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Abstract

In this work, we prove upper and lower bounds over fields of positive characteristics for
several fragments of the Ideal Proof System (IPS), an algebraic proof system introduced by
Grochow and Pitassi (J. ACM 2018). Our results extend the works of Forbes, Shpilka, Tza-
meret, and Wigderson (Theory of Computing 2021) and also of Govindasamy, Hakoniemi, and
Tzameret (FOCS 2022). These works primarily focused on proof systems over fields of charac-
teristic 0, and we are able to extend these results to positive characteristic.

The question of proving general IPS lower bounds over positive characteristic is motivated
by the important question of proving AC0

rps-Frege lower bounds. This connection was observed
by Grochow and Pitassi (J. ACM 2018). Additional motivation comes from recent developments
in algebraic complexity theory due to Forbes (CCC 2024) who showed how to extend previous
lower bounds over characteristic 0 to positive characteristic.

In our work, we adapt the functional lower bound method of Forbes et al. (Theory of Com-
puting 2021) to prove exponential-size lower bounds for various subsystems of IPS. In order
to establish these size lower bounds, we first prove a tight degree lower bound for a variant of
Subset Sum over positive characteristic. This forms the core of all our lower bounds.
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Additionally, we derive upper bounds for the instances presented above. We show that they
have efficient constant-depth IPS refutations. This demonstrates that constant-depth IPS refu-
tations are stronger than the proof systems considered above even in positive characteristic.
We also show that constant-depth IPS can efficiently refute a general class of instances, namely
all symmetric instances, thereby further uncovering the strength of these algebraic proofs in
positive characteristic.

Notably, our lower bounds hold for fields of arbitrary characteristic but require the field size
to be nωp1q. In a concurrent work, Elbaz, Govindasamy, Lu, and Tzameret have shown lower
bounds against restricted classes of IPS over finite fields of any size by considering different hard
instances.

2



Contents

1 Introduction 4
1.1 Ideal Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Lower Bounds Over Positive Characteristic . . . . . . . . . . . . . . . . . . . 8
1.3.2 Upper Bounds Over Positive Characteristic . . . . . . . . . . . . . . . . . . . 9

1.4 Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Lower Bounds in Large Fields of Positive Characteristic 15
2.1 Degree Lower Bound for Arbitrary Characteristic . . . . . . . . . . . . . . . . . . . . 16
2.2 Sparse-IPSLIN1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 roABP ´ IPSLIN1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Multilinear-formula-IPS Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Constant-depth Multilinear IPSLIN1 Lower Bound . . . . . . . . . . . . . . . . . . . . 20

3 Non-multilinear Upper Bounds 25
3.1 Proof of Theorem 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Proof of Theorem 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Symmetric Refutations in Constant Depth 33
4.1 Multilinearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References 47

A Appendix 50
A.1 Details of roABP-IPSLIN1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . 50
A.2 Proof of Claim 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
A.3 Proof of Claim 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.4 Proof of Claim 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3



1 Introduction

Propositional Proof Systems. A proof system consists of a set of axioms and inference rules.
The goal is to start with the given set of axioms and apply the inference rules repeatedly to prove
theorems (tautologies) within the proof system. A proof system is sound if it proves only true
statements and it is complete if it proves all true statements. The area of Propositional Proof
Complexity aims to understand the strength of different proof systems in the propositional setting.
In a foundational work, Cook and Reckhow [CR79] showed that if we could prove that there exist
tautologies such that they require exponential proof size (i.e., vaguely the number of times different
inference rules are applied in the proof) in any proof system, then it would resolve the famous NP
vs. coNP question in computational complexity theory.

Apart from the connection to this central question in complexity theory, understanding the power
of different proof systems is also fundamental to mathematical reasoning. This has motivated a lot
of research in the area for the last five decades. (See for instance these reference texts for more
context [Kra95; CK02; Kra19].) There are many different kinds of propositional proof systems
based on the set of axioms they start with and the kind of inference rules they are allowed to use.
In this work, we will focus on algebraic proof systems. In algebraic proof systems, propositional
tautologies are expressed as an unsatisfiable set of polynomial equations and the inference rules are
algebraic, i.e. they involve reasoning based on polynomial arithmetic.

The study of algebraic proof systems originates from the work of Beame, Impagliazzo, Krajíček,
Pitassi, and Pudlák [BIKPP96] who introduced the Nullstellensatz proof system (based on Hilbert’s
Nullstellensatz). Their work was followed by the work of Clegg, Edmonds, and Impagliazzo [CEI96]
who introduced Polynomial Calculus as a dynamic variant of the Nullstellensatz proof system. Over
the years, substantial work on these proof systems has helped us get a good understanding of their
power in terms of complexity measures such as sparsity and degree [BIKPP96; BIKPRS97; Raz98;
Gri98; IPS99; BGIP01; AR01].

However, as noted in [FSTW21], sparsity and degree only roughly capture the complexity of
algebraic proofs. More recently, Grochow and Pitassi [GP18] proposed the Ideal Proof System
(IPS) as a natural generalization of these well-studied algebraic proof systems such as Polynomial
Calculus and Nullstellensatz proof systems. In the last decade, several papers studied this proof
system. (See for instance [GP18; PT16; FSTW21; GHT22; HLT24].) This has allowed us to
understand many other aspects of algebraic proofs, such as proof size and proof depth.

In this paper, we extend this line of work. Specifically, we revisit some of the known upper and
lower bounds for Ideal Proof Systems over characteristic 0 and show similar bounds over fields of
any characteristic1.

1.1 Ideal Proof Systems

We start by describing the general setup for an algebraic (static2) proof system. Let x denote the set
of variables tx1, x2, . . . , xnu. We are given a set of polynomial axioms f1pxq, f2pxq, . . . , fmpxq P Frxs

and the goal is to show that there is no 0-1 assignment to the variables such that it simultaneously
1In all the results mentioned here, when we say that a result holds over characteristic 0, it in fact holds over large

enough characteristic as well.
2In the literature, the following type of proof system is often referred to as a static proof system. There are other

algebraic proof systems, where the proof is presented line-by-line and those are known as dynamic proof systems.
Here, we will only discuss static proof systems.
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satisfies tf1pxq “ 0, f2pxq “ 0, . . . , fmpxq “ 0u over F. To force a common Boolean solution, the set
of axioms is appended with additional axioms, tx2i ´ xi “ 0uiPrns for i P rns. These are called the
Boolean axioms.

Based on Hilbert’s Nullstellensatz, we know that if tf1pxq “ 0, f2pxq “ 0, . . . , fmpxq “ 0u

Y tx2i ´ xi “ 0uiPrns are simultaneously not satisfiable, then such a refutation3 can be given by
polynomials A1pxq, A2pxq, . . . , Ampxq and B1pxq, B2pxq, . . . , Bnpxq such that

ÿ

iPrms

Aipxq ¨ fipxq `
ÿ

iPrns

Bipxq ¨ px2i ´ xiq “ 1. (1)

The complexity of such a proof can be defined using complexity parameters of the polynomials
tAipxqu and tBipxqu. In the case of the Ideal Proof System, Grochow, and Pitassi proposed that we
assume that Aipxq, Bipxq P Frxs are computed by algebraic circuits. (See Section 1.3 for the formal
definition.) Based on this, they defined complexity measures such as circuit size and circuit depth
of IPS.

This proof system in its full generality is known to be quite strong. Specifically, it can poly-
nomially simulate Extended Frege [GP18], which is one of the most powerful among well-studied
propositional proof systems. Additionally, the same work also showed that proving lower bounds
for this proof system would also imply strong algebraic circuit lower bounds, which is also a very
challenging problem.

In light of this (and other reasons explained below), many restricted variants of the IPS have
been studied. Let C be a class of polynomials. Then, a C-IPS refutation is an IPS-refutation
wherein tAipxquiPrms and tBipxquiPrns belong to the class C. Forbes, Shpilka, Tzameret, and Wigder-
son [FSTW21], as well as Govindasamy, Hakoniemi, and Tzameret [GHT22], considered different
classes of polynomials, for example, the class of polynomials computed by read-once oblivious al-
gebraic branching programs (roABPs), by multilinear formulas, or by constant-depth algebraic
formulas. They proved upper and lower bounds on the size of (some variants of) C-IPS refutations
over characteristic 0.

1.2 Motivation

We extend these works and prove similar bounds in arbitrary characteristic. Our work is motivated
by the following important strands of research in proof complexity.

IPS-refutations and AC0rps-Frege. A long-standing open question in proof complexity, open
for almost three decades [Kra15], is to prove superpolynomial lower bounds against AC0rps-Frege
proof systems, i.e., a proof system in which the lines of the proof are constant-depth Boolean circuits
that use modular gates. In the late 80s, Razborov [Raz87] and Smolensky [Smo87; Smo93] resolved
the Boolean circuit lower bound question for AC0rps, but the corresponding proof complexity ques-
tion has proved to be elusive.

Over the years, several attempts have been made to resolve this question. The most rele-
vant to our work is the result by Grochow and Pitassi [GP18, Theorem 3.5] which showed that
constant-depth-IPS over characteristic p can efficiently simulate AC0rps-Frege proofs. This means

3The words ‘proofs’ and ‘refutations’ are treated interchangeably in this paper. What we will be ‘proving’ is a
statement that ‘refutes’ the existence of a common solution to a system of equations.

5



that proving superpolynomial lower bounds against constant-depth-IPS refutations will give super-
polynomial lower bounds against AC0rps-Frege. This gives a strong motivation to prove IPS lower
bounds over small characteristics.

Functional lower bounds over any characteristic. Building on the work of [GP18], [FSTW21]
further explored the power of IPS refutations. They proposed a concrete approach towards proving
size lower bounds for IPS refutations via functional lower bounds (further explained in Section 1.4).
Their method was inspired by the notion of functional lower bounds in Boolean circuit complexity
[GR00; FKS16]. They demonstrated the promise of their method by proving several lower bounds
for different fragments of IPS.

For example, the strong algebraic complexity lower bounds known for roABPs [Nis91] and mul-
tilinear formulas [Raz09] follow from understanding the evaluation dimension complexity measure
in these models. Since this measure is essentially functional in nature, [FSTW21] used it to success-
fully prove lower bounds for C-IPS when C is a class of read-once branching programs or multilinear
formulas. Their bounds are over characteristic 0.

This approach of [FSTW21] was further adapted by Govindasamy, Hakoniemi, and Tzameret [GHT22]
to prove superpolynomial lower bounds against (multilinear) constant-depth-IPS refutations. Their
proof builds on some of the key components of the superpolynomial lower bound against constant-
depth algebraic circuits by Limaye, Srinivasan, and Tavenas. The latter lower bound of [LST21]
only worked over characteristic 0; for this and other reasons, the result of [GHT22] was also limited
to characteristic 0. In a recent paper, however, Forbes [For24] improved the circuit lower bound
result of [LST21] and proved the same4 lower bound over any characteristic.

In light of these results, the next obvious step is to prove the lower bounds of [FSTW21; GHT22]
over any characteristic. We achieve that in this work.5

1.3 Our Results

To describe our results, we start with the formal definitions of IPS refutations and its variants.

Definition 1.1 (IPS proof systems [GP18; FSTW21]). Let f1, . . . , fm P Frx1, . . . , xns be a system
of unsatisfiable polynomials over the Boolean cube t0, 1un. In other words, there is no Boolean
assignment a P t0, 1un to the variables x1, . . . , xn so that fipaq “ 0 for all i P rms.

Given a class of algebraic circuits C, a C-IPS refutation of the system of equations defined by
f1, . . . , fm is an algebraic circuit C P C in variables x1, . . . , xn, y1, . . . , ym, z1, . . . , zn such that

• Cpx,0,0q “ 0, and

• Cpx, f1, . . . , fm, x21 ´ x1, . . . , x
2
n ´ xnq “ 1.

The size of the refutation is the size of the circuit C.
Further, if the circuit C has individual degree at most 1 in the variables y and z, then we say

that C is a C-IPSLIN refutation. If the circuit C has individual degree at most 1 in the variables y
(but not necessarily in z), then C is said to be a C-IPSLIN1 refutation.

4Some parameters in the lower bound by [LST21] were subsequently improved by [BDS24] and [For24] achieves
those improved parameters.

5The subset-sum instances from [FSTW21; GHT22] are not always unsatisfiable over fields of positive character-
istic; this requires that we tweak their instances to ensure unsatisfiability. Barring these changes, we qualitatively
match their lower bounds over fields of positive characteristic.
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Finally, we say that a circuit C P C is a multilinear C-IPSLIN1 refutation if additionally Cpx,y,0q

is a multilinear polynomial in the variables x Y y.

Remark 1.2. We mostly employ the above definition in the case that m “ 1, i.e. the case when
we have a single polynomial equation that is unsatisfiable over the Boolean cube. Further, while
our upper bound results are proved in the more restrictive C-IPSLIN proof system, our lower bounds
results hold in the setting of the stronger C-IPSLIN1 proof systems.

We also recall some standard notions about polynomials and algebraic models of computation,
which will be useful below.

Multilinear and symmetric polynomials. A polynomial fpxq P Frx1, . . . , xns is a multilinear
if the individual degree is at most 1. For a polynomial fpxq, the multilinearization operator, denoted
by mlr ¨ s, changes for each variable xj and any k, every occurrence of xkj in fpxq to xj .

A polynomial fpxq P Frx1, . . . , xns is said to be a symmetric polynomial if the polynomial
remains invariant under any permutation of the input variables. For a degree parameter 0 ď d ď n,
the dth elementary symmetric polynomial en,dpx1, . . . , xnq is defined to be the following multilinear
polynomial en,dpx1, . . . , xnq “

ř

SĎrns

|S|“d

ś

iPS xi. Whenever n is clear from the context, we will

denote the dth elementary symmetric polynomial by edpxq.

Algebraic models of computation. We recall the definitions of some of the standard models
of computation relevant to our results.

Algebraic circuits and formulas. An algebraic circuit is a directed acyclic graph in which each
node either computes a sum (or a linear combination) of its inputs, or a product of its inputs. The
leaf nodes are either variables or constants. The size of an algebraic circuit is the number of edges
in the circuit, and the depth of an algebraic circuit is the longest path from the output node (a
sink) to a leaf node (a source). An algebraic formula is an algebraic circuit where the output of each
node feeds into at most another node; in other words, the underlying graph of an algebraic formula
is a tree. An algebraic formula is a multilinear formula if every gate of the formula computes a
multilinear formula.

Sparse polynomials and constant-depth circuits. The class
řś

consists of depth-2 formulas
with an addition gate in the top layer and multiplication gates in the bottom (second) layer. All
the gates have unbounded fan-in.

řś

formulas essentially compute polynomials in the sparse
representation i.e. as a sum of monomials. In general, a constant-depth algebraic circuit has Op1q

alternating layers of additional and multiplication gates.
Read-Once Oblivious Algebraic Branching Programs. A read-once oblivious algebraic branching

program in the variable-order π P Sn
6 is a directed acyclic graph whose vertices are partitioned into

n layers V0 “ tsu, V1, V2, . . . , Vn “ ttu. For each i P t1, 2, . . . , nu, there are edges directed from layer
Vi´1 to Vi that are labelled by univariate polynomials in the variable xπpiq. For each s-to-t path p,
the polynomial computed by p is defined to be product of the edge labels on p. The polynomial
computed by the roABP is defined as the sum of polynomials computed by all s-to-t paths. The
width of an roABP is max0ďiďn |Vi| i.e. the size of the largest layer of vertices.

For more background on these models of computation, please refer to one of the standard surveys
in algebraic complexity ([SY10],[Sap21]).

6Sn denotes the set of all permutation of rns.
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1.3.1 Lower Bounds Over Positive Characteristic

We start by stating our lower bound results.

Theorem 1.3 (Lower bounds for sparse-IPSLIN1 in positive characteristic). The following holds for
any large enough n. Let p be any prime number. Let k P N such that pk ą 2Ωpnq. There exist
αi P Fpk and β P Fp2kzFpk such that

• The polynomial f “
ř

iPrns αixi ´ β has no Boolean satisfying assignment.

• Any sparse-IPSLIN1 refutation7 of f must have size at least 2Ωpnq

Note that the hard instance above is a sparse polynomial. We show that it has no small sparse
refutation over positive characteristic.

Theorem 1.4 (Lower bounds for fixed-order roABP in positive characteristic). The following holds
for any large enough n. Let p be any prime number. Let k P N such that pk ą 2Ωpnq. There exist
αi P Fpk and β P Fp2kzFpk such that

• The polynomial f “
ř

iPrns αixiyi ´ β has no Boolean satisfying assignment.

• Any roABP-IPSLIN1 refutation of f in any order of variables where x variables come before y
variables, must have width 2Ωpnq.

To obtain lower bounds against more powerful models such as roABP-IPSLIN1 with respect to
any order, or multilinear formulas, [FSTW21] used a slightly modified hard instance. We also use
an instance the same as theirs up to the choice of coefficients.

Theorem 1.5 (Lower bounds for any order roABP-IPSLIN1 and multilinear-formula-IPSLIN1). The
following holds for any large enough n. Let p be any prime number. Let k P N such that pk ą 2Ωpnq.
There exist αi,j P Fpk and β P Fp2kzFpk such that

• The polynomial f “
ř

1ďiăjďn αi,jzi,jxixj ´ β has no Boolean satisfying assignment.

• Any roABP-IPSLIN1 refutation of f must have size at least 2Ωpnq.

• Moreover, any multilinear-formula-IPSLIN1 refutation of f must have size at least nΩplognq and
for ∆ “ oplog n{ log lognq, any product-depth8-∆ multilinear-formula-IPS refutation requires

size ě n
Ω
´

1
∆2 p n

logn
q1{∆

¯

.

Again notice that, f is a sparse polynomial and hence has a polynomial size roABP. It is also
efficiently computable by a multilinear formula.

In general, in Boolean proof complexity, it is typical that the hard-to-refute instances are them-
selves easy to compute. In algebraic proof complexity, there are some lower bound results that do
not have this property. That is, the instances that are hard to refute are also hard to compute.
For example, the set of results obtained by the approach of multiples in [FSTW21, Theorem 1.18,
Theorem 1.19, Theorem 1.20] and in a paper by Andrews and Forbes [AF22]. Additionally, in a

7Note that sparse-IPSLIN (a weaker system than sparse-IPSLIN1) is equivalent to the Nullstellensatz proof system
of [BIKPP96].

8The product-depth of a circuit is the maximum number of product gates appearing in any leaf-to-root path.
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recent work Hakoniemi, Limaye, and Tzameret [HLT24] presented instances that were hard to refute
for roABP-IPSLIN1 and for multilinear-formula-IPSLIN1 over any characteristics, i.e., similar to what
we prove here. However, unfortunately, their instances were hard to compute and specifically, they
could not be computed by roABP or by multilinear formulas. Hence, our result here have the best
of both the worlds; the lower bounds hold over any characteristic and the hard instances are easy
to compute.

Theorem 1.6 (Lower bounds for multilinear constant-depth-IPSLIN1 in positive characteristic).
The following holds for any large enough n. Let p be any prime and let k P N be large enough so
that pk ą 2Ωpplognq2q. There exist αi,j,k,ℓ P Fpk and β P Fp2kzFpk such that

• The polynomial f “
ř

1ďiăjăkăℓďn αi,j,k,ℓzi,j,k,ℓxixjxkxℓ ´β has no Boolean satisfying assign-
ment.

• Any multilinear constant-depth-IPSLIN1 refutation of f must have size nωp1q.

The characteristic 0 (or large characteristic) version of the above theorem was presented in [GHT22].
Their lower bound is a step towards constant-depth-IPS lower bounds. Our result above can thus
be thought of as another step forward in the right direction. Moreover, our input instance is the
same as the input instance in Theorem 1 [GHT22] up to the choice of coefficients, and it is easy
to compute (while being hard to refute). More specifically, it is computable by polynomial-sized
constant-depth multilinear formulas.

Remark 1.7. In all our results, the field characteristic is arbitrary, but the field size is quite
large, i.e., pk is either exponential or superpolynomial. This setting is non-trivial because the field
elements have polynomial bit complexity. Other results in the area, such as the work of Alekseev,
Grigoriev, Hirsch, and Tzameret [AGHT20] similarly use polynomial constraints with coefficients
from exponentially large domains. Specifically [AGHT20] study a variant of the subset sum instance,
called the Binary Value Principle,

ř

iPrns 2
i´1xi ` 1 “ 0 in the context of IPS proof systems in fields

of characteristic zero.
It is an interesting open question to prove similar IPS lower bounds over finite fields of small size.

Unfortunately, as we show below, this forces the polynomial instances to become more complicated.
See Section 1.5 for recent independent work that makes progress in this direction.

1.3.2 Upper Bounds Over Positive Characteristic

A natural question for hard instances above is: what is the weakest proof system in which they are
efficiently refutable? In personal communication, Tzameret observed that the above instances were
refutable by constant-depth-IPSLIN hence showing that these proof systems can be exponentially
more succinct than their multilinear counterpart. The theorem below shows that the above polyno-
mials have efficient constant-depth-IPSLIN refutations, even in the setting of positive characteristic.

Theorem 1.8 (Upper bounds for (non-multilinear) constant-depth-IPSLIN). Fix a prime number
p. The following holds for any natural numbers n and k.
Let f P Fpkrx1, . . . , xns be any polynomial with sparsity s and degree D with coefficients from the
field Fpk and let β be any element of FzFpk where F is a field extension of Fpk .
Then,

• The polynomial fpxq ´ β has no satisfying assignment over the Boolean cube t0, 1un

9



• There is a constant-depth-IPSLIN refutation of degree Opk ¨ p ¨ Dq and size polyps, pq.

Note that since β R Fpk , the polynomial fpxq ´ β does not have a zero over t0, 1un (in fact it
does not have a solution over Fn

pk
). So the first item of above follows immediately. We also give

non-trivial constant-depth-IPSLIN refutations for degree-1 polynomials that are unsatisfiable over
t0, 1un with all the coefficients in the same field.

Theorem 1.9 (Upper bound on degree of Nullstellensatz certificate). Fix a prime p. The following
holds for any natural numbers n and k with n ą kp.
The following holds for every α1, . . . , αn, β P Fpk . Suppose the degree-1 polynomial

řn
i“1 αixi ´ β P

Fpkrx1, . . . , xns is unsatisfiable over the Boolean cube t0, 1un (i.e. there does not exist a Boolean
point a P t0, 1un such that

řn
i“1 αiai ´ β “ 0).

Then, there is a constant-depth-IPSLIN refutation of degree Opk ¨ pq and size Opn{kpqOpkpq.

In particular, if p “ Op1q and k “ opnq, then there is a constant-depth-IPSLIN refutation of degree
opnq and size 2opnq.

Note that for degree-1 polynomials, the difference in Theorem 1.8 and Theorem 1.9 is in the constant-
term β. If every αi P Fpk and β R Fpk , then the polynomial is always unsatisfiable over t0, 1un (no
matter the choice of αi’s and β). In fact, it is unsatisfiable over Fn

p . Our proof of Theorem 1.8 lever-
ages this and yields an efficient refutation. However, if β P Fpk , then our proof of Theorem 1.8 falls
apart. We handle this separately in Theorem 1.9, but we do not match Theorem 1.8 qualitatively.
More precisely, Theorem 1.8 yields a polypn, pq-sized non-multilinear constant-depth refutations,
but Theorem 1.9 yields a roughly

`

n
k

˘

-sized non-multilinear constant-depth refutations.

Remark 1.10. Suppose the characteristic p is a fixed prime independent of the number of variables
n.

• Theorem 1.8 shows that the exponential field size in Theorem 1.3, Theorem 1.4 and Theo-
rem 1.5 is not an artifact of the proofs.9. For fields of subexponential size, the polynomials in
these theorems have refutations of degree opnq and in particular have roABP-IPSLIN refuta-
tions of size 2opnq. 10

• Theorem 1.8 also shows that the multilinearity assumption in Theorem 1.6 is not an artifact
of the proof. Non-multilinear proofs, even over large fields, allow efficient constant-depth
refutations for sparse instances.

Our final result shows a constant-depth upper bound for multilinear and symmetric systems of
polynomials, i.e. systems defined by polynomials fpx1, . . . , xnq of the form

n
ÿ

d“1

αden,d ` α0

9Suppose the field Fpk is not large enough, say, k “ opnq. Then there is a refutation of degree d “ Opk ¨ p ¨ Dq,
which is opnq when p and D are constants. In particular, the sparsity of the refutation is at most

`

n`d
d

˘

, which is
2opnq when d “ opnq.

10When the characteristic p is a growing function of n, this argument breaks down. It might be possible to get rid
of the exponential field size.
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where en,d denotes the elementary symmetric polynomial of degree d in variables x1, . . . , xn. Such
polynomial systems have been employed in [FSTW21] to prove lower bounds against restricted
systems of constant-depth-IPSLIN. Our results imply that general constant-depth circuit refutations
can be exponentially more succinct than these restricted families, even for positive characteristic.

Theorem 1.11 (Upper bounds for multilinear symmetric systems). Fix a field F. Let
f1, . . . , fm P Frx1, . . . , xns be a family of multilinear and symmetric polynomials with no common
Boolean solution i.e. there does not exist a x P t0, 1un such that each fipxq “ 0. This system has a
constant-depth-IPSLIN refutation of size Opm2n5 log nq and depth 8.

1.4 Proof Techniques

Lower bounds. Our proof uses the functional lower bound method introduced by [FSTW21],
which can be described as follows. We know that a C-IPSLIN1 refutation for fpxq consists of Apxq,
Bipxq P Frxs such that

fpxq ¨ Apxq `
ÿ

iPrns

px2i ´ xiq ¨ Bipxq “ 1,

where Apxq, B1pxq, . . . , Bnpxq belong to C. As fpxq is unsatisfiable over the Boolean hypercube,
this implies that over the Boolean hypercube, Apxq is a well-defined reciprocal of fpxq. Hence, to
show that Apxq cannot belong to C, it is enough to show that any polynomial that agrees with
1{fpxq cannot be computed by C. That is, the problem of proving a lower bound on the size of
C-IPSLIN1 is reduced to proving a functional lower bound for 1{fpxq.

At the heart of such a functional lower bound lies a degree lower bound, i.e., a lower bound on
the degree of f̃pxq, where f̃pxq and fpxq are related. In fact, fpxq is a lifted version of f̃pxq. Once
we have such a degree lower bound for f̃pxq, we can apply proof ideas from algebraic complexity
theory such as the rank-based lower bound methods. These methods allow for the degree lower
bounds for f̃pxq to be lifted to size lower bounds for fpxq.

For their machinery to work over positive characteristic, we prove a positive characteristic version
of the degree lower bound (see Lemma 2.2 for the formal statement). In the case of the lower bound
argument in [FSTW21], it was important to obtain a tight degree lower bound of exactly n. They
needed it for the next step, i.e., lifting, to work. In our case, we show that such a degree lower bound
holds with high probability (over the choice of coefficients of the hard instance). Once we have the
degree lower bound, the rest of the lower bound proof works similar to the proof by [FSTW21].

Upper bounds. We now describe the main ingredients in our upper bounds. We start by de-
scribing the main ideas in the proof of Theorem 1.8.

Constant-depth upper bounds. Here, we proceed in two steps. First, we observe that for any
sparse polynomial of degree d, we can flatten it to a linear polynomial by renaming the monomials
by fresh variables. Our hard instance is indeed sparse, hence the observation can be used to rewrite
the polynomial as a linear polynomial over a fresh set of variables.

Now, consider a linear polynomial Lpxq ´ β such that Lpxq “ α1x1 ` α2x2 ` . . . ` αnxn, where
α1, . . . , αn P Fpk for some k and prime p and β P FzFpk such that it is not satisfiable over 0-1
assignments.

11



To prove that the polynomial has a refutation over constant-depth circuits, we first prove that
for every j, Ljpxq “ αpj

1 x1`αpj

2 x2` . . .`αpj
n xn´βpj can be expressed as a multiple of Lpxq modulo

the ideal xp ´ x, which is a shorthand for the ideal generated by txpi ´ xiuiPrns.
We then observe that for j “ k, Lkpxq ´ Lpxq is a non-zero constant and use this observation

to construct small depth circuits for the refutation of Lpxq ´β. Throughout, we use some standard
but useful tricks available to positive characteristic fields.

For the proof of Theorem 1.9, we observe that the multilinear part of pfpxq ´ βq´1 has degree
Opkpq. This follows from Fermat’s Little Theorem and using basic properties about multilineariza-
tion. See Section 3.2 for complete details.

Upper bounds for symmetric polynomials Now we discuss the proof outline for Theorem 1.11.
For ease of exposition, we explain the ideas for the case of m “ 1 in Theorem 1.11, i.e. there is one
multilinear symmetric polynomial fpxq that does not have a solution over the Boolean cube t0, 1un.
Suppose F has characteristic p ą 0. Any symmetric polynomial is a polynomial of the n elementary
symmetric polynomials11 i.e. e1pxq, . . . , enpxq. However, if we restrict to the Boolean cube t0, 1un,
then any symmetric polynomial is a polynomial of just Oplog nq elementary symmetric polynomials.
Let pepxq denotes the tuple of those Oplog nq elementary symmetric polynomials (see Claim 4.2 for
an explicit description of pepxq.)

Let F pyq be the Oplog nq variate polynomial such that F pyq ˝ pepxq agrees with fpxq on the
Boolean cube t0, 1un. The Boolean cube t0, 1un is mapped to FOplognq

p under the map pepxq because
charpFq “ p. The unsatisfiability of fpxq over the Boolean cube t0, 1un implies the unsatisfiability of
F pyq over FOplognq

p . Applying Hilbert’s Nullstellensatz Theorem (see Theorem 1.19) on the unsatisfi-
ability12 of F pyq over FOplognq

p , we get a low-variate Nullstellensatz certificate (it is a Nullstellensatz
certificate in just Oplog nq variables)13. The coefficients of this low-variate Nullstellensatz certificate
can be computed via polypnq-sized constant-depth circuits. This follows from the fact that we are
working over constant characteristic. Refer to the diagram below for a schematic representation of
what we discussed so far.

t0, 1un F

FOplognq
p

fpxq

pepxq F pyq

Next we “lift” the Nullstellensatz back to the n variables px1, . . . , xnq. To do so, we plug-in
pepxq in place of y. Observe that this substitution by pepxq preserves the size and the depth of the
coefficients of the low-variate Nullstellensatz certificate because of the Ben-Or’s construction (see
Theorem 1.15).

11This follows from the Fundamental Theorem of Symmetric Polynomials.
12To capture the restriction of Fn

p , we add n univariate polynomials, each of which vanishes on one coordinate of
Fn
p .
13Loosely speaking, one can imagine this as a “dimension reduction” of our problem. The symmetric structure of

fpxq led us to convert a problem in n variables to a problem in just Oplognq variables.
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It remains to prove via constant-depth circuits that F ppepxqq agrees with fpxq on the Boolean cube,
i.e. F ppepxqq´fpxq lie in the ideal px2´xq. Here “to prove in constant-depth circuits” refers to giving
a certificate for the ideal membership whose coefficients can be computed by constant-depth circuits.
More precisely, we want to prove that there exists polynomials Bjpxq’s which have polypnq-sized
constant-depth circuits such that

F ppepxqq “ fpxq `

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq.

This is the key step in our proof. To prove this, it suffices to prove the following special case, which
we prove in Lemma 4.3.

Lemma 1.12. Let ℓ “ Oplog nq and fix an arbitrary sequence pα1, . . . , αℓq where each αi P rns.
There exist polynomials Bjpxq’s such that

ℓ
ź

i“1

eαipxq “ ml

«

ℓ
ź

i“1

eαipxq

ff

`

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq,

and each polynomial Bjpxq can be computed by a polypnq-sized constant-depth circuit.

1.5 Related Work

In an independent work, Elbaz, Govindasamy, Lu, and Tzameret [EGLT25] consider related ques-
tions. Using the recent lower bound of Forbes [For24], which proves the positive characteristic
version of the constant-depth formula lower bound of [LST21], they obtain lower bounds for frag-
ments of the IPS over finite fields of any size.

1.6 Preliminaries

In this subsection, we present a few more definitions and standard facts on polynomials which will
be used in our proofs later on.

For a polynomial fpx1, . . . , xnq, the individual degree of f is an integer D such that for all i P rns,
the degree of f when viewed as a univariate polynomial in the variable xi is at most D.
We next mention some useful properties about multilinear polynomials.

Fact 1.13 (Standard facts on multilinear polynomials). Let fpxq, gpxq P Frxs.

• fpxq and mlrfpxqs agree on the Boolean cube t0, 1un.

• fpxq and gpxq agree on the Boolean cube t0, 1un if and only if mlrfpxqs is equal to the mlrgpxqs.

• mlrfpxqgpxqs “ mlrmlrfpxqsmlrgpxqss.

Theorem 1.14 (Fundamental Theorem of Symmetric Polynomials). Fix any arbitrary field F. If
f P Frx1, . . . , xns is a symmetric polynomial of degree d, then there exists a unique polynomial
F P Fry1, . . . , yds such that fpxq “ F pe1pxq, . . . , edpxqq.

13



A classical and beautiful construction of Ben-Or shows that every elementary symmetric polynomial
can be computed by polypnq-sized constant-depth circuits.

Theorem 1.15 (Ben-Or’s construction for elementary symmetric polynomials). (See [SW01, The-
orem 5.1]). Let F be a field with |F| ą n. Then for every d P rns, the dth elementary symmetric
polynomial edpx1, . . . , xnq has a circuit of size Opn2q and depth 3 (a ΣΠΣ circuit).
More particularly, for any choice of pn`1q distinct elements γ1, . . . , γn`1 P F and for every k P rns,
there exists coefficients ck,i’s such that

ekpxq “

n`1
ÿ

i“1

ck,i

n
ź

j“1

p1 ` γixjq

The following recursive definition of elementary symmetric polynomials will be used in the proofs.

edpx1, . . . , xnq “ x1 ¨ ed´1px2, . . . , xnq ` edpx2, . . . , xnq, for all d P rns (2)

Theorem 1.16 (Polynomial Identity Lemma). (See [GRS23, Lemma 9.2.2]). Let F be an arbitrary
field. Let fpxq be a nonzero polynomial of degree at most d and let S Ď F. If we choose a „ Sn

uniformly at random, then:

Pr
a„Sn

rfpaq “ 0s ď
d

|S|

For a natural number k and variables pz1, . . . , znq, we will use pzk ´ zq to denote the following
ideal pzk ´ zq :“ pzk1 ´ z1, . . . , z

k
n ´ zkq Ď Frz1, . . . , zns. We recall the following lemma which

holds for fields with positive characteristic.

Lemma 1.17 (Freshman’s Dream). Fix a prime number p and a field F of charpFq “ p. Then
for any a, b P F, we have, pa ` bqp “ ap ` bp. More generally, for any a1, . . . , am P F, we get,
pa1 ` . . . ` amqp “ ap1 ` . . . ` apm.

Next we recall the definition of an ideal and a variety, and then we state Hilbert’s Nullstellensatz.

Definition 1.18 (Ideal and Variety). Fix any field F and consider the commutative ring Frx1, . . . , xns.
For a set of polynomials f1, . . . , fm P Frxs, the ideal generated by fi’s, denoted by pf1, . . . , fmq is
defined as:

pf1, . . . , fmq “

#

h P Frxs

ˇ

ˇ

ˇ

ˇ

ˇ

Dg1, . . . , gm P F such that h “

m
ÿ

i“1

gifi

+

.

For a set of polynomials f1, . . . , fm P F, their variety, denoted by Vpf1, . . . , fmq is a subset of the
algebraic closure of Fn, defined as:

Vpf1, . . . , fmq “
␣

a P F̄n
ˇ

ˇ f1paq “ ¨ ¨ ¨ “ fmpaq “ 0
(

.

Now we state Hilbert’s Nullstellensatz which essentially says that if a set of polynomials do not
have a common zero, then there exists “witness” for this, i.e. one can express 1 as a polynomial
combination of fi’s.
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Theorem 1.19 (Hilbert’s Nullstellensatz). Fix any field F. Let f1, . . . , fm P Frx1, . . . , xns be a
set of multivariate polynomials such that they do not have any common zeros over the algebraic
closure of F. Then the constant 1 lies in the ideal pf1pxq, . . . , fmpxqq. In other words, there exists
polynomials A1, . . . , Am P Frx1, . . . , xns such that

A1pxq ¨ f1pxq ` ¨ ¨ ¨ ` Ampxq ¨ fmpxq “ 1.

Strictly speaking, Hilbert’s Nullstellensatz guarantees that the polynomials A1
is are in Frxs (F is

the algebraic closure of F). However, the above statement also follows easily by observing that we
can solve for Ai’s by solving a system of linear equations over F. Throughout this article, we will
refer to pA1pxq, . . . , Ampxqq as a Nullstellensatz certificate14 for the system tf1pxq, . . . , fmpxqu. We
will also refer to Ai’s as coefficients because if we take a polynomial combination of fi’s with Ai’s
being the coefficients, then we can generate 1.

Lemma 1.20 (Nullstellensatz certificate implies refutations). Fix any field F. Let P1, . . . , Pm P

Frx1, . . . , xns be polynomials that have no common Boolean solution. Let the polynomials Aipxq’s
and Bjpxq’s be coefficients of the Nullstellensatz certificate, i.e.

m
ÿ

i“1

Aipxq ¨ Pipxq `

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq “ 1.

Suppose for every i P rms and for every j P rns, the polynomials Aipxq and Bjpxq have a circuit
of size s and depth ∆, then there exists a IPS proof for the system tP1, . . . , Pru of size Opsmq and
depth ∆ ` 2.

Proof of Lemma 1.20. Define the circuit Cpx,y, zq as follows:

Cpx,y, zq “

m
ÿ

i“1

Aipxq ¨ yi `

n
ÿ

j“1

Bjpxq ¨ zj

Clearly Cpx,0,0q “ 0 and Cpx, f1, . . . , fm, x21 ´ x1, . . . , x
2
n ´ xnq “ 1. It is easy to verify the size

and depth parameters of Cpx,y, zq. ■

Lemma 1.20 allows us to restrict our attention to finding an efficient (in terms of algebraic
complexity) Nullstellensatz certificate, which yields a short IPS-proof.

2 Lower Bounds in Large Fields of Positive Characteristic

In this section, we will prove size lower bounds for several fragments of IPS over positive character-
istic. As explained in Section 1.3.1, we start by proving a tight degree lower bound (Lemma 2.2)
over positive characteristic. Using our positive characteristic variant of the degree lower bound, we
then recover the lower bound results from [FSTW21] and [GHT22] over positive characteristic.

14There are infinitely many Nullstellensatz certificates for a system tf1, . . . , fmu. To see this, suppose m “ 2
and let pA1, A2q be a Nullstellensatz certificate. Then for any polynomial g P Frxs, pA1 ` gf2, A2 ´ gf1q is also a
Nullstellensatz certificate.
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2.1 Degree Lower Bound for Arbitrary Characteristic

For any a P t0, 1un, we use |a| to denote its Hamming weight. For any a “ pa1, . . . , anq P t0, 1un

and any subset of indices S Ď rns, we use aS to denote
ś

iPS ai. All the statements in this section
work over fields of arbitrary characteristic.

First, we state a standard fact about multilinear polynomials, which will be useful in the main
lemma.

Fact 2.1. Let fpxq “
ř

SĎrns λSxS be a multilinear polynomial on n variables. Then,

λrns “
ÿ

aPt0,1un

p´1q|a|fpaq

The next lemma is our main degree lower bound which shows that a multilinear polynomial for
the inverse of a random linear form will have maximal degree. While similar statements have been
observed in the literature (e.g. [Gri98, Proposition 2]), we give an explicit proof for the sake of
completeness.

Lemma 2.2. Let F and F1 be fields such that F is a strict subfield of F1. Let n P N be a natural
number and let x denote the tuple of variables px1, . . . , xnq. Fix any β P F1zF. For any α “

pα1, . . . , αnq P Fn, let fαpxq be the unique multilinear polynomial that agrees with the function

1
řn

i“1 αixi ´ β

on the Boolean cube t0, 1un. Let S Ď F be any finite subset of the field. Then, for a uniformly
random α „ Sn:

Pr
α„Sn

rdeg fαpxq “ ns ě 1 ´
2n ´ 1

|S|

Proof. By Fact 2.1, the coefficient of xrns in fαpxq is
ř

aPt0,1unp´1q|a|fαpaq, or equivalently,

ÿ

V Ďrns

p´1q|V | 1

p
ř

iPV αiq ´ β

Based on the above expression, we define the rational function λrnspzq as follows.

λrnspzq :“
ÿ

V Ďrns

p´1q|V | 1

p
ř

iPV ziq ´ β

We will use Npzq and Dpzq to denote the numerator and denominator of λrnspzq. For any S Ď rns,
we will use LSpzq to denote

ř

iPS zi. It follows that

Npzq “
ÿ

V Ďrns

p´1q|V |
ź

TĎrns:T‰V

pLT pzq ´ βq

Dpzq “
ź

V Ďrns

pLV pzq ´ βq

Since β P F1zF, Dpαq ‰ 0 for any α P F. If we prove that Npzq is a non-zero polynomial, then by
the Polynomial Identity Lemma (Theorem 1.16), for any finite subset S Ď F, Prα„SnrNpαq ‰ 0s ě
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1 ´ 2n´1
|S|

, which implies that Prα„Snrλrnspαq ‰ 0s ě 1 ´ 2n´1
|S|

, and thus proves the theorem. Thus,
it is enough to prove that some monomial in Npzq has non-zero coefficient.

For V ‰ H,
ś

TĎrns:T‰V pLT pzq ´ βq has degree at most 2n ´2 since LHpzq ´β will not increase
the degree. The term

ś

T‰HpLT pzq ´ βq syntactically contributes monomials of degree 2n ´ 1 from
ś

T‰H LT pzq , but is possible that these coefficients vanish if the field F is of positive characteristic.
We will show that there is a monomial of degree 2n ´ 1 with coefficient 1, and thus this monomial
will survive over any field.

Claim 2.3. The coefficient of the monomial15 śn
i“1 z

2i´1

i in
ś

T‰HpLT pzq ´ βq is 1.

Proof sketch. We would like to count the number of ways of collecting variables from each LT pzq

to construct the required monomial. We first observe (via a simple counting argument) that for
every i P rns, the number of subsets T Ď rns such that tj P rns : j ą iu X T “ H, and i P T , is
2i´1. Moreover, for each i P rns, if Ti is the collection of subsets with the above properties, then we
observe that Ti X Tj “ H for all i ‰ j, i P rns, j P rns.

With these observations, it inductively follows that for each i P rns, conditioned on the degree
of variables zn, . . . , zi`1 being correct (i.e. z2

j´1

j ), there is exactly one way of ensuring that the
degree of zi is 2i´1: for each T that is one of the 2i´1 subsets satisfying the properties of the above
observation, select the zi’s from LT pzq. ■

■

Note that Lemma 2.2 is interesting only when the field size is large (at least 2n), and that will be
the case for subsequent lemmas as well. The next lemma proves a stronger version of the previous
lemma: for a random linear form, the inverse of every restriction of the linear form (by setting some
variables to 0) will have maximal degree.

Lemma 2.4. Let F and F1 be fields such that F is a strict subfield of F1. Let n P N be a natural
number and let x denote the tuple of variables px1, . . . , xnq. Fix any β P F1zF. For any H ‰ U Ď rns,
let fα,U pxq be the unique multilinear polynomial that agrees with the function

1
ř

iPU αixi ´ β

on the Boolean cube t0, 1un. Let S Ď F be a finite subset of the field. Then, for an α „ Sn chosen
uniformly at random:

Pr
α„Sn

rD a non-empty U Ď rns : deg fα,U pxq ă |U |s ď
ÿ

H‰UĎrns

2|U | ´ 1

|S|
ă

22n

|S|

In particular, with probability at least 1 ´ p22n{|S|q over the choice of α „ Sn, for every U Ď rns,
the leading monomial of fα,U pxq is c ¨

ś

iPU xi for some c P Fzt0u.

Proof. This lemma is a simple application of union bound with the previous lemma. The previous
lemma tells us that for a uniformly random α „ Sn and any U Ď rns,

Pr
α„Sn

rdeg fα,U pxq ă |U |s ď
2|U | ´ 1

|S|

Union bound over all U Ď rns gives us the required statement. ■
15The same proof works for any monomial

śn
i“1 z

2i´1

σpiq , where σ is an arbitrary permutation on rns.
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2.2 Sparse-IPSLIN1 Lower Bound

The following claim from [FSTW21] proves a lower bound against sparse-IPSLIN1 over fields of large
characteristic.

Proposition 2.5 (Sparsity lower bound (Proposition 5.6 [FSTW21])). Let n ě 8. Let F be a field
of characteristic ą n. Let β P Fzt0, . . . , nu. Suppose fpxq be a polynomial such that

fpxq ¨

˜

n
ÿ

i“1

xi ´ β

¸

” 1
`

x2 ´ x
˘

where
`

x2 ´ x
˘

denotes the ideal px21 ´x1, . . . , x
2
n ´xnq. Then, the sparsity of fpxq is at least 2

n
4

´1.

The proof uses two observations.

1. ([FSTW21, Lemma 5.5]) If fpxq has sparsity s, then a random restriction ρ will ensure that
degpρpfqq ď logpsq ` 1 with reasonable probability.

2. (Chernoff bound) A random restriction ρ will keep at least n{4 variables alive with reasonable
probability.

By a union bound, we can find a random restriction ρ that ensures that the degree of ρpfq is at
most logpsq `1 but at least n{4 variables survive ρ. In particular, ρp

ř

iPrns xi ´βq “
ř

iPS xi ´β for
some S Ď rns with |S| ě n{4. But the degree lower bound in [FSTW21] tells us that the inverse of
ř

iPS xi ´ β on the Boolean cube must have degree ě |S|. Combining the above observations with
the degree lower bound, we get that n{4 ď logpsq ` 1 or s ě 2n{4´1.

The only part of the proof that requires charF ą n is the degree lower bound; the two observa-
tions work over all fields. Thus, we can replace their degree lower bound with Lemma 2.4 to recover
the sparsity lower bound over large enough fields of arbitrary characteristic.

Theorem 2.6. Let n ě 8. Let p P N be any prime. Let F̃ be a field of characteristic p and size p2k,
where k is the smallest integer that satisfies pk ą 22n. Let β be an arbitrary element in F̃zF, where
F denotes the subfield of size pk. For any α P Fn, let fαpxq be a polynomial which agrees with

1
ř

iPrns αixi ´ β

on the Boolean cube. Then there exists an α P Fn such that fα has sparsity ě 2Ωpnq

2.3 roABP ´ IPSLIN1 Lower Bound

Lemma 2.4 tells us that for a random choice of coefficients α and any U Ď rns, the inverse of
řn

iPU αixi ´ β has degree |U | over the Boolean cube. The authors of [FSTW21] “lift” such maximal
degree lower bounds to construct a polynomial P pxq such that any roABP that computes (in any
order of variables) the inverse of P pxq over the Boolean cube requires exponential size. A high-level
overview of their proof is as follows.

1. The optimal width of an roABP computing a polynomial g is captured exactly by the coeffi-
cient dimension16 of g.

16These notions are defined with respect to a certain partition of the variables and any order of variables that is
consistent with the specified partition.
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2. The coefficient dimension of a polynomial g is at least as large as the evaluation dimension of
g.

3. For fpx,yq :“
ř

iPrns xiyi ´ β, evaluations of f on y P t0, 1un will be fSpxq “
ř

iPS xi ´ β for
various S Ď rns.

4. By the degree lower bound in [FSTW21], any multilinear polynomial computing the inverse
of fS over the Boolean cube must have degree |S|. This eventually implies that the evaluation
space of gpx,yq :“ 1

fpx,yq
over y P t0, 1un will contain all the multilinear monomials on x

variables. In particular, the evaluation dimension17 of g is at least 2n, and thus, any roABP
computing g must have width ě 2n.

The only part of their proof that requires a restriction on the characteristic of the underlying field
is the degree lower bound. The rest of their proof works with the degree lower bound in Lemma 2.4.
In the rest of this section, we state the final theorems that follow using our degree lower bound in
the proofs of [FSTW21]. For more details, we recommend the reader to refer to the appendix as
well as [FSTW21].

Theorem 2.7 (Functional lower bound against roABP in a fixed order of variables). Let n P N.
Let p P N be any prime. Let F̃ be a field of characteristic p and size p2k, where k is the smallest
integer that satisfies pk ą 22n. Let β be an arbitrary element in F̃zF, where F denotes the subfield
of size pk. For any α P Fn, let fαpx,yq be a polynomial which agrees with

1
ř

iPrns αixiyi ´ β

on the Boolean cube. Then there exists an α P Fn such that any roABP that computes fα in any
order of variables where x precedes y requires width ě 2n.

Theorem 2.8 (Functional lower bound against roABP in any order of variables). Let n P N. Let
p P N be any prime. Let F̃ be a field of characteristic p and size p2k, where k is the smallest integer
that satisfies pk ą

`

2n
n

˘

22n. Let β be an arbitrary element in F̃zF, where F denotes the subfield of
size pk. For any α P Fp2n2 q, let fαpx “ pxiq

2n
i“1, z “ pzi,jqi,jPrnsq be a polynomial which agrees with

1
ř

iăj αi,jzi,jxixj ´ β

on the Boolean cube. Then there exists an α P Fp2n2 q such that any roABP that computes fα in any
order of variables requires size ě 2n.

2.4 Multilinear-formula-IPS Lower Bound

Lower bounds against multilinear-formula-IPS follow from a coefficient dimension lower bound (see
Lemma A.10) and the following theorem of Raz and Yehudayoff that connects multilinear formula
size to coefficient dimension. Here, we present the version from [FSTW21, Theorem 3.13].

17Again, the order of variables will be important here, but one can also construct a polynomial which works against
roABPs in any order of variables.
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Theorem 2.9 (Raz-Yehudayoff [RY09][Raz09]). Let f P Frx1, . . . , x2n, zs be a multilinear polyno-
mial and let fz denote the polynomial f over the ring Frzs. Suppose for any balanced partition pu,vq

of x “ px1, . . . , x2nq:
dimFpzq Coeffu|vpfzq ě 2n

Then any multilinear formula for f requires size ě nΩplognq, and for ∆ “ oplog n{ log log nq, any

product-depth-∆ multilinear formula computing f will require size ě n
Ω
´

1
∆2 p n

logn
q1{∆

¯

.

Theorem 2.10 (Functional lower bounds against multilinear formula). Let n P N. Let p P N be
any prime. Let Fp2k be a field of characteristic p and size p2k, where k is the smallest integer that
satisfies pk ą

`

2n
n

˘

22n. Let β be an arbitrary element in Fp2kzF, where F denotes the subfield of size

pk. For any α P Fp2nn q, let fαpx “ pxiq
2n
i“1, z “ pzi,jqi,jPrnsq be a polynomial which agrees with

1
ř

iăj αi,jzi,jxixj ´ β

on the Boolean cube. There exists an α P Fp2nn q such that any multilinear-formula computing fα
requires size ě nΩplognq and for ∆ “ oplog n{ log log nq, any product-depth-∆ multilinear-formula

computing fα requires size ě n
Ω
´

1
∆2 p n

logn
q1{∆

¯

.

While this immediately implies multilinear-formula-IPSLIN1 lower bounds, one can observe (as
noted in Lemma 5.2 of [FSTW21]) that any multilinear-formula-IPS refutation, by multilinearity, is
a multilinear-formula-IPSLIN1 refutation. Thus, the lower bounds work against multilinear-formula-
IPS.

2.5 Constant-depth Multilinear IPSLIN1 Lower Bound

In [GHT22], Govindasamy, Hakoniemi, and Tzameret prove super polynomial lower bounds against
constant-depth multilinear IPSLIN1 refutations of the subset sum variant

ÿ

i,j,k,lPrns

zi,j,k,lxixjxkxl ´ β

In particular, they prove the following theorem.

Theorem 2.11 (Constant-depth functional lower bounds [GHT22]). Let n,∆ P N` with ∆ ď

Oplog log log nq and assume that charpFq “ 0. Let f be the multilinear polynomial such that

f “
1

ř

i,j,k,lPrns zi,j,k,lxixjxkxl ´ β

over the Boolean cube. Then, any circuit of product-depth ∆ computing f has size at least

nplognqexpp´Op∆qq

We prove the same statement for large fields of arbitrary characteristic. Our proof exactly
follows the structure of [GHT22]. Their proof requires the charF “ 0 condition for two reasons:
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1. They use the results of Limaye, Srinivasan, and Tavenas [LST21], which gave superpolynomial
lower bounds against constant-depth circuits over any field F with charpFq “ 0 or greater than
the degree d of the hard polynomial. In particular, they use the result that over fields with
charpFq “ 0 or greater than d, any low-degree set-multilinear polynomial computed by a
constant-depth circuit can also be computed by a set-multilinear constant-depth circuit.18

2. They use the degree lower bound for the multilinear representation of 1{p
ř

iPrns xi´βq, proved
by Forbes, Shpilka, Tzameret, and Wigderson [FSTW21].

To deal with the first requirement, we use the recent beautiful result of Forbes [For24], which
extends the results of [LST21] to arbitrary fields. In particular, we will use the following statement
from [For24], which says that the set-multilinear projection of a constant-depth circuit can be
efficiently computed by a constant-depth circuit over arbitrary fields.

Theorem 2.12. [For24, Corollary 27]. Let F be an arbitrary field. Let x “ x1 \ x2 \ ¨ ¨ ¨ \ xd be
a partition of the variables x. Suppose f can be computed by a size s product-depth ∆ arithmetic
circuit. Then the set-multilinear projection of f (the restriction of f to monomials that are set-
multilinear with respect to the specified partition) can be computed by a size polyps,Θp d

log dqdq-size
circuit of product-depth 2∆.

To deal with the second requirement, we use our degree lower bound from Lemma 2.4, which
works for arbitrary fields of exponential size i.e. there is no restriction on the characteristic of the
field.

Overview of [GHT22]

1. Using the word polynomials framework of [LST21], construct a knapsack polynomial ksw (for
a partition given by a word w P Zd) with the property that the set-multilinear projection
of 1

ksw
over the Boolean cube requires superpolynomially large set-multilinear constant-depth

circuits.

2. Consider a degree-4 subset-sum variant fpz,xq :“
ř

i,j,k,l zi,j,k,lxixjxkxl ´ β so that for the
word w P Zd that will be used to instantiate the previous point, there exists an assignment of
some of the variables in z, x that maps fpz,xq to ksw (upto a renaming of variables).

3. If there is a multilinear polynomial computing 1{fpz,xq over t0, 1un that has a small constant-
depth circuit, then there is a multilinear polynomial computing 1{ ksw over t0, 1un that has
a small constant-depth circuit. Moreover by the set-multilinearization of [LST21], there is a
small set-multilinear constant-depth circuit computing the set-multilinear projection of 1{ ksw.

4. Combining the first point with the contrapositive of the third point, conclude that any multi-
linear polynomial computing 1{fpz,xq over t0, 1un requires superpolynomially large constant-
depth circuits. The multilinear constant-depth IPSLIN1 lower bound follows.

In [GHT22], the proof for the hardness of 1
ksw

requires the underlying field to be of large charac-
teristic, essentially because it requires the degree lower bound from [FSTW21], which requires large

18They also use other ideas from [LST21] such as relative rank, word polynomial, etc., but those ideas do not
require any restrictions on the characteristic of the underlying field.
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characteristic. To make Theorem 2.11 work over fields of positive characteristic, we will employ
our degree lower bound from Lemma 2.4 with a variant of the knapsack polynomial; the rest of the
proof remains the same as that of Theorem 2.11. To provide the necessary details, we first describe
the construction of the knapsack polynomial. Then, we state the particular claim from [GHT22]
that uses the degree lower bound from [FSTW21]. Finally, we show how our degree lower bound
Lemma 2.4 fits into the rest of the proof.

Constructing the knapsack polynomial We shall now recall the definitions required for defin-
ing the hard polynomial in [GHT22] via the word polynomials template of [LST21].

Let w P Zd be an arbitrary word. For any S Ď rds, let w|S denote the subword of w indexed
by the set S. Consider the sequence Xpwq “ pXpw1q, . . . , Xpwdqq of sets of variables. Define the
positive indices and negative indices of w as:

Pw :“ ti P rds : wi ě 0u

Nw :“ ti P rds : wi ă 0u

Let any i P Pw, the variables of Xpwiq will be of the form x
piq
σ , where σ is a binary string indexed

by the set:

A
piq
w :“

»

—

—

–

ÿ

i1PPw
i1ăi

wi1 ` 1,
ÿ

i1PPw
i1ďi

wi1

fi

ffi

ffi

fl

We will call these sets positive indexing sets. The size of each A
piq
w is |wi|. The number of strings in

A
piq
w is 2|wi|.

For i P Nw, we similarly define the negative indexing sets B
piq
w that will be used to index the variables

of Xpwiq for i P Nw.
A word w P Zd is balanced if:

• @i P Pw Dj P Nw such that A
piq
w X B

pjq
w ‰ H (i.e. j P Nw is a witness that w is balanced at

i P Pw)

• @j P Nw Di P Pw such that A
piq
w X B

pjq
w ‰ H (i.e. i P Pw is a witness that w is balanced at

j P Nw)

For any i P Pw, σ P t0, 1uA
piq
w , define:

f piq
σ :“

ź

jPNw

A
piq
w XB

pjq
w ‰H

ÿ

σjPt0,1uB
pjq
w

σjpkq“σpkq@kPA
piq
w XB

pjq
w

ypjq
σj

(3)

The product ranges over each j P Nw that witnesses the fact that w is balanced at i. The sum
ranges over each σj that is consistent with σ on A

piq
w XB

pjq
w . Now, we define the knapsack polynomial

as

ksw :“

¨

˚

˝

ÿ

iPPw

ÿ

σPt0,1uA
piq
w

xpiq
σ f piq

σ

˛

‹

‚

´ β (4)
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where β P F is any field element such that ksw has no Boolean roots.
To make the proof work over fields of positive characteristic, we define a variant of ksw as:

ksw,α :“

¨

˚

˝

ÿ

iPPw

αi

ÿ

σPt0,1uA
piq
w

xpiq
σ f piq

σ

˛

‹

‚

´ β (5)

where α “ pαiqiPPw P F|Pw|, and β will be chosen from an extension field F̃ Ą F so that ksw,α has
no Boolean roots.

For any word w P Zd, Mwpfq denotes the matrix with rows indexed by all monomials m that
are set-multilinear over w|Pw , and columns indexed by all monomials m1 that are set-multilinear
over w|Nw . For each such pair of monomials pm,m1q, the corresponding entry in Mwpfq carries the
coefficient of mm1 in f . To show that the set-multilinear projection of any multilinear polynomial
f computing 1{ ksw over t0, 1un requires superpolynomially large set-multilinear constant-depth
circuits, [GHT22] shows that Mwpfq is full-rank.

Lemma 2.13 (Rank lower bound lemma (Lemma 6 [GHT22])). Let w P Zd be a balanced word,
and let f be the multilinear polynomial such that

f “
1

ksw

over t0, 1un. Then, Mwpfq is full-rank.

With this lemma, the lower bound follows via the arguments from [LST21]. Importantly for us,
this lemma uses the degree lower bound from [FSTW21]; we describe a sketch of the same.

The use of degree lower bound in [GHT22] Suppose f “
ř

m gmpxqm, where the sum runs
over all multilinear monomials m in the y variables, and gmpxq is some multilinear polynomial in
the x variables. They show that for any m which is set-multilinear on w|Nw , the leading monomial
of gmpxq is the set-multilinear monomial m1 on positive variables such that σpm1q is consistent with
σpmq ([GHT22] describes this formally). For each monomial m that is set-multilinear on w|Nw ,
the leading monomial of gmpxq turns out to be a different set-multilinear monomial on the positive
variables, and together, these leading monomials span the space of all set-multilinear monomials
on the positive variables. This makes Mwpfq full-rank. To get a handle on gmpxq (for m being a
monomial on w|Nw , consisting only of y variables), [GHT22] sets all the variables in m to 1 and all
the y variables outside m to 0. They call this transformation τm. For the proof of Lemma 2.13, an
important requirement is that:

For every T Ď Nw and for every set-multilinear monomial m on w|T , the leading mono-
mial of τmpfq is

ś

iPUT
x

piq
σi , which is the product of all the variables that show up in the

denominator of
1

τmpkswq
“

1
ř

iPUT
x

piq
σpiq ´ β

where UT “ ti P Pw : A
piq
w Ď BT

wu, and for each i P Pw, σpiq is the unique indexing
string that agrees with σpmq on A

piq
w , the ith positive indexing set.
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This requirement is satisfied due to the degree lower bound from [FSTW21], which requires the field
to be of characteristic 0. The proof in [GHT22] includes helpful figures and the reader is encouraged
to refer to the paper.
Let us recall our variant of ksw:

ksw,α :“

¨

˚

˝

ÿ

iPPw

αi

ÿ

σPt0,1uA
piq
w

xpiq
σ fσi

˛

‹

‚

´ β (6)

where α “ pαiqiPPw P F|Pw|. To prove Theorem 2.11 in positive characteristic, we use the following
lemma that follows by a union bound over all T Ď Nw and all set-multilinear monomials on w|T ,
on top of Lemma 2.2.

Lemma 2.14. Let d P N be a natural number and w P Zd be a balanced word. Let m “ |Pw|. For
any α “ pα1, . . . , αmq P Fm, T Ď Nw and any mT that is a set-multilinear monomial on w|T , let
fα,T,mT

pxq be the unique multilinear polynomial that agrees with the function

τmT

ˆ

1

ksw,α

˙

“
1

ř

iPUT
αix

piq
σpiq ´ β

on the Boolean cube, where β P F is chosen so that ksw,α has no Boolean roots, and UT “ ti P Pw :

A
piq
w Ď BT

wu. Let S Ď F be a finite subset of the field. Let γ :“ |Nw| `
ř

iPNw
|wi|. Then, for an

α P Sm chosen uniformly at random:

Pr
α„Sm

rDT Ď Nw,mT : deg fα,T,mT
pxq ă |UT |s ă

2γ`m

|S|

In particular, with probability at least 1 ´ p2γ`m{|S|q over the choice of α P Sm, for every choice
of T Ď Nw and set-multilinear monomial mT over w|T , the leading monomial of fα,T,mT

pxq is
c ¨

ś

iPUT
x

piq
σi for some c P Fzt0u.

Proof. The number of T Ď Nw is 2|Nw|. The number of set-multilinear monomials on w|T for
any T Ď Nw is 2

ř

iPT |wi|, which is at most 2
ř

iPNw
|wi| . For any fixed T Ď Nw and mT that is

a set-multilinear monomial on w|T , Lemma 2.2 implies that for an α P Sm chosen uniformly at
random:

Pr
αPSm

rdeg fα,T,mT
pxq ă |UT |s ă

2m

|S|

Applying a union bound over all T Ď Nw and mT implies that for an α P Sm chosen uniformly at
random:

Pr
αPSm

rDT Ď Nw,mT : deg fα,T,mT
pxq ă |UT |s ă

ÿ

TĎNw,mT

2m

|S|
ď

2γ`m

|S|

■

With this lemma, the rest of the proof of [GHT22] works out verbatim. We state the final
theorem, which is a version of Theorem 2.11 for finite fields of positive characteristic.
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Theorem 2.15 ([GHT22] over positive characteristic). Let n,∆ P N` with ∆ ď Oplog log log nq.
Let p P N be any prime. Let F̃ be a field of characteristic p and size p2k, where k is the smallest
integer that satisfies pk ą 2Cplognq2 for an absolute constant19 C ě 1. Let β be an arbitrary element
in F̃zF, where F denotes the subfield of size pk. For any α P Fn4, Let fα be the multilinear polynomial
such that

f “
1

ř

i,j,k,lPrns αi,j,k,lzi,j,k,lxixjxkxl ´ β

over the Boolean cube. Then, there exists an α P Fn4 such that any circuit of product-depth ∆
computing fα has size at least

nplognqexpp´Op∆qq

The reason for |F| ą 2Ωpplognq2q in Theorem 2.15 : When we instantiate Lemma 2.14 inside
the proof of Theorem 2.15, the parameter d, which is the number of variable sets, will be Oplog nq,
and the word w P Zd will also be chosen so that for each i P rds, |wi| ď Oplog nq. Thus,

ř

iPNw
|wi| “

Opplog nq2q, and fighting the union bound in Lemma 2.14 will require the field to be larger than
2Opplognq2q.

3 Non-multilinear Upper Bounds

3.1 Proof of Theorem 1.8

In this section, we prove Theorem 1.8. We start by proving it for a restricted setting when the
polynomial fpxq is a degree-1 polynomial. In particular, we prove Theorem 3.1, stated below.

Theorem 3.1 (Upper bounds for (non-multilinear) constant-depth-IPSLIN in positive characteris-
tic). Fix a prime number p. The following holds for any natural numbers n and k.
Let L P Frx1, . . . , xns be a degree-1 polynomial with coefficients from the Fpk and let β be any element
of FzFpk where F is a field extension of Fpk .
Then,

• The polynomial Lpxq ´ β has no satisfying assignment over the Boolean cube t0, 1un

• There is a constant-depth-IPSLIN refutation of degree Opk ¨ pq and size Opk ¨ npq.

Over fields of large enough characteristic, [FSTW21, Proposition 4.15] showed that Lpxq ´ β has a
constant-depth multilinear -IPSLIN refutation of size that depends on the number of possible values
Lpxq could take over t0, 1un. Theorem 3.1 shows that if we allow non-multilinear IPSLIN refutation,
then the circuit size is small.

Proof of Theorem 3.1. Firstly, since the coefficients of the polynomial Lpxq are in the field Fpk ,
Lpxq cannot be equal to β R Fpk for any x P t0, 1un. In other words, Lpxq ´ β has no satisfying
assignment over the Boolean cube t0, 1un.
To show the existence of a low-degree constant-depth-IPSLIN refutation, we will use Lemma 1.20. In

19This C is a fixed constant that depends on the exact choice of parameters in the proof of [GHT22]
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particular, Lemma 1.20 says that it is sufficient to prove that there exists polynomials Apxq, B1pxq, . . . , Bnpxq

such that

Apxq ¨ pLpxq ´ βq `

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq “ 1,

where Apxq, B1pxq, . . . , Bnpxq are low-degree polynomials and have constant-depth circuits of size
polypnq.

Without loss of generality, we can assume that Lpxq is a homogeneous degree-1 polynomial20

because of the following reason. If Lpxq has a non-zero constant term α0 P Fpk , then we can work
with pα0 ` βq P FzFpk , instead of β P FzFpk .

Suppose Lpxq “ α1x1 ` ¨ ¨ ¨ `αnxn, where for each i P rns, the coefficient αi P Fpk . For any natural
number 0 ď j ď k, we define Ljpxq to be the following degree-1 polynomial:

Ljpxq :“ αpj

1 x1 ` ¨ ¨ ¨ ` αpj

n xn ´ βpj

In the above notation, L0pxq “ Lpxq ´ β. The next claim shows that we can express Ljpxq as a
multiple of L0pxq modulo the ideal21 pxp ´ xq.

Claim 3.2. For every j P rks, there exists polynomials Ajpxq, Bj,1pxq, . . . , Bj,npxq such that:

Ljpxq “ Ajpxq ¨ L0pxq `

n
ÿ

i“1

Bj,ipxq ¨ pxpi ´ xiq,

where each polynomial Ajpxq, Bj,1pxq, . . . , Bj,npxq

• The polynomial Ajpxq is a degree-Opj ¨ pq polynomial and has a circuit of size Opj ¨ pn ` pqq

and depth 2.

• For each j P rns, the polynomial Bjpxq is a degree-Opj ¨pq polynomial and has a circuit of size
Opj ¨ np ` j2q and depth 3.

Proof of Claim 3.2. The proof is via induction on j.

Base case (j “ 1): As we are working over a field F of characteristic p, we have:

L0pxqp “

˜

n
ÿ

i“1

αixi ´ β

¸p

“

n
ÿ

i“1

αpxpi ´ βp pUsing Lemma 1.17q

ñ L0pxqp “

˜

n
ÿ

i“1

αp
i xi ´ βp

¸

looooooooomooooooooon

“L1pxq

`

n
ÿ

i“1

αp
i ¨ pxpi ´ xiq pAdding and subtracting termsq

20For the sake of less cumbersome notation
21Recall that pxp

´ xq “ pxp
1 ´ x1, . . . , x

p
n ´ xnq
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ñ L1pxq “ L0pxqp´1
loooomoooon

:“A1pxq

¨L0pxq `

n
ÿ

i“1

B1,ipxq ¨ pxpi ´ xiq,

where

• A1pxq “ L0pxqp´1 has a circuit of size Opnpq and depth 2 (a ΠΣ circuit). Additionally, A1pxq

is a degree-Oppq polynomial.

• For each i P rns, B1,ipxq “ ´αp
i has a circuit of size Op1q and depth 1. Additionally, B1,ipxq

is a constant, so has degree-0.

Induction step: Now assume the induction hypothesis is true for some 1 ď j ă k. Proceeding
similarly to the base case, we have,

Ljpxqp “

˜

n
ÿ

i“1

αpj

i xi ´ βpj

¸p

“

n
ÿ

i“1

αpj`1
xpi ´ βpj`1

pUsing Lemma 1.17q

ñ Ljpxqp “

˜

n
ÿ

i“1

αpj`1

i xi ´ βpj`1

¸

looooooooooooomooooooooooooon

:“Lj`1pxq

`

n
ÿ

i“1

αpj`1

i ¨ pxpi ´ xiq pAdding and subtracting termsq

ñ Lj`1pxq “ Ljpxq ¨ Ljpxqp´1 `

n
ÿ

i“1

p´αpj`1

i q ¨ pxpi ´ xiq (7)

Using the induction hypothesis, we know there exists polynomials Ajpxq, Bj,1pxq, . . . , Bj,npxq such
that

Ljpxq “ Ajpxq ¨ L0pxq `

n
ÿ

i“1

Bj,ipxq ¨ pxpi ´ xiq,

where the polynomials satisfy the size constraints as stated in Claim 3.2. Substituting this in
Equation (7), we get,

Lj`1pxq “

˜

Ajpxq ¨ L0pxq `

n
ÿ

i“1

Bj,ipxq ¨ pxpi ´ xiq

¸

¨ Ljpxqp´1 `

n
ÿ

i“1

p´αpj`1

i q ¨ pxpi ´ xiq

ñ Lj`1pxq “ pAjpxq ¨ Ljpxqp´1q
loooooooooomoooooooooon

:“Aj`1pxq

¨L0pxq `

n
ÿ

i“1

pBj,ipxqLjpxqp´1 ´ αpj`1

i q
loooooooooooooooomoooooooooooooooon

:“Bj`1,ipxq

¨ pxpi ´ xiq

Now,

• The polynomial Aj`1pxq has a circuit of size Oppj ` 1q ¨ npq and depth 2 (note that Ajpxq

is a product of powers of linear polynomials). Additionally, Aj`1pxq is a degree-ppj ` 1q ¨ pq

polynomial.
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• For every i P rns, the polynomial Bj`1,ipxq has a circuit of size Oppj ` 1q ¨ np ` pj ` 1q2q and
depth 3 (note that Bjpxq is a ΣΠΣ circuit). Additionally, Bj`1,ipxq is a degree-Oppj ` 1q ¨ pq

polynomial.

This finishes the induction and also the proof of Claim 3.2. ■

So far in Claim 3.2, we have shown that the linear polynomial Lkpxq is a multiple of the linear
polynomial L0pxq modulo the ideal pxp ´xq. Next we use the fact that β R Fpk to show that Lkpxq

and L0pxq differ by a non-zero constant.

Observation 3.3. The polynomial Lkpxq´L0pxq is a non-zero constant polynomial. This is because
αpk

i “ αi (since αi P Fpk) and on the other hand, βpk ‰ β.

Claim 3.2 gives us that there exists polynomials Akpxq, Bk,1pxq, . . . , Bk,npxq satisfying:

Lkpxq “ Akpxq ¨ L0pxq `

n
ÿ

i“1

Bk,ipxq ¨ pxpi ´ xiq

ñ Lkpxq ´ L0pxq “ pAkpxq ´ 1q ¨ L0pxq `

n
ÿ

i“1

Bk,ipxq ¨ pxpi ´ xiq

ñ
pAkpxq ´ 1q

βpk ´ β
¨ L0pxq `

n
ÿ

i“1

Bk,ipxq

βpk ´ β
¨ pxpi ´ xiq “ 1, (8)

where in the final implication we used that Lkpxq ´ L0pxq “ βk ´ β is a non-zero constant. For
each i P rns, the polynomial pxpi ´ xiq is a multiple of px2i ´ xiq because:

xpi ´ xi “ pxp´2
i ` ¨ ¨ ¨ ` xi ` 1q ¨ px2i ´ xiq

Substituting it back in Equation (8), we get,

pAkpxq ´ 1q

βpk ´ β
loooooomoooooon

:“Apxq

¨L0pxq `

n
ÿ

i“1

ˆ

Bk,ipxq

βpk ´ β
¨ pxp´2

i ` ¨ ¨ ¨ ` xi ` 1q

˙

loooooooooooooooooooooomoooooooooooooooooooooon

:“Bipxq

¨px2i ´ xiq “ 1

Degree and Size Analysis We define Apxq and Bipxq as follows:

• Claim 3.2 says that Akpxq is a degree-Opkpq polynomial and is computable by circuit of size
Opkpn ` pqq and depth 2 (a ΠΣ circuit). Hence Apxq is a degree-Opkpq polynomial and is
computable by a circuit of size Opkpn ` pqq and depth 3 (a ΣΠΣ circuit).

• Claim 3.2 says that Bk,ipxq is a degree-Opkpq polynomial and is computable by a circuit of
size Opknp ` k2q and depth 3 (a ΣΠΣ circuit). Hence Bipxq is a degree-Opkpq polynomial
and is computable by a circuit of size Opknp ` k2q and depth 3.

Thus we have shown that there is a low-degree constant-depth-IPSLIN refutation of Lpxq ´ β and
this finishes the proof of Theorem 3.1. ■
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Now we ready to prove Theorem 1.8 using Theorem 3.1. The idea is to replace each monomial
in the sparse polynomial by a new variable, resulting in a linear polynomial in the new variables.
A refutation of the resulting linear polynomial can be “lifted” to a refutation of the sparse poly-
nomial in the original variables. We use the refutation of linear polynomials from Theorem 3.1,
and to lift this refutation, we need to show that monomial axioms are in the ideal of the Boolean
axioms. Before proceeding, we will prove the following claim on monomial axioms. It follows from
a straightforward induction on the number of variables. We will omit the proof here, and it can be
found in Appendix A.2.

Claim 3.4. For any exponent vector µ “ pµ1, . . . , µnq with |µ| ď D, there exists polynomials
Eµ,1pxq, . . . , Eµ,npxq such that the following holds:

ppxµq2 ´ xµq “
ÿ

jPrns
µją0

Eµ,jpxq ¨ px2j ´ xjq,

and for each j P rns with µj ą 0, the polynomial Eµ,jpxq has a circuit of size OpnD2q and depth 2
(a ΠΣ circuit).

Below we recall Theorem 1.8 and proceed to prove it.

Theorem 1.8 (Upper bounds for (non-multilinear) constant-depth-IPSLIN). Fix a prime number
p. The following holds for any natural numbers n and k.
Let f P Fpkrx1, . . . , xns be any polynomial with sparsity s and degree D with coefficients from the
field Fpk and let β be any element of FzFpk where F is a field extension of Fpk .
Then,

• The polynomial fpxq ´ β has no satisfying assignment over the Boolean cube t0, 1un

• There is a constant-depth-IPSLIN refutation of degree Opk ¨ p ¨ Dq and size polyps, pq.

Proof of Theorem 1.8. From Lemma 1.20, it suffices to show that there exists coefficients Apxq and
Bjpxq’s in the ring Frx1, . . . , xns such that

Apxq ¨ pfpxq ´ βq `

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq “ 1,

where the Apxq and Bjpxq’s have constant-depth circuits of polypnq-size and degree OpkpDq.

Let fpxq “
ř

µ:|µ|ďD αµx
µ, where µ denotes an exponent vector. Define the support of fpxq:

Supppfq “ tµ Ď rns | αµ ‰ 0u

The cardinality of Supppfq is equal to the sparsity of fpxq which is s.

Reducing to linear polynomial For every µ P Supppfq, define a new variable yµ, i.e. s new y
variables. Let F pyq denote the polynomial when we replace the monomials in fpxq with the new
y-variables, i.e.

F pyq “
ÿ

µPSupppfq

αµyµ

Thus F pyq is a degree-1 polynomial in s variables.
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Observe that F pyq ´β does not have a solution over the Boolean hypercube t0, 1us since β R Fpk .
From the proof of Theorem 3.1 on the degree-1 polynomial F pyq ´ β, we get that there exists
polynomials Ãpyq and B̃1pyq, . . . , B̃spyq such that the following holds:

Ãpyq ¨ pF pyq ´ βq `
ÿ

µPSupppfq

B̃µpyq ¨ py2µ ´ yµq “ 1, (9)

where

• The polynomial Ãpyq is a degree-Opkpq polynomial and is computable by a circuit of size
Opkps ` pqq and depth 3 (a ΣΠΣ circuit).

• For each µ P Supppfq, the polynomial B̃µpyq is a degree-Opkpq polynomial and is computable
by a circuit of size Opksp ` k2q and depth 3 (a ΣΠΣ circuit).

Lifting the Nullstellensatz certificate Plugging in yS “ xS in the Equation (9), we get,

Ãpyq ˝ x
looomooon

:“Apxq

¨pfpxq ´ βq `
ÿ

µPSupppfq

B̃µpyq ˝ x
loooomoooon

B1
µpxq

¨ppxµq2 ´ xµq “ 1, (10)

where

• The polynomial Apxq is a degree-Opkp ¨ Dq polynomial and is computable by a circuit of size
Opkps ` pq ` sDq and depth 4 (a ΣΠΣΠ circuit)

• For each µ P Supppfq, the polynomial B1
µpxq is a degree-Opkp ¨ Dq polynomial and is com-

putable by a circuit of size Opksp ` k2 ` sDq and depth 4 (a ΣΠΣΠ circuit).

Now applying Claim 3.4 for each subset µ P Supppfq in the “lifted” Nullstellensatz certificate
Equation (10),

Apxq ¨ pfpxq ´ βq `
ÿ

µPSupppfq

B1
µpxq ¨

˜

n
ÿ

j“1

Eµ,jpxq

¸

¨ px2j ´ xjq “ 1

ñ Apxq ¨ pfpxq ´ βq `

n
ÿ

j“1

¨

˝

ÿ

µPSupppfq

B1
µpxq ¨ Eµ,jpxq

˛

‚

looooooooooooooooomooooooooooooooooon

:“Bjpxq

¨px2j ´ xjq “ 1,

where for each j P rns, the polynomial Bjpxq is a degree-OpkpDq polynomial and is computable by
a circuit of size Opksp ` sDq and depth 5. This finishes the proof of Theorem 1.8. ■

3.2 Proof of Theorem 1.9

In this section, we are going to show Theorem 1.9, which we recall below.

30



Theorem 1.9 (Upper bound on degree of Nullstellensatz certificate). Fix a prime p. The following
holds for any natural numbers n and k with n ą kp.
The following holds for every α1, . . . , αn, β P Fpk . Suppose the degree-1 polynomial

řn
i“1 αixi ´ β P

Fpkrx1, . . . , xns is unsatisfiable over the Boolean cube t0, 1un (i.e. there does not exist a Boolean
point a P t0, 1un such that

řn
i“1 αiai ´ β “ 0).

Then, there is a constant-depth-IPSLIN refutation of degree Opk ¨ pq and size Opn{kpqOpkpq.

In particular, if p “ Op1q and k “ opnq, then there is a constant-depth-IPSLIN refutation of degree
opnq and size 2opnq.

Observe that the size bound is the “trivial” one, i.e. a n-variate multilinear polynomial with degree
D has at most

`

n
ďD

˘

monomials. Letting D “ Opkpq, we get the stated size bound in Theorem 1.9.
So in our proof of Theorem 1.9, it will be enough to prove that there is a Nullstellensatz certificate
of degree Opkpq. As we will show, it will be sufficient to show that the multilinear polynomial
equivalent to 1{p

ř

αixi ´ βq on t0, 1un has degree Opkpq. This will be our main technical lemma
in the proof of Theorem 1.9, which we state and prove next.

Lemma 3.5 (Degree of the “inverse” polynomial). Fix a prime p, a parameter k P N and finite field
Fpk . The following holds for every α1, . . . , αn, β P Fpk for which the equation

řn
i“1 αixi ´ β “ 0 is

unsatisfiable over the Boolean cube t0, 1un.

If f P Frx1, . . . , xns is a multilinear polynomial that agrees with 1{p
řn

i“1 αixi ´ βq on t0, 1un,
i.e.

f ”
1

řn
i“1 αixi ´ β

mod px2 ´ xq,

then degpfq ď k ¨ pp ´ 1q.

Proof of Lemma 3.5. Let Lpxq :“
řn

i“1 αixi ´ β, q “ pk and pm0, . . . ,mk´1q denote the p-ary
representation of pq ´ 2q i.e.

q ´ 2 “

k´1
ÿ

j“0

mjp
j , for all i, 0 ď mi ď pp ´ 1q.

The hypothesis says that for every a P t0, 1un, Lpaq ‰ 0. As we are working over the field Fq, we
get that for every a P t0, 1un, Lpaq ¨ pLpaqqq´2 “ 1. In other words,

mlrpLpxqqq´2s ”
1

Lpxq
mod px2 ´ xq.

Since multilinear extension of a boolean function is unique, we get that f “ mlrLq´2s, where
f P Fqrxs is as defined in the statement of Lemma 3.5. So we will now show that degpmlrpLpxqqq´2sq

is kpp ´ 1q.

For every non-negative integer j ě 0, repeated applications of Lemma 1.17 gives us:

pLpxqqp
j

“

n
ÿ

i“1

αpj

i xp
j

i ´ βpj ñ mlrpLpxqqp
j
s “

n
ÿ

i“1

αpj

i xi ´ βpj .
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For simplicity in notation, for every j, let Ljpxq :“ mlrpLpxqqp
j
s, and as we just showed, degpLjq “ 1.

Using the p-ary expansion of pq ´ 2q and the third item of Fact 1.13, we have,

Lpxqq´2 “

k´1
ź

j“0

pLpxqp
j
qmj ñ mlrpLpxqqq´2s “ ml

«

k´1
ź

j“0

mlrLjpxqmj s

ff

ñ degpmlrpLpxqqq´2sq ď

k´1
ÿ

j“0

degpmlrLjpxqmj sq ď

k´1
ÿ

j“0

mj ď k ¨ pp ´ 1q.

Hence we have showed that the degree of f is ď kpp´1q and this finishes the proof of Lemma 3.5. ■

We now prove Theorem 1.9 using an almost straightforward application of Lemma 3.5.

Proof of Theorem 1.9. From Lemma 1.20, it suffices to show that there exists coefficients Apxq and
Bjpxq’s in the ring Fpkrxs such that

Apxq ¨

˜

n
ÿ

i“1

αixi ´ β

¸

`

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq “ 1,

where Apxq and Bjpxq’s have constant-depth circuits of size Opn{kpqOpkpq and degree Opkpq.

Let Lpxq :“
řn

i“1 αixi ´ β. Let A P Frxs be the multilinear polynomial such that for every
x P t0, 1un, Apxq equals 1{Lpxq (note that Lpxq ‰ 0 for every x P t0, 1un because L is unsatisfiable
over the Boolean cube). Applying Lemma 3.5, we get that degpAq ď k ¨ pp ´ 1q.
Since Apxq is a n-variate multilinear polynomial of degree ď kpp´ 1q, it has at most

`

n
ďD

˘

monomi-
als. Using Stirling’s approximation, we get that the number of monomials is Opn{kpqOpkpq, which
implies a ΣΠ circuit for Apxq of size Opn{kpqOpkpq and degree Opkpq.

Now it remains to argue for Bjpxq’s. Let B1pxq be the quotient and R1pxq be the remainder when
Apxq ¨ Lpxq is divided by px21 ´ x1q,

Apxq ¨ Lpxq “ B1pxq ¨ px21 ´ x1q ` R1pxq.

Clearly degpB1q,degpR1q ď degpAq ` 1. Next, let B2pxq denote the quotient and R2pxq denote the
remainder when R1pxq is divided by px22 ´x2q, and so on. Since Apxq ¨Lpxq ´1 P px2 ´xq, we know
that Rnpxq “ 1. In other words,

Apxq ¨ Lpxq “

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq ` 1

ñ Apxq ¨

˜

n
ÿ

i“1

αixi ´ β

¸

`

n
ÿ

j“1

p´Bjpxqq ¨ px2j ´ xjq “ 1.

Here, for each j P rns, degpBjq ď degpAq ` 1. Similar to Apxq, each Bjpxq has a ΣΠ circuit of size
Opn{kpqOpkpq and degree Opkpq. This finishes the proof of Theorem 1.9. ■
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4 Symmetric Refutations in Constant Depth

In this section, we will prove Theorem 1.11, which we recall below.

Theorem 1.11 (Upper bounds for multilinear symmetric systems). Fix a field F. Let
f1, . . . , fm P Frx1, . . . , xns be a family of multilinear and symmetric polynomials with no common
Boolean solution i.e. there does not exist a x P t0, 1un such that each fipxq “ 0. This system has a
constant-depth-IPSLIN refutation of size Opm2n5 log nq and depth 8.

One of the steps in our proof of Theorem 1.11 is a multilinearization step, i.e. given a polynomial
fpxq, we want to find a certificate in constant-depth circuits certifying that fpxq and mlrfpxqs agree
on the Boolean cube t0, 1un. More formally, we are interested in finding polynomials Bjpxq’s such
that

fpxq “ mlrfpxqs `

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq,

and the polynomials Bjpxq have a polypnq-sized constant-depth circuit.

We also need a few standard facts about elementary symmetric polynomials in fields of posi-
tive characteristic. A standard fact that is useful in our proof is that a symmetric function over
the Boolean cube in constant positive characteristic only depends on Oplog nq elementary symmet-
ric polynomials (instead of n elementary symmetric polynomials for symmetric polynomials over
arbitrary domains). We now give a proof below for the sake of completeness.

Lemma 4.1 (Lucas’s Theorem [Luc78]). Fix a prime number p and any two natural numbers a and
b. Denote a and b in their unique p-ary representations as:

a “

ℓ´1
ÿ

i“0

aip
i, b “

ℓ´1
ÿ

i“0

bip
i, ai, bi P t0, 1, . . . , p ´ 1u

Then,

ˆ

a

b

˙

”

ℓ´1
ź

i“0

ˆ

ai
bi

˙

mod p,

where we define
`

x
y

˘

to be 0 if x ă y.

Next, we show that a symmetric function over the Boolean cube t0, 1un in characteristic p
depends on Oplog nq elementary symmetric polynomials.

Claim 4.2 (Symmetric functions over t0, 1un in positive char). Fix a prime number p and a field
F with charpFq “ p. Fix a variable parameter n P N.
Let fpxq P Frx1, . . . , xns be a multilinear and symmetric polynomial. Then fpxq is a function of
Oplogp nq elementary symmetric polynomials on n variables.
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Proof of Claim 4.2. Fix any natural number 0 ď d ď n and consider the dth elementary symmetric
polynomial, i.e., edpx1, . . . , xnq. Fix an arbitrary point a P t0, 1un and let k “ |a|, where |a| denotes
the Hamming weight of a. We know that edpaq “

`

k
d

˘

. Denote k and d in their unique p-ary
representation, i.e.

k “

ℓ
ÿ

i“0

kip
i, and d “

ℓ
ÿ

i“0

dip
i, ki, di P t0, 1, . . . , p ´ 1u

By Lucas’s Theorem (Lemma 4.1), we have,
ˆ

k

d

˙

“

ˆ

kℓ
dℓ

˙

¨ ¨ ¨

ˆ

k0
d0

˙

mod p

Note that edipipaq “
`

k
dipi

˘

. For every 0 ď i ď ℓ, using Lucas’s Theorem (Lemma 4.1), we have,

ˆ

k

dipi

˙

“

ˆ

ki
di

˙

mod p ñ

ˆ

k

dipi

˙

“
1

di!
¨

d´1
ź

j“0

ˆˆ

ki
1

˙

´ j

˙

pdi! ‰ 0 mod pq (11)

Using Lucas’s Theorem (Lemma 4.1), we have
ˆ

ki
1

˙

“

ˆ

k

pi

˙

mod p (12)

Define the polynomial Sd,ipzq :“ 1
di!

śdi´1
j“0 pz ´ jq. Note that epipaq “

`

k
pi

˘

mod p. Plugging in
Equation (12) in Equation (11), we get

edpaq “

ˆ

k

d

˙

“

ℓ
ź

i“1

Sd,ipepipaqq

We have shown that edpaq is a polynomial of epipaq for i P t0, 1, . . . , ℓu. Since a was an arbitrarily
chosen point in t0, 1un, we just argued that on the Boolean hypercube, edpxq is a polynomial of
ep0pxq, . . . , epℓpxq. This holds for every 0 ď d ď n. Hence, every symmetric function on t0, 1un

in characteristic p is a polynomial of ep0pxq, . . . , epℓpxq, i.e. of Oplogp nq elementary symmetric
polynomials. ■

A key lemma in our proof is the multilinearization lemma Lemma 4.3, which shows that multi-
linearization of a sparse polynomial in pepxq has a small constant-depth circuit.

Lemma 4.3 (Multilinearization of polynomial of elementary symmetric polynomials). Fix a prime
number p and a field F with charpFq “ p. Fix a variable parameter r P N.
Let F pyq P Fry1, . . . , yrs be a polynomial with individual degree strictly less than p. Then
mlrF pe1pyq, eppxq, . . . , epr´1pxqqs has a circuit of size Opn5 log nq and depth 5.

We will prove Lemma 4.3 later. For now, we show how it is useful in proving Theorem 1.11.

Proof of Theorem 1.11. We will first prove in the setting when the underlying field F has a small
positive char, i.e. charpFq “ p for a constant prime p. The proof of characteristic 0 or ą n is similar
and simpler too. We will come back to the setting charpFq “ 0 or ą n towards the end of the proof.
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From Lemma 1.20, we know that it suffices to prove there exists polynomials Aipxq’s and Bjpxq’s
in the ring Frx1, . . . , xns such that:

m
ÿ

i“1

Aipxq ¨ fipxq `

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq “ 1,

where Aipxq’s and Bjpxq’s have polypnq-sized constant-depth circuits.

Reducing to few variables Let r denote the number of digits when n is expressed in p-ary
representation. We have r “ tlogp nu ` 1 ď 2 logp n. Claim 4.2 tells us that there exists polynomials
F1pyq, . . . , Fmpyq P Fry1, . . . , yrs such that:

fipxq “ Fipe1pxq, eppxq, . . . , epr´1pxqq mod xx2 ´ xy

We will denote the tuple of polynomials pe1pxq, eppxq, . . . , epr´1pxqq by pepxq.
Since fipxq and Fippepxqq agree on the Boolean cube t0, 1un, their multilinear components are equal,
i.e. mlrfipxqs “ mlrFippepxqqs (see Fact 1.13). Since fipxq is a multilinear polynomial, we have
fipxq “ mlrFippepxqqs.

For every 1 ď i ď r, the polynomial epi´1pxq take values in Fp over the Boolean cube. For every
j P rrs, let pjptq be a univariate polynomial that vanishes on the set Fp, i.e. pjptq “

ś

αPFp
pt ´ αq.

For every n ă t ă pr ´ 1, define the polynomial Qt P Frys as follows:

Qtpyq :“
r´1
ź

i“0

1

ti!

ti´1
ź

j“0

pyi ´ jq , where t “

r´1
ÿ

i“0

tip
i´1

Our first claim shows that if fipxq’s do not have a common Boolean solution, then Fipyq’s along
with some additional constraints do not have a common solution, even over the algebraic closure of
F.

Claim 4.4. The system consisting of Fipyq’s, Qtpyq’s, and pjpyjq’s have no common solution in
the closure Fn, i.e.

VpF1pyq, . . . , Fmpyq, Qn`1pyq, . . . , Qpr´1pyq, p1py1q, . . . , prpyrqq “ H

Proof. We will prove this by contradiction. Assume for the sake of contradiction that there exists
a common solution b to the above system of polynomials. Since for every j P rrs, pjpbjq “ 0, this
implies that b P t0, . . . , p ´ 1u

r. We will now show the existence of a point a P t0, 1un such that

pepaq “ b (13)

Observe that an a P t0, 1un which satisfies Equation (13) is a common Boolean solution to the
system tf1pxq, . . . , fmpxqu, which is a contradiction to our hypothesis of Theorem 1.11. So to finish
the contradiction, all that remains is to show the existence of such a Boolean point a.
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We are only interested in showing the existence of a Boolean point satisfying Equation (13), i.e. we
are only interested in the evaluation of a on symmetric polynomials. Thus we can focus on showing
the existence of an appropriate Hamming weight 0 ď k ď n such that

ˆ

k

pi

˙

“

ˆ

ki
1

˙

“ bi mod p, for all 0 ď i ď r ´ 1

where we used Lucas’s Theorem (Lemma 4.1) for the first equality. Choose k to be
řℓ

i“0 bip
i. If

k ď n, then k satisfies all the r constraints in Equation (13). In particular, we can set a “ 1k0n´k

and it will satisfy Equation (13). Thus to complete the proof, we need to show that k ď n.

By assumption, Qtpbq “ 0 for all n ă t ď pr ´ 1. Fix any t “
řr´1

i“0 tip
i´1. By the definition of the

polynomial Qtpyq (see the proof of Claim 4.2):

Qtpbq “

r´1
ź

i“0

ˆ

bi
ti

˙

“ 0.

This means there exists an i P t0, 1, . . . , r ´ 1u such that bi ă ti. Since this holds for every
n ă t ď pr ´ 1, this implies that for each coordinate i, bi ď ni where n “

řr´1
i“0 nip

i. Thus k ď n.

Hence we have found a Boolean point a P t0, 1un which satisfies Equation (13). Since for every
i P rms, fipxq and Fippepxqq agree on the Boolean cube t0, 1un, a is a common Boolean solution to
fipxq’s. This is a contradiction to our assumption in Theorem 1.11. ■

Low-variate Nullstellensatz We have shown that the unsatisfiability of the n-variate polyno-
mials fi’s over the Boolean cube implies the unsatisfiability of Oplog nq-variate polynomials Fi’s
(with some additional polynomials to reflect the Boolean cube restriction). Now we use Hilbert’s
Nullstellensatz to get a Nullstellensatz certificate for the Oplog nq-variate polynomials and “lift” it
to get a Nullstellensatz certificate for the original system of polynomial equations.

Claim 4.4 says that the system consisting of Fi’s, Qt’s, and pj ’s do not have a common zero over
the algebraic closure F̄. Applying Hilbert’s Nullstellensatz (Theorem 1.19) on this system, we know
that there exist polynomials Ãipyq’s, S̃tpyq’s, and B̃jpyq’s such that:

m
ÿ

i“1

Ãipyq ¨ Fipyq `

pr´1
ÿ

t“n`1

S̃tpyq ¨ Qtpyq `

r
ÿ

j“1

B̃jpyq ¨ pjpyjq “ 1 (14)

Size analysis of low-variate certificate Next, we will show that the coefficients Ãi’s, S̃t’s, and
B̃j ’s in the Nullstellensatz certificate (Equation (14)) have small constant-depth circuits. More
precisely, we will show that Ãi’s, S̃t’s, and B̃j ’s are polynomials with sparsity polypnq, which in
turn implies that they have polypnq-sized depth 2 circuits. Since these polynomials are Oplog nq-
variate polynomials, it will suffice to show that they have constant individual degrees. We will argue
as follows:

• Step (a) The polynomials Fi’s and Qt’s have constant individual degree.
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• Step (b) Use the low-variate Nullstellensatz certificate Equation (14) to argue that the poly-
nomials Ãi’s and S̃t’s can be assumed to have constant individual degree.

• Step (c) Use the previous two items to argue that the polynomials B̃j ’s have sparsity at most
polypnq.

Step (a) We first argue that the individual degree of each Fipyq can be assumed to be ď pp´ 1q.
Recall that fipxq “ Fippepxqq over t0, 1un, i.e.: fipxq ” Fippepxqq mod px2 ´ xq.
As we are working over a field of characteristic p, for any i P rns, eipxq P t0, 1, . . . , p ´ 1u for every
x P t0, 1un. This implies that pepxqp ” pepxq mod px2 ´ xq via Fermat’s Little Theorem/Frobenius
automorphism.
Let F 1

i pyq :“ Fipyq{pyp ´ yq be a “minimum individual-degree representative” of Fipyq modulo the
ideal pyp ´ yq.

Thus, Fipyq is a polynomial of individual-degree ď p´ 1 such that F 1pyq ” F pyq mod pyp ´yq.
Combining these together, we get,

fipxq ” F 1
i ppepxqq mod px2 ´ xq (15)

where F 1
i has individual-degree ď p ´ 1. With a slight abuse of notation, we will now use “Fi” to

denote F 1
i .

By the definition of the polynomial Qtpyq, for each t, the individual degree of Qtpyq is ď p

Step (b) The polynomial pjptq, defined as
ś

αPFp
pt ´ αq, is equal to ptp ´ tq by Fermat’s Little

Theorem. From the Nullstellensatz certificate Equation (14),

m
ÿ

i“1

Ãipyq ¨ Fipyq `

pr´1
ÿ

t“n`1

S̃tpyq ¨ Qtpyq “ 1 mod pyp ´ yq

We would now argue that the polynomials Ãipyq’s and S̃tpyq’s has individual degree ď pp ´ 1q.
Suppose there exists an i P rms for which Ãipyq has individual degree ą pp ´ 1q, then define
Ã1

ipyq :“ Aipyq{pyp´yq to be a “minimum individual-degree representative”. Observe that replacing
the polynomial Ãi with the polynomial Ã1

i, the low-variate Nullstellensatz certificate Equation (14)
continues to holds.

Thus the sparsity of Ãipyq is at most pr. An analogous argument shows that for each n ă t ď

pr ´ 1, the polynomial S̃tpyq has individual degree ď pp ´ 1q and thus has a Opn2q-sized circuit of
depth 2 (a ΣΠ circuit).

Using r ď 2 logp n, we have that for every i P rms and for every n ă t ď pr ´ 1, the polynomials
Ãipyq and S̃tpyq have sparsity at most Opn2q. This also implies that the polynomials Ãipyq’s and
S̃tpyq’s have Opn2q-sized circuits of depth 2 (a ΣΠ circuit).

Step (c) Now it remains to show that the polynomials B̃jpyq have small constant-depth circuits.
We will show that for each j P rns, the polynomial B̃jpyq has sparsity at most polypnq. To show
this, we will use the fact that

řm
i“1 Ãipyq ¨Fipyq `

řpr´1
t“n`1 S̃tpyq ¨Qtpyq is a polynomial of constant

individual degree.
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For a polynomial Hpyq, the individual-degree-p operator, denoted by inddegp outputs the following
polynomial: For each variable yj , every occurrence of ypj in Hpyq is replaced by yj until the individual
degree of the polynomial is ă p. For p “ 2, inddeg2 corresponds to multilinearization ml.
Our next claim shows that if there is a polynomial of low individual degree, then its individual-
degree-p component can be extracted using polynomials of small constant-depth circuits. The proof
is via a simple induction. We omit the proof here and it can be found in Appendix A.3.

Claim 4.5. Let Hpyq P Fry1, . . . , yrs denote a polynomial whose individual degree is at most D.
Then there exists polynomials G1pyq, . . . , Grpyq such that the following holds:

Hpyq “ inddegprHpyqs `

r
ÿ

j“1

Gjpyq ¨ pypj ´ yjq,

and for each j P rrs, the polynomial Gjpyq has sparsity at most Dr`1{pp ´ 1q.

Define the polynomial Hpyq “
řm

i“1 Ãipyq ¨ Fipyq `
řpr´1

t“n`1 S̃tpyq ¨ Qtpyq. Observe that

Hpyq “ 1 `

r
ÿ

j“1

B̃jpyq ¨ pypj ´ yjq

So the polynomials Gjpyq from Claim 4.5 correspond to the polynomials B̃jpyq from the Nullstel-
lensatz certificate. Since both Ãipyq and Fipyq have individual degree at most pp ´ 1q, Hpyq has
individual degree at most 2pp ´ 1q in each of the r variables. Applying Claim 4.5 on Hpyq, we
get that the polynomials B̃jpyq has sparsity at most p2pp ´ 1qqr ¨ 2pp ´ 1q{pp ´ 1q “ polypnq since
p ď 2 logp n. This implies that the polynomials B̃jpyq has a circuit of size Opn2q and depth 2 (a
ΣΠ circuit).

Lifting the Nullstellensatz certificate By the definition of Fipyq, we know that for every i P

rms, fipxq “ mlrFippepxqqs. Applying the multilinearization Lemma 4.3 on Fippepxqq for every i P rms,
we know there exists polynomials Dijpxq for i P rms and j P rns such that:

Fippepxqq “ fipxq `

n
ÿ

j“1

Dijpxq ¨ px2j ´ xjq,

where each polynomial Dijpxq has a circuit of size Opn5 log nq and depth 5. This also implies that
for each i P rms, the polynomial fipxq has a circuit of size Opn5 log nq and depth 5.
Similarly, applying the multilinearization lemma Lemma 4.3 on Qtppepxqq for every n ă t ď pr ´ 1,
we know there exists polynomials Rtptjqpxq for n ă t ď pr ´ 1 and j P rns such that:

Qtppepxqq “ mlrQtppepxqqs `

n
ÿ

j“1

Rtjpxq ¨ px2j ´ xjq,

where each polynomial Rtjpxq has a circuit of size Opn5 log nq and depth 5.

38



Next, we multilinearize the coefficients Ãippepxqq’s to get a multilinear constant-depth-IPSLIN
proof. Applying the multilinearization Lemma 4.3 on Ãippepxqq for every i P rms, we know there
exists polynomials D̃ijpxq for i P rms and j P rns such that:

Ãippepxqq “ mlrÃippepxqqs `

n
ÿ

j“1

D̃ijpxq,

where each polynomial D̃ijpxq has a circuit of size Opn5 log nq and depth 5. This also implies that
for each i P rms, the polynomial mlrÃippepxqqs has a circuit of size Opn6q and depth 5.
Similarly, we also multilinearize the coefficients S̃tppepxqq. Applying the multilinearization lemma
Lemma 4.3 on S̃tppepxqq for every n ă t ď pr ´ 1, we know there exists polynomials R̃tjpxq for
n ă t ď pr ´ 1 and j P rns such that:

S̃tppepxqq “ mlrS̃tppepxqqs `

n
ÿ

j“1

R̃tjpxq ¨ px2j ´ xjq,

where each polynomial R̃tjpxq has a circuit of size Opn5 log nq and depth 5.
For every i P rrs, applying the multilinearization lemma Lemma 4.3 on pipepi´1pxqq, we know that
there exists polynomials Ei1pxq, . . . , Einpxq such that:

pipepi´1pxqq “

n
ÿ

j“1

Eijpxq ¨ px2j ´ xjq,

where for each j P rns, the polynomial Eijpxq has a circuit of size Opn5 log nq and depth 5.

Substituting y “ pepxq in the low-variate Nullstellensatz certificate Equation (14) and using the
above polynomial relations, we get,

m
ÿ

i“1

Ãippepxqq
looomooon

:“Aipxq

¨ fipxq `

n
ÿ

j“1

Bjpxq ¨ px2j ´ xjq “ 1,

where the polynomial Bjpxq is:

Bjpxq “

m
ÿ

i“1

pmlrÃippepxqqsDijpxq ` fipxqD̃ijpxqq

`

pr´1
ÿ

t“n`1

pmlrQtppepxqqs ¨ S̃tppepxqq ` Qtppeqpxq ¨ mlrS̃tppepxqqsq

`

m
ÿ

i“1

ÿ

j1ďj

D̃ij1pxqDijpxq `

r
ÿ

i“1

B̃ippepxqqEijpxq

We have,

• For each i P rms, using Ben-Or’s construction Theorem 1.15, the polynomial Aipxq has a
circuit of size Opn2q and depth 5.
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• For each j P rrs, and again using Ben-Or’s construction Theorem 1.15, the polynomial Bjpxq

has a circuit of size Opmn5 log nq and depth 7.

This finishes the proof of Theorem 1.11 in the setting when the underlying field has a positive
characteristic p for a constant prime p.

We now discuss the proof of Theorem 1.11 in the setting when the underlying field has character-
istic 0 or ą n. The proof has the exact same steps as for positive characteristic. Instead of repeating
the same steps again, for the sake of brevity, we only highlight the differences.

Over characteristic 0 or ą n, every multilinear symmetric polynomial is a polynomial of x1 `

. . . ` xn, i.e. of e1pxq. Thus r in the above proof is just 1 and Fi’s are univariate polynomials. Let
ppyq “

śn
i“0py ´ iq. Then it is easy to see that if fipxq do not have a common Boolean solution,

then the univariate polynomials Fipyq’s and ppyq do not have a common solution (following a similar
strategy to the proof of Claim 4.4, if b is a common solution, then there exists a common Boolean
solution of Hamming weight b, which is a contradiction).

To argue about the circuit size of the coefficients of the univariate Nullstellensatz certificate, it
suffices to argue about their degrees since they are all univariate polynomials. The coefficients of
the univariate certificate have degree at most Opnq because of the polynomial ppyq (it is quite similar
and simpler to the degree analysis of the coefficients of the low-variate Nullstellensatz certificate in
the above proof).
In the end, we need to multilinearize Fipe1pxqq. This can again be done in a constant-depth circuit
using Lemma 4.3. ■

4.1 Multilinearization

To show our multilinearization lemma (Lemma 4.3), it will be convenient to first define a notion of
partial multilinearization, i.e., multilinearize with respect to a subset of variables. A key lemma used
in our proofs of multilinearization statements is constant-depth multilinearization when fpxq is a
product of univariate polynomials (see Corollary 4.10). We now define the partial multilinearization
and then use it to prove Corollary 4.10.

Definition 4.6 (Partial multilinearization). Fix any field F and let fpxq P Frx1, . . . , xns. For
any j P rns, let f pďjqpxq P Frxj`1, . . . , xnsrx1, . . . , xjs denote the polynomial fpxq with variables
x1, . . . , xj and coefficients in Frxj`1, . . . , xns.
The multilinearization of the polynomial fpxq with respect to the variables tx1, . . . , xju, denoted by
mlďjrfpxqs, is defined to be:

mlďjrfpxqs :“ mlrf pďjqpxqs

Similarly, for any k P rns, let f pkqpxq P Frx1, . . . , xk´1, xk`1, . . . , xnsrxks denote the polynomial fpxq

with variable xk only and coefficients in Frx1, . . . , xk´1, xk`1, . . . , xns. The multilinearization of the
polynomial fpxq with respect to the variable xk only, denoted by mlkrfpxqs, is defined to be:

mlkrfpxqs “ mlrf pkqpxqs

Sometimes we will denote mlkrfpxqs by mlxk
rfpxqs for sake of clarity.
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Example: Let fpxq “ x21x
3
2 ` x2x

2
3. Then,

mlď1rfpxqs “ x1x
3
2 ` x2x

2
3, mlď2rfpxqs “ x1x2 ` x2x

2
3, ml2rfpxqs “ x21x2 ` x2x

2
3

We make one observation on partial multilinearization, which will be helpful in the proofs.

Observation 4.7. For every j ă n, the following holds: For every polynomial fpxq,

mlďj`1rfpxqs “ mlj`1rmlďjrfpxqss

In the rest of the section, we will use the notation xďj to denote px1, . . . , xjq and xąj to denote
pxj`1, . . . , xnq.

Now we show that a product of univariate polynomials can be multilinearized using constant-
depth polypnq-sized circuits (see Corollary 4.10). We start by showing that we can do partial
multilinearization with respect to a single variable.

Claim 4.8 (Multilinearize a single variable). Consider a univariate polynomial hpzq of degree-D.
Let Qpyq be a polynomial with a circuit of size s and depth ∆. Let mlzrhpzq ¨ Qpyqs denotes the
partial multilinearization of the polynomial hpzq ¨ Qpyq with respect to the z variable.
Then,

hpzq ¨ Qpyq “ mlzrhpzq ¨ Qpyqs ` Bpz,yq ¨ pz2 ´ zq,

• The polynomial mlzrhpzq ¨ Qpyqs is equal to Lpzq ¨ Qpyq, where Lpzq is a degree-1 univariate
polynomial in z.

• The polynomial Bpz,yq is equal to h̃pzq ¨ Qpyq for a univariate polynomial h̃pzq.

Proof of Claim 4.8. Let hpzq “ a0 ` a1z ` ¨ ¨ ¨ ` aDz
D. Then for every 2 ď j ď D, rewriting ajz

j

as ajpz
j ´ zq ` ajz, we get,

hpzq ¨ Qpyq “

˜

a0 ` a1z `

D
ÿ

j“2

ajpz
j ´ z ` zq

¸

¨ Qpyq

“

˜

a0 `

˜

D
ÿ

j“1

aj

¸

z

¸

looooooooooomooooooooooon

:“Lpzq

¨Qpyq `

˜

D
ÿ

j“2

ajpz
j ´ zq

¸

¨ Qpyq

Observe that for any j ě 2,

zj ´ z “
`

zj´2 ` ¨ ¨ ¨ ` z ` 1
˘

¨ pz2 ´ zq

Using the above observation, we get,

hpzq ¨ Qpyq “ Lpzq ¨ Qpyq
looooomooooon

“mlzrhpzq¨Qpyqs

` Qpyq

D
ÿ

j“2

aj
`

zj´1 ` ¨ ¨ ¨ ` z ` 1
˘

loooooooooooooooooooomoooooooooooooooooooon

“Bpz,yq

¨ pz2 ´ zq

Let h̃pzq “
řD

j“2 ajpz
j´1 ` ¨ ¨ ¨ ` z ` 1q. Then the polynomial Bpz,yq is equal to h̃pzq ¨ Qpyq. The

partial multilinearization mlzrhpzq ¨Qpyqs is of the form Lpzq ¨Qpyq for a degree-1 polynomial Lpzq.
This finishes the proof of Claim 4.8. ■
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The next claim shows that if a product of univariate polynomials, then we can do partial
multilinearization with respect to a subset of variables. It follows with a simple induction using
Claim 4.8. We omit the proof here and it can be found in Appendix A.4.

Claim 4.9 (Partial multilinearization of product of univariates). Let h1pz1q, . . . , hnpznq be univari-
ate polynomials where each hipziq has degree at most D.
Then there exists degree-1 univariate polynomials L1pz1q, . . . , Lnpznq and polynomials B1pzq, . . . , Bnpzq

satisfying the following: For every k P rns,

h1pz1q ¨ ¨ ¨hnpznq “ mlďk

«

n
ź

i“1

hipziq

ff

`

k
ÿ

j“1

Bjpzq ¨ pz2j ´ zjq,

where

mlďk

«

n
ź

i“1

hipziq

ff

“

k
ź

i“1

Lipziq ¨

n
ź

i“k`1

hipziq,

and for each j P rns, the polynomial Bjpzq has the following form:

Bjpxq “

j´1
ź

i“1

Lipziq ¨ h̃jpzjq ¨

n
ź

i“j`1

hipziq,

for some univariate polynomial h̃jpzjq.

Setting k “ n in Claim 4.9 immediately gives us the following corollary.

Corollary 4.10 (Multilinearization of product of univariates). Let h1pz1q, . . . , hnpznq be univariate
polynomials where each hipziq has degree at most D.
Then there polynomials B1pzq, . . . , Bnpzq such that,

h1pz1q ¨ ¨ ¨hnpznq “ ml

«

n
ź

i“1

hipziq

ff

`

k
ÿ

j“1

Bjpzq ¨ pz2j ´ zjq,

where for each j P rns, the polynomial Bjpzq has a circuit of size OpnD2q and depth 3 (a ΠΣΠ)
circuit.

In this section, we will prove the multilinearization lemma Lemma 4.3. The key step in our proof
of Lemma 4.3 is Lemma 4.11 which is a special case of Lemma 4.3. In particular, Lemma 4.11
shows that the multilinearization of a product of two elementary symmetric polynomials has a
small constant-depth circuit. Furthermore, it shows that the multlinearization of a product of two
elementary symmetric polynomials has a nice structure which we use to prove Lemma 4.3.

Lemma 4.11 (Multilinearization of product of two elementary symmetric polynomials). Fix any
two natural numbers α and β. Then
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• There exists polynomials Rα,β,jpxq’s such that

mlreαpxq ¨ eβpxqs “ eαpxq ¨ eβpxq ´

n
ÿ

j“1

Rα,β,jpxq ¨ px2j ´ xjq,

where each polynomial Rα,β,jpxq has a circuit of size Opn3q and depth 5 (a ΣΠΣΠΣ circuit).

• There exists coefficients c
piq
α,β’s such that

mlreαpxq ¨ eβpxqs “

n
ÿ

i“1

c
piq
α,β eipxq

Proof of Lemma 4.11. Using Ben-Or’s construction (Theorem 1.15) for eαpxq and eβpxq,

eαpxq ¨ eβpxq “
ÿ

i1,i2

cα,i1cβ,i2

n
ź

j“1

p1 ` γi1xjqp1 ` γi2xjq, where all cαi1
, cβ,i2 , γi1 , γi2 P F

ñ eαpxq ¨ eβpxq “ “

pn`1q2
ÿ

i“1

n
ź

j“1

hα,βi,j pxjq, (16)

where each polynomial hα,βi,j pxjq is a degree-2 univariate polynomial. Fix any i P rpn ` 1q2s and
using Corollary 4.10 on hα,βi,1 px1q ¨ ¨ ¨hα,βi,n pxnq, we know that there exists polynomials Bα,β

i,j pxq’s such
that:

hα,βi,1 px1q ¨ ¨ ¨hα,βi,n pxnq “ mlrhα,βi,1 px1q ¨ ¨ ¨hα,βi,n pxnqs `

n
ÿ

j“1

Bα,β
i,j pxq ¨ px2j ´ xjq,

where each polynomial Bi,jpxq has a circuit of size Opnq and depth 3 (a ΠΣΠ circuit). Now summing
it over all i P rpn ` 1q2s (see Equation (16)), we get,

eαpxq ¨ eβpxq “ mlreαpxq ¨ eβpxqs `

n
ÿ

j“1

Rα,β,jpxq ¨ px2j ´ xjq,

where each polynomial Rα,β,jpxq has a circuit of size Opn3q and depth 4 (a ΣΠΣΠ circuit). This
shows the constant-depth circuit item of Lemma 4.11.

Next we argue about the structure item of Lemma 4.11. Since eαpxq ¨ eβpxq is a symmetric
polynomial, its multilinearization mlreαpxq¨eβpxqs is also a symmetric polynomial. The Fundamental
Theorem of Symmetric Polynomials (see Theorem 1.14) implies that mlreαpxq¨eβpxqs is a polynomial
of ekpxq’s. Note that any multilinear symmetric polynomial is a linear combination of ekpxq’s. Thus
mlreαpxq ¨ eβpxqs is a linear combination of ekpxq’s. This finishes the structure item of Lemma 4.11.
This finishes the proof of Lemma 4.11. ■
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Now we are ready to prove Lemma 4.3. The idea for the proof is as follows:

• We use the fact that F pyq has at most polypnq sparsity. So for each monomial yµ, we
multilinearize yµ ˝ pepxq individually.

• For any fixed monomial yµ ˝ pepxq, we note that it is a product of elementary symmetric
polynomials. Lemma 4.11 shows how to multilinearize a product of two elementary symmetric
polynomials. We repeatedly apply this on yµ ˝ pepxq.

We recall the statement of Lemma 4.3 below and then proceed to prove it.

Lemma 4.3 (Multilinearization of polynomial of elementary symmetric polynomials). Fix a prime
number p and a field F with charpFq “ p. Fix a variable parameter r P N.
Let F pyq P Fry1, . . . , yrs be a polynomial with individual degree strictly less than p. Then
mlrF pe1pyq, eppxq, . . . , epr´1pxqqs has a circuit of size Opn5 log nq and depth 5.

Proof of Lemma 4.3. Suppose the polynomial F pyq P Fry1, . . . , yrs is:

F pyq “
ÿ

µ

λµy
µ,

where µ “ pµ1, . . . , µrq denotes the exponent vector of a monomial. Recall that the individual
degree of F pyq is at most ď pp ´ 1q. Consider a monomial yµ with a non-zero coefficient λµ in
F pyq. We will multilinearize m “

śr
i“1 epi´1pxqµi . We do it by multilinearizing two products at a

time using Lemma 4.11. Defining µ0 :“ 1, we have,

m “ e1pxq ¨ ¨ ¨ e1pxq
looooooomooooooon

µ1 times

¨ ¨ ¨ epr´1pxq ¨ ¨ ¨ epr´1pxq
looooooooooomooooooooooon

µr times

“

µ
ź

ℓ“1

eαℓ
pxq,

where αℓ “ pi´1 if ℓ P

”

ři´1
ℓ“1 µℓ ` 1,

ři
ℓ“1 µi

ı

.

Claim 4.12. Let µ P t0, 1, . . . , p ´ 1u
r denote an exponent vector as described above. Then for any

k P r|µ|s, the following holds:

• (Constant-depth circuit). There exists polynomials Rďαk,jpxq’s such that

ml

«

k
ź

ℓ“1

eαℓ
pxq

ff

“

k
ź

ℓ“1

eαℓ
pxq ´

n
ÿ

j“1

Rďαk,jpxq ¨ px2j ´ xjq,

and the polynomials Rďαk,jpxq’s have circuits of size Opn3 ¨ kq and depth 5.

• (Structure). There exists coefficients c
p1q

ďαk
, . . . , c

pnq

ďαk
such that

ml

«

k
ź

ℓ“1

eαℓ
pxq

ff

“

n
ÿ

i“1

c
piq
ďαk

eipxq

Proof of Claim 4.12. We will prove this using induction on k.
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Base case: For k “ 1, we have mlreα1s “ eα1pxq and Rďα1,jpxq “ 0. The claim holds for the base
case.

Induction step: Now we assume the induction is true for k and prove it for pk ` 1q. We will first
prove the constant-depth circuit item for pk ` 1q and then prove the structure item for pk ` 1q.

Using the structure item of the induction hypothesis, we have,

ml

«

k
ź

ℓ“1

eαℓ
pxq

ff

“

n
ÿ

i“1

c
piq
ďαk

eipxq (17)

Using the third item of Fact 1.13,

ml

«

k`1
ź

ℓ“1

eαℓ
pxq

ff

“ ml

«

ml

«

k
ź

ℓ“1

eαℓ
pxq

ff

¨ eαk`1
pxq

ff

“ ml

«

n
ÿ

i“1

c
piq
ďαk

eipxq ¨ eαk`1
pxq

ff

pUsing Equation (17)q

“

n
ÿ

i“1

c
piq
ďαk

mlreipxq ¨ eαk`1
pxqs (18)

For each i P rns, we apply the constant-depth circuit item from Lemma 4.11 on eipxq ¨ eαk`1
pxq

to get:

mlreipxq ¨ eαk`1
pxqs “ eipxq ¨ eαk`1

pxq ´

n
ÿ

j“1

Di,αk`1
pxq ¨ px2j ´ xjq,

where the polynomials Di,αk`1
pxq have a circuit of size Opn3q and depth 5. Substituting it in

Equation (18),

ml

«

k`1
ź

ℓ“1

eαℓ
pxq

ff

“

n
ÿ

i“1

c
piq
ďαk

˜

eipxq ¨ eαk`1
pxq ´

n
ÿ

j“1

Di,αk`1
pxq ¨ px2j ´ xjq

¸

“

˜

n
ÿ

i“1

c
piq
ďαk

eipxq

¸

eαk`1
pxq ´

n
ÿ

j“1

˜

n
ÿ

i“1

c
piq
ďαk

Di,αk`1
pxq

¸

¨ px2j ´ xjq

Using Equation (17),

n
ÿ

i“1

c
piq
ďαk

eipxq “ ml

«

k
ź

ℓ“1

eαℓ
pxq

ff

“

k
ź

ℓ“1

eαℓ
pxq ´

n
ÿ

j“1

Rďαk,jpxq ¨ px2j ´ xjq,
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where we use the constant-depth circuit item from the induction hypothesis for the last equality.
The polynomials Rďαk,jpxq’s have circuits of size Opn3 ¨ kq and depth 5 (a ΣΠΣΠΣ circuit). Using
this in the previous expression, we have

ml

«

k`1
ź

ℓ“1

eαℓ
pxq

ff

“

˜

k
ź

ℓ“1

eαℓ
pxq ´

n
ÿ

j“1

Rďαk,jpxq ¨ px2j ´ xjq

¸

eαk`1
pxq ´

n
ÿ

j“1

˜

n
ÿ

i“1

c
piq
ďαk

Di,αk`1
pxq

¸

¨ px2j ´ xjq

“

k`1
ź

ℓ“1

eαℓ
pxq ´

n
ÿ

j“1

˜

n
ÿ

i“1

c
piq
ďαk

Di,αk`1
pxq ` Rďαk,jpxq

¸

loooooooooooooooooooooomoooooooooooooooooooooon

:“Rďαk`1,j
pxq

¨ px2j ´ xjq

The polynomial Rďαk`1,jpxq has a circuit of size Opn3 ¨ pk ` 1qq and depth 5 (a ΣΠΣΠΣ circuit).
This shows the constant-depth circuit item of the induction.

By applying the structure item of Lemma 4.11 on eipxq ¨ eαk`1
pxq, we get,

ml

«

k
ź

ℓ“1

eαℓ
pxq

ff

“

n
ÿ

i“1

c
piq
ďαk

eipxq

Substituting it in Equation (18),

ml

«

k`1
ź

ℓ“1

eαℓ
pxq

ff

“

n
ÿ

i“1

c
piq
ďαk

n
ÿ

i1“1

d
pi1q

i ei1pxq “

n
ÿ

i“1

c
piq
ďαk`1

eipxq,

where c
piq
ďαk`1

“
řn

j“1 c
pjq

ďαk
d

piq
j . This completes the structure item of the induction.

This finishes the induction and thus we have finished the proof of Claim 4.12. ■

Now we employ Claim 4.12 on each monomial µ with non-zero coefficient and then sum them
together. It is easy to verify that there exists polynomials Rjpxq’s such that

F ppepxqq “ mlrF ppepxqqs `

n
ÿ

j“1

Rjpxq ¨ px2j ´ xjq,

where each polynomial Rjpxq has a circuit of size Opprrn3q and depth 5 (a ΣΠΣΠΣ circuit). Using
r ď 2 logp n, we get that each polynomial Rjpxq has a circuit of size Opn5 log nq and depth 5. This
finishes the proof of Lemma 4.3. ■
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A Appendix

A.1 Details of roABP-IPSLIN1 Lower Bound

We recall some standard definitions and lemmas that are useful for understanding the complexity
of roABPs. For more details, please refer to [FSTW21; For14].
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Definition A.1 (Coefficient matrix). Consider f P Frx,ys. The coefficient matrix of Cf is defined
with the following entries from F:

pCf qa,b :“ Coeffxa,ybpfq

where Coeffxa,ybpfq denotes the coefficient of the monomial xayb in f .

Definition A.2 (Coefficient space). Consider f P Frx,ys. The space of Frxsrys coefficients of f is
defined as:

Coeffx|ypfq :“
!

Coeffx|yb

)

bPNn

where Coeffx|yb denotes the coefficient of yb when f is viewed as a polynomial in the y-variables,
with coefficients from the ring Frxs. The space of Frysrxs coefficients of f is defined similarly.

For any subset S of polynomials over a field F, we will use dimpSq to denote the dimension of
the F-linear span of polynomials in S.

Lemma A.3 (Coefficient dimension equals rank of Cf [Nis91]). For any f P Frx,ys:

rankpCf q “ dimpCoeffx|ypfqq “ dimpCoeffy|xpfqq

Lemma A.4 (Coefficient dimension captures roABP width [Nis91][For14]). For any fpx1, . . . , xnq,
if f is computable by a width-r roABP, then r ě maxiPn dimpCoeffxďi|xąi

pfqq. Further, there is a
width-r roABP for f , where r “ maxiPn dimpCoeffxďi|xąi

pfqq.

Definition A.5 (Evaluation space). For f P F, the space of Frxsrys evaluations of f over a set
S Ď F is defined as:

Evalx|y,Spfq :“ tfpx,βquβPS|y|

Omitting the S in the notation will denote that S “ F. The space of Frysrxs evaluations of f over
a set S is defined similarly.

Lemma A.6 (Evaluation dimension ď coefficient dimension). For f P Frxsrys and S Ď F,

Evalx|y,Spfq Ď Coeffx|ypfq

which implies that dimpEvalx|y,Spfqq ď dimpCoeffx|ypfqq. If |S| is greater than the individual
degree of each variable in f , then Evalx|y,Spfq “ Coeffx|ypfq.

Fact A.7 (Dimension of polynomials = dimension of leading monomials [For14]). Let S “ tf1pxq, . . . , fmpxqu Ď

Frxs. For each fi, let LMpfiq denote the leading monomial of fi based on some monomial ordering.
Then, dim spanS “ dim spantLMpfiq : fi P Su.

The following lemma proves an analog of the coefficient dimension lower bound from [FSTW21]
for the positive characteristic case using the degree lower bound in Lemma 2.4.

Lemma A.8 (Coefficient dimension lower bound from degree lower bound for fixed partition(Proposition
5.8 [FSTW21])). Let n P N. For any α P Fn and β P Bα, let fα,βpx,yq be a polynomial that com-
putes

1
řn

i“1 αixiyi ´ β

on t0, 1un. Let S be a finite subset of F. Then, for a uniformly randomly chosen α „ Sn:

Pr
α„Sn

rdimpCoeffx|ypfα,βqq ě 2ns ě 1 ´
22n

|S|
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Proof. Lemma A.6 implies that

dimpCoeffx|ypfα,βqq ě dim tfα,βpx,bqubPt0,1un

For any b “ pb1, . . . , bnq P t0, 1un, if Ub :“ ti P rns : bi “ 1u then :

fα,βpx,bq “
1

ř

iPUb
αixi ´ β

Lemma 2.4 tells us that for a randomly chosen α „ Sn:

Pr
α„Sn

r@b P t0, 1un : deg fα,β,Ub
pxq “ |b|s ě 1 ´

22n

|S|

In particular, for a uniformly random α „ Sn, for any b P t0, 1un, the leading monomial of
fα,β,Ub

pxq is cb ¨
ś

i:bi“1 xi for some cb P Fzt0u. Combining this with Fact A.7, we get that with
probability at least 1 ´ p22n{|S|q:

dimpCoeffx|ypfα,βqq ě dim tfα,βpx,bqubPt0,1un
ě dim tmlpfα,βpx,bqqubPt0,1un

ě 2n

since each multilinear restriction mlpfα,βpx,bqq generates a different multilinear monomial as its
leading monomial, and thus the space contains all 2n multilinear monomials on x. Here, we also used
the fact the multilinearization operator is a linear map and does not increase the dimension. ■

The following fact relates the coefficient dimension of a polynomial f P Frx,y, zs over Fpzq to
the coefficient dimension of fpx,y,bq over F for any b P Fn.

Fact A.9 (Coefficient dimension over Fpzq ě coefficient dimension over F (Lemma 5.12 [FSTW21])).
Let f P Frx,y, zs. Let fz denote f as a polynomial in Frzsrx,ys so that for any b P Fn, fbpx,yq “

fpx,y,bq P Frx,ys. Then for any b P Fn:

dimFpzq Coeffx|y fzpx,yq ě dimFCoeffx|y fbpx,yq

Using this fact, [FSTW21] proves a coefficient dimension lower bound over Fpzq for any partition
of variables, using the coefficient dimension lower bound over F for a fixed partition of variables.
We observe that their proofs work even when we replace their coefficient dimension lower bound by
a suitable version over fields of positive characteristic (Lemma A.8) using the degree lower bound
over positive characteristic.

Lemma A.10 (Coefficient dimension lower bound for any partition of variables (Proposition 5.13
[FSTW21])). Let n P N. For any α P Fp2n2 q and β P Bα, let fα,βpx “ pxiqiPr2ns, z “ pzi,jqiăjď2nq be
a polynomial which computes

1
ř

iăjďn αi,jzi,jxixj ´ β

on the Boolean cube. Let S Ď F. Call an α P Sp2n2 q good if for any partition x “ pu,vq with
|u| “ |v| “ n:

dimFpzqpCoeffu|vpfα,βqq ě 2n

where fα,β is viewed as a polynomial in Frzsrx,ys with coefficients in Frzs.

Then, a uniformly randomly chosen α P Sp2n2 q is good with probability ě 1 ´
p2nn q22n

|S|
.
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Proof. For any balanced partition x “ pu,vq where |u| “ |v| “ n, we can embed
ř

iPrns uivi ´ β in
ř

iăjďn αi,jzi,jxixj ´ β by a natural restriction z “ bu,v P t0, 1up2n2 q that sets zi,j to 1 if xi “ uk,
xj “ vk, and 0 otherwise. So, for every such restriction bu,v that corresponds to a balanced
partition:

fpu,v,bu,vq “
1

ř

iPrns uivi ´ β

For any fixed choice of balanced partition bu,v P t0, 1up2n2 q, Lemma A.8 tells us that for a uniformly
randomly chosen α P Sp2nn q:

Pr
αPSp2nn q

rdimpCoeffx|ypfα,βpu,v,bqqq ě 2ns ě 1 ´
22n

|S|

Applying a union bound over all
`

2n
n

˘

choices of balanced partitions x “ pu,vq implies that for a
uniformly randomly chosen α P Sp2n2 q:

Pr
αPSp2nn q

r@x “ pu,vq : dimFpCoeffx|ypfα,βpu,v,bu,vqqq ě 2ns ě 1 ´

`

2n
n

˘

22n

|S|

Finally, applying Fact A.9 implies that for a uniformly randomly chosen α P Sp2n2 q:

Pr
αPSp2nn q

r@x “ pu,vq : dimFpzqpCoeffx|ypfα,βpu,v,bu,vqqq ě 2ns ě 1 ´

`

2n
n

˘

22n

|S|

■

Theorem A.11 (Functional lower bound against roABP in any order of variables). Let n P N. Let
p P N be any prime. Let F̃ be a field of characteristic p and size p2k, where k is the smallest integer
that satisfies pk ą

`

2n
n

˘

22n. Let β be an arbitrary element in F̃zF, where F denotes the subfield of
size pk. For any α P Fp2n2 q, let fαpx “ pxiq

2n
i“1, z “ pzi,jqi,jPrnsq be a polynomial which agrees with

1
ř

iăj αi,jzi,jxixj ´ β

on the Boolean cube. Then there exists an α P Fp2n2 q such that any roABP that computes fα in any
order of variables requires size ě 2n.

Proof of Theorem A.11. We will instantiate Lemma A.10 for the field F̃ and the set S “ F. Thus,
choosing β P F̃zF ensures that for any choice of α “ pαi,jq1ďiăjď2n P Sp2n2 q, β will be in Bα (which
we recall to be the complement of all possible subset sums of α). With the above choices, it follows
from Lemma A.10 that for a uniformly randomly chosen α P Sp2n2 q,

Pr
αPSm

r@x “ pu,vq : dimFpzqpCoeffx|ypfα,βpu,v,bu,vqqq ě 2ns ě 1 ´

`

2n
n

˘

22n

|S|
ą 0
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for |S| “ |F| ą
`

2n
n

˘

22n, where x “ pu,vq denotes any balanced partition of x. In particular, this
implies that there exists an α P Sp2nn q such that for any balanced partition x “ pu,vq,

dimFpzqpCoeffx|ypfα,βpu,v,bu,vqqq ě 2n (19)

Now, suppose fpx, zq is computable by a width-r roABP in some order of variables. Using fz
to denote f as a polynomial in Frzsrxs, it follows that fz is also computable by a width-r roABP
over the fraction field Fpzq in the induced order of variables on x. By splitting the x variables in
half along the induced order, using Equation (19) along with Nisan’s characterization of width of
roABPs (Lemma A.4), we obtain the required lower bound. ■

A.2 Proof of Claim 3.4

Claim 3.4. For any exponent vector µ “ pµ1, . . . , µnq with |µ| ď D, there exists polynomials
Eµ,1pxq, . . . , Eµ,npxq such that the following holds:

ppxµq2 ´ xµq “
ÿ

jPrns
µją0

Eµ,jpxq ¨ px2j ´ xjq,

and for each j P rns with µj ą 0, the polynomial Eµ,jpxq has a circuit of size OpnD2q and depth 2
(a ΠΣ circuit).

Proof of Claim 3.4. We will prove it by induction on the cardinality of Supppµq, which is defined
as follows:

Supppµq “ tj P rns | µj ą 0u .

Base case: Suppose |Supppµq| “ 1 and µ1 ą 0. If µ1 “ 1, then we can set Eµ,1pxq “ 1.
Otherwise, if µ1 ą 1, then

x2µ1
1 ´ xµ1

1 “ px2µ1
1 ´ x1q ´ pxµ1

1 ´ x1q

We have the following identity for any j ě 2:

zj ´ z “ pzj´2 ` . . . ` z ` 1q ¨ pz2 ´ zq

Using this we get,

x2µ1
1 ´ xµ1

1 “ px2µ1´2
1 ` . . . ` x1 ` 1q ¨ px21 ´ x1q ´ pxµ1´2

1 ` . . . ` x1 ` 1q ¨ px21 ´ x1q

“ px2µ1´2
1 ` . . . ` xµ1´1q

looooooooooooomooooooooooooon

:“Eµ,1pxq

¨px21 ´ x1q

The polynomial Eµ,1pxq has a circuit of size OpD2q and depth 2 (a ΣΠ circuit).
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Induction step: Assume this is true for all µ with |µ| ď D and |Supppµq| “ k. Consider any
arbitrary exponent vector µ with |µ| ď D and |Supppµq| “ pk ` 1q. Let t be the largest element in
Supppµq and let ν be the exponent vector with νt “ 0 and νi “ µi for all i ‰ t. We have,

ppxµq2 ´ xµq “ px2µt
t ´ xt ` xtq ¨ pxνq2 ´ pxµt

t ´ xt ` xtq ¨ xν

ppx2µt´2
t ` . . . ` 1q ¨ pxνq2 ´ pxµt´2

t ` . . . ` 1q ¨ xνq
loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

:“Eµ,tpxq

¨ px2t ´ xtq ` xt ¨ ppxνq2 ´ xνq, (20)

where we used the identity pzj ´ zq “ pzj´2 ` . . . ` z ` 1q ¨ pz2 ´ zq. Since the exponent vector ν
satisfies |ν| ď D and |Supppνq| “ k, we can apply the induction hypothesis on pxνq2 ´ xν . From
induction, we know there exists polynomials Eν,jpxq for all j P Supppνq such that:

ppxνq2 ´ xνq “
ÿ

jPSupppνq

Eν,jpxq ¨ px2j ´ xjq,

and the polynomials Eν,jpxq have circuits of size OpnD2q and depth 2 (a ΠΣ circuit). Substituting
it in Equation (20), we get,

ppxµq2 ´ xµq “ Eµ,tpxq ¨ px2t ´ xtq `
ÿ

jPSupppνq

xt ¨ Eν,jpxq
looooomooooon

:“ES,j

¨px2j ´ xjq,

where the polynomials Eµ,jpxq have a circuit of size OpnD2q and depth 2 (a ΠΣ circuit). Moreover,
the polynomials Eµ,jpxq are of degree-2D polynomials. This finishes the proof of Claim 3.4. ■

A.3 Proof of Claim 4.5

Claim 4.5. Let Hpyq P Fry1, . . . , yrs denote a polynomial whose individual degree is at most D.
Then there exists polynomials G1pyq, . . . , Grpyq such that the following holds:

Hpyq “ inddegprHpyqs `

r
ÿ

j“1

Gjpyq ¨ pypj ´ yjq,

and for each j P rrs, the polynomial Gjpyq has sparsity at most Dr`1{pp ´ 1q.

Proof of Claim 4.5. Fix an arbitrary monomial m with a non-zero coefficient in the polynomial
Hpyq. Say m “ yµ1

1 ¨ ¨ ¨ yµr
r where for every j P rrs, 0 ď ei ď D. Let Sm Ď rrs denote the set of

variables whose exponent in m is at least p, i.e.

Sm “ tj P rrs | p ď µj ď Du

Let ℓ P Sm, and let m´ℓ :“ m{yµℓ
ℓ . In other words, m “ yµℓ

ℓ ¨ m´ℓ. Then,

m “ pypℓ ´ yℓ ` yℓq y
µℓ´p
ℓ ¨ m´ℓ

“ yµℓ´p`1
ℓ ¨ m´j ` yµℓ´p

ℓ ¨ m´j ¨ pypℓ ´ yℓq

The monomial yµℓ´p
ℓ ¨ m´j is a monomial in the polynomial Gℓpyq. We repeat the above step on

the monomial yµℓ´p`1
ℓ ¨m´j . In each step with respect to the variable yℓ (for the monomial m), the
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degree of yℓ is reducing by pp ´ 1q. Thus this step can be repeated ď D{pp ´ 1q times because the
individual degree of Hpyq is ď D. In each step, we get one monomial for the polynomial Gℓpyq,
and thus we get D{pp ´ 1q monomials in the polynomial Gℓpyq from the monomial m. We do this
for every variable in the set Sm.

Finally, we iterate the above steps for every monomial with non-zero coefficient in the polynomial
Hpyq. The sparsity of the polynomial Hpyq is at most Dr, since the individual degree of Hpyq is
ď D. For each monomial in the support of Hpyq, each polynomial Gℓpyq gets at most D{pp ´ 1q

monomials, and hence each polynomial Gℓpyq,

sparsitypGℓpyqq “ sparsitypHpyqq ¨ D{pp ´ 1q ď Dr ¨ D{pp ´ 1q

This finishes the proof of Claim 4.5. ■

A.4 Proof of Claim 4.9

Claim 4.9 (Partial multilinearization of product of univariates). Let h1pz1q, . . . , hnpznq be univari-
ate polynomials where each hipziq has degree at most D.
Then there exists degree-1 univariate polynomials L1pz1q, . . . , Lnpznq and polynomials B1pzq, . . . , Bnpzq

satisfying the following: For every k P rns,

h1pz1q ¨ ¨ ¨hnpznq “ mlďk

«

n
ź

i“1

hipziq

ff

`

k
ÿ

j“1

Bjpzq ¨ pz2j ´ zjq,

where

mlďk

«

n
ź

i“1

hipziq

ff

“

k
ź

i“1

Lipziq ¨

n
ź

i“k`1

hipziq,

and for each j P rns, the polynomial Bjpzq has the following form:

Bjpxq “

j´1
ź

i“1

Lipziq ¨ h̃jpzjq ¨

n
ź

i“j`1

hipziq,

for some univariate polynomial h̃jpzjq.

Proof of Claim 4.9. We will prove this via induction on k.

Base case: For k “ 1, this is exactly Claim 4.8 where z “ z1 and y “ pz2, . . . , znq.

Induction case: Assume the claim is true up to k. Let Qpzq “ hk`2pzk`2q ¨ ¨ ¨hnpznq. By
induction hypothesis, we have,

mlďk

«

n
ź

i“1

hipziq

ff

“ hk`1pzk`1q ¨

k
ź

i“1

Lipziq ¨

n
ź

i“k`2

hipziq

looooooooooooomooooooooooooon

“Qpyq

,
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where y “ pz1, . . . , zk, zk`2, . . . , znq. From Observation 4.7,

mlďk`1

«

n
ź

i“1

hipziq

ff

“ mlzk`1

«

mlďk

«

n
ź

i“1

hipziq

ffff

,

Now applying Claim 4.8 on hk`1pzk`1q ¨ Qpyq with respect to the variable zk`1, we get the claim
for k ` 1. This finishes the proof of Claim 4.9. ■
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