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Abstract

In this work, we prove upper and lower bounds over fields of positive characteristics for
several fragments of the Ideal Proof System (IPS), an algebraic proof system introduced by
Grochow and Pitassi (J. ACM 2018). Our results extend the works of Forbes, Shpilka, Tza-
meret, and Wigderson (Theory of Computing 2021) and also of Govindasamy, Hakoniemi, and
Tzameret (FOCS 2022). These works primarily focused on proof systems over fields of charac-
teristic 0, and we are able to extend these results to positive characteristic.

The question of proving general IPS lower bounds over positive characteristic is motivated
by the important question of proving AC" [p]-Frege lower bounds. This connection was observed
by Grochow and Pitassi (J. ACM 2018). Additional motivation comes from recent developments
in algebraic complexity theory due to Forbes (CCC 2024) who showed how to extend previous
lower bounds over characteristic 0 to positive characteristic.

In our work, we adapt the functional lower bound method of Forbes et al. (Theory of Com-
puting 2021) to prove exponential-size lower bounds for various subsystems of IPS. In order
to establish these size lower bounds, we first prove a tight degree lower bound for a variant of
Subset Sum over positive characteristic. This forms the core of all our lower bounds.
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Additionally, we derive upper bounds for the instances presented above. We show that they
have efficient constant-depth IPS refutations. This demonstrates that constant-depth IPS refu-
tations are stronger than the proof systems considered above even in positive characteristic.
We also show that constant-depth IPS can efficiently refute a general class of instances, namely
all symmetric instances, thereby further uncovering the strength of these algebraic proofs in
positive characteristic.

Notably, our lower bounds hold for fields of arbitrary characteristic but require the field size
to be n*). In a concurrent work, Elbaz, Govindasamy, Lu, and Tzameret have shown lower
bounds against restricted classes of IPS over finite fields of any size by considering different hard
instances.
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1 Introduction

Propositional Proof Systems. A proof system consists of a set of axioms and inference rules.
The goal is to start with the given set of axioms and apply the inference rules repeatedly to prove
theorems (tautologies) within the proof system. A proof system is sound if it proves only true
statements and it is complete if it proves all true statements. The area of Propositional Proof
Complexity aims to understand the strength of different proof systems in the propositional setting.
In a foundational work, Cook and Reckhow [CR79] showed that if we could prove that there exist
tautologies such that they require exponential proof size (i.e., vaguely the number of times different
inference rules are applied in the proof) in any proof system, then it would resolve the famous NP
vs. coNP question in computational complexity theory.

Apart from the connection to this central question in complexity theory, understanding the power
of different proof systems is also fundamental to mathematical reasoning. This has motivated a lot
of research in the area for the last five decades. (See for instance these reference texts for more
context [Kra95; CK02; Kral9].) There are many different kinds of propositional proof systems
based on the set of axioms they start with and the kind of inference rules they are allowed to use.
In this work, we will focus on algebraic proof systems. In algebraic proof systems, propositional
tautologies are expressed as an unsatisfiable set of polynomial equations and the inference rules are
algebraic, i.e. they involve reasoning based on polynomial arithmetic.

The study of algebraic proof systems originates from the work of Beame, Impagliazzo, Krajicek,
Pitassi, and Pudlak [BIKPP96] who introduced the Nullstellensatz proof system (based on Hilbert’s
Nullstellensatz). Their work was followed by the work of Clegg, Edmonds, and Impagliazzo [CEI96]
who introduced Polynomial Calculus as a dynamic variant of the Nullstellensatz proof system. Over
the years, substantial work on these proof systems has helped us get a good understanding of their
power in terms of complexity measures such as sparsity and degree [BIKPP96; BIKPRS97; Raz98;

11i98; TPS99; BGIPO1; ARO1].

However, as noted in [FSTW21], sparsity and degree only roughly capture the complexity of
algebraic proofs. More recently, Grochow and Pitassi [GP 18| proposed the Ideal Proof System
(IPS) as a natural generalization of these well-studied algebraic proof systems such as Polynomial
Calculus and Nullstellensatz proof systems. In the last decade, several papers studied this proof
system. (See for instance |GP18; PT16; FSTW21; GHT22; HLT24].) This has allowed us to
understand many other aspects of algebraic proofs, such as proof size and proof depth.

In this paper, we extend this line of work. Specifically, we revisit some of the known upper and
lower bounds for Ideal Proof Systems over characteristic 0 and show similar bounds over fields of
any characteristic!.

1.1 Ideal Proof Systems

We start by describing the general setup for an algebraic (static?) proof system. Let x denote the set
of variables {1, xa,...,z,}. We are given a set of polynomial axioms f;(x), f2(x), ..., fmm(x) € F[x]
and the goal is to show that there is no 0-1 assignment to the variables such that it simultaneously

Tn all the results mentioned here, when we say that a result holds over characteristic 0, it in fact holds over large
enough characteristic as well.

2In the literature, the following type of proof system is often referred to as a static proof system. There are other
algebraic proof systems, where the proof is presented line-by-line and those are known as dynamic proof systems.
Here, we will only discuss static proof systems.



satisfies {f1(x) = 0, fa(x) =0, ..., fm(x) = 0} over F. To force a common Boolean solution, the set
of axioms is appended with additional axioms, {2? — z; = 0}ie[n for i € [n]. These are called the
Boolean axioms.

Based on Hilbert’s Nullstellensatz, we know that if {fi(x) = 0, fa(x) = 0,..., fm(x) = 0}
U {l‘? —x; = O}ie[n] are simultaneously not satisfiable, then such a refutation® can be given by
polynomials Aj(x), A2(x),..., An(x) and Bi(x), Ba(x), ..., By(x) such that

S 4 i)+ 3 Bil) - (@f ) = 1. 1)
i€[m] i€[n]

The complexity of such a proof can be defined using complexity parameters of the polynomials
{A;(x)} and {B;(x)}. In the case of the Ideal Proof System, Grochow, and Pitassi proposed that we
assume that A;(x), B;(x) € F[x] are computed by algebraic circuits. (See Section 1.3 for the formal
definition.) Based on this, they defined complexity measures such as circuit size and circuit depth
of IPS.

This proof system in its full generality is known to be quite strong. Specifically, it can poly-
nomially simulate Extended Frege [GP 18], which is one of the most powerful among well-studied
propositional proof systems. Additionally, the same work also showed that proving lower bounds
for this proof system would also imply strong algebraic circuit lower bounds, which is also a very
challenging problem.

In light of this (and other reasons explained below), many restricted variants of the IPS have
been studied. Let C be a class of polynomials. Then, a C-IPS refutation is an IPS-refutation
wherein {A;(x)}e[m] and {B;(x)}ie[,] belong to the class C. Forbes, Shpilka, Tzameret, and Wigder-
son [FSTW21], as well as Govindasamy, Hakoniemi, and Tzameret |[GHT22|, considered different
classes of polynomials, for example, the class of polynomials computed by read-once oblivious al-
gebraic branching programs (roABPs), by multilinear formulas, or by constant-depth algebraic
formulas. They proved upper and lower bounds on the size of (some variants of) C-IPS refutations
over characteristic 0.

1.2 Motivation

We extend these works and prove similar bounds in arbitrary characteristic. Our work is motivated
by the following important strands of research in proof complexity.

IPS-refutations and ACO[p]-Frege. A long-standing open question in proof complexity, open
for almost three decades [Kral5], is to prove superpolynomial lower bounds against AC°[p]-Frege
proof systems, i.e., a proof system in which the lines of the proof are constant-depth Boolean circuits
that use modular gates. In the late 80s, Razborov [Raz87] and Smolensky [Smo87; Smo93] resolved
the Boolean circuit lower bound question for AC? [p], but the corresponding proof complexity ques-
tion has proved to be elusive.

Over the years, several attempts have been made to resolve this question. The most rele-
vant to our work is the result by Grochow and Pitassi [GP18, Theorem 3.5 which showed that
constant-depth-IPS over characteristic p can efficiently simulate AC? [p]-Frege proofs. This means

3The words ‘proofs’ and ‘refutations’ are treated interchangeably in this paper. What we will be ‘proving’ is a
statement that ‘refutes’ the existence of a common solution to a system of equations.



that proving superpolynomial lower bounds against constant-depth-IPS refutations will give super-
polynomial lower bounds against AC°[p]-Frege. This gives a strong motivation to prove IPS lower
bounds over small characteristics.

Functional lower bounds over any characteristic. Building on the work of [GP 18], [FSTW21]
further explored the power of IPS refutations. They proposed a concrete approach towards proving
size lower bounds for IPS refutations via functional lower bounds (further explained in Section 1.4).
Their method was inspired by the notion of functional lower bounds in Boolean circuit complexity
[GRO0; FKS16]. They demonstrated the promise of their method by proving several lower bounds
for different fragments of IPS.

For example, the strong algebraic complexity lower bounds known for roABPs [Nis91] and mul-
tilinear formulas [Raz09]| follow from understanding the evaluation dimension complexity measure
in these models. Since this measure is essentially functional in nature, [FSTW21] used it to success-
fully prove lower bounds for C-IPS when C is a class of read-once branching programs or multilinear
formulas. Their bounds are over characteristic 0.

This approach of [F'STW21] was further adapted by Govindasamy, Hakoniemi, and Tzameret [GHT22]
to prove superpolynomial lower bounds against (multilinear) constant-depth-IPS refutations. Their
proof builds on some of the key components of the superpolynomial lower bound against constant-
depth algebraic circuits by Limaye, Srinivasan, and Tavenas. The latter lower bound of [LST21]
only worked over characteristic 0; for this and other reasons, the result of [GHT22| was also limited
to characteristic 0. In a recent paper, however, Forbes [For24| improved the circuit lower bound
result of [LST21] and proved the same? lower bound over any characteristic.

In light of these results, the next obvious step is to prove the lower bounds of [FSTW21; GHT22|
over any characteristic. We achieve that in this work.®

1.3 Our Results
To describe our results, we start with the formal definitions of IPS refutations and its variants.

Definition 1.1 (IPS proof systems [GP18; FSTW21|). Let f1,..., fm € Flz1,...,2,] be a system
of unsatisfiable polynomials over the Boolean cube {0,1}". In other words, there is no Boolean
assignment a € {0, 1}"™ to the variables x1,...,x, so that f;(a) =0 for all i€ [m].

Given a class of algebraic circuits C, a C-IPS refutation of the system of equations defined by
fi,-- oy fm is an algebraic circuit C € C in variables T1,...,Tn, Y1y, Ym, 21, - - - 2n Such that

e (C(x,0,0) =0, and

e C(X, f1, ooy fm, 2 —x1,..., 2% —x) = 1.

The size of the refutation is the size of the circuit C.

Further, if the circuit C' has individual degree at most 1 in the variables y and z, then we say
that C is a C-IPSpin refutation. If the circuit C has individual degree at most 1 in the variables y
(but not necessarily in z), then C is said to be a C-IPSyn refutation.

“Some parameters in the lower bound by [LST21] were subsequently improved by [BDS24] and [For24] achieves
those improved parameters.

®The subset-sum instances from [FSTW21; GIHT22] are not always unsatisfiable over fields of positive character-
istic; this requires that we tweak their instances to ensure unsatisfiability. Barring these changes, we qualitatively
match their lower bounds over fields of positive characteristic.



Finally, we say that a circuit C € C is a multilinear C-IPS; jnv refutation if additionally C(x,y,0)
18 a multilinear polynomial in the variables x U'y.

Remark 1.2. We mostly employ the above definition in the case that m = 1, i.e. the case when
we have a single polynomial equation that is unsatisfiable over the Boolean cube. Further, while
our upper bound results are proved in the more restrictive C-IPSpin proof system, our lower bounds
results hold in the setting of the stronger C-IPSyin proof systems.

We also recall some standard notions about polynomials and algebraic models of computation,
which will be useful below.

Multilinear and symmetric polynomials. A polynomial f(x) € F[z1,...,z,] is a multilinear
if the individual degree is at most 1. For a polynomial f(x), the multilinearization operator, denoted
by ml[ - ], changes for each variable x; and any k, every occurrence of x;“ in f(x) to z;.

A polynomial f(x) € F[zy,...,x,] is said to be a symmetric polynomial if the polynomial
remains invariant under any permutation of the input variables. For a degree parameter 0 < d < n,
the d* elementary symmetric polynomial end(1,...,zy) is defined to be the following multilinear

polynomial e, 4(z1,...,7n) = Xscn] | lics Zi- Whenever n is clear from the context, we will
|S|=d
denote the d*" elementary symmetric polynomial by ez(x).

Algebraic models of computation. We recall the definitions of some of the standard models
of computation relevant to our results.

Algebraic circuits and formulas. An algebraic circuit is a directed acyclic graph in which each
node either computes a sum (or a linear combination) of its inputs, or a product of its inputs. The
leaf nodes are either variables or constants. The size of an algebraic circuit is the number of edges
in the circuit, and the depth of an algebraic circuit is the longest path from the output node (a
sink) to a leaf node (a source). An algebraic formula is an algebraic circuit where the output of each
node feeds into at most another node; in other words, the underlying graph of an algebraic formula
is a tree. An algebraic formula is a multilinear formula if every gate of the formula computes a
multilinear formula.

Sparse polynomials and constant-depth circuits. The class > ]| consists of depth-2 formulas
with an addition gate in the top layer and multiplication gates in the bottom (second) layer. All
the gates have unbounded fan-in. > ]] formulas essentially compute polynomials in the sparse
representation i.e. as a sum of monomials. In general, a constant-depth algebraic circuit has O(1)
alternating layers of additional and multiplication gates.

Read-Once Oblivious Algebraic Branching Programs. A read-once oblivious algebraic branching
program in the variable-order 7 € S,,% is a directed acyclic graph whose vertices are partitioned into
n layers Vo = {s}, V1, Va,..., V,, = {t}. For each i € {1,2,...,n}, there are edges directed from layer
Vi—1 to V; that are labelled by univariate polynomials in the variable ;. For each s-to-¢ path p,
the polynomial computed by p is defined to be product of the edge labels on p. The polynomial
computed by the roABP is defined as the sum of polynomials computed by all s-to-t paths. The
width of an roABP is maxg<i<p |V;| i.e. the size of the largest layer of vertices.

For more background on these models of computation, please refer to one of the standard surveys
in algebraic complexity ([SY10],[Sap21]).

5S,, denotes the set of all permutation of [n].



1.3.1 Lower Bounds Over Positive Characteristic

We start by stating our lower bound results.

Theorem 1.3 (Lower bounds for sparse-IPSy ;v in positive characteristic). The following holds for
any large enough n. Let p be any prime number. Let k € N such that p* > 220 There eist
i € Fe and B € For\Fpr such that

o The polynomial f = Zie[n] a;x; — B has no Boolean satisfying assignment.

o Any sparse-IPSy\ refutation” of f must have size at least 282(n)

Note that the hard instance above is a sparse polynomial. We show that it has no small sparse
refutation over positive characteristic.

Theorem 1.4 (Lower bounds for fixed-order roABP in positive characteristic). The following holds
for any large enough n. Let p be any prime number. Let k € N such that p* > 290 There exist
i € Fpe and B € For\Fpr such that

o The polynomial f = Zie[n] a;x;y; — B has no Boolean satisfying assignment.

o Any roABP-IPS; v refutation of f in any order of variables where x variables come before y
n)

variables, must have width 2

To obtain lower bounds against more powerful models such as roABP-IPS; ;v with respect to

any order, or multilinear formulas, [FSTW21| used a slightly modified hard instance. We also use
an instance the same as theirs up to the choice of coefficients.

Theorem 1.5 (Lower bounds for any order roABP-IPS; nv and multilinear-formula-IPS n/). The
following holds for any large enough n. Let p be any prime number. Let k € N such that p¥ > 22,
There exist o j € Fpr and B € For\Fpr such that

o The polynomial f = Zl<i<j<n a; ;% jTix; — B has no Boolean satisfying assignment.

o Any roABP-IPS| n refutation of f must have size at least 224,

e Moreover, any multilinear-formula-IPSy 1y refutation of f must have size at least nStogn) g

for A = o(logn/loglogn), any product-depth®-A multilinear-formula-IPS refutation requires
size = nﬂ(ﬁ(logn)lm

Again notice that, f is a sparse polynomial and hence has a polynomial size roABP. It is also
efficiently computable by a multilinear formula.

In general, in Boolean proof complexity, it is typical that the hard-to-refute instances are them-
selves easy to compute. In algebraic proof complexity, there are some lower bound results that do
not have this property. That is, the instances that are hard to refute are also hard to compute.
For example, the set of results obtained by the approach of multiples in [FSTW21, Theorem 1.18,
Theorem 1.19, Theorem 1.20| and in a paper by Andrews and Forbes [AF22]. Additionally, in a

"Note that sparse-IPSrin (a weaker system than sparse-IPSpin/) is equivalent to the Nullstellensatz proof system
of [BIKPP96].
8The product-depth of a circuit is the maximum number of product gates appearing in any leaf-to-root path.



recent work Hakoniemi, Limaye, and Tzameret [[11JT24] presented instances that were hard to refute
for roABP-IPS; ;v and for multilinear-formula-IP Sy 15 over any characteristics, i.e., similar to what
we prove here. However, unfortunately, their instances were hard to compute and specifically, they
could not be computed by roABP or by multilinear formulas. Hence, our result here have the best
of both the worlds; the lower bounds hold over any characteristic and the hard instances are easy
to compute.

Theorem 1.6 (Lower bounds for multilinear constant-depth-IPS; v in positive characteristic).
The following holds for any large enough n. Let p be any prime and let k € N be large enough so
that pk > 292((gm)?) " There exist QG ke € Fpk and (8 € FPQk\Fpk such that

o The polynomial f = lei<j<k<£<n QG j ke 0%,k 0 TiTj 2T — B has no Boolean satisfying assign-
ment.

o Any multilinear constant-depth-1PSy1n refutation of f must have size n® A,

The characteristic 0 (or large characteristic) version of the above theorem was presented in [GHT22].
Their lower bound is a step towards constant-depth-IPS lower bounds. Our result above can thus
be thought of as another step forward in the right direction. Moreover, our input instance is the
same as the input instance in Theorem 1 [GHT22] up to the choice of coefficients, and it is easy
to compute (while being hard to refute). More specifically, it is computable by polynomial-sized
constant-depth multilinear formulas.

Remark 1.7. In all our results, the field characteristic is arbitrary, but the field size is quite
large, i.e., p* is either exponential or superpolynomial. This setting is non-trivial because the field
elements have polynomial bit complexity. Other results in the area, such as the work of Alekseev,
Grigoriev, Hirsch, and Tzameret [AGHT20] similarly use polynomial constraints with coefficients
from exponentially large domains. Specifically [AGHT20] study a variant of the subset sum instance,
called the Binary Value Principle, Zie[n] 2i=1x: 41 = 0 in the context of IPS proof systems in fields
of characteristic zero.

It is an interesting open question to prove similar IPS lower bounds over finite fields of small size.
Unfortunately, as we show below, this forces the polynomial instances to become more complicated.
See Section 1.5 for recent independent work that makes progress in this direction.

1.3.2 Upper Bounds Over Positive Characteristic

A natural question for hard instances above is: what is the weakest proof system in which they are
efficiently refutable? In personal communication, Tzameret observed that the above instances were
refutable by constant-depth-IPS; 1y hence showing that these proof systems can be exponentially
more succinct than their multilinear counterpart. The theorem below shows that the above polyno-
mials have efficient constant-depth-IPSy 1y refutations, even in the setting of positive characteristic.

Theorem 1.8 (Upper bounds for (non-multilinear) constant-depth-IPSpin). Fiz a prime number
p. The following holds for any natural numbers n and k.

Let f € Fye[x1,...,m,] be any polynomial with sparsity s and degree D with coefficients from the
field B and let 8 be any element of IF\IF‘pk where F s a field extension of F k.

Then,

e The polynomial f(x) — B has no satisfying assignment over the Boolean cube {0,1}"



o There is a constant-depth-IPSyin refutation of degree O(k - p- D) and size poly(s,p).

Note that since 3 ¢ F,x, the polynomial f(x) — 3 does not have a zero over {0,1}" (in fact it
does not have a solution over F” ). So the first item of above follows immediately. We also give
non-trivial constant-depth-IPSyn refutations for degree-1 polynomials that are unsatisfiable over
{0,1}"™ with all the coefficients in the same field.

Theorem 1.9 (Upper bound on degree of Nullstellensatz certificate). Fix a prime p. The following
holds for any natural numbers n and k with n > kp.

The following holds for every az,...,an, B € Fpx. Suppose the degree-1 polynomial S g — B e
For[21, ..., 2n] is unsatisfiable over the Boolean cube {0,1}" (i.e. there does not evist a Boolean
point a € {0,1}" such that Y, | cja; — 5 =0).

Then, there is a constant-depth-IPS N refutation of degree O(k - p) and size O(n/kp)O*P).

In particular, if p = O(1) and k = o(n), then there is a constant-depth-IPSyin refutation of degree
o(n) and size 2°0"),

Note that for degree-1 polynomials, the difference in Theorem 1.8 and Theorem 1.9 is in the constant-
term 3. If every a; € Fx and 3 ¢ Fpx, then the polynomial is always unsatisfiable over {0,1}™ (no
matter the choice of a;’s and 3). In fact, it is unsatisfiable over ). Our proof of Theorem 1.8 lever-
ages this and yields an efficient refutation. However, if 8 € F x, then our proof of Theorem 1.8 falls
apart. We handle this separately in Theorem 1.9, but we do not match Theorem 1.8 qualitatively.
More precisely, Theorem 1.8 yields a poly(n, p)-sized non-multilinear constant-depth refutations,
but Theorem 1.9 yields a roughly (Z)—sized non-multilinear constant-depth refutations.

Remark 1.10. Suppose the characteristic p is a fized prime independent of the number of variables
n.

o Theorem 1.8 shows that the exponential field size in Theorem 1.8, Theorem 1.4 and Theo-
rem 1.5 is not an artifact of the proofs.”. For fields of subexponential size, the polynomials in
these theorems have refutations of degree o(n) and in particular have roABP-IPSyN refuta-
tions of size 20(m) 10

o Theorem 1.8 also shows that the multilinearity assumption in Theorem 1.6 is not an artifact
of the proof. Non-multilinear proofs, even over large fields, allow efficient constant-depth
refutations for sparse instances.

Our final result shows a constant-depth upper bound for multilinear and symmetric systems of
polynomials, i.e. systems defined by polynomials f(x1,...,x,) of the form

n
Z Qgén,d + g
d=1

9Suppose the field [F . is not large enough, say, k = o(n). Then there is a refutation of degree d = O(k-p- D),
which is o(n) when p and D are constants. In particular, the sparsity of the refutation is at most ("Zd% which is
2°) when d = o(n).

10When the characteristic p is a growing function of n, this argument breaks down. It might be possible to get rid
of the exponential field size.

10



where e,, 4 denotes the elementary symmetric polynomial of degree d in variables z1,...,z,. Such
polynomial systems have been employed in [FSTW2I]| to prove lower bounds against restricted
systems of constant-depth-IPSyn. Our results imply that general constant-depth circuit refutations
can be exponentially more succinct than these restricted families, even for positive characteristic.

Theorem 1.11 (Upper bounds for multilinear symmetric systems). Fiz a field F.  Let
fiseoos fm € Flza, ..., x0] be a family of multilinear and symmetric polynomials with no common
Boolean solution i.e. there does not exist a x € {0,1}"™ such that each f;(x) = 0. This system has a
constant-depth-IPSpiN refutation of size O(m?n’logn) and depth 8.

1.4 Proof Techniques

Lower bounds. Our proof uses the functional lower bound method introduced by [FSTW21],
which can be described as follows. We know that a C-IPSy 1 refutation for f(x) consists of A(x),
B;(x) € F[x] such that

F)- A + Y (@2 — ) Bilx) = 1,

i€[n]

where A(x), B1(x),...,Bn(x) belong to C. As f(x) is unsatisfiable over the Boolean hypercube,
this implies that over the Boolean hypercube, A(x) is a well-defined reciprocal of f(x). Hence, to
show that A(x) cannot belong to C, it is enough to show that any polynomial that agrees with
1/f(x) cannot be computed by C. That is, the problem of proving a lower bound on the size of
C-IPSy v is reduced to proving a functional lower bound for 1/f(x).

At the heart of such a functional lower bound lies a degree lower bound, i.e., a lower bound on
the degree of f(x), where f(x) and f(x) are related. In fact, f(x) is a lifted version of f(x). Once
we have such a degree lower bound for f (x), we can apply proof ideas from algebraic complexity
theory such as the rank-based lower bound methods. These methods allow for the degree lower
bounds for f(x) to be lifted to size lower bounds for f(x).

For their machinery to work over positive characteristic, we prove a positive characteristic version
of the degree lower bound (see Lemma 2.2 for the formal statement). In the case of the lower bound
argument in [FSTW21], it was important to obtain a tight degree lower bound of exactly n. They
needed it for the next step, i.e., lifting, to work. In our case, we show that such a degree lower bound
holds with high probability (over the choice of coefficients of the hard instance). Once we have the
degree lower bound, the rest of the lower bound proof works similar to the proof by [FSTW21].

Upper bounds. We now describe the main ingredients in our upper bounds. We start by de-
scribing the main ideas in the proof of Theorem 1.8.

Constant-depth upper bounds. Here, we proceed in two steps. First, we observe that for any
sparse polynomial of degree d, we can flatten it to a linear polynomial by renaming the monomials
by fresh variables. Our hard instance is indeed sparse, hence the observation can be used to rewrite
the polynomial as a linear polynomial over a fresh set of variables.

Now, consider a linear polynomial L(x) — 3 such that L(x) = ajz1 + aexs + ... + apxy,, where
at,...,an € F for some k and prime p and 8 € F\]Fpk such that it is not satisfiable over 0-1
assignments.

11



To prove that the polynomial has a refutation over constant-depth circuits, we first prove that

for every j, L;j(x) = allﬂxl + 0/2)] To+...+ aﬁj Ty — ﬂpj can be expressed as a multiple of L(x) modulo

the ideal x” — x, which is a shorthand for the ideal generated by {z] — ;};c[n)-

We then observe that for j = k, Li(x) — L(x) is a non-zero constant and use this observation
to construct small depth circuits for the refutation of L(x)— 3. Throughout, we use some standard
but useful tricks available to positive characteristic fields.

For the proof of Theorem 1.9, we observe that the multilinear part of (f(x) — 3)~! has degree
O(kp). This follows from Fermat’s Little Theorem and using basic properties about multilineariza-
tion. See Section 3.2 for complete details.

Upper bounds for symmetric polynomials Now we discuss the proof outline for Theorem 1.11.
For ease of exposition, we explain the ideas for the case of m = 1 in Theorem 1.11, i.e. there is one
multilinear symmetric polynomial f(x) that does not have a solution over the Boolean cube {0, 1}".
Suppose F has characteristic p > 0. Any symmetric polynomial is a polynomial of the n elementary
symmetric polynomials!! i.e. e1(x),...,e,(x). However, if we restrict to the Boolean cube {0,1}",
then any symmetric polynomial is a polynomial of just O(log n) elementary symmetric polynomials.
Let e(x) denotes the tuple of those O(logn) elementary symmetric polynomials (see Claim 4.2 for
an explicit description of €(x).)

Let F(y) be the O(logn) variate polynomial such that F(y) o e(x) agrees with f(x) on the
Boolean cube {0, 1}". The Boolean cube {0, 1}" is mapped to Iﬁ‘f(log ™) under the map €(x) because
char(F) = p. The unsatisfiability of f(x) over the Boolean cube {0, 1}" implies the unsatisfiability of
F(y) over IF? (logn) Applying Hilbert’s Nullstellensatz Theorem (see Theorem 1.19) on the unsatisfi-
ability!'? of F(y) over Iﬁ‘g(log n)7 we get a low-variate Nullstellensatz certificate (it is a Nullstellensatz
certificate in just O(logn) variables)!®. The coefficients of this low-variate Nullstellensatz certificate
can be computed via poly(n)-sized constant-depth circuits. This follows from the fact that we are
working over constant characteristic. Refer to the diagram below for a schematic representation of
what we discussed so far.

{0,1}" f(x) / F
\g(x) F(y)
\ F}?(logn) /
Next we “lift” the Nullstellensatz back to the n variables (x1,...,z,). To do so, we plug-in

e(x) in place of y. Observe that this substitution by €(x) preserves the size and the depth of the
coefficients of the low-variate Nullstellensatz certificate because of the Ben-Or’s construction (see
Theorem 1.15).

1This follows from the Fundamental Theorem of Symmetric Polynomials.

12To capture the restriction of F,, we add n univariate polynomials, each of which vanishes on one coordinate of
13T 00sely speaking, one can imagine this as a “dimension reduction” of our problem. The symmetric structure of
f(x) led us to convert a problem in n variables to a problem in just O(logn) variables.

12



It remains to prove via constant-depth circuits that F(€(x)) agrees with f(x) on the Boolean cube,
i.e. F(&(x))— f(x) lie in the ideal (x?>—x). Here “to prove in constant-depth circuits” refers to giving
a certificate for the ideal membership whose coefficients can be computed by constant-depth circuits.
More precisely, we want to prove that there exists polynomials B;(x)’s which have poly(n)-sized
constant-depth circuits such that

n

F(e(x)) = f(x)+ )] Bj(x)- («F — ).

J=1

This is the key step in our proof. To prove this, it suffices to prove the following special case, which
we prove in Lemma 4.3.

Lemma 1.12. Let { = O(logn) and fir an arbitrary sequence (au,...,ap) where each o; € [n].
There exist polynomials Bj(x)’s such that

)4 14 n
[ [ea(x) = ml [H eai(x)] + ), Bi(x) - (aF — ),
i=1 i=1 j=1

and each polynomial Bj(x) can be computed by a poly(n)-sized constant-depth circuit.

1.5 Related Work

In an independent work, Elbaz, Govindasamy, Lu, and Tzameret [EGLT25| consider related ques-
tions. Using the recent lower bound of Forbes [For24|, which proves the positive characteristic
version of the constant-depth formula lower bound of [L.ST21], they obtain lower bounds for frag-
ments of the IPS over finite fields of any size.

1.6 Preliminaries

In this subsection, we present a few more definitions and standard facts on polynomials which will
be used in our proofs later on.

For a polynomial f(x1,...,x,), the individual degree of f is an integer D such that for all i € [n],
the degree of f when viewed as a univariate polynomial in the variable x; is at most D.
We next mention some useful properties about multilinear polynomials.

Fact 1.13 (Standard facts on multilinear polynomials). Let f(x), g(x) € F[x].
e f(x) and ml[f(x)] agree on the Boolean cube {0,1}".

e f(x) and g(x) agree on the Boolean cube {0,1}" if and only if mI[ f(x)] is equal to the ml[g(x)].
o mllf(x)g(9)] = milm[f () milg ()]

Theorem 1.14 (Fundamental Theorem of Symmetric Polynomials). Fix any arbitrary field F. If
f € Flxy,...,x,] is a symmetric polynomial of degree d, then there exists a unique polynomial

F e Fly1,...,ya] such that f(x) = F(e1(x),...,eq(x)).

13



A classical and beautiful construction of Ben-Or shows that every elementary symmetric polynomial
can be computed by poly(n)-sized constant-depth circuits.

Theorem 1.15 (Ben-Or’s construction for elementary symmetric polynomials). (See [SW(01, The-
orem 5.1]). Let F be a field with |F| > n. Then for every d € [n], the d* elementary symmetric
polynomial eq(x1, ..., z,) has a circuit of size O(n?) and depth 3 (a XIIX circuit).

More particularly, for any choice of (n+1) distinct elements v1,...,Yn+1 € F and for every k € [n],
there exists coefficients cy;’s such that

n+1 n
erx(x) = Z Chi H(l + viz;)
i=1  j=1

The following recursive definition of elementary symmetric polynomials will be used in the proofs.
eq(x1,...,xn) = x1-€q-1(T2, ..., xn) + eq(Ta, ..., xy), for all d € [n] (2)

Theorem 1.16 (Polynomial Identity Lemma). (See [G12523, Lemma 9.2.2]). Let F be an arbitrary
field. Let f(x) be a nonzero polynomial of degree at most d and let S < F. If we choose a ~ S™
uniformly at random, then:

d
P —0]< =
P [f(a) =0] 5]
For a natural number k and variables (z1,...,2,), we will use (zF — z) to denote the following

ideal (z¥ —z) := (2f —21,...,2% — 2) < F[z1,...,2,]. We recall the following lemma which

holds for fields with positive characteristic.

Lemma 1.17 (Freshman’s Dream). Fiz a prime number p and a field F of char(F) = p. Then
for any a,b € F, we have, (a + b)P = aP + bP. More generally, for any ai,...,am € F, we get,
(a1 +...4+an)? = a +... +ah.

Next we recall the definition of an ideal and a variety, and then we state Hilbert’s Nullstellensatz.

Definition 1.18 (Ideal and Variety). Fiz any field F and consider the commutative ring Flx1, ..., xy].
For a set of polynomials f1,..., fm € F[x], the ideal generated by f;’s, denoted by (fi,..., fm) is
defined as:

(fisoooy fm) = {hEF[x]

m
391, -, 9m € F such that h:Zgifi}.

i=1

For a set of polynomials f1,..., fm € F, their variety, denoted by V(fi,..., fm) is a subset of the
algebraic closure of T, defined as:

V(fl,...,fm) = {aeF"‘fl(a):~~-=fm(a)=O}.

Now we state Hilbert’s Nullstellensatz which essentially says that if a set of polynomials do not
have a common zero, then there exists “witness” for this, i.e. one can express 1 as a polynomial
combination of f;’s.

14



Theorem 1.19 (Hilbert’s Nullstellensatz). Fiz any field F. Let fi,..., fm € Flx1,...,2,] be a
set of multivariate polynomials such that they do mot have any common zeros over the algebraic
closure of F. Then the constant 1 lies in the ideal (f1(x),..., fm(X)). In other words, there exists
polynomials Ay, ..., Ap € Flay, ..., x,] such that

Al(X) . fl(X) + e+ Am(X) . fm(X) = 1.

Strictly speaking, Hilbert’s Nullstellensatz guarantees that the polynomials Als are in F[x] (F is
the algebraic closure of F). However, the above statement also follows easily by observing that we
can solve for A;’s by solving a system of linear equations over F. Throughout this article, we will
refer to (A1(x),..., An(x)) as a Nullstellensatz certificate’® for the system {f1(x),..., fm(x)}. We
will also refer to A;’s as coefficients because if we take a polynomial combination of f;’s with A;’s
being the coeflicients, then we can generate 1.

Lemma 1.20 (Nullstellensatz certificate implies refutations). Fiz any field F. Let Pi,..., Py, €
Flx1,...,2,] be polynomials that have no common Boolean solution. Let the polynomials A;(x)’s
and Bj(x)’s be coefficients of the Nullstellensatz certificate, i.e.

n

S Aix) - Pix) + Y By(x) - (af — ) = 1.

i=1 j=1

Suppose for every i € [m] and for every j € [n], the polynomials A;(x) and Bj(x) have a circuit
of size s and depth A, then there exists a IPS proof for the system {Pi,..., P.} of size O(sm) and
depth A + 2.

Proof of Lemma 1.20. Define the circuit C(x,y,z) as follows:

C(x,y,z) =

NgE

i=1

Ai(x) -y + Y Bj(x) - %
=1

Clearly C(x,0,0) = 0 and C(x, f1,..., fm, @3 — x1,...,22 — z,) = 1. It is easy to verify the size

and depth parameters of C(x,y,z). |

Lemma 1.20 allows us to restrict our attention to finding an efficient (in terms of algebraic
complexity) Nullstellensatz certificate, which yields a short IPS-proof.

2 Lower Bounds in Large Fields of Positive Characteristic

In this section, we will prove size lower bounds for several fragments of IPS over positive character-
istic. As explained in Section 1.3.1, we start by proving a tight degree lower bound (Lemma 2.2)
over positive characteristic. Using our positive characteristic variant of the degree lower bound, we
then recover the lower bound results from [FSTW21| and [GHT22] over positive characteristic.

Y“There are infinitely many Nullstellensatz certificates for a system {fi,..., fm}. To see this, suppose m = 2
and let (A1, A2) be a Nullstellensatz certificate. Then for any polynomial g € F[x], (A1 + gf2, A2 — gf1) is also a
Nullstellensatz certificate.
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2.1 Degree Lower Bound for Arbitrary Characteristic

For any a € {0,1}", we use |a| to denote its Hamming weight. For any a = (ay,...,a,) € {0,1}"
and any subset of indices S < [n], we use ag to denote [ [, g a;. All the statements in this section
work over fields of arbitrary characteristic.

First, we state a standard fact about multilinear polynomials, which will be useful in the main
lemma.

Fact 2.1. Let f(x) = ng[n] Asxg be a multilinear polynomial on n variables. Then,

Ay = D (-DFIf(a)

ae{0,1}n

The next lemma is our main degree lower bound which shows that a multilinear polynomial for
the inverse of a random linear form will have maximal degree. While similar statements have been
observed in the literature (e.g. [Gri98, Proposition 2|), we give an explicit proof for the sake of
completeness.

Lemma 2.2. Let F and T’ be fields such that F is a strict subfield of F'. Let n € N be a natural

number and let x denote the tuple of variables (x1,...,x,). Fixz any 8 € F\F. For any a =
(a1, ... ,00) €F™ let fo(x) be the unique multilinear polynomial that agrees with the function
1
Diimy it =

on the Boolean cube {0,1}". Let S € F be any finite subset of the field. Then, for a uniformly
random o ~ S™:

2" —1
a]i)gn[degfa(x) = n] =1- |S|

Proof. By Fact 2.1, the coefficient of xp,) in fo(x) is Za€{071}n(—1)|a\fa(a), or equivalently,
1
(_1>|V|—

Based on the above expression, we define the rational function Ap,;(z) as follows.

2 e _qvi LI
)‘[n]( ) : ng[n]( 1) ey i) — B

We will use N(z) and D(z) to denote the numerator and denominator of A[,)(z). For any S < [n],
we will use Lg(z) to denote ), ¢ 2;. It follows that

N@) = > )V ] (Lr(z)-p)

Vc(n] TS [n]:T#V
D(z)= [] (Lv(z) - 8)
Ve(n]

Since 8 € F'\F, D(«) # 0 for any a € F. If we prove that N(z) is a non-zero polynomial, then by
the Polynomial Identity Lemma (Theorem 1.16), for any finite subset S € F, Pro~gn[N () # 0] =
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1 — 221 which implies that Pry.gn Apj(e) #0] =1~ ZTTT, and thus proves the theorem. Thus,
it is enough to prove that some monomial in N(z) has non-zero coefficient.

For V. # &, [ Ircpnrev (L1 (2) — B) has degree at most 2" —2 since L (z) — 8 will not increase
the degree. The term ]l[T " g(LT(z) — [3) syntactically contributes monomials of degree 2™ — 1 from
[ 17~ o Lp(z) , but is possible that these coefficients vanish if the field F is of positive characteristic.
We will show that there is a monomial of degree 2" — 1 with coefficient 1, and thus this monomial

will survive over any field.
Claim 2.3. The coefficient of the monomial™® []1_, 27 in [lrep(Lr(z) = B) is 1.

Proof sketch. We would like to count the number of ways of collecting variables from each Lp(z)
to construct the required monomial. We first observe (via a simple counting argument) that for
every i € [n], the number of subsets T < [n] such that {j e [n]:j > i} nT =, and i € T, is
2i=1 Moreover, for each i € [n], if 7; is the collection of subsets with the above properties, then we
observe that 7; N T; = & for all i # j, i € [n], j € [n].

With these observations, it inductively follows that for each ¢ € [n], conditioned on the degree

of variables zj,...,z;+1 being correct (i.e. ,2']2-]71)7 there is exactly one way of ensuring that the
degree of z; is 2°71: for each T that is one of the 2°=! subsets satisfying the properties of the above
observation, select the z;’s from Lp(z). [

[

Note that Lemma 2.2 is interesting only when the field size is large (at least 2™), and that will be
the case for subsequent lemmas as well. The next lemma proves a stronger version of the previous
lemma: for a random linear form, the inverse of every restriction of the linear form (by setting some
variables to 0) will have maximal degree.

Lemma 2.4. Let F and ¥’ be fields such that F is a strict subfield of F'. Let n € N be a natural
number and let x denote the tuple of variables (x1,...,xy,). Fix any 8 € F'\F. For any & # U < [n],
let fa,u(x) be the unique multilinear polynomial that agrees with the function

1
on the Boolean cube {0,1}". Let S € F be a finite subset of the field. Then, for an o ~ S™ chosen
uniformly at random:

olUl 1 2%n
Pr [3 a non-empty U < [n] : deg fa.u(x) < |U|] < Z — <
a~sn ! S| |5
F#U<[n]

In particular, with probability at least 1 — (22"/|S|) over the choice of a ~ S™, for every U < [n],
the leading monomial of fo u(x) is ¢ [ [,ey i for some c € F\{0}.

Proof. This lemma is a simple application of union bound with the previous lemma. The previous
lemma tells us that for a uniformly random a ~ S™ and any U < [n],

2Vl — 1
N

Union bound over all U € [n] gives us the required statement. [ ]

P [deg fau(x) < |U]] <

. i—1 . . .
"®The same proof works for any monomial [/, z?,(i) , where o is an arbitrary permutation on [n].
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2.2 Sparse-IPS; Lower Bound

The following claim from [FSTW21]| proves a lower bound against sparse-IPS; nv over fields of large
characteristic.

Proposition 2.5 (Sparsity lower bound (Proposition 5.6 [FSTW21])). Let n = 8. Let F be a field
of characteristic > n. Let f € F\{0,...,n}. Suppose f(x) be a polynomial such that

F) - (Z—g) 1 (x2—x)

where (x2 — x) denotes the ideal (x3 —x1,...,22 —1,). Then, the sparsity of f(x) is at least 2171,

The proof uses two observations.

1. ([FSTW21, Lemma 5.5]) If f(x) has sparsity s, then a random restriction p will ensure that
deg(p(f)) <log(s) + 1 with reasonable probability.

2. (Chernoff bound) A random restriction p will keep at least n/4 variables alive with reasonable
probability.

By a union bound, we can find a random restriction p that ensures that the degree of p(f) is at
most log(s) + 1 but at least n/4 variables survive p. In particular, p(3;er,) Ti — B8) = 2eg @i — B3 for
some S C [n] with |S| > n/4. But the degree lower bound in [I"ST\\'?'I[ tells us that the inverse of
Dies i — [ on the Boolean cube must have degree > |S|. Combining the above observations with
the degree lower bound, we get that n/4 < log(s) + 1 or s = 27/4~1,

The only part of the proof that requires charF > n is the degree lower bound; the two observa-
tions work over all fields. Thus, we can replace their degree lower bound with Lemma 2.4 to recover
the sparsity lower bound over large enough fields of arbitrary characteristic.

Theorem 2.6. Let n > 8. Let p € N be any prime. Let F be a field of characteristic p and size p?k,
where k is the smallest integer that satisfies p* > 22", Let 8 be an arbitrary element in F\F, where
F denotes the subfield of size p*. For any a € F*, let fo(x) be a polynomial which agrees with

1
Die[n] ¥ii = B

on the Boolean cube. Then there exists an o € F™ such that fa has sparsity > 290

2.3 1roABP — IPS; v Lower Bound

Lemma 2.4 tells us that for a random choice of coefficients e and any U < [n], the inverse of
Diey cixi — (3 has degree |U| over the Boolean cube. The authors of [FSTW21] “lift” such maximal
degree lower bounds to construct a polynomial P(x) such that any roABP that computes (in any
order of variables) the inverse of P(x) over the Boolean cube requires exponential size. A high-level
overview of their proof is as follows.

1. The optimal width of an roABP computing a polynomial g is captured exactly by the coeffi-
cient dimension'% of g.

18 These notions are defined with respect to a certain partition of the variables and any order of variables that is
consistent with the specified partition.
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2. The coefficient dimension of a polynomial g is at least as large as the evaluation dimension of
g.

3. For f(x,y) := Zie[n] x;y; — B, evaluations of f on y € {0,1}" will be fg(x) = >,.qx; — 3 for
various S < [n].

4. By the degree lower bound in [FSTW21], any multilinear polynomial computing the inverse
of fs over the Boolean cube must have degree |.S|. This eventually implies that the evaluation

space of g(x,y) := ﬁ over y € {0,1}" will contain all the multilinear monomials on x

variables. In particular, the evaluation dimension'” of ¢ is at least 2", and thus, any roABP
computing ¢ must have width > 2.

The only part of their proof that requires a restriction on the characteristic of the underlying field
is the degree lower bound. The rest of their proof works with the degree lower bound in Lemma 2.4.
In the rest of this section, we state the final theorems that follow using our degree lower bound in
the proofs of [FSTW21|. For more details, we recommend the reader to refer to the appendix as
well as [FSTW21].

Theorem 2.7 (Functional lower bound against roABP in a fixed order of variables). Let n € N.
Let p € N be any prime. Let F be a field of characteristic p and size p**, where k is the smallest
integer that satisfies p* > 22". Let 3 be an arbitrary element in H‘N’\F, where F denotes the subfield
of size p*. For any a € ", let fo(x,y) be a polynomial which agrees with

1
Zie[n] oy — B

on the Boolean cube. Then there exists an a € F™ such that any roABP that computes fo in any
order of variables where X precedes 'y requires width = 2™.

Theorem 2.8 (Functional lower bound against roABP in any order of variables). Let n € N. Let
p € N be any prime. Let IF be a field of characteristic p and size p?* . where k is the smallest integer
that satisfies pF > (2:)22”. Let B be an arbitrary element in F\F, where F denotes the subfield of
size pF. For any o € IF(2;), let fo(x = (7;)2",2 = (2i4)ije[n]) be a polynomial which agrees with

1

Diicj Vi j%iTiT5 — B

2n
on the Boolean cube. Then there exists an o € r(%) such that any roABP that computes fo in any
order of variables requires size = 2".

2.4 Multilinear-formula-IPS Lower Bound

Lower bounds against multilinear-formula-IPS follow from a coefficient dimension lower bound (see
Lemma A.10) and the following theorem of Raz and Yehudayoff that connects multilinear formula
size to coefficient dimension. Here, we present the version from [F'STW21, Theorem 3.13].

17 Again, the order of variables will be important here, but one can also construct a polynomial which works against
roABPs in any order of variables.
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Theorem 2.9 (Raz-Yehudayoff [RY09|[Raz09]). Let f € Flxy,...,xop,2z] be a multilinear polyno-
mial and let f, denote the polynomial f over the ring F[z]. Suppose for any balanced partition (u, v)
of x = (x1,...,%p):

dimF(z) Coeffu|v(fz) = 2"

o(logn/loglogn), any

1 n \1/A
product-depth-A multilinear formula computing f will require size > nQ(A2 () )

Then any multilinear formula for f requires size = n*1°8™) and for A

Theorem 2.10 (Functional lower bounds against multilinear formula). Let n € N. Let p € N be
any prime. Let For be a field of characteristic p and size p?k, where k is the smallest integer that

satisfies pF > (27?) 22" Let B be an arbitrary element in Fpgk\F, where F denotes the subfield of size

p*. For any a € ]F(Qr?), let fo(x = (z;)2",2 = (#ij)ije[n]) be a polynomial which agrees with

1

Diicj CijZijTiT; — B

2n
on the Boolean cube. There exists an o € r() such that any multilinear-formula computing fq
requires size = n1°6") and for A = o(logn/loglogn), any product-depth-A multilinear-formula
1 n_\1/A
P(logn)

computing fo requires size =n

While this immediately implies multilinear-formula-IPSy 17 lower bounds, one can observe (as
noted in Lemma 5.2 of [FSTW21]) that any multilinear-formula-IPS refutation, by multilinearity, is
a multilinear-formula-IPS; 15 refutation. Thus, the lower bounds work against multilinear-formula-
IPS.

2.5 Constant-depth Multilinear IPS; v Lower Bound

In [GHT22], Govindasamy, Hakoniemi, and Tzameret prove super polynomial lower bounds against
constant-depth multilinear IPS; ;v refutations of the subset sum variant

D Zijkitivgrem — B
27]7k7le[n]
In particular, they prove the following theorem.

Theorem 2.11 (Constant-depth functional lower bounds [GHT22|). Let n,A € Ny with A <
O(logloglogn) and assume that char(F) = 0. Let f be the multilinear polynomial such that
1

Dl g kjeln] Zi kA TiTiTRTL — B

f=

over the Boolean cube. Then, any circuit of product-depth A computing f has size at least

xp(—O(A))
,(log n)e»

We prove the same statement for large fields of arbitrary characteristic. Our proof exactly
follows the structure of [GHT22|. Their proof requires the char F = 0 condition for two reasons:
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1. They use the results of Limaye, Srinivasan, and Tavenas [[.ST21], which gave superpolynomial
lower bounds against constant-depth circuits over any field F with char(F) = 0 or greater than
the degree d of the hard polynomial. In particular, they use the result that over fields with
char(F) = 0 or greater than d, any low-degree set-multilinear polynomial computed by a
constant-depth circuit can also be computed by a set-multilinear constant-depth circuit.'®

2. They use the degree lower bound for the multilinear representation of 1/ (Zie[
by Forbes, Shpilka, Tzameret, and Wigderson [F'STW21].

1% — ), proved

n

To deal with the first requirement, we use the recent beautiful result of Forbes [For24], which
extends the results of [LST21] to arbitrary fields. In particular, we will use the following statement
from [For24], which says that the set-multilinear projection of a constant-depth circuit can be
efficiently computed by a constant-depth circuit over arbitrary fields.

Theorem 2.12. [For?2/, Corollary 27]. Let F be an arbitrary field. Let x = x1 L X2 L --- U Xq be
a partition of the variables x. Suppose [ can be computed by a size s product-depth A arithmetic
circuit. Then the set-multilinear projection of f (the restriction of f to monomials that are set-
multilinear with respect to the specified partition) can be computed by a size poly(s, @(lo‘éd)d)-size
circuit of product-depth 2.

To deal with the second requirement, we use our degree lower bound from Lemma 2.4, which
works for arbitrary fields of exponential size i.e. there is no restriction on the characteristic of the

field.

Overview of [GHT22]

1. Using the word polynomials framework of [LST21], construct a knapsack polynomial ksy (for
a partition given by a word w € Z%) with the property that the set-multilinear projection
of ﬁ over the Boolean cube requires superpolynomially large set-multilinear constant-depth
circuits.

2. Consider a degree-4 subset-sum variant f(z,x) := Zij k1 Zijki%iTjeRe; — B so that for the
word w € Z% that will be used to instantiate the previous point, there exists an assignment of
some of the variables in z, x that maps f(z,x) to ksy, (upto a renaming of variables).

3. If there is a multilinear polynomial computing 1/f(z,x) over {0, 1} that has a small constant-
depth circuit, then there is a multilinear polynomial computing 1/ksy, over {0,1}" that has
a small constant-depth circuit. Moreover by the set-multilinearization of [LST21], there is a
small set-multilinear constant-depth circuit computing the set-multilinear projection of 1/ks..

4. Combining the first point with the contrapositive of the third point, conclude that any multi-
linear polynomial computing 1/f(z,x) over {0, 1}" requires superpolynomially large constant-
depth circuits. The multilinear constant-depth TIPSy lower bound follows.

In [GHT22], the proof for the hardness of ﬁ requires the underlying field to be of large charac-
teristic, essentially because it requires the degree lower bound from [FSTW21], which requires large

18They also use other ideas from [LST21] such as relative rank, word polynomial, etc., but those ideas do not
require any restrictions on the characteristic of the underlying field.
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characteristic. To make Theorem 2.11 work over fields of positive characteristic, we will employ
our degree lower bound from Lemma 2.4 with a variant of the knapsack polynomial; the rest of the
proof remains the same as that of Theorem 2.11. To provide the necessary details, we first describe
the construction of the knapsack polynomial. Then, we state the particular claim from [GHT22]
that uses the degree lower bound from [FSTW21]. Finally, we show how our degree lower bound
Lemma 2.4 fits into the rest of the proof.

Constructing the knapsack polynomial We shall now recall the definitions required for defin-
ing the hard polynomial in [GHT22| via the word polynomials template of [LST21].

Let w € Z? be an arbitrary word. For any S < [d], let w|s denote the subword of w indexed
by the set S. Consider the sequence X (w) = (X (wy),..., X (wq)) of sets of variables. Define the
positive indices and negative indices of w as:

Py :={ie[d]: w; =0}

Ny = {i€[d]:w; <0}
Let any i € Py, the variables of X (w;) will be of the form a:((,l ), where ¢ is a binary string indexed
by the set:

AS,? = Z wiy + 1, Z Wy

i’ng i'ePy

i <i i<
We will call these sets positive indexing sets. The size of each AE:,) is |w;|. The number of strings in
AW s ghoil,
For ¢ € Ny, we similarly define the negative indezxing sets B‘(,i) that will be used to index the variables
of X (w;) for i € Ny,.
A word w € Z% is balanced if:

e Vi€ P, 15 € Ny such that Ag,f,) N B‘(,g) # (J (i.e. j € Ny is a witness that w is balanced at
i€ Py)

e Vj € Ny Ji € Py such that Asf,) N B‘(,g) # J (i.e. i € Py is a witness that w is balanced at
j € Nw)

For any i € Py, 0 € {0, 1}‘4‘('3), define:

= 1] > ve) (3)

jENw B
. A e{0.1YBw
AV ~ABY 2 7;€{0,1}

o;(k)=0(k)Vke A ABY

The product ranges over each j € Ny, that witnesses the fact that w is balanced at 7. The sum

ranges over each o; that is consistent with o on A‘(,f,) N B‘(,g). Now, we define the knapsack polynomial

as

s | XY a0 |- ()

P set0,134W
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where § € F is any field element such that ks, has no Boolean roots.
To make the proof work over fields of positive characteristic, we define a variant of ksy, as:

KSw o := Z a; Z O AN ] (5)
EPw e(0,134W

where a = (@)iep,, € FlPw! and 8 will be chosen from an extension field F > F so that kSw o has

no Boolean roots.

For any word w € Z¢, My/(f) denotes the matrix with rows indexed by all monomials m that
are set-multilinear over w|p,_, and columns indexed by all monomials m’ that are set-multilinear
over w|y,, . For each such pair of monomials (m,m’), the corresponding entry in My (f) carries the
coefficient of mm/ in f. To show that the set-multilinear projection of any multilinear polynomial
f computing 1/ksy, over {0,1}" requires superpolynomially large set-multilinear constant-depth
circuits, [GHT22] shows that My, (f) is full-rank.

Lemma 2.13 (Rank lower bound lemma (Lemma 6 [GHT22])). Let w € Z% be a balanced word,
and let f be the multilinear polynomial such that

1

:E

f

over {0,1}". Then, My (f) is full-rank.

With this lemma, the lower bound follows via the arguments from [L.ST21|. Importantly for us,
this lemma uses the degree lower bound from [FSTW21]; we describe a sketch of the same.

The use of degree lower bound in [GHT22] Suppose f = >} gm(x)m, where the sum runs
over all multilinear monomials m in the y variables, and g¢,,(x) is some multilinear polynomial in
the x variables. They show that for any m which is set-multilinear on w|y,,, the leading monomial
of gm(x) is the set-multilinear monomial m’ on positive variables such that o(m’) is consistent with
o(m) (|[GHT22] describes this formally). For each monomial m that is set-multilinear on w|y,,,
the leading monomial of g,,(x) turns out to be a different set-multilinear monomial on the positive
variables, and together, these leading monomials span the space of all set-multilinear monomials
on the positive variables. This makes My (f) full-rank. To get a handle on g,,(x) (for m being a
monomial on w|y, , consisting only of y variables), [GHT22| sets all the variables in m to 1 and all
the y variables outside m to 0. They call this transformation 7,,,. For the proof of Lemma 2.13, an
important requirement is that:

For every T' € Ny, and for every set-multilinear monomial m on w|r, the leading mono-

mial of 7y, (f) is [ [;cyr,- L(,?, which is the product of all the variables that show up in the

denominator of

1 1

Tm (KSw) ZieUT x(i)) y

o(s

where Up = {i € Py : AW < BL}, and for each i € Py, o(i) is the unique indexing

string that agrees with o(m) on Asf,), the ¥ positive indexing set.
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This requirement is satisfied due to the degree lower bound from [FSTW21]|, which requires the field
to be of characteristic 0. The proof in [GHT22| includes helpful figures and the reader is encouraged
to refer to the paper.

Let us recall our variant of ksy,:

ksw,oz = Z «; Z x[(yi)fai -3 (6>

P eroyAl

where o« = (;)ep,, € FlPwl To prove Theorem 2.11 in positive characteristic, we use the following
lemma that follows by a union bound over all T < Ny, and all set-multilinear monomials on w|r,
on top of Lemma 2.2.

Lemma 2.14. Let d € N be a natural number and w € Z% be a balanced word. Let m = |Py|. For
any & = (aq,...,apy) € F™ T < Ny and any mp that is a set-multilinear monomial on w|r, let
fommyp (X) be the unique multilinear polynomial that agrees with the function

(o) "5

TmT = .

kSw,a ZieUT O‘ixfyl()i) — /B

on the Boolean cube, where 5 € F is chosen so that ksw o has no Boolean roots, and Up = {i € Py :
AD < BL}. Let S € F be a finite subset of the field. Let vy := |Ny| + 3.
a € S™ chosen uniformly at random:

ien, [wil. Then, for an

2'y+m

Pr [3T = NwamT : deg fa,T,mT(X) < |UT|] <
a~S™m ’S|

In particular, with probability at least 1 — (277 /|S|) over the choice of a € S™, for every choice
of T < Nw and set-multilinear monomial my over w|r, the leading monomial of fo. T my(X) is

¢ [ icvy, x‘(,? for some ¢ € F\{0}.

Proof. The number of T' & Ny, is 2INwl " The number of set-multilinear monomials on w|p for
any T © Ny is 22%er Wil which is at most 9Zienw Wil For any fixed T' € Ny and mp that is
a set-multilinear monomial on w|7, Lemma 2.2 implies that for an a € S™ chosen uniformly at

random:
m

Pr [deg farmr(x) < [Url] < 5

Applying a union bound over all T' € Ny, and m7 implies that for an a € S™ chosen uniformly at

random:
2’Y+m

2m
aggm[EIT C Ny, my : deg fo,rmp(x) < |Ur|] < Z 5] < G

TS Nw,m7

With this lemma, the rest of the proof of [GHT22| works out verbatim. We state the final
theorem, which is a version of Theorem 2.11 for finite fields of positive characteristic.
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Theorem 2.15 ([GHT22] over positive characteristic). Let n, A € N with A < O(logloglogn).
Let p € N be any prime. Let F be a field of characteristic p and size p?*, where k is the smallest
integer that satisfies p* > 9C(logn)? for an absolute constant'® C > 1. Let 8 be an arbitrary element
in IF'\F, where F denotes the subfield of size p*. For any o € IF'"4, Let fo be the multilinear polynomial

such that
1

Dli gk deln] ok, Zij kI TiT TR —

f=

over the Boolean cube. Then, there exists an o € F™ such that any circuit of product-depth A

computing fo has size at least
n(logn)exmfo(ﬁ))

The reason for |F| > 92((g1)*) jn Theorem 2.15 : When we instantiate Lemma 2.14 inside
the proof of Theorem 2.15, the parameter d, which is the number of variable sets, will be O(logn),
and the word w € Z will also be chosen so that for cach i € [d], |w;| < O(logn). Thus, Y};cy |wi| =

O((logn)?), and fighting the union bound in Lemma 2.14 will require the field to be larger than
90((logn)?)

3 Non-multilinear Upper Bounds

3.1 Proof of Theorem 1.8

In this section, we prove Theorem 1.8. We start by proving it for a restricted setting when the
polynomial f(x) is a degree-1 polynomial. In particular, we prove Theorem 3.1, stated below.

Theorem 3.1 (Upper bounds for (non-multilinear) constant-depth-IPSpn in positive characteris-
tic). Fiz a prime number p. The following holds for any natural numbers n and k.

Let L € Flx1, ..., 2] be a degree-1 polynomial with coefficients from the Fx and let 3 be any element
of F\Fpk where F 1s a field extension of F .

Then,

e The polynomial L(x) —  has no satisfying assignment over the Boolean cube {0,1}"
o There is a constant-depth-IPSyin refutation of degree O(k - p) and size O(k - np).

Over fields of large enough characteristic, [F'STW21, Proposition 4.15| showed that L(x) — /3 has a
constant-depth multilinear-IPSy 1y refutation of size that depends on the number of possible values
L(x) could take over {0,1}". Theorem 3.1 shows that if we allow non-multilinear IPSyn refutation,
then the circuit size is small.

Proof of Theorem 3.1. Firstly, since the coefficients of the polynomial L(x) are in the field For,
L(x) cannot be equal to 8 ¢ F, for any x € {0,1}". In other words, L(x) — /3 has no satisfying
assignment over the Boolean cube {0, 1}".

To show the existence of a low-degree constant-depth-IPSy 1y refutation, we will use Lemma 1.20. In

'9This C is a fixed constant that depends on the exact choice of parameters in the proof of [GIIT22]
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particular, Lemma 1.20 says that it is sufficient to prove that there exists polynomials A(x), B1(x), ..., Bp(x)
such that

n

Ax) - (L(x) = B) + ) Bj(x) - (2 —z)) = 1,

j=1
where A(x), B1(x), ..., B,(x) are low-degree polynomials and have constant-depth circuits of size
poly(n).
Without loss of generality, we can assume that L(x) is a homogeneous degree-1 polynomial®’

because of the following reason. If L(x) has a non-zero constant term ag € F,x, then we can work
with (g + ) € F\F,, instead of 3 € F\F .

Suppose L(x) = o121+ -+ apx,, where for each i € [n], the coefficient ay; € k. For any natural
number 0 < j < k, we define L;(x) to be the following degree-1 polynomial:

Li(x) := o/fjml Fot ol z, — Y
In the above notation, Lo(x) = L(x) — 5. The next claim shows that we can express L;(x) as a
multiple of Lo(x) modulo the ideal®! (x? — x).
Claim 3.2. For every j € [k], there exists polynomials Aj(x), Bj1(x),..., Bjn(x) such that:

Lj(x) = Aj(x)- Lo(x) + Z Bji(x) - (2} — xy),
i=1
where each polynomial A;j(x), Bj1(x),...,Bjn(x)

e The polynomial A;(x) is a degree-O(j - p) polynomial and has a circuit of size O(j - (n + p))
and depth 2.

e For each j € [n], the polynomial Bj(x) is a degree-O(j - p) polynomial and has a circuit of size
O(j -np + j2) and depth 3.

Proof of Claim 3.2. The proof is via induction on j.

Base case (j = 1): As we are working over a field F of characteristic p, we have:

n

n p
Lo(x)P = (Z 0T — B) = Z Pl — P (Using Lemma 1.17)
i=1

i=1

= Lo(x)? = <Z alr; — Bp> + Z al - (af — x) (Adding and subtracting terms)
i—1 i=1

—L1 ()

29For the sake of less cumbersome notation
21Recall that (xP — x) = (2% — 21,...,20 — )
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— L1(x) = Lo(x)P"'-Lo(x +ZBU (zf — 2;),
=A1(x)

where

e Ai(x) = Lo(x)P~! has a circuit of size O(np) and depth 2 (a IIX circuit). Additionally, A (x)
is a degree-O(p) polynomial.

e For each i € [n], By (x) = —a has a circuit of size O(1) and depth 1. Additionally, By ;(x)
is a constant, so has degree-0.

Induction step: Now assume the induction hypothesis is true for some 1 < j < k. Proceeding
similarly to the base case, we have,

Lj(x)P = (Z Oéfjwz Bpj> Z ozp7+1 e (Using Lemma 1.17)

i=1

= Li(x)P = (Z oy — ﬂle) + Z o (2 — ;) (Adding and subtracting terms)

i=1 , i=1
=Lj+1(x)
= j+1
= Lj1(x) = Lj(x) - Lj(x)P "+ Y (—al ) - (af — ) (7)
=1
Using the induction hypothesis, we know there exists polynomials A;(x), Bj1(x), ..., Bjn(x) such

that

n

Li(x) = Aj(x) - Lo(x) + )| Bji(x) - (af — ),

=1

where the polynomials satisfy the size constraints as stated in Claim 3.2. Substituting this in
Equation (7), we get,

Lisi(x) = (Aj (%) Lo(x) + 3, Byi(x) - («f — :cz->> LG+ Z@afj“) (ol — )

i=1 i=1
" j+1
= Lin(x) = (4;(x) - L;(x)"") + (B X)L —al ) - (af — )
::Aj+1(x) =1 _B]+1 Z(X)

Now,

e The polynomial A;;1(x) has a circuit of size O((j + 1) - np) and depth 2 (note that A;(x)
is a product of powers of linear polynomials). Additionally, A;,1(x) is a degree-((j + 1) - p)
polynomial.
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e For every i € [n], the polynomial Bj1;(x) has a circuit of size O((j + 1) - np + (j + 1)?) and
depth 3 (note that Bj(x) is a XIIX circuit). Additionally, Bj;1:(x) is a degree-O((j + 1) - p)
polynomial.

This finishes the induction and also the proof of Claim 3.2. |

So far in Claim 3.2, we have shown that the linear polynomial L (x) is a multiple of the linear
polynomial Lo(x) modulo the ideal (x” —x). Next we use the fact that 3 ¢ F,x to show that Lj(x)
and Ly(x) differ by a non-zero constant.

Observation 3.3. The polynomial Ly(x)— Lo(x) is a non-zero constant polynomial. This is because
k

o =y (since a; € F,x) and on the other hand, 5pk # 3.

(2

Claim 3.2 gives us that there exists polynomials Ay(x), By 1(X), ..., Bin(x) satisfying:

Li(x) = Ax( +ZB;“ (2 — )
= Li(x) = Lo(x) = (Ax(x) — )+ Z Byi(x) - (2] — i)
A Byl
= % Z k (@l =) = 1, (8)
pr—p = ﬂ
where in the final implication we used that Lj(x) — ) — [ is a non-zero constant. For

each i € [n], the polynomial (2! — x;) is a multiple of ( because

o~ = @+ 1) - (2 — )

Substituting it back in Equation (8), we get,

WD rag + 30 (BB et} a2 e =

5pk - B i=1 ﬁpk - ﬂ
=A(x) :=B;(x)

Degree and Size Analysis We define A(x) and B;(x) as follows:

e Claim 3.2 says that Ag(x) is a degree-O(kp) polynomial and is computable by circuit of size
O(k(n + p)) and depth 2 (a II¥ circuit). Hence A(x) is a degree-O(kp) polynomial and is
computable by a circuit of size O(k(n + p)) and depth 3 (a XIIX circuit).

e Claim 3.2 says that By ;(x) is a degree-O(kp) polynomial and is computable by a circuit of
size O(knp + k?) and depth 3 (a XIIX circuit). Hence B;(x) is a degree-O(kp) polynomial
and is computable by a circuit of size O(knp + k?) and depth 3.

Thus we have shown that there is a low-degree constant-depth-IPSyn refutation of L(x) — 8 and
this finishes the proof of Theorem 3.1. |
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Now we ready to prove Theorem 1.8 using Theorem 3.1. The idea is to replace each monomial
in the sparse polynomial by a new variable, resulting in a linear polynomial in the new variables.
A refutation of the resulting linear polynomial can be “lifted” to a refutation of the sparse poly-
nomial in the original variables. We use the refutation of linear polynomials from Theorem 3.1,
and to lift this refutation, we need to show that monomial axioms are in the ideal of the Boolean
axioms. Before proceeding, we will prove the following claim on monomial axioms. It follows from
a straightforward induction on the number of variables. We will omit the proof here, and it can be
found in Appendix A.2.

Claim 3.4. For any exponent vector p = (p1,...,un) with || < D, there exists polynomials
Epi(x),..., Eyn(x) such that the following holds:

((xH)? — xM) Z E,j(x l’] —xj),

M3>0

and for each j € [n] with u; > 0, the polynomial E,, j(x) has a circuit of size O(nD?) and depth 2
(a TIX circuit).

Below we recall Theorem 1.8 and proceed to prove it.

Theorem 1.8 (Upper bounds for (non-multilinear) constant-depth-IPSyin). Fiz a prime number
p. The following holds for any natural numbers n and k.

Let f € Fpx [21,...,2n] be any polynomial with sparsity s and degree D with coefficients from the
field Fe and let B be any element of F\F x where F is a field extension of F

Then,

e The polynomial f(x) — B has no satisfying assignment over the Boolean cube {0,1}"

e There is a constant-depth-IPSyn refutation of degree O(k - p- D) and size poly(s,p).

Proof of Theorem 1.8. From Lemma 1.20, it suffices to show that there exists coefficients A(x) and
Bj(x)’s in the ring F[z1, ..., xy] such that

A(x) - (f( Z (¢ —a5) = 1,
where the A(x) and Bj(x)’s have Constant-depth circuits of poly(n)-size and degree O(kpD).

Let f(x) = Z”:MSD a,xt, where p denotes an exponent vector. Define the support of f(x):

Supp(f) = {m < [n] [ # 0}
The cardinality of Supp(f) is equal to the sparsity of f(x) which is s.

Reducing to linear polynomial For every p € Supp(f), define a new variable y,,, i.e. s new y
variables. Let F'(y) denote the polynomial when we replace the monomials in f(x) with the new
y-variables, i.e.

Fly) = Z AplYp

peSupp(f)

Thus F(y) is a degree-1 polynomial in s variables.
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Observe that F'(y) — 8 does not have a solution over the Boolean hypercube {0, 1}* since 3 ¢ F .
From the proof of Theorem 3.1 on the degree-1 polynomial F(y) — 8, we get that there exists
polynomials A(y) and Bi(y), ..., Bs(y) such that the following holds:

Aly)-(F(y)=B) + >, Buly) - (p—wu) = 1, (9)

where

e The polynomial A(y) is a degree-O(kp) polynomial and is computable by a circuit of size
O(k(s + p)) and depth 3 (a XIIX circuit).

e For each p € Supp(f), the polynomial Bp(y) is a degree-O(kp) polynomial and is computable
by a circuit of size O(ksp + k?) and depth 3 (a XIIX circuit).

Lifting the Nullstellensatz certificate Plugging in ys = x° in the Equation (9), we get,

Aly)ox-(fx)=B) + D, Buly)ox-((x*)*—x*) =1, (10)
A %) peSupp(f) Bl (%)

where

e The polynomial A(x) is a degree-O(kp - D) polynomial and is computable by a circuit of size
O(k(s +p) + sD) and depth 4 (a XIIXII circuit)

e For each p € Supp(f), the polynomial B),(x) is a degree-O(kp - D) polynomial and is com-
putable by a circuit of size O(ksp + k* + sD) and depth 4 (a SIIXII circuit).

Now applying Claim 3.4 for each subset p € Supp(f) in the “lifted” Nullstellensatz certificate
Equation (10),

= AR) - (f(x) = B) + Y Bu()Eu(x) |2} -2 = 1,

Jj=1 \peSupp(f)

=B, (x)

where for each j € [n], the polynomial Bj(x) is a degree-O(kpD) polynomial and is computable by
a circuit of size O(ksp + sD) and depth 5. This finishes the proof of Theorem 1.8. |

3.2 Proof of Theorem 1.9

In this section, we are going to show Theorem 1.9, which we recall below.
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Theorem 1.9 (Upper bound on degree of Nullstellensatz certificate). Fix a prime p. The following
holds for any natural numbers n and k with n > kp.

The following holds for every ay, ..., an, 8 € Fpe. Suppose the degree-1 polynomial S, — P e
Fpk[21, ..., 2n] is unsatisfiable over the Boolean cube {0,1}" (i.e. there does not exist a Boolean
point a € {0,1}" such that Y | a;a; — = 0).

Then, there is a constant-depth-IPSpiN refutation of degree O(k - p) and size O(n/kp)C*r),

In particular, if p = O(1) and k = o(n), then there is a constant-depth-IPSpiN refutation of degree
o(n) and size 2°0"),

Observe that the size bound is the “trivial” one, i.e. a n-variate multilinear polynomial with degree
D has at most ( éb) monomials. Letting D = O(kp), we get the stated size bound in Theorem 1.9.
So in our proof of Theorem 1.9, it will be enough to prove that there is a Nullstellensatz certificate
of degree O(kp). As we will show, it will be sufficient to show that the multilinear polynomial
equivalent to 1/(>] a;x; — 8) on {0,1}" has degree O(kp). This will be our main technical lemma

in the proof of Theorem 1.9, which we state and prove next.

Lemma 3.5 (Degree of the “inverse” polynomial). Fiz a prime p, a parameter k € N and finite field
Fpx. The following holds for every aa,...,an, 3 € Fprx for which the equation Doz — =0 s
unsatisfiable over the Boolean cube {0,1}".

If f € Flxy,...,xn] is a multilinear polynomial that agrees with 1/(3; | cix; — B) on {0,1}",
i.€.
f= o mod (x? — x)
- Xinimi— ’
then deg(f) <k-(p—1).

Proof of Lemma 3.5. Let L(x) := Y, ja;xi — 8, ¢ = p* and (mg,...,my_1) denote the p-ary
representation of (¢ — 2) i.e.

-2 = 3 mpl, for all i, 0 <m; < (p—1).
j=0

The hypothesis says that for every a € {0,1}", L(a) # 0. As we are working over the field F,, we
get that for every a € {0,1}", L(a) - (L(a))?"2 = 1. In other words,

1
mi[(L(x))77?%] = I mod (x? — x).
Since multilinear extension of a boolean function is unique, we get that f = ml[L¢~?], where

f € Fy[x] is as defined in the statement of Lemma 3.5. So we will now show that deg(mlI[(L(x))?~?])
is k(p—1).

For every non-negative integer j > 0, repeated applications of Lemma 1.17 gives us:

(L(x))pj = Zafjxfj —pr = mI[(L(x))pj] = leafjxi—ﬁpj.

i=1
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For simplicity in notation, for every j, let L;(x) := mI[(L(x))?’], and as we just showed, deg(L;) = 1.
Using the p-ary expansion of (¢ — 2) and the third item of Fact 1.13, we have,

k—1 , k—1
= T ey = mil(L) = m [H ml[@(x)mf‘]]

= deg(ml[(L( 2 deg(ml[L 2 mj < —1).

Hence we have showed that the degree of f is < k(p—1) and this finishes the proof of Lemma 3.5. W

We now prove Theorem 1.9 using an almost straightforward application of Lemma 3.5.

Proof of Theorem 1.9. From Lemma 1.20, it suffices to show that there exists coefficients A(x) and
Bj(x)’s in the ring F,x[x] such that

x) - <;ai:pi— ) ZB ZL‘ —xj) = 1,

where A(x) and B;(x)’s have constant-depth circuits of size O(n/kp)®*?) and degree O(kp).

Let L(x) := > oyx; — 5. Let A € F[x] be the multilinear polynomial such that for every
x € {0,1}", A(x) equals 1/L(x) (note that L(x) # 0 for every x € {0,1}" because L is unsatisfiable
over the Boolean cube). Applying Lemma 3.5, we get that deg(A) < k- (p—1).
Since A(x) is a n-variate multilinear polynomial of degree < k(p —1), it has at most ( B D) monomi—

als. Using Stirling’s approximation, we get that the number of monomials is (n/kp) ), which
implies a ST circuit for A(x) of size O(n/kp)®*P) and degree O(kp).

Now it remains to argue for Bj(x)’s. Let Bj(x) be the quotient and R;(x) be the remainder when
A(x) - L(x) is divided by (22 — x1),

A(x) - L(x) = Bi(x)- (2% — 1) + Ri(x).

Clearly deg(Bj),deg(R1) < deg(A) + 1. Next, let By(x) denote the quotient and Ra(x) denote the
remainder when Rj(x) is divided by (22 — 22), and so on. Since A(x)-L(x) —1 € (x% —x), we know

that R, (x) = 1. In other words,

x)(

Here, for each Jj € [n], deg(B;) < deg(A) + 1. Similar to A(x), each Bj(x) has a XII circuit of size
O(n/kp)®*P) and degree O(kp). This finishes the proof of Theorem 1.9. [

-
Q
=
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4 Symmetric Refutations in Constant Depth

In this section, we will prove Theorem 1.11, which we recall below.

Theorem 1.11 (Upper bounds for multilinear symmetric systems). Fiz a field F.  Let
fiseoos fm € Flza, ..., x0] be a family of multilinear and symmetric polynomials with no common
Boolean solution i.e. there does not exist a x € {0,1}"™ such that each f;(x) = 0. This system has a
constant-depth-IPSpiN refutation of size O(m?n®logn) and depth 8.

One of the steps in our proof of Theorem 1.11 is a multilinearization step, i.e. given a polynomial
f(x), we want to find a certificate in constant-depth circuits certifying that f(x) and ml[f(x)] agree
on the Boolean cube {0,1}". More formally, we are interested in finding polynomials B;(x)’s such
that

n

Fx) = milf(x)]+ Y, B(x) - (af — ),

=1

and the polynomials Bj(x) have a poly(n)-sized constant-depth circuit.

We also need a few standard facts about elementary symmetric polynomials in fields of posi-
tive characteristic. A standard fact that is useful in our proof is that a symmetric function over
the Boolean cube in constant positive characteristic only depends on O(logn) elementary symmet-
ric polynomials (instead of n elementary symmetric polynomials for symmetric polynomials over
arbitrary domains). We now give a proof below for the sake of completeness.

Lemma 4.1 (Lucas’s Theorem [Luc78|). Fiz a prime number p and any two natural numbers a and
b. Denote a and b in their unique p-ary representations as:

/—1 -1
CLZZ(Zipi, b:Zprz’ ai,b¢€{0,1,...,p—1}
=0 =0

Then,

where we define (z) to be 0 if x < y.

Next, we show that a symmetric function over the Boolean cube {0,1}" in characteristic p
depends on O(logn) elementary symmetric polynomials.

Claim 4.2 (Symmetric functions over {0, 1}" in positive char). Fiz a prime number p and a field
F with char(F) = p. Fiz a variable parameter n € N.

Let f(x) € Flxy,...,x,] be a multilinear and symmetric polynomial. Then f(x) is a function of
O(log, n) elementary symmetric polynomials on n variables.
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Proof of Claim 4.2. Fix any natural number 0 < d < n and consider the d*" elementary symmetric
polynomial, i.e., e4(x1,...,x,). Fix an arbitrary point a € {0, 1}" and let k = |a|, where |a| denotes
the Hamming weight of a. We know that eg(a) = (Z) Denote k£ and d in their unique p-ary
representation, i.e.

l l
k= Y kp', and d= Ydp, kidie{0l, .. p-1}
1=0 i=0

By Lucas’s Theorem (Lemma 4.1), we have,

(o) = () () o

Note that ey, ,i(a) = (dfpi). For every 0 < i < ¢, using Lucas’s Theorem (Lemma 4.1), we have,

() ) i = ()= 5 TH(E) ) wes min o

Using Lucas’s Theorem (Lemma 4.1), we have

(4) - () o

Define the polynomial Sg;(2) := d%-! H?i:_ol (z —j). Note that e,i(a) = (p’i) mod p. Plugging in
Equation (12) in Equation (11), we get

eq(a) = <Z> = i}isd,i(epi(a))

We have shown that e4(a) is a polynomial of e,i(a) for i € {0,1,...,¢}. Since a was an arbitrarily
chosen point in {0,1}", we just argued that on the Boolean hypercube, e4(x) is a polynomial of
epo(X), ..., e, (x). This holds for every 0 < d < n. Hence, every symmetric function on {0, 1}"
in characteristic p is a polynomial of ey(x),...,e,(x), i.e. of O(log,n) elementary symmetric

polynomials. [

A key lemma in our proof is the multilinearization lemma Lemma 4.3, which shows that multi-
linearization of a sparse polynomial in €(x) has a small constant-depth circuit.

Lemma 4.3 (Multilinearization of polynomial of elementary symmetric polynomials). Fiz a prime
number p and a field F with char(F) = p. Fiz a variable parameter r € N.

Let F(y) € Flyi,...,yr] be a polynomial with individual degree strictly less than p. Then
mi[F(e1(y), ep(x), ..., ep—1(x))] has a circuit of size O(n®logn) and depth 5.

We will prove Lemma 4.3 later. For now, we show how it is useful in proving Theorem 1.11.

Proof of Theorem 1.11. We will first prove in the setting when the underlying field F has a small
positive char, i.e. char(F) = p for a constant prime p. The proof of characteristic 0 or > n is similar
and simpler too. We will come back to the setting char(F) = 0 or > n towards the end of the proof.
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From Lemma 1.20, we know that it suffices to prove there exists polynomials A;(x)’s and B;(x)’s
in the ring F[z1,...,x,] such that:

n

DA fi(x) + ) Bi(x) - (o — ) = 1,
i=1

j=1
where A;(x)’s and Bj(x)’s have poly(n)-sized constant-depth circuits.
Reducing to few variables Let r denote the number of digits when n is expressed in p-ary

representation. We have r = Uogp nl+1<2 log, n. Claim 4.2 tells us that there exists polynomials
Fi(y),...,Fn(y) € Flyi,...,y,] such that:

fi(x) = Fi(e1(x),ep(x),...,epr-1(x)) mod (x? —x)

We will denote the tuple of polynomials (e1(x), ep(x), ..., e,—1(x)) by €(x).
Since f;(x) and F;(€(x)) agree on the Boolean cube {0, 1}", their multilinear components are equal,
Le. ml[fi(x)] = ml[F;(e(x))] (see Fact 1.13). Since f;(x) is a multilinear polynomial, we have

fi(x) = ml[Fi(e(x))]

For every 1 < i < 7, the polynomial e,i-1(x) take values in [, over the Boolean cube. For every
j €[r], let p;(t) be a univariate polynomial that vanishes on the set Fp, i.e. p;(t) = Haer (t—a).
For every n <t < p" — 1, define the polynomial Q; € F[y] as follows:

r—1 1 ti—1 r—1 A
Qi(y) :== 1_([) o H) (vi —J), where ¢ = Z)tipl_l
1= J= 1=

Our first claim shows that if f;(x)’s do not have a common Boolean solution, then Fj(y)’s along
with some additional constraints do not have a common solution, even over the algebraic closure of

F.

Claim 4.4. The system consisting of Fi(y)’s, Q:«(y)’s, and p;j(y;)’s have no common solution in
the closure F", i.e.

VFL(Y), - Fin(y), Qni1(¥), -+, Qpr—1(¥)s p1(y1)s -0 (yr)) = O

Proof. We will prove this by contradiction. Assume for the sake of contradiction that there exists
a common solution b to the above system of polynomials. Since for every j € [r], p;(b;) = 0, this
implies that b € {0,...,p — 1}". We will now show the existence of a point a € {0,1}" such that

éa)=b (13)

Observe that an a € {0,1}" which satisfies Equation (13) is a common Boolean solution to the
system {f1(x), ..., fm(x)}, which is a contradiction to our hypothesis of Theorem 1.11. So to finish
the contradiction, all that remains is to show the existence of such a Boolean point a.
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We are only interested in showing the existence of a Boolean point satisfying Equation (13), i.e. we
are only interested in the evaluation of a on symmetric polynomials. Thus we can focus on showing
the existence of an appropriate Hamming weight 0 < k < n such that

k ki .
<pz‘>:<1>:bi mod p, forall 0<i<r-—1

where we used Lucas’s Theorem (Lemma 4.1) for the first equality. Choose k to be Zfzo bipt. If
k < n, then k satisfies all the 7 constraints in Equation (13). In particular, we can set a = 1¥0"~*
and it will satisfy Equation (13). Thus to complete the proof, we need to show that k < n.

By assumption, Q¢(b) =0 for all n <t < p” — 1. Fix any t = Z;:(} t;ip"~!. By the definition of the
polynomial Q¢(y) (see the proof of Claim 4.2):

Qi(b) = ]:[1 <b> = 0.

i—o \li

This means there exists an i € {0,1,...,r — 1} such that b; < t;. Since this holds for every

n <t < p" — 1, this implies that for each coordinate i, b; < n; where n = Z;:& nip'. Thus k < n.

Hence we have found a Boolean point a € {0,1}" which satisfies Equation (13). Since for every
i € [m], fi(x) and F;(e(x)) agree on the Boolean cube {0,1}", a is a common Boolean solution to
fi(x)’s. This is a contradiction to our assumption in Theorem 1.11. |

Low-variate Nullstellensatz We have shown that the unsatisfiability of the m-variate polyno-
mials f;’s over the Boolean cube implies the unsatisfiability of O(logn)-variate polynomials F;’s
(with some additional polynomials to reflect the Boolean cube restriction). Now we use Hilbert’s
Nullstellensatz to get a Nullstellensatz certificate for the O(logn)-variate polynomials and “lift” it
to get a Nullstellensatz certificate for the original system of polynomial equations.

Claim 4.4 says that the system consisting of F;’s, ();’s, and p;’s do not have a common zero over
the algebraic closure F. Applying Hilbert’s Nullstellensatz (Theorem 1.19) on this system, we know
that there exist polynomials A;(y)’s, S¢(y)’s, and B;(y)’s such that:

m pr—1 r
M Aily) F(y)+ D) Siy) Quy) + Y. Bi(y) -pily;) = 1 (14)
i=1 j=1

t=n+1

Size analysis of low-variate certificate Next, we will show that the coefficients A;’s, Sy’s, and

Bj’s in the Nullstellensatz certificate (Equation (14)) have small constant-depth circuits. More
precisely, we will show that A;’s, Sy’s, and Bj’s are polynomials with sparsity poly(n), which in
turn implies that they have poly(n)-sized depth 2 circuits. Since these polynomials are O(logn)-
variate polynomials, it will suffice to show that they have constant individual degrees. We will argue
as follows:

e Step (a) The polynomials F;’s and @Q;’s have constant individual degree.
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e Step (b) Use the low-variate Nullstellensatz certificate Equation (14) to argue that the poly-
nomials A4;’s and S;’s can be assumed to have constant individual degree.

e Step (c) Use the previous two items to argue that the polynomials Bj’s have sparsity at most
poly(n).

Step (a) We first argue that the individual degree of each F;(y) can be assumed to be < (p —1).
Recall that f;(x) = F;(€(x)) over {0,1}", i.e.: f;(x) = F;(€(x)) mod (x? — x).
As we are working over a field of characteristic p, for any i € [n], e;(x) € {0,1,...,p — 1} for every
x € {0,1}™. This implies that &(x)? = €(x) mod (x? — x) via Fermat’s Little Theorem /Frobenius
automorphism.
Let F!(y) := Fi(y)/(y? —y) be a “minimum individual-degree representative” of F;(y) modulo the
ideal (y? —y).

Thus, F;(y) is a polynomial of individual-degree < p — 1 such that F'(y) = F(y) mod (y? —y).
Combining these together, we get,

fi(x) = Fl(&(x)) mod (x* - x) (15)

where F/ has individual-degree < p — 1. With a slight abuse of notation, we will now use “F;” to
denote F.
By the definition of the polynomial @Q;(y), for each ¢, the individual degree of Q:(y) is < p

Step (b) The polynomial p;(t), defined as [],cp (t — ), is equal to (¢ —¢) by Fermat’s Little
Theorem. From the Nullstellensatz certificate Equatlon (14),

i Z Si(y) Qi(y) =1 mod (y” —y)

t=n+1

We would now argue that the polynomials A;(y)’s and S;(y)’s has individual degree < (p — 1).
Suppose there exists an i € [m] for which A;(y) has individual degree > (p — 1), then define
fl;(y) = A;(y)/(y?—y) to be a “minimum individual-degree representative”. Observe that replacing
the polynomial A; with the polynomial A/, the low-variate Nullstellensatz certificate Equation (14)
continues to holds.

Thus the sparsity of 4; (y) is at most p". An analogous argument shows that for each n < t <
p" — 1, the polynomial S;(y) has individual degree < (p — 1) and thus has a O(n?)-sized circuit of
depth 2 (a XII circuit).

Using r < 2log, n, we have that for every i € [m] and for every n <t < p” — 1, the polynomials

{L(y) and S;(y) have sparsity at most @(n2). This also implies that the polynomials A;(y)’s and
Si(y)’s have O(n?)-sized circuits of depth 2 (a XII circuit).

Step (¢) Now it remains to show that the polynomials B’j(y) have small constant-depth circuits.
We will show that for each j € [n], the polynomial B~( ) has sparsity at most poly(n). To show

this, we will use the fact that >, A;(y) - Fy(y) + 27 ;}Fl +(y) - Q:(y) is a polynomial of constant
individual degree.
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For a polynomial H(y), the individual-degree-p operator, denoted by inddeg, outputs the following
polynomial: For each variable y;, every occurrence of yf in H(y) is replaced by y; until the individual
degree of the polynomial is < p. For p = 2, inddeg, corresponds to multilinearization ml.
Our next claim shows that if there is a polynomial of low individual degree, then its individual-
degree-p component can be extracted using polynomials of small constant-depth circuits. The proof
is via a simple induction. We omit the proof here and it can be found in Appendix A.3.

Claim 4.5. Let H(y) € Fly1,...,yr] denote a polynomial whose individual degree is at most D.
Then there exists polynomials G1(y), ..., Gy (y) such that the following holds:

H(y) = inddeg,[H 2 _y])

and for each j € [r], the polynomial G;(y) has sparsity at most D"*1/(p —1).

Define the polynomial H(y) = 3", Ai(y) - Fi(y) + Y2 ;}rl Sy(y) - Qi(y). Observe that
= Z —Yj)

So the polynomials G;(y) from Claim 4.5 correspond to the polynomials Bj(y) from the Nullstel-
lensatz certificate. Since both A;(y) and Fj(y) have individual degree at most (p — 1), H(y) has
individual degree at most 2(p — 1) in each of the r variables. Applying Claim 4.5 on H(y), we
get that the polynomials B;(y) has sparsity at most (2(p — 1))" - 2(p — 1)/(p — 1) = poly(n) since
p < 2log,n. This implies that the polynomials B;(y) has a circuit of size O(n?) and depth 2 (a
YII circuit).

Lifting the Nullstellensatz certificate By the definition of F;(y), we know that for every i €
[m], fi(x) = mI[F;(é(x))]. Applying the multilinearization Lemma 4.3 on F;(€(x)) for every i € [m],
we know there exists polynomials D;;(x) for i € [m] and j € [n] such that:

R@EG0) = £ + 3Dy (e = 2,),

where each polynomial D;;(x) has a circuit of size O(n®logn) and depth 5. This also implies that
for each i € [m], the polynomial f;(x) has a circuit of size O(n°logn) and depth 5.

Similarly, applying the multilinearization lemma Lemma 4.3 on Q:(€(x)) for every n <t < p" — 1,
we know there exists polynomials R;(tj)(x) for n <t < p" — 1 and j € [n] such that:

Qu(e(x)) = mi[Q ZRU (22— 7).

where each polynomial R;j(x) has a circuit of size O(n®logn) and depth 5.
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Next, we multilinearize the coefficients A;(€(x))’s to get a multilinear constant-depth-IPSyx
proof. Applying the multilinearization Lemma 4.3 on 4;(e(x)) for every i € [m], we know there
exists polynomials D;;(x) for i € [m] and j € [n] such that:

A;(@(x)) = mI[Ai(8(x))] + D] Dij(x)
j=1

where each polynomial [),-j(x) has a circuit of size O(n°logn) and depth 5. This also implies that
for each i € [m], the polynomial mI[A;(&(x))] has a circuit of size O(n%) and depth 5.

Similarly, we also multilinearize the coefficients S;(€(x)). Applying the multilinearization lemma
Lemma 4.3 on Sy(8(x)) for every n < t < p’ — 1, we know there exists polynomials Ry;(x) for
n <t<p" —1and je [n] such that:

S,(8(x)) = ml[S Z (23 — z;),

where each polynomial Ry;(x) has a circuit of size O(n®logn) and depth 5.
For every i € [r], applying the multilinearization lemma Lemma 4.3 on p;(epi-1(x)), we know that
there exists polynomials Ej(x),. .., Ein(x) such that:

n
pl Z :E _xj)

where for each j € [n], the polynomial F;;(x) has a circuit of size O(n®logn) and depth 5.

Substituting y = €(x) in the low-variate Nullstellensatz certificate Equation (14) and using the
above polynomial relations, we get,

i=1
p"—1
+ ), (MI[Qu(E(x)] - Si(€(x)) + Qu(€)(x) - mI[S(&(x))])
t=n+1

We have,

e For each i € [m], using Ben-Or’s construction Theorem 1.15, the polynomial A;(x) has a
circuit of size O(n?) and depth 5.
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e For each j € [r], and again using Ben-Or’s construction Theorem 1.15, the polynomial B;(x)
has a circuit of size O(mn®logn) and depth 7.

This finishes the proof of Theorem 1.11 in the setting when the underlying field has a positive
characteristic p for a constant prime p.

We now discuss the proof of Theorem 1.11 in the setting when the underlying field has character-
istic 0 or > n. The proof has the exact same steps as for positive characteristic. Instead of repeating
the same steps again, for the sake of brevity, we only highlight the differences.

Over characteristic 0 or > n, every multilinear symmetric polynomial is a polynomial of z; +
..+ xy, 1e. of e1(x). Thus r in the above proof is just 1 and F}’s are univariate polynomials. Let
p(y) = [[i—o(y — 7). Then it is easy to see that if f;(x) do not have a common Boolean solution,
then the univariate polynomials F;(y)’s and p(y) do not have a common solution (following a similar
strategy to the proof of Claim 4.4, if b is a common solution, then there exists a common Boolean
solution of Hamming weight b, which is a contradiction).

To argue about the circuit size of the coefficients of the univariate Nullstellensatz certificate, it
suffices to argue about their degrees since they are all univariate polynomials. The coefficients of
the univariate certificate have degree at most O(n) because of the polynomial p(y) (it is quite similar
and simpler to the degree analysis of the coefficients of the low-variate Nullstellensatz certificate in
the above proof).

In the end, we need to multilinearize Fj(e1(x)). This can again be done in a constant-depth circuit
using Lemma 4.3. |

4.1 Multilinearization

To show our multilinearization lemma (Lemma 4.3), it will be convenient to first define a notion of
partial multilinearization, i.e., multilinearize with respect to a subset of variables. A key lemma used
in our proofs of multilinearization statements is constant-depth multilinearization when f(x) is a
product of univariate polynomials (see Corollary 4.10). We now define the partial multilinearization
and then use it to prove Corollary 4.10.

Definition 4.6 (Partial multilinearization). Fiz any field F and let f(x) € Flx1,...,2,]. For
any j € [n], let fS)(x) € Flxji1,...,20][1,...,2;] denote the polynomial f(x) with variables
x1,...,2; and coefficients in Flxq,..., 2]

The multilinearization of the polynomial f(x) with respect to the variables {x1,...,x;}, denoted by
ml<;[f(x)], is defined to be:

mi<;[f(x)] = mi[f<)(x)]

Similarly, for any k € [n], let f#)(x) € Flx1, ..., Tp—1, Thils - - - Tn][xk] denote the polynomial f(x)
with variable xy, only and coefficients in Flx1, ..., Tp—1,Tks1, ..., 2n]. The multilinearization of the
polynomial f(x) with respect to the variable xy only, denoted by mli[f(x)], is defined to be:

mig[f(x)] = mi[f® (x)]
Sometimes we will denote mlg[f(x)] by mly, [f(x)] for sake of clarity.
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Example: Let f(x) = x323 + x92%. Then,
mlci[f(x)] = 2125 + 2022, mlo[f(xX)] = z1x0 + 2023, mb[f(X)] = 2220 + 2023
We make one observation on partial multilinearization, which will be helpful in the proofs.
Observation 4.7. For every j < n, the following holds: For every polynomial f(x),
migjr[f(X)] = mlja[ml[f()]]

In the rest of the section, we will use the notation x<; to denote (x1,...,z;) and x~; to denote
<$j+1, PN ,xn).

Now we show that a product of univariate polynomials can be multilinearized using constant-
depth poly(n)-sized circuits (see Corollary 4.10). We start by showing that we can do partial
multilinearization with respect to a single variable.

Claim 4.8 (Multilinearize a single variable). Consider a univariate polynomial h(z) of degree-D.
Let Q(y) be a polynomial with a circuit of size s and depth A. Let ml,[h(z) - Q(y)] denotes the
partial multilinearization of the polynomial h(z) - Q(y) with respect to the z variable.

Then,

h(z)-Q(y) = ml:[a(2) - Q(¥)] + B(z,y) - (2* — 2),

e The polynomial ml,[h(z) - Q(y)] is equal to L(z) - Q(y), where L(z) is a degree-1 univariate
polynomaal in z.

e The polynomial B(z,y) is equal to ;L(Z) -Q(y) for a univariate polynomial ﬁ(z)

Proof of Claim 4.8. Let h(z) = ag + a1z + --- + apz”. Then for every 2 < j < D, rewriting ajzj
as a;j(z) — 2) + a;z, we get,

D
h(z) - Qy) = (ao + a1z + Z a;(#7 — 2+ z)) -Q(y)

j=2
D

= (ao + (Z aj) Z) Qly) + (2 a;( — Z)) -Q(y)
j=1 j=2

Observe that for any j > 2,

—z = (P4 2+ 1) - (2R - 2)

Using the above observation, we get,
h2) QW) = L(x)-Q) + Q) Yja (¢ + - +z+1) (2~ 2)

—_—— i
=ml.[h(2)-Q(y)]

=B(zy)

Let h(z) = 2]]-3:2 a;(z7~' + - 4+ 2z + 1). Then the polynomial B(z,y) is equal to h(z) - Q(y). The
partial multilinearization ml,[h(z) - Q(y)] is of the form L(z)-Q(y) for a degree-1 polynomial L(z).
This finishes the proof of Claim 4.8. |
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The next claim shows that if a product of univariate polynomials, then we can do partial
multilinearization with respect to a subset of variables. It follows with a simple induction using
Claim 4.8. We omit the proof here and it can be found in Appendix A.4.

Claim 4.9 (Partial multilinearization of product of univariates). Let hq(z1),...,hn(z,) be univari-
ate polynomials where each hi(z;) has degree at most D.
Then there exists degree-1 univariate polynomials L1(21), . .., Ln(zy) and polynomials By(z), . .., B,(z)

satisfying the following: For every k € [n],

hl(zl)hn(zn) = m|<k [

Il 3
—
F
—~
N
<
~—
—_
_l_
S
—~
N
~—
—~
&
|
&
~—

where

n k
ml<k [th‘(zi)] = [1LCz)- [T hazo),
i1 i=1 ;

and for each j € [n], the polynomial Bj(z) has the following form:

j-1 n
Bi(x) = [ Li(z) - hi(z)- [] hi(z0),
i=1 i=j+1

for some univariate polynomial izj (z5).
Setting £ = n in Claim 4.9 immediately gives us the following corollary.

Corollary 4.10 (Multilinearization of product of univariates). Let hi(z1),...,hn(2n) be univariate
polynomials where each hi(z;) has degree at most D.
Then there polynomials B1(z), ..., By(z) such that,

n k
hl(Z1) ce hn(zn> = ml [H hz(zz)] + 2 Bj(z) : (232 - Zj)7
i=1 Jj=1

where for each j € [n], the polynomial B;(z) has a circuit of size O(nD?) and depth 3 (a I1IXII)
circutt.

In this section, we will prove the multilinearization lemma Lemma 4.3. The key step in our proof
of Lemma 4.3 is Lemma 4.11 which is a special case of Lemma 4.3. In particular, Lemma 4.11
shows that the multilinearization of a product of two elementary symmetric polynomials has a
small constant-depth circuit. Furthermore, it shows that the multlinearization of a product of two
elementary symmetric polynomials has a nice structure which we use to prove Lemma 4.3.

Lemma 4.11 (Multilinearization of product of two elementary symmetric polynomials). Fiz any
two natural numbers o and 3. Then
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o There exists polynomials R, g j(x)’s such that
| = y ; 2 —x;
mlfea(x) - ea(] = ea(x) - ep(x) = 3 Raps() - (22 — ),
j=1

where each polynomial Ry 5;(x) has a circuit of size O(n®) and depth 5 (a SIIXIY circuit).
(

o There exists coefficients Coj)ﬁ ’s such that
n .
milea(x) - ea(x)] = ] el eilx)
i=1

Proof of Lemma 4.11. Using Ben-Or’s construction (Theorem 1.15) for e, (x) and eg(x),

n

eq(x) - eg(x) = Z Ca,i1 CBis H(l + i) (1 + yip ), where all cq, , gy, Yirs Vio € F

11,02 Jj=1

= ea(x)eg(x) == > [ [1F (), (16)
i=1 j=1

where each polynomial hgf (z;) is a degree-2 univariate polynomial. Fix any i € [(n + 1)?] and
using Corollary 4.10 on hf"lﬁ(xl) e hzaf (), we know that there exists polynomials B?]’-’B (x)’s such
that:

n
B ) o ) = (B ) o )] + 3 B () (2 — ),
j=1
where each polynomial B; j(x) has a circuit of size O(n) and depth 3 (a IIXII circuit). Now summing
it over all i € [(n + 1)?] (see Equation (16)), we get,

ea(x) - eg(x) = milea(x) - es(x)] + . Rap;(x) - (zF — x;),
j=1

where each polynomial R, s ;(x) has a circuit of size O(n?) and depth 4 (a SIIXII circuit). This
shows the constant-depth circuit item of Lemma 4.11.

Next we argue about the structure item of Lemma 4.11. Since en(x) - eg(x) is a symmetric
polynomial, its multilinearization ml[e,(x)-e5(x)] is also a symmetric polynomial. The Fundamental
Theorem of Symmetric Polynomials (see Theorem 1.14) implies that ml[e, (x)-eg(x)] is a polynomial
of ex(x)’s. Note that any multilinear symmetric polynomial is a linear combination of e (x)’s. Thus
mlleq(x) - eg(x)] is a linear combination of ey (x)’s. This finishes the structure item of Lemma 4.11.
This finishes the proof of Lemma 4.11. |
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Now we are ready to prove Lemma 4.3. The idea for the proof is as follows:

e We use the fact that F(y) has at most poly(n) sparsity. So for each monomial y*, we
multilinearize y* o €(x) individually.

e For any fixed monomial y* o €(x), we note that it is a product of elementary symmetric
polynomials. Lemma 4.11 shows how to multilinearize a product of two elementary symmetric
polynomials. We repeatedly apply this on y* o e(x).

We recall the statement of Lemma 4.3 below and then proceed to prove it.

Lemma 4.3 (Multilinearization of polynomial of elementary symmetric polynomials). Fix a prime
number p and a field F with char(F) = p. Fiz a variable parameter r € N.
Let F(y) € Fly1,...,yr] be a polynomial with individual degree strictly less than p. Then

ml[F(e1(y), ep(x), ..., epr—1(x))] has a circuit of size O(n®logn) and depth 5.

Proof of Lemma 4.3. Suppose the polynomial F(y) € Fly1,...,y.] is:
F(Y) = Z )\“y“,
"

where g = (p1,..., yr) denotes the exponent vector of a monomial. Recall that the individual
degree of F(y) is at most < (p — 1). Consider a monomial y* with a non-zero coefficient A, in
F(y). We will multilinearize m = [[;_; e,i—1(x)**. We do it by multilinearizing two products at a
time using Lemma 4.11. Defining pg := 1, we have,

®

~~

m = e(x)---er(x) - epr1(X)epr(x) = | | €a, (%),
e - pa—
p1 times Wy times =1

where ap = p*lif b e [22;11 e + 1, 22:1 Mi]-

Claim 4.12. Let p € {0,1,...,p— 1}" denote an exponent vector as described above. Then for any
k€ [|p]], the following holds:

o (Constant-depth circuit). There exists polynomials R<q, j(x)’s such that

ml

k k n
Heae(X)] = [Tea®) = 3 Reaj(x) - (F — ),
=1 =1 Jj=1

and the polynomials R<q, j(X)’s have circuits of size O(n® - k) and depth 5.

o (Structure). There exists coefficients cgik, o ,c(gno)% such that

k n
ml [H eaé(x)] = Z cg)ak e;(x)
=1 i=1
Proof of Claim 4.12. We will prove this using induction on k.
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Base case: For k = 1, we have ml[eq, | = eq, (x) and R<q, j(x) = 0. The claim holds for the base
case.

Induction step: Now we assume the induction is true for k£ and prove it for (k+1). We will first
prove the constant-depth circuit item for (k + 1) and then prove the structure item for (k + 1).

Using the structure item of the induction hypothesis, we have,

k n )
ml [H eae(x)] = Z cglk e;(x) (17)
=1 i=1

Using the third item of Fact 1.13,

k+1
ml [H eae(x)] = ml !ml [H eaé(x)] oy (%)
(=1

=1 |
=ml [Z C(SZZD% ei(X) - eqy, (%) (Using Equation (17))
i=1 |
= 2 e, milei() - ey, ()] (18)
i=1

For each i € [n], we apply the constant-depth circuit item from Lemma 4.11 on e;(x) - eq, , , (X)
to get:

n
mifei(x) - €ay 1 (X)] = €i(X) - €qy,, (x Z e ( ‘T? - xj),

where the polynomials D; ., (x) have a circuit of size O(n3) and depth 5. Substituting it in
Equation (18),

k+1 n ) n
ml [H €ay (X)] = Z c(él)ak (ei(x) “Coypq (X) - Z Di704k+1 (X) : (‘7‘? - x]))
/=1 )

7=1
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where we use the constant-depth circuit item from the induction hypothesis for the last equality.
The polynomials R<q, ;(x)’s have circuits of size O(n® - k) and depth 5 (a LIIXIIY circuit). Using

this in the previous expression, we have
k+1
ml H €a, (X)
/=1

Reay.j(x) - (x? o xj)) eakﬂ(x) - Z (Z C<oz;C zak+1 )> . (1']2 — xj)
=1

.M:

- (1Tewts

J=1
k+1

- H Z (Z ngkDi,akﬂ (X) + Rsak,j(x)> : (:UJQ — :L‘j)

(=1 j=1 \i=1

J

v~

::R<ak+1 ¥ (%)

The polynomial R<,, , j(x) has a circuit of size O(n® - (k + 1)) and depth 5 (a TITIIY circuit).
This shows the constant-depth circuit item of the induction.

By applying the structure item of Lemma 4.11 on e;(x) - eq,_, (X), we get,

Substituting it in Equation (18),

k+1 n n
m [Heaxx)] = M0, S denx) = Yl elx),

/=1 i=1 =1 i=1
where ngkﬂ = Z?:l cgik dg-i). This completes the structure item of the induction.
This finishes the induction and thus we have finished the proof of Claim 4.12. |

Now we employ Claim 4.12 on each monomial g with non-zero coefficient and then sum them
together. It is easy to verify that there exists polynomials R;(x)’s such that

F(é(x)) = ml[F Z (22 — z;),

where each polynomial R;(x) has a circuit of size O(p"rn?) and depth 5 (a SIILIIY circuit). Using
r < 2log, n, we get that each polynomial R;(x) has a circuit of size O(n®logn) and depth 5. This
finishes the proof of Lemma 4.3. |
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A Appendix

A.1 Details of roABP-IPS; v Lower Bound

We recall some standard definitions and lemmas that are useful for understanding the complexity
of roABPs. For more details, please refer to [FSTW21; Forl4].
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Definition A.1 (Coefficient matrix). Consider f € F[x,y]. The coefficient matriz of Cy is defined
with the following entries from F:

(Cf)a,b = Coeﬂ“xa’yb (f)
where Coeffa yb (f) denotes the coefficient of the monomial x2y® in f.

Definition A.2 (Coefficient space). Consider f € F[x,y]. The space of F[x][y] coefficients of f is
defined as:

Coefl, (f) := {Coeffxb,b }

where Coefly b denotes the coefficient of yP when f is viewed as a polynomial in the y-variables,
with coefficients from the ring F[x]. The space of F[y][x] coefficients of f is defined similarly.

beN™

For any subset S of polynomials over a field F, we will use dim(S) to denote the dimension of
the F-linear span of polynomials in S.

Lemma A.3 (Coefficient dimension equals rank of Cy [Nis91]). For any f € F[x,y]:
rank(Cy) = dim(Coeffy |, (f)) = dim(Coeffy,(f))

Lemma A.4 (Coefficient dimension captures roABP width [NisO1|[Forl4]). For any f(x1,...,2,),
if f is computable by a width-r roABP, then r > max;e, dim(Coeffy_,x_,(f)). Further, there is a
width-r ToABP for f, where r = max;e, dim(Coeffy_,x_.(f))-

Definition A.5 (Evaluation space). For f € F, the space of F[x][y] evaluations of f over a set
S € F is defined as:
Evalx\y,S(f) = {f(xv B)}ﬁeslﬂ

Omitting the S in the notation will denote that S = F. The space of F[y][x] evaluations of f over
a set S is defined similarly.

Lemma A.6 (Evaluation dimension < coefficient dimension). For f € F[x]|[y] and S € F,
Evalx|y,S(f) < Coeﬁx|y(f)

which implies that dim(Evaly, s(f)) < dim(Coeffy, (f)). If |S| is greater than the individual
degree of each variable in f, then Evaly)y, ¢(f) = Coeffy,(f).

Fact A.7 (Dimension of polynomials = dimension of leading monomials [Forl4]). Let S = {f1(x),..., fm(X)} S
F[x]. For each f;, let LM(f;) denote the leading monomial of f; based on some monomial ordering.

Then, dimspan S = dim span{LM(f;) : f; € S}.

The following lemma proves an analog of the coefficient dimension lower bound from [FSTW21]
for the positive characteristic case using the degree lower bound in Lemma 2.4.

Lemma A.8 (Coefficient dimension lower bound from degree lower bound for fixed partition(Proposition
5.8 [FSTW21])). Let n € N. For any o € F™ and € By, let fo g(x,y) be a polynomial that com-

putes
1

D oGy — B
on {0,1}". Let S be a finite subset of F. Then, for a uniformly randomly chosen v ~ S™:

22n

Py [dim(Coeffyy (fas)) > 2] 21— o
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Proof. Lemma A.6 implies that

dim(Coeﬁ'X|y(fa,6>) > dim { fo p(x, b)}b€{071}n
For any b = (b1,...,b,) € {0,1}", if Up := {i € [n] : b; = 1} then :
-
ety Qi%i — B

Lemma 2.4 tells us that for a randomly chosen o« ~ S™:

fa,ﬁ (X’ b) =

22n

[Vb e {0,1}" : deg fa v, (x) = |b]] =1 — —

P
an§n E

In particular, for a uniformly random a ~ S™, for any b € {0,1}", the leading monomial of
fou,u, (%) is cp - Hi:bl:l x; for some ¢p € F\{0}. Combining this with Fact A.7, we get that with
probability at least 1 — (227/|9]):

dim(Coeffy |y (fa,5)) = dim { fa,5(x, b)}be{(),l}" > dim {ml(fq 5(x, b))}be{o,l}” > on

since each multilinear restriction ml(fq,g(x,b)) generates a different multilinear monomial as its
leading monomial, and thus the space contains all 2 multilinear monomials on x. Here, we also used
the fact the multilinearization operator is a linear map and does not increase the dimension. |

The following fact relates the coefficient dimension of a polynomial f € F[x,y,z] over F(z) to
the coefficient dimension of f(x,y,b) over F for any b € F".

Fact A.9 (Coefficient dimension over F(z) > coefficient dimension over F (Lemma 5.12 [F'STW21])).
Let f € F[x,y,z]. Let f, denote f as a polynomial in F(z][x,y] so that for any b € F", fp(x,y) =
f(x,y,b) € F[x,y]. Then for any b e F":

dim]F(z) C()effx|y f2 (Xa y) > dimp COeﬂ.x\y fo (X, Y)

Using this fact, [F'STW21] proves a coefficient dimension lower bound over F(z) for any partition
of variables, using the coefficient dimension lower bound over F for a fixed partition of variables.
We observe that their proofs work even when we replace their coefficient dimension lower bound by
a suitable version over fields of positive characteristic (Lemma A.8) using the degree lower bound
over positive characteristic.

Lemma A.10 (Coefficient dimension lower bound for any partition of variables (Proposition 5.13
2n
[FSTW21])). Let n e N. For any o € F(3) and B € Ba, let fap(x = (%4)ic[an], 2 = (2ij)i<j<on) be
a polynomial which computes
1

Diicjn QijZiTiTi — B

on the Boolean cube. Let S < F. Call an o € S(Q;) good if for any partition x = (u,v) with
lu| = |v| =mn:

dlm]F(z) (Coeﬂu|v (faﬂ)) > 2"

where fop is viewed as a polynomial in F[z][x,y] with coefficients in F|z].

Gy

Then, a uniformly randomly chosen o € S(Q2n) s good with probability = 1 — 137
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Proof. For any balanced partition x = (u,v) where [u| = [v| = n, we can embed >}, uv; — B in

2n
ijgn o; ;2 jxix; — [ by a natural restriction z = by, € {0, 1}( >) that sets zij to 1if x; = wy,
z; = v, and 0 otherwise. So, for every such restriction by, that corresponds to a balanced
partition:
1
fa,v,buyy)=———
) Y u,v Zle[n] uZ/UZ _ /8

For any fixed choice of balanced partition by, v € {0, 1}(22n ), Lemma A.8 tells us that for a uniformly
2n

randomly chosen a € .S G

22n

Pg; )[dim(coeHX\y(fa,ﬁ(U,Va b)) > 2" > 1
aesS\n

Applying a union bound over all (27?) choices of balanced partitions x = (u,v) implies that for a

uniformly randomly chosen o € S (%)
(27’1) 22n
Pr [Vx = (u,v) : dimp(Coeff, |y (fa,5(1, v,buy))) = 2" > 1 - "S
aES( 7?) ’ |
Finally, applying Fact A.9 implies that for a uniformly randomly chosen & € S ().
Pr [Vx = (u,v) : dimp(,) (Coeffy)y (fa,s(1,v,buy))) = 2" > 1~ ”’S’

aes()

Theorem A.11 (Functiqnal lower bound against roABP in any order of variables). Let n € N. Let
p € N be any prime. Let IF be a field of characteristic p and size p?* . where k is the smallest integer
that satisfies pF > (2:)22". Let 8 be an arbitrary element in F\F, where F denotes the subfield of

size p*. For any o € IF(Q;), let fo(x = (z;)2",2 = (#i,3)ijen)) be a polynomial which agrees with

1

i< CijZi T — B

2n
on the Boolean cube. Then there exists an o € F(3) such that any roABP that computes fo in any
order of variables requires size = 2".

Proof of Theorem A.11. We will instantiate Lemma A.10 for the field F and the set S = F. Thus,
~ 2n

choosing § € F\F ensures that for any choice of & = (@ j)1<i<j<on € s ), B will be in B, (which

we recall to be the complement of all possible subset sums of a). With the above choices, it follows

from Lemma A.10 that for a uniformly randomly chosen o € S € ),

(QTL) 22n

> > n

aeS™ |S|

>0

93



for |S| = |F| > (27?) 22" where x = (u,v) denotes any balanced partition of x. In particular, this

implies that there exists an ac € S () such that for any balanced partition x = (u,v),
dimF(Z)(Coeﬁ‘xb’(faﬂ(uﬂ v, bu,v))) = 2" (19)

Now, suppose f(x,z) is computable by a width-r roABP in some order of variables. Using f,
to denote f as a polynomial in F[z][x], it follows that f, is also computable by a width-r roABP
over the fraction field F(z) in the induced order of variables on x. By splitting the x variables in
half along the induced order, using Equation (19) along with Nisan’s characterization of width of
roABPs (Lemma A.4), we obtain the required lower bound. |
A.2 Proof of Claim 3.4

Claim 3.4. For any exponent vector p = (pu1,...,Hun) with || < D, there exists polynomials
Epi(x),..., Eyn(x) such that the following holds:

()2 =) = ) Bpuy(x) - (af = ),
jeln]
Mj>0

and for each j € [n] with p; > 0, the polynomial E,, ;(x) has a circuit of size O(nD?) and depth 2
(a IIX circuit).

Proof of Claim 3.4. We will prove it by induction on the cardinality of Supp(w), which is defined
as follows:

Supp(p) = {j € [n]|p; > 0}.

Base case: Suppose |[Supp(p)| = 1 and g1 > 0. If pg = 1, then we can set E,1(x) = 1.
Otherwise, if p; > 1, then

" =t = (27" —21) = (2" — 1)
We have the following identity for any j > 2:

Az = (P24 241 (22 =2)
Using this we get,

gt = @ A1) (@) — @ T a4+ 1) (2 — 1)
=@M ) (2 —2)

~—

=Eu1(x)

The polynomial E,, 1(x) has a circuit of size O(D?) and depth 2 (a XII circuit).
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Induction step: Assume this is true for all g with || < D and |Supp(p)| = k. Consider any
arbitrary exponent vector g with |u| < D and |Supp(p)| = (k+ 1). Let ¢ be the largest element in
Supp(p) and let v be the exponent vector with v, = 0 and v; = p; for all i # ¢t. We have,

(<) =xH) = (@' =+ m0) - (%) = (2} — e+ 3) - x

((m,?“t—2+...+1)-<x")2 (24 1) X)) (@R —x) oz (XY)2—xY),  (20)

v

:=Emt(x)

where we used the identity (29 —2) = (2772 + ... + 2+ 1) - (2 — z). Since the exponent vector v
satisfies |v| < D and |Supp(v)| = k, we can apply the induction hypothesis on (x¥)? — x¥. From
induction, we know there exists polynomials E,, j(x) for all j € Supp(v) such that:

() =x") = 3 Byi(x)- (2] —a),

jeSupp(v)

and the polynomials E,, j(x) have circuits of size O(nD?) and depth 2 (a II circuit). Substituting
it in Equation (20), we get,

() =) = Bpa(x) - (af —2) + 3, @ Byy(x) (] — 2)),
jesupp) Ty

where the polynomials E,, j(x) have a circuit of size O(nD?) and depth 2 (a IIX circuit). Moreover,
the polynomials F, j(x) are of degree-2D polynomials. This finishes the proof of Claim 3.4. |
A.3 Proof of Claim 4.5

Claim 4.5. Let H(y) € Flyi,...,yr] denote a polynomial whose individual degree is at most D.
Then there exists polynomials G1(y), ..., Gy (y) such that the following holds:

H(y) = inddeg,[H Z —yj)

and for each j € [r], the polynomial G;(y) has sparsity at most D"*1/(p —1).

Proof of Claim 4.5. Fix an arbitrary monomial m with a non-zero coefficient in the polynomial
H(y). Say m = y|"" -y where for every j € [r], 0 < e; < D. Let Sy S [r] denote the set of
variables whose exponent in m is at least p, i.e.

Sm = {jelrllp<u; <D}
Let £ € Sy, and let m_ := m/y}"*. In other words, m = y}"* - m_,. Then,

m o= (y) —ye+uye) vy "

Al Tm_j - (yf —Yr)

‘Mm_y
_ o He—p+1
=Y Mo + Y
The monomial y)* "
pe—p+1

-m_; is a monomial in the polynomial G,(y). We repeat the above step on

the monomial y, -m_;. In each step with respect to the variable y, (for the monomial m), the
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degree of y, is reducing by (p — 1). Thus this step can be repeated < D/(p — 1) times because the
individual degree of H(y) is < D. In each step, we get one monomial for the polynomial G(y),
and thus we get D/(p — 1) monomials in the polynomial Gy(y) from the monomial m. We do this
for every variable in the set Sy.

Finally, we iterate the above steps for every monomial with non-zero coefficient in the polynomial
H(y). The sparsity of the polynomial H(y) is at most D", since the individual degree of H(y) is
< D. For each monomial in the support of H(y), each polynomial G,(y) gets at most D/(p — 1)
monomials, and hence each polynomial Gy(y),

sparsity (Ge(y)) = sparsity(H(y)) - D/(p—1) < D"-D/(p—1)

This finishes the proof of Claim 4.5. |

A.4 Proof of Claim 4.9

Claim 4.9 (Partial multilinearization of product of univariates). Let hi(z1),...,hn(2,) be univari-
ate polynomials where each h;(z;) has degree at most D.
Then there exists degree-1 univariate polynomials L1(z1), ..., Ly(2n) and polynomials B1(z), ..., By (z)

satisfying the following: For every k € [n],

n k
hi(z1) - hn(zn) = mlgg [H hi(Zi)] + Z Bj(z) - (25 — ),

where

n

n k
m|$k [th(zl)] = HLi(Zi) . 1_[ hi(zi),
i=1 i=1

i=k+1

and for each j € [n], the polynomial Bj(z) has the following form:

7j—1 n
Bj(x) = HLZ(ZZ')'BJ(ZJ) H hi(zi),
=1 i=j+1

for some univariate polynomial h;(z;).

Proof of Claim 4.9. We will prove this via induction on k.
Base case: For k = 1, this is exactly Claim 4.8 where z = z; and y = (22, ..., zn).

Induction case: Assume the claim is true up to k. Let Q(z) = hgio(zk12)- - hn(zn). By
induction hypothesis, we have,

n k
ml<k [Hhi(zz‘)] = ha(zen) - [ [LaCz) - [ haz),
i1 ‘ :
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where y = (21,..., 2k, Zk+2, - - -, 2n). From Observation 4.7,
n n
ml<k i1 [H hi<zz’)] = ml;, [mlsk [H hi(zi)]] :
i=1 i=1

Now applying Claim 4.8 on hgi1(2zk+1) - Q(y) with respect to the variable zp,1, we get the claim
for k + 1. This finishes the proof of Claim 4.9. |
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