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Abstract

A Boolean predicate A is defined to be promise-useful if PCSP(A,B) is tractable
for some non-trivial B and otherwise it is promise-useless. We initiate investigations
of this notion and derive sufficient conditions for both promise-usefulness and promise-
uselessness (assuming P ̸= NP). While we do not obtain a complete characterization,
our conditions are sufficient to classify all predicates of arity at most 4 and almost
all predicates of arity 5. We also derive asymptotic results to show that for large
arities a vast majority of all predicates are promise-useless.

Our results are primarily obtained by a thorough study of the “Promise-SAT”
problem, in which we are given a k-SAT instance with the promise that there is a
satisfying assignment for which the literal values of each clause satisfy some additional
constraint.

The algorithmic results are based on the basic LP + affine IP algorithm of
Brakensiek et al. (SICOMP, 2020) while we use a number of novel criteria to establish
NP-hardness.
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1 Introduction

The class of Constraint Satisfaction Problems (CSPs) gives a very general framework
that includes many well-known problems studied in mathematics and computer science.
You are given a set of constraints over a set of variables, with each constraint depending
only on a constant number of the variables, and your goal is to find an assignment
that satisfies all constraints. By limiting the constraint language A, i.e., the types of
constraints allowed, it is possible to create a wide range of different problems CSP(A).
Central examples are given by 3-SAT and graph k-coloring.

A fundamental question for CSPs is to classify them as being tractable or being
NP-hard. In the case when the variables are Boolean-valued this was done already in
1978 when Schaefer [Sch78] gave a full classification. Feder and Vardi conjectured in
1997 [FV98] that such a dichotomy between polynomial time solvability and NP-hardness
holds also for general finite domains, and after a long sequence of partial results this
conjecture was fully proven independently by Bulatov [Bul17] and Zhuk [Zhu20] in 2017.

A majority of CSPs are NP-hard and hence to allow for efficient algorithms some
relaxation is needed. One such relaxation is in the form of approximation algorithms
where we ask for an assignment that may not satisfy all constraints but satisfies a
non-trivial number of constraints. For example, even if we cannot find an assignment
that satisfies all the constraints, maybe we can find an assignment that satisfies 90%
of the constraints using the promise that there is an assignment that satisfies all the
constraints.

A different relaxation is obtained if we instead ask for an assignment that satisfies all
constraints in a relaxed form. Such problems are called Promise Constraint Satisfaction
Problems (PCSPs). One example of a PCSP is the classical problem of k-coloring a
3-colorable graph. The study of this type of problem is very old, but the concept of
PCSPs was only recently formally introduced by Austrin, Guruswami and H̊astad in
their study of the “(2 + ϵ)-SAT” problem [AGH17]. In PCSP(A,B), you are given
instances of CSP(B) with the promise that the instance has a solution if interpreted as a
CSP(A) instance. In the case of k-coloring a 3-colorable graph, CSP(A) is the 3-coloring
problem, and CSP(B) is the k-coloring problem. Note that PCSPs generalize CSPs, since
PCSP(A,A) is the same as CSP(A). This implies that understanding PCSPs is at least
as difficult as that of CSP, but we also expect that some tools useful for understanding
CSPs will be useful for the study of PCSPs.

In the study of CSPs and the resolution of the Feder-Vardi conjecture, algebraic
methods play a crucial role, and one of the key concepts here is that of polymorphisms,
introduced by Jeavons [JCG97, Jea98]. A polymorphism is a function that given multiple
solutions to a problem, combines them in some way to form another solution. Polymorph-
isms are key to understanding the complexity of CSPs, and the set of polymorphisms
of a CSP determines its complexity. In other words if two CSPs have the same set
of polymorphisms, they are of equal computational complexity. In general, the fewer
polymorphisms a CSP has, the higher is its computational complexity.

Polymorphisms can be extended to PCSPs and the requirement now is that, given a
set of solutions that satisfy the constraints of A, produce a solution to B. It turns out
that, also in this case, two problems with the same set of polymorphisms are of equal
complexity [BG21]. This gives a possible avenue of attack to understand the complexity of
PCSP(A,B), but it is only a starting point. It is known that the existence of some specific
polymorphisms immediately gives efficient algorithms and that establishing some specific
properties of the set of polymorphisms yields NP-hardness, but the known conditions
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are far from complementary. On top of this, given A and B, it is many times difficult to
get a grip on the corresponding set of possible polymorphisms. Given these difficulties,
the study of PCSPs is still at an early stage and for the rest of this paper we focus on
the Boolean case which already is quite challenging. In other words we assume that the
inputs to both A and B are Boolean. Even in this simple case our understanding is
rather limited. There is dichotomy when the predicates are symmetric [BG21, FKOS19].
Brandts and Živný [BŽ22] study the question when A is a close to the t-in-k. The general
understanding of even Boolean PCSPs is however very far from complete and a potential
analogue of Schaefer’s Theorem for this setting remains out of reach.

In the rest of this paper we restrict our attention to Boolean PCSPs where the
constraint language is given by a single pair of predicates (rather than a general collection
of predicates). Thus from now on, whenever we discuss PCSP(A,B), A and B are
understood to be predicates on Boolean strings of some fixed arity. That said, our general
tractability and hardness results are all polymorphism-based and thus in principle they
also apply to general constraint languages.

In the setting of approximation algorithms, Austrin and H̊astad [AH13] introduced a
notion of useless predicates. We do not give the exact definition here, but the general
idea is that a predicate is useless if, even given a promise that there is an assignment
that satisfies almost all the constraints, no non-trivial solution can be found in the
approximating sense even when the algorithm is allowed to replace the predicate by any
other predicate of its choosing. It turns out that in this situation there is a simple and
elegant characterization: assuming the Unique Games Conjecture, a predicate is useless
if and only if the set of accepted strings can support a pairwise independent distribution.

We introduce and study an analogous notion of “promise-uselessness” for PCSPs.
In particular, let us say that a predicate A is promise-useful if and only if there exists
a (non-trivial) B such that PCSP(A,B) is solvable in polynomial time. Otherwise, A
is said to be promise-useless. Apart from being natural in its own right, we hope this
notion will be a helpful focus for further exploration and classification of the complex
landscape of Boolean PCSPs.

Note that by this definition, if CSP(A) is tractable, then A is promise-useful. But
even if CSP(A) is NP-hard, it is still possible that A is promise-useful. For example,
1-in-3-SAT is NP-hard by Schaefer’s characterization, but 1-in-3-SAT is promise-useful
since PCSP(1-in-3-SAT, 3-XOR) is tractable (since CSP(3-XOR) is solved by Gaussian
elimination over F2). In general, for any tractable CSP(B), any predicate A which implies
B is promise-useful. A more interesting example is (≥ 2)-in-4-SAT (where the objective is
to find an assignment satisfying at least 2 out of the 4 literals in each clause): it is NP-hard
and does not imply any tractable predicate. However it is still promise-useful, because
PCSP((≥ 2)-in-4-SAT, 4-SAT) is tractable, as shown in the characterization of the “(2+ϵ)-
SAT” problem [AGH17]. A basic example of a promise-useless predicate is 3-SAT, since
the only non-trivial possible B is 3-SAT, and PCSP(3-SAT, 3-SAT) = CSP(3-SAT) which
is NP-hard.

Even for a constraint language defined by a single fixed predicate, it is natural in
the Boolean setting to consider the so-called folded setting, where we allow negation of
variables1. Another natural variant is the so-called idempotent setting, where we allow
fixing some variables to constants2. Because of this, the notion of promise-useful/promise-
useless, even in the single-predicate Boolean case, comes in four different flavors.

In this work, our focus is the folded case. It turns out that whether or not we work

1This can be phrased in CSP terminology as including the “not-equal” predicate in the template.
2In CSP terminology this is equivalent to including all non-constant unary predicates in the template.
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in the folded idempotent case or folded non-idempotent case does not make a significant
difference. For the rest of the introduction, unless explicitly mentioned otherwise, promise-
uselessness is understood to be the folded idempotent Boolean case, a variant we denote
by fiPCSP. In this setting, it is not difficult to see that understanding which predicates
are promise-useful boils down to understanding for which predicates A the fiPCSP(A,OR)
problem is tractable (we establish this connection formally in Section 3). We refer to this
family of problems – where we are given a k-SAT instance with an additional promise
that there is a satisfying assignment which satisfies a stronger predicate A for each clause
– as Promise-SAT problems. While the name is new, Promise-SAT was essentially the
main focus of early work on general PCSPs [AGH17]. In particular, its complexity for
symmetric A is well-understood from more general results [BG21, FKOS19], but for
arbitrary A it has as far as we are aware not been studied in detail before.

1.1 Results

We derive general conditions to determine whether a predicate A is promise-useful or
promise-useless (assuming P ≠ NP). We apply these conditions to all predicates of arity
up to five and it turns out that we can successfully characterize the promise-usefulness
of most predicates. The raw count of the classification is given in Table 1 below. For
k = 5, there are 59 different (non-equivalent) predicates where we have been unable
to determine whether the predicate is promise-useful or promise-useless. The numbers
in this table apply both for the idempotent and non-idempotent settings, as both our
algorithms and hardness results are agnostic to this property.

Table 1: Summary of classification of promise-usefulness and promise-uselessness of
predicates A of arity up to 5.

k = 2 4 4 0 0

k = 3 20 16 4 0

k = 4 400 230 170 0

k = 5 1 228 156 156 135 1 071 962 59

Total Useful Useless Unknown

On the algorithmic side, our general condition for usefulness (yielding the results
summarized in this table) is particularly simple and natural. Somewhat informally, we
establish (see Theorem 4.12 for a formal statement) that A is promise-useful in the folded
setting (both in idempotent and non-idempotent settings) if either

1. There is a weighted majority which is satisfied by all satisfying assignments, or

2. There is a non-trivial parity constraint which is satisfied by all satisfying assignments.

This is more or less a direct consequence of well-known tractability results for Boolean
PCSPs, but what is more interesting is that despite our best efforts we have been unable to
find any evidence of additional tractable cases, raising the tantalizing (if perhaps unlikely)
possibility that this simple condition might exactly characterize promise-usefulness (in
the folded Boolean setting).

As mentioned in the preceding section, understanding promise-usefulness boils down
to understanding the complexity of the Promise-SAT problem, fiPCSP(A,OR). We
consider this an interesting problem in its own right, and in fact most of the work in this
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paper is devoted to it (yielding the results for promise-usefulness as a byproduct). Again
we derive general tractability and hardness conditions, and apply them to all predicates
of arity up to five. The results are summarized in Table 2 below (the total number
of predicates is larger than for usefulness, because there are fewer direct equivalences
between predicates). For arity five we classify all except 189 out of the roughly 18.6
million genuinely different predicates. Note that for k = 2, fiPCSP(A,OR) is always
tractable since 2-SAT is tractable, so the choice of A does not matter.

Table 2: Summary of classification of complexity of fiPCSP(A,OR) for A of arity up to 5.

k = 2 5 5 0 0

k = 3 39 33 6 0

k = 4 1 991 956 1 035 0

k = 5 18 666 623 1 290 862 17 375 572 189

Total Tractable NP-hard Unknown

From our classification for small arities it is tempting to guess that as the arity
increases most predicates tend to be promise-useless. This is indeed true, and we prove
the following asymptotic version of this fact, showing that even exponentially sparse
predicates are useless.

Theorem 1.1 (Informal version of Corollary 7.6). For any s = ω(k · 25k/6), a uniformly
random k-ary Boolean predicate with s satisfying assignments is promise-useless with
high probability, in all four settings (folded/non-folded and idempotent/non-idempotent).

The bound on s in this result is likely far from tight and we suspect that this result
is true with a much smaller bound on s, perhaps even polynomial, though we have
not been able to prove this and new methods would be needed to push s down to
2o(k). Supplementing this result, we show (see Theorem 7.16 for precise statement) that
the BLP+AIP algorithm (which, as described in the next section, is the source of our
tractability results) stops working once a random predicate of arity k accepts s = ω(k)
strings out the 2k possible inputs. This leaves a large set of predicates that we are unable
to classify.

1.2 Overview of Techniques

A surprisingly powerful algorithm for establishing that PCSP(A,OR) is tractable is
the basic LP + affine IP algorithm of Brakensiek et al. [BGWŽ20]. This algorithm is
applicable assuming that the PCSP admits block-symmetric polymorphisms of arbitrarily
large arity. While for larger domains there are known examples of tractable PCSPs that
require different algorithms, no such examples are (currently) known for Boolean PCSPs,
and BLP+AIP is the only algorithm used in the current paper to derive positive results.

The specific polymorphisms we use with BLP+AIP are partly the expected ones, but
it has a slight twist. Unsurprisingly we have the three standard polymorphism families
majority, odd parity and alternating threshold, but it turns out that in some cases the
tractability of fiPCSP(A,OR) needs idempotent versions of minority and even parity
which, as far as we are aware, have not been employed before. It is not difficult to give
necessary and sufficient conditions in terms of A for each of these families to be applicable.
On top of being explicit these conditions also turn out to be easy to check by computer
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for a given predicate A. Thus the we do not introduce any essentially new techniques to
establish tractability, we simply make good use of existing techniques.

On the other hand when it comes to establishing that A is promise-useful, the
algorithmic condition becomes even simpler as described in the preceding section. While
for fiPCSP(A,OR) we need all five polymorphism families described above (majority, odd
parity, alternating threshold, idempotized minority, and idempotized even parity), it turns
out that out of these five only majority and odd parity are needed to establish promise-
usefulness: if any of the other three families can be used to establish promise-usefulness,
then either majority or odd parity can as well.

Our hardness results are obtained through the study of the minion of polymorphisms
of fiPCSP(A,OR). In a small extension of previous results we show that if all such
polymorphisms have a small fixing assignment then the problem is NP-hard. In other
words, for every polymorphism, it is possible to fix a constant number of inputs in a
way such that the output is determined. This is the basic criterion we use for hardness
but we develop a number of distinct, but similar, conditions to establish that a given
polymorphism minion has this property.

These conditions are based on establishing properties shared by all polymorphisms
and that some particular (low arity) functions are not polymorphisms. A toy example
would be to show that all polymorphisms of fiPCSP(A,OR) are monotone and that
there is no polymorphism f of arity t+ 1 such that if its first input is fixed to 0 then
the restricted function becomes an AND of t variables. It is then not difficult to prove
that all polymorphisms of fiPCSP(A,OR) have a fixing set of size t − 1 from which it
follows that fiPCSP(A,OR) is NP-hard by known theorems. In reality we use several
more complicated properties of the polymorphism minion, culminating in four different
conditions (Theorems 5.16, 5.17, 5.18 and 5.21). Even for a given A these conditions are
most of the time too cumbersome to check by hand, but sufficiently simple that they can
be checked relatively quickly by a computer.

As described in the preceding section, these diverse techniques are (somewhat sur-
prisingly) sufficient to completely understand the complexity of fiPCSP(A,OR) for all
predicates up to arity four – the small fixing assignment condition exactly complements
the block-symmetry condition of the BLP+AIP algorithm for these predicates. For the
unclassified predicates of arity five, we know that they are not solved by BLP+AIP, but
we do not know whether or not they satisfy the small fixing assignment condition. In
other words it is conceivable that the “gap” in our knowledge here is due to the concrete
conditions (Theorems 5.16, 5.17, 5.18 and 5.21) only being sufficient for small fixing
assignments, and not necessary.

1.3 Organization

Section 2 covers notation and background material used throughout the paper. Then in
Section 3 we formally define and give some initial observations on promise-usefulness.
Following this we analyze tractability in Section 4, applying the BLP+AIP algorithm
and discussing the five families of block-symmetric polymorphisms that appear. We
then turn to hardness in Section 5 and give the four different conditions for small fixing
assignments, Theorems 5.16, 5.17, 5.18 and 5.21. In Section 6 we apply these methods to
analyze the tractability and hardness of all predicates of arity up to five. The asymptotic
bounds for large arities are established in Section 7, and we give some general conclusions
and discuss open problems in Section 8.
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2 Preliminaries

For a logical statement P , we use the Iverson notation where [P ] is defined to be 1 if P is
true and 0 otherwise. For a positive integer n, [n] denotes {1, . . . , n} (and in particular a
generic binary string x ∈ {0, 1}n is 1-indexed and written as x1x2 . . . xn).

Throughout the paper, we use the following notation for binary strings. The exclusive
or of two binary strings x and y (of equal length) is denoted by x⊕ y. For b ∈ {0, 1}, bℓ
denotes the all-b string of length ℓ. The number of ones in a binary string x is denoted
as w(x) =

∑
xi. For a subset S = {j1, . . . , jr} ⊆ [k], xS is the projection of x onto

S, i.e., the binary string (xj1 , xj2 , . . . , xjr) of length |S| = r. We let ¬ denote Boolean
negation and extend it bit-strings by applying it component-wise. A Boolean function
f : {0, 1}ℓ → {0, 1} is folded if f(¬x) = ¬f(x) for every x, and idempotent if f(0ℓ) = 0
and f(1ℓ) = 1. We often blur the distinction between sets and Boolean vectors and
for a set S ⊆ [n] we let f(S) be f applied to the indicator vector of S (i.e., the vector
x ∈ {0, 1}n defined by xi = [i ∈ S]).

We identify a predicate A of arity k with a subset of {0, 1}k (the set of accepting
assignments of A). In order to avoid trivial cases we do not allow A to be empty or
to contain all strings of length k. On the other hand we do allow A to be independent
of some of its coordinates and also that all strings in A share the same value of some
coordinate.

For a k-ary predicate A ⊆ {0, 1}k and a binary string p ∈ {0, 1}k, we define A⊕ p =
{ a⊕ p : a ∈ A }. In particular A⊕ 1k is the predicate formed by negating all accepting
assignments of A.

We shall frequently be concerned with matrices where the columns are accepting
assignments of a predicate. Given a predicate A ⊆ {0, 1}k and an integer ℓ, let Aℓ be
the set of all k × ℓ matrices M where each column is an accepting assignment of A. Its
columns are denoted by M1, . . . ,M ℓ, and its rows are denoted by M1, . . . ,Mk. The entry
at row i column j is denoted by M j

i .
For a set X ⊆ Rk we denote by K(X) the convex hull of X. The following standard

theorem about separating convex sets by hyperplanes is useful for us.

Theorem 2.1. Let K1 and K2 be two disjoint convex sets in Rk and suppose K1 is
closed. Then there exist real numbers such c1 . . . ck and b such that

∑k
i=1 cixi ≥ b for any

x ∈ K1 while
∑k

i=1 cixi < b for any x ∈ K2.

2.1 CSPs, PCSPs, and Polymorphisms

Given a predicate A we can define the CSP(A) problem.

Definition 2.2. Let A ⊆ {0, 1}k be a k-ary predicate. An instance I = (C,X) of CSP(A)
consists of a set of variables X = {x1, . . . xn} and a set of constraints C = {c1, . . . , cm},
where each constraint ci ∈ Xk is a k-tuple of variables. An assignment α : X → {0, 1} of
values to the variables is a satisfying assignment to I if α(ci) ∈ A for every constraint
c1, . . . cm. I is a Yes-instance if there exists a satisfying assignment to I. Otherwise, I is
a No-instance.

We, most of the time, apply predicates to literals and formally in this case we have
2n variables X = {x1, x1, x2, x2, . . . , xn, xn}, and an assignment α : X → {0, 1} where
α(xi) = ¬α(xi) for every i. We sometimes allow constants and in such a case we have a
CSP(A) instance extended with a variable denoted xb that always takes the value b.

For two k-ary predicates A and B such that A implies B (i.e., A ⊆ B), we can define
PCSP(A,B).
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Definition 2.3. Let A,B ∈ {0, 1}k be k-ary predicates such that A ⊆ B. An instance
I = (C,X) of the PCSP(A,B) problem consists of a CSP(A) instance, and the goal is
to distinguish between:

Yes I is a satisfiable CSP(A) instance

No I is not even satisfiable when interpreted as a CSP(B) instance (i.e., there is no
α : X → {0, 1} such that α(c) ∈ B for every constraint c ∈ C).

Note that CSPs are a special case of PCSPs are PCSP(A,A) = CSP(A). Definition 2.3
describes the decision version of PCSP(A,B). There is also a search version of the problem,
where we are given an instance that is promised to be a Yes instance, and the goal is
to find a satisfying for the corresponding CSP(B) instance. Unlike basic CSPs, it is a
major open problem whether the decision and search versions of PCSPs are equivalent.

In the definition of CSPs and PCSPs, the distinction of allowing or disallowing
repetition (the same variable appearing multiple times in a clause) is unimportant since
the two are polynomial time equivalent ([BG21], Section 6.6).

Let us make the useful and obvious observation that stronger promises cannot be
worse than weaker promises.

Fact 2.4. Suppose A ⊂ A′ ⊂ B, then PCSP(A′, B) is not easier than PCSP(A,B). In
particular if the latter is NP-hard so is the former and if the former is tractable so is the
latter. Similarly if A ⊂ B ⊂ B′ then PCSP(A,B) is not easier than PCSP(A,B′).

Let us proceed to define polymorphisms of PCSPs. These are functions f which, when
given multiple solutions to an instance of CSP(A), return a solution to the corresponding
CSP(B) instance. The formal definition is the following.

Definition 2.5. A Boolean function f : {0, 1}ℓ → {0, 1} is a polymorphism of PCSP(A,B)
if and only if for all matricesM ∈ Aℓ, f(M) ∈ B. Here f(M) denotes the column vector of
length k obtained by evaluating f on each row ofM , i.e., f(M) = (f(M1), f(M2), . . . , f(Mk)).
The set of polymorphisms of PCSP(A,B) is denoted by Pol(PCSP(A,B)).

The cases of allowing negations or fixed constants to the PCSP problem restrict
the set of polymorphisms as follows. If we apply our predicates to literals, then all
polymorphism must be folded and we denote the problem by fPCSP and if we also
allow constants then all polymorphisms must be idempotent and we denote this class by
fiPCSP. In other words.

• Pol(fPCSP(A,B)) = { f ∈ Pol(PCSP(A,B)) : f is folded }

• Pol(fiPCSP(A,B)) = { f ∈ Pol(PCSP(A,B)) : f is folded and idempotent}

If a Boolean function is not a polymorphisms of PCSP(A,B), then there must exist
some obstruction M ∈ Aℓ witnesses this fact.

Definition 2.6. Given a PCSP(A,B), M ∈ Aℓ is called an obstruction for f if f(M) ̸∈ B.

2.2 Minors and Minions

We start with a simple but useful definition.

Definition 2.7. Let f : {0, 1}ℓ → {0, 1} be a Boolean function. For any π : [ℓ] → [ℓ′],
the function fπ : {0, 1}ℓ′ → {0, 1} defined by

fπ(x1, . . . , xℓ′) = f(xπ(1), . . . xπ(ℓ))

is called a minor of f .

9



One informal way to view this is that a minor is obtained by identifying some sets of
variables. Note that it is not allowed to fix variables to constants.

Definition 2.8. A (Boolean function) minion M is a set of Boolean functions (not
necessarily of the same arity) such that for every f ∈ M, every minor fπ of f is also a
member of M.

It is a well-known and easy to prove fact that the set of polymorphisms of a PCSP
forms a minion. A useful consequence of this is that once we have established that some
small, constant size g is not a polymorphism we get a structure theorem on the set of
all polymorphisms, because not containing g as a minor anywhere is indeed a severe
restriction when f is of large arity. One general instantiation of this phenomenon that is
of use for us is the following.

Definition 2.9. A family F of Boolean functions is essentially minion-atomic if for
every minion M it holds that either F ⊆ M, or F ∩M is finite.

In particular, if F essentially minion-atomic and some fixed f ∈ F is not a poly-
morphism of PCSP(A,B), then PCSP(A,B) only admits finitely many polymorphisms
from F .

2.3 Tractability Conditions for PCSPs

For PCSPs, one of the more remarkable algorithms that makes use of polymorphisms
is the so-called basic LP relaxation + affine IP relaxation algorithm by Brakensiek et
al. [BGWŽ20] which we from now on simply refer to as “BLP+AIP”. It combines two
commonly seen relaxations of the following Boolean problem.

Given an instance I of CSP(A), we naturally have a Boolean variable for each variable
in I, and we add one variable for each constraint and each element of A. This variable
is supposed to be true if the constraints is satisfied by the indicated element of A. We
require the sum of all Boolean variables corresponding to the same constraint in I to be
1 and the assignment to the variables and constraints to be consistent.

The basic LP relaxation of this Boolean problem is defined as the relaxation where
the Boolean variables are relaxed to rational numbers in [0, 1]. The affine IP relaxation
takes the Boolean variables and instead relaxes the Boolean variables to integer variables.

Brakensiek et al. showed that if Pol(PCSP(A,B)) contains infinitely many symmetric
(or block-symmetric with increasing block sizes) polymorphisms, then the combination
of these two relaxations can be used to solve (the decision version) of PCSP(A,B)
[BGWŽ20]. It turns out that this algorithm is able to solve all tractable Boolean CSPs
(Schaefer’s dichotomy theorem). There are also natural generalization of this algorithm
requiring consistency of larger (but still constant) size subsets of the variables. This
potentially makes is more powerful but we do not know of a Boolean CSP solved by this
generalization and not by the basic combination.

Definition 2.10. A function f : {0, 1}ℓ → {0, 1} is said symmetric if f(x) depends
only on w(x), and block-symmetric with parameters b and m which are both constants
independent of ℓ, if there exists a partition S1, S2, . . . , Sb of [ℓ], of sizes ≥ m, such that
f(x) depends only on w(xS1), . . . , w(xSb

).

Remark 2.11. Any symmetric polymorphism is also a block symmetric polymorphism,
with a single block. In the block-symmetric case, the parameter m is called the width
of f . The case of two blocks is also of special interest to us and we use the notation
(ℓ1, ℓ2)-block-symmetric polymorphism for such a function with block sizes ℓ1 and ℓ2.
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The power of the BLP+AIP algorithm is then characterized by the following theorem.

Theorem 2.12. [BGWŽ20, Theorem 5.1] The following three statements are equivalent:

• The PCSP(A,B) decision problem can be solved in polynomial time by the BLP+AIP
algorithm.

• Pol(PCSP(A,B)) contains infinitely many block-symmetric polymorphisms of ar-
bitrary large width.

• For every ℓ ≥ 1, Pol(PCSP(A,B)) contains an (ℓ, ℓ + 1)-block-symmetric poly-
morphism.

The last condition is very useful as it can be efficiently checked for concrete A and
B and small values of ℓ. The non-existence for any specific value of ℓ rules out the
possibility to apply BLP+AIP.

Note that while BLP+AIP only in general solves the decision version of a PCSP, if
the block-symmetric polymorphisms are explicit enough it is possible to solve the search
version. In particular this is true in all applications of BLP+AIP to explicit predicates
in the current paper.

2.4 Hardness Conditions for PCSPs

There are many ways that polymorphisms can be used to show that a PCSP is NP-hard.
A general approach is to make use of dictator-like properties of the polymorphisms
themselves to construct a reduction from gap label cover to PCSP. There are many
possible notions of being “dictator-like” and the one we use is based on the following
definition.

Definition 2.13. A function f : {0, 1}ℓ → {0, 1} has a t-fixing set if there exists a set
T ⊆ [ℓ] of size t such that f(x) = 1 whenever xT = 1t. More generally f has a t-fixing
assignment (T, α) if there exists T ⊆ [ℓ] of size t and a partial assignment α ∈ {0, 1}t
such that f(x) = 1 whenever xT = α.

Remark 2.14. Since our focus in this paper is on folded functions f , it makes no
difference in the notion of fixing assignments whether we also allow the function to be
fixed to 0 (since we can simply negate α to fix the function to the opposite value).

Brakensiek and Guruswami [BG21, Theorem 5.3] showed that if all polymorphisms of
a PCSP have small fixing sets then the PCSP is NP-hard. This can be naturally extended
[BBKO21, Corollary 5.13] to a general setting where we can define a “choice function”
C(f) which for each polymorphism f identifies a small number of “relevant” coordinates,
in a way that behaves consistently across minors (meaning that π(C(f)) ∩ C(fπ) ̸= ∅ for
every minor fπ of f). This approach, which characterizes when the standard reductions
from the basic Gap Label Cover problem is applicable, has subsequently been generalized
to “layered choice” [BWŽ21] (corresponding to reductions from Layered Label Cover)
and “injective layered choice” [BK24] (corresponding to reductions from Smooth Layered
Label Cover). The hardness condition based on small fixing sets can naturally be relaxed
to only require small fixing assignments.

Theorem 2.15. If there exists a t such that every f ∈ Pol(fPCSP(A,B)) has a t-fixing
assignment, then fPCSP(A,B) is NP-hard. Likewise, if there is a t such that every
f ∈ Pol(fiPCSP(A,B)) has a t-fixing assignment, then fiPCSP(A,B) is NP-hard.
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Essentially this theorem was shown by Guruswami and Sandeep [GS20] though they
only state it for rainbow coloring. Unlike the fixing set condition, Theorem 2.15 does
not immediately follow from the basic Gap Label Cover problem but instead seems to
require Smooth Label Cover. For completeness, we give a short proof of this result in
Claim C.2 based on the injective choice condition of Banakh and Kozik [BK24].

The extension from fixing sets to fixing assignments is not difficult but it is needed for
some of our results. There are many cases where Pol(fiPCSP(A,B)) contains functions
without small fixing sets but where all functions have small fixing assignments.

2.5 Standard Boolean Functions

Let us recall various standard (and a few not so standard) families of Boolean functions
that are relevant for us. We first recall three families of (block-)symmetric functions that
have previously been successfully used in conjunction with the BLP+AIP algorithm.

Definition 2.16. For odd ℓ ≥ 1, the majority function Majℓ : {0, 1}ℓ → {0, 1} is defined
by Majℓ(x) = [w(x) ≥ ℓ/2].

Claim 2.17. The family Maj = {Majℓ | ℓ odd } is essentially minion-atomic.

Proof. Let M be a minion and suppose Majℓ ̸∈ M. For any odd ℓ′ = d · ℓ+ r (d ≥ 1 and
0 ≤ r < ℓ), consider the function

f(x1, . . . , xℓ) =

[
r∑

i=1

xi + d

ℓ∑
i=1

xi ≥ ℓ′/2

]

Note that f is a minor of Majℓ′ (obtained by identifying r groups of (d+ 1) variables,
and ℓ− r groups of d variables). Furthermore, if d ≥ ℓ then f = Majℓ. This shows that
M cannot contain Majℓ′ for any ℓ′ ≥ ℓ2, i.e., M contains only finitely many majority
functions and hence Maj is essentially minion-atomic.

Definition 2.18. Parity of arity ℓ is the function Parℓ : {0, 1}ℓ → {0, 1}, defined by

Parℓ(x) =
⊕
i∈[ℓ]

xi.

Note that Parℓ is folded if and only if the arity ℓ is odd. The following claim is easy
to verify.

Claim 2.19. The family Par = {Parℓ | ℓ odd } is essentially minion-atomic.

Definition 2.20. For odd ℓ ≥ 1, the alternating threshold function ATℓ : {0, 1}ℓ → {0, 1}
is defined by

ATℓ(x) =

[∑
i

(−1)1+i+xi > 0

]
. (1)

Again it easy to see that this family is minion-atomic and we leave the verification to
the reader.

Claim 2.21. The family AT = {ATℓ | ℓ odd } is essentially minion-atomic.

For the hardness results, we are also interested in various other, mostly standard,
functions and frequently need the fact that these are minion-atomic, which we record in
the following simple claim.
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Claim 2.22. Let {fℓ} be one of the following function families:

ANDℓ(x1, . . . , xℓ) = x1 ∧ x2 ∧ . . . ∧ xℓ

ORℓ(x1, . . . , xℓ) = x1 ∨ x2 ∨ . . . ∨ xℓ

NANDℓ(x1, . . . , xℓ) = ¬ANDℓ(x1, . . . , xℓ) = ORℓ(¬x1, . . . ,¬xℓ)
NORℓ(x1, . . . , xℓ) = ¬ORℓ(x1, . . . , xℓ) = ANDℓ(¬x1, . . . ,¬xℓ)

ANDNORℓ(x1, . . . , xℓ) = x1 ∧ NORℓ−1(x2, . . . , xℓ)

For any minion M, if fℓ ̸∈ M for some ℓ ≥ 2 then fℓ+1 ̸∈ M. In particular, each of
these five families of functions is essentially minion-atomic.

That this is true is not difficult to see as identifying two appropriate variables in fℓ+1

results in fℓ.

3 Promise-usefulness

The main new notion in this paper is the concept of promise-usefulness (and promise-
uselessness), formally defined as follows.

Definition 3.1. A predicate ∅ ≠ A ⊊ {0, 1}k is promise-useful if there exists a non-trivial
relaxation B ⊇ A such that PCSP(A,B) is solvable in polynomial time. Otherwise A is
promise-useless.

By “non-trivial” we mean that B ̸= {0, 1}k. In the non-folded case (without negated
literals) we would also demand that B contains neither 0k nor 1k since otherwise every
instance has a trivial satisfying assignment. Throughout the paper we assume that
P ≠ NP, and whenever we make a claim that some predicate is promise-useful, this is
always under this assumption.

To make it apparent which situation we are in (folded and/or idempotent), we use the
terminology fPCSP-useful for the folded case and fiPCSP-useful for the folded idempotent
case.

As a first step, let us note that promise-usefulness in the folded setting boils down to
understanding the Promise-SAT problem.

Lemma 3.2. The predicate A is fPCSP-useful (resp. fiPCSP-useful), if and only if there
exists b ̸∈ A such that fPCSP(A⊕ b,OR) (resp. fiPCSP(A⊕ b,OR)) is in P.

Proof. Suppose A is promise-useful, i.e., there is a non-trivial B such that fPCSP(A,B)
is tractable, and let b be an arbitrary assignment that does not belong to B. Then
fPCSP(A, {0, 1}k \ {b}) is also tractable by Fact 2.4. Furthermore, since we have
negations, fPCSP(A, {0, 1}k \ {b}) is equivalent with fPCSP(A ⊕ b,OR). Conversely,
if fPCSP(A⊕ b,OR) is tractable for some b ̸∈ A then fPCSP(A,OR ⊕ b) is tractable and
witnesses that A is promise-useful. The proof is the same for the idempotent case.

So in the folded case, the concept of promise-usefulness boils down to understanding
the complexity of various Promise-SAT problems and we turn to this question in Section 4
and Section 5 below.

Remark 3.3. For the non-folded case, where we do not have negations, a lemma similar
to Lemma 3.2 is true, but with the OR predicate replaced by the not-all-equal (NAE)
predicate: A is promise-useful if and only if PCSP(A,NAE) is tractable. However, since
our main focus in this paper is the folded case, we refrain from discussing this further.
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Remark 3.4. One can define promise-usefulness as either an adaptive or non-adaptive
notion. In the non-adaptive version (which is what Definition 3.1 defines), there must
exist a fixed B depending only on A, such that A is promise-useful for B (PCSP(A,B)
is tractable). In the adaptive version, an algorithm would be allowed to choose B also
based on the given instance of CSP(A) – i.e., given as input a satisfiable CSP(A) instance,
the goal becomes to find some non-trivial B ⊇ A and satisfy the instance as a CSP(B)
instance. In the non-folded setting this is equivalent with finding an assignment to
the variables such that none of the input k-tuples is constant, i.e., a 2-coloring of the
underlying hypergraph, and thus adaptive vs. non-adaptive are trivially equivalent here.
In the folded setting, it is equivalent to finding an assignment to the variables such
that not all k-tuples appear. If fPCSP(A,B) is NP-hard for all non-trivial B then A is
fPCSP-useless also in this adaptive sense as we can concatenate the results of all hardness
reductions on disjoint sets of variables. In the opposite direction, we are not aware of a
proof that an adaptive useful algorithm must yield an efficient solution to PCSP(A,B)
for a fixed B, although this seems intuitively likely.

3.1 The Non-Idempotent Case

As stated above we restrict attention to the folded setting and we study both fiPCSP(A,B)
as well as fPCSP(A,B). By the preceding discussion, our primary interest is the case when
B = OR. As our main tool is to study polymorphisms, the following simple observation
is useful, implying that it is sufficient to understand the idempotent polymorphisms.

Lemma 3.5. Let A be a predicate that does not contain 0k. If A contains 1k, then
all polymorphism of fPCSP(A,OR) are idempotent. If A does not contain 1k then for
every f ∈ Pol(fPCSP(A,OR)) it holds that either f is idempotent or ¬f is an idempotent
polymorphism of fPCSP(A⊕ 1k,OR).

Proof. If A contains 1k and f is a folded polymorphism then f must be idempotent to
avoid that the all-ones matrix is an obstruction. In the second case if f is not idempotent
then ¬f is idempotent. As ¬f(x) = f(¬x) = f(x ⊕ 1k), ¬f is a polymorphism of
fPCSP(A⊕ 1k,OR).

Note in particular that for a general A not containing 1k this implies:

1. fPCSP(A,OR) is tractable via the BLP+AIP algorithm if and only if fiPCSP(A,OR)
or fiPCSP(A⊕ 1k,OR) is tractable via the BLP+AIP algorithm.

2. fPCSP(A,OR) has small fixing assignments (i.e., is NP-hard via Theorem 2.15)
if and only if both fiPCSP(A,OR) and fiPCSP(A ⊕ 1k,OR) have small fixing
assignments.

It is an interesting question whether this holds true in general regardless of algorithm
or NP-hardness proof used, in other words: Is it the case that fPCSP(A,OR) is tractable
if and only if fiPCSP(A,OR) or fiPCSP(A⊕ 1k,OR) is tractable?

For promise-usefulness, combining this observation with Lemma 3.2 we obtain the
following conclusion.

Corollary 3.6. A predicate A is fPCSP-useful via the BLP+AIP algorithm if and only
if it is fiPCSP-useful via the BLP+AIP algorithm, and it is fPCSP-useless via small
fixing assignments if and only if it is fiPCSP-useless via small fixing assignments.

Thus when it comes to promise-usefulness, being in the idempotent setting (i.e.,
allowing fixed constants) does not make a difference with the current techniques we have
for proving tractability and hardness.
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4 Tractability of Promise-SAT

Based on our preliminary observations in Section 3, understanding promise-usefulness
boils down to understanding the Promise-SAT problem, fiPCSP(A,OR). In this section
we analyze conditions for this problem to be tractable.

4.1 Identifying Families of Block-symmetric Polymorphisms

To identify tractable cases of fiPCSP(A,OR), we use the BLP+AIP algorithm, char-
acterized in Theorem 2.12. The requirement for this algorithm is that fiPCSP(A,OR)
contains infinitely many block-symmetric polymorphisms of arbitrary large arity. By
Theorem 2.12 this is equivalent to the existence of block-symmetric polymorphisms with
two blocks, one with size ℓ and the other with size ℓ+ 1 for each value of ℓ.

For small values of k and ℓ the condition that such polymorphisms exist can be
checked by computer. There are then two outcomes. If there is no solution for some
ℓ then fiPCSP(A,OR) cannot be solved using the BLP+AIP algorithm. On the other
hand, if a solution is found this can help us identify block-symmetric polymorphisms of
general interest. Performing such experiments, we have identified five different families
of block-symmetric polymorphisms, where for each family F , there exists a predicate A
such that Pol(fiPCSP(A,OR)) contains infinitely many polymorphisms from F , but only
finitely many from the other families.

Three of these families are the standard idempotent polymorphisms Maj, Par and
AT defined in Section 2.5. The other two are non-standard, closely related to the negated
functions minority Majℓ(x) = ¬Majℓ(x) and even parity Parℓ(x) = ¬Parℓ(x). These two
functions are not idempotent and thus are not polymorphisms of fiPCSP(A,OR), but we
can simply change the values on the constant strings to make them idempotent.

For a function f : {0, 1}ℓ → {0, 1}, we denote by idf : {0, 1}ℓ → {0, 1} the idempotized
function

idf(x) =


0 if x = 0ℓ

1 if x = 1ℓ

f(x) otherwise

It is easy to see that a minion-atomic family of functions remains minion-atomic under
negation and the idempotization operation.

Claim 4.1. Let F be a family of Boolean functions. If F is essentially minion-atomic,
then F = {¬f | f ∈ F } is essentially minion-atomic. If additionally all functions in F
are anti-idempotent (i.e., ¬f is idempotent) then idF = { idf | f ∈ F } is also essentially
minion-atomic.

Proof. It is easy to see that ¬g is a minor of ¬f if and only if g is a minor of f . This
gives the first result. The second statement follows from the similar statement that idg is
a minor of idf if and only if g is a minor of f .

We then consider the families idMaj = { idMajℓ | ℓ odd } and idPar = { idParℓ | ℓ odd }
of idempotized minority and idempotized parity of odd arities. Together with the
aforementioned Maj, Par, and AT families, these make up our quintet of block-symmetric
polymorphism families and we have the following result.

Lemma 4.2. Consider the following five families of idempotent (block-)symmetric func-
tions: majority (Maj), odd parity (Par), alternating threshold (AT), idempotized minority
(idMaj), and idempotized even parity (idPar). For each of these families F , there exists
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a predicate A such that fiPCSP(A,OR) admits infinitely many polymorphisms from F ,
but only finitely many from the other four families.

1. A = {01, 10, 11} is an example that only admits Maj.

2. A = {001, 010, 100, 111} is an example that only admits Par.

3. A = {00011, 00101, 00110, 01000, 10000} is an example that only admits AT.

4. A = {0011, 0100, 0110, 1000, 1001} is an example that only admits idMaj.

5. A = {00111, 01010, 01101, 10000, 10011} is an example that only admits idPar,

Before proceeding with the proof, which is given in Section 4.4, we need character-
izations of what it means for fiPCSP(A,OR) to admit infinitely many functions from
each of these families. The conditions in the following sections are stated in terms of
fPCSP(A,OR) admitting infinitely many polymorphisms from one of the families, but
note that this is equivalent with fiPCSP(A,OR) doing so, since fiPCSP has all idempotent
polymorphisms of fPCSP and no others.

4.2 Conditions for Maj, Par, and AT

We start by establishing necessary and sufficient conditions for the existence of infinitely
many polymorphisms from the standard families Maj, Par, and AT. Recall that K(A)
denotes the convex hull of A. The proofs of the following three standard lemmas can be
found in Appendix D.

The existence of majority as a polymorphism of arbitrarily large odd arities can be
expressed as a linear program based on the following lemma.

Lemma 4.3. The following statements are equivalent:

1. Pol(fPCSP(A,OR)) contains infinitely many polymorphisms from Maj.

2. [0, 1/2)k ∩K(A) = ∅.

3. There exists integers c1, . . . ck ≥ 0 such that
∑k

j=1 cjaj ≥
∑k

j=1 cj/2 > 0 for all
a ∈ A.

The test for odd parity is based on solving an affine equation modulo two.

Lemma 4.4. The following statements are equivalent:

1. Pol(fPCSP(A,OR)) contains infinitely many polymorphisms from Par.

2. For every odd sized subset B of A,
⊕

s∈B s ̸= 0k.

3. There exists a non-empty subset β ⊆ [k], such that
⊕

i∈β ai = 1 for all a ∈ A.

Finally, for alternating threshold, the characterization corresponds to all accepting
assignments of A satisfying some linear equation over the integers.

Lemma 4.5. The following statements are equivalent:

1. Pol(fPCSP(A,OR)) contains infinitely many polymorphisms from AT.

2. {x− y : x, y ∈ K(A)} ∩ (−∞, 0)k = ∅.

3. There exists integers c1, . . . ck ≥ 0, not all 0, such that
∑k

j=1 cjaj takes the same
value for all a ∈ A.
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4.3 Conditions for idMaj and idPar

Let us now turn to necessary and sufficient conditions for when Pol(fPCSP(A,OR))
contains infinitely many polymorphisms of either of the two non-standard families idMaj
and idPar. These conditions are formulated in terms of Pol(fPCSP(A,OR)) containing
infinitely many polymorphisms from Maj and Par, respectively (and Lemmas 4.3 and 4.4
can easily be modified to give efficient tests for verifying these containments). Throughout
this section we frequently use the fact that idMaj and idPar are essentially minion-atomic
(Claim 4.1). In other words, having only finitely many polymorphisms from e.g. idMaj is
equivalent to not having idMajℓ for some odd ℓ > 0.

For a predicate A ⊆ {0, 1}k and b ∈ {0, 1}, we say that A has a forced 1-bit if
there is an i such that ai = 1 for all a ∈ A. Note that whenever A has a forced
1-bit, Pol(fPCSP(A,OR)) contains all idempotent odd functions. We first show that,
for fPCSP(AOR), admitting idMaj or idPar implies admitting their non-idempotized
counterparts, except in the trivial case when A has a forced 1-bit.

Lemma 4.6. Suppose A ⊆ {0, 1}k does not have a forced 1-bit. If fPCSP(A,OR) admits
an infinite number of polymorphisms from idMaj then it also admits an infinite number
of polymorphisms from Maj.

Proof. Since A does not have a forced 1-bit, there are k (not necessarily distinct) strings
x1 . . . , xk ∈ A such that xi has a 0 in position i.

Suppose there is an obstruction matrix M ∈ Aℓ showing that Majℓ is not a poly-
morphism of fPCSP(A,B) for some (odd) ℓ. Thus in every row of M there are at least
(ℓ + 1)/2 ones. Create a new matrix M ′ with ℓ′ = (k + 1)ℓ + k columns by taking
(k+ 1) copies of each column, and adding the k columns x1, . . . , xk. Now M ′ has at least
(k + 1)(ℓ+ 1)/2 = (ℓ′ + 1)/2 ones in every row, and no row is identically 1. Thus this
is an obstruction that shows that idMajℓ′ is not a polymorphism and the lemma now
follows by the fact that both families are essentially minion-atomic.

By a similar reasoning we establish the same fact for idPar and Par.

Lemma 4.7. Suppose A ⊆ {0, 1}k does not have a forced 1-bit. If fPCSP(A,OR) admits
an infinite number of polymorphisms from idPar then it also admits an infinite number
of polymorphisms from Par.

Proof sketch. We proceed as in the proof of Lemma 4.6, but when creating M ′ we
do not make any copies of the existing rows and instead only add two copies each of
x1, . . . , xk. This maintains parity of every row while making sure no row is all-ones (and
no row of M was all-zeros since M was an obstruction for Parℓ being a polymorphism of
fPCSP(A,OR)), ensuring idPar and Par behave the same on M ′.

In what follows, we use the notation A0
S to denote the set { aS | a ∈ A such that aS =

0|S| }, where A ⊆ {0, 1}k is a k-ary predicate and S ⊆ [k]. This makes A0
S a kind of

projection which only keeps accepting assignments a ∈ A such that ai = 0 for all i /∈ S.
In the other direction, we have the following general property.

Lemma 4.8. Let F be an essentially minion-atomic infinite family of idempotent Boolean
functions. If fPCSP(A,OR) admits only finitely many polymorphisms from idF then
there exists a subset S ⊆ [k] such that (i) A0

S is non-empty and does not have a forced
1-bit, and (ii) fPCSP(A0

S ,OR) admits only finitely many polymorphisms from F .
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Proof. Suppose that Pol(fPCSP(A,OR)) contains only finitely many polymorphisms
from idF . Let M be an obstruction for idf for some f ∈ F . Note that since M is an
obstruction for an idempotent polymorphism, no row in M is all-ones. Let S be the set
of rows that are not equal to 0ℓ, k′ = |S| and let M ′ denote the k′ × ℓ sub-matrix of
M given by the rows of S. The predicate A0

S is clearly not empty since the columns of
M ′ come from A0

S . And since M ′ has no all-ones row, A0
S cannot have a forced 1-bit,

establishing property (i).
By construction M ′ has no constant rows and hence f and idf behave the same on

M ′. Thus M ′ is also an obstruction of f for Pol(fiPCSP(A0
S ,OR)), which together with

F being minion-atomic establishes property (ii).

With these pieces in place let us formulate the characterization for idMaj.

Lemma 4.9. fPCSP(A,OR) admits only finitely many polymorphisms from idMaj if
and only if there exists a subset S ⊆ [k] such that A0

S is non-empty and does not have a
forced 1-bit, and fPCSP(A0

S ,OR) admits only finitely many polymorphisms from Maj.

Proof. The forward direction is Lemma 4.8 with F = Maj. For the other direc-
tion, suppose that for some S ⊆ [k], A0

S is non-empty with no forced 1-bit and
fPCSP(A0

S ,OR) admits only finitely many polymorphisms from Maj. By Lemma 4.6,
fPCSP(A0

S ,OR) admits also only finitely many polymorphisms from idMaj, but since
Pol(fPCSP(A0

S ,OR)) ⊇ Pol(fPCSP(A,OR)), the latter then also contains only finitely
many functions from idMaj.

The characterization for idPar is analogous.

Lemma 4.10. fPCSP(A,OR) admits only finitely many polymorphisms from idPar if
and only if there exists a subset S ⊆ [k] such that A0

S is non-empty and does not have a
forced 1-bit, and fPCSP(A0

S ,OR) admits only finitely many polymorphisms from Par.

Proof sketch. The proof is identical to the proof of Lemma 4.9, with Maj replaced by Par
and the invocation of Lemma 4.6 replaced by Lemma 4.7.

4.4 Proof of Lemma 4.2

In this section we establish our main tractability lemma for fiPCSPs, restated here for
convenience.

Lemma 4.2. Consider the following five families of idempotent (block-)symmetric func-
tions: majority (Maj), odd parity (Par), alternating threshold (AT), idempotized minority
(idMaj), and idempotized even parity (idPar). For each of these families F , there exists
a predicate A such that fiPCSP(A,OR) admits infinitely many polymorphisms from F ,
but only finitely many from the other four families.

1. A = {01, 10, 11} is an example that only admits Maj.

2. A = {001, 010, 100, 111} is an example that only admits Par.

3. A = {00011, 00101, 00110, 01000, 10000} is an example that only admits AT.

4. A = {0011, 0100, 0110, 1000, 1001} is an example that only admits idMaj.

5. A = {00111, 01010, 01101, 10000, 10011} is an example that only admits idPar,
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Proof of Lemma 4.2. We verify the five cases one by one. Note that by Claims 2.17, 2.19,
2.21 and 4.1, the five families of functions are all essentially minion-atomic and hence to
prove that we do not have infinitely many from one of the families, it suffices to exhibit
a single obstruction for that family.

1. A = {01, 10, 11}. In this case we have a1 + a2 ≥ 1 for all a ∈ A, so by Lemma 4.3
we get infinitely many polymorphisms from Maj. Obstructions for the other families
are:

Par3 :

(
011
101

)
,AT3 :

(
011
110

)
, idMaj3 :

(
011
101

)
, idPar5 :

(
00111
11001

)
.

2. A = {001, 010, 100, 111}. In this case we have a1 ⊕ a2 ⊕ a3 = 1 for all a ∈ A, so by
Lemma 4.4 we get infinitely many polymorphisms from Par. Obstructions for the
other families are:

Maj3 :

001
010
100

 ,AT3 :

011
010
110

 , idMaj5 :

00111
01111
10111

 , idPar3 :

001
010
100

 .

3. A = {00011, 00101, 00110, 01000, 10000}. In this case we have 2a1 + 2a2 + a3 +
a4 + a5 = 2 for all a ∈ A, so by Lemma 4.5 we get infinitely many polymorphisms
from AT. Obstructions for the other families are:

Maj3 :


001
010
000
100
100

 ,Par3 :


000
000
011
101
110

 , idMaj3 :


000
000
011
101
110

 , idPar3 :


001
010
000
100
100

 .

4. A = {0011, 0100, 0110, 1000, 1001}. Checking the conditions of Lemma 4.9 requires
an exhaustive search over sets S ⊆ [4] that we omit in this version. Obstructions
for the other families are:

Maj3 :


001
010
100
100

 ,Par5 :


00011
01100
10100
10001

 ,AT5 :


00011
01100
11000
10010

 , idPar3 :


001
010
100
100

 .

5. A = {00111, 01010, 01101, 10000, 10011}. Checking the conditions of Lemma 4.10
requires an exhaustive search over sets S ⊆ [5] that we omit in this version.
Obstructions for the other families are:

Maj5 :


00011
01100
10100
11000
10100

 ,Par3 :


000
011
101
110
101

 ,AT7 :


0001111
0110000
1100000
1011010
1101010

 , idMaj3 :


000
011
101
110
101

 .
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4.5 Tractability in the Non-idempotent Case

To find the (block)-symmetric polymorphisms needed to apply the BLP+AIP algorithm
in the non-idempotent case Lemma 4.6 and Lemma 4.7 tells us that idPar and idMaj are
not needed since they can be replaced by their non-idempotent counter-parts. It turns
out that also AT is not essential.

Lemma 4.11. If Pol(fPCSP(A,OR)) contains infinitely many polymorphisms from AT,
then Pol(fPCSP(A,OR)) also contains infinitely many polymorphisms from at least one
of Maj or Maj.

Proof. According to Lemma 4.5, if Pol(fPCSP(A,OR)) contains infinitely many poly-
morphisms from AT then there exists integers c1, . . . , ck ≥ 0, not all 0, such that

∑k
i=1 ciai

has the same value b for all a ∈ A.
If b ≥

∑k
i=1 ci/2, then according to Lemma 4.3, Pol(fPCSP(A,OR)) contains infinitely

many polymorphisms from Maj. It easy to see, by an argument similar to the proof
of Lemma 4.3 that if b ≤

∑
i ci/2, then Pol(fPCSP(A,OR)) contains infinitely many

polymorphisms from Maj.

We conclude from Lemmas 4.6, 4.7 and 4.11 that if Pol(fPCSP(A,OR)) contains
infinitely many polymorphisms from AT, idPar, or idMaj, then Pol(fPCSP(A,OR)) also
contains infinitely many polymorphisms from at least one of Maj,Par,Maj, or Par. Thus,
to establish tractability of fPCSP(A,OR), it is not necessary to consider any of AT, idPar,
or idMaj.

4.6 Conditions for Promise-usefulness

In the previous sections, we identified some specific families of block-symmetric polymorph-
isms, Maj,Par,AT, idMaj, or idPar, that can be used to show that A is fiPCSP(A,OR)
is tractable. It turns out that only the first two out of the five are relevant to establish
promise usefulness and we have the following tractability theorem.

Theorem 4.12. A predicate A ⊆ {0, 1}k is fiPCSP-useful and fPCSP-useful if either

1. There exists integers α1, . . . , αn that are not all 0, such that for all a ∈ A,
∑

i αi(ai−
1/2) ≥ 0.

2. There exists a non-empty subset β ⊆ [k] such that for all a ∈ A, ⊕i∈βai is constant
(either 0 or 1).

Furthermore, if A does not satisfy any of the conditions above, then for all b /∈ A,
Pol(fPCSP(A⊕b,OR)) contains at most finitely many polymorphisms from Maj,Par,AT, idMaj,
and idPar.

Proof. That the conditions are sufficient to establish tractability is more or less already
established in Lemma 4.3 and Lemma 4.4, respectively. For majority (the first case) we
define b ∈ {0, 1}k as

bi =

{
0 if αi ≥ 0

1 otherwise.

and it is easy to see that fiPCSP(A ⊕ b,OR) admits Maj, and thus it is tractable. In
the second case, if the parity is odd (the constant is 1), then fiPCSP(A,OR) admits Par
and thus fiPCSP(A,OR) is tractable. Otherwise, if the parity is even (the constant is 0),
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then by toggling one bit in β we can effectively achieve odd parity. Let b ∈ {0, 1}k be 0
everywhere expect for a single index i ∈ β where bi = 1. We get that fiPCSP(A⊕ b,OR)
admits Par, and thus fiPCSP(A⊕ b,OR) is tractable.

We now prove the final part of the theorem: if neither condition holds, then A is not
fPCSP-useful via any of Maj, Par, AT, idMaj, or idPar. The cases of Maj or Par follows
directly from the corresponding conditions stated in Lemma 4.3 and Lemma 4.4.

By Lemmas 4.6, 4.7 and 4.11, if fPCSP(A⊕ b,OR) admits one of AT, idPar, or idMaj,
then fPCSP(A⊕b,OR) admits at least one ofMaj,Par,Maj, or Par. Since we have already
established thatMaj and Par cannot be polymorphisms, the only remaining cases areMaj,
and Par. Note that if fPCSP(A⊕ b,OR) admits Maj or Par, then fPCSP(A⊕ b⊕ 1k,OR)
admits Maj or Par, which we have already ruled out as a possibility. The conclusion is
that A cannot be fPCSP-useful via any of Maj, Par, AT, idMaj, or idPar.

5 Hardness conditions for Promise-SAT

Our general tool to prove hardness is Theorem 2.15 – whenever all polymorphisms of
fiPCSP(A,OR) have small fixing assignments, it is NP-hard. However it is not clear for a
general A how to check this condition, so in this section we develop a number of general
conditions that are sufficient (but not necessary) to guarantee that all functions in a
minion M have small fixing assignments, while still being relatively easy to test for.

Throughout this section, we often apply terminology for functions to minions, meaning
that all functions in the minion have a property. For example a folded minion is a minion in
which all functions are folded. Similarly we say that M has small fixing sets/assignments
if all f ∈ M have a fixing set/assignment of size at most t for some constant t.

Let us also introduce some notation used in this section. For a minion M, let
M0 ⊇ M be the minion consisting of all functions f obtained by taking a function
g ∈ M and fixing some, possibly empty, set of variables to 0. Analogously we denote
by M1 and M0,1 the minions obtained by allowing fixing variables to 1, and to both 0
and 1, respectively. It is good to keep in mind that even if M only contains folded and
idempotent functions this is no longer true for these derived minions. For a function
f : {0, 1}ℓ → {0, 1} which is not identically 0, let minw(f) = min{w(x) | f(x) = 1 }.

5.1 Overview

An obvious necessary condition for a folded minion M to have small fixing assignments
is that all (non-constant) f ∈ M have bounded minw(f) (i.e., a low-weight assignment x
such that f(x) = 1). Note that in the case of monotone (non-decreasing) functions, this
condition is also sufficient, but in general it is not. It is not clear whether characterizing
this low-weight property is any easier than characterizing small fixing assignments, but
our first step is to observe that this property is easily characterized in M0 (which gives a
simple sufficient condition for M to have the property):

Claim 5.1. Let M be a minion. Then every f ∈ M0 which is not identically 0 has
minw(f) ≤ t− 1 if and only if ANDt ̸∈ M0.

Proof. Clearly if ANDt ∈ M0 then this is a function with minw(f) ≥ t. In the other
direction, suppose ANDt ̸∈ M0, take any not identically 0 function f ∈ M0, and let S
be a minimum-cardinality set of coordinates such that f(S) = 1. Consider the function
g ∈ M0 of f of arity |S| obtained from f by fixing all variables outside S to 0. By the
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minimality of S, we see that g = AND|S|. Hence we conclude that minw(f) = |S| < t
(using the simple fact that M0 also does not contain any ANDt′ for t

′ > t as shown in
Claim 2.22).

In the following subsections we proceed to give several incomparable conditions, which,
together with ANDt ̸∈ M0, are sufficient to guarantee small fixing assignments. Some
needed definitions are given below but in summary the conditions are as follows.

1. M only contains functions with small matching number (Lemma 5.4 in Section 5.2).
In this case we even obtain small fixing sets.

2. M only contains functions with small inverted matching number (Lemma 5.8 in
Section 5.3).

3. M only contains unate functions, and additionally M0 not containing arbitrarily
large ANDNOR functions (Lemma 5.10 in Section 5.4), where

ANDNORt(x) = x1 ∧ NOR(x2, . . . , xt) = x1 ∧ ¬x2 ∧ . . . ∧ ¬xt.

Forbidding large ANDNOR is a natural variant of the AND condition which guar-
antees that a small number of additional variables can be set to 0 to extend a
low-weight 1-assignment to a fixing assignment.

Many predicates A yield a minion that satisfies one of the three conditions above but
it turns out that a “bottleneck” (in the sense that a large fraction of hard promises A
are not covered by it) is the shared condition ANDt ̸∈ M0 for guaranteeing that minw(f)
is small. To address this, we identify a second, more complicated, explicit condition
for bounding minw(f), which we refer to as M being t-ADA-free (Definition 5.11) This
condition can replace the AND condition in all three of the fixing assignment results
mentioned above, resulting in stronger versions (Theorems 5.16, 5.17 and 5.18) of these
results which significantly reduces the number of predicates A that we are unable to
classify.

As one last step to further sharpen these results, we give a different condition for the
unate case (item 3) above, where instead of forbidding the ANDNOR function (which
seems to be the main bottleneck after introducing ADA-freeness), we forbid certain
functions that we refer to as UnCADAs and UnDADAs (Theorem 5.21 in Section 5.7).
Thus we have in total four different hardness conditions and Figure 1 gives a graphical
overview of these.

Crucially, given a concrete predicate A ⊆ {0, 1}k, checking all the various properties
shown in Figure 1 for M = Pol(fiPCSP(A,OR)) can be done relatively efficiently because
they all boil down to (non-)existence of certain polymorphisms of small constant arity.
We discuss these computational aspects in more detail in Appendix A.

5.2 Bounded Matchings

An immediate consequence of Claim 5.1 is, as mentioned in the overview, that if all
functions in M are monotone and ANDt ̸∈ M0, then all f ∈ M have fixing sets of size
at most t − 1. However, the monotonicity property can be relaxed, leading us to the
following notion which quantifies to what extent a function can take the value 1 on a
large number of disjoint sets.
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UnCADA-free

Figure 1: Overview of the conditions required for Theorems 5.16, 5.17, 5.18 and 5.21
that ensure the existence of small fixing assignments.

Definition 5.2. Let f : {0, 1}ℓ → {0, 1}. A matching of f of size t is a collection of
t disjoint subsets S1, S2, . . . , St of [ℓ] such that f(Si) = 1 for all i ∈ [t]. The matching
number of f is the maximum size of any matching of f .

A folded idempotent Boolean function is monotone if and only if it has matching
number 1. This is because two sets S ⊂ T such that f(S) = 1 and f(T ) = 0 implies that
f is 1 on the two disjoint sets S and T . Hence the notion of having bounded matching
number can be viewed as a generalization of monotonicity. If the functions of a minion
M have bounded matching number, then this rules out families such as Par and AT from
M, but it does not rule out Maj.

Remark 5.3. If a folded function f has a t-fixing set then it has a matching number at
most t. This follows since if f(S) = 1 then S must intersect the fixing set, otherwise the
fixing set would force f(S) = 1 contradicting that f is folded. In other words, if we are
looking for small fixing sets, then bounded matching number is a necessary condition to
achieve this.

Having bounded matching number and forbidding AND in M0 is enough to conclude
the existence of small fixing sets.

Lemma 5.4. Let M be a folded idempotent minion, and suppose that there exists
constants t1, t2, such that

1. ANDt1 ̸∈ M0.

2. Every f ∈ M has matching number ≤ t2.

Then all f ∈ M have a fixing set of size at most (t1 − 1) · t2.

Proof. Let f ∈ M and let S1 be the smallest cardinality subset such that f(S1) = 1
(note that M being idempotent guarantees S1 is non-empty). Let S2 be the smallest
cardinality subset disjoint from S1 such that f(S2) = 1. Continue this procedure until
there is no set S disjoint from all selected sets such that f(S) = 1. Suppose the sequence
we end up with is S1, S2, . . . Sm. Since f has matching number ≤ t2, we know that m ≤ t2
and since f is folded, f(S) = 1 for any set that contains the union of the selected sets
and hence

⋃
i∈[m] Si is a fixing set.

Finally by Claim 5.1 it follows that we can ensure |Si| ≤ t1 − 1 for each i and hence
the fixing set

⋃
i∈[m] Si is of size at most (t1 − 1)t2, as desired.
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5.3 Bounded Inverted Matchings

For the condition in Section 5.2 using bounded matching numbers, it is natural to consider
a variant where a function cannot have many disjoint sets of variables that can flip the
function from 1 to 0. This leads us to the following definition.

Definition 5.5. For a function f : {0, 1}ℓ → {0, 1} and a, possibly empty, set S ⊆ [ℓ]
such that f(S) = 1, an inverted matching of size t of f with respect to S is a collection
of t disjoint subsets T1, . . . , Tt of [ℓ] such that f(S ∪ Ti) = 0 for all i ∈ [t]. The inverted
matching number of f is the maximum size of any inverted matching of f with respect
to any S ∈ f−1(1).

To obtain small fixing assignments for functions with low inverted matching number,
we also need a condition that guarantees that we can always make the sets Ti involved in
an inverted matching small. With these definitions, we then have the following direct
generalization of Lemma 5.4.

Lemma 5.6. Let M be a minion such that:

1. NANDt1 ̸∈ M0,1, and

2. Every f ∈ M has inverted matching number ≤ t2.

Then for any f ∈ M and S such that f(S) = 1, there is a set T , disjoint from S, of size
at most (t1 − 1)t2 such that setting xS = 1 and xT = 0 is a fixing assignment of f .

Proof. The proof is analogous to that of Lemma 5.4. Create a sequence T1, . . . , Tm

of subsets where Ti is a minimum-cardinality set of coordinates disjoint from S and
T1, . . . , Ti−1 such that f(S ∪ Ti) = 0, stopping when no more such sets exist. Since f has
bounded inverted matching number, we have m ≤ t2. Furthermore, it is clear that fixing
S to 1 and the coordinates of T :=

⋃m
i=1 Ti to 0 is a fixing assignment for f , so it remains

to bound the size |T |.
Consider the function g ∈ M0,1 of arity |Ti| obtained from f by fixing all variables

of S to 1 and all variables outside S ∪ Ti to 0. By the minimality of Ti, the function g
is the NAND|Ti| function and hence |Ti| ≤ t1 − 1. Thus |T | =

∑
|Ti| ≤ (t1 − 1) · t2, as

desired.

For folded minions, bounded inverted matching number implies not having NAND.

Claim 5.7. Let M be a folded minion. If all f ∈ M have inverted matching number
< t, then NANDt ̸∈ M0,1.

Proof. Suppose for contradiction that NANDt ∈ M0,1. Since M is folded this happens if
and only if NORt ∈ M0,1 (because in the folded setting, switching which variables are
fixed to 0 and which variables are fixed to 1 takes a function f to its dual). In other words,
if NANDt ∈ M0,1 there is a function f ∈ M of arity t+2 such that f(0, 1, x) = NORt(x).
In particular f(0, 1, 0t) = 1, and f(0, 1, ei) = 0 for 1 ≤ i ≤ t, so f has inverted matching
number at least t.

Combining Claims 5.1 and 5.7 and Lemma 5.6 yields the following immediate corollary.

Lemma 5.8. Let M be a folded minion such that ANDt1 ̸∈ M0 and all f ∈ M have
inverted matching number ≤ t2. Then all f ∈ M have a fixing assignment of size at most
t1 − 1 + t22.
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Proof. By Claim 5.7 we know that NANDt2+1 /∈ M0,1 and by Claim 5.1 we have
minw(f) ≤ t1 − 1 for any f ∈ M. The lemma now follows by Lemma 5.6.

Note that unlike Lemma 5.4, this result does not need M to be idempotent. It is
also possible to refrain from using Claim 5.7 and instead get the same result with the
requirement that M is folded replaced by NANDt ̸∈ M0,1.

5.4 Unate Functions

Let us turn to a different generalization of being monotone. A function is unate if
for each variable xi, f is either positive in xi or negative in xi (or both, if f does not
depend on xi). In other words there cannot exist an i and two sets S, T such that both
f(S) < f(S ∪ {i}) and f(T ) > f(T ∪ {i}). Note that in a fixing assignment for a unate
function, we can without loss of generality set all positive variables included to 1, and
all negative variables included to 0. This motivates the following strategy: first pick a
small set S of positive variables such that f(S) = 1 (as guaranteed by e.g. Claim 5.1).
Then pick a small number T of negative variables, such that even if all other negative
variables outside T are set to 1, f still equals 1. Fixing S to 1 and T to 0 then yields a
fixing assignment of size |S|+ |T |.

In order to bound the size of T in this plan, we can employ a similar idea as in Claim 5.1.
The function to forbid is now the less natural function ANDNORt = x1∧NOR(x2, . . . , xt).
We have the following lemma.

Lemma 5.9. Let M be an idempotent and unate minion such that ANDNORt ̸∈ M0

for some t ≥ 2. Then for every f ∈ M and every S such that f(S) = 1, there is a set
T ⊆ [ℓ] \ S of size |T | ≤ t− 2 such that setting xS = 1 and xT = 0 is a fixing assignment
of f (of size |S|+ |T |).

Proof. Let Y be the set of negative variables of f (except those included in S, if any)
and let T ⊆ Y be minimal such that f(S ∪ (Y \ T )) = 1 (such a T exists since T = Y
satisfies the requirement). Construct a function g ∈ M0 of arity |T |+ 1| by fixing all
variables of [ℓ] \ (S ∪ Y ) to 0, identifying all variables of S ∪ (Y \ T ) into a new variable
x0, and keeping the variables of T as x1, . . . , x|T |. By the minimality of T , the function g
satisfies

g(1, x1, . . . , x|T |) = NOR(x1, . . . , xt)

Furthermore, since M is idempotent we have g(0, 0, . . . , 0) = 0, which together with g
being non-positive in x1, . . . , x|T | implies that g(0, x1, . . . , x|T |) = 0. We thus see that
g = ANDNOR|T |+1 and hence since ANDNORt ̸∈ M0 (and using Claim 2.22) we have
|T |+ 1 < t.

To see that setting xS = 1 and xT = 0 yields a fixing assignment, note that since f is
unate we have for any such x that f(x) ≥ f(S ∪ (Y \ T )) = 1.

Claim 5.1 and Lemma 5.9 yield the following immediate corollary.

Lemma 5.10. Let M be an idempotent and unate minion such that ANDt1 ̸∈ M0 and
ANDNORt2 ̸∈ M0 for some t1, t2. Then every f ∈ M has a (t1+t2−3)-fixing assignment.

Proof. Let f ∈ M. If f is identically 0 it has an empty fixing assignment, otherwise
Claim 5.1 yields an S of size at most t1 − 1 such that f(S) = 1, and then by Lemma 5.9
there is a T of size at most t2 − 2 which together with S forms a fixing assignment of
size |S|+ |T | = t1 + t2 − 3.
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5.5 Beyond AND: Approximate Double-Ands

While not á priori clear, it turns out from experiments that the main bottleneck in the
hitherto described hardness conditions is Claim 5.1 which guarantees that all f ∈ M
have low-weight 1-assignments whenever ANDt ̸∈ M0. To alleviate this we now give a
weaker sufficient condition to bound minw(f). The idealized type of function we now
want to forbid are functions of the form AND(xS) ∨ AND(xT ) for two overlapping but
incomparable sets S and T of size ≥ t. This is still somewhat restrictive, and the actual
functions we forbid can be viewed as approximate versions of this. Let us give the formal
definition.

Definition 5.11. For positive integers c, d, a (c, d)-ADA (Approximate Double-AND)
is a (c+ 2d)-ary function f : {0, 1}d × {0, 1}c × {0, 1}d → {0, 1} such that the following
holds:

(a) f(1d, 1c, 0d) = f(0d, 1c, 1d) = 1,

(b) f(x, y, z) = 0 if w(x) + w(y) + w(z) < c+ d.

(c) f(x, y, z) = 0 unless at least two of x, y, z are all-1s

We say that a minion M is t-ADA-free, t ≥ 2, if it does not contain a (t− d, d)-ADA for
any 1 ≤ v ≤ t− 1.

It is easy to see that being t-ADA-free is a weaker property than not having ANDt.

Claim 5.12. Let M be a minion. If ANDt ̸∈ M0 then M0 is t-ADA-free.

Proof. To prove the contrapositive, note that if M0 contains a (c, d)-ADA f(x, y, z) for
some c+ d = t then fixing z = 0d yields the ANDt function.

We have the following technical lemma, which effectively generalizes Claim 5.1.

Lemma 5.13. Let M be a minion such that M0 is t-ADA-free for some t ≥ 2. Then
for every f in M0 which is not identically 0, at least one of the following two properties
holds:

1. minw(f) ≤ t− 1, or

2. S ∩ T = ∅ for every pair of inclusion-wise minimal S, T ∈ f−1(1).

In the next section, we show how this enables us to strengthen the hardness conditions
of the previous sections that were based on Claim 5.1. But first, let us prove the technical
lemma.

Proof. We proceed by induction on the arity ℓ of f . The base cases ℓ ≤ t clearly holds –
either minw(f) ≤ t− 1, or the only set in f−1(1) is [ℓ] itself.

For the inductive step consider a function f : {0, 1}ℓ → {0, 1} and suppose the lemma
is true for all ℓ′ < ℓ. Suppose for contradiction that the lemma fails for f , i.e.,

1. minw(f) ≥ t, and

2. There exists inclusion-wise minimal S, T ∈ f−1(1) such that S ∩ T ̸= ∅.
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Note that we must have S ∪ T = [ℓ], since otherwise fixing a variable of f outside
S ∪ T to 0 yields a contradiction to the inductive hypothesis. Among all possible ways of
choosing the pair (S, T ), choose one which minimizes (|S|, |T |) (i.e., first minimize |S|,
then subject to this minimize |T |). We then have the following claim.

Claim 5.14. |S| = |T | = t.

Proof. Let us start with |S| and suppose for contradiction that |S| > t ≥ 2. Let i, j ∈ S
be such that either both are in T or neither are in T (since |S| ≥ 3 such i, j must
exist). Consider the minor g of f obtained by identifying xi and xj , and the sets of
coordinates S′ and T ′ obtained from S and T by identifying these two coordinates; note
that |S′| = |S| − 1, while |T ′| is either |T | − 1 or |T | depending on whether the identified
coordinates i, j are in T or not.

Since S′ and T ′ are inclusion-wise minimal sets in g−1(1) that intersect, the inductive
hypothesis implies that minw(g) = t− 1. It follows that there exists a set X ⊆ [ℓ] of size
|X| = t < |S|, containing i, j, such that f(X) = 1. Since S is inclusion-wise minimal
we cannot have X ⊆ S. But then (X,S) would have been a valid choice of the sets
(S, T ) as they intersect at i. Since S was chosen with minimum possible cardinality, this
contradicts the assumption that |S| > t.

Having established |S| = t, suppose for contradiction that |T | > t. This means that
|T \ S| ≥ 2 (since S cannot be contained in T ). Repeating the argument above with two
elements in T \ S we establish the existence of an X ⊆ [ℓ] of size |X| = t and intersecting
T \S with f(X) = 1. By inclusion-wise minimality of T , X must intersect [ℓ] \T = S \T
and hence (S,X) would have been a valid choice of the sets (S, T ).

Let c = |S∩T | and d = |S \T | = |T \S| = t−c. By reordering the ℓ = |S∪T | = c+2d
variables of f we can write f as a function f(x, y, z) on {0, 1}d × {0, 1}c × {0, 1}d, with
x being the variables from S \ T , z the variables from T \ S, and y the variables from
S ∩ T . We claim that with this ordering of the variables, f is a (c, d)-ADA. To wit, let
us verify the properties:

(a) f(1d, 1c, 0d) = f(0d, 1c, 1d) = 1. This is clear since the first value is f(S) and the
second is f(T ).

(b) f(x, y, z) = 0 if w(x)+w(y)+w(z) < c+d. This follows since minw(f) ≥ t = c+d.

(c) f(x, y, z) = 0 unless at least two of x, y, z are all-1s. Suppose for contradiction
that this is not true and take a counterexample (x, y, z) of minimum weight w(x) +
w(y)+w(z). Assume without loss of generality that x ̸= 1d (otherwise, we can swap
the roles of S and T which swaps x and z). We then have (y, z) ̸= (1c, 1d), and in
particular the subset S̃ ⊆ [ℓ] of 1-coordinates of (x, y, z) satisfies the following two
properties:

• S̃ ̸⊇ S (since x ̸= 1d) and S̃ ̸⊇ T (since (y, z) ̸= (1c, 1d)).

• S̃ is inclusion-wise minimal in f−1(1) (since (x, y, z) were chosen with minimum
possible weight)

Now consider the function f̃ ∈ M0 of arity ℓ−1 obtained by fixing some coordinate
in S \ S̃ to 0. Then (S̃, T ) is a pair of inclusion-wise minimal but intersecting
sets in f̃−1(1) and hence minw(f̃) ≤ t− 1 by the induction hypothesis, but then
minw(f) ≤ minw(f̃) ≤ t− 1.
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Thus we have now established that f ∈ M0 is a (t− d, d)-ADA, which contradicts
the fact that M0 is t-ADA-free, and the inductive step follows.

A useful corollary of the technical lemma is the following.

Corollary 5.15. Let M be a folded minion such that M0 is t-ADA-free. Then for every
f ∈ M it holds that minw(f) ≤ t− 1.

Proof. Proof by induction on the arity ℓ of f . As base case we have ℓ < 2t− 1 for which
the result is trivially true since every folded function f of arity ℓ has minw(f) ≤ ⌈ℓ/2⌉.

For the inductive case assume the claim is true for ℓ− 1 and assume for contradiction
that it is false for some f of arity ℓ ≥ 2t− 1 > t. For two arbitrary coordinates i, j ∈ [ℓ],
consider the minor g of f formed by identifying i and j. By the induction hypothesis,
there is a set S′ of size ≤ t− 1 for g such that g(S′) = 1. Since f does not have such a
set, S′ must include the new coordinate. Replacing the new coordinate by i and j we get
a set S ⊆ [ℓ] of size t such that f(S) = 1 and i, j ∈ S.

Let i′ ∈ S and j′ ̸∈ S, and repeat this process to obtain a set T ⊆ [ℓ] of size t such that
f(T ) = 1 and i′, j′ ∈ S. This gives two intersecting sets contradicting Lemma 5.13.

5.6 Strengthened Hardness Conditions

Using the notion of t-ADA-free minions we can strengthen the previous conditions for
small fixing assignments.

Theorem 5.16 (Strengthening of Lemma 5.4). Let M be a folded idempotent minion
such that M0 is t1-ADA-free and every f ∈ M has matching number f ≤ t2. Then all
f ∈ M have a fixing set of size at most (t1 − 1) · t2.

Theorem 5.17 (Strengthening of Lemma 5.8). Let M be a folded minion such that M0

is t1-ADA-free and all f ∈ M have inverted matching number ≤ t2. Then all f ∈ M
have a fixing assignment of size at most t1 − 1 + t22.

Theorem 5.18 (Strengthening of Lemma 5.10). Let M be a folded, idempotent, and
unate minion such that M0 is t1-ADA-free and ANDNORt2 ̸∈ M0. Then every f in M
has a (t1 + t2 − 3)-fixing assignment.

Theorems 5.17 and 5.18 follow immediately from Corollary 5.15 combined with
the previous results. For Theorem 5.17 we use Lemma 5.6 and Claim 5.7 while for
Theorem 5.18 we use Lemma 5.9.

Theorem 5.16 is not quite as immediate, because the proof of the original condition
Lemma 5.4 uses the conclusion of Claim 5.1 that all f ∈ M0 have small minw(f) (as
opposed to the other two results which only use the property that all f ∈ M have small
minw(f)), and this is not guaranteed by Lemma 5.13 or Corollary 5.15. Nevertheless, we
can extend the proof of Lemma 5.4 to obtain the desired result.

Proof of Theorem 5.16. We begin as in the proof Lemma 5.4, picking a sequence of
disjoint S1, . . . , Sm such that each f(Si) = 1 and Si is of minimum possible cardinality
subject to being disjoint from S1 ∪ . . . ∪ Si−1 (the assumption that f is idempotent
guarantees Si ̸= ∅). The union of these forms a fixing set and m ≤ t2. If all |Si| ≤ t1 − 1
then we are done.

Otherwise, let i be the first index such that |Si| ≥ t1, and consider the function g ∈ M0

obtained by fixing the coordinates of S1, . . . , Si−1 to 0. Since minw(g) = |Si| ≥ t1, we
have by Lemma 5.13 that all inclusion-wise minimal sets in g−1(1) are pairwise disjoint.
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This implies that Si, . . . , Sm are the only inclusion-wise minimal sets in g−1(1) and
in particular any T ∈ g−1(1) contains Sj for some j ∈ {i, . . . ,m}. Thus picking one
coordinate each from the sets Si, . . . , Sm yields a hitting set for g−1(1) and setting these
together with S1, . . . , Si−1 to 0 yields a fixing assignment forcing f(x) = 0 of size at most
(i− 1)(t1 − 1) +m− i+ 1 ≤ (t1 − 1) ·m ≤ (t1 − 1) · t2. As f is folded, the variables set
to 0 is fixing set.

5.7 Beyond ANDNOR: Unate Controlled ADAs

In this section we focus on unate minions and describe another sufficient condition for
such minions to have small fixing assignments. We say that a function f is (p, q)-unate if
it can be written as f : {0, 1}p × {0, 1}q → {0, 1} where f(x, y) is non-negative in x, and
non-positive in y (if f does not depend on some variable it can be placed in either group,
so it is possible for a function to be both (p, q)-unate and (p+ 1, q − 1)-unate).

For fixing assignments of unate functions, we say that S ⊆ [p], T ⊆ [q] of sizes |S| = s
and |T | = t is an (s, t)-fixing assignment for a (p, q)-unate function f : {0, 1}p×{0, 1}q →
{0, 1} if f(S, T ) = 1 (i.e., setting all non-negative variables of S to 1, and all non-positive
variables of T to 0, fixes f to 1). Our general goal in this section is to identify finite
conditions which are sufficient to guarantee that all functions in a unate minion have
(t− 1, 1)-fixing assignments for some t, i.e., fixing assignments of size t which sets one
variable to 0 and t− 1 variables to 1.

Similar to the approach in Section 5.5 and the notion of t-ADA-free minions, the
condition is based on forbidding certain functions that look similar to a disjunction of two
overlapping ANDs, but in this case each of the ANDs is “controlled” by some negative
inputs and we generally refer to them as Controlled ADAs. There are (unfortunately)
two very similar but subtly different types of functions. Let us define the first (main)
type.

Definition 5.19. A (c, d)-UnCADA (Unate Controlled Approximate Double-AND) is a
(c+ 2d+ 1, 3)-unate folded and idempotent function f : {0, 1}c+2d+1 × {0, 1}3 → {0, 1}
such that

(a) f(1d1c0d0, 011) = f(0d1c1d0, 101) = 1

(b) for every x ∈ {0, 1}c+2d and y ∈ {0, 1}2 such that w(x) ≤ c+ d− 1 and w(y) ≥ 1 it
holds that f(x0, y1) = 0.

A minion M is t-UnCADA-free, t ≥ 2, if it does not contain a (t− d, d)-UnCADA for
any 1 ≤ d ≤ t− 1.

It may be instructive to compare Definition 5.19 with Definition 5.11 of (c, d)-ADAs,
since the definitions are very similar. The conditions (a) in both definitions are essentially
the same, saying that f has two 1-assignments with a certain overlap pattern determined
by c and d. Likewise the conditions (b) are analogous, with the main difference stemming
from Definition 5.19 requiring that f is positive in the x-variables and negative in the
y-variables (unlike an ADA, which has no such requirements). Another minor difference
is the presence of the last positive variable in Definition 5.19, which is 0 in all prescribed
function values. This takes a similar role as M0 does in previous arguments – rather
than dropping this variable and using M0 being UnCADA-free, we explicitly include it
in the definition and operate directly on the original M. The reason for this is to be able
to require f being positive in this variable.

The second type of function has an easier definition.
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Definition 5.20. For t ≥ 3, a t-UnDADA (Unate Double-controlled Approximate Double-
AND) is a (t, 4)-unate folded and idempotent function f : {0, 1}t × {0, 1}4 → {0, 1} such
that

(a) f(1t−10, 0011) = f(01t−1, 1001) = 1

(b) for every x ∈ {0, 1}t and y ∈ {0, 1}3 such that w(x) ≤ t− 1 and w(y) ≥ 2, it holds
that f(x, y1) = 0

Thus in a UnDADA, two negative variables (“control bits”) need to be set to 0 to
activate each of the “ANDs”, as opposed to a single negative variable in an UnCADA.
One important but subtle difference in the definition is that an UnCADA has an extra
positive variable which is 0 in all prescribed function values, but the UnDADA does not
have this. While this may seem like a minor detail, it turns out to be very important –
there are many minions of interest which do not have t-UnDADAs, but that would have
them if we were to add the additional 0-variable in the UnDADA definition.

We are finally ready to state our fixing assignment condition.

Theorem 5.21. Let M be a folded, idempotent, and unate minion which is t-ADA-free,
t-UnCADA-free, and does not have a t-UnDADA. Then every f ∈ M has a (t−1, 1)-fixing
assignment.

Let us first prove the following preparatory general claim, which does not require any
specific properties of M but captures how the inductive hypothesis is used in the proof.

Claim 5.22. Let M be a unate minion such that all (p − 1, q)-unate f ∈ M and all
(p, q − 1)-unate f ∈ M have a (t − 1, 1)-fixing assignment. Then for any (p, q)-unate
f ∈ M, either f has a (t− 1, 1)-fixing assignment, or the following conditions all hold:

(a) For any i ∈ [p] and j ∈ [q], f has a (t, 1)-fixing assignment (S, T ) such that i ∈ S
and j ̸∈ T .

(b) For any i ∈ [p] and j ∈ [q], f has a (t − 1, 2)-fixing assignment (S, T ) such that
i ̸∈ S and j ∈ T

(c) For any j, j′ ∈ [q], f has a (t− 1, 2)-fixing assignment (S, {j, j′}).

Proof. For (a) and (b), identify the positive variable i ∈ [p] and the non-positive j ∈ [q]
to obtain a minor g. The function g is either a (p−1, q)-unate or (p, q−1)-unate function,
so by the assumption of the lemma, g has a (t− 1, 1)-fixing assignment (S′, T ′). Note
that the newly created variable cannot be included in the fixing assignment – if it was, it
would either correspond to a (t− 1, 2)-fixing assignment which sets the negative variable
j to 1, or a (t, 1)-fixing assignment which sets the positive variable i to 0, and in either
case one variable can be dropped to obtain a (t− 1, 1)-fixing assignment for f .

This implies that (S′∪{i}, T ′) and (S′, T ′∪{j}) are fixing assignments of f , establishing
items (a) and (b).

The last item (c) follows in a similar manner by identifying the two negative variables
j and j′, obtaining a (p, q − 1)-unate function. The resulting minor g must now have a
(t− 1, 1)-fixing where the non-positive variable used is the newly identified variable.

Proof of Theorem 5.21. Consider a general (p, q)-unate function f ∈ M. We do double
induction on p and q. The base cases p ≤ t− 1 are trivial as M is idenpotent. For the
inductive step, we have to treat the first step p = t differently, so we divide into two
cases p = t and p > t.
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Case 1: p = t The case p = t is special and requires a bit of extra care (in fact
it may be more instructive to read the general case p > t below first). In this case
the base cases q ≤ 2 follow by f being folded – any folded (p, q)-unate function has a
(⌈p/2⌉, ⌈q/2⌉)-fixing assignment. So we may assume q ≥ 3.

For i ∈ [p] and j, j′ ∈ [q], let us say that the triple (i, j, j′) is fixing if ([p]− i, {j, j′})
is a (t− 1, 2)-fixing assignment of f . By Claim 5.22 we have the following two properties:

• For every i ∈ [p] and j ∈ [q], there is a j′ ∈ [q] such that (i, j, j′) is fixing.

• For every j, j′ ∈ [q], there is an i ∈ [p] such that (i, j, j′) is fixing.

These two properties imply that there are two fixing triples (i1, j1, j
′) and (i2, j2, j

′)
with i2 ̸= i1 and j2 ≠ j1. (To see this, note that if this was not the case then the second
property would imply that there is a unique i such that for every j, j′ only (i, j, j′) is
fixing, but this contradicts the first property.)

Let S1 = [p]− i1, T1 = {j1, j′}, S2 = [p]− i2, and T2 = {j2, j′} – these are now two
(t − 1, 2)-fixing assignments such that S1 ̸= S2 but not disjoint, and T1 ̸= T2 but not
disjoint. Create a minor g(x, y) of f on {0, 1}t × {0, 1}4 as follows:

• x are the t coordinates of [p], with i1 as x1 and i2 as xt.

• y1, y2, y3 are the 3 coordinates j1, j
′, j2 of T1 ∪ T2.

• y4 is the remaining q − 3 coordinates of [q], identified to a single variable.

We can now check that g is in fact a t-UnDADA. It is folded and idempotent since f
is. Let us verify the other properties.

(a) g(1t−10, 0011) = f(S1, T1) = 1
g(01t−1, 1001) = f(St, T2) = 1

(b) If w(x) ≤ t−1 and w(y) ≥ 2 then g(x, y1) = 0 since f does not have a (t−1, 1)-fixing
assignment.

This contradicts the assumption that M does not have a t-UnDADA, so f must have
a (t− 1, 1)-fixing assignment.

Case 2: p > t. When p > t, the base cases q ∈ {0, 1} follow by M being t-ADA-free
and Corollary 5.15, so we may assume q ≥ 2. By Claim 5.22 and the inductive hypothesis,
f has a (t, 1)-fixing assignment (S1, T1 = {j1}). Applying Claim 5.22 again to some i ̸∈ S1

(such i exists since p ≥ t+ 1) and j1, we see that f also has a (t, 1)-fixing assignment
(S2, T2 = {j2}) such that i ∈ S2 and T2 = {j2} ≠ {j1} = T1. In particular S1 ̸= S2 and
T1 ̸= T2.

Let c = |S1 ∩ S2| and d = |S1 \ S2| = |S2 \ S1|. Create a minor g(x, y) of f on
{0, 1}c+2d+1 × {0, 1}3 as follows:

• x1 . . . xd are the coordinates of S1 \ S2.

• x1+d . . . xc+d are the coordinates of S1 ∩ S2.

• xc+d+1 . . . xc+2d are the coordinates of S2 \ S1.

• xc+2d+1 are the remaining positive coordinates, [p] \ (S1 ∪ S2), identified to a single
variable.
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• y1 is the coordinate T1.

• y2 is the coordinate T2.

• y3 are the remaining negative coordinates [q] \ (T1 ∪ T2), identified to a single
variable.

Some of these (in particular the variables identified into xc+2d+1 and y3) might be empty,
in which case g simply does not depend on that variable.

We can now check that g is in fact a (c, d)-UnCADA. It is idempotent and folded
since f is. Let us verify the other properties.

(a) g(1d1c0d0, 011) = f(S1, T1) = 1
g(0d1c1d0, 101) = f(S2, T2) = 1

(b) For any x ∈ {0, 1}c+2d and y ∈ {0, 1}2 such that w(x) ≤ c + d − 1 = t − 1 and
w(y) ≥ 1, it holds that g(x0, y1) = 0 since f does not have a (t − 1, 1)-fixing
assignment.

This contradicts the assumption that M is t-UnCADA-free, so f must have a (t−1, 1)-
fixing assignment. This concludes the p > t case of the proof, and finishes the overall
proof.

Example 5.23. The main reason for the introduction of the hardness condition given
by Theorem 5.21 that uses UnCADA and UnDADA is to capture the hardness of
fiPCSP({0011, 0101, 0110, 1000, 1001},OR). This predicate is the lone example for k = 4
of a PCSP whose hardness is not captured by any of the other hardness conditions
(Theorems 5.16, 5.17 and 5.18). The inspiration for Theorem 5.21 came directly from
studying the polymorphisms of this PCSP.

6 Results for Small Arities

In this section we use the tools developed to classify predicates of small arities. It turns
out that we are able to completely characterize all predicates of arity k ≤ 4. For arity
k = 5, we are able to classify the vast majority of predicates but there is a small fraction
(≈ 10−5) of predicates left unclassified by the conditions in Section 5. We do not study
the case of k ≥ 6 due to the large number of different predicates which makes them
difficult to study individually even by computer.

There are several algorithmic aspects to consider when applying our algorithm and
hardness conditions to a given Promise-SAT problem. These are discussed in some detail
in Appendix A.

6.1 Results for Promise-SAT (with idempotence)

Let us start by discussing the complexity of fiPCSP(A,OR) for all predicates of arity
k ≤ 5.

6.1.1 Equivalence Classes

Since the OR predicate is symmetric, taking a predicate A and permuting the k input
bits has no effect on the complexity of fiPCSP(A,OR). Thus any two predicates which
differ only by such a permutation are considered equivalent, and we only consider one
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predicate from each equivalence class. Thus while the total number of predicates of arity
k equals 22

k−1 − 1 (one −1 comes from A not accepting the all-0 string, the other from

A being non-empty), the total number of equivalence classes is approximately 22
k−1

k! (but
a bit larger because some equivalence classes are smaller than k!).

The representative of each equivalence class is chosen as follows. Each A is naturally
identified by the integer r(A) =

∑
x∈A 2b(x), where b(x) means that we interpret x ∈

{0, 1}k as an integer in base 2. E.g., the predicate A = {001, 011} on three bits would
be identified by r(A) = 21 + 23 = 10. For each equivalence class of predicates we choose
the member for which this identifier is minimized as the representative of the class. For
example, in the case of k = 2, we have 5 different equivalence classes. The representatives
of these are {01}, {01, 10}, {11}, {01, 11}, {01, 10, 11}.

6.1.2 Summary

It turns out that for k ≤ 4, we are able to determine the complexity of fiPCSP(A,OR)
for all A while for arity k = 5, we are able to classify all except 189 out of the over 18.6
million predicates. A summary is given in Table 3.

Table 3: Summary of classification of complexity of fiPCSP(A,OR) for A of arity up to 5.

k = 2 5 5 0 0

k = 3 39 33 6 0

k = 4 1 991 956 1 035 0

k = 5 18 666 623 1 290 862 17 375 572 189

Total Tractable NP-hard Unknown

For the tractable predicates, it is interesting to analyze which families of block-
symmetric polymorphisms are admitted by fiPCSP(A,OR). As discussed in Section 4
we have only seen five families of polymorphisms that enable us to apply the BLP+AIP
algorithm. The relative frequencies of the five families are given in Table 4. It is
interesting to note that majority is, by a huge margin, the most useful polymorphism.

Table 4: Overview of sources of tractability for fiPCSP(A,OR). The number after the
slash is the count of predicates that admit the corresponding family of poly-
morphisms. The number before the slash is the count of predicates that only
admit this family and none of the other four families.

k = 2 1/5 0/4 0/4 0/4 0/4

k = 3 13/31 1/19 0/18 0/17 0/17

k = 4 720/915 31/219 0/172 1/163 0/162

k = 5 1 267 621/1 282 927 7 259/21 557 15/11 485 260/11 970 11/11 182

Maj Par AT idMaj idPar

For the hardness results, we have several different conditions which guarantee small
fixing assignments. The frequencies at which they apply are shown in Table 5. It may
seem surprising that all four conditions give essentially the same set of hard predicates,
but this is because most predicates are hard for many reasons. A perhaps more fair
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picture is given by only looking at the minimal hard A’s. Note also that Theorem 5.18
(for the unate case) does not yield any hardness results that are not also given by one of
the three other results. This is not surprising as the more complicated Theorem 5.21 was
designed to provide stronger hardness in the unate case. However we are not aware of a
proof that Theorem 5.21 covers all results implied by Theorem 5.18 so we include also
the latter in the overview.

Table 5: An overview of all known NP-hard predicates for each k. The table count of
how many different predicates that satisfies each category. The second number
of each pair is the number of predicates that satisfy this condition while the
first only counts the number of predicates that satisfy no other condition.

k = 2 0/0 0/0 0/0 0/0

k = 3 0/6 0/6 0/6 0/6

k = 4 2/1 029 0/1 031 0/1 030 1/1 032

k = 5 409/17 368 311 93/17 373 401 0/17 371 388 687/17 355 043

Theorem 5.16 Theorem 5.17 Theorem 5.18 Theorem 5.21

6.1.3 Detailed results

Let us now provide a more detailed inspection of the tractable and NP-hard predicates.
For each arity up to 4, we describe the minimal NP-hard, and maximal tractable predicates.
Minimal/maximal here means that if we remove/add one satisfying assignment from/to
that predicate, then the complexity for the predicate changes. By the monotonicity of
fiPCSP(A,OR) (Fact 2.4), the complexity of any other predicate can be derived from
these two lists of minimal NP-hard and maximal tractable predicates.

For the tractable predicates, we indicate which families of polymorphisms enable
applying the BLP+AIP algorithm for this predicate, and for the NP-hard predicates we
indicate which of the different hardness conditions yields the hardness result.

Arity 2. In the case of k = 2, the situation is very simple as all 5 predicates are
tractable – they can be solved by 2-SAT. In polymorphism terminology they all allow
the Maj family.

Arity 3. For k = 3 there are a total of 39 non-equivalent predicates of which 33 are
tractable and 6 are NP-hard. There are two maximal easy predicates and these are given
in Table 6. A * indicates that this coordinate can take any value. It is easy to see that
the first predicate is parity and the second 2-SAT in the first two variables. There is a
single minimal NP-hard predicate, given in Table 7. It is “1-in-3-SAT” augmented with
a single assignment of weight two.
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Table 6: A list of the two maximal tractable predicates for k = 3. The second number in
the last column indicates the number of tractable predicates that are subsets
of this predicate. The first number counts the number of such predicates not
subset of any other maximal tractible predicate.

1. {001, 010, 100, 111} ✓ 2/7

2. {*01, *10, *11} ✓ 26/31

Predicate Maj Par AT idMaj idPar Dep.

Table 7: The only minimal NP-hard predicate for k = 3.

{001, 010, 011, 100} ✓ ✓ ✓ ✓

Predicate 5.16 5.17 5.18 5.21

Arity 4. For k = 4 there are a total of 1991 predicates of which 956 are tractable and
1035 are NP-hard. There are six maximal tractable predicates, given in Table 8. Easy to
recognize predicates are parity of all variables (predicate number 3) and parity of the
first three variables (number 4). Our old friend 2-SAT is present as number 5 while the
sixth predicate is (non-strict) majority of all four variables. The first two predicates are
less standard. There are 14 minimal NP-hard predicates of arity 4, given in Table 9.
These are more difficult to name and we indicate what properties we can establish of the
polymorphisms.

Table 8: A list of the 6 maximal tractable predicates for k = 4. The last column is as in
Table 6 and the ∗s indicated that this position is free to take any value.

1. {0011, 0101, 0110, 1000} ✓ ✓ 1/7

2. {0011, 0100, 0110, 1000, 1001} ✓ 1/17

3.
{0001, 0010, 0100, 0111, 1000, 1011,

1101, 1110} ✓ 11/34

4. {*001, *010, *100, *111} ✓ 24/79

5. {**01, **10, **11} ✓ 684/905

6.
{0011, 0101, 0110, 0111, 1001, 1010,

1011, 1100, 1101, 1110, 1111} ✓ 10/179

Predicate Maj Par AT idMaj idPar Dep.

Table 9: A list of the 14 minimal NP-hard predicates for k = 4. The last column called
dependency lists how many predicates are NP-hard by direct implication and
how many of these which are not implied by any other predicate.

1. {0001, 0010, 0011, 0100} ✓ ✓ ✓ ✓ 45/570

2. {0001, 0011, 0101, 0110, 1000} ✓ ✓ ✓ 1/360

Predicate 5.16 5.17 5.18 5.21 Dep

Continued on next page
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3. {0011, 0100, 0111, 1000} ✓ ✓ ✓ ✓ 36/694

4. {0011, 0101, 0110, 0111, 1000} ✓ 1/240

5. {0010, 0100, 0110, 1001} ✓ ✓ ✓ ✓ 13/520

6. {0010, 0011, 0100, 0111, 1001} ✓ ✓ ✓ ✓ 5/560

7. {0011, 0101, 0110, 1000, 1001} ✓ 3/360

8. {0010, 0100, 0111, 1000, 1001} ✓ ✓ 1/398

9. {0011, 0100, 0111, 1001, 1010} ✓ ✓ ✓ ✓ 3/372

10. {0001, 0010, 0111, 1011, 1100} ✓ ✓ ✓ ✓ 2/304

11. {0001, 0010, 0100, 1000, 1111} ✓ 1/90

12. {0011, 0101, 0110, 1000, 1111} ✓ ✓ ✓ ✓ 1/220

13. {0001, 0010, 0111, 1000, 1111} ✓ ✓ ✓ ✓ 6/279

14. {0011, 0100, 0110, 1000, 1001, 1111} ✓ ✓ ✓ ✓ 1/200

Predicate 5.16 5.17 5.18 5.21 Dep

Arity 5. For k = 5 there are a total of 18 666 623 predicates of which 1 290 862 are
tractable, 17 375 572 are NP-hard and 189 are unknown. There are 32 maximal tractable
predicates, described in detail in Appendix B.1. There is a rather large number of
241 minimal hard predicates and we refrain from listing these. Of more interest are
the minimal and maximal of the 189 unknown predicates. There are 25 and 19 such
predicates, respectively, and they can be found in Appendix B.2. It is also interesting to
look at the distribution of tractable vs NP-hard predicates as a function of the number
of satisfying assignments, and this is shown in Figure 2.

6.2 Results for Promise-SAT (without idempotence)

Let us now turn to the non-idempotent setting and the complexity of fPCSP(A,OR).
Here we use Lemma 3.5, which as discussed in Section 3.1 effectively says that the
complexity of fPCSP(A,OR) is captured by either fiPCSP(A,OR) or fiPCSP(A⊕1k,OR),
whichever is easier (with the second option only being possible when 1k ̸∈ A).

In this setting, there is an additional symmetry causing the equivalence classes of
predicates to be larger: if 1k ̸∈ A, then the complexity of fPCSP(A,OR) is the same
as the complexity of fPCSP(A ⊕ 1k,OR) and thus we consider the two predicates A
and A ⊕ 1k equivalent. As a result the total number of non-equivalent predicates is
approximately 25% smaller in this setting than in the fiPCSP setting (approximately
half the predicates A satisfy 1k ̸∈ A and these are paired up in equivalent pairs by this
additional symmetry).

Using Lemma 3.5 together with our classification of fiPCSP(A,OR), it is straight-
forward to obtain a similar classification for fPCSP(A,OR). For brevity we only give
a summary in Table 10 and refrain from performing a deeper dive into the data, as it
looks largely similar to the idempotent case in Section 6.1. However one interesting
detail to note is that the relative number of unknown predicates for arity 5 is noticeably
smaller here than in Section 6.1. In other words many of the unknown predicates A for
fiPCSP(A,OR) are such that fPCSP(A,OR) is easy by virtue of having non-idempotent
block-symmetric polymorphisms (in particular either Maj or Par).
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Figure 2: Distribution of predicates A of arity 5 such that fiPCSP(A,OR) is tractable
or NP-hard, by weight. The number of unknown predicates is very small but exists for
weights between 6 and 12 (both inclusive), and can be glimpsed as thin red lines at
weights 6, 7, and 8.

Table 10: Summary of classification of complexity of fPCSP(A,OR) for A of arity up to
5.

k = 2 5 5 0 0

k = 3 32 28 4 0

k = 4 1 549 848 701 0

k = 5 14 003 603 1 253 003 12 750 541 59

Total Tractable NP-hard Unknown

6.3 Results for Promise-Usefulness

Finally let us consider the classification of which predicates A are promise-useful. As
shown in Corollary 3.6, the two á priori possibly different notions of fiPCSP-usefulness
and fPCSP-usefulness cannot be distinguished by BLP+AIP or small fixing assignments,
so the data we provide here applies for both fiPCSP-usefulness and fPCSP-usefulness.

After having classified the complexity of fiPCSP(A,OR) for all (or most) A, Lemma 3.2
gives a simple procedure to tell if a predicate A is fiPCSP-useful or fiPCSP-useless. It
states that A is fiPCSP-useful if and only if there exists b ̸∈ A such that fiPCSP(A⊕b,OR)
is tractable. If for a single b this is the case we can conclude that A is promise useful. On
the other hand we need to establish that it is NP-hard for all possible b to conclude that
A is promise-useless. This enables us to fully classify which predicates are promise-useful
for k ≤ 4 while for k = 5 the complexity of several predicates remains unknown.

In addition to the already applied symmetry of the input bits (Section 6.1.1), there is
now additional symmetry – clearly from the characterization above it follows that A and
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A⊕ b are equivalent (w.r.t. promise-usefulness) for any b ̸∈ A. Thus the total number
of (equivalence classes of) predicates is smaller here than in Section 6.1 by a factor of
roughly 2k−1 (since this is the typical number of b ̸∈ A).

Table 11 gives an overview of the number of promise-useful and promise-useless (and
unknown) predicates of arities up to 5.

Table 11: Summary of classification of promise-usefulness of predicates A of arity up to
5.

k = 2 4 4 0 0

k = 3 20 16 4 0

k = 4 400 230 170 0

k = 5 1 228 156 156 135 1 071 962 59

Total Useful Useless Unknown

Arity 2. Again for k = 2 all predicates are useful as they are indeed useful for OR.

Arity 3. For k = 3 it is again parity and 2-SAT that give the maximal useful predicates
as indicated in Table 12. We also have two minimally useless predicates as indicated by
Table 13.

Table 12: A list of the two maximal promise-useful predicates for k = 3.

1. {00*, 01*, 10*} ✓ 12/15

2. {000, 011, 101, 110} ✓ 1/4

Predicate Maj Par Dep.

Table 13: A list of the two minimal promise-useless predicates for k = 3.

1. {000, 001, 011, 101, 110} 2/3

2. {001, 010, 011, 100, 101, 110} 1/2

Predicate Dep.

Arity 4. The maximal useful predicates for k = 4 are shown in Table 14. The two first
maximal predicates correspond to 2-SAT and (non-strict) majority of 4 variables (recall
that we can negate variables – in our ordering the representatives chosen are the negated
versions of these two predicates). The other two predicates are parity constraints on
three or four variables. It turns out that there are 5 minimal useless predicates of arity 4
and these are given in Table 15.

Table 14: A list of the 4 maximal promise-useful predicates for k = 4.

1. {00**, 01**, 10**} ✓ 91/216

Predicate Maj Par Dep.

Continued on next page
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2.
{0000, 0001, 0010, 0011, 0100, 0101, 0110, 1000,

1001, 1010, 1100} ✓ 8/132

3. {000*, 011*, 101*, 110*} ✓ 3/21

4. {0001, 0010, 0100, 0111, 1000, 1011, 1101, 1110} ✓ 1/15

Predicate Maj Par Dep.

Table 15: A list of the 5 minimal promise-useless predicates for k = 4.

1. {0000, 0111, 1001, 1010, 1100} 19/132

2. {0001, 0010, 0011, 0111, 1001, 1010, 1100} 3/105

3. {0011, 0100, 0111, 1001, 1010, 1100} 10/138

4. {0011, 0101, 0110, 0111, 1000, 1001, 1010, 1100} 1/39

5. {0011, 0100, 0110, 0111, 1000, 1001, 1011, 1100} 1/29

Predicate Dep.

Arity 5. For k = 5 we have 6 maximal useful predicates shown in Table 16 – the 4
maximal predicates of arity 4, and two obvious generalizations of them to arity 5. Note
that the second predicate does not quite correspond to a simply majority predicate but
is a bit more complicated, whereas the last predicate is simply even parity on all five
variables. There is a large number of 73 minimal promise-useless predicates and we refrain
from listing these. Of more interest are the minimal and maximal predicates whose
promise-usefulness we are unable to classify. There are 9 and 7 of these, respectively, and
they can be found in Appendix B.3.

Table 16: A list of the 6 maximal promise-useful predicates for k = 5.

1. {00***, 01***, 10***} ✓ 91 485/141 063

2.

{00000, 00001, 00010, 00011, 00100, 00101,
00110, 00111, 01000, 01001, 01010, 01011,
01100, 01101, 01110, 10000, 10001, 10010,

10100, 11000}

✓ 355/30 027

3.
{0000*, 0001*, 0010*, 0011*, 0100*, 0101*,

0110*, 1000*, 1001*, 1010*, 1100*} ✓ 12 549/60 975

4. {000**, 011**, 101**, 110**} ✓ 205/645

5.
{0001*, 0010*, 0100*, 0111*, 1000*, 1011*,

1101*, 1110*} ✓ 58/458

6.
{00000, 00011, 00101, 00110, 01001, 01010,
01100, 01111, 10001, 10010, 10100, 10111,

11000, 11011, 11101, 11110}
✓ 50/150

Predicate Maj Par Dep.
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7 Asymptotic Bounds for Large Arities

In this section, we study promise-usefulness and fiPCSP(A,OR) for predicates A of large
arity k, and show that almost all such A, even with a relatively small number of satisfying
assignments, are hard.

Let Ak,p denote the distribution over a random predicate A on {0, 1}k, where each
x ∈ {0, 1}k is included in A with probability p, independently. We condition our results
on A not containing 0k. As the p we consider is very small this is a very mild conditioning
but allowing this to happen makes some of our arguments more uniform, avoiding special
cases.

Theorem 7.1. We have

Pr
A∼Ak,p

[
fPCSP(A,OR) admits a non-dictator | 0k ̸∈ A

]
≤ O

(
2k(e−p2k/6 + e−p22k)

)
.

In particular, for p is slightly larger than 2−k/6, a random predicate A from Ak,p is
NP-hard with high probability as k → ∞. It is not unlikely that the value for p can be
improved but currently we see no way of establishing hardness in the very sparse regime
with a p of the form 2o(k)−k, i.e., for predicates accepting only 2o(k) strings.

The problem is that very sparse predicates allow for all polymorphisms of small arity.
For example, suppose A contains K strings, and we are interested in polymorphisms of
arity 6. In this case there are K6 possible obstruction matrices, each being, except for
repetitions, totally random. The probability that an individual random matrix lacks any
fixed row, say 000001 is at most (63/64)k. Thus if K = 2o(k) all rows are likely to be
present in all matrices and thus all arity 6 functions are polymorphisms. This implies
that to get results for this small range of ps we need to analyze polymorphisms of large
arity and this seems to require new methods.

Let us turn to the proof of Theorem 7.1 and first prove that it is enough to study
polymorphisms of arity 6.

Claim 7.2. Let M be a minion containing a non-dictator function f : {0, 1}ℓ → {0, 1}.
Then M contains a non-dictator function g : {0, 1}6 → {0, 1} of arity 6.

Proof. A function is a non-dictator iff it depends on at least two variables and hence
there are inputs x and y and i ≠ j such that f(x) ̸= f(x⊕ ei) and f(y) ̸= f(y ⊕ ej). We
can divide the variables outside indices i and j into four groups depending on the value
of the pair (xk, yk). Identify the variables inside a group by a single variable. These four
variables jointly with i and j gives a six variable minor of f which is not a dictator.

Next we have the following observation.

Lemma 7.3. Let S ⊆ [k] be of cardinality L. The probability that there is some assignment

α on S such that A contains no string that is equal to α on S is bounded by 2Le−p2k−L
.

Proof. We do a union bound over different values of α (resulting in the factor 2L). Once
we fix α, there are 2k−L candidate strings that that are equal to α on S. The probability
that none of them belongs to A is (1− p)2

k−L ≤ e−p2k−L
.

We need one more simple fact.

Lemma 7.4. Fix an α ∈ {0, 1}k, α ̸= 0k. The probability that A does not contain two

strings a and b such that a⊕ b = α is at most e−p22k−1
.
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Proof. There are 2k−1 possible pairs (a, b) with the given property. Each pair is in A
with probability p2 and as they are disjoint, the events are independent, and the lemma
follows by a simple calculation.

Proof of Theorem 7.1. By Claim 7.2, it suffices to prove that with high probability,
A ∼ Ak,p has no non-dictator polymorphisms of arity 6. Let f be a non-dictator function
of arity 6 and let us construct an obstruction matrix for it. Let us first observe that
f , for each j either can written as xj ⊕ g(x′) where x′ gives the other five variables or
there is some input x(j) such that f(x(j)) = f(x(j) ⊕ ej) = 0. Using this observation and
permuting the variables we can assume that f(x) = ⊕t

i=1xi⊕g(x′) where x′ corresponds to
the variables xt+1 . . . x6 and we have assignments x(j) such that f(x(j)) = f(x(j)⊕ej) = 0
for t+ 1 ≤ j ≤ 6.

If g is constant then f is a parity function. In this case t is odd size since f is folded.
If t = 1 then f is a dictator and there is nothing to prove. If t = 5 we can make columns
equal reducing to the case t = 3. In this case, fix the first column to any element of
A. Then, since we condition on 0k ̸∈ A, Lemma 7.4 implies that we can, with high
probability, pick the second and third columns to complete the obstruction matrix. Even
using a union bound over all values of the first column, the failure probability is bounded
by 2ke−p22k−1

.
Now suppose that g is non-constant. We construct an obstruction matrix and suppose

for notational convenience that k/6 is an integer. For each value 1 ≤ j ≤ 6 we assign
k/6 rows. Let y and z be such that g(y) = 0 and g(z) = 1. Now for 1 ≤ j ≤ t we assign
k/6 rows that are either ej followed by z or 0t followed by y, For t+ 1 ≤ j ≤ 6 we have
k/6 rows that are either x(j) or x(j) ⊕ ej where x(j) is as discussed above. Note that, by
construction, f evaluates to 0 on each row and we claim that, with high probability, we
can make the choices such that each column belongs to A.

Let us first make the choices for the first t columns. Note for these columns, all
values outside the k/6 rows that belongs the column itself are independent of the choices
for other rows as the two alternatives give equal values in this coordinate. Hence using
Lemma 7.3, except with probability 25k/6e−p2k/6 we can make choices to make this column
belong to A.

The argument can now be repeated for the remaining 6 − j columns. The values
outside its own rows are now fixed and we can apply Lemma 7.3.

Remark 7.5. If we do not allow negations (and hence are interested in f which are
not folded), then the equivalent of Theorem 7.1 still holds. In this situation we need to
study PCSP(A,NAE). In the above proof we used twice that a potential polymorphism
is folded. Firstly to conclude that if f is a parity then this is of odd size. It is, however,
straightforward to deal with parities of even size. We also used the fact that there are
inputs x(j) such that f(x(j)) = f(x(j) ⊕ ej) = 0. This is no longer true if f is not folded.
The corresponding fact is that f takes the value b on at least half the inputs then for
each j it is possible to find a x(j) such that f(x(j)) = f(x(j) ⊕ ej) = b. It is then possible
to find an obstruction matrix where the output is bk. The rest of the proof is unchanged.
We omit the details.

As observed above the probability that A is useful for OR is bounded by 2−ω(k)

whenever p = ω(k2−k/6). The analysis that A is useful for any OR⊕b is identical and as
there are only 2k possible values for b we conclude that any such A is useless except with
probability 2−ω(k). We record this as a corollary.

41



Corollary 7.6. Suppose A is selected according to Ak,p. If p = ω(k2−k/6) then, except
with probability 2−ω(k), we have that A is promise-useless. This is true with or without
negations, as well as with or without allowed constants.

We next proceed to prove BLP+AIP is only applicable to very sparse random
predicates.

7.1 Threshold for the BLP+AIP Algorithm

In this section it is easier to work in ±1-notation with −1 taking the role of 1. We start
with a definition.

Definition 7.7. Let ϵ > 0. A set, A ⊆ {−1, 1}k is ϵ-somewhat spread if for any unit
vector u there is an a ∈ A such that ⟨a, u⟩ ≤ −ϵ.

We get an immediate consequence.

Lemma 7.8. Suppose ∥v∥ ≥ k/ϵ ≥ 1 and that A ⊆ {−1, 1}k is ϵ-somewhat spread. Then
there is an a ∈ A such that ∥v + a∥2 ≤ ∥v∥2 − k.

Proof. Take a vector in a with ⟨a, v⟩ ≤ −ϵ∥v∥. Then

⟨v + a, v + a⟩ = ⟨v, v⟩+ 2 ⟨a, v⟩+ ⟨a, a⟩ ≤ ∥v∥2 − 2ϵ∥v∥+ k ≤ ∥v∥2 − k.

We are interested in a second property of vectors and in order to formulate this we
need to study integer lattices. We start by recalling some basic definitions. We do not
state definitions in full generality and for a more careful treatment we refer to a text-book
such as [MG02]. In our case we are interested in lattices that are subsets of Zn and let
L be a generic lattice. It is usually given by a basis, (bi)

n
i=1 with integer coordinates

and L is given by the points
∑n

i=1 aibi where ai ∈ Z. In a basis the vectors are linearly
independent over R but it is possible to consider a larger set of possibly linearly dependent
vectors and use them as a generating set. The set of all integer combinations of such a
set is also a lattice and it is easy to compute a basis for this lattice given the generators.

The determinant, det(L), of L is the absolute value of the determinant of the matrix
which has the basis vectors as columns. As we are considering only lattices which are
subsets of Zn a lattice can be described by a set of modular equations. The system can
be written as

∑n
j=1 aijxj ≡ 0 modulo pmi

i where pi are (not necessarily distinct) prime
numbers and mi ≥ 1. The equations can be chosen such that

∏
i p

mi
i = det(L).

For any a ∈ A we create a vector a′ of dimension k + 1 by adding an additional
coordinate that always takes the value 1. Let L be the lattice in k + 1 dimension that
is generated by these vectors. We say that A is modular free if L consists of all integer
vectors where all coordinates have the same parity. As all a′ in the generating set have
this property property this is as large as L can be. The two defined properties just
defined turn out to imply that A does not have any (block)-symmetric polymorphisms
by the following lemma.

Lemma 7.9. Suppose A ⊆ {−1, 1}k is modular free and ϵ-somewhat spread for some
ϵ > 0. Then for all x ∈ {−1, 1}k, and all sufficiently large odd integers ℓ, the vector
(x1, . . . , xk, ℓ) can we written as a non-negative integer combination of a′ where a ∈ A.

Before proving this lemma we give the important corollary.
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Corollary 7.10. Suppose A is modular-free and ϵ-somewhat spread then for all sufficiently
large odd integers ℓ, fPCSP(A,OR) does not admit a block-symmetric polymorphism with
block sizes ℓ and ℓ+ 1.

Proof. Let x be an arbitrary element of A. By Lemma 7.9, the vectors (1k, ℓ), ((−1)k, ℓ)
and (−x, ℓ) can all be written as non-negative combinations of a′ for a ∈ A. Clearly then
also (0k, ℓ+ 1) can be written as such a combination.

A block-symmetric function f : {−1, 1}2ℓ+1 → {−1, 1} with block sizes ℓ and ℓ+1 can
be written as f(x) = g(

∑ℓ
i=1 xi,

∑2ℓ+1
i=ℓ+1 xi). Since (1k, ℓ), ((−1)k, ℓ) and (0k, ℓ+ 1) can

all be written as non-negative integer combinations as described above, we can create two
k× (2ℓ+1) matrices M (+) and M (−) such that f(x, y) = g(1, 0) for all rows of M (+) and
f(x, y) = g(−1, 0) for all rows of M (−). However if f is folded, one of g(1, 0) and g(−1, 0)
is false, yielding an obstruction to f being a polymorphism of fPCSP(A,OR).

Proof of Lemma 7.9. By the assumption of being modular-free we know that any integer
vector of the form (v, 0) where all components of v are even can be written in form∑

a∈A baa
′ for some integers ba. Let M be the maximal absolute value needed as a

coefficient to represent any vector v with norm at most 2k/ϵ. Define w = M
∑

a∈A a′ and
notice that ∥w∥ ≤ k2kM . Using Lemma 7.8 we can add additional vectors a′ with a ∈ A
to w such that for all sufficiently large odd ℓ we can get a vector of the form (v, ℓ) where
the length of v is bounded by k/ϵ. Using that (x − v, 0) can be written as an integer
combination of a′ with coefficients bounded by M we conclude that (x, ℓ) can be written
as a positive integer combination of a′ with a ∈ A. This follows as any coefficient of w
already is at least M preventing it from turning negative.

We need to prove that a random A has the two properties. On road to this we have
the following definition.

Definition 7.11. A set B ⊆ R of unit vectors is an ϵ-net if for each unit vector v ∈ Rk

there is b ∈ B such that ∥b− v∥ ≤ ϵ.

It is well known that it is possible to construct an ϵ-net of cardinality (1/ϵ)O(k)

[Koc94]. We want to prove that if A has Ck random elements for a sufficiently large
value of C, then it is very likely to be c-somewhat spread for an absolute constant c.
Before embarking on the proof let us point out that the result is straightforward if A has
Ck log k elements.

Let us consider an 1/4
√
k-net B. It has 2O(k log k) elements. Take any b ∈ B. The

probability that ⟨a, b⟩ ≤ −1/2 for a random a is easily seen to be Ω(1). By the union
bound, for a sufficiently large constant C, if we pick Ck log k random a, then, with high
probability, for each b ∈ B there exists and a ∈ A such that ⟨a, b⟩ ≤ −1/2. This implies
that for any unit vector u, if b is the closest element of B, then ⟨a, u⟩ ≤ −1/4 for any a
such that ⟨a, b⟩ ≤ −1/2. To make do with O(k) vectors in A we need a more complicated
argument and we use the techniques of [AH11]. Let us recall the highlights.

We choose B to be an ϵ-not for a small, but absolute constant ϵ specified below. Let
K be the convex body

∑
a caa

′ where ca ∈ [0, 1] and the sum is over a ∈ A. For any
direction b ∈ B we look at the number mb = minx∈K ⟨b, x⟩ and Mb = maxx∈K ⟨b, x⟩. By
inspection we have that mb =

∑
amin(0, ⟨b, a′⟩). When picking a random a we have that

⟨a′, b⟩ is a symmetric random variable with mean 0 and variance 1. It is not difficult
to see that the expectation of | ⟨a, b⟩ | is eb, where there are absolute constants, m and
M such that 0 < m ≤ eb ≤ M for any unit vector b. By symmetry it follows that
E[min(0, ⟨b, x⟩] = −eb/2.
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Set ϵ = m/16M and note that ϵ < 1/16. Using standard Chernoff estimates it follows
that, for sufficiently large constant C, with high probability when A has Ck random
vectors, then mb ≤ −Ckeb/4 and Mb ≤ Ckeb for any b ∈ B. Suppose this is the case.
We have some simple claims.

Claim 7.12. For any x ∈ K we have ∥x∥ ≤ 2CkM .

Proof. Take any vector x ∈ K and let b ∈ B be as close as possible to x/∥x∥. It is not
difficult to see that ⟨b, x⟩ ≥ ∥x∥/2 and the claim follows by the bound on Mb.

Claim 7.13. For any unit vector u we have mu ≤ −mCk/8.

Proof. As B is an ϵ-net we can write u = b+ w where b ∈ B and ∥w∥ ≤ ϵ. Take x ∈ K
that minimizes ⟨b, x⟩, then

⟨u, x⟩ = ⟨b, x⟩+ ⟨w, x⟩ ≤ −mCk/4 + ∥w∥∥x∥ ≤ −mCk/4 + 2CkMϵ ≤ −mCk/8.

As mu =
∑

a∈Amin(0, ⟨u, a′⟩) and the sum has Ck terms it follows from Claim 7.13
that A is m/8 well spread and we turn to the question of A being modular free.

We start by establishing that we get a full dimensional lattice.

Lemma 7.14. Suppose A contains 3k random elements, then there is a constant c < 0
such that with probability 1− 2−ck the vectors a′ for a ∈ A span Rk+1.

Proof. We select the elements of A one by one. We claim that if the corresponding
vectors a′ chosen so far do not span Rk+1 then with probability at least 1/2 the next
vector is linearly independent of the vectors so far. This follows as any k− 1-dimensional
space in Rk only contains at most half the points of the hypercube. This implies that the
probability of not spanning the entire space is at most the probability of getting k − 1
zeroes in a random binary string of length 3k. It is well known that the probability of
this event is as stated in the lemma.

The first time the vectors a′ span Rk+1 we can consider the full dimensional lattice, L0

spanned by these vectors. Hadamard’s inequality, saying that the determinant of a matrix
is at most the product of the lengths of the row vectors, implies that the determinant of
L0 is at most (k + 1)(k+1)/2. Let Lt be the lattice where we have added an additional
t elements to A. Suppose L0 is defined by the equations

∑
j aijxj = 0 modulo pmi

i for

i = 1, . . . r. By the bound on the determinant of L0 we know that r ≤ k log k. We first
treat powers of prime different from 2.

Lemma 7.15. Fix any prime p > 2 that divides det(L0). The probability that p divides
det(L3k) is bounded by 2−ck for some constant c > 0.

Proof. Each time we add a vector to A, the probability that a′ satisfies any existing
non-trivial relation modulo p is bounded by 1/2. To see this, assume without loss of
generality the relations depends on x− 1. Then, fixing all coordinate of a except the first,
only one of the two possible values for a1 makes the added vector satisfy the relation.
We have at most k− 1 linearly independent equations modulo p satisfied by L0. Thus for
p to divide det(L3k) an event that happens with probability 1/2 must happen at least 2k
times out of 3k possibilities. This is the same event as we considered in the proof of the
previous lemma.
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The situation for p = 2 is slightly different as each vector added has only odd
coordinates. Instead of ruling out relations modulo 2 we need to rule out relations
modulo 4 but nothing essential differs. We omit the details.

We sum up the above reasoning in a theorem.

Theorem 7.16. Suppose A is selected according to Ak,p. If p ≥ Ck2−k, then, for
a sufficiently large value of C, the probability that BLP+AIP can be used to solve
fiPCSP(A,OR) is 2−Ω(k).

8 Concluding Remarks

We have introduced the notion of promise-usefulness, and studied this in the folded
Boolean setting together with the closely related Promise-SAT problem. While many
questions remain on the road to a complete characterization, our results are strong enough
to characterize almost all predicates of arity up to five, as well as the vast majority of all
predicates of large arity.

The most obvious open problem is of course to obtain a complete classification of
promise-usefulness and Promise-SAT (a classification of the latter yields a classification of
the former, but not necessarily the other way around), and beyond that Boolean PCSPs
in general.

While we only studied the folded setting in this paper, the non-folded setting also
warrants investigation. When it comes to the distinction between the idempotent and
non-idempotent setting, the current techniques do not distinguish between them, and
it would be interesting to understand if this is true in general or not (see discussion in
Section 3.1).

The algorithmic results in this paper are applications of the known characterization
of the BLP+AIP algorithm. A key question here is of course whether there are tractable
cases of Promise-SAT (or again, more generally Boolean PCSP) which are not solvable
by BLP+AIP. Less ambitiously, it is not clear if there are examples of Promise-SAT
problems solvable by BLP+AIP but requiring other block-symmetric polymorphisms
than one of the five families used in this paper. If such examples turn out not to exist,
then the simple sufficient conditions of Theorem 4.12 are an exact characterization of
what can be shown promise-useful using BLP+AIP. The evidence for such a nice state of
affairs is not strong at this point but it is a possibility.

The hardness results are more involved, and we are quite certain that these can
be both improved and simplified. Among the four conditions for a minion having
small fixing assignments, Theorems 5.16 to 5.18 and 5.21, the first three are in our
opinion relatively natural. However, the fourth result based on UnCADA and Un-
DADA, Theorem 5.21, is different. It was specifically tailored to show the hardness of
fiPCSP({0011, 0101, 0110, 1000, 1001},OR) as mentioned in Example 5.23. The issue
with Theorem 5.21 is that the two families of polymorphisms involved, UnCADA and
UnDADA, are somewhat ad-hoc, and from a practical viewpoint they have relatively
high arity making them computationally expensive to test for. It is highly doubtful that
the route taken here is the right approach and there may exist a much simpler underlying
hardness condition that can replace Theorem 5.21.

In the asymptotic regime, it would be interesting to determine the threshold on the
number of satisfying assignments (as a function of the arity k) where most predicates
become useless. There is a rather large gap between the upper bound ≈ 25k/6 given by
Corollary 7.6, and the lower bound of ≈ k.
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8.1 Concrete Predicates

It would be interesting to classify also the small number of unknown predicates for
k = 5. Recall that, as stated in Appendix A.1, we have established that BLP+AIP
is not sufficient to prove tractability for these. However, while our concrete hardness
conditions are not sufficient to establish NP-hardness, it is conceivable that all remaining
unknown predicates have small fixing assignments and are thus NP-hard by Theorem 2.15
– we have not found any families of polymorphisms with arbitrarily large minimal fixing
assignments for any of the unknown predicates. Being less ambitious, one can try to
classify some of the concrete remaining individual predicates of arity five. Let us highlight
a few of them that we consider of particular interest.

1. Consider the predicate A that accepts the 10 cyclic strings of weight 2 or 3 where
all ones (and hence all zeroes) are consecutive. In other words,

A = {00011, 00110, 01100, 11000, 10001,
11100, 11001, 10011, 00111, 01110}.

This is a nice symmetric predicate, closed under both cyclic shifts and negations.
In our tables in Appendix B.2 listing minimal and maximal unknown predicates
for k = 5, the representative of A’s equivalence class is the 25th predicate in
Table 19 and the 16th predicate in Table 20. Notably, it is both a minimal and a
maximal unknown predicate, meaning that removing any assignment from A makes
fiPCSP(A,OR) tractable, and adding any assignment to A makes it NP-hard.

This predicate is perhaps even more interesting and natural in the non-folded
non-idempotent setting. In particular PCSP(A,NAE) is a natural discrepancy-
type hypergraph coloring problem: given an ordered hypergraph which has a
2-coloring with discrepancy 1 where all red vertices are consecutive within an edge,
the objective is to find a normal 2-coloring. This can be compared with the early
results on PCSPs [AGH17], establishing that this problem without the guarantee
on red vertices being consecutive is NP-hard (corresponding to the setting when A
is all strings of weight 2 and 3).

2. Consider the predicate A = {00111, 01011, 01100, 10001, 10010, 10100} (predicate
number 23 in Table 19. Unlike the previous example this has no clear structure
or symmetries, but it is still interesting for a few reasons: (i) fiPCSP(A,OR) has
a quite rich set of polymorphisms. For example, it admits AT13 (but not AT15),
which does not have fixing assignments of size 6. This is in contrast to the NP-hard
predicates of arity five, where we are typically able to bound the size of fixing
assignments by 4 or less. This suggests that some new ideas might be needed to
handle it. (ii) Almost half (93 out of 189) of the remaining unknown predicates of
arity 5 are supersets of A, so if fiPCSP(A,OR) is NP-hard this alone would reduce
the number of unknown predicates significantly.

This predicate and several other remaining ones in fact even have (7, 8)-block-
symmetric polymorphisms. The predicates of Table 19 that have this property are
predicates number 8, 13, 16, 21, 23, and 24.
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A Computational Aspects of The Conditions

In this section we discuss some practical details of how to check for the various conditions
described in the previous sections for concrete predicates. We first briefly discuss testing
applicability of the BLP+AIP algorithm and then discuss the various hardness conditions
in more detail.

A.1 Testing Applicability of BLP+AIP

Our tractability condition is to check whether fiPCSP(A,OR) can be solved using the
BLP + AIP algorithm. Here we use Theorem 2.12 and hence we need to study the
possible existence of (block-)symmetric polymorphisms of arbitrary large arity. We do
this in two steps.

We first test if Pol(fiPCSP(A,OR)) contains infinitely many functions from any of the
five families of (block-)symmetric functions from Lemma 4.2 – Maj,Par,AT, idMaj, idPar.
In the case of Maj,AT, idMaj, this test can be done using an LP-solver by finding the
separating hyperplanes described in Lemmas 4.3, 4.5 and 4.9. In the case of Par and
idPar, the affine conditions given by Lemmas 4.4 and 4.10 can be checked efficiently using
basic bit operations on integers.

If this test fails, then we test whether Pol(fiPCSP(A,OR)) does not contain large block-
symmetric polymorphisms of other kinds. According to Theorem 2.12 this is equivalent
to Pol(fiPCSP(A,OR)) not containing an (ℓ, ℓ+ 1)-block-symmetric polymorphism for
some ℓ. To use this condition we keep incrementing ℓ until we can establish that no
(ℓ, ℓ+ 1)-block-symmetric polymorphisms exist. In principle this process might not even
terminate, but it turns out that for k ≤ 5 this search terminates relatively quickly for all
remaining predicates. Even so this second step is relatively time-consuming, but in our
case when analyzing all predicates of a given arity, we can be speed it up significantly by
only performing it for (inclusion-wise) minimal predicates that are not resolved already
in the first step.

So following these steps, we can completely determine for which predicates A of
arity at most five fiPCSP(A,OR) can be solved using the BLP+AIP algorithm (and as
a by-product we also establish that all such predicates can be handled using the five
families of block-symmetric functions described above).
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A.2 Ruling out Restricted Polymorphisms

In general for a k-ary predicate A, the set of ℓ-ary polymorphisms Pol(fiPCSP(A,OR)) is
the solution set of a large k-SAT formula , where each matrix M ∈ Aℓ gives rise to a clause
f(M1) ∨ f(M2) ∨ . . . ∨ f(Mk), and we additionally require f(x) = ¬f(x) (folded) and
f(0k) = 0 (idempotent). All of our hardness conditions boil down to proving that there
are no ℓ-ary polymorphisms that take certain predefined values at a given list of inputs.
In principle this can then simply be checked by generating the aforementioned SAT
formula, fixing the predefined values, and then asking a SAT solver whether the formula
is satisfiable. In practice the formulas we are interested in are quite large (sometimes on
the order billions of clauses) and it is essential to use the predefined values already when
generating the SAT formula to avoid generating already satisfied clauses.

While these SAT formulas in general have a very large number of variables and
clauses and could be computationally infeasible to analyze, it turns out that they are in
practice often very easy. For the specific forbidden functions in our hardness conditions,
it surprisingly turns out that it is often possible to rule them out using simple unit
propagation of the restricted SAT formulas.

Several hardness conditions also involve the existence of certain functions f ∈
Pol(fiPCSP(A,OR))0 (the set of functions obtained by taking a polymorphism and fixing
some number of variables to 0). Any such function f of arity ℓ can be obtained from an
actual polymorphism f̃ of arity ℓ+1 by fixing a single bit to 0. I.e., Pol(fiPCSP(A,OR))0

contains a function f satisfying f(x) = y for all predetermined values (x, y) ∈ P if and
only if Pol(fiPCSP(A,OR)) contains a function f̃ satisfying f(0x) = y for all (x, y) ∈ P .

A.3 Sufficient parameters for small arities

In practice it can be difficult to find obstructions for polymorphisms of large arity because
the SAT formulas become very large. However, it is not always needed to consider high
arity polymorphisms. To illustrate this, we provide a table, Table 17, listing sufficient
values of the parameter t used in hardness conditions given by Theorems 5.16, 5.17, 5.18
and 5.21. The table contains the parameters that are sufficient to show that at least one
of the hardness conditions, Theorems 5.16, 5.17, 5.18 and 5.21, can be applied.

Table 17: Given any predicate A that we have identified is NP-hard using Theorems 5.16,
5.17, 5.18 and 5.21, this table contains the smallest values of t that we have
identified to be sufficient to apply at least one of theorems.

k = 3 1 2 2 2 3

k = 4 3 2 3 3 4

k = 5 3 3 5 4 4

Matching Inv. Matching t-ADA-free t-UnCADA-free t-UnDADA-free

Out of the different conditions given in the table, the most difficult one to handle
computationally is UnCADA. When k = 5 and t = 4, the polymorphisms in question
have arity 11. In our experience, identifying all predicates that are 4-UnCADA-free using
a Python script on a laptop is instantaneous for k = 3, requires several minutes for k = 4,
and takes several days for k = 5.

Another parameter of interest is the largest value of ℓ such that Pol(fiPCSP(A,OR))
contains a (ℓ, ℓ+ 1)-block-symmetric polymorphism but no (ℓ+ 1, ℓ+ 2)-block-symmetric
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polymorphism. Or in other words, what is the maximum value of ℓ for which fiPCSP(A,OR)
contains at least one (ℓ, ℓ+1)-block-symmetric polymorphism but where the PCSP is not
solvable by BLP+AIP. We verified numerically, by an exhaustive search, that if k = 3
then ℓ = 1, if k = 4 then ℓ = 3, and if k = 5 then ℓ = 7.

A.4 Unate Minions

The condition of a minion being unate is easy to check because of the following lemma.

Lemma A.1. A minion M contains only unate functions if and only if M does not
contain a function f of arity 5 satisfying

f(00011) = 0 f(00101) = 1

f(10011) = 1 f(10101) = 0

Proof. Suppose g ∈ M is not unate and let a and b witness this for some variable i.
Partition all variables j ̸= i into four groups depending on the values of aj and bj . Create
a minor f of g by identifying all variables in the same group with new variables and
keeping xi as its own variable. It is easy to check that with an appropriate ordering of
the five variables (xi becomes the first variable) this function f satisfies the constraints
above.

A.5 Bounded Matching and Inverted Matching

For bounded matchings, we base our test on the observation that having a matching
family of size t is in fact determined by having a polymorphism satisfying a condition
that only depends on t.

Lemma A.2. All functions in a minion M have matching number ≤ t if and only if M
does not contain a (t+ 2)-ary function f such that f({i}) = 1 for all 1 ≤ i ≤ t+ 1.

Proof. If all f ∈ M have matching number ≤ t then clearly M does not contain such
a function since it would have matching number t+ 1. n Conversely, assume M does
contains an ℓ-arity function g with matching number t+ 1, where the matching consists
of the sets S1, . . . , St+1. We can without loss of generality assume that

⋃
i Si ⊊ [ℓ] since

otherwise we could extend f to arity ℓ+ 1 by adding an extra unused variable to f .
Now the (t+ 2)-ary minor f of g obtained by identifying all variables inside each Si,

as well as the variables in [ℓ]− (S1 ∪ . . .∪St+1) is a function f of the prescribed type.

Remark A.3. Lemma A.2 gives a method to test whether all f ∈ M have matching
number t, but it does not say anything about how large t can be for our polymorphism
minions of interest coming from Promise-SAT problems. Clearly if the block-symmetric
functions Par and AT exist of arbitrarily large arity then M does not have bounded
matching number, but this is not particularly interesting since the existence of these
already guarantee tractability of the underlying Promise-SAT problem anyway. A more
useful property, which is applicable also in non-tractable cases, is whether M0 contains
arbitrarily large OR functions – it is easy to see that if this is the case then M does not
have bounded matching number (and also does not have bounded fixing sets). Somewhat
surprisingly, it turns out that for arity up to five, all fiPCSP(A,OR) problems that are
not tractable by BLP+AIP either have matching number at most 5, or have arbitrarily
large OR functions in M0 and therefore unbounded matching number.
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Analogously we have a similar characterization of inverted matching number.

Lemma A.4. All functions in a minion M have inverted matching number ≤ t if
and only if M does not contain a (t+ 3)-ary function f such that f({t+ 3}) = 1 and
f({i, t+ 3}) = 0 for all 1 ≤ i ≤ t+ 1.

The proof is identical to the preceding lemma and we omit it here.

A.6 The obstructions of ANDt ∈ M0

In Section 5 there are two types of hardness conditions, those based on ANDt ̸∈ M0 for
some t, Lemmas 5.4, 5.8 and 5.10, and the strictly stronger results based on M0 being
t-ADA-free for some t, Theorems 5.16, 5.17, 5.18 and 5.21. One of the reasons why we
choose to introduce hardness conditions based on ANDt ̸∈ M0, despite these results being
strictly weaker than those derived from being t-ADA-free, is that it is straightforward to
determine if ANDt ̸∈ Pol(fiPCSP(A,OR))0 for some t.

Let us see how to construct an obstruction matrix for ANDt ∈ Pol(fiPCSP(A,OR))0.
This is a matrix M ∈ At+1 where the first column corresponds to the variables fixed to
0 as discussed at the end of Appendix A.2. Using the fact that the polymorphisms of
fiPCSP(A,OR) are folded, the matrix is an obstruction of ANDt ∈ Pol(fiPCSP(A,OR))0

if and only if

• for every row i that starts with a 0, ANDt(M
2
i , . . . ,M

t+1
i ) = 0.

• for every row i that starts with a 1, ANDt(¬M2
i , . . . ,¬M

t+1
i ) = 0. Or in other

words, M2
i = . . . = M t+1

i = 0.

Start by fixing the first column of M . The second condition restricts the set of
columns to choose from to the subset of A with only zeroes in the positions where the
first column is one. For each such element, a, let Sa denote the set of coordinates where a
is zero. If the union of these sets does not cover the set of rows where the first column is
zero, then it is not possible to construct an obstruction matrix with this first column. If
the union of the Sa cover all rows where the first columns has a zero, then this coverage
can be used to construct an obstruction matrix if t ≥ k − 1. Note that we need at most
k−1 columns to cover all rows that start with a zero 3. This yields an obstruction matrix
for ANDk−1. Appending additional columns to this matrix gives an obstruction matrix
for larger t. We summarize this in a lemma.

Lemma A.5. We have ANDk−1 ∈ Pol(fiPCSP(A,B))0 if and only if ANDt ∈ Pol(fiPCSP(A,B))0

for every t ≥ k − 1.

A.7 The obstructions of ANDNORt ∈ M0

In order to be able to apply hardness conditions given by Lemma 5.10 and The-
orem 5.18 for unate polymorphisms, we need to be able to tell if there exists a t
such that ANDNORt ̸∈ Pol(fiPCSP(A,OR))0. The obstruction matrices of ANDNORt

can be constructed in a similar manner to those of ANDt. Using the fact that the
polymorphisms of fiPCSP(A,OR) are folded, a matrix M ∈ At+1 is an obstruction matrix
of ANDNORt ∈ Pol(fiPCSP(A,OR))0 if and only if

• for every row i that starts with a 0, ANDNORt(M
2
i , . . . ,M

t+1
i ) = 0.

3As a is not 0k, only at most k − 1 rows start with a zero.
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• for every row i that starts with a 1, ANDNORt(¬M2
i , . . . ,¬M

t+1
i ) = 0.

This equates to the following conditions.

• No row starts with 11.

• For every row i that starts with 01, ORt−1(M
3
i , . . . ,M

t+1
i ) = 1.

• for every row i that starts with 10, M3
i = . . . = M t+1

i = 1.

Analogously as with AND, we start by fixing the first two columns such that no row
starts with 11. The third condition then restricts the set of columns to choose from to the
subset of A with only ones in the positions where the first two columns are 10. For each
such element a, let Sa be the set of coordinates where a is 1. If the union the Sa does
not cover the set of all rows that start with 01, then it is impossible to satisfy the second
condition, implying that this choice of the first two columns cannot yield an obstruction
matrix. But if the union does cover all rows, then we can construct an obstruction matrix.
Note that we need at most k − 1 columns to cover to cover all the rows that start with
01 since there are at most k − 1 rows to be covered. This yields an obstruction matrix
for ANDNORk. Appending additional columns results in an obstruction matrix for larger
t. This is summarized in the following lemma, which is an analogue of Lemma A.5.

Lemma A.6. We have ANDNORk ∈ Pol(fiPCSP(A,B))0 if and only if ANDNORt ∈
Pol(fiPCSP(A,B))0 for every t ≥ k.

A.8 Monotonicity of ADA-free minions

When it comes to ADAs, these are more complicated to rule out. But we can at
least establish some basic monotonicity properties which reduce the amount of different
(c, d)-ADAs we have to forbid, and establishing that a t-ADA-free minion must also be
(t+ 1)-ADA-free.

Claim A.7. Let M be a minion. If M does not contain a (c, d)-ADA for some c, d ≥ 1,
then it also does not contain a (c+ 1, d)-ADA.

Proof. The contrapositive is easily proved: if f is a (c + 1, d)-ADA then the minor
obtained by identifying two y-variables is a (c, d)-ADA.

Claim A.8. Let M be a minion. If M does not contain a (c, d)-ADA for some d ≥ c ≥ 1,
then it also does not contain a (c, d+ 1)-ADA.

Proof. To prove the contrapositive, assume M contains a (c, d+ 1)-ADA f : {0, 1}d+1 ×
{0, 1}c×{0, 1}d+1. Consider the minor g : {0, 1}d×{0, 1}c×{0, 1}d obtained by identifying
xd with xd+1 and zd with zd+1, i.e.,

g(x, y, z) = f(x′, y′, z′)

where x′ = (x1, . . . , xd, xd), y′ = y, and z′ = (z1, . . . , zd, zd). We claim that g is a
(c, d)-ADA. Let us verify the properties.

(a) g(1d, 1c, 0d) = g(0d, 1c, 1d) = 1 by construction.
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(b) g(x, y, z) = f(x′, y′, z′) = 0 if w(x) + w(y) + w(z) < c + d. Note that if either
xd = 0 or zd = 0, then w(x′) + w(y′) + w(z′) ≤ w(x) + w(y) + w(z) + 1 <
c+ d+ 1 so f(x′, y′, z′) = 0 due to f being a (c, d+ 1)-ADA. If xd = zd = 1 then
w(x′)+w(y′)+w(z′) = w(x)+w(y)+w(z)+2. If w(x)+w(y)+w(z) < c+d−1 we are
again done, so the remaining case is xd = zd = 1 and w(x′)+w(y′)+w(z′) = c+d+1.
Note that since d ≥ c, not both of x′ and z′ can equal 1d+1. But since x′ and z′ are
both non-zero, this implies that at most one of x′, y′, z′ is all-ones, so f(x′, y′, z′) = 0
as desired since f is an ADA.

(c) g(x, y, z) = f(x′, y′, z′) = 0 unless at least two of x, y, z are all-1s is easily verified
by construction.

A.9 Monotonicity of UnCADA-free and UnDADA-free minions

The two families UnCADA (Unate Controlled Approximate Double-AND) and UnDADA
(Unate Double-controlled Approximate Double-AND) are part of the hardness condition
of Theorem 5.21. While their definitions arise naturally from the inductive proof of
Theorem 5.21, they are nonetheless quite intricate. Some monotonic properties of being
UnCADA-free and UnDADA-free follows almost directly from their definitions. Such
as M not containing (c, d)-UnCADA implying that M does not contain a (c + 1, d)-
UnCADA and M does not contain a t-UnDADA implying that M does not contain a
(t+ 1)-UnDADA.

Claim A.9. Let M be a minion. If M does not contain a (c, d)-UnCADA for some
c, d ≥ 1, then it also does not contain a (c+ 1, d)-UnCADA.

Proof. The contrapositive is easily proved: if f : {0, 1}(c+1)+2d+1 × {0, 1}3 → {0, 1} is a
(c+ 1, d)-UnCADA then the minor obtained from f(x, y) by identifying xd+1 and xd+2 is
a (c, d)-UnCADA.

Claim A.10. Let M be a minion. If M does not contain a t-UnDADA for some t ≥ 3,
then it also does not contain a (t+ 1)-UnDADA.

Proof. According to the definition of UnDADA, Definition 5.20, a function f : {0, 1}t ×
{0, 1}4 → {0, 1} is a t-UnDADA if and only if

(a) f(1t−10, 0011) = f(01t−1, 1001) = 1

(b) for every x ∈ {0, 1}t and y ∈ {0, 1}3 such that w(x) ≤ t− 1 and w(y) ≥ 2, it holds
that f(x, y1) = 0

From these conditions it follows that identifying the second and third variable of f
results in minor that is a (t−1)-UnDADA, assuming t ≥ 4. This shows that if M does not
contain a t-UnDADA for some t ≥ 3, then it also does not contain a (t+1)-UnDADA.

The following lemma establishes that if M is t-UnCADA-free, then it is also (t+ 1)-
UnCADA-free, a fact that is not immediately evident from its definition.

Lemma A.11. Let M be a minion. If M is t-UnCADA-free for some t ≥ 2, then it is
also (t+ 1)-UnCADA-free.

53



Proof. By Claim A.9, the assumption that M is t-UnCADA-free implies that it does not
contain a (c+ 1, t− c)-UnCADA for any 1 ≤ c ≤ t− 1, so it remains to prove that M
does not contain a (1, t)-UnCADA.

Suppose for contradiction that M contains a (1, t)-UnCADA f : {0, 1}2t+2 × {0, 1}3.
Consider the minor g(x, y) of f(x′, y) obtained by identifying x′t, x

′
t+1, and x′t+2. The

function g satisfies the following properties:

(a) g(1t−110t−10, 011) = f(1t110t−10, 011) ≥ f(1t10t0, 011) = 1 (since f is positive in
x), and analogously
g(0t−111t−10, 101) = 1.

(b) If w(x) < t − 1, or if w(x) < t + 1 and xt = 0, then g(x0, y1) = 0 for all y of
weight w(y) ≥ 1. This follows since such an input corresponds to an input x′, y
for f such that w(x′) < t+ 1 and w(y) ≥ 1 and hence f(x′0, y1) = 0 since f is a
(1, t)-UnCADA.

Thus, since g cannot be a (t− 1, 1)-UnCADA (by the assumption that M is t-UnCADA-
free), there must x′ of w(x′) = t+1 such that x′t = x′t+1 = x′t+2 = 1 and y with w(y) ≥ 1,
such that f(x′0, y1) = 1. Without loss of generality we may assume w(y) = 1 since f is
negative in y. Suppose y = 01 (the other case y = 10 is symmetric). Then f satisfies
f(x′0, 011) = 1 and f(1t10t, 101) = 1 since f is a (1, t)-UnCADA. Since w(x′) = t + 1
and xt = xt+1 = 1, there must be some t+ 2 ≤ i ≤ 2t+ 1 such that x′i = 0. Let I be the
set of all such i, and consider the minor h of f obtained by identifying all coordinates of
I with the last x-variable. We claim that, after applying an appropriate reordering of
variables, h is a (|I|+ 1, t− |I|)-UnCADA:

(a) There are two assignments x(1) and x(2) of weight t+ 1 and overlap |I|+ 1 such
that h(x(1)0, 011) = h(x(2)0, 101) = 1 – these are the two assignments x′ and 1t10t

with the coordinates of I removed.

(a) h(x0, y1) = 0 for all x of w(x) ≤ t and w(y) ≥ 1 follows since our identification of
the variables of I with the last x-variable is effectively just fixing those variables to
0.

But this is now a contradiction to the property, noted above, that M does not contain a
(c+ 1, t− c)-UnCADA for any 1 ≤ c ≤ t− 1.

B Lists of Predicates of Arity 5

In this section we list various interesting categories of predicates of arity 5.

B.1 Maximal Tractable Predicates for fiPCSP(A,OR)

The maximal tractable (as far as we know) predicates for fiPCSP(A,OR) of arity 5
are given in Table 18. Easy to recognize predicates are parity of three, four or five
variables (number 29, 27, and 28). Of course 2-SAT is present as number 30 as well
as the (non-strict) majority of four variables (number 31). Predicate 32 is the closely
related function which is a threshold function where the first coordinate has weight 2
and the other coordinates have weight 1.
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Table 18: A list of the 32 maximal tractable predicates for k = 5. See Table 6 (Sec-
tion 6.1.3) for explanation of the last column.

1. {00011, 00101, 00110, 01000, 10000} ✓ 1/11

2.
{00011, 00101, 00110, 01001, 01010,

01100, 10000} ✓ 3/21

3.
{00011, 00100, 00110, 01000, 01001,

10000, 10001} ✓ 2/48

4.
{00011, 00101, 00111, 01000, 01001,

10000, 10001} ✓ 1/51

5. {0011*, 0101*, 0110*, 1000*} ✓ ✓ 12/77

6.
{00011, 00101, 00111, 01000, 01010,

01100, 01110, 10000, 10001} ✓ 8/253

7.
{00010, 00110, 00111, 01000, 01001,

01100, 01101, 10001, 10010} ✓ 4/320

8.
{00111, 01001, 01010, 01101, 01110,

10000, 10011} ✓ 2/67

9.
{00011, 00110, 00111, 01000, 01001,

01100, 01101, 10001, 10011} ✓ 2/342

10.
{00100, 00101, 00110, 01010, 01101,

10000, 10001, 10010, 10011} ✓ 4/330

11. {0011*, 0100*, 0110*, 1000*, 1001*} ✓ 36/449

12.
{00101, 00110, 01001, 01010, 01101,
01110, 10000, 10001, 10010, 10011} ✓ 11/320

13.
{00110, 01001, 01100, 01101, 01110,

10000, 10001, 10010, 10011} ✓ 1/227

14.
{00010, 00100, 01010, 01011, 01100,

01101, 10001, 10010, 10100} ✓ 2/233

15.
{00011, 01001, 01010, 01101, 01110,

10011, 10100} ✓ 2/52

16.
{00111, 01001, 01010, 01101, 01110,

10011, 10100} ✓ 1/57

17.
{00110, 01000, 01001, 01010, 01101,

10000, 10001, 10011, 10100} ✓ 3/215

18.
{00110, 01001, 01011, 01100, 01110,

10000, 10001, 10011, 10100} ✓ 4/329

19.
{00110, 01001, 01010, 01101, 01110,

10000, 10001, 10011, 10100} ✓ 2/325

20.
{00110, 01001, 01100, 01101, 01110,

10000, 10001, 10011, 10100} ✓ 2/358

Predicate Maj Par AT idMaj idPar Dep.

Continued on next page
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21.
{00110, 01011, 01101, 01110, 10000,

10011, 10101} ✓ 2/63

22.
{00101, 01010, 01011, 01100, 01101,

10001, 10010, 10011, 10101} ✓ 2/184

23.
{00101, 01010, 01100, 01101, 01110,

10001, 10010, 10011, 10101} ✓ 1/127

24.
{00011, 00100, 01001, 01011, 01100,
01110, 10010, 10011, 10100, 10101} ✓ 16/446

25.
{00011, 00101, 00110, 01001, 01010,
01100, 10001, 10010, 10100, 11000} ✓ 11/33

26.
{00101, 00110, 01011, 01110, 10011,

10101, 11000} ✓ 1/53

27.
{0001*, 0010*, 0100*, 0111*, 1000*,

1011*, 1101*, 1110*} ✓ 2 388/3 875

28.

{00001, 00010, 00100, 00111, 01000,
01011, 01101, 01110, 10000, 10011,
10101, 10110, 11001, 11010, 11100,

11111}

✓ 674/1 087

29. {**001, **010, **100, **111} ✓ 4 313/7 099

30. {***01, ***10, ***11} ✓ 1 118 234/1 249 651

31.
{*0011, *0101, *0110, *0111, *1001,
*1010, *1011, *1100, *1101, *1110,

*1111}
✓ 31 133/157 103

32.

{00011, 00101, 00111, 01001, 01011,
01101, 01110, 01111, 10001, 10011,
10101, 10110, 10111, 11001, 11010,
11011, 11100, 11101, 11110, 11111}

✓ 355/43 951

Predicate Maj Par AT idMaj idPar Dep.

B.2 Minimal and Maximal Unknown Predicates for fiPCSP(A,OR)

Table 19 lists the minimal predicates A of arity 5 where we have been unable to determine
the complexity of fiPCSP(A,OR). Table 20 lists the maximal such predicates.
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Table 19: A list of the 25 minimal unknown predicates for Promise-SAT of arity k = 5. A
checkmark in the “unate” column indicates that all polymorphisms are unate.
A cross in the ADA (resp. UnCADA or UnDADA) columns indicates that the
polymorphism minion is t-ADA-free (resp. t-UnCADA-free or t-UnDADA-free)
for some t. The second value in the “Dep.” column gives the number of
unknown predicates implied by this predicate (in particular this number of
unknown Promise-SAT problems would be NP-hard if this predicate is shown
NP-hard), while the first value in the “Dep.” column gives the number of such
predicates that are not implied by any other predicate in the table.

1. {00011, 00111, 01001, 01010, 01100, 10000} ✓ ✗ ✗ 1/2

2. {00101, 00110, 00111, 01011, 01100, 10000} ✗ ✗ ✗ 1/3

3. {00110, 00111, 01001, 01011, 01100, 10000} ✓ ✗ ✗ 1/3

4. {00011, 00110, 00111, 01011, 01101, 10000} ✗ ✗ ✗ 1/8

5. {00011, 00111, 01011, 01101, 01110, 10000} ✗ 1/6

6. {00110, 00111, 01001, 01010, 01100, 10001} ✓ ✗ ✗ 1/4

7. {00011, 00110, 01010, 01100, 10000, 10001} ✓ ✗ 1/2

8. {00111, 01001, 01010, 01100, 10000, 10001} ✗ 3/5

9. {00101, 00111, 01011, 01100, 10000, 10001} ✓ ✗ 1/4

10. {00111, 01011, 01100, 01110, 10000, 10001} ✗ 1/8

11. {00111, 01011, 01101, 01110, 10000, 10001} ✗ 4/7

12. {00011, 00111, 01001, 01100, 10001, 10010} ✗ 2/14

13. {00101, 00111, 01011, 01100, 10001, 10010} ✓ ✗ 3/28

14. {00110, 01010, 01100, 01101, 10001, 10010} ✗ 1/10

15. {00111, 01010, 01100, 01101, 10001, 10010} ✓ ✗ 2/25

16. {00111, 01011, 01100, 01101, 10001, 10010} ✗ 9/81

17. {00111, 01011, 01100, 10000, 10001, 10010} ✗ 1/5

18. {00111, 01010, 01100, 01101, 10000, 10011} ✗ ✗ ✗ 1/4

19. {00111, 01010, 01101, 10000, 10001, 10011} ✗ ✗ ✗ 1/4

20.
{00111, 01001, 01010, 01100, 10001, 10010,

10011} ✗ 2/3

21. {00111, 01011, 01100, 10001, 10010, 10011} ✗ 4/57

22. {00101, 01011, 01100, 10001, 10010, 10100} ✓ ✗ 3/21

23. {00111, 01011, 01100, 10001, 10010, 10100} ✓ ✗ 10/93

24. {00011, 01101, 01110, 10011, 10100, 11000} ✓ ✗ ✗ 4/18

25.
{00110, 01001, 01100, 01101, 01110, 10001,

10010, 10011, 10110, 11001} ✗ ✗ 1/1

Predicate Unate ADA UnCADA UnDADA Dep.
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Table 20: A list of the 19 maximal unknown predicates for Promise-SAT of arity k = 5.
Most columns are as in Table 19 but the “Dep.” column differs. The second
value in this column now gives the number of unknown predicates that imply
this predicate (in particular this number of unknown Promise-SAT problems
would be tractable if this predicate is shown tractable), while the first value
gives the number of such predicates that do not imply any other predicate in
the table.

1.
{00011, 00101, 00111, 01001, 01011,

01101, 01110, 10000} ✗ ✗ ✗ 3/6

2.
{00110, 00111, 01001, 01010, 01100,

10000, 10001} ✓ ✗ ✗ 3/5

3.
{00110, 00111, 01010, 01011, 01101,

01110, 10000, 10001} ✗ ✗ ✗ 1/8

4.
{00110, 00111, 01001, 01011, 01100,

10000, 10001, 10010} ✓ ✗ ✗ 6/8

5.
{00111, 01011, 01100, 01101, 01110,

10000, 10001, 10010} ✗ 2/10

6.
{00111, 01010, 01100, 01101, 01110,

10000, 10001, 10011} ✗ ✗ ✗ 6/9

7.
{00101, 00111, 01011, 01100, 10001,

10010, 10011} ✓ ✗ ✗ 1/3

8.
{00111, 01001, 01010, 01100, 10000,

10001, 10010, 10011} ✗ ✗ 3/5

9.
{00111, 01011, 01101, 01110, 10000,

10001, 10010, 10011} ✗ ✗ 2/4

10.
{00011, 00111, 01001, 01010, 01100,

10001, 10010, 10100} ✓ ✗ ✗ 2/5

11.
{00111, 01001, 01010, 01100, 10001,

10010, 10100, 11000} ✓ ✗ 1/3

12.
{00110, 00111, 01010, 01011, 01100,
01101, 10001, 10010, 10100, 11000} ✓ ✗ ✗ 15/30

13.
{00110, 01010, 01101, 01110, 10001,

10011, 10100, 11000} ✗ ✗ ✗ 1/2

14.
{00111, 01001, 01011, 01100, 01110,
10010, 10011, 10100, 10101, 11000} ✓ ✗ ✗ 12/30

15.
{00111, 01001, 01010, 01011, 01100,
01101, 01110, 10001, 10011, 10101,

10110, 11000}
✓ ✗ ✗ 18/71

16.
{00110, 01001, 01100, 01101, 01110,
10001, 10010, 10011, 10110, 11001} ✗ ✗ 1/1

Predicate Unate ADA UnCADA UnDADA Dep.

Continued on next page
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17.
{00011, 00111, 01010, 01011, 01101,
01110, 10010, 10100, 10110, 11001} ✓ ✗ ✗ 4/21

18.
{00011, 00110, 01010, 01011, 01101,
01110, 10011, 10100, 10110, 11001} ✓ ✗ ✗ 6/25

19.
{00111, 01011, 01100, 01101, 01110,
10001, 10010, 10011, 10100, 10110,

11000, 11001}
✓ ✗ ✗ 16/67

Predicate Unate ADA UnCADA UnDADA Dep.

B.3 Minimal and Maximal Unknown Predicates for Promise-Usefulness

Table 21 lists the minimal predicates of arity 5 where we have been unable to determine
whether they are promise-useful or not. Table 22 lists the maximal such predicates.

Table 21: A list of the 9 minimal predicates with unknown promise-usefulness status for
k = 5.

1. {00011, 01101, 01110, 10011, 10100, 11000} 13/18

2. {00110, 00111, 01001, 01101, 01110, 10011, 10100, 11000} 2/16

3. {00111, 01001, 01010, 01101, 01110, 10011, 10100, 11000} 3/14

4. {00110, 01001, 01100, 01101, 01110, 10011, 10100, 11000} 1/12

5. {00110, 01010, 01101, 01111, 10000, 10011, 10100, 11000} 1/1

6. {00110, 01001, 01101, 01110, 10001, 10011, 10100, 11000} 2/14

7. {00111, 01010, 01101, 01110, 10001, 10011, 10100, 11000} 6/24

8.
{00111, 01011, 01100, 01101, 01110, 10001, 10010, 10011,

10100, 11000} 1/4

9.
{00111, 01000, 01100, 01110, 01111, 10000, 10001, 10011,

10111, 11000} 1/1

Predicate Dep.

Table 22: A list of the 7 maximal predicates with unknown promise-usefulness status for
k = 5.

1. {00011, 00110, 00111, 01001, 01100, 01101, 01110, 10011, 10100, 11000} 6/17

2. {00011, 00111, 01001, 01010, 01100, 01101, 01110, 10011, 10100, 11000} 4/14

3. {00110, 01010, 01101, 01111, 10000, 10011, 10100, 11000} 1/1

4.
{00101, 00110, 00111, 01011, 01100, 01101, 01110, 10001, 10010, 10011,

10100, 11000} 8/19

5.
{00110, 00111, 01001, 01011, 01100, 01101, 01110, 10001, 10010, 10011,

10100, 11000} 16/27

Predicate Dep.

Continued on next page
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6. {00111, 01001, 01011, 01100, 01110, 10010, 10011, 10100, 10101, 11000} 1/4

7. {00111, 01000, 01100, 01110, 01111, 10000, 10001, 10011, 10111, 11000} 1/1

Predicate Dep.

C Proof of Theorem 2.15

In what follows, a choice function C is a function defined on a minion which, given an
ℓ-ary function f , identifies a subset C(f) ⊆ [ℓ] of the coordinates of f . Banakh and Kozik
[BK24] proved the following result (this is the special case of Theorem 3.1 in their paper
with two layers).

Theorem C.1. Suppose there exists a constant t and choice function C on the poly-
morphism minion Pol(PCSP(A,B)) with the following properties:

1. |C(f)| ≤ t for all polymorphisms f of PCSP(A,B).

2. For every polymorphism f and minor fπ of f such that π is injective on C(f), it
holds that π(C(f)) ∩ C(fπ) ̸= ∅.

Then PCSP(A,B) is NP-hard.

As our choices come from fixing assignments the below simple claim is useful. The
proof is standard as if two fixing assignments give values to disjoint sets of variables then
one can simultaneously force the function to take the value 0 and the value 1.

Claim C.2. Let f : {0, 1}ℓ → {0, 1} be a folded Boolean function. Then any two fixing
assignments (S1, α1), (S2, α2) must satisfy S1 ∩ S2 ̸= ∅.

Let us now prove Theorem 2.15, restated here for convenience.

Theorem 2.15. If there exists a t such that every f ∈ Pol(fPCSP(A,B)) has a t-fixing
assignment, then fPCSP(A,B) is NP-hard. Likewise, if there is a t such that every
f ∈ Pol(fiPCSP(A,B)) has a t-fixing assignment, then fiPCSP(A,B) is NP-hard.

Proof. We define a choice function C on the polymorphisms of PCSP(A,B) such that
C(f) returns the coordinates of an arbitrarily chosen (say, the lexicographically smallest)
fixing assignment T of size t. Clearly this satisfies the first condition of Theorem C.1
and we now verify the second.

Take an arbitrary polymorphism f : {0, 1}ℓ and minor fπ : {0, 1}ℓ′ for which π : [ℓ] →
[ℓ′] is injective on C(f). Since π is injective, every partial assignment xC(f) for f is the
preimage (under π) of a partial assignment yπ(C(f)) for fπ. In particular for f ’s fixing
assignment on C(f) there is a corresponding fixing assignment for fπ on π(C(f)). In
other words, both (C(fπ), α1) and (π(C(f), α2)) are fixing assignments for f for some
α1, α2, so by Claim C.2 C(fπ) and π(C(f)) cannot be disjoint.

D Proofs for Maj, Par, and AT

In this section we prove the (standard) lemmas from Section 4.2, characterizing Maj,
Par, and AT as polymorphisms of Promise-SAT.

Lemma 4.3. The following statements are equivalent:
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1. Pol(fPCSP(A,OR)) contains infinitely many polymorphisms from Maj.

2. [0, 1/2)k ∩K(A) = ∅.

3. There exists integers c1, . . . ck ≥ 0 such that
∑k

j=1 cjaj ≥
∑k

j=1 cj/2 > 0 for all
a ∈ A.

Proof. Suppose that Majℓ is not a polymorphism for some ℓ, then there exists a k × ℓ
obstruction matrix M such that

∑
j M

j/ℓ ∈ [0, 1/2)k. As
∑

j M
j/ℓ is a point in K(A)

this shows that [0, 1/2)k ∩K(A) ̸= ∅. We conclude that 2 implies 1.
On the other hand, suppose that [0, 1/2)k ∩K(A) ̸= ∅ and contains the point x. As

all vectors in A have rational entries, x can be chosen to be rational and can hence be
written as

∑
i
αi
β ai, where

∑
i αi = β and α1, α2, . . . and β are non-negative integers and

ai ∈ A. As the components of x are rational numbers with denominator β, each such
component is bounded from above by 1

2 − 1
2β .

We claim that for ℓ = 2dβ + γ where d ≥ β and γ < 2β, Majℓ is not a polymorphism.
Indeed, its obstruction matrix can be constructed by taking 2dαi columns of each ai,
joint with γ arbitrary element of A. In this matrix, the sum of each row is bounded by

2dβ

(
1

2
− 1

2β

)
+ γ ≤ dβ − d+ γ < ℓ/2.

As any odd number greater than 2β2 can be written on the given form we conclude that
1 implies 2.

Finally, 3 immediately implies 2 and let us establish the reverse implication. Firstly,
note that [0, 1/2)k ∩ K(A) = (−∞, 1/2)k ∩ K(A) as all vectors in K(A) only have
non-negative components. We apply Theorem 2.1 to obtain c1, . . . , ck and b such that∑k

j=1 xjcj < b for all x ∈ (−∞, 1/2)k and
∑k

j=1 yjcj ≥ b for all y ∈ K(A). It is easy
to see that the first condition implies that c1, . . . , ck are non-negative and in view of
this, b can be modified to take the value

∑k
j=1 cj/2. Finally the set of vectors c that

satisfy the inequalities in 3 is a rational polytope and hence if it is nonempty it contains
a rational vector. Since it is closed under multiplication by scalars it also contains an
integral vector. This completes the proof.

Lemma 4.4. The following statements are equivalent:

1. Pol(fPCSP(A,OR)) contains infinitely many polymorphisms from Par.

2. For every odd sized subset B of A,
⊕

s∈B s ̸= 0k.

3. There exists a non-empty subset β ⊆ [k], such that
⊕

i∈β ai = 1 for all a ∈ A.

Proof. Let M be an obstruction matrix for Parℓ, ℓ odd. Note that the columns of M are
elements of A, and that ⊕jM

j = 0k. This implies the existence of an odd sized subset B
such that ⊕s∈Bs = 0k. This shows that 2 implies 1.

On the other hand, suppose that there exists an odd sized subset B of A such that
⊕s∈Bs = 0k. We use this subset can be to create obstructions for Parℓ for any odd
ℓ ≥ |B|. The first |B| columns are given by B while the remaining columns all equal
some fixed element of A. As this column appears an even number of times, it will not
change the parity of the matrix. This shows that 1 implies 2.

To show that 2 and 3 are equivalent, note that {⊕s∈Bs : B ⊆ A, |B| odd} is an affine
subspace in Fk

2. Any affine subspace can always be represented as the set of solutions x
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of a linear equation system Mx = b for some matrix M ∈ Fℓ×k
2 . The statement that the

affine set does not contain 0k is equivalent to b ≠ 0ℓ and we can take any i ∈ [ℓ] where
bi ̸= 0 and let Mi define the set β in 3. We conclude that 2 implies 3 and the reverse
implication is easy to see.

Lemma 4.5. The following statements are equivalent:

1. Pol(fPCSP(A,OR)) contains infinitely many polymorphisms from AT.

2. {x− y : x, y ∈ K(A)} ∩ (−∞, 0)k = ∅.

3. There exists integers c1, . . . ck ≥ 0, not all 0, such that
∑k

j=1 cjaj takes the same
value for all a ∈ A.

Proof. The proof is very similar to the proof of Lemma 4.3 but for completeness let us
give most details. Suppose ATℓ /∈ Pol(fPCSP(A,OR)) for some odd ℓ and let M be an
obstruction matrix M . Let z = 2

ℓ−1

∑ℓ−1
i=1(−1)i+1Mi and note that z can written as x− y

where both x and y are in K(A) by letting x be the sum of the odd terms, and y be
the sum of the even terms. Since M is an obstruction for ATℓ,

∑ℓ
i=1(−1)i+1M j

i < 0 for

all j and as the last term of this sum is positive
∑ℓ−1

i=1(−1)i+1M j
i < 0. This shows that

z ∈ (− inf, 0)k. We conclude that 2 implies 1 and let us establish the reverse inclusion.
Assume that {x − y : x, y ∈ K(A)} ∩ (−∞, 0)k ̸= ∅ and let x, y ∈ K(A) such that

x − y ∈ (−∞, 0)k. We can assume that x and y have rational coefficients and hence
can be expressed as x =

∑
i α

x
i /βa

i and y =
∑

i α
y
i /βa

i, where
∑

i α
x
i =

∑
i α

y
i = β and

αx
1 , α2, . . . , α

y
1, α

y
2, . . . and β are non-negative integers and ai ∈ A. Note also than any

coordinate of x− y is bounded from above by −1/β.
We construct an obstruction matrix M for ATℓ for any ℓ > 4β2. Suppose ℓ = 2βd+ γ

where γ < 2β. At odd indices, put dαx
i columns ai and at even columns dαy

i columns
ai and complete this by any γ columns from A. It is easy to see that the alternating
sum defining AT is bounded by −d+ γ in any coordinate and hence M is an obstruction
matrix.

It is easy to see that 3 implies 2 as the linear form given by the c-vector is 0 on
K(A)−K(A) and negative in the negative orthant. The reverse implication follows, as
previously, by the separation theorem, Theorem 2.1. We omit the details.
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