
Lower Bounds against the Ideal Proof System in Finite Fields∗

Tal Elbaz† Nashlen Govindasamy‡ Jiaqi Lu§ Iddo Tzameret¶

Imperial College London
Department of Computing

Abstract

Lower bounds against strong algebraic proof systems and specifically fragments of the Ideal
Proof System (IPS), have been obtained in an ongoing line of work. All of these bounds,
however, are proved only over large (or characteristic 0) fields,1 yet finite fields are the more
natural setting for propositional proof complexity, especially for progress toward lower bounds
for Frege systems such as AC0[p]-Frege. This work establishes lower bounds against fragments of
IPS over fixed finite fields. Specifically, we show that a variant of the knapsack instance studied
by Govindasamy, Hakoniemi, and Tzameret (FOCS’22) has no polynomial-size IPS refutation
over finite fields when the refutation is multilinear and written as a constant-depth circuit. The
key ingredient of our argument is the recent set-multilinearization result of Forbes (CCC’24),
which extends the earlier result of Limaye, Srinivasan, and Tavenas (FOCS’21) to all fields,
and an extension of the techniques of Govindasamy, Hakoniemi, and Tzameret to finite fields.
We also separate this proof system from the one studied by Govindasamy, Hakoniemi, and
Tzameret.

In addition, we present new lower bounds for read-once algebraic branching program refuta-
tions, roABP-IPS, in finite fields, extending results of Forbes, Shpilka, Tzameret, and Wigderson
(Theor. of Comput.’21) and Hakoniemi, Limaye, and Tzameret (STOC’24).

Finally, we show that any lower bound against any proof system at least as strong as (non-
multilinear) constant-depth IPS over finite fields for any instance, even a purely algebraic in-
stance (i.e., not a translation of a Boolean formula or CNF), implies a hard CNF formula for
the respective IPS fragment, and hence an AC0[p]-Frege lower bound by known simulations over
finite fields (Grochow and Pitassi (J. ACM’18)).

Note on independent concurrent work: Independently and concurrently with our work, Behera,
Limaye, Ramanathan, and Srinivasan [BLRS25] using different arguments, obtained related results
for fragments of IPS over fields of positive characteristic. Both works establish a lower bound for
constant-depth multilinear IPS but the field assumptions differ: [BLRS25] requires the size of the
field to grow with the instance, whereas our lower bound holds for any field of constant (or small)
positive characteristic. Hence, in the constant positive characteristic setting our constant-depth
multilinear IPS lower bound strictly subsumes theirs as it also holds over any fixed finite field. We
provide a detailed comparison of these and, where relevant, other results of [BLRS25] in Section 1.4.

∗This project was supported by the Engineering and Physical Sciences Research Council (grant EP/Z534158/1) and
the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme
(grant agreement 101002742; EPRICOT project).

†E-mail: t.elbaz22@imperial.ac.uk
‡E-mail: nashlen.govindasamy@gmail.com
§E-mail: jiaqi.lu23@imperial.ac.uk
¶E-mail: iddo.tzameret@gmail.com. https://www.doc.ic.ac.uk/~itzamere/
1Except for the placeholder lower bound model, where the instance itself lacks small circuits [HLT24].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 80 (2025)

https://www.doc.ic.ac.uk/~itzamere/

1 Introduction

This work investigates lower bounds against the Ideal Proof System (IPS) over finite fields, mo-
tivated by two main considerations. First, existing lower bounds for IPS have not adequately
addressed the case of finite fields. Second, focusing on finite fields—rather than large fields—offers
a more natural setting for tackling a central open problem in proof complexity: proving super-
polynomial lower bounds against AC0[p]-Frege.

1.1 Algebraic Proof Complexity

Proof complexity studies the size of proofs that certify membership in languages such as UNSAT,
the set of unsatisfiable Boolean formulas. In this context, a proof is a witness that can be verified
efficiently, and for UNSAT, such a proof is typically called a refutation. A central objective of the
field is to establish lower bounds against increasingly powerful proof systems, with the overarching
goal of demonstrating that no proof system admits polynomial-size refutations for all unsatisfi-
able formulas. This approach is often referred to as Cook’s Programme, following Stephen Cook’s
suggestion in the 1970s that proof complexity lower bounds could yield insights into fundamental
questions in computational complexity, such as the P versus NP problem. In particular, showing
that no proof system can efficiently refute all unsatisfiable formulas would separate NP from coNP
and thereby separate P from NP.

An important thread of proof complexity is to investigate algebraic proof systems, which certify
that a given set of multivariate polynomials over a field has no common Boolean solution. Some of
the foundational proof systems in this line are the Polynomial Calculus (PC) [CEI96] and its ‘static’
variant, Nullstellensatz [BIKPP96]. In PC, proofs proceed by algebraic manipulation, adding and
multiplying polynomials, until deriving the contradiction 1 = 0. Contrastingly, in Nullstellensatz,
a proof of the unsatisfiability of a set of axioms, written as polynomial equations {fi(x) = 0} over
a field, is a single polynomial identity expressing 1 as a combination of the axioms, that is:∑

i

gi(x) · fi(x) = 1 , (1)

for some polynomials {gi(x)}. These systems measure proof size by sparsity, defined as the total
number of monomials involved, which makes them comparatively weak. An alternative way to
measure proof size is by algebraic circuit size. This was suggested initially by Pitassi [Pit97; Pit98],
and further investigated in the work of Grigoriev and Hirsch [GH03] and subsequently Raz and
Tzameret [RT08b; RT08a], eventually leading to the Ideal Proof System [GP18] described in what
follows.

1.2 Ideal Proof System

The Ideal Proof System (IPS, for short; Definition 9), introduced by Grochow and Pitassi [GP18],
loosely speaking is the Nullstellensatz proof system where the polynomials gi(x̄) in (1) are repre-
sented by algebraic circuits. Formally, Forbes, Shpilka, Tzameret and Wigderson [FSTW21] showed
that IPS is equivalent to Nullstellensatz in which the polynomials gi in Equation (1) are written
as algebraic circuits. In other words, an IPS refutation of the set of axioms {fi(x̄) = 0}i can be
defined similarly to Equation (1) (here we display explicitly the Boolean axioms x2j − xj):∑

i

gi(x̄) · fi(x̄) +
∑
j

hj(x̄) ·
(
x2j − xj

)
= 1, (2)

2

for some polynomials {gi(x̄)}i, where we think of the polynomials gi, hj written as algebraic circuits
(instead of e.g., counting the number of monomials they have towards the size of the refutation).
Thus, the size of the IPS refutation in Equation (0.2) is

∑
i size (gi(x̄)) +

∑
j size (hj(x̄)), where

size(g) stands for the (minimal) size of an algebraic circuit computing the polynomial g.
When considering algebraic circuit classes weaker than general algebraic circuits, one has to be a

bit careful with the definition of IPS. For technical reasons the formalization in (2) does not capture
the precise definition of IPS restricted to the relevant circuit class, rather the fragment which is
denoted by C-IPSLIN (“LIN” here stands for the linearity of the axioms fi and the Boolean axioms;
that is, they appear with power 1). In this work, we focus on C-IPSLIN and a similar stronger
variant denoted C-IPSLIN′ . Throughout the introduction, refutations in the system C-IPSLIN are
defined as in Equation (2) where the polynomials gi, hj are written as circuits in the circuit class
C.

Technically, our lower bounds are proved by lower bounding the algebraic circuit size of the gi’s
in (2), namely the products of the axioms fi, and not the products of the Boolean axioms (that
is, we ignore the circuit size of the hi’s). For this reason, our lower bounds are slightly stronger
than lower bounds on C-IPSLIN, rather they are lower bounds on the system denoted C-IPSLIN′ (see
Definition 9).

Lower bounds methods and known results. Forbes, Shpilka, Tzameret, and Wigderson
[FSTW21] introduced two approaches for turning algebraic circuit lower bounds into lower bounds
for IPS: the functional lower bound method and the lower bounds for multiples method. Of the two,
the functional approach has proved more instrumental, proving several concrete proof complexity
lower bounds against fragments of IPS. These include lower bounds for variants of the subset-
sum instance against IPS refutations written as read-once (oblivious) algebraic branching programs
(roABPs), depth-3 powering formulas, and multilinear formulas [FSTW21]. A similar method
underpinned the conditional lower bound against general IPS established by Alekseev, Grigoriev,
Hirsch, and Tzameret [AGHT20] (leading to [Ale21]). Govindasamy, Hakoniemi, and Tzameret
[GHT22] combined the functional method with the constant-depth algebraic circuit lower bound
result of Limaye, Srinivasan, and Tavenas [LST21], obtaining constant-depth multilinear IPS lower
bounds.

By contrast, the multiples method has so far matched the functional method only within the
weaker placeholder model of IPS, where the hard instances themselves do not have small circuits
in the fragment under study [FSTW21; AF22]. Other approaches have emerged as well: the meta-
complexity approach of Santhanam and Tzameret [ST25], which obtains a conditional IPS size lower
bound on a self-referential statement; the noncommutative approach of Li, Tzameret, and Wang
[LTW18] (building on [Tza11], which reduced Frege lower bounds to matrix-rank lower bounds but
has yet to yield concrete lower bounds; and recent lower bounds against PC with extension variables
over finite fields of Impagliazzo, Mouli, and Pitassi [IMP23] (building on [Sok20] and improved by
[DMM24]) which can be considered as a fragment of IPS sitting between depth-2 and depth-3.

The functional lower bound method was further investigated by Hakoniemi, Limaye, and Tza-
meret [HLT24]. There, Nullstellensatz degree lower bounds for symmetric instances and vector
invariant polynomials were established, which were then lifted to yield IPS size lower bounds for
the roABP and multilinear formula fragments of IPS. With invariant polynomials, the bounds hold
over finite fields, though within the placeholder model. Building on recent advances in constant-
depth algebraic circuit lower bounds from [AGKST23], they extend [GHT22] to constant-depth
IPS refutations computing polynomials with O(log log n) individual degree. Finally, they observe a
barrier in that the functional method cannot yield lower bounds for any Boolean instance against

3

sufficiently strong proof systems like constant-depth IPS.

1.3 IPS over Finite Fields

IPS lower bounds have so far been obtained almost exclusively over fields of large characteristic.
Finite fields, however, are a more natural setting for propositional proof complexity, particularly
for the long-standing open problem of establishing super-polynomial lower bounds for AC0[p]-Frege.
This proof system operates with constant-depth propositional formulas equipped with modulo p
counting gates, where p is a prime. Grochow and Pitassi [GP18] showed that constant-depth IPS
refutations over Fp simulate AC0[p]-Frege, thus obtaining lower bounds against IPS over finite fields
provides a concrete approach to settle the problem of obtaining lower bounds against AC0[p]-Frege.
Although lower bounds against AC0[p]-Frege are sometimes thought to be within reach of current
techniques, especially given existing lower bounds against both AC0-Frege and AC0[p] circuits, this
problem and the problem of obtaining lower bounds against constant-depth IPS over Fp remain
elusive.

IPS lower bounds over finite fields face additional challenges that are not present in the char-
acteristic 0 setting. A recurring obstacle is provided by Fermat’s little theorem: for a nonzero
a ∈ Fp, ap−1 = 1 in Fp. More generally, if F is a finite field of size q, then for a nonzero
a ∈ F, aq−1 = 1. Hence, if a polynomial f ∈ F[x] admits no satisfying Boolean assignment, then
(f(x))(q−2)f(x) = (f(x))(q−1) = 1 over Boolean assignments. The functional lower bound method
of [FSTW21] requires a lower bound on the size of circuits computing g(x) such that g(x)f(x) = 1
over Boolean assignments, hence requires a lower bound on the size of (f(x))(q−2). Thus we must
simultaneously ensure that the hard instance f(x) is easily computed by the subsystem of IPS under
consideration while (f(x))(q−2) is hard in that same subsystem. While this is not possible for proof
systems closed under constant multiplication of polynomials, including certain constant-depth IPS
subsystems (for example the one studied in [HLT24] which considered log log n individual degree
refutations), for the multilinear constant-depth IPS subsystem considered in [GHT22], it is indeed
possible, even for constant q.

1.4 Our Results

1.4.1 Bounds for Constant-depth IPS over Finite Fields

Our first contribution establishes a super-polynomial lower bound for constant-depth IPSLIN′ refu-
tations over finite fields. As mentioned above, IPSLIN′ is the Nullstellensatz proof system (2)
whose refutations are algebraic circuits (see Definition 9). This result is the finite field analogue of
[GHT22], which was proved over characteristic 0 fields. Our hard instance is the knapsack mod p
polynomial ksw,p, a variant of the knapsack polynomial ksw used in their work.

Theorem 1 (Informal; see Theorem 24). Let p ≥ 5 be a prime, and let F be a field of characteristic
p. Every constant-depth multilinear IPSLIN′ refutation over F of the knapsack mod p instance ksw,p
requires super-polynomial size.

The proof in [GHT22] combines two main ingredients: first, the methods used by Limaye,
Srinivasan, and Tavenas [LST21] to establish super-polynomial lower bounds for constant-depth
algebraic circuits; and second, the functional lower bound framework of [FSTW21] for size lower
bounds on IPS proofs. We adopt the same overall strategy, showing how the finite field setting
introduces additional obstacles, and how we circumvent them.

4

Following [GHT22], we reduce the task of lower-bounding the size of a constant-depth algebraic
circuit computing the multilinear polynomial that constitutes the IPS proof into the task of lower-
bounding the size of a constant-depth set-multilinear circuit computing a related set-multilinear
polynomial. We derive this set-multilinear polynomial from the original multilinear IPS proof (which
is not necessarily set-multilinear by itself) via the same variant of the functional lower bound method
used in [GHT22].

[GHT22] subsequently applies a reduction presented in [LST21], which converts constant-depth
general circuits into constant-depth set-multilinear circuits. Because the reduction presented in
[LST21] requires fields of sufficiently large characteristic, we rely on the recent extension of Forbes
[For24], which shows that this set-multilinearization reduction holds over all fields thereby removing
this obstacle. [GHT22] also invokes another reduction presented in [LST21] from a size lower bound
of a set-multilinear formula into a rank lower bound of its coefficient matrix. This second reduction
already holds over all fields, and we use the improved parameters obtained by Bhargav, Dutta, and
Saxena [BDS24].

The problem therefore reduces to constructing an unsatisfiable instance whose refutations, af-
ter the preceding reductions, have full rank. [GHT22] achieves this by introducing the knapsack
polynomial, an instance that embeds a family of subset-sum instances (

∑n
i=1 xi−β = 0, for β > n).

They then use the full degree lower bound established in [FSTW21] for refutations of subset-sum
instances to obtain the required full rank lower bound. Because the knapsack polynomial is satisfi-
able over Boolean assignments in finite fields, our task is to design a hard instance that both admits
no satisfying Boolean assignment in finite fields and embeds a family of subset-sum-type instances
that require full degree to refute. We proceed in two steps: first, we extend the full degree bound
of [FSTW21] to more general subset-sum-type instances; and second, we introduce a variant of the
knapsack instance, knapsack mod p, that embeds a family of these more general subset-sum-type
instances. Thus we obtain the result. Although the theorem is stated over finite fields, it also holds
over characteristic 0 fields, thereby providing additional hard instances for the proof system studied
on [GHT22].

As noted earlier, [BLRS25] proves a lower bound for the same proof system as Theorem 1, but
under different field assumptions. [BLRS25] requires size of the field to grow with the instance,
whereas our lower bound holds for any field of constant positive characteristic. Consequently, in
the constant positive characteristic setting, our result subsumes that of [BLRS25] as it also holds
over fixed finite fields. By contrast, the [BLRS25] lower bound also covers characteristic 2 and 3
fields, which our result does not.

Both our work and [BLRS25] also establish upper bounds for subsystems of constant-depth
IPS over fields of positive characteristic. While [BLRS25] proves a general upper bound for sys-
tems stronger than constant-depth multilinear IPSLIN′ , the system for which we obtain a super-
polynomial lower bound, our upper bound is for a single explicit instance within the same system.
Moreover, our specific instance is hard to refute in constant depth multilinear IPSLIN′ over charac-
teristic 0 fields, where a corresponding lower bound was shown in [GHT22]. Hence we obtain the
first separation between constant depth multilinear IPSLIN′ over finite fields and the same system
over characteristic 0 fields.

Our separating instance ksw,e2 , the symmetric knapsack of degree 2, is another variant of the
knapsack instance used in [GHT22]. Note that the subset-sum instance can be viewed as an
elementary symmetric sum of degree 1. In the same spirit as the knapsack polynomial, ksw,e2 is
designed so that it embeds a family of elementary symmetric sum of degree 2.

Theorem 2 (Informal; see Theorem 36). Let p ≥ 3 be a prime, and let F be a field of characteristic
p. Then, for the symmetric knapsack ksw,e2 of degree 2:

5

• ksw,e2 has no satisfying Boolean assignment over F, and over any field of characteristic 0;

• there is a polynomial-size, constant-depth multilinear IPSLIN′ refutation of ksw,e2 over F;

• for every characteristic 0 field E, every constant-depth multilinear IPSLIN′ refutation over E
of ksw,e2 requires super-polynomial size.

For our separation, we need an instance that has no Boolean satisfying assignment in either
field, both the finite field and the characteristic 0 field, rather than one whose satisfiability depends
on the characteristic. We establish this for ksw,e2 by showing that elementary symmetric sums of
certain degrees have no Boolean satisfying assignment in finite fields. As ksw,e2 admits no satisfying
Boolean assignment in the finite field, it likewise admits none in the characteristic 0 field.

The upper bound for refutations of ksw,e2 in constant-depth multilinear IPSLIN′ over finite fields
follows from Fermat’s little theorem. What remains is the lower bound for ksw,e2 over characteristic
0 fields. We show that, in characteristic 0, every refutation of the elementary symmetric sum of
degree 2 must have full degree. The corresponding IPS lower bound for ksw,e2 then follows similarly
to the argument in [GHT22].

1.4.2 roABP-IPS Lower Bounds over Finite Fields

We also present new lower bounds for roABP-IPSLIN′ over finite fields, using two distinct techniques:
the Functional Lower Bound method and the Lower Bound by Multiples method. In both cases, we
obtain finite-field analogues of results from [HLT24] and [FSTW21] respectively, which originally
required fields of large characteristic. Moreover, our proofs are significantly simpler. As a first step,
we establish an exponential lower bound for roABP-IPSLIN′ in any variable order.

Theorem 3 (Informal; see Corollary 43). Let Fq be a finite field with constant characteristic q.
Then, there exists a polynomial f ∈ F[w] such that any roABP-IPSLIN′ refutation (in any variable
order) of f requires 2Ω(n)-size.

This proof employs the Functional Lower Bound method and closely follows the strategy
of [HLT24]. As in their work, we first establish a lower bound in a fixed variable order, and
then extend the result to any order. However, our hard instance differs from theirs—this not only
simplifies the argument, but also allows us to prove the result over fields of constant characteristic.
Additionally, we provide a lower bound for an unsatisfiable system of equations.

Theorem 4 (Informal; see Theorem 46). Let Fq be a finite field of constant characteristic q.
Then, there exist polynomials f, g ∈ F[x1, . . . , xn] such that the system of equations f, g, x2 − x
is unsatisfiable, and any roABP-IPSLIN′ refutation (in any order of the variables) requires size
exp

(
Ω(n)

)
.

In this case, we apply the Lower Bound by Multiples method from [FSTW21], and extend their
result to finite fields. Our hard system of equations uses the same polynomial f as in their work,
but a different choice of g, which allows us to avoid their reliance on large characteristic fields.

We emphasize that the lower bounds we obtain for roABP-IPSLIN′ are placeholder lower
bounds—that is, the hard instances considered are not efficiently computable by roABPs. This
makes the model strictly weaker than the non-placeholder setting. In fact, we show that it is
impossible to obtain non-placeholder lower bounds for roABP-IPSLIN′ over finite fields using the
functional lower bound method (see [HLT24, Theorem 1 in full version] for a precise definition of
“the functional lower bound method”).

Theorem 5 (Theorem 49). The functional lower bound method cannot establish non-placeholder
lower bounds on the size of roABP-IPSLIN′ refutations when working in finite fields.

6

1.4.3 Towards Hard CNF Formulas

Several lower bounds are known for purely algebraic instances against subsystems of IPS. This
raises an important question: Could we get lower bounds for CNF formulas against subsystems of
IPS from those lower bounds?

Note that an instance consisting of a set of polynomials written as circuit equations {fi(x̄) = 0}i,
for fi(x̄) ∈ F[x̄], does not necessarily correspond to a Boolean instance or a CNF formula. Specif-
ically, we say that such an instance is Boolean whenever fi(x̄) ∈ {0, 1} for x̄ ∈ {0, 1}|x̄|. For
example, a CNF written as a set of (polynomials representing) clauses is a Boolean instance. Sim-
ilarly, the standard arithmetization of propositional formulas leads to Boolean instances. On the
other hand, the instances used in Theorem 1 as well as the standard subset sum

∑
i xi − β is non-

Boolean, and thus said to be “purely algebraic”: the image of the latter under {0, 1}-assignments is
{−β, 1−β, . . . , n−β}, and thus cannot be considered a propositional or Boolean formula (formally,
there is no known way to yield propositional proof lower bounds, say, in constant-depth Frege,
from lower bounds for such purely algebraic instance even when such lower bounds are against
proof systems that simulate constant-depth Frege).

We solve this problem, and show how to attain propositional proof lower bounds from purely
algebraic instances lower bounds. This is done using efficient bit-arithmetic in finite fields: from
a circuit we derive the statements that express its gate-by-gate bit-arithmetic description. we
establish a translation lemma—that is, we show that CNF encoding can be efficiently derived from
circuit equations and vice versa within these subsystems of IPS in finite fields. If a subsystem of
IPS can efficiently derive the CNF encoding and then refute it, a lower bound for circuit equations
implies a lower bound for CNF formulas.

In [ST25], Santhanam and Tzameret presented a translation lemma with extension axioms in
IPS. In other words, given some additional axioms, IPS can efficiently derive the CNF encoding
for circuit equations and vice versa. We eliminate the need to add additional extension axioms and
extension variables altogether : we show that without those additional axioms, already bounded-
depth IPS over a finite field can efficiently derive the CNF encoding for bounded-depth circuit
equations. Following our translation lemma, every superpolynomial lower bound for bounded-
depth circuit equations against bounded-depth IPS implies a superpolynomial lower bound for
CNF formulas against bounded-depth IPS over a finite field, and hence an AC0[p]-Frege lower
bound following standard simulation of AC0[p]-Frege by constant-depth IPS over Fp.

We now explain our translation lemma. [ST25] used unary encoding to encode CNFs for circuit
equations over finite fields. Each variable x over a finite field Fq corresponds to q bits xq−1, . . . , x0
where xj equals 1 for 0 ≤ j ≤ q− 1 if and only if x = j; thus, these q bits can be viewed as “unary
bits”.

We use the Lagrange polynomial ∏q−1
i=0,i ̸=j(x− i)∏q−1
i=0,i ̸=j(j − i)

to express each unary bit xj with variable x, which we call UBIT

UBITj(x) =

{
1, x = j,

0, otherwise.

We introduce a notation called semi-CNFs, which are CNFs where each Boolean variable is sub-
stituted by the corresponding UBIT. Hence, SCNFs are substitution instances of CNFs, which means
a lower bound for SCNFs implies a lower bound for CNFs against sufficiently strong subsystems of
IPS, including bounded-depth IPS.

7

We show that the semi-CNF encoding of all the extension axioms in [ST25] can be efficiently
proved in bounded-depth IPS over finite fields. Following the proof in [ST25], bounded-depth IPS
can efficiently derive the semi-CNFs encoding of circuit equations. Hence, a lower bound for circuit
equations implies a lower bound for CNFs.

Theorem 6 (Corollary 60). Let Fq be a finite field, and let {C(x)} be a set of circuits of depth at
most ∆ in the Boolean variable x. Then, if a set of circuit equations {C(x) = 0} cannot be refuted
in S-size, O(∆′)-depth IPS, then the CNF encoding of the set of circuit equations {CNF(C(x) = 0)}
cannot be refuted in (S − poly(|C|))-size, O(∆′ +∆)-depth IPS.

Notice that our lower bound Theorem 1 is against constant-depth IPS refutations which are
multilinear. Since our algebraic-to-CNF translation lemma requires non-multilinear proofs it is
unclear how to carry the translation lemma for our hard instance in constant-depth multilinear
IPS. For this reason we cannot apply the translation lemma to our lower bound to obtain AC0[p]-
Frege lower bounds.

This aligns with the barrier discovered in [HLT24], in which proof systems closed under AND-
introduction (i.e., from a set of formulas derive their conjunction), cannot use the Functional Lower
Bound method (note that our lower bound in Theorem 1 employs this method).

Bit-arithmetic arguments are used in proof complexity in many works (beginning from [Bus12],
and further in works such as [AGHT20; IMP20; Gro23], and as mentioned above [ST25]). However,
in all prior works the bit-arithmetic of a given circuit was not efficiently derived within the system
from the circuits themselves, rather it was used externally to argue about certain simulations. Thus,
as far as we are aware of, our result is the first that shows how to efficiently derive internally within
the proof system the bit-arithmetic from a circuit.

2 Preliminaries

2.1 Polynomials and Algebraic Circuits

For excellent treatises on algebraic circuits and their complexity see Shpilka and Yehudayoff [SY10]
as well as Saptharishi [Sap22]. Let G be a ring. Denote by G[X] the ring of (commutative)
polynomials with coefficients from G and variables X := {x1, x2, . . . }. A polynomial is a formal
linear combination of monomials, where a monomial is a product of variables. Two polynomials
are identical if all their monomials have the same coefficients.

The (total) degree of a monomial is the sum of all the powers of variables in it. The (total)
degree of a polynomial is the maximal total degree of a monomial in it. The degree of an individual
variable in a monomial is its power. The individual degree of a monomial is the maximal individual
degree of its variables. The individual degree of a polynomial is the maximal individual degree of
its monomials. For a polynomial f in G[X,Y] with X,Y being pairwise disjoint sets of variables,
the individual Y -degree of f is the maximal individual degree of a Y -variable only in f .

Algebraic circuits and formulas over the ring G compute polynomials in G[X] via addition and
multiplication gates, starting from the input variables and constants from the ring. More precisely,
an algebraic circuit C is a finite directed acyclic graph (DAG) with input nodes (i.e., nodes of
in-degree zero) and a single output node (i.e., a node of out-degree zero). Edges are labelled by
ring G elements. Input nodes are labelled with variables or scalars from the underlying ring. In
this work (since we work with constant-depth circuits) all other nodes have unbounded fan-in
(that is, unbounded in-degree) and are labelled by either an addition gate + or a product gate ×.
Every node in an algebraic circuit C computes a polynomial in G[X] as follows: an input node

8

computes the variable or scalar that labels it. A + gate computes the linear combination of all
the polynomials computed by its incoming nodes, where the coefficients of the linear combination
are determined by the corresponding incoming edge labels. A × gate computes the product of
all the polynomials computed by its incoming nodes (so edge labels in this case are not needed).
The polynomial computed by a node u in an algebraic circuit C is denoted û. Given a circuit C,
we denote by Ĉ the polynomial computed by C, that is, the polynomial computed by the output
node of C. The size of a circuit C is the number of nodes in it, denoted |C|, and the depth of
a circuit is the length of the longest directed path in it (from an input node to the output node).
The product-depth of the circuit is the maximal number of product gates in a directed path from
an input node to the output node.

We say that a polynomial is homogeneous whenever every monomial in it has the same (total)
degree. We say that a polynomial is multilinear whenever the individual degrees of each of its
variables are at most 1.

Let x = ⟨X1, . . . , Xd⟩ be a sequence of pairwise disjoint sets of variables, called a variable-
partition. We call a monomial m in the variables

⋃
i∈[d]Xi set-multilinear over the variable-

partition x if it contains exactly one variable from each of the sets Xi, i.e. if there are xi ∈ Xi

for all i ∈ [d] such that m =
∏
i∈[d] xi. A polynomial f is set-multilinear over x if it is a linear

combination of set-multilinear monomials over x. For a sequence x of sets of variables, we denote
by Fsml[x] the space of all polynomials that are set-multilinear over x.

We say that an algebraic circuit C is set-multilinear over x if C computes a polynomial that is
set-multilinear over x, and each internal node of C computes a polynomial that is set-multilinear
over some sub-sequence of x.

2.1.1 Oblivious Algebraic Branching Programs

An algebraic branching program (ABP) is a graph-based computational model for computing mul-
tivariate polynomials, providing a structured alternative to algebraic circuits. We state the formal
definition below.

Definition 7 ([Nis91]; ABP). Let F be a field. An algebraic branching program (ABP) of depth D
and width ≤ r over variables x1, . . . , xn is a directed acyclic graph (DAG) with the following
properties:

1. The vertex set is partitioned into D + 1 layers V0, V1, . . . , VD, where V0 contains a unique
source node s and VD contains a unique sink node t.

2. All edges are directed from layer Vi−1 to Vi, for 1 ≤ i ≤ D.

3. Each layer satisfies |Vi| ≤ r for all 0 ≤ i ≤ D.

4. Each edge e is labeled by a polynomial fe ∈ F[x1, . . . , xn].

The (individual) degree of the ABP is the maximum individual degree of any polynomial label fe.
The size of the ABP is defined as n · r · d · D, where d denotes the (individual) degree. Each s–t
path computes a polynomial equal to the product of the edge labels along the path. The ABP as a
whole computes the sum of these polynomials over all s–t paths.

We define the following restricted variants of ABPs:

• An ABP is called oblivious if, for every layer 1 ≤ ℓ ≤ D, all edge labels between Vℓ−1 and Vℓ
are univariate polynomials in a single variable xiℓ ∈ {x1, . . . , xn}.

9

• An oblivious ABP is said to be a read-once oblivious ABP (roABP) if each variable xi appears
in the edge labels of exactly one layer. In this case, we have D = n, and the layers define a
variable order, which we assume to be x1 < x2 < · · · < xn, unless otherwise stated.

• An oblivious ABP is said to be a read-k oblivious ABP if each variable xi appears in the edge
labels of exactly k layers, so that D = kn.

We have the following fact about roABPs.

Fact 8. roABPs are closed under the following operations:

• If f(x, y) ∈ F is computable by a width-r roABP in some variable order then the partial
substitution f(x, α), for α ∈ F|y|, is computable by a width-r roABP in the induced order on
x, where the degree of this roABP is bounded by the degree of the roABP for f .

• If f(z1, . . . , zn) is computable by a width-r roABP in variable order z1 < . . . < zn, then
f(x1y1, . . . , xnyn) is computable by a poly(r, ideg f)-width roABP in variable order x1 < y1 <
. . . < xn < yn.

2.2 Strong Algebraic Proof Systems

For a survey about algebraic proof systems and their relations to algebraic complexity see the
survey [PT16]. Grochow and Pitassi [GP18] suggested the following algebraic proof system which
is essentially a Nullstellensatz proof system [BIKPP96] written as an algebraic circuit. A proof in
the Ideal Proof System is given as a single polynomial. We provide below the Boolean version of
IPS (which includes the Boolean axioms), namely the version that establishes the unsatisfiability
over 0-1 of a set of polynomial equations. In what follows we follow the notation in [FSTW21]:

Definition 9 (Ideal Proof System (IPS), Grochow-Pitassi [GP18]). Let f1(x), . . . , fm(x), p(x) be
a collection of polynomials in F[x1, . . . , xn] over the field F. An IPS proof of p(x) = 0 from
axioms {fj(x) = 0}j∈[m], showing that p(x) = 0 is semantically implied from the assumptions
{fj(x) = 0}j∈[m] over 0-1 assignments, is an algebraic circuit C(x, y, z) ∈ F[x, y1, . . . , ym, z1, . . . , zn]
such that (the equalities in what follows stand for formal polynomial identities2; recall the notation
Ĉ for the polynomial computed by circuit C):

1. Ĉ(x, 0, 0) = 0;

2. Ĉ(x, f1(x), . . . , fm(x), x
2
1 − x1, . . . , x2n − xn) = p(x).

The size of the IPS proof is the size of the circuit C. An IPS proof C(x, y, z) of 1 = 0 from
{fj(x) = 0}j∈[m] is called an IPS refutation of {fj(x) = 0}j∈[m] (note that in this case it must

hold that {fj(x) = 0}j∈[m] have no common solutions in {0, 1}n). If Ĉ is of individual degree ≤ 1 in
each yj and zi, then this is a linear IPS refutation (called Hilbert IPS by Grochow-Pitassi [GP18]),

which we will abbreviate as IPSLIN. If Ĉ is of individual degree ≤ 1 only in the yj’s then we say this

is an IPSLIN′ refutation (following [FSTW21]). If Ĉ(x, y, 0) is of individual degree ≤ 1 in each xj
and yi variables, while Ĉ(x, 0, z) is not necessarily multilinear, then this is a multilinear IPSLIN′

refutation.
If C is of depth at most d, then this is called a depth-d IPS refutation, and further called a

depth-d IPSLIN refutation if Ĉ is linear in y, z, and a depth-d IPSLIN′ refutation if Ĉ is linear in y,
and depth-d multilinear IPSLIN′ refutation if Ĉ(x, y, 0) is linear in x, y.

2That is, C(x, 0, 0) computes the zero polynomial and C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x

2
n − xn) computes the

polynomial p(x).

10

Notice that the definition above adds the equations {x2i − xi = 0}ni=1, called the Boolean
axioms denoted x2 − x, to the system {fj(x) = 0}mj=1. This allows to refute over {0, 1}n un-
satisfiable systems of equations. The variables y, z are called the placeholder variables since they
are used as placeholders for the axioms. Also, note that the first equality in the definition of IPS
means that the polynomial computed by C is in the ideal generated by y, z, which in turn, fol-
lowing the second equality, means that C witnesses the fact that 1 is in the ideal generated by
f1(x), . . . , fm(x), x

2
1 − x1, . . . , x2n − xn (the existence of this witness, for unsatisfiable set of polyno-

mials, stems from the Nullstellensatz [BIKPP96]).

In this work we focus on multilinear IPSLIN′ refutations. This proof system is complete because
its weaker subsystem multilinear-formula IPSLIN′ was shown in [FSTW21, Corollary 4.12] to be
complete (and to simulate Nullstellensatz with respect to sparsity by already depth-2 multilinear
IPSLIN′ proofs).

To build an intuition for multilinear IPSLIN′ it is useful to consider a subsystem of it in which
refutations are written as

C(x, y, z) =
∑
i

gi(x) · yi + C ′(x, z),

where Ĉ ′(x, 0) = 0 and the gi’s are multilinear. Note indeed that C(x, 0, 0) = 0 so that the first
condition of IPS proofs holds, and that C(x, y, 0) is indeed multilinear in x, y.

Important remark: Unlike the multilinear-formula IPSLIN′ in [FSTW21], in multilinear
IPSLIN′ refutations C(x, y, z) we do not require that the refutations are written as multilinear
formulas or multilinear circuits, only that the polynomial computed by C(x, y, 0) is multilinear,
hence the latter proof system easily simulates the former.

We now formally state how we prove a functional lower bound for C-IPS systems.

Theorem 10 (Functional Lower Bound Method; Lemma 5.2 in [FSTW21]). Let C ⊆ F[x] be a
circuit class, and let f(x) ∈ C be a polynomial, which has no boolean roots. A functional lower
bound against C-IPSLIN′ for f(x) and x2 − x is a lower bound argument using the following circuit
lower bound for 1

f(x) : Suppose that g /∈ C for all g ∈ F[x] with

g(x) =
1

f(x)
, ∀x ∈ {0, 1}n. (1.1)

Then, f(x) and x2 − x do not have C-IPSLIN′ refutations. Moreover, if C is a set of multilinear
polynomials, then f(x) and x2 − x do not have C-IPS refutations.

2.3 Coefficient Matrix and Dimension

We define notions and measures used in this paper. Consider a polynomial f ∈ F[x, y]. We can
construct this polynomial by organizing the coefficients of f into a matrix format: the rows are
indexed by monomials xa in the x-variables, the columns are indexed by monomials yb in the
y-variables, and the entry at position (xa, yb) is the coefficient of the monomial xayb in f .

Definition 11 (Coefficient Matrix). Let f ∈ F[x, y] be a polynomial, where x = {x1, . . . , xn} and

y = {y1, . . . , ym}. Let coeffxayb(f) denote the coefficient of the monomial xayb in f . The coefficient

matrix of f is the matrix Cf with entries

(Cf)a,b := coeff
xayb

(f),

such that
∑n

i=1 ai +
∑m

j=1 bj ≤ deg(f).

11

For our purposes, we care about the dimension of this matrix.

Definition 12 (Coefficient space). Let coeffx|y : F[x, y]→ 2F[x] be the space of F[x][y] coefficients,
defined by

Coeffx|y(f) :=
{
coeff

x|yb(f)
}
b∈Nn

,

where the coefficients of f are in F[x][y]. Similarly we have Coeffy|x(f) by taking coefficients in
F[y][x]

That is, we use the above in the context of coefficient dimension, where we look at the dimension
of the coefficient space of f , denoted dimCoeffx|y(f). We state a result that connects this to the
rank of the matrix.

Lemma 13 (Coefficient matrix rank equals dimension of polynomial space; Nisan [Nis91]). Con-
sider f ∈ F[x, y], and let Cf denote the coefficient matrix of f (Definition 11). Then, the following
holds:

rankCf = dimCoeffx|y(f) = dimCoeffy|x(f).

We now show that the coefficient dimension in fact characterizes the width of roABPs.

Lemma 14 (roABP width equals coefficient dimension). Let f ∈ F[x] be a polynomial. If f is
computed by a roABP of width r, then

r ≥ max
i

dimCoeffx≤i|x>i
(f).

Conversely, f can be computed by a roABP of width maxi dimCoeffx≤i|x>i
(f).

The coefficient dimension of a polynomial f(x, y) measures its complexity by considering the
span of all coefficient vectors with respect to the y-monomials. In a similar vein, we also consider
the evaluation dimension, introduced by Saptharishi [Sap12]. Specifically, it captures the dimension
of the span of all evaluations of f(x, ·) at points y ∈ Fm.

Definition 15 (Evaluation dimension). Let S ⊆ F. Let Evalx|y,S : F[x, y] → 2F[x] be the space of
F[x, y] evaluations over S, defined by

Evalx|y,S(f(x, y)) := {f(x, β)}β∈S|y| .

The evaluation dimension is therefore the dimension of the above space, denoted dimEvalx|y,S(f).

That is, we consider the span of functions f over all assignments to the y variables. This measure
is particularly useful for our applications, as it is directly related to the coefficient dimension.

Lemma 16 (Evaluation dimension bounds coefficient dimension; Forbes-Shpilka [FS13]). Let f ∈
F[x, y], and let S ⊆ F. Then,

Evalx|y,S(f) ⊆ spanCoeff
x|y(f),

and hence,
dimEvalx|y,S(f) ≤ dimCoeffx|y(f).

Moreover, if |S| > ideg(f), then equality holds:

dimEvalx|y,S(f) = dimCoeffx|y(f).

12

2.4 Set-Multilinear Monomials over a Word

We recall some notation from [LST21]. Let w ∈ Zd be a word. For a subset S ⊆ [d] denote by wS
the sum

∑
i∈S wi, and by w|S the subword of w indexed by the set S. Let3

Pw := {i ∈ [d] : wi ≥ 0}

be the set of positive indices of w and let

Nw := {i ∈ [d] : wi < 0}

be the set of negative indices of w.
Given a word w, we associate with it a sequenceX(w) = ⟨X(w1), . . . , X(wd)⟩ of sets of variables,

where for each i ∈ [d] the size of X(wi) is 2
|wi|. We call a monomial set-multilinear over a word w

if it is set-multilinear over the sequence x(w).
For a word w, let Πw denote the projection onto the space Fsml[x(w)], which maps set-multilinear

monomials over w identically to themselves and all other monomials to 0. When the underlying
variable partition is clear from context, we simply write Πsml to denote the set-multilinear projec-
tion.

2.5 Relative Rank

Let MP
w and MN

w denote the set-multilinear monomials over w|Pw and w|Nw , respectively. Let
f ∈ Fsml[x(w)] and denote by Mw(f) the matrix with rows indexed by MP

w and columns indexed
by MN

w , whose (m,m′)-th entry is the coefficient of the monomial mm′ in f .
For any f ∈ Fsml[x(w)] define the relative rank with respect to w as follows

rel-rankw(f) =
rank(Mw(f))√
|MP

w | · |MN
w |
.

2.6 Monomial Orders

Finally we recall some basic notions related to monomial orders. For an in-depth introduction
see [CLO15]. A monomial order (in a polynomial ring F[X]) is a well-order ≤ on the set of all
monomials that respects multiplication:

if m1 ≤ m2, then m1m3 ≤ m2m3 for any m3.

It is not hard to see that any monomial order extends the submonomial relation: if m1m2 = m3

for some monomials m1,m2 and m3, then m1 ≤ m3. This is essentially the only property we need
of monomial orderings, and thus our results work for any monomial ordering. Given a polynomial
f ∈ F[X], the leading monomial of f , denoted LM(f), is the highest monomial with respect to ≤
that appears in f with a non-zero coefficient. We conclude this section with the following known
fact.

Lemma 17. For any set of polynomials S ⊆ F[x], the dimension of their span in F[x] is equal to
the number of unique distinct leading or trailing monomials in their span:

dim spanS = |LM(spanS)| = |TM(spanS)|,

where LM and TM stand for leading and trailing monomials respectively. In particular, we have

dim spanS ≥ |LM(S)|, |TM(S)|.
3The Pw here is not to be confused with the canonical full-rank set-multilinear polynomial in [LST21] denoted as

well by Pw mentioned in the introduction.

13

3 Lower Bounds for Constant-depth Multilinear IPS

3.1 Notation for Knapsack

Before defining our hard instance, we introduce some notation. Our construction is based on the
instance ksw from [GHT22], and we adopt parts of their notation.

Let w ∈ Zd be an arbitrary word. Consider the sequence X(w) = ⟨X(w1), . . . , X(wd)⟩ of sets of
variables and the following useful representation of the variables in X(w). For any i ∈ Pw, we write
the variables of X(wi) in the form x

(i)
σ , where σ is a binary string indexed by the set (formally, a

binary string indexed by a set A is a function from A to {0, 1}):

A(i)
w :=

∑
i′∈Pw
i′<i

wi′ + 1,
∑
i′∈Pw
i′≤i

wi′

 .
Hence, the size of A

(i)
w is precisely wi, which implies that there are 2|A

(i)
w | = 2wi possible strings

indexed by A
(i)
w , each corresponding to a distinct variable in X(wi).

Similarly, for any j ∈ Nw, we write the variables of X(wi) in the form y
(j)
σ , where σ is a binary

string indexed by the set

B(j)
w :=

 ∑
j′∈Nw

j′<j

|wj′ |+ 1,
∑
j′∈Nw

j′≤j

|wj′ |

 .
We call the variables in x

(i)
σ the positive variables, or simply x-variables, and the variables y

(j)
σ the

negative variables, or simply y-variables. We write ASw for the set
⋃
i∈S A

(i)
w for any S ⊆ Pw, and

BT
w for the set

⋃
j∈T B

(j)
w for any T ⊆ Nw.

Each monomial that is set-multilinear on w|S for some S ⊆ Pw corresponds to a binary string
indexed by the set ASw. Similarly, each monomial that is set-multilinear on w|T for some T ⊆ Nw

corresponds to a binary string indexed by the set BT
w . For any set-multilinear monomial m on some

w|S with S ⊆ Pw, we denote by σ(m) the corresponding binary string indexed by ASw. Conversely,
for any binary string σ indexed by ASw, we denote by m(σ) the monomial it defines. The same
correspondence holds for strings and monomials on the negative variables. Thus, observe that for
any (negative or positive) monomial m, we have m(σ(m)) = m. Moreover, if m is a negative
monomial and S ⊆ Pw, we write m(σ(m)|AS

w
) to denote the positive monomial determined by the

string σ(m)|AS
w
, which is a substring of σ(m) restricted to ASw.

Therefore, every set-multilinear monomial on w has degree d, with each x-variable picked
uniquely from the X(wi)-variables for i ∈ Pw (the positive indices in w), and each y-variable
picked uniquely from the X(wj)-variables for j ∈ Nw (the negative indices). Moreover, such a

set-multilinear monomial on w corresponds to a binary string of length
∑d

i=1 |wi|.
We define the overlap graph G of the word w as the bipartite graph (Pw, Nw, E), with an

edge between i ∈ Pw and j ∈ Nw if A
(i)
w and B

(j)
w overlap, that is

E = {(i, j) | A(i)
w ∩B(j)

w ̸= ∅}.

We say that the word w is balanced if for every i ∈ Pw∪Nw, the neighbourhoodNG(i) is non-empty
(see Figure 1). In what follows, we suppose that |wNw | ≥ |wPw |, so that the negative monomials
are determined by longer binary strings than the positive ones. Otherwise, we flip the roles of

14

Figure 1: From [GHT22]. Illustration of a word w. Each index wi of w is shown as a box with wi slots,

so every variable x
(i)
σ in X(wi) appears as the string σ written inside its corresponding box. The word w

shown is balanced.

the positive and negative variables in the definition below. We define the positive overlap of w,
denoted ∆G(Pw), as the maximum degree of a vertex in Pw. Similarly, the negative overlap,
denoted ∆G(Nw), is the maximum degree of a vertex in Nw. A partition of the set of positive

indices Pw = P
(1)
w ⊔ · · · ⊔ P (r)

w is called scattered if for every part, the neighbourhoods of positive
indices in that part are pairwise disjoint, that is

NG(i1) ∩NG(i2) = ∅ (∀j ∈ [r], i1, i2 ∈ P (j)
w , i1 ̸= i2).

3.2 Hard Instance: Knapsack mod p

We now construct our hard instance ksw,p, knapsack mod p. Let w ∈ Zd be a word with |wi| ≤ b

for every i. For i ∈ Pw and σ ∈ {0, 1}A
(i)
w let

f (i)σ :=
∏
j∈Nw

A
(i)
w ∩B(j)

w ̸=∅

f (i,j)σ ,

where
f (i,j)σ := 1−

∏
σj∈{0,1}B

(j)
w

(
1− y(j)σj

)
, (3)

where the product in (3) ranges over all those σj that agree with σ on A
(i)
w ∩ B(j)

w (see Figure 2).

Let Pw = P
(1)
w ⊔ · · · ⊔ P (r)

w be a scattered partition of the set of positive indices such that r < p.
We define our hard instance

ksw,p :=
∑
j∈[r]

∏
i∈P (j)

w

ks(i)w,p − β,

where

ks(i)w,p := 1−ml

 ∑
σ∈{0,1}A

(i)
w

x(i)σ f
(i)
σ


p−1

,

and β ∈ F is chosen such that ksw,p is unsatisfiable over Boolean assignments.

Comment (the existence of β): We observe that each f
(i)
σ is a Boolean function. Hence, by

Fermat’s little theorem, each ks
(i)
w,p is a Boolean function. It follows that∑

j∈[r]

∏
i∈P (j)

w

ks(i)w,p ∈ {0, 1, . . . , r}.

Since r < p, we can always choose β ∈ F such that ksw,p is unsatisfiable over Boolean assignments.

15

Figure 2: From [GHT22]. Here ∗ represents either 0 or 1. In the construction of the polynomial ksw,p, for

i = 2 and σ = 011001, we see that f
(2)
011001 = y

(1)
011 · y

(3)
00 · (1− (1− y(4)1000)(1− y

(4)
1001) · · · (1− y

(4)
1111)). While our

construction of f
(i)
σ differs from [GHT22], it still functions as an indicator for the variable x

(i)
σ .

Comment (computing ksw,p by a poly(d, 2bp)-size, product-depth 3, multilinear formula of

degree O(pdb2b)): Fix i ∈ Pw and consider computing ks
(i)
w,p. Let σ1, σ2 ∈ {0, 1}A

(i)
w be distinct

strings. Suppose there exists j ∈ Nw such that A
(i)
w ∩B(j)

w ̸= ∅ and the polynomials f
(i,j)
σ1 and f

(i,j)
σ2

share y-variables. Then, by construction, f
(i,j)
σ1 = f

(i,j)
σ2 . It follows that ml(f

(i)
σ1 f

(i)
σ2) can be computed

in the same way as f
(i)
σ1 f

(i)
σ2 , but with the shared f

(i,j)
σ2 terms excluded from the construction of f

(i)
σ2 .

Hence, ks
(i)
w,p can be computed by a product-depth 2, multilinear formula of size poly(2bp). Since

Pw = P
(1)
w ⊔ · · · ⊔ P (r)

w is a scattered partition of the positive indices, the variables in each ks
(i)
w,p

are disjoint across distinct i. Therefore, ksw,p can be computed by a product-depth 3, multilinear

formula of size poly(d, 2bp). Moreover, each f
(i)
σ has degree at most O(b2b), so ks

(i)
w,p has degree at

most O(pb2b). The overall degree of ksw,p is therefore O(pdb2b).

3.3 Degree Lower Bound

We now state and prove the degree lower bound that we use in the rank lower bound. We begin
with the bound that was used in [GHT22].

Lemma 18 ([FSTW21] Proposition 5.3). Let n ≥ 1, char(F) = 0 or char(F) > n, and β ∈
F \ {0, 1, . . . , n}. If f ∈ F[x1, . . . , xn] is the multilinear polynomial such that

f(x)

∑
i∈[n]

xi − β

 = 1 (mod x2 − x),

then deg f = n.

Lemma 19. Let x =
⊔
i∈I xi be a partition of the variables x = {x1, . . . , xn}, char(F) = 0 or

char(F) = p > |I|, and β ∈ F \ {0, 1, . . . , |I|}. For i ∈ I, let ψi ∈ F[xi] be a polynomial over
the xi-variables that is multilinear, full degree (that is, degψi = |xi|) and a Boolean function. If
f ∈ F[x] is the multilinear polynomial such that

f(x)

(∑
i∈I

ψi − β

)
= 1 (mod x2 − x), (4)

then deg f = n.

Proof. Let {wi}i∈I be Boolean variables and fw ∈ F[w] be the multilinear polynomial such that

fw(w1, . . . , w|I|)

(∑
i∈I

wi − β

)
= 1 (mod w2 − w). (5)

16

By Lemma 18, we have deg fw = |I|. We show that the following polynomial identity over the
x-variables holds:

fw(ψ1, . . . , ψ|I|)

(∑
i∈I

ψi − β

)
= 1 (mod x2 − x). (6)

We note that fw is a polynomial over the w-variables that is multilinear and for every i ∈ I, ψi is
a polynomial over the xi-variables that is multilinear. Therefore, as x =

⊔
i∈I xi is a partition of

the x-variables, fw(ψ1, . . . , ψ|I|) is a polynomial over the x-variables that is multilinear. Thus, to
show (6), it suffices to show that

fw(ψ1, . . . , ψ|I|)

(∑
i∈I

ψi − β

)
= 1 (7)

holds for all x ∈ {0, 1}n. Let α ∈ {0, 1}n be a Boolean assignment for the x-variables and, for all
i ∈ I, let wi = ψi(α|xi). Since, for all i ∈ I, ψi is a Boolean function, the assignments on the w-
variables are all Boolean assignments. Therefore, for these Boolean assignments on the w-variables,
by (5),

fw(w1, . . . , w|I|)

(∑
i∈I

wi − β

)
= 1.

Since wi = ψi(α|xi) for all i ∈ I, we see that (7) holds for the Boolean assignment α on the
x-variables. We therefore see that (6) holds. Thus, f = fw(ψ1, . . . , ψ|I|). Finally, as fw has full
degree and for all i ∈ I, ψi has full degree, we see that fw(ψ1, . . . , ψ|I|) has full degree. Therefore,
deg f = deg fw(ψ1, . . . , ψ|I|) = n.

Corollary 20. Let x =
⊔
i∈I xi be a partition of the variables x = {x1, . . . , xn}, char(F) = 0 or

char(F) = p > |I|, and β ∈ F \ {0, 1, . . . , |I|}. If f ∈ F[x] is the multilinear polynomial such that

f(x)

(∑
i∈I

∏
x∈xi

(1− x)− β

)
= 1 (mod x2 − x), (8)

then deg(f) = n.

Proof. This follows from Lemma 19, taking for all i ∈ I,

ψi(xi) =
∏
x∈xi

(1− x),

and noting that ψi is a multilinear, full degree polynomial and a Boolean function.

3.4 Rank Lower Bound

Lemma 21. Let F be a field with characteristic p and w ∈ Zd be a balanced word. If f is the
multilinear polynomial such that

f =
1

ksw,p
over Boolean assignments,

then Mw(f) has full rank.

17

Proof. We recall the assumption that |wNw | ≥ |wPw | from the construction of ksw,p. Now write

f =
∑
m

gm(x)m, (9)

where the sum ranges over all multilinear monomials m in the y-variables and gm(x) is some
multilinear polynomial in the x-variables.

Claim 22. For any monomial m that is set-multilinear on some w|T , where T ⊆ Nw, the leading
monomial of gm(x) is less than or equal to

m(σ(m)|AS
w
),

where S is the maximal subset of Pw such that ASw ⊆ BT
w . Moreover, if m is set-multilinear on

w|Nw , then the leading monomial of gm(x) equals

m(σ(m)|
APw

w
).

Proof. We prove this claim by induction on the size of T .

Base case: If T = ∅, consider the partial assignment τ1 that maps all the y-variables to 0.
We have τ1(f) = g1(x), where g1(x) is the coefficient of the empty monomial 1. On the other

hand, τ1(ks
(i)
w,p) = 1 for all i. Since

f =
1

ksw,p
over Boolean assignments,

we see that τ1(f) = 1/(r− β) over Boolean assignments. As g1(x) is multilinear, g1(x) = 1/(r− β)
as a polynomial identity, so the the leading monomial of g1(x) is the empty monomial 1.

Inductive step: Suppose that T is non-empty, and let m be a set-multilinear monomial over
w|T . Consider the partial assignment τm that maps any y-variable in m to 1 and any other
y-variable to 0. By (9)

τm(f) =
∑
m′

gm′(x), (10)

where m′ ranges over all submonomials of m. On the other hand,

τm(ksw,p) =
∑
j∈[r]

∏
i∈P (j)

w

τm(ks
(i)
w,p)− β.

For i ∈ Pw, if A(i)
w ̸⊆ BT

w , then τm(ks
(i)
w,p) = 1; however, if A

(i)
w ⊆ BT

w , then τm(ks
(i)
w,p) = 1 − x(i)σi ,

where σi is the binary string indexed by A
(i)
w that agrees with σ(m) on A

(i)
w . Therefore

τm(f)

∑
j∈[r]

∏
i∈P (j)

w

(1− x(i)σi)− β

 = 1 over Boolean assignments,

where the product ranges over i ∈ P (j)
w such that A

(i)
w ⊆ BT

w . From Corollary 20, it follows that

the leading monomial of τm(f) is the product of all the x
(i)
σi appearing above, and thus the leading

monomial is
m(σ(m)|AS

w
), (11)

18

Figure 3: From [GHT22]. In this example, T = {1, 4, 7, 8} ⊆ Nw and m = y
(1)
100 · y

(4)
1001 · y

(7)
0110 · y

(8)
11 is

a set-multilinear monomial over w|T . Like [GHT22], since S = {5, 6} is the maximal subset of Pw with

AS
w ⊆ BT

w , we have that the leading monomial of gm(x) is less than or equal to x
(5)
00 · x

(6)
101101. However, in

contrast to [GHT22], in our polynomial ksw,p, the partial assignment setting the y-variables in m to 1 and

the remaining y-variables to 0 results in the polynomial (1− x(5)00) + (1− x(6)101101)− β.

where S is the maximal subset of Pw such that ASw ⊆ BT
w (see Figure 3). If the leading monomial

of gm(x) were greater than m(σ(m)|AS
w
), then it must be cancelled by some monomial of gm′(x) in

(10) for some proper submonomial of m; however, by the inductive hypothesis, for all such proper
submonomials m′, the leading monomial of gm′(x) is less than or equal to m(σ(m′)|AS

w
). Therefore,

the leading monomial of gm(x) must be less than or equal to (11), concluding the induction.

It remains to show that the leading monomial of gm(x) equals m(σ(m)|
APw

w
) whenever m is

set-multilinear on w|Nw . Let m
′ be a proper submonomial of m that is set-multilinear over w|T for

some T ⊊ Nw. As w is a balanced word, there is some i ∈ Pw such that A
(i)
w ̸⊆ BT

w , and thus the
leading monomial of gm′(x) is strictly smaller than m(σ(m)|

APw
w

). From (11), it follows that the
leading monomial of gm(x) must equal m(σ(m)|

APw
w

).

For each monomial mP that is set-multilinear over w|Pw , there exists a monomial mN , set-
multilinear over w|Nw , such that the leading monomial of gmN (x) is exactly mP . Consequently, the
(mP ,mN) entry ofMw(f) is non-zero in F, while for every monomialm′

P ̸= mP , also set-multilinear
over w|Pw and satisfying mP ≤ m′

P , the (m′
P ,mN) entry is zero. For Mw(f), it follows that the

dimension of the column space equals the number of rows, so Mw(f) has full rank.

Corollary 23. Let F be a field with characteristic p, and let w ∈ Zd be a balanced word with
|wi| ≤ b for all i ∈ [d]. If f is the multilinear polynomial such that

f =
1

ksw,p
over Boolean assignments,

then rel-rank(f) ≥ 2−b/2.

Proof. Recall that, by the construction of ksw,p, we assume |wNw | ≥ |wPw |. Since w is balanced
and satisfies |wi| ≤ b for all i ∈ [d], it follows that |wPw | − |wNw | ≥ −b. By Lemma 21, Mw(f) has
rank |MP

w |. Therefore

rel-rankw(f) =

√
|MP

w |
|MN

w |
=
√
2|wPw |−|wNw | ≥ 2−b/2.

19

3.5 IPS Lower Bound

We now state and prove our lower bound for constant-depth IPS over finite fields. We begin
by recalling notation from [BDS24]. Let F (n) denote the n-th Fibonacci number, defined by
F (0) = 1, F (1) = 2 and F (i) = F (i− 1) + F (i− 2) for i ≥ 2; let G(i) = F (i)− 1 for all i. Fix the
product-depth ∆ ≤ log log logn/4, and let d = ⌊logn/4⌋ and λ = ⌊d1/G(∆)⌋.

Theorem 24 ([GHT22] over Finite Fields). Let p ≥ 5 be a prime, and let F be a field of char-
acteristic p. Let n,∆ ∈ N+ with ∆ ≤ log log logn/4. Then any product-depth at most ∆ multilinear
IPSLIN′ refutation over F of ksw,p has size at least

nΩ(λ/∆).

The proof of Theorem 24 relies on the following result:

Theorem 25. Let p ≥ 5 be a prime, and let F be a field of characteristic p. Let ∆ be as above. If
f is the multilinear polynomial that equals

1

ksw,p
over Boolean assignments,

then any circuit of product-depth at most ∆ computing f has size at least

nΩ(λ/∆).

Proof of Theorem 24 from Theorem 25. Let C(x, y, z) be a multilinear IPSLIN′ refutation of ksw,p
4.

As there is only one non-Boolean axiom, C has a single y-variable, which we denote by y. Since
Ĉ(x, y, 0) is linear in the y-variable and satisfies Ĉ(x, 0, 0) = 0, it follows that

Ĉ(x, y, 0) = g(x) · y

for some polynomial g(x) ∈ F[x]. This polynomial g(x) is computed by the circuit C(x, 1, 0), so the
minimal product-depth-∆ circuit size of g(x) lower bounds that of C(x, y, z). Therefore, it suffices
to lower bound the size of product-depth at most ∆ circuits computing g(x).

We have
Ĉ(x, y, z) = Ĉ(x, y, 0) +

∑
i

hi · zi

for some polynomials hi in x, y, z, hence Ĉ(x, y, z) = g(x) · y +
∑

i hi · zi. Since

Ĉ
(
x, ksw,p, x

2 − x
)
= 1,

we see that
g(x) · (ksw,p) +

∑
i

(hi · (x2i − xi)) = 1.

Therefore, over Boolean assignments, g(x) ·ksw,p ≡ 1. The result now follows from Theorem 25.

4ksw,p involves both x- and y-variables. As this distinction will not play a role in the proof, we treat all variables
in ksw,p as x-variables. We therefore use the standard notation C(x, y, z) for an IPS refutation, where x are variables
of the axioms, and y, z serve as placeholder variables for the axioms.

20

Lemma 26. Let p ≥ 5 be a prime, and let F be a field of characteristic p. Let ∆, d and λ be as
above. There exist α ∈ Q with 1/2 ≤ α < 1, and k ∈ N+ with k ∈ [⌊logn⌋/2, ⌊log n⌋] and αk ∈ Z, such
that if w ∈ Zd is a balanced word over the alphabet {αk,−k}, and f is the multilinear polynomial
which equals 1/ksw,p over Boolean assignments, then any set-multilinear circuit of product-depth ∆
computing the set-multilinear projection Πw(f) has size at least

s ≥ 2
k(λ/256−1)

2∆ .

Proof. Let C be a set-multilinear circuit of size s and product-depth ∆ computing Πw(f). By
unwinding C into a formula, we obtain a set-multilinear formula F of size s2∆ and product-depth
∆ that also computes Πw(f). We now make use of the following claim from [BDS24]:

Claim 27 ([LST21],[BDS24] Lemma 4.3). Let δ ≤ ∆ be an integer. There exist α ∈ Q with
1/2 ≤ α < 1, and k ∈ N+ with k ∈ [⌊logn⌋/2, ⌊log n⌋] and αk ∈ Z, such that if w ∈ Zd is a word
over the alphabet {αk,−k}, and F is a set-multilinear formula of product-depth δ, degree at least
λG(δ)/8 and size at most s, then

rel-rankw(F) ≤ s2−kλ/256.

As w is balanced, by Lemma 21, Mw(f) has full rank and degF ≥ d ≥ λG(δ)/8. Thus, applying
Corollary 23 and Claim 27, we obtain

2−k ≤ rel-rankw(Πw(f)) ≤ s2∆2−kλ/256.

We therefore see that
s2∆ ≥ 2k(λ/256−1),

from which the claim of the lemma follows.

Lemma 28 ([For24, Corollary 27]). Let F be any field, and let the variables x be partitioned into
x = x1 ⊔ · · · ⊔ xd. Suppose f ∈ F[x] can be computed by a size s, product-depth ∆ algebraic circuit.
Then the set-multilinear projection Πsml(f) ∈ F[x] can be computed by a size poly(s,Θ(d

ln d)
d),

product-depth 2∆ set-multilinear circuit.

Proof of Theorem 24. Let C be a circuit of size s ≥ n and product-depth at most ∆ computing f .
Let d = ⌊logn/4⌋ and λ = ⌊d1/G(∆)⌋ be as defined above, and let 1/2 ≤ α < 1 and k ∈ [⌊logn⌋/2, ⌊log n⌋]
be as constructed in Lemma 26. Construct, by induction, a balanced word w ∈ Zd over the alphabet
{αk,−k}.

By Lemma 28, there exists a set-multilinear circuit C ′ of size poly(s,Θ(d
ln d)

d) and product-depth
2∆ computing the set-multilinear projection Πw(f) of f .

Moreover, by Lemma 26, any set-multilinear circuit of product-depth 2∆ computing Πw(f)
must have size at least

2
k(λ/256−1)

2∆ ≥ n
λ/256−1

8∆ ,

where the inequality follows from the lower bound on k. Combining the two bounds above, we
obtain

poly(s,Θ(
d

ln d
)d) ≥ n

λ/256−1
8∆ ,

and therefore,
dO(d)poly(s) ≥ nΩ(λ/∆).

Since ∆ ≤ log log logn/4 ≤ log log d/2, it follows that λ ≥ (log d)2. Hence,

nΩ(λ/∆) ≥ dω(d),

from which the claim of the theorem follows.

21

Figure 4: Illustration of the scattered partition induced by π : Pw → [∆G(Nw)] with ∆G(Nw) = 3. The
values of π appear above the positive boxes, while the neighbourhoods of the positive indices are shown
below the negative boxes. Since this is a scattered partition, vertices in the same part have pairwise disjoint
neighbourhoods.

Comment (constructing a scattered partition): Our instance ksw,p and rank lower bound

require a scattered partition Pw = P
(1)
w ⊔· · ·⊔P (r)

w of the positive indices having fewer than p parts.
Let ξ := ∆G(Nw) be the negative overlap of the overlap graph. We construct a scattered partition
with r = ξ as follows. For each positive index i ∈ Pw, define π′(i) := |{i′ ∈ Pw | i′ ≤ i}|, and let
π(i) be the least residue of π′(i) (mod ξ); that is, π(i) ∈ [ξ] with π(i) ≡ π′(i) (mod ξ). The map π
partitions Pw into ξ parts such that in each part, the neighbourhoods of the vertices are pairwise
disjoint, hence π induces a scattered partition (see Figure 4).

Because our IPS lower bound assumes p ≥ 5, it suffices to construct a scattered partition with
r < 5. Since the word w ∈ Zd is over the alphabet {αk,−k} with 1/2 ≤ α < 1, it follows that
∆G(Nw) ≤ 3. Therefore, π yields a scattered partition with r ≤ 3.

4 Upper Bounds for Constant-depth Multilinear IPS

4.1 Elementary Symmetric Sums

Proposition 29. Over any field F, for |x| = n ≥ l ≥ d ≥ 0,

el(x) · ed(x) =
d∑
i=k

(
l + d− i

l

)(
l

i

)
el+d−i(x) (mod x2 − x),

where k ≥ 0 is the smallest integer such that l + d− k ≤ n.

Proof. Since ml(el(x) · ed(x)) is symmetric in x, we have

el(x) · ed(x) =
d∑
i=k

γi · el+d−i(x) (mod x2 − x),

for γi ∈ F. Let S ⊆ [n] with |S| = l+d− i. The coefficient of the monomial xS in ml(el(x) ·ed(x)) is(
l+d−i
l

)(
l
i

)
. This is because each of the

(
l+d−i
l

)
many sub-monomials xA of xS in el(x) combines with(

l
i

)
many monomials xB in ed(x), where |A ∩B| = i, to produce xS in ml(el(x) · ed(x)). Therefore,

γi =
(
l+d−i
l

)(
l
i

)
.

We observe that elementary symmetric polynomials are unsatisfiable even over constant char-
acteristic fields, when their degree meets a simple condition on their p-base expansion.

22

Lemma 30 ([Luc78] Lucas’s Theorem). Let p be a prime and m,n ∈ N+. If m = mkp
k + · · · +

m1p+m0 and n = nkp
k + · · ·+ n1p+ n0 are the base p expansions of m and n respectively (where

0 ≤ mi, ni ≤ p− 1 for 0 ≤ i ≤ k), then(
m

n

)
≡

k∏
i=0

(
mi

ni

)
(mod p).

Lemma 31. Let F be a field with characteristic p. If d = dkp
k + · · · + d1p + d0 is the base p

expansion of d, then

|{ed(x) | x ∈ {0, 1}n}| ≤
∏

i∈{0,...,k}
di ̸=0

(p− di) + 1.

In particular, if d has only one non-zero digit di in its base p expansion and di ≥ 2, then there
exists β ∈ F such that ed(x)− β = 0 is unsatisfiable over Boolean assignments.

Proof. If m is the Hamming weight of a Boolean assignment α ∈ {0, 1}n, then ed(α) =
(
m
d

)
. By

Lemma 30, we have (
m

d

)
≡

∏
i∈{0,...,k}

(
mi

di

)
≡

∏
i∈{0,...,k}
di ̸=0

(
mi

di

)
(mod p).

We see that ed(α) = 0 in F if and only if mi < di for some i with di ̸= 0. Conversely, ed(α) is
non-zero in F if and only if di ≤ mi ≤ p − 1 for all i with di ̸= 0. Therefore, ed(α) can attain at
most ∏

i∈{0,...,k}
di ̸=0

((p− 1)− di + 1)

distinct non-zero values in F. This completes the proof of the main claim of the lemma.
Now if di ≥ 2 is the only non-zero digit in the base p expansion of d, then over Boolean

assignments, ed(x) can attain at most p − di + 1 ≤ p − 1 distinct values in F. The existence of β
follows.

Occasionally, instead of viewing x as Boolean variables, we consider them more generally as
Boolean functions. By a similar argument, it is straightforward to verify that Lemma 31 continues
to hold in this more general setting.

4.2 Separation

Here, we separate the constant-depth IPS subsystem over finite fields, as considered in this work,
from the constant-depth IPS subsystem over large fields studied in [GHT22].

Let p ≥ 3 be a prime and let F be a field of characteristic p. We construct the symmetric
knapsack of degree 2, denoted as ksw,e2 . Over Boolean assignments, ksw,e2 is unsatisfiable in F
and in every field of characteristic 0. Moreover, constant-depth multilinear IPSLIN′ over F ad-
mits a polynomial-size refutation of ksw,e2 , whereas constant-depth multilinear IPSLIN′ over any
characteristic 0 field does not.

Using the notation from Section 3, let w ∈ Zd be a word with |wi| ≤ b for every i. Our separating
instance is defined as:

ksw,e2 := ml

(
e2

(
{x(i)σ f (i)σ }

i∈Pw,σ∈{0,1}A
(i)
w

))
− β.

23

where β ∈ F is chosen such that ksw,e2 = 0 admits no satisfying Boolean assignment in F.
Comment (the existence of β): The existence of β follows from Lemma 31, specifically from the

remark following the lemma concerning its application to Boolean functions rather than Boolean
variables.

Comment (computing ksw,e2 by a poly(d, 2b)-size, product-depth 2, multilinear formula): Since

ksw,e2 =
∑

(i1,σ1),(i2,σ2)∈S
(i1,σ1)̸=(i2,σ2)

x(i1)σ1 x
(i2)
σ2 ml(f (i1)σ1 f (i2)σ2)− β

where S = {(i, σ) | i ∈ Pw, σ ∈ {0, 1}A
(i)
w }, it suffices to verify that ml(f

(i1)
σ1 f

(i2)
σ2) can be computed

by a suitable polynomial-size constant-depth multilinear formula. Since the positive overlap of

w satisfies ∆G(Pw) ≤ b, we see that each f
(i)
σ can be written as

∑∏
(1 − y) where the fan-in

of the sum gate is O(2b) and the product ranges over distinct y-variables. Moreover, because

ml((1− y)2) = 1− y, each ml(f
(i1)
σ1 f

(i2)
σ2) can likewise be written in this form. Altogether, ksw,e2 can

thus be written as a product-depth 2, multilinear formula of poly(d, 2b)-size. Moreover, each f
(i)
σ

has degree at most O(b2b), so the overall degree of ksw,e2 is therefore O(b2b).

Lemma 32. Over F, there exists a product-depth 3 multilinear IPSLIN′ refutation of ksw,e2 of size
poly(dp, 2bp).

Proof. By Fermat’s little theorem, we see that

ml((ksw,e2)
p−2) · ksw,e2 +

∑
ψ∈x∪y

hψ(ψ
2 − ψ) = 1 (12)

for some polynomials hψ ∈ F[x, y]. From computing ksw,e2 by a poly(d, 2b)-size product-depth 2,
multilinear formula, we see that ml((ksw,e2)

p−2) can be computed by a product-depth 2, multilinear
formula of size poly(dp, 2bp). Moreover, we see that each hψ can be computed by a product-depth
2 formula of size poly(dp, 2bp). Therefore, over F, (12) is a product-depth 3 multilinear IPSLIN′

refutation of ksw,e2 .

Let E be a field of characteristic 0. Since ksw,e2 admits no satisfying Boolean assignment in F, it
likewise admits none in E. Over E, we will prove a lower bound against constant-depth multilinear
IPSLIN′ for ksw,e2 . We first prove a degree lower bound.

Lemma 33. Let char(F) = 0, n > 1 and β ∈ Z+ such that e2(x1, . . . , xn) − β = 0 is unsatisfiable
over F for x ∈ {0, 1}n. If f ∈ F[x1, . . . , xn] is the multilinear polynomial such that

f(x) (e2(x)− β) = 1 (mod x2 − x),

then deg f = n.

We note that a degree lower bound of deg f ≥ n−1 follows from [HLT24] Corollary 1.2; however,
we need the tight bound of deg f ≥ n.

Proof of Lemma 33. As f(x) is multilinear, we have

f(x) =
∑
T⊆[n]

f(1T)
∏
i∈T

xi
∏
i/∈T

(1− xi),

24

where 1T ∈ {0, 1}n is the indicator vector of the set T . Therefore

f(x) =
∑
T⊆[n]

1(|T |
2

)
− β

∏
i∈T

xi
∏
i/∈T

(1− xi).

The coefficient of
∏
i∈[n] xi in f(x) is thus

∑
T⊆[n]

1(|T |
2

)
− β

(−1)n−|T | =

n∑
j=0

(
n

j

)
1(

j
2

)
− β

(−1)n−j . (13)

We show that (13) is nonzero. As (13) lies in the subfield of F that is isomorphic to Q, it suffices to
show that it is nonzero over Q. It therefore suffices to show that (13) is nonzero over R. We have,
over R,

1(
j
2

)
− β

=
2

j2 − j − 2β
=

2

(j − γ1)(j − γ2)
= 2
√

1 + 8β

(
1

j − γ2
− 1

j − γ1

)
,

where γ1 = (1−
√
1 + 8β)/2 and γ2 = (1 +

√
1 + 8β)/2. Hence

n∑
j=0

(
n

j

)
1(

j
2

)
− β

(−1)n−j = 2
√

1 + 8β

n∑
j=0

(
n

j

)(
1

j − γ2
− 1

j − γ1

)
(−1)n−j

= 2
√

1 + 8β

(
− n!∏n

j=0(γ2 − j)
+

n!∏n
j=0(γ1 − j)

)
,

where the last equality follows from

Claim 34 ([FSTW21] Subclaim B.2).

k∑
j=0

(
k

j

)
1

j − β
(−1)k−j = − k!∏k

j=0(β − j)
.

Finally, to show that (13) is nonzero, it suffices to show that

n∏
j=0

(γ1 − j) ̸=
n∏
j=0

(γ2 − j). (14)

We note that γ1(γ1 − 1) = γ2(γ2 − 1) = 2β; however, for k > 1, we have |γ1 − k| > |γ2 − k|. We
therefore have ∣∣∣∣∣∣

n∏
j=0

(γ1 − j)

∣∣∣∣∣∣ >
∣∣∣∣∣∣
n∏
j=0

(γ2 − j)

∣∣∣∣∣∣ ,
hence (14) holds and (13) is nonzero.

Lemma 35. Let E be a field of characteristic 0, and n,∆ ∈ N+ with ∆ ≤ log log logn/4. Then any
product-depth at most ∆ multilinear IPSLIN′ refutation of ksw,e2 is of size at least

nΩ(λ/∆),

where d = ⌊logn/4⌋ and λ = ⌊d1/G(∆)⌋.

25

Proof. The proof of this lemma is essentially the same as the proof of Theorem 24 (and [GHT22])
and is omitted here. We recall the general strategy of reducing an IPS lower bound to a rank lower
bound, to a degree lower bound, which for this instance is Lemma 33).

Theorem 36 (Separation: [GHT22] over Finite Fields vs. [GHT22]). Let p ≥ 3 be a prime, and
let F be a field of characteristic p. Let n,∆ ∈ N+ with ∆ ≤ log log logn/4. Then there exists a
product-depth 2, multilinear formula ksw,e2 of size poly(n) such that:

• ksw,e2 has no satisfying Boolean assignment over F, and over any field of characteristic 0;

• there is a poly(n)-size, product-depth-3 multilinear IPSLIN′ refutation of ksw,e2 over F;

• for every field of characteristic 0, any product-depth at most ∆ multilinear IPSLIN′ refutation
of ksw,e2 requires size at least

nΩ(λ/∆),

where d = ⌊logn/4⌋ and λ = ⌊d1/G(∆)⌋.

5 Lower Bounds for roABP-IPS

In this section, we work over field Fq, where q is a constant greater than 2. In addition to proving
a lower bound over finite fields, this work significantly simplifies [HLT24], though we note that we
are still working in the placeholder model. Consider the following hard instance

f(x) :=
n∏
i=1

(1− xi)− 2. (15)

Clearly this function never evaluates to 0 over boolean assignments in Fq (when q > 2). In contrast,
the hard instance from [HLT24] is a subset-sum instance, therefore requiring large characteristic to
be defined.

5.1 roABP-IPS Lower Bounds in Fixed Order

We begin by proving a lower bound where the roABPs are given a fixed order of the variables. By
Corollary 20, we have the following lemma.

Lemma 37. Let Fq be a finite field with q > 2, and let f(x) be as in (15). If g(x) is the multilinear
polynomial such that

g(x) · f(x) = 1 mod x2 − x,

then deg(g) = n.

For any x, y variables, with |x| = |y| = n, we use x ◦ y to denote the entry-wise product
(x1y1, . . . , xnyn). In other words, the gadget we use is the mapping

xi 7→ xiyi,

which substitutes the variables xi by xiyi, for every i. We use 1S ∈ {0, 1}n to denote the indicator
vector for a set S.

Theorem 38. Let f(x) be as in (15). Let g(x, y) · f(x ◦ y) = 1 mod x2 − x. Then,∣∣∣LM ({ml(g(x,1S)) : S ⊆ [n]}
)∣∣∣ = 2n. (16)

26

Proof. We first need the claim below.

Claim 39. Each S ⊆ [n] induces a distinct leading monomial in ml(g(x,1S)).

Proof of claim: Let S ⊆ [n]. By the assumption g(x, y) · f(x ◦ y) = 1 mod x2 − x, we also have

ml(g(x,1S)) · f(x ◦ 1S) = 1 mod x2 − x, (17)

since multilinearizing g(x,1S) does not affect the equality (as we work modulo x2 − x). By the
lifting defined above, ml(g(x,1S)) is a (multilinear symmetric) polynomial that depends on the
variables xi, for i ∈ S. Similarly, f(x ◦ 1S) is a polynomial of the same form as (15) that depends
on the variables xi, for i ∈ S. In addition, f(x) has no Boolean roots, so neither does f(x ◦ y).
This together with (17) means the conditions of Lemma 37 are met, so we have

deg(ml(g(x,1S))) = |S|.

Since we assumed that our monomial ordering respects degree,

deg(LM(ml(g(x,1S)))) = |S|. (18)

There is only one possible multilinear monomial of degree |S| on |S| variables; it follows that every
S induces a unique leading monomial (consisting exactly of all variables in S).

This concludes the proof of Theorem 38.

Theorem 40. Let f(x) be as in (15). Then, any roABP-IPSLIN′refutation of f(x◦y) = 0 is of size
2Ω(n), when the variables are ordered such that x < y (i.e., x-variables come before y-variables).

Proof. Let g(x, y) be a polynomial such that g(x, y) · f(x ◦ y) = 1 over x, y ∈ {0, 1}n. Hence,

g(x, y) =
1

f(x ◦ y)
over x, y ∈ {0, 1}n.

We show that dimCoeffx|yg ≥ 2Ω(n). This will conclude the proof by Lemma 14 which will give
the roABP size (width) lower bound and by the functional lower bound in Theorem 10.

By lower bounding coefficient dimension by the evaluation dimension over the Boolean cube
(Lemma 16),

dimCoeffx|yg ≥ dimEvalx|y,{0,1}g

= dim{g(x,1S) : S ⊆ [n]}
≥ dim{ml(g(x,1S)) : S ⊆ [n]}.

Here we used that dimension is non-increasing under linear maps. For S ⊆ [n], denoted by xS :=
{xi : i ∈ S} and note that for x ∈ {0, 1}n,

g(x,1S) =
1

f(xS)
,

and that ml(g(x,1S)) is a multilinear polynomial only depending on xS . By Theorem 38, we can
lower bound the number of distinct leading monomials of ml(g(x,1S), where S ranges over subsets
of [n]: ∣∣∣LM ({ml(g(x,1S)) : S ⊆ [n]}

)∣∣∣ = 2n.

27

Therefore, we can lower bound the dimension of the above space by the number of leading monomials
(Lemma 17),

dimCoeffx|yg ≥ dim{ml(g(x,1S)) : S ⊆ [n]}

≥
∣∣∣LM ({ml(g(x,1S)) : S ⊆ [n]}

)∣∣∣
= 2n.

5.2 roABP-IPS Lower Bounds in Any Order

We now extend this previous result to roABPs in any variable order. Consider a polynomial f(w)
over m variables, where m =

(
2n
2

)
and w = {wi,j}i<j∈[2n]. We apply the same gadget from [HLT24],

defined by the mapping
wi,j 7→ zi,jxixj ,

which substitutes the m variables wi,j by m+ 2n variables {zi,j}i<j∈[2n], x1, . . . , x2n such that:

f⋆(z, x) := f(w)wi,j 7→zi,jxixj , (19)

where f(w)wi,j 7→zi,jxixj means that we apply the lifting wi,j 7→ zi,jxixj to the w variables.
Let f ∈ F[x, y, z]. We denote by fz the polynomial f considered as a polynomial in F[z](x, y),

namely as a polynomial whose indeterminates are x, y and whose scalars are from the ring F[z].
We will consider the dimension of a (coefficient) matrix when the entries are taken from the ring
F[z], and where the dimension is considered over the field of rational functions F(z). Note that for
any α ∈ Fz, we have fα(x, y) = f(x, y, α) ∈ F[x, y]. We reference the following simple lemma.

Lemma 41 ([FSTW21]). Let f ∈ F[x, y, z]. Then for any α ∈ F|z|

dimF(z)Coeffx|yfz(x, y) ≥ dimFCoeffx|yfα(x, y).

We now prove the proposition below.

Proposition 42. Let n ≥ 1, m =
(
2n
2

)
, and Fq be a finite field of constant characteristic q. Let

f ∈ F[w] be as in (15), and f⋆(z, x) be as in (19). Let g ∈ F[z1, . . . , zm, x1, . . . , x2n] be a polynomial
such that

g(z, x) =
1

f⋆(z, x)
,

for z ∈ {0, 1}m and x ∈ {0, 1}2n. Let gz denote g as a polynomial in F[z][x]. Then, for any partition
x = (u, v) with |u| = |v| = n,

dimF(z)Coeffu|vgz ≥ 2Ω(n).

Proof. We embed 1
f(u◦v) in this instance via a restriction of z. Define the z-evaluation α ∈ {0, 1}(

2n
2)

to restrict g to sum over those xixj in the natural matching between u and v, so that

αij =

{
1 xi = uk, xj = vk,

0 otherwise.

It follows that g(u, v, α) = 1
f(u◦v) for u, v ∈ {0, 1}n. Suppose for contradiction that there exists a

partition x = (u, v) with |u| = |v| = n, such that

dimF(z)Coeffu|vgz(u, v) < 2Ω(n).

28

By Lemma 41, we get the relation between the coefficient dimensions of gz and gα

dimFCoeffu|vgα(u, v) ≤ dimF(z)Coeffu|vgz(u, v)

< 2Ω(n),

which contradicts our lower bound for a fixed partition (Theorem 40).

Corollary 43. Let n ≥ 1, m =
(
2n
2

)
, and Fq be a finite field with constant characteristics q. Let

f ∈ F[w] be as in (15), and f⋆(z, x) be as in (19). Then, any roABP-IPSLIN′ refutation (in any
variable order) of f⋆(z, x) requires 2Ω(n)-size.

Proof. Consider the polynomial g ∈ F[z1, . . . , zm, x1, . . . , x2n] such that

g(z, x) =
1

f⋆(z, x)
.

for z ∈ {0, 1}m and x ∈ {0, 1}2n. We will show that any roABP computing g requires width ≥ 2Ω(n)

in any variable order. The roABP-IPSLIN′ lower bound follows immediately from this functional
lower bound on g along with the reduction (Theorem 10).

Suppose that g(z, x) is computable by a width-r roABP in some variable order. By pushing the
z variables into the fraction field, it follows that fz (f as a polynomial in F[z][x]) is also computable
by a width-r roABP over F(z) in the induced variable order on x (Fact 8). By splitting x in half
along its variable order and by the relation between the width of a roABP and its coefficient
dimension (Lemma 14), we obtain

dimF(z)Coeffu|vgz < 2Ω(n),

which contradicts the coefficient dimension lower bound of Proposition 42.

5.3 roABP-IPS Lower Bounds by Multiple

Here we present another roABP-IPS lower bound over finite fields, but this time using the lower
bound for multiples method from [FSTW21]. We introduce the following two lemmas from their
paper.

Lemma 44 (Corollary 6.23 in [FSTW21]). Let f ∈ F[x1, . . . , xn] be defined by f(x) :=
∏
i<j(xi +

xj+αi,j) for αi,j ∈ F. Then for any 0 ̸= g ∈ F[x], g ·f requires width-2Ω(n) as a read-twice oblivious
ABP.

Lemma 45 (Lemma 7.1 in [FSTW21]). Let f, g, x2− x ∈ F[x1, . . . , xn] be an unsatisfiable systems
of equations, where g, x2 − x is satisfiable. Let C ∈ F[x, y, z, w] be an IPS refutation of f, g, x2 − x.
Then

1− C(x, 0, g, x2 − x)
is a nonzero multiple of f .

From here, consider the field Fq for some constant q, and let the following two polynomials be
our hard system of equations.

f :=
∏
i<j

(xi + xj + 1), g :=
n∏
i=1

(1− xi)− 1. (20)

Note that our f above is the same as in [FSTW21], but our g differs (they use
∑n

i=1 xi − n,
which is why they must work in fields of characteristic > n). We now state our lower bound.

29

Theorem 46. Let Fq be a finite field of constant characteristic q. Let f, g ∈ F[x1, . . . , xn], where
f :=

∏
i<j(xi + xj + 1) and g :=

∏n
i=1(1 − xi) − 1. Then, the system of equations f, g, x2 − x

is unsatisfiable, and any roABP-IPSLIN′ refutation (in any order of the variables) requires size
exp

(
Ω(n)

)
.

Proof. The system g(x) = 0 and x2 − x = 0 is satisfiable and has the unique satisfying assignment
0. However, this single assignment does not satisfy f as f(0) =

∏
i<j(0 + 0 + 1) = 1 ̸= 0, so the

entire system is unsatisfiable. Thus by Lemma 45, for any roABP-IPSLIN′ refutation C(x, y, z, w)
of f, g, x2 − x, 1− C(x, 0, g, x2 − x) is a nonzero multiple of f .

Let s be the size of C as an roABP. We now argue that 1 − C(x, 0, g, x2 − x) has a small
read-twice oblivious ABP. First, note that we can expand C(x, 0, z, w) into powers of z:

C(x, 0, z, w) = C0(x,w) + C1(x,w)z.

There are only two terms because C(x, y, z, w) is a roABP-IPSLIN′ refutation, implying the degree of
z in C(x, y, z, w) is at most 1. Each Ci(x,w) has a poly(s)-size roABP (in the order of the variables
of C where z is omitted), as we can compute Ci via interpolation over z (since each evaluation
preserves roABP size by Fact 8). Furthermore, as g can also be computed by a poly(n)-size roABP,
we see that

1− C(x, 0, g, w) = 1− C0(x,w)− C1(x,w)g

has a poly(s, n)-size roABP in the order of variables that C induces on x,w. As each Boolean axiom
x2i − xi only refers to a single variable, substituting w ← x2 − x for 1− C(x, 0, g, w) in the roABP
will preserve obliviousness, but now each variable is read twice. Therefore, 1 − C(x, 0, g, x2 − x)
has a poly(s, n)-size read-twice oblivious ABP. Finally, using the fact that a nonzero multiple of f
requires exp(Ω(n)) size to be computed as read-twice oblivious ABPs (Lemma 44), it follows that
poly(s, n) ≥ exp(Ω(n)), implying s ≥ exp(Ω(n)) as desired.

5.4 Limitations

The following discusses the limitations of the functional lower bound method for roABP-IPS.
Namely, we show that it is impossible to get a non-placeholder functional lower bound against
roABP-IPS over finite fields, even if the refutation is restricted to a multilinear polynomial. We
first recall this fact about roABPs.

Fact 47. If f, g ∈ F[x] are computable by width-r and width-s roABPs respectively, then

• f + g is computable by a width-(r + s) roABP.

• f · g is computable by a width-(rs) roABP.

Now, as discussed in Section 4, for a given unsatisfiable instance f in finite field Fp, by Fermat’s
Little Theorem we have the following refutation:

f(x)p−2f(x) = 1 mod x2 − x. (21)

Thus, if f is easy for roABPs then by Fact 47, so is f(x)p−2 (as p is constant), so in this
case it is impossible to acheive a lower bound on roABP-IPS refutations. Now, consider the case
where refutations must be multilinear (that is, an analogue to the constant-depth multilinear IPS
proof system from Section 3). In this proof system, the refutation in (21) cannot work, as it is not
multilinear. However, it is shown in [FSTW21] that roABPs are closed under multilinearization.
We restate their result for concreteness.

30

Proposition 48 (Proposition 4.5 from [FSTW21]). Let f ∈ F[x] be computable by a width-r roABP,
in order of the variables x1 < · · · < xn, and with individual degrees at most d. Then, ml(f) has a
poly(r, n, d)-explicit width-r roABP in order of the variables x1 < · · · < xn.

Thus, we simply consider the multilinear polynomial g = ml(fp−2) to be our refutation (as g
agrees with fp−2 over the Boolean cube, implying (21) holds). By the above proposition, since
fp−2 has a small roABP computing it, so does g. This leads to the following theorem.

Theorem 49. The functional lower bound method cannot establish non-placeholder lower bounds
on the size of roABP-IPS refutations when working in finite fields.

6 Towards Lower Bounds for CNF Formulas

We now turn to the problem of establishing lower bounds for CNF formulas. In the previous
sections, the lower bounds we presented were for algebraic instances. In contrast, we show that an
IPS lower bound against an unsatisfiable set of one or more polynomial equations over finite fields
implies the existence of a hard Boolean instance. However, this implication requires a subsystem of
IPS which can reason with large degree, therefore our results do not meet this criteria. Accordingly,
the existence of any hard instance for IPS over finite fields (even when the equations are given as
algebraic circuits), allowing refutations of possibly exponential total degree, implies the existence
of hard Extended Frege instances. Similarly, if the hard instance is only against IPS refutations of
polynomial total degree, then there are hard instances against Frege.

We work in finite field Fq where q is a constant (independent of the size of the formulas and
their number of variables). When we work with CNF formulas in IPS we assume that the CNF
formulas are translated according to the following definition.

Definition 50 (Algebraic translation of CNF formulas). Given a CNF formula in the variables x,
every clause

∨
i∈P xi ∨

∨
j∈N ¬xj is translated into

∏
i∈P (1 − xi) ·

∏
j∈N xj = 0. (Note that these

expressions are represented as algebraic circuits, where the products are not expanded.)

Notice that a CNF formula is satisfiable by 0-1 assignment if and only if the assignment satisfies
all the equations in the algebraic translation of the CNF. The following definitions are taken from
[ST25], and we supply them here for completeness.

Definition 51 (Algebraic extension axioms and unary bits [ST25]). Given a circuit C and a node
g in C, we call the equation

xg =

q−1∑
i=0

i · xgi

the algebraic extension axiom of g, with each variable xgi being the ith unary-bit of g.

Definition 52 (Plain CNF encoding of constant-depth algebraic circuit cnf(C(x)) [ST25]). Let
C(x) be a circuit in the variables x. The plain CNF encoding of the circuit C(x), denoted cnf(C(x))
consists of the following CNFs in the unary-bits variables of all the gates in C and extra extension
variables (and only in the unary-bit variables):

1. If xi is an input node in C, the plain CNF encoding of C uses the variables xxi0 , · · · , xxi(q−1)

that are the unary-bits of xi, and includes clauses ensuring that exactly one unary bit is 1
and all others are 0:

q−1∨
j=0

xxij ∧
∧

j ̸=l∈{0,··· ,q−1}

(¬xxij ∨ ¬xxil).

31

2. If α ∈ Fq is a scalar input node in C, the plain CNF encoding of C contains the {0, 1} constants
corresponding to the unary-bits of α. These constants are used when fed to (translation of)
gates according to the wiring of C in item 4.

3. For every node g in C(x) and every satisfying assignment α to the plain CNF encoding, the
corresponding unary-bit xgi evaluates to 1 if and only if the value of g equals i ∈ 0, . . . , q − 1
(when the algebraic inputs x ∈ (Fq)∗ to C(x) take on the values corresponding to the Boolean
assignment α; ”∗” here means the Kleene star). This is ensured with the following equations:
if g is a ◦ ∈ {+,×} node that has inputs u1, · · · , ut. Then we consider the following equations:

u1 ◦ u2 = vg1
ui+2 ◦ vgi = vgi+1, 1 ≤ i ≤ t− 3

ut ◦ vgt−2 = g.

Then, for each equation above, for simplicity, we denote as x ◦ y = z. For each x + y = z
we have a CNF ϕ in the unary-bits variables of x, y, z that is satisfied by assignment precisely
when the output unary-bits of z get their correct values based on the (constant-size) truth table
of ◦ over Fq and the input unary-bits of x and y (we ensure that if more than one unary-bit
is assigned 1 in any of the unary-bits of x, y, z then the CNF is unsatisfiable).

4. For every unary-bit variable xgi, we have the Boolean axiom (recall we write these Boolean
axioms explicitly since we are going to work with IPSalg):

x2gi − xgi = 0.

Therefore, we can see that the formula size of cnf(C(x) = 0) is poly(q2 · |C|).

Definition 53 (Plain CNF encoding of a constant-depth circuit equation cnf(C(x) = 0) [ST25]).
Let C(x) be a circuit in the variables x. The plain CNF encoding of the circuit equation C(x) = 0
denoted cnf(C(x) = 0) consists of the following CNF encoding from Definition 52 in the unary-bits
variables of all the gates in C (and only in the unary-bit variables), together with the equations:

xgout0 = 1 and xgouti = 0, for all i = 1, · · · , q − 1,

which express that gout = 0, where gout is the output node of C.

Definition 54 (Extended CNF encoding of a circuit equation (circuit, resp.); ecnf(C(x) = 0)
(ecnf(C(x)), resp.) [ST25]). Let C(x) be a circuit in the variables x over the finite field Fq.
The extended CNF encoding of the circuit equation C(x) = 0 (circuit C(x), resp.), in symbols
ecnf(C(x) = 0) (ecnf(C(x)), resp.), is defined to be a set of algebraic equations over Fq in the
variables xg and xg0, · · · , xgq−1 which are the unary-bit variables corresponding to the node g in C,
that consist of:

1. the plain CNF encoding of the circuit equation C(x) = 0 (circuit C(x), resp.), namely,
cnf(C(x) = 0) (cnf(C(x)), resp.); and

2. the algebraic extension axiom of g, for every gate g in C.

Since we work with extension variables, it is more convenient to express a circuit equation
C(x) = 0 as a set of equations encoding each gate of C, which we call the straight line program of
C(x) (and is equivalent in strength to algebraic circuits).

32

Definition 55 (Straight line program (SLP)). An SLP of a circuit C(x), denoted by SLP(C(x)),
is a sequence of equations between variables such that the extension variable for the output node
computes the value of the circuit assuming all equations hold. Formally, we choose any topological
order g1, g2, · · · , gi, · · · , g|C| on the nodes of the circuit C (that is, if gj has a directed path to gk in
C then j < k) and define the following set of equations to be the SLP of C(x):

gi = gj1 ◦ gj2 ◦ · · · ◦ gjt for ◦ ∈ {+,×} iff gi is a ◦ node in C with t incoming edges from
gj1, · · · , gjt.

An SLP representation of a circuit equation C(x) = 0 means that we add to the SLP above the
equation g|C| = 0, where g|C| is the output node of the circuit.

The following lemma, which we refer to as the translation lemma throughout this paper, shows
that we can derive (with some additional axioms) the circuit equation C(x) = 0 given the extended
CNF encoding of this circuit equation ecnf(C(x) = 0), and vice versa.

Lemma 56 (Translating between extended CNFs and circuit equations in Fixed Finite Fields
[ST25]). Let Fq be a finite field, and let C(x) be a circuit of depth ∆ in the x variables over Fq.
Then, both of the following hold:

ecnf(C(x) = 0)
IPSalg

∗,O(∆)
C(x) = 0. (22)

{xg =
∑q−1

i=0 i · xgi : g is a node in C},

{x2gi − xgi = 0 : g is a node in C, 0 ≤ i < q},

{
∑q−1

i=0 xgi = 1 : g is a node in C},

SLP(C(x)),

C(x) = 0

IPSalg

∗,O(∆)
ecnf(C(x) = 0). (23)

Proposition 57 (Proposition 3.7 in [ST25]). Let C(x) = 0 be a circuit equation over Fq where q is
any constant prime. Then, C(x) = 0 is unsatisfiable over Fq iff cnf(C(x) = 0) is an unsatisfiable
CNF iff ecnf(C(x) = 0) is an unsatisfiable set of equations over Fq.

From here, we extend their result by eliminating these additional axioms in both directions.
The only additional axioms we need are the field axioms {xq − x = 0 : x is a variable in C}, which
can be easily derived from the Boolean axioms if the variables in the circuit are Boolean (as we are
working in finite fields). We use UBITj(x) to denote the following Lagrange polynomial:∏q−1

i=0,i ̸=j(x− i)∏q−1
i=0,i ̸=j(j − i)

,

where x can be a single variable or an algebraic circuit. Hence, it is easy to observe that

UBITj(x) =

{
1, x = j,

0, otherwise.

Also, suppose x has size |x| and depth Depth(x) (when x is a single variable, it has size 1 and
depth 1). Then, UBITj(x) can be computed by an algebraic circuit of size O(|x|q−1) and depth
Depth(x) + 2. In addition, we introduce a Semi-CNF SCNF, which is a substitution instance of a
CNF.

33

Definition 58 (Semi-CNF SCNF encoding of a constant-depth circuit equation SCNF(C(x) = 0)).
Let C(x) be a circuit in the variables x. The semi-CNF encoding of the circuit equation C(x) = 0
denoted SCNF(C(x)) is a substitution instance of the plain CNF encoding in Definition 53 where
each unary-bits xuj of all the gates and extra extension variables u is substituted with UBITj(Cu)
where Cu is the constant-depth algebraic circuit computes u.5

We now demonstrate the connection between semi-CNFs and circuit equations.

Theorem 59 (Translate semi-CNFs from circuit equations in Fixed Finite Fields). Let Fq be a
finite field, and let C(x) be a circuit of depth ∆ in the x variables over Fq. Then, the following
holds

{xq − x = 0 : x is a variable in C}, C(x) = 0
IPSalg

∗,O(∆)
SCNF(C(x) = 0).

Since the field equations xq − x = 0 are efficiently derivable from the Boolean axioms, we get
the following for IPS (which by default contains the Boolean axioms):

C(x) = 0
IPSalg

∗,O(∆)
SCNF(C(x) = 0).

Proof. In Lemma 56, the given axioms include:

(i) {xg =
∑q−1

i=0 i · xgi : g is a node in u ◦ v = w},

(ii) {x2gi − xgi = 0 : g is a node in u ◦ v = w},

(iii) {
∑q−1

i=0 xgi = 1 : g is a node in u ◦ v = w},

(iv)
∑q−1

i=0 i · xui ◦
∑q−1

i=0 i · xvi =
∑q−1

i=0 i · xwi,

and there is a constant-depth constant-size IPS derivation of the plain CNF encoding of u ◦ v =
w. Thus, we must show that we can derive the above four axioms when we substitute xgi with
UBITi(Cg). Due to the standard property of Lagrange polynomials, the following circuit equation
is a polynomial identity, which can be proved freely in IPS (in finite field Fq):

x =

q−1∑
j=0

j · UBITj(x),

which is exactly the axiom in (i). Hence, we know that Cu =
∑q−1

j=0 j · UBITj(Cu), Cv =
∑q−1

j=0 j ·
UBITj(Cv) and Cu ◦ Cv = Cw =

∑q−1
j=0 j · UBITj(Cw). These polynomial identities give us the

substitution instance of the last equation (iv):

q−1∑
j=0

j · UBITj(Cu) ◦
q−1∑
j=0

j · UBITj(Cv) =
q−1∑
j=0

j · UBITj(Cw).

The second set of equations (ii) is in the ideal of the field axioms for g. We show that in depth-
O(∆) and polynomial size, we can derive the field axioms Cqg −Cg = 0 for all circuits that compute
the nodes and extension variables (using the field axioms xq − x = 0, for every input variable).

5This Cu can be constructed from SLPs easily.

34

We derive the field axioms for nodes and extension variables by induction on depth. When g is a
◦ ∈ {+,×} node that has inputs u1, · · · , ut, the SLPs includes:

u1 ◦ u2 = vg1
ui+2 ◦ vgi = vgi+1, 1 ≤ i ≤ t− 3

ut ◦ vgt−2 = g.

For each vgi = u1 ◦ · · · ◦ ui+2, Cvgi = Cu1 ◦ · · · ◦ Cui+2 is a polynomial identity. By induction, we
already have the field axioms for all Cui . We show that we can derive the field axioms for all Cvgi
and Cg simultaneously. Now suppose ◦ = +, then the following equations hold over Fq:

Cq
vgi
≡ (Cu1 + · · ·+ Cui+2)

q

≡ Cqu1 + · · ·+ Cqui+2

≡ Cu1 + · · ·+ Cui+2

≡ Cvgi .

The proof for the node g is the same. We can therefore conclude that if ◦ = +, we can derive the
field axioms for all Cvgi and Cg simultaneously. Suppose ◦ = ×, then the following equations hold
over Fq:

Cq
vgi
≡ (Cu1 × · · · × Cui+2)

q

≡ Cqu1 × · · · × C
q
ui+2

≡ Cu1 × · · · × Cui+2

≡ Cvgi .

Again, the proof for the node g is the same and thus we conclude that given the field axioms for the
input variables, we can derive the field axioms for all circuits that compute the nodes and extension
variables in depth O(∆) and polynomial size. It remains to show that UBITj(x)

2 − UBITj(x) = 0
is in the ideal of the field axiom of x, for any x. The equation xq − x = 0 is the unique monic
polynomial of degree q that has all elements of Fq as roots. Therefore, any polynomial f(x) ∈ Fq[x]
that vanishes when evaluated to any x ∈ Fq must be divisible by xq − x. It is easy to check that
UBITj(x)

2−UBITj(x) vanishes at all points, implying it is in the ideal generated by xq−x. Hence,
there is a degree (of x) q − 2 polynomial Q(x) such that Q(x) · (xq − x) = UBITj(x)

2 − UBITj(x),
and as a result there is a depth-∆ polynomial-size proof for UBITj(x)

2−UBITj(x) = 0 from xq−x.
Finally,

∑q−1
j=0 UBITj(x) = 1 is a polynomial identity, for every x. This follows from the fact

that it is a single-variable polynomial with degree q − 1, but has q many distinct roots. By the
fundamental theorem of algebra, it must be a zero polynomial, and consequently we get axioms in
(iii) for free in IPS. All together, we can conclude that

{xq − x = 0 : x is a variable in C}, C(x) = 0
IPSalg

∗,O(∆)
SCNF(C(x) = 0

by first deriving the substitution instance above, and then substituting the derivation for the CNF
to get the derivation for the semi-CNF.

Since SCNFs are substitution instances of CNFs, lower bounds for CNFs imply lower bounds for
SCNFs, which gives the following corollary.

35

Corollary 60 (Lower bounds for circuit equations imply lower bounds for CNFs). Let Fq be a
finite field, and let {C(x)} be a set of circuits of depth at most ∆ in the Boolean variable x. Then,
if a set of circuit equations {C(x) = 0} cannot be refuted in S-size, O(∆′)-depth IPS, then the CNF
encoding of the set of circuit equations {CNF(C(x) = 0)} cannot be refuted in (S − poly(|C|))-size,
O(∆′ +∆)-depth IPS.

Lemma 61 (Translate circuit equations from semi-CNFs in fixed finite fields). Let Fq be a finite
field, and let C(x) be a circuit of depth ∆ in the x variables over Fq. Then, the following holds:

{xq − x = 0 : x is a variable in C}, SCNF(C(x) = 0)
IPSalg

∗,O(∆)
C(x) = 0.

Proof. From the CNF encoding of each SLP axiom u ◦ v = w and the Boolean axioms for each
unary bit, we have

q−1∑
j=0

j · xuj ◦
q−1∑
j=0

j · xvj =
q−1∑
j=0

j · xwj

in constant-depth polynomial-size IPS. As we showed in the proof of Theorem 59, the field axioms
for all circuits that compute nodes and extension variables can be derived from the field axioms
of the input variables, in constant-depth polynomial-size IPS. We also showed that these derived
field axioms can in turn also derive the Boolean axioms for all UBIT polynomials (of circuits
that compute nodes and extension variables) in constant-depth polynomial-size IPS. As a result,
substituting each xgj above with UBITj(Cg) for g ∈ {u, v, w} and 0 ≤ j ≤ q− 1, we get a constant-
depth polynomial-size IPS derivation of

q−1∑
j=0

j · UBITj(Cu) ◦
q−1∑
j=0

j · UBITj(Cv) =
q−1∑
j=0

j · UBITj(Cw)

from the semi-CNF encoding of u ◦ v = w and the Boolean axioms for each UBIT. Lastly, as
mentioned in the proof of Theorem 59, in finite field Fq we get the following circuit equation for
free in IPS (as it is a polynomial identity):

x =

q−1∑
j=0

j · UBITj(x).

Therefore, we get the full SLP for the circuit equation C(x) = 0, and consequently the circuit
equation can easily be obtained from this SLP.

Acknowledgment

We are thankful to Rahul Santhanam for helpful discussions on the translation lemmas (Section 6)
and for Behera, Limaye, Ramanathan, and Srinivasan for letting us know about their independent
work.

References

[AF22] Robert Andrews and Michael A. Forbes. “Ideals, Determinants, and Straightening: Proving
and Using Lower Bounds for Polynomial Ideals”. In: 54th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2022. 2022. arXiv: 2112.00792. url: https://arxiv.org/
abs/2112.00792.

36

https://arxiv.org/abs/2112.00792
https://arxiv.org/abs/2112.00792
https://arxiv.org/abs/2112.00792

[AGHT20] Yaroslav Alekseev, Dima Grigoriev, Edward A. Hirsch, and Iddo Tzameret. “Semi-algebraic
proofs, IPS lower bounds, and the τ -conjecture: can a natural number be negative?” In: Pro-
ceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020.
ACM, 2020, pp. 54–67.

[AGKST23] Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey. “Low-
Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization”. In: 50th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2023). Ed. by Kousha
Etessami, Uriel Feige, and Gabriele Puppis. Vol. 261. Leibniz International Proceedings in In-
formatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023, 12:1–12:20. isbn: 978-3-95977-278-5. doi: 10.4230/LIPIcs.ICALP.2023.12. url:
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.12.

[Ale21] Yaroslav Alekseev. “A Lower Bound for Polynomial Calculus with Extension Rule”. In:
36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario,
Canada (Virtual Conference). Ed. by Valentine Kabanets. Vol. 200. LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021, 21:1–21:18. doi: 10.4230/LIPIcs.CCC.2021.21. url:
https://doi.org/10.4230/LIPIcs.CCC.2021.21.

[BDS24] C.S. Bhargav, Sagnik Dutta, and Nitin Saxena. “Improved Lower Bound, and Proof Barrier,
for Constant Depth Algebraic Circuits”. In: ACM Trans. Comput. Theory 16.4 (Nov. 2024).
issn: 1942-3454. doi: 10.1145/3689957. url: https://doi.org/10.1145/3689957.

[BIKPP96] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. “Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs”. In: Proc. London Math. Soc.
(3) 73.1 (1996), pp. 1–26. doi: 10.1112/plms/s3-73.1.1.

[BLRS25] Amik Raj Behera, Nutan Limaye, Varun Ramanathan, and Srikanth Srinivasan. “New Bounds
for the Ideal Proof System in Positive Characteristic”. In: 52nd International Colloquium on
Automata, Languages, and Programming (ICALP 2025). To appear. Aarhus, Denmark, July
2025.

[Bus12] Samuel Buss. “Towards NP-P via Proof Complexity and Search”. In: Annals of Pure and
Applied Logic 163.7 (2012), pp. 906–917.

[CEI96] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. “Using the Groebner basis algo-
rithm to find proofs of unsatisfiability”. In: Proceedings of the 28th Annual ACM Symposium
on the Theory of Computing (Philadelphia, PA, 1996). New York: ACM, 1996, pp. 174–183.

[CLO15] David Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Fourth. Undergraduate Texts
in Mathematics. Springer Cham, 2015, pp. XVI, 646. doi: 10.1007/978-3-319-16721-3.

[DMM24] Yogesh Dahiya, Meena Mahajan, and Sasank Mouli. “New Lower Bounds for Polynomial
Calculus over Non-Boolean Bases”. In: 27th International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT 2024). Vol. 305. LIPIcs. Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2024, Art. No. 10, 20. doi: 10.4230/lipics.sat.
2024.10. url: https://doi.org/10.4230/lipics.sat.2024.10.

[For24] Michael A. Forbes. “Low-depth algebraic circuit lower bounds over any field”. In: 39th Compu-
tational Complexity Conference. Vol. 300. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl.
Leibniz-Zent. Inform., Wadern, 2024, Art. No. 31, 16. doi: 10.4230/lipics.ccc.2024.31.
url: https://doi.org/10.4230/lipics.ccc.2024.31.

[FS13] Michael A. Forbes and Amir Shpilka. “Quasipolynomial-Time Identity Testing of Non-
commutative and Read-Once Oblivious Algebraic Branching Programs”. In: FOCS 2013.
ArXiv 1209.2408. 2013, pp. 243–252. doi: 10.1109/FOCS.2013.34.

[FSTW21] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. “Proof Complexity
Lower Bounds from Algebraic Circuit Complexity”. In: Theory Comput. 17 (2021), pp. 1–88.
url: https://theoryofcomputing.org/articles/v017a010/.

37

https://doi.org/10.4230/LIPIcs.ICALP.2023.12
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.12
https://doi.org/10.4230/LIPIcs.CCC.2021.21
https://doi.org/10.4230/LIPIcs.CCC.2021.21
https://doi.org/10.1145/3689957
https://doi.org/10.1145/3689957
https://doi.org/10.1112/plms/s3-73.1.1
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.4230/lipics.sat.2024.10
https://doi.org/10.4230/lipics.sat.2024.10
https://doi.org/10.4230/lipics.sat.2024.10
https://doi.org/10.4230/lipics.ccc.2024.31
https://doi.org/10.4230/lipics.ccc.2024.31
https://doi.org/10.1109/FOCS.2013.34
https://theoryofcomputing.org/articles/v017a010/

[GH03] Dima Grigoriev and Edward A. Hirsch. “Algebraic proof systems over formulas”. In: Theoret.
Comput. Sci. 303.1 (2003). Logic and complexity in computer science (Créteil, 2001), pp. 83–
102. issn: 0304-3975.

[GHT22] N. Govindasamy, T. Hakoniemi, and I. Tzameret. “Simple Hard Instances for Low-Depth Al-
gebraic Proofs”. In: 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science
(FOCS). Los Alamitos, CA, USA: IEEE Computer Society, Nov. 2022, pp. 188–199. doi:
10.1109/FOCS54457.2022.00025. url: https://doi.ieeecomputersociety.org/10.1109/
FOCS54457.2022.00025.

[GP18] Joshua A. Grochow and Toniann Pitassi. “Circuit Complexity, Proof Complexity, and Poly-
nomial Identity Testing: The Ideal Proof System”. In: J. ACM 65.6 (2018), 37:1–37:59. doi:
10.1145/3230742. url: https://doi.org/10.1145/3230742.

[Gro23] Joshua A. Grochow. Polynomial Identity Testing and the Ideal Proof System: PIT is in NP if
and only if IPS can be p-simulated by a Cook–Reckhow proof system. arXiv:2306.02184 [cs.CC].
2023.

[HLT24] Tuomas Hakoniemi, Nutan Limaye, and Iddo Tzameret. “Functional Lower Bounds in Al-
gebraic Proofs: Symmetry, Lifting, and Barriers”. In: Proceedings of the 56th Annual ACM
Symposium on Theory of Computing. STOC 2024. Vancouver, BC, Canada: Association for
Computing Machinery, 2024, pp. 1396–1404. isbn: 9798400703836. doi: 10.1145/3618260.
3649616. url: https://doi.org/10.1145/3618260.3649616.

[IMP20] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. “The Surprising Power of Constant
Depth Algebraic Proofs”. In: LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in
Computer Science, Saarbrücken, Germany, July 8-11, 2020. Ed. by Holger Hermanns, Lijun
Zhang, Naoki Kobayashi, and Dale Miller. ACM, 2020, pp. 591–603. doi: 10.1145/3373718.
3394754. url: https://doi.org/10.1145/3373718.3394754.

[IMP23] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. “Lower Bounds for Polynomial Cal-
culus with Extension Variables over Finite Fields”. In: CCC ’23. Warwick, United Kingdom:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2023. isbn: 9783959772822. doi: 10.4230/
LIPIcs.CCC.2023.7. url: https://doi.org/10.4230/LIPIcs.CCC.2023.7.

[LST21] Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. “Superpolynomial Lower Bounds
Against Low-Depth Algebraic Circuits”. In: 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022. IEEE, 2021, pp. 804–
814. doi: 10.1109/FOCS52979.2021.00083. url: https://doi.org/10.1109/FOCS52979.
2021.00083.

[LTW18] Fu Li, Iddo Tzameret, and Zhengyu Wang. “Characterizing Propositional Proofs as Non-
commutative Formulas”. In: SIAM Journal on Computing. Vol. 47. 4. Full Version: http:
//arxiv.org/abs/1412.8746. 2018, pp. 1424–1462.

[Luc78] Edouard Lucas. “Theorie des Fonctions Numeriques Simplement Periodiques”. In: Amer. J.
Math. 1.2 (1878), pp. 184–196. issn: 0002-9327. doi: 10.2307/2369308. url: https://doi.
org/10.2307/2369308.

[Nis91] Noam Nisan. “Lower Bounds for Non-Commutative Computation”. In: STOC 1991. 1991,
pp. 410–418. doi: 10.1145/103418.103462.

[Pit97] Toniann Pitassi. “Algebraic propositional proof systems”. In: Descriptive complexity and finite
models (Princeton, NJ, 1996). Vol. 31. DIMACS Ser. Discrete Math. Theoret. Comput. Sci.
Providence, RI: Amer. Math. Soc., 1997, pp. 215–244.

[Pit98] Toniann Pitassi. “Unsolvable systems of equations and proof complexity”. In: Proceedings of
the International Congress of Mathematicians, Vol. III (Berlin, 1998). Vol. III. 1998, pp. 451–
460.

[PT16] Tonnian Pitassi and Iddo Tzameret. “Algebraic Proof Complexity: Progress, Frontiers and
Challenges”. In: ACM SIGLOG News 3.3 (2016). Ed. by Andrzej Murawski.

38

https://doi.org/10.1109/FOCS54457.2022.00025
https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00025
https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00025
https://doi.org/10.1145/3230742
https://doi.org/10.1145/3230742
https://doi.org/10.1145/3618260.3649616
https://doi.org/10.1145/3618260.3649616
https://doi.org/10.1145/3618260.3649616
https://doi.org/10.1145/3373718.3394754
https://doi.org/10.1145/3373718.3394754
https://doi.org/10.1145/3373718.3394754
https://doi.org/10.4230/LIPIcs.CCC.2023.7
https://doi.org/10.4230/LIPIcs.CCC.2023.7
https://doi.org/10.4230/LIPIcs.CCC.2023.7
https://doi.org/10.1109/FOCS52979.2021.00083
https://doi.org/10.1109/FOCS52979.2021.00083
https://doi.org/10.1109/FOCS52979.2021.00083
http://arxiv.org/abs/1412.8746
http://arxiv.org/abs/1412.8746
https://doi.org/10.2307/2369308
https://doi.org/10.2307/2369308
https://doi.org/10.2307/2369308
https://doi.org/10.1145/103418.103462

[RT08a] Ran Raz and Iddo Tzameret. “Resolution over linear equations and multilinear proofs”. In:
Ann. Pure Appl. Logic 155.3 (2008), pp. 194–224. doi: 10.1016/j.apal.2008.04.001. url:
http://dx.doi.org/10.1016/j.apal.2008.04.001.

[RT08b] Ran Raz and Iddo Tzameret. “The Strength of Multilinear Proofs”. In: Computational Com-
plexity 17.3 (2008), pp. 407–457. doi: 10.1007/s00037-008-0246-0. url: http://dx.doi.
org/10.1007/s00037-008-0246-0.

[Sap12] Ramprasad Saptharishi. Personal communication to Forbes-Shpilka [FS13]. 2012.

[Sap22] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. 2016-2022.
url: %5Curl%7Bhttps://github.com/dasarpmar/lowerbounds-survey/releases%7D.

[Sok20] Dmitry Sokolov. “(Semi)Algebraic proofs over ±1 variables”. In: Proceedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing. STOC 2020. Chicago, IL, USA:
Association for Computing Machinery, 2020, pp. 78–90. isbn: 9781450369794. doi: 10.1145/
3357713.3384288. url: https://doi.org/10.1145/3357713.3384288.

[ST25] Rahul Santhanam and Iddo Tzameret. “Iterated Lower Bound Formulas: A Diagonalization-
Based Approach to Proof Complexity”. In: SIAM Journal on Computing 0.0 (2025), STOC21-
313-STOC21–349. doi: 10 . 1137 / 21M1447519. eprint: https : / / doi . org / 10 . 1137 /

21M1447519. url: https://doi.org/10.1137/21M1447519.

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A survey of recent results and open
questions”. In: Foundations and Trends in Theoretical Computer Science 5.3-4 (2010), pp. 207–
388. doi: 10.1561/0400000039.

[Tza11] Iddo Tzameret. “Algebraic proofs over noncommutative formulas”. In: Inf. Comput. 209.10
(2011), pp. 1269–1292. doi: 10.1016/j.ic.2011.07.004. url: http://dx.doi.org/10.
1016/j.ic.2011.07.004.

39

https://doi.org/10.1016/j.apal.2008.04.001
http://dx.doi.org/10.1016/j.apal.2008.04.001
https://doi.org/10.1007/s00037-008-0246-0
http://dx.doi.org/10.1007/s00037-008-0246-0
http://dx.doi.org/10.1007/s00037-008-0246-0
%5Curl%7Bhttps://github.com/dasarpmar/lowerbounds-survey/releases%7D
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1145/3357713.3384288
https://doi.org/10.1137/21M1447519
https://doi.org/10.1137/21M1447519
https://doi.org/10.1137/21M1447519
https://doi.org/10.1137/21M1447519
https://doi.org/10.1561/0400000039
https://doi.org/10.1016/j.ic.2011.07.004
http://dx.doi.org/10.1016/j.ic.2011.07.004
http://dx.doi.org/10.1016/j.ic.2011.07.004

— Page left blank for ECCC stamp —

40
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

