℓ increases, substituting the appropriate constants for the left inputs of each gate which takes a
variable input. We can then repeat sorting by field r to eliminate the rest of the inputs and, finally,
sort C by the index field to restore the original order.

At this point, we can copy C back to the original input tape and discard the contents of all
other tapes.

Now, we will convert the circuit to (a variant of) Pippenger’s “alternate representation”—
instead of a list of gate records which each store their inputs, we will have a list of gate records,
which are now just the index and gate function, together with a second list of “wire”/“value”
records of the form (u, v, d) where u is either a gate index (wire) or constant (value), v is a gate
index, and d ∈ {L,R,O} indicates whether this wire is the left input to v, the right input, or an
“output record.” In the case of an output record, u will be either ∗ (wire) or a constant (value),
representing either a place holder for the value of the gate or the computed value of the gate.

We can do this by simply scanning over the circuit and for each gate v = (ℓ, r, φ, i) outputting
wire records (ℓ, i, L), (r, i, R), and (∗, i, O) and gate record (φ, i).

Given sets of gates I, J , let WI→J represent the set of wires starting in I and terminating in
J . Let VI→J be the set of value records corresponding to those wires. In both cases let I → and
→ J refer to wires/values starting in I and terminating in J respectively. Let GI denote the gate
records of I.

12

In the following procedure, each expression like GK or V→I should be interpreted as the name of
a local variable. Performing the Turing machine construction by replacing each variable with a tape
interpreted as a stack of tape yields a multitape Turing machine with around 20 tapes (including
a couple work tapes in addition to the stacks).

We now describe a recursive procedure which, given an interval K, G(K), V→K , and WK→
computes VK→. If |K| = 1, we simply evaluate the single gate in K using the two value records in
V→K and then substitutes that value into each record in WK→. Otherwise:

• Split K into I and J , each half the size of K.

• – Classify GK into GI and GJ .

– Classify WK→ into WI→ and WJ→.

– Classify V→K into V→I and V→J \ VI→J .

• Letting K ← I, recurse to compute VI→ (which we move from the output stack VK→ to the
stack VI→).

• Classify VI→ into VI→J and VI→ \ VI→J .

• Merge VI→J with V→J \ VI→J to produce V→J .

• Letting K ← J , recurse to compute VJ→ (which we again move to stack VJ→).

• Merge VI→ and VJ→ into VK→

In order to compute our final output, we ensure VK→ is sorted by output gate, and then scan
over it and extract the bits b from the records of the form (b, v,O).

B Small circuits for Turing machines

Theorem (Pippenger, Fischer [PF79], Koucký [BKST23]). For every t(n) ≥ n and L ∈ TIME [t],
the log-space-uniform circuit complexity of L is O(t log t).

The construction proving this is due to Koucký [BKST23]. We make no claims of originality and
present it for completeness because it is a beautiful argument which seems not to be well known.

We first consider a single-tape machine M as a warm-up. We will recursively construct a circuit
Ct which given a t-cell configuration with the head somewhere in the middle third simulates M
on that tape for t/3 steps and output the final t-cell configuration. We will repeat the following 3
times, advancing the simulation by t/9 steps each time:

1. Subdivide the tape into 9 equally-sized blocks.

2. Identify the index i ∈ {2, 3, . . . , 8} such that the head is in block i.

3. Swap blocks i− 1, i, i+ 1 with blocks 1, 2, 3

4. Apply Ct/3 to blocks 1, 2, 3 (simulating M on that subsection of the tape for t/9 steps)

5. Swap blocks i− 1, i, i+ 1 with blocks 1, 2, 3

13

(For the recursive base case, we fall back to the standard tableau argument for M when t is bounded
by an arbitrary constant.)

Note that we are guaranteed that the tape head is in block i for i ∈ {2, 3, . . . , 8} on all three
layers since the head starts in blocks 4, 5, 6 and only moves at most one block per iteration, so at
the start of the second layer it is in 3, . . . , 7 and in the third layer it is in 2, . . . , 8 as desired. Thus,
the circuit is correct by induction.

The gadgets required for steps 2, 3, and 5 are linear size, so the overall size is s(t) = 3s(t/3) +
O(t) = O(t log t).

In order to simulate M running in time t(n) on an input of length n, we take C3t(n), hard coding
the left t(n) and right 2t(n)− n cells to be 0 (i.e., we place the input and thus the initial location
of the head in the middle t(n) cells).

In order to simulate a multitape Turing machine, we simply divide each tape into 9 blocks and
perform a swap for each of the tapes separately. That is: for a k-tape Turing machine M , we
will recursively construct a circuit CT which, given k t-cell configurations with the heads some-
where in the middle third of their tapes, simulates M for t/3 steps and outputs the k final t-cell
configurations. We will repeat the following 3 times, advancing the simulation by t/9 steps each
time:

1. Subdivide the k tapes into 9 equally-sized blocks each.

2. Identify the indices ij ∈ {2, 3, . . . , 8}, j ∈ [k] such that head j is in block ij .

3. For each j ∈ [k], on tape j, swap the blocks ij − 1, ij , ij + 1 with blocks 1, 2, 3.

4. Apply Ct/3 to blocks 1, 2, 3 of each of the k tapes (simulating M on that subsection of the
tape for T/9 steps)

5. For each j ∈ [k], on tape j, swap the blocks ij − 1, ij , ij + 1 with blocks 1, 2, 3.

14

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

