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Abstract

Quantum versus classical separation plays a central role in understanding the advantages of
quantum computation. In this paper, we present the first exponential separation between quan-
tum and bounded-error randomized communication complexity in a variant of the Number-
on-Forehead (NOF) model. Namely, the three-player Simultaneous Number-on-Forehead model.
Specifically, we introduce the Gadgeted Hidden Matching Problem and show that it can be solved
using only𝑂 (log𝑛) simultaneous quantum communication. In contrast, any simultaneous ran-
domized protocol requires Ω(𝑛1/16) communication.

On the technical side, a key obstacle in separating quantum and classical communication
in NOF models is that all known randomized NOF lower bound tools, such as the discrepancy
method, typically apply to both randomized and quantum protocols. In this regard, our tech-
nique provides a new method for proving randomized lower bounds in the NOF setting and
may be of independent interest beyond the separation result.

1 Introduction

One of the central goals in the study of quantum advantage is to demonstrate separations between
quantum and classical computation in various computational models. In this direction, substantial
progress has been achieved in communication complexity, where a line of work [BCW98, Raz99,
BYJK04, GKK+07, RK11, Gav16, GRT22, Gav19, Gav20, GGJL24] has established exponential sepa-
rations in multiple settings. These results provide explicit problems that can be solved by quantum
protocols using only (log𝑛)𝑂 (1) communication, whereas any classical randomized protocol solv-
ing the same problem must use 𝑛Ω (1) communication.

However, all of the aforementioned results pertain to two-party communication models. In
contrast, separations in multiparty communication, specifically the Number-on-Forehead (NOF)
models, remain poorly understood. Lower bounds in the NOF models are especially intriguing
because NOF protocols can simulate a broader range of computational models than those in the
two-party setting. To this end, Göös, Gur, Jain, and Li [GGJL24] highlighted the separation of
quantum and randomized communication in NOF models as an important open problem.

The main obstacle to obtaining strong quantum-versus-classical separations in the NOF setting,
as noted by [GGJL24], lies in the lack of techniques for proving lower bounds for randomized
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NOF protocols. Existing approaches, such as the discrepancy method, often apply equally well to
quantum communication, making it difficult to distinguish between the power of quantum and
classical protocols in the NOF model [LSS09].

In this paper, we study the simultaneous NOF model, a variant of the NOF communication model.
In this setting, each player 𝑖 sends a single message, computed based on all inputs except 𝑥𝑖 , to
a referee (or the last player), who then determines the output after receiving all the messages.
Although the simultaneous NOF model appears weaker than the standard NOF model, proving
strong lower bounds in this setting remains highly challenging.

Strong simultaneous NOF lower bounds have significant implications in various areas, includ-
ing lower bounds for the ACC circuit class [HG90, PRS97], private information retrieval [CKGS98],
and position-based cryptography [BDFP17]. Furthermore, many known non-trivial NOF proto-
cols such as the

√
log𝑁 protocol for Exactly-N [CFL83], the 𝑂

(
𝑛 log log𝑛

log𝑛

)
for multipointer jumping

[BS15] and Shifting [HG90], and Grolmusz protocols for generalized inner-product [Gro94] and
set disjointness [RY20] are all simultaneous protocols.

1.1 Our Results

In this paper, we establish the first exponential separation between quantum and bounded-error
randomized communication complexity in the simultaneous NOF model. Our problem is inspired
by the Hidden Matching Problem introduced by [BYJK04]. In the Hidden Matching Problem,

1. Alice is given a string 𝑧 ∈ {0, 1}𝑛.

2. Bob is given 𝑀 ∈ M𝑛 where M𝑛 denotes the family of all possible perfect matchings on 𝑛
nodes.

Their goal is for Bob to output a tuple ⟨𝑖, 𝑗, 𝑏⟩ such that the edge (𝑖, 𝑗) belongs to 𝑀 and 𝑏 = 𝑧𝑖 ⊕ 𝑧 𝑗 .
As shown in [BYJK04], the Hidden Matching Problem admits an 𝑂 (log𝑛) simultaneous quantum
communication protocol, while any one-way randomized protocol requires Ω(

√
𝑛) communication.

Inspired by [BYJK04], we introduce the Gadgeted Hidden Matching Problem (GHM). Let𝑚 := 𝑛/2.
For each 𝑖 ∈ [𝑚], we define a perfect matching 𝑀𝑖 between {0, . . . ,𝑚 − 1} and {𝑚, . . . , 2𝑚 − 1} as

𝑀𝑖 := {(ℓ,𝑚 + ((𝑖 + ℓ) mod𝑚)) : ℓ ∈ [𝑚]} .

Let M = {𝑀1, . . . , 𝑀𝑚} denote the collection of these matchings. The GHM is defined as follows:

Definition 1.1. Let 𝑔 : {0, 1}𝑛 ×{0, 1}𝑛 → [𝑚] be any gadget function. The Gadgeted Hidden Matching
Problem, denoted GHM ◦ 𝑔, involves three inputs distributed among the players as follows:

• Alice receives 𝑧,𝑦 ∈ {0, 1}𝑛,

• Bob receives 𝑧, 𝑥 ∈ {0, 1}𝑛,

• Charlie receives 𝑥,𝑦 ∈ {0, 1}𝑛.

The goal is for Charlie to output a tuple ⟨ℓ, 𝑟, 𝑏⟩ such that (ℓ, 𝑟 ) ∈ 𝑀𝑔 (𝑥,𝑦) and 𝑏 = 𝑧ℓ ⊕ 𝑧𝑟 .
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Remarkably, this problem remains easy for quantum communication. Similar to the Hidden
Matching Problem, Alice only needs to send a uniform superposition of the string 𝑧, with a com-
munication cost of𝑂 (log𝑛) qubits. Charlie can then perform a measurement on this superposition,
which depends on the matching 𝑀𝑔 (𝑥,𝑦) , and output the parity of some pair in 𝑀𝑔 (𝑥,𝑦) (see the ap-
pendix for more details). We note that Bob does not need to send any message using this protocol.
Thus, the main result of our paper is the 𝑛Ω (1) randomized simultaneous NOF communication.

Theorem 1.2. There exists an explicit gadget function 𝑔 : {0, 1}𝑛 × {0, 1}𝑛 → [𝑚] such that the randomized
simultaneous NOF communication complexity of GHM ◦ 𝑔 is Ω(𝑛1/16).

When 𝑔 is clear from context, we simplify GHM ◦ 𝑔 to GHM.

2 Preliminaries

We begin by fixing some notation. The set of integers {0, . . . , 𝑛−1} is denoted by [𝑛]. We use capital
letters like 𝑋 to denote sets, and bold symbols like 𝑿 to denote random variables. In particular, for
a set 𝑋 , we use 𝑿 to denote the random variable that is uniformly distributed over the set 𝑋 .

A search problem is a relation 𝑆 ⊆ 𝑋 × 𝑌 × 𝑍 × 𝑄 , where 𝑄 is the set of possible solutions. On
input (𝑥,𝑦, 𝑧) ∈ 𝑋 × 𝑌 × 𝑍 , the goal is to find a solution 𝑞 ∈ 𝑄 such that (𝑥,𝑦, 𝑧, 𝑞) ∈ 𝑆 . Note that for
the (Gadgeted) Hidden Matching Problem, all inputs are guaranteed to have at least one solution.

2.1 Simultaneous Number-on-Forehead Model

In the three-party simultaneous NOF communication complexity model, Alice, Bob, and Charlie
collaborate to compute a search problem 𝑆 ⊆ 𝑋 × 𝑌 × 𝑍 ×𝑄 . Their inputs are as follows:

• Alice receives (𝑦, 𝑧) ∈ 𝑌 × 𝑍 .

• Bob receives (𝑥, 𝑧) ∈ 𝑋 × 𝑍 .

• Charlie receives (𝑥,𝑦) ∈ 𝑋 × 𝑌 .

The randomized SM protocol Π = (Π𝐴,Π𝐵,Π𝐶 ) proceeds as follows:

1. Alice and Bob simultaneously send messages to Charlie, where Alice’s message Π𝐴 (𝑦, 𝑧, 𝑟 ) de-
pends only on the input (𝑦, 𝑧) and public randomness 𝑟 and Bob’s message Π𝐵 (𝑥, 𝑧, 𝑟 ) depends
only on the input (𝑥, 𝑧) and public randomness 𝑟 .

2. After receiving both messages, Charlie outputs a solution𝑞 = Π𝐶 (Π𝐴 (𝑦, 𝑧),Π𝐵 (𝑥, 𝑧), 𝑥,𝑦, 𝑟 ) ∈ 𝑄 .

The protocol Π computes 𝑆 with error 𝜖 if for any (𝑥,𝑦, 𝑧), Pr𝑟 [(𝑥,𝑦, 𝑧, 𝑞) ∈ 𝑆] ≥ 1 − 𝜖.

2.2 Basics of Information Theory

Our proof approach involves several standard definitions and results from information theory,
which we now recall.
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Definition 2.1 (Entropy). Given a random variable 𝑿 , the Shannon entropy of 𝑿 is defined by

H(𝑿 ) :=
∑
𝑥

Pr(𝑿 = 𝑥) log
(

1
Pr(𝑿 = 𝑥)

)
.

For two random variables 𝑿 , 𝒀 , the conditional entropy of 𝑿 given 𝒀 is defined by

H(𝑿 | 𝒀 ) := 𝔼𝑦∼𝒀 [H(𝑿 | 𝒀 = 𝑦)] .

For 𝑝 ∈ [0, 1], the binary entropy function is defined as 𝐻2(𝑝) = −𝑝 log2 𝑝 − (1 − 𝑝) log2(1 − 𝑝) . It is
well known that 𝐻2(𝑝) is a concave function.

Lemma 2.2 (Subadditivity of Entropy). For a list of random variables 𝑿1,𝑿2, . . . ,𝑿𝑑 , we have:

H(𝑿1,𝑿2, . . . ,𝑿𝑑 ) ≤
𝑑∑
𝑖=1

H(𝑿𝑖) .

Definition 2.3 (Mutual Information). The mutual information between joint random variables 𝑿
and 𝒀 is defined as

I(𝑿 ; 𝒀 ) = H(𝑿 ) − H(𝑿 |𝒀 ),

Lemma 2.4 (Data Processing Inequality). Consider random variables 𝑿 , 𝒀 ,𝒁 forming a Markov chain
𝑿 → 𝒀 → 𝒁 . Then, the mutual information satisfies:

I(𝑋 ;𝑌 ) ≥ I(𝑋 ;𝑍 ) .

Definition 2.5 (Hamming Distance). Let 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑦 = (𝑦1, . . . , 𝑦𝑛) ∈ {0, 1}𝑛 be two strings.
Their Hamming distance 𝑑𝐻 (𝑥,𝑦) is defined as:

𝑑𝐻 (𝑥,𝑦) := |{𝑖 : 𝑥𝑖 ≠ 𝑦𝑖}|.

3 The Randomized Lower Bound

We prove the our main theorem in this section. We first recall the statement.

Theorem 3.1 (Theorem 1.2 restated). There is a gadget 𝑔. Any randomized simultaneous NOF protocol
that computes GHM ◦ 𝑔 with an error probability less than 1/8 requires Ω(𝑛1/16) bits of communication.

To prove the randomized communication lower bound, we first describe the gadget function
and a hard input distribution for the communication problem.

3.1 The Gadgets and Hard Distributions

For 𝑛 > 0, we set𝑚 = 𝑛/2 to be a prime 1 and 𝛼 = ⌊
√
𝑚⌋ in our proof.

1Using a prime number when proving the lower bound is reasonable, because for every integer 𝑛 there exists a prime
in the interval [𝑛/2, 𝑛].
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Definition 3.2 (Rich gadgets). For 𝛼 > 0, we say that a gadget 𝑔 : {0, 1}𝑛 × {0, 1}𝑛 → [𝑚] is 𝛼-rich if
for every subset 𝑄 ⊆ [𝑚] with |𝑄 | = 𝛼 , there exist sets 𝑆,𝑇 ⊆ {0, 1}𝑛 with |𝑆 | = |𝑇 | = √

𝛼 such that

{𝑔(𝑥,𝑦) : 𝑥 ∈ 𝑆,𝑦 ∈ 𝑇 } = 𝑄.

It is not difficult to construct rich gadgets under our parameter choices. Note that the total number
of subsets 𝑄 ⊆ [𝑚] of size |𝑄 | = 𝛼 is at most(

𝑚

𝛼

)
≤ 𝑚

√
𝑚 = 2𝑜 (𝑛) .

Therefore, we can assign disjoint sets 𝑆𝑄 and 𝑇𝑄 for each 𝑄 and enforce that 𝑔(𝑆𝑄 ,𝑇𝑄 ) = 𝑄 . In the
following proof, we fix the gadget 𝑔 to be any 𝛼-rich gadget. We then define the hard distributions.

Definition 3.3. Given 𝑆,𝑇 ⊆ {0, 1}𝑛 with |𝑆 | = |𝑇 | =
√
𝛼 , we define the distribution 𝜇 (𝑆,𝑇 ) on

{0, 1}𝑛 × {0, 1}𝑛 × {0, 1}𝑛 as follows:

• Uniformly sample 𝑥 ∈ 𝑆 , 𝑦 ∈ 𝑇 and 𝑧 ∈ {0, 1}𝑛.

• Output the triple (𝑥,𝑦, 𝑧).

In our proof, we show that there exists a pair (𝑆,𝑇 ) such that 𝜇 (𝑆,𝑇 ) is hard for any protocol.
The choice of 𝑆 and 𝑇 depends on the gadget 𝑔.

3.2 Local Independent Protocols

To simplify our analysis, we first apply the following local independentization process to any simul-
taneous NOF protocol.

Definition 3.4 (Local independent protocols). For fixed sets 𝑆,𝑇 ⊆ {0, 1}𝑛 with |𝑆 | = |𝑇 | = √
𝛼 , and

any protocol Π for GHM◦𝑔 under the distribution 𝜇 (𝑆,𝑇 ), we define its local independentized version
Π∗ as follows:

• For any (𝑦, 𝑧) ∈ 𝑇 × 𝑍 , Π∗
𝐴 (𝑦, 𝑧) outputs the tuple (Π𝐴 (𝑢, 𝑧))𝑢∈𝑇 .

• For any (𝑥, 𝑧) ∈ 𝑆 × 𝑍 , Π∗
𝐵 (𝑥, 𝑧) outputs the tuple (Π𝐵 (𝑣, 𝑧))𝑣∈𝑆 .

• Π∗
𝐶 (𝑥,𝑦,Π∗

𝐴 (𝑦, 𝑧),Π∗
𝐵 (𝑥, 𝑧)) outputs the same value as Π𝐶 (𝑥,𝑦,Π𝐴 (𝑦, 𝑧),Π𝐵 (𝑥, 𝑧)).

The high-level intuition behind the local independentization process is that both Alice and
Bob enumerate all their possible inputs and output all corresponding transcripts. We observe the
following useful property of locally independent protocols.

Claim 3.5. Let Π be a deterministic protocol for GHM ◦𝑔 with 𝛿-error under the distribution 𝜇 (𝑆,𝑇 ). Then
the following statements hold:

1. The protocol Π∗ is a deterministic protocol for GHM ◦ 𝑔 with 𝛿-error under the distribution 𝜇 (𝑆,𝑇 ).

2. The communication complexity Π∗ is
√
𝛼 · CC(Π).

3. Under the distribution 𝜇 (𝑆,𝑇 ), the messages Π∗
𝐴 (𝑦, 𝑧) and Π∗

𝐵 (𝑥, 𝑧) depend only on 𝑧. That is, they are
independent of 𝑦 and 𝑥 , respectively.

The third item significantly simplifies our analysis. The proof of this claim is straightforward and
is omitted here.
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3.3 Information Complexity of Local Independent Protocols

Now we are ready to prove the main result. Our proof is based on lower bounding the information
complexity. However, instead of analyzing the standard information complexity I(𝒁 : 𝚷), we lower
bound the information complexity for the local independent protocols.

Theorem 3.6. Let 𝑔 be an 𝛼-rich gadget. There exist sets 𝑆,𝑇 ⊆ {0, 1}𝑛 with |𝑆 | = |𝑇 | = √
𝛼 such that for

any protocol Π of GHM ◦ 𝑔 under the distribution 𝜇 (𝑆,𝑇 ) with error 1/16, we have

I(𝒁 : 𝚷∗) = Ω(𝑚5/16) .

We note that our main theorem (Theorem 1.2) is a direct consequence of Theorem 3.6. By
Theorem 3.6, we know the communication complexity of Π∗ is at least Ω(𝑚5/16), and hence the
communication complexity of Π is at least Ω(𝑚5/16/√𝛼) = Ω(𝑚1/16).

Proof of Theorem 3.6. The proof proceeds by carefully constructing the sets 𝑆 and 𝑇 based on the
gadget function 𝑔 and the combinatorial structure provided by the following lemma.

Lemma 3.7. There is a sequence 𝑄 ∈ [𝑚]𝛼 consisting of distinct elements such that for any subsequence
𝑄 ′ = (𝑞1, . . . , 𝑞𝑟 ) ⊆ 𝑄 with 𝑟 ≥ 𝛼/2, the following holds: for any sequence 𝐿 = (ℓ1, . . . , ℓ𝑟 ), either

• 𝐿 contains at least Ω(𝑚5/16) distinct elements, or

• the set 𝑅 := {𝑚 + ((ℓ𝑖 + 𝑞𝑖) mod𝑚) | 1 ≤ 𝑖 ≤ 𝑟 } satisfies |𝑅 | ≥ Ω(𝑚5/16).

We defer the proof of Lemma 3.7 to Section 3.3.1 and first prove Theorem 3.6 by assuming it.
Let 𝑄 ∈ [𝑚]𝛼 be the sequence guaranteed by the Lemma 3.7. Since 𝑔 is a 𝛼-rich gadget, there exist
subsets 𝑆,𝑇 ⊆ {0, 1}𝑛 with |𝑆 | = |𝑇 | = √

𝛼 such that,

{𝑔(𝑥,𝑦) : 𝑥 ∈ 𝑆,𝑦 ∈ 𝑇 } = 𝑄.

Now we show that this pair 𝑆,𝑇 is the desired set that satisfies Theorem 3.6. Let Π be a deter-
ministic protocol for GHM ◦ 𝑔 under 𝜇 (𝑆,𝑇 ), and let Π∗ be the local independentized version of it.
Our goal is to prove a lower bound on the mutual information I(𝒁 : 𝚷∗). Recall that the output of
Π∗ has the form

Π∗(𝑥,𝑦, 𝑧) = (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧),Π∗
𝐶 (𝑥,𝑦,Π∗

𝐴 (𝑧),Π∗
𝐵 (𝑧))).

HereΠ∗
𝐴 (𝑧), Π∗

𝐵 (𝑧) depend only on 𝑧 asΠ∗ is locally independent. The output ofΠ∗
𝐶 is a triple (ℓ, 𝑟, 𝑏),

where ℓ, 𝑟 ∈ [𝑛] and 𝑏 ∈ {0, 1}. The output is correct if (ℓ, 𝑟 ) is an edge in 𝑀𝑔 (𝑥,𝑦) and 𝑏 = 𝑧ℓ ⊕ 𝑧𝑟 .
Since Charlie knows the matching 𝑀𝑔 (𝑥,𝑦) and outputs Π∗

𝐶 , we may assume without loss of
generality that (ℓ, 𝑟 ) is always an edge in 𝑀𝑔 (𝑥,𝑦) . Hence, errors occur only if 𝑏 ≠ 𝑧ℓ ⊕ 𝑧𝑟 . The error
probability of Π∗ under the input distribution 𝜇 (𝑆,𝑇 ) can therefore be written as

EΠ∗ (𝑺, 𝑻 ,𝒁 ) = Pr
(𝑥,𝑦,𝑧 )∼𝜇 (𝑆,𝑇 )

[Π∗(𝑥,𝑦, 𝑧) ∉ GHM(𝑥,𝑦, 𝑧)] = Pr
(𝑥,𝑦,𝑧 )∼𝜇 (𝑆,𝑇 )

[𝑏 ≠ 𝑧ℓ ⊕ 𝑧𝑟 ] .

By Claim 3.5, we have EΠ∗ (𝑺, 𝑻 ,𝒁 ) ≤ 1/16. Since the messages from Alice and Bob now depend
only on 𝑧, their combined message induces a partition of 𝑍 . For each message 𝜏 , we define

𝑍𝜏 = {𝑧 | (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧)) = 𝜏}
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and let 𝒁𝜏 be uniformly distributed over 𝑍𝜏 . Define the conditional error as

𝑒𝜏 := EΠ∗ (𝑺, 𝑻 ,𝒁𝜏 ) = Pr
(𝑥,𝑦,𝑧 )∼𝜇 (𝑆,𝑇 )

[Π∗(𝑥,𝑦, 𝑧) ∉ GHM(𝑥,𝑦, 𝑧) | 𝑧 ∈ 𝑍𝜏 ] .

Notice that 𝔼[𝑒𝜏 ] = EΠ∗ (𝑺, 𝑻 ,𝒁 ) ≤ 1/16, then by Markov’s inequality we have

Pr[𝑒𝜏 ≥ 1/8] ≤ 1/2.

The following lemma shows that any message 𝜏 with small error reveals a lot of information.

Lemma 3.8. For every message 𝜏 with 𝑒𝜏 < 1/8, we have:

H(𝒁 ) − H(𝒁 | (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧)) = 𝜏) = Ω(𝑚5/16) .

By assuming Lemma 3.8 and using the fact that Pr[𝑒𝜏 < 1/8] ≥ 1/2, we have

I(𝒁 : 𝚷∗) = Ω(𝑚5/16) .

□

Now we focus on the proof of Lemma 3.8.

Proof of Lemma 3.8. For a fixed message 𝜏 with 𝑒𝜏 < 1/8. Recall by Definition 1.1 that the problem
GHM ◦ 𝑔 is defined on a set of perfect matching {𝑀1, . . . , 𝑀𝑚} where

𝑀𝑖 := {(ℓ,𝑚 + ((𝑖 + ℓ) mod𝑚)) : ℓ ∈ [𝑚]} .

As 𝑆 and 𝑇 are now fixed, we are specifically interested in those matching:

M = {𝑀𝑖 : ∃𝑥 ∈ 𝑆,𝑦 ∈ 𝑇,𝑔(𝑥,𝑦) = 𝑖}

Furthermore, since 𝑔 is 𝛼-rich, for each 𝑀𝑖 ∈ M, there is a unique pair 𝑥 ∈ 𝑆 and 𝑦 ∈ 𝑇 such that
𝑔(𝑥,𝑦) = 𝑖. We denote it by (𝑥,𝑦) = 𝑔−1(𝑖). For each 𝑀𝑖 ∈ M, let

𝑒𝜏,𝑀𝑖 = EΠ∗ (𝒁𝜏 , 𝑀𝑖) := Pr
(𝑥,𝑦,𝑧 )∼𝜇 (𝑆,𝑇 )

[
Π∗(𝑥,𝑦, 𝑧) ∉ GHM(𝑥,𝑦, 𝑧) | 𝑧 ∈ 𝑍𝜏 , 𝑀𝑔 (𝑥,𝑦) = 𝑀𝑖

]
Recall that 𝔼𝑀𝑖 [𝑒𝜏,𝑀𝑖 ] = 𝑒𝜏 < 1/8. Then by Markov’s inequality again, the set

M′ := {𝑀𝑖 ∈ M : 𝑒𝜏,𝑀𝑖 ≤ 1/4}

has size at least |M′ | ≥ |M|/2 = 𝛼/2.
For every 𝑀𝑖 ∈ M′, let (𝑥,𝑦) = 𝑔−1(𝑖), and let (ℓ𝑖 , 𝑟𝑖 , 𝑏𝑖) be the tuple output by Π∗

𝐶 (𝑥,𝑦, 𝜏). Recall
that Charlie always outputs a pair (ℓ𝑖 , 𝑟𝑖) that belongs to the matching defined by (𝑥,𝑦). Hence, it
must have the form

𝑟𝑖 =𝑚 + ((ℓ𝑖 + 𝑖) mod𝑚) .

Let𝐺𝜏 = (𝐿, 𝑅, 𝐸) be a bipartite graph with vertices 𝐿 = {0, 1, . . . ,𝑚− 1} and 𝑅 = {𝑚,𝑚 + 1, . . . , 2𝑚− 1}.
An edge connects ℓ ∈ 𝐿 and 𝑟 ∈ 𝑅 if and only if there exists (𝑥,𝑦) with 𝑀𝑔 (𝑥,𝑦) ∈ M′ such that

(ℓ, 𝑟 ) = Π∗
𝐶 (𝑥,𝑦, 𝜏) .
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By applying Lemma 3.7 with 𝑄 ′ := {𝑖 : 𝑀𝑖 ∈ M′}, we conclude that either at least Ω(𝑚5/16)
vertices on the left side of 𝐺𝜏 are incident to at least one edge, or at least Ω(𝑚5/16) vertices on the
right side are incident to at least one edge.

In the first case, let 𝐴 ⊆ 𝐸 be a set of edges such that each vertex on the left side is incident
to exactly one edge in 𝐴. In the second case, choose 𝐴 such that each vertex on the right side is
incident to at most one edge in 𝐴. In both cases, we have |𝐴| = Ω(𝑚5/16).

Recall that the set of edges 𝐸 is identical to M′, so 𝐴 is indeed a subset of M′. Let 𝑣 ∈ {0, 1}𝐴 be
the vector defined by

𝑣𝑖 = 𝑏𝑖 ,

where (ℓ𝑖 , 𝑟𝑖 , 𝑏𝑖) is the output of Π∗
𝐶 (𝑔−1(𝑖), 𝜏) for each 𝑖 ∈ 𝐴.

On the other hand, for each 𝑧 ∈ 𝑍𝜏 , define a vector 𝑢𝑧 ∈ {0, 1}𝐴 by

(𝑢𝑧)𝑖 = 𝑧ℓ𝑖 ⊕ 𝑧𝑟𝑖 .

Recall that (𝑢𝑧)𝑖 corresponds to the correct answer of GHM ◦ 𝑔 on input (ℓ𝑖 , 𝑟𝑖 , 𝑧). Hence,

EΠ∗ (𝒁𝜏 ,A) = Pr
(𝑥,𝑦,𝑧 )∼𝜇 (𝑆,𝑇 )

[(𝑢𝑧)𝑖 ≠ 𝑣𝑖 | 𝑀𝑖 ∈ 𝐴, 𝑧 ∈ 𝑍𝜏 ] =
𝔼[𝑑𝐻 (𝒖𝑧, 𝑣)]

|𝐴| ≤ 2𝑒𝜏 ≤ 1/4,

where 𝒖𝑧 denotes the distribution induced by sampling 𝑧 ∼ 𝒁𝜏 and computing 𝑢𝑧 .
Next, we apply the following lemma, a generalization of Fano’s inequality due to Bar-Yossef,

Jayram, and Kerenidis [BYJK04], to upper bound the entropy of 𝒖𝑧 .

Lemma 3.9 ([BYJK04]). Let 𝑾 be a random variable over {0, 1}𝑘 , and suppose there exists a fixed vector
𝑣 ∈ {0, 1}𝑘 such that 𝔼[𝑑𝐻 (𝑾 , 𝑣)] ≤ 𝜀 · 𝑘 for some 0 ≤ 𝜀 ≤ 1/2. Then the entropy of 𝑾 is bounded by,

H(𝑾 ) ≤ 𝑘 · 𝐻2(𝜀),

where 𝐻2(·) is the binary entropy function.

Proof. Without loss of generality, we assume that 𝑣 = 0𝑘 . Let 𝑾 = (𝑾1, . . . ,𝑾𝑘 ), where each 𝑾𝑖 is a
Bernoulli random variable with 𝑝𝑖 := Pr[𝑾𝑖 = 1]. Then

𝔼[𝑑𝐻 (𝑾 , 0𝑘 )] =
𝑘∑
𝑖=1

𝑝𝑖 ≤ 𝜀 · 𝑘.

By subadditivity of entropy and the concavity of 𝐻2(·), we have

H(𝑾 ) ≤
𝑘∑
𝑖=1

H(𝑾𝑖) =
𝑘∑
𝑖=1

𝐻2(𝑝𝑖) ≤ 𝑘 · 𝐻2

(
1
𝑘

𝑘∑
𝑖=1

𝑝𝑖

)
≤ 𝑘 · 𝐻2(𝜀) .

□

By applying this lemma to 𝒖𝑧 with 𝜀 = 1/4 and 𝑘 = |𝐴|, we obtain H(𝒖𝑧) ≤ |𝐴| · 𝐻2(1/4). Therefore,

H(𝒁 | (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧)) = 𝜏) = H(𝒖𝑧 | (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧)) = 𝜏) + H(𝒁 | 𝒖𝑧, (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧)) = 𝜏)
≤ |𝐴| · 𝐻2(1/4) + H(𝒁 | 𝒖𝑧, (Π∗

𝐴 (𝑧),Π∗
𝐵 (𝑧)) = 𝜏) .
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Finally, since each vertex (on either the left or right side) in the matching is incident to at most
one edge in 𝐴, we conclude that

H(𝒁 | 𝒖𝑧, (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧)) = 𝜏) ≤ H(𝒁 ) − |𝐴|.

Putting everything together,

H(𝒁 | (Π∗
𝐴 (𝑧),Π∗

𝐵 (𝑧)) = 𝜏) ≤ H(𝒁 ) − |𝐴| (1 − 𝐻2(1/4)) .

Since |𝐴| = Ω(𝑚5/16) and 1 − 𝐻2(1/4) > 0, this yields the desired entropy loss.
□

3.3.1 Proof of Lemma 3.7

We prove Lemma 3.7 in this section. Recall that𝑚 is a prime number and 𝛼 =
√
𝑚. This is a purely

combinatorial problem, and we first recall the statement.

Lemma 3.10 (Restate of Lemma 3.7). There exists a sequence 𝑄 ∈ [𝑚]𝛼 consisting of distinct elements
such that for any subsequence 𝑄 ′ = (𝑞1, . . . , 𝑞𝑟 ) ⊆ 𝑄 with 𝑟 ≥ 𝛼/2, the following holds: for any sequence
𝐿 = (ℓ1, . . . , ℓ𝑟 ), either

• 𝐿 contains at least Ω(𝑚5/16) distinct elements, or

• the set 𝑅 := {𝑚 + ((ℓ𝑖 + 𝑞𝑖) mod𝑚) | 1 ≤ 𝑖 ≤ 𝑟 } satisfies |𝑅 | ≥ Ω(𝑚5/16).

Here, 𝛼 = ⌊
√
𝑚⌋ is the parameter we chose previously.

The following periodic definition is the core concept in our proof of this lemma.

Definition 3.11. We view the sequence 𝑄 ∈ [𝑚]𝛼 as a set of integers modulo 𝑚. A subset 𝐴 ⊆ 𝑄 is
called periodic if there exists a nonzero 𝑏 ∈ [𝑚] \ {0} such that

𝐴 + 𝑏 := {(𝑎 + 𝑏) mod𝑚 | 𝑎 ∈ 𝐴} ⊆ 𝑄.

We say that 𝑄 is 𝛽-periodic-free if no periodic subset 𝐴 ⊆ 𝑄 with size |𝐴| ≥ 𝛽.

In our proof, we specifically choose 𝛽 = 8 log𝑚.

Lemma 3.12. Let 𝛽 = 8 log𝑚. Then there exists a subset 𝑄 ⊆ [𝑚] of size |𝑄 | = 𝛼 that is 𝛽-periodic-free.

Proof. We use a probabilistic argument to prove that, i.e., we choose 𝑄 uniformly at random with
|𝑄 | = 𝛼 . Fix 𝑏 ∈ [𝑚] \ {0}, define

𝐴𝑏 =
{
𝑎 ∈ [𝑚]

�� 𝑎 ∈ 𝑄 and (𝑎 + 𝑏) mod𝑚 ∈ 𝑄
}
.

and we aim to bound
Pr
𝑄

[
∃𝑏 ∈ [𝑚] \ {0}, |𝐴𝑏 | ≥ 𝛽

]
First, we use the following claim to simplify our proof.

Claim 3.13. Let𝑚 be a prime, for any 𝑏 ∈ [𝑚] \ {0} and 𝑎 ∈ [𝑚],{
𝑎 + 𝑘 𝑏 mod𝑚

�� 𝑘 = 0, 1, . . . ,𝑚 − 1
}

= [𝑚] .
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By Claim 3.13, we have that Pr𝑄 [ |𝐴𝑏 | ≥ 𝛽 ] = Pr𝑄 [ |𝐴1 | ≥ 𝛽 ] for any 𝑏 ∈ [𝑚] \ {0}. Hence, it suffices
to analyze the case 𝑏 = 1. We partition [𝑚] into three residue classes, defining

𝑆𝛾 := { 𝑥 ∈ [𝑚] | 𝑥 ≡ 𝛾 (mod 3) } for 𝛾 ∈ {0, 1, 2}.

For each 𝛾 and a set 𝑄 ⊆ [𝑚], we define:

𝑃𝛾 = {(𝑎, 𝑎 + 1) | 𝑎 ∈ 𝑆𝛾 }, 𝑋𝑎 (𝑄) := 1(𝑎 ∈ 𝑄, 𝑎 + 1 ∈ 𝑄), 𝑌𝛾 (𝑄) :=
∑

(𝑎,𝑎+1) ∈𝑃𝛾
𝑋𝑎 (𝑄) .

Clearly, we have |𝐴1 | = 𝑌0(𝑄) + 𝑌1(𝑄) + 𝑌2(𝑄) . Therefore, the desired probability becomes

Pr
𝑄

[ |𝐴1 | ≥ 𝛽 ] = Pr
𝑄

[𝑌0(𝑄) + 𝑌1(𝑄) + 𝑌2(𝑄) ≥ 𝛽 ] .

In what follows, we prove that for every 𝛾 ∈ {0, 1, 2}.

Pr

[
𝑌𝛾 (𝑄) ≥

8
3
· log𝑚

]
≤ exp

(
−2(log𝑚)2

)
(∗)

Instead of sampling exactly |𝑄 | = 𝛼 elements, we alternatively consider the Bernoulli distribution
𝑄∗, where each element 𝑥 ∈ [𝑚] is included in 𝑄∗ independently with probability 𝛼/𝑚. Observe
that all pairs in 𝑃𝛾 are pairwise disjoint. By the negative association of random variables [JDP83],
we then have that

Pr
𝑄

[
𝑌𝛾 (𝑄) ≥ 𝑡

]
≤ Pr

𝑄∗

[
𝑌𝛾 (𝑄∗) ≥ 𝑡

]
.

Under the Bernoulli distribution, 𝑌𝛾 (𝑄∗) = ∑
(𝑎,𝑎+1) ∈𝑃𝛾 𝑋𝑎 (𝑄∗) is a sum of |𝑃𝛾 | = ⌊𝑚/3⌋ indepen-

dent indicator variables. For each 𝑎, we have

Pr[𝑋𝑎 = 1] = Pr[𝑎 ∈ 𝑄∗, 𝑎 + 1 ∈ 𝑄∗] =
( 𝛼
𝑚

)2
=

1
𝑚
,

and hence the expected value 𝜇 := 𝔼[𝑌𝛾 (𝑄∗)] ≤ 1/3. We apply Chernoff’s inequality:

Pr

[
𝑌𝛾 (𝑄∗) ≥ 8 log𝑚

3

]
= Pr

[
𝑌𝛾 (𝑄∗) ≥ (1 + 𝛿)𝜇

]
≤

(
𝑒𝛿

(1 + 𝛿)1+𝛿

)𝜇
,

where

𝛿 :=
8 log𝑚

3

𝜇
− 1 ≥ 8 log𝑚 − 1.

Since 𝜇 ≤ 1/3, it follows that

Pr
𝑄
[𝑌𝛾 (𝑄) ≥ 8

3 log𝑚] ≤ Pr[𝑌𝛾 (𝑄∗) ≥ 8
3 log𝑚] ≤ exp

(
−2(log𝑚)2

)
.

Thus, by (∗):

Pr [|𝐴1 | ≥ 8 log𝑚] = Pr

[
2∑

𝛾=0

𝑌𝛾 (𝑄) ≥ 8 log𝑚

]
≤

2∑
𝛾=0

Pr
[
𝑌𝛾 (𝑄) ≥ 8

3 log𝑚
]
≤ 3 exp

(
−2(log𝑚)2

)
.

Recall that 𝛽 = 8 log𝑚, applying a union bound over all 𝑏 ∈ [𝑚] \ {0} gives

Pr
𝑄 : |𝑄 |=

√
𝑚
[∃𝑏 ∈ [𝑚] \ {0} such that |𝐴𝑏 | ≥ 𝛽] ≤ (𝑚 − 1) · 1

2𝑚
<

1
2
.

Hence, there exists a subset 𝑄 ⊆ [𝑚] of size |𝑄 | = 𝛼 that is 𝛽-periodic-free.
□
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Now we are ready to prove Lemma 3.7.

Proof of Lemma 3.7. Fix any 𝑄 = (𝑞1, ..., 𝑞𝛼 ) ⊆ [𝑚] with |𝑄 | = 𝛼 that is 𝛽-periodic-free by Lemma
3.12. Since any subset of a 𝛽-periodic-free set is also 𝛽-periodic-free, any subsequence 𝑄 ′ ⊆ 𝑄 of size
|𝑄 ′ | = 𝛼/2 remains 𝛽-periodic-free.

Let 𝐿 = (ℓ1, . . . , ℓ𝑟 ) be any sequence. If 𝐿 contains at least Ω(𝑚5/16) distinct elements, then the
lemma follows immediately. Otherwise, let 𝑡 denote the number of distinct elements in 𝐿, and let
these be denoted by 𝑐1, . . . , 𝑐𝑡 . We partition the set 𝑅 as follows:

𝑅 = 𝑅1 ∪ · · · ∪ 𝑅𝑡 , where 𝑅 𝑗 =
{
𝑚 + ((ℓ𝑖 + 𝑞𝑖) mod𝑚)

�� ℓ𝑖 = 𝑐 𝑗
}
.

Without loss of generality, we assume that |𝑅1 | ≥ |𝑅2 | ≥ · · · ≥ |𝑅𝑡 |. Since elements of𝑄 ′ are distinct,
we have

|𝑅1 | + · · · + |𝑅𝑡 | = |𝑄 ′ | ≥ 𝛼/2.
We claim that for any 𝑖, 𝑗 ∈ [𝑡], it holds that

|𝑅𝑖 ∩ 𝑅 𝑗 | ≤ 𝛽.

Otherwise, if |𝑅𝑖 ∩ 𝑅 𝑗 | > 𝛽, consider 𝐴 = 𝑅𝑖 ∩ 𝑅 𝑗 . Then both 𝐴 − 𝑐𝑖 −𝑚 and 𝐴 − 𝑐 𝑗 −𝑚 are subsets
of 𝑄 ′, and since 𝑏 = 𝑐𝑖 − 𝑐 𝑗 ≠ 0, the set 𝐴 − 𝑐𝑖 −𝑚 would be a periodic subset of size larger than 𝛽,
contradicting the fact that 𝑄 ′ is 𝛽-periodic-free. Thus, by inclusion-exclusion,

|𝑅1 ∪ · · · ∪ 𝑅 𝑗 | ≥ |𝑅1 | + |𝑅2 | − |𝑅2 ∩ 𝑅1 | + · · · + |𝑅 𝑗 | − |𝑅 𝑗 ∩ 𝑅1 | − · · · − |𝑅 𝑗 ∩ 𝑅 𝑗−1 | > |𝑅1 | + · · · + |𝑅 𝑗 | − 𝛽 · 𝑗2.

Since |𝑅1 | ≥ · · · ≥ |𝑅𝑡 |, 𝑡 ≤ 𝑚5/16 and 𝛼 =
√
𝑚, we have

|𝑅1 ∪ · · · ∪ 𝑅 𝑗 | ≥
𝑗𝛼

2𝑡
− 𝛽 𝑗2 ≥ 𝑗 ·𝑚3/16/2 − 𝛽 𝑗2.

Choosing 𝑗 =𝑚2.2/16, since 𝛽 = 8 · log𝑚 we obtain

|𝑅 | ≥ 𝑚5.2/16/2 − 8 log𝑚 ·𝑚4.1/16 > 𝑚5/16

for sufficiently large𝑚. □

4 Open Problems

We have shown an Ω(𝑛1/16) randomized lower bound for the simultaneous NOF communication
complexity of GHM ◦𝑔. On the other hand, the best known upper bound remains

√
𝑛, where Alice

simply sends
√
𝑛 random bits of 𝑧. By the birthday paradox, with high probability, Charlie can

recover the value of at least one matched pair from Alice’s message. Bridging this gap remains a
compelling open question.

Conjecture 4.1. There exists a gadget 𝑔 such that the randomized simultaneous NOF communication com-
plexity of GHM ◦ 𝑔 is Ω(

√
𝑛).

Our techniques are currently tailored to the simultaneous NOF model. It remains open whether
similar quantum-classical separations can be established in more general communication models,
such as the one-way NOF model.

Conjecture 4.2. There exists a gadget𝑔 such that the randomized one-way NOF communication complexity
of GHM ◦ 𝑔 is Ω(𝑛Ω (1) ).
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Appendix

Quantum protocols for GHM𝑛 [BYJK04]: We present a quantum protocol for the gadgeted hid-
den matching problem with communication complexity of 𝑂 (log𝑛) qubits. Let 𝑧 = (𝑧1, · · · , 𝑧𝑛) ∈
{0, 1}𝑛 and 𝑦 ∈ [𝑛] be Alice’s input and 𝑥,𝑦 ∈ [𝑛] be Charlie’s input.

1. Alice sends the state |𝜓 ⟩ = 1√
𝑛

∑𝑛
𝑖=1(−1)𝑧𝑖 |𝑖⟩.

2. Charlie performs a measurement on the state |𝜓 ⟩ in the orthonormal basis

𝐵 =

{
1
√
2
(|𝑘⟩ ± |ℓ⟩)

���� (𝑘, ℓ) ∈ 𝑀𝑔 (𝑥,𝑦)

}
.

The probability that the outcome of the measurement is a basis state 1√
2
( |𝑘⟩ + |ℓ⟩) is

|⟨𝜓 | 1√
2
(|𝑘⟩ + |ℓ⟩)⟩|2 = 1

2𝑛
((−1)𝑧𝑘 + (−1)𝑧ℓ )2 .

This equals 2/𝑛 if 𝑧𝑘 ⊕ 𝑧ℓ = 0 and 0 otherwise. Similarly, for the states 1√
2
(|𝑘⟩ − |ℓ⟩), we have that

|⟨𝜓 | 1√
2
( |𝑘⟩ − |ℓ⟩)⟩|2 = 0 if 𝑧𝑘 ⊕ 𝑧ℓ = 0, and 2

𝑛
if 𝑧𝑘 ⊕ 𝑧ℓ = 1.

Hence, if the outcome of the measurement is a state 1√
2
(|𝑘⟩ + |ℓ⟩), then Charlie knows with

certainty that 𝑧𝑘 ⊕ 𝑧ℓ = 0 and outputs ⟨𝑘, ℓ, 0⟩. If the outcome is a state 1√
2
( |𝑘⟩ − |ℓ⟩), then Charlie

knows with certainty that 𝑧𝑘⊕𝑧ℓ = 1 and hence outputs ⟨𝑘, ℓ, 1⟩. Note that the measurement depends
only on Charlie’s input and that the algorithm is 0-error.
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