
A primer on the closure of algebraic complexity
classes under factoring

C.S. Bhargav and Prateek Dwivedi and Nitin Saxena

Abstract Polynomial factorization is a fundamental problem in computational algebra.
Over the past half century, a variety of algorithmic techniques have been developed
to tackle different variants of this problem. In parallel, algebraic complexity theory
classifies polynomials into complexity classes based on their perceived ‘hardness’.
This raises a natural question: Do these classes afford efficient factorization?

In this survey, we revisit two pivotal techniques in polynomial factorization:
Hensel lifting and Newton iteration. Though they are variants of the same theme,
their distinct applications across the literature warrant separate treatment. These
techniques have played an important role in resolving key factoring questions in
algebraic complexity theory. We examine and organise the known results through the
lens of these techniques to highlight their impact. We also discuss their equivalence
while reflecting on how their use varies with the context of the problem.

We focus on four prominent complexity classes: circuits of polynomial size (VPnb),
circuits with both polynomial size and degree (VP and its border VP), verifier circuits
of polynomial size and degree (VNP), and polynomial-size algebraic branching
programs (VBP). We also examine more restricted models, such as formulas and
bounded-depth circuits. Along the way, we list several open problems that remain
unresolved.

C.S. Bhargav
IIT Kanpur, India, e-mail: bhargav@cse.iitk.ac.in

Prateek Dwivedi
ITU Copenhagen, Denmark, e-mail: prdw@itu.dk

Nitin Saxena
IIT Kanpur, India, e-mail: nitin@cse.iitk.ac.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 83 (2025)

https://orcid.org/0000-0002-6920-4998
https://orcid.org/0000-0002-0572-3721
https://orcid.org/0000-0001-6931-898X
bhargav@cse.iitk.ac.in
prdw@itu.dk
nitin@cse.iitk.ac.in

2 Closure of algebraic complexity classes

Contents
1 Introduction . 3

1.1 Univariate factoring: finite fields are key 3
1.2 Fine-grained developments . 7

2 Model of computation . 7
2.1 Structural results . 9

3 Applications of factoring . 10
3.1 Equivalence to identity testing . 11
3.2 Hardness vs Randomness . 12
3.3 Other applications . 14

4 Factoring via Hensel lifting . 15
4.1 Dense representation . 17
4.2 Factoring polynomials over integers 21
4.3 𝑝-adic factoring: Chistov, Cantor-Gordon algorithm 21
4.4 Small algebraic circuits . 23
4.5 Algebraic branching programs . 28
4.6 Explicit polynomials . 31

5 Factoring via Newton iteration . 33
5.1 Low depth circuits . 35
5.2 High degree circuits . 39
5.3 Algebraic approximation . 41

6 To Hensel lift or Newton iterate? . 44
7 Factoring ‘weak’ models . 45

7.1 Formulas . 45
7.2 Sparse polynomials . 47

Acknowledgements . 50
References . 51

Bhargav, Dwivedi & Saxena 3

1 Introduction

The problem of finding a nontrivial factor of a polynomial is a classical and funda-
mental one, with a rich history spanning centuries [Gat06]. Kaltofen [Kal82; Kal90;
Kal92] gave a thorough treatment of several foundational results, while von zur Ga-
then and Panario [GP01] focused on factorization over finite fields. Comprehensive
textbook treatments are contained in [GG13] and [Sho09].

In this survey, we focus on the core techniques and ideas that drive factorization
results within algebraic circuit complexity. Our aim is to illustrate how these tools
have contributed to resolving long-standing questions in the field. Notably, Forbes
and Shpilka [FS15] have provided an accessible exposition of the high-level ideas
behind some factoring algorithms, emphasising their relevance to other problems in
algebraic complexity. Building on this, our survey aims to delve into the technical
intricacies of these results by organising them according to the underlying methods.
More than algorithms, we will be concerned with whether the factors of a ‘structured’
polynomial are also structured. We begin with a gentle introduction to each technique,
followed by a discussion of the key results that it enables. The simplest case, perhaps,
is when the polynomial is of a single variable.

1.1 Univariate factoring: finite fields are key

Problem 1 (Univariate factoring) Given a univariate polynomial 𝑓 (𝑥) over a field
F, compute pairwise distinct irreducible polynomials 𝑓1, . . . , 𝑓𝑟 ∈ F[𝑥] such that

𝑓 = 𝑓
𝑒1
1 · · · 𝑓 𝑒𝑟𝑟 ,

where (𝑒1, . . . , 𝑒𝑟) ∈ N𝑟 .

Considered over the rational numbers Q, the polynomial 𝑥2 − 2 is irreducible,
whereas it factors as (𝑥−3) (𝑥−4) mod 7. Evidently, the problem critically depends
on the field F. We begin by considering factorization over a finite field F𝑞 of order
𝑞 = 𝑝𝑎, for some prime 𝑝. Despite its simplicity, this case involves several non-trivial
ideas that serve as the foundation for more general algorithms, including those over
the rationals and algebraic number fields.

The input polynomial 𝑓 (𝑥) = ∑𝑑
𝑖=0 𝑐𝑖𝑥

𝑖 ∈ F𝑞 [𝑥] is given in the dense representa-
tion as a list of (coefficient, exponent) pairs (𝑐𝑖 , 𝑖) for all 0 ≤ 𝑖 ≤ 𝑑. Let 𝑡 ∈ F𝑝 [𝑦]

4 Closure of algebraic complexity classes

be some irreducible polynomial of degree 𝑎, such that F𝑞 � F𝑝 [𝑦]/⟨𝑡 (𝑦)⟩. Given
such a 𝑡, arithmetic operations in F𝑞 can be performed in time poly(log 𝑞). Hence,
we assume that the irreducible polynomial 𝑡 is part of the input to the algorithm. A
thorough exposition of computational issues in finite fields is available in [GS13]
and [AB09, Section A.4].

An important subroutine is computing the greatest common divisor (GCD) of two
polynomials, a task that underlies many factoring algorithms. The classical Euclidean
algorithm can be used to efficiently compute the gcd [GG13, Section 3]. For the sake
of brevity, we will use the notation poly(𝑛) to denote any function of the form 𝑂 (𝑛𝑐)
for some constant 𝑐.

Lemma 1 (GCD) Let F be a field and 𝑓 , 𝑔 ∈ F[𝑥] be polynomials of degree at most
𝑑. Then, gcd(𝑓 , 𝑔) can be computed in poly(𝑑) operations over F. Moreover, the
algorithm returns 𝑎, 𝑏 ∈ F[𝑥] such that 𝑎 · 𝑓 + 𝑏 · 𝑔 = gcd(𝑓 , 𝑔).

Most factoring algorithms over finite fields, and beyond, follow a standard three-
step structure (see Figure 1):

1. Square-free Factorization: Note that each 𝑒𝑖 ≥ 1 in Problem 1. The square-free
part of 𝑓 , denoted by rad(𝑓) = 𝑓1 · · · 𝑓𝑟 , is called the radical of 𝑓 . This can be
efficiently computed by repeatedly applying 𝑓 /gcd (𝑓 , 𝜕𝑥 𝑓). If 𝜕𝑥 𝑓 = 0 then 𝑓

is a perfect 𝑝-th power. We can apply the Frobenius automorphism to extract its
𝑝-th root, effectively computing 𝑓 1/𝑝 .

2. Distinct Degree Factorization: The goal in this step is to decompose rad(𝑓) into a
product of polynomials, each consisting of irreducible factors of the same degree.
That is, we aim to compute 𝑓1, . . . , 𝑓𝑑 such that each factor 𝑓𝑖 is the product
of all irreducible degree-𝑖 factors. A key result from field theory proves that
𝑓𝑖 = gcd(𝑥𝑞𝑖 − 𝑥, 𝑓), which can be efficiently computed using repeated squaring
and Lemma 1. In practice, for high-degree random polynomials, this step often
dominates the running time of the overall factoring process.

3. Equal Degree Factorization: After the above preprocessing, we are left with the
task of factoring a polynomial into irreducibles of the same degree. Two classical
algorithms for this purpose are Cantor–Zassenhaus and Berlekamp’s algorithm.
While Berlekamp’s method is deterministic, Cantor–Zassenhaus is randomized
and tends to scale better for large finite fields. Both approaches fundamentally
exploit the structure given by the Chinese Remainder Theorem.

In the remainder of this section, we focus on algorithms for Equal Degree Factor-
ization. After performing the two preprocessing steps, we are left with factoring a

Bhargav, Dwivedi & Saxena 5

(𝑥 + 1)

(𝑥 + 1)
(
𝑥2 + 1

) (
𝑥2

) (
𝑥3 + 𝑥 + 1

) (
𝑥4 + 1

)

(𝑥 + 1)

(𝑥 + 1)

(
𝑥2 + 1

) (
𝑥2

) (
𝑥3 + 𝑥 + 1

) (
𝑥4 + 1

)

(
𝑥2 + 1

) (
𝑥2

) (
𝑥3 + 𝑥 + 1

) (
𝑥4 + 1

)

(
𝑥2 + 1

) (
𝑥2

)

Square-free
Factorization

Distinct Degree
Factorization

Equal Degree
Factorization

Fig. 1 Polynomial factorization steps. Adapted from [GS92].

polynomial of the form 𝑓 = 𝑓1 · 𝑓2 · · · 𝑓𝑟 , where each 𝑓𝑖 is an irreducible polynomial
of the same degree.

1.1.1 Berlekamp’s algorithm

At the core of Berlekamp’s algorithm lies a fundamental number-theoretic observation:
suppose there exists a polynomial ℎ ∈ F𝑞 [𝑥] such that

ℎ𝑝 − ℎ ≡ 0 (mod 𝑓),

and 1 ≤ deg(ℎ) < deg(𝑓). Then, by the identity ℎ𝑝 − ℎ =
∏

𝛼∈F𝑞 (ℎ − 𝛼), the
polynomial 𝑓 can be factored by computing gcd(𝑓 , ℎ − 𝛼) for all 𝛼 ∈ F𝑞 .

The existence of such a polynomial ℎ can be proved using the Chinese Remainder
Theorem. To find such an ℎ, the algorithm considers the F𝑝-vector space

𝑉 := {ℎ(𝑥) : deg(ℎ) ≤ 𝑑, ℎ𝑝 − ℎ = 0 (mod 𝑓)} . (1)

This is a subspace of F𝑞 [𝑥]/⟨ 𝑓 ⟩ of dimension at most deg(𝑓) · 𝑎, and a basis for 𝑉
can be efficiently computed using standard linear algebra over F𝑝 . Any non-trivial
(i.e., non-constant) basis element ℎ ∈ 𝑉 yields a non-trivial factor of 𝑓 via GCD
computations.

6 Closure of algebraic complexity classes

To avoid 𝑞-many GCD computations, elements of F𝑞 are represented as a vectors
over F𝑝 . Notably, Berlekamp’s algorithm does not require the input polynomial to
have irreducible factors of the same degree; thus, the distinct-degree factorization
step can be bypassed. With careful implementation, the total runtime is bounded
by poly(𝑝, 𝑑, log 𝑞), making it a deterministic polynomial-time algorithm in small
characteristic, e.g., when 𝑝 = (𝑑𝑎)𝑂 (1) . For an accessible exposition, see the lecture
notes by Kopparty [Kop14, Lecture 10].

1.1.2 Cantor-Zassenhaus Algorithm

When working over large fields, Berlekamp’s algorithm—though deterministic—may
become inefficient. The Cantor–Zassenhaus algorithm offers a more efficient alter-
native for factoring over fields of large characteristic by leveraging randomness. The
key idea is to choose a polynomial ℎ ∈ F𝑞 [𝑥] of degree at most 𝑑 − 1 uniformly at
random, and check whether the following gcd yields a non-trivial factor:

gcd
(
𝑓 , ℎ

𝑞𝑑−1
2 − 1 mod 𝑓

)
.

To see why this works, recall that 𝑓 = 𝑓1 · 𝑓2 · · · 𝑓𝑟 , obtained after the preprocessing
steps. Since each 𝑓𝑖 is irreducible of degree at most 𝑑, the Chinese Remainder Theorem
yields an isomorphism:

F𝑞 [𝑥]
⟨ 𝑓 ⟩ �

F𝑞 [𝑥]
⟨ 𝑓1⟩

× · · · ×
F𝑞 [𝑥]
⟨ 𝑓𝑟 ⟩

.

Let ℎ ∈𝑅 F𝑞 [𝑥]/⟨ 𝑓 ⟩ map to (ℎ1, . . . , ℎ𝑟) under this isomorphism. Then, ℎ𝑞𝑑 − ℎ = 0.
Assuming 𝑞 is odd, it follows that

ℎ ·
(
ℎ

𝑞𝑑−1
2 − 1

)
·
(
ℎ

𝑞𝑑−1
2 + 1

)
= 0.

Furthermore, we know that ℎ𝑞𝑑 − ℎ =
∏

𝛼∈F
𝑞𝑑
(ℎ − 𝛼). This implies that, besides

0, exactly half the elements of F𝑞𝑑 satisfy ℎ
𝑞𝑑−1

2 = 1, and the other half satisfy

ℎ
𝑞𝑑−1

2 = −1. Consequently, with probability at least 1/2, the image of ℎ
𝑞𝑑−1

2 − 1
under the CRT map will be zero in at least one coordinate. Therefore, computing
gcd(𝑓 , ℎ

𝑞𝑑−1
2 − 1) yields a non-trivial factor of 𝑓 with good probability. To eliminate

the possibility of ℎ getting mapped to the identity element in all coordinates (yielding

Bhargav, Dwivedi & Saxena 7

a trivial GCD), we begin by checking whether our randomly chosen ℎ is already a
non-trivial factor of 𝑓 .

When 𝑞 is even, we instead compute ℎ′ = ℎ + ℎ2 + ℎ22 + · · · + ℎ2𝑟𝑑−1 and check
whether gcd(𝑓 , ℎ′) is non-trivial. This approach works because one can show that
ℎ′ (ℎ′ + 1) = ℎ2𝑟𝑑 + ℎ, enabling a similar probabilistic argument. The algorithm relies
primarily on computing gcds and repeated squaring. The probabilistic bounds imply
that, in expectation, only a constant number of repetitions (at most two) are required.
Thus, the overall complexity of the Cantor–Zassenhaus algorithm is poly(𝑑, log 𝑞).

Question 1 (Open) Is there a derandomization result for the finite field factoring
algorithm?
E.g. Given 𝑎, 𝑝 in the input, can we find

√
𝑎 mod 𝑝 in deterministic poly(log 𝑝) time?

See [Iva+12] for a detailed survey on this line of work.

1.2 Fine-grained developments

A finer analysis of the algorithms discussed so far reveals that the overall complexity
of univariate factoring using the Cantor-Zassenhaus algorithm is 𝑂 (𝑑2 + 𝑜(1) log 𝑞)
operations in F𝑞 . By improving on the Equal-degree Factorization step, von zur
Gathen and Shoup got it down to 𝑂 (𝑑2+𝑜 (1) + 𝑑1+𝑜 (1) log 𝑞) operations in F𝑞 [GS92].
Kaltofen and Lobo then improved Berlekamp’s algorithm to match the complexity
of von zur Gathen and Shoup’s algorithm in the black-box linear algebra model
[KL94]. Kaltofen and Shoup breached the quadratic barrier by giving an algorithm
with complexity 𝑂 (𝑑𝜔 + 𝑑1+𝑜 (1) log 𝑞) operations in F𝑞 , where 𝜔 is the matrix
multiplication exponent [KS98]. By giving a significantly novel approach for com-
puting modular composition, which is used to compute ℎ′ in the Cantor-Zassenhaus
algorithm, Kedlaya and Umans improved the complexity of univariate factoring to
𝑂 (𝑑1.5+𝑜 (1) + 𝑑1+𝑜 (1) log 𝑞) operations in F𝑞 [KU11].

2 Model of computation

We will mostly focus on arithmetic/algebraic circuits, a model very natural for
computing multivariate polynomials in the variables 𝒙 := (𝑥1, . . . , 𝑥𝑛)1 over a

1 We will use bold letters to denote tuples of variables.

8 Closure of algebraic complexity classes

field F. Introduced by Valiant [Val79] to develop the algebraic analogue of NP-
completeness [Val82], it has led to the development of a rich and varied theory of
algebraic complexity (see [Bür24]).

𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛]

+ ∑
× ×

∏
+ + + ∑

𝑥1 𝑥2 . . . 𝑥𝑛

Circuit

𝑓 ∈ F[𝑥1, . . . , 𝑥𝑛]

+

× ×

+ + +

𝑥1 𝑥1𝑥2 . . . 𝑥𝑛

Formula

Fig. 2 An algebraic circuit and a formula of depth 3.

Definition 1 (Algebraic Circuits and Formulas) An algebraic circuit, defined over
a field F, is a layered directed acyclic graph with alternating layers of ‘+’ and ‘×’
gates, and a single root, called the ‘output’ gate. The ‘input’ leaf gates are labeled by
either a variable from 𝑥1, . . . , 𝑥𝑛 or a constant from F. If the graph is a tree, then we
call it a formula. See Figure 2 for an illustration.

A circuit computes a polynomial 𝑓 ∈ F[𝒙] in the natural way: a ‘+’ gate sums up
the polynomials from its children, whereas a ‘×’ gate computes their product, with
the root finally computing 𝑓 . The size of a circuit is the total number of vertices in the
graph. The depth of the circuit is the number of layers in the circuit, or equivalently,
the length of the longest path from the root to a leaf.

A complexity class in the algebraic world is a family/sequence of polynomials
(𝑓𝑛)𝑛∈N where 𝑓𝑛 is a multivariate polynomial over some field F. We will mostly
be interested in families where the number of variables in 𝑓𝑛 grows as a polynomial
function of 𝑛.

In Boolean complexity, the notion of efficient computation is captured by the class
P of problems solvable in polynomial time. The algebraic analogue over a field F is
VPF (for Valiant’s P, called 𝑝-computable by Valiant) and consists of all polynomial
families where 𝑓𝑛 has degree poly(𝑛) and the smallest circuit (over F) computing 𝑓𝑛

has size poly(𝑛) (Definition 3). We will usually drop the field from the notation when

Bhargav, Dwivedi & Saxena 9

the context makes it clear. Note that the notion of computation is non-uniform – the
circuits of 𝑓𝑛 for different 𝑛 need not be related to one another. A prime example of a
polynomial family in VP is (Det𝑛), defined by the determinant of the 𝑛 × 𝑛 symbolic
matrix (𝑥𝑖 𝑗)1≤𝑖, 𝑗≤𝑛:

Det𝑛 =
∑︁
𝜎∈𝑆𝑛

(
sgn(𝜎)

𝑛∏
𝑖=1

𝑥𝑖,𝜎 (𝑖)

)
.

The algebraic analogue of the class NP is called VNP. Informally2, it consists of
polynomial families which are ‘explicit’, in the sense that given a monomial of 𝑓𝑛, we
can compute the corresponding coefficient efficiently, say in polynomial time. It is
not hard to show that VP ⊆ VNP, and the long-standing conjecture of Valiant [Val79]
is that there are explicit polynomial families that cannot be computed efficiently, i.e.,
VP ⊊ VNP. A prominent ‘explicit’ candidate for this separation is the family of
permanents,

Per𝑛 =
∑︁
𝜎∈𝑆𝑛

(
𝑛∏
𝑖=1

𝑥𝑖,𝜎 (𝑖)

)
.

The determinant and permanent families essentially characterize the classes VP
and VNP, respectively. Hence, Valiant’s conjecture is also sometimes called the
Permanent versus Determinant problem [Agr06]. It is the algebraic version of Cook’s
hypothesis [Coo71], the famous P vs. NP problem (see [AB09] for more details).
There is a formal sense in which the VP vs. VNP problem is a ‘stepping stone’ towards
the P vs. NP problem [Bür00b]. For details on the connection between Valiant’s and
Cook’s hypotheses, and the progress on Valiant’s conjecture, we encourage readers
to consult [BCS97; Bür99; Bür00a; SY10; CKW10; Mah14; Sap21].

2.1 Structural results

Algebraic circuits impose a combinatorial structure on the polynomials being com-
puted. We will now list (without proofs) some structural properties of algebraic
circuits that showcase the robustness of the model and will be useful for us in the
future. For proofs, see [SY10; Sap21]. To begin with, we can extract coefficients (with
respect to a single variable) of a polynomial computed by a small circuit efficiently.

2 For the formal version, see Definition 6.

10 Closure of algebraic complexity classes

Lemma 2 (Interpolation) Let F be a field with |F| > 𝑘 , and 𝑓 ∈ F[𝒙, 𝑦] be a
polynomial with deg𝑦 (𝑓) = 𝑘 . Suppose that 𝑓 (𝒙, 𝑦) = ∑𝑘

𝑗=0 𝑓 𝑗 (𝒙)𝑦 𝑗 where 𝑓 𝑗 ∈ F[𝒙]
for all 𝑗 ∈ {0, 1, . . . , 𝑘}.

If 𝑓 (𝒙, 𝑦) can be computed by a circuit of size 𝑠 and depth Δ, then for all 𝑗 ∈
{0, 1, . . . , 𝑘}, 𝑓 𝑗 (𝒙) can be computed by a circuit of size 𝑂 (𝑠𝑘) and depth Δ.

As we are concerned only with multivariate polynomials, we can always formally
define the partial derivative of a polynomial with respect to a variable (and by
extension, multiple variables) over any field F. Computing the partial derivatives
of a circuit with respect to a variable of bounded individual degree is an efficient
operation.

Lemma 3 (Partial Derivatives) Let F be a field with |F| > 𝑟, and 𝑓 ∈ F[𝒙, 𝑦] be a
polynomial with deg𝑦 (𝑓) = 𝑟. If 𝑓 (𝒙, 𝑦) can be computed by a circuit of size 𝑠 and
depth Δ, then for all 0 ≤ 𝑗 ≤ 𝑟 , the partial derivative 𝜕

𝑗
𝑦 𝑓 (𝒙, 𝑦) can be computed by

a circuit of size 𝑂 (𝑠𝑟3) and depth Δ.

The observant reader will have noticed the conspicuous absence of divisions
in our definition of algebraic circuits. It turns out that our notions of complexity
do not depend on this exclusion, for the most part. Division can be eliminated
efficiently [Str73].

Lemma 4 (Division Elimination) Let 𝑓 ∈ F[𝒙] be a polynomial of degree 𝑑

computed by a circuit (with division gates) of size 𝑠. Then, there exists a circuit
without division gates of size poly(𝑠, 𝑑, 𝑛) that computes 𝑓 .

In the univariate factoring algorithm, we saw that gcd computation was an essential
ingredient. The following lemma shows that it can be computed efficiently in the
algebraic circuit model. Refer to [KSS15, Lemma 2.9] for the complete proof.

Lemma 5 (GCD in circuits) Let 𝑓 , 𝑔 ∈ F[𝒙] be two 𝑛-variate polynomials of degree
at most 𝑑 computed by circuits of size 𝑠. Then, the gcd(𝑓 , 𝑔) can be computed by a
circuit of size poly(𝑠, 𝑑, 𝑛).

3 Applications of factoring

Polynomial factoring is not only a great mathematical problem. The techniques
developed for its solution have a wide range of applications in various areas of
computer science. We briefly describe some of them.

Bhargav, Dwivedi & Saxena 11

3.1 Equivalence to identity testing

Consider a class of polynomials C that can be computed by algebraic circuits. The
polynomial identity testing (PIT) problem for C asks whether a given polynomial
𝑓 ∈ C is identically zero. Due to the PIT Lemma [Zip79; DL78; Sch80; Ore22], a
simple randomized algorithm for this problem has been known for decades. However,
designing a polynomial-time deterministic algorithm for PIT for the class VP remains
a long-standing open problem. Nevertheless, several efficient deterministic algorithms
have been developed for restricted circuit classes. The problem is studied in two
settings: the black-box setting, where only polynomial evaluation is permissible, and
the white-box setting, where the internals of the circuit are accessible.

The importance of this fundamental problem stems from its applications to
equivalence checking, perfect matching, primality testing, and more. The assumption
of efficient identity testing algorithms has led to a variety of derandomization results.
Most notably, PIT is tightly connected to proving strong lower bounds for algebraic
circuits (more in Section 3.2). For a comprehensive treatment, we refer the reader to
classical surveys such as [SY10; Sax09; Sax14], as well as the recent exposition in
[DG24] and the references therein.

PIT was first linked to factorization when Shpilka and Volkovich [SV10] observed
that the polynomial 𝑓 (𝒙)+𝑦𝑧 has two irreducible factors over disjoint sets of variables
if and only if 𝑓 (𝒙) is identically zero. This observation implies that a deterministic
algorithm for multivariate polynomial factorization would suffice to derandomize
PIT.

The connection between the two problems was further solidified by the work
of Kopparty, Saraf, and Shpilka [KSS15], who showed that a derandomized PIT
algorithm also leads to a deterministic multivariate factoring algorithm. Together,
these results establish the equivalence between derandomizing PIT and polynomial
factorization in both black-box and white-box settings.

A natural and simpler question related to polynomial factoring is that of divisibility
testing: given two polynomials 𝑓 and 𝑔, determine whether 𝑔 divides 𝑓 . One could
factor both 𝑓 and 𝑔 followed by comparing the irreducible factors using PIT to
solve this problem using randomization. However, since non-trivial deterministic
PIT algorithms are known in several restricted settings, it is natural to ask whether
divisibility testing is easier in such settings.

This question was first studied by Saha, Saptharishi, and Shpilka [SSS13], who
reduced the problem of testing divisibility of sparse polynomial by a linear polynomial

12 Closure of algebraic complexity classes

to PIT for expressions of the form
∑

𝑖 𝒙
𝒂𝑖 · 𝑓𝑖 (𝒙)𝑑𝑖 , where each 𝒙𝒂𝑖 is a monomial and

deg 𝑓𝑖 ≤ 1. Known PIT algorithms for such structured polynomials were applied to
obtain efficient and deterministic divisibility testing algorithms (see [RS05; FS13]).
Later, Forbes [For15] extended this line of work to test whether a sparse polynomial
divides a quadratic polynomial. The problem in this case was reduced to PIT for
almost similar polynomials of the form

∑
𝑖 𝒙

𝒂𝑖 · 𝑓𝑖 (𝒙)𝑑𝑖 with deg 𝑓𝑖 ≤ 2, and gave
a quasipolynomial-time algorithm for this case. For certain classes of polynomials,
Forbes also showed a general reduction to PIT [For15, Section 7]. For a more
comprehensive discussion on these equivalences, we refer the reader to the survey
by Shpilka and Forbes [FS15, Section 5].

3.2 Hardness vs Randomness

In the previous section, we hinted at the tight connection between the derandomization
of PIT and strong lower bounds for algebraic circuits. Informally, this connection
implies that PIT can be efficiently derandomized if and only if there exist explicit
polynomials of high circuit complexity. Interestingly, factoring results on the algebraic
circuit classes play a surprising yet pivotal role in establishing this connection.

Heintz and Schnorr [HS80], and later Agrawal [Agr05], showed that a black-box
PIT algorithm for algebraic circuits of size 𝑠, running in time poly(𝑠), would imply
the existence of a polynomial whose coefficients are computable in polynomial space
(PSPACE) but which requires algebraic circuits of size at least exp(poly(𝑠)). This
yields an exponential lower bound from a polynomial-time PIT algorithm. A central
open question is whether the complexity of computing the coefficients can be reduced
to #P/poly, as this would imply a separation of VP from VNP [SY10, Open Problem
17]. Kabanets and Impagliazzo [KI04] further strengthened this direction of the
connection by proving that derandomizing PIT, even in the weaker white-box setting,
would imply either VP ≠ VNP or NEXP ⊄ P/poly.

Kabanets and Impagliazzo further strengthened the connection by studying the
reverse direction, drawing inspiration from analogous results in the Boolean setting
by Nisan and Wigderson [NW94]. To describe this, we introduce an alternative
notion of black-box identity testing. Consider a polynomial map G := (𝑔1, . . . , 𝑔𝑛) :
F𝑟 → F𝑛, where the seed 𝑟 < 𝑛. The map G is called a hitting-set generator for
a class of polynomials C if, for every non-zero 𝑓 ∈ C, the composed polynomial
𝑓 ◦ G = 𝑓 (𝑔1 (𝒚), . . . , 𝑔𝑛 (𝒚)) is also non-zero. For a detailed discussion on the

Bhargav, Dwivedi & Saxena 13

connections between hitting-set generators and PIT, see [For14, Section 3.2.2]. The
high-level idea is that, if one can construct a hitting-set generator G with a seed
length 𝑟 = 𝑂 (1), then identity testing for any 𝑓 ∈ C reduces to checking whether the
constant-variate polynomial 𝑓 ◦ G is identically zero–a problem efficiently solvable
using the PIT lemma.

To illustrate the idea of a hitting-set generator in action, consider a generator
with seed length (𝑛 − 1) defined as G(𝒚) = (𝑦1, . . . , 𝑦𝑛−1, 𝑔(𝒚)), where 𝑔 is a hard
polynomial. This generator extends 𝑟 = 𝑛 − 1 variables by one additional coordinate
using a hard polynomial. Now, suppose 𝑓 (𝒚, 𝑥) is a non-zero polynomial in C. For the
sake of contradiction, assume that 𝑓 ◦ G = 𝑓 (𝑦1, . . . , 𝑦𝑛−1, 𝑔(𝒚)) = 0. This implies
that (𝑥 − 𝑔) divides 𝑓 . As we will discuss later (Section 4.4), if 𝑓 is computable by a
small algebraic circuit, then so are all of its factors. Therefore, (𝑥 − 𝑔) must also be
computable by a small circuit, contradicting our assumption that 𝑔 has large circuit
complexity. Hence, G is as a valid hitting-set generator for C.

To derandomize PIT using the above approach, one requires a generator that
stretches a small seed 𝑟 to significantly more than just one additional variable.
Kabanets and Impagliazzo [KI04], drawing inspiration from the Nisan-Wigderson
design [NW94], constructed such a generator G using combinatorial techniques and
a hard polynomial 𝑔. Their construction yields a generator that stretches a seed of
length 𝑟 = poly(log 𝑛) to 𝑛 variables. Applying the same reasoning as before, this
generator leads to a quasipolynomial-time PIT algorithm. Crucially, to establish that
their construction is indeed a hitting-set generator, they use a hybrid argument and
fundamentally rely on factor closure of circuits–which will be explored in detail in
the upcoming parts of this survey.

Theorem 1 (Combinatorial Hardness Implies PIT) Let 𝑘 := 𝑂 (1). Suppose there
exists a family { 𝑓𝑛}𝑛∈N of𝑛-variate multilinear polynomials such that each 𝑓𝑛 requires
algebraic circuits of size 2Ω(𝑛) . Then, there exists a black-box PIT algorithm running
in time 2poly(log 𝑛) for the class of 𝑛-variate degree-poly(𝑛) polynomials computable
by circuits of size poly(𝑛).

Later, Andrews [And20] showed that the derandomization of PIT from hardness
assumptions holds even over fields of characteristic 𝑝. This improvement hinged
on a key result: the 𝑝-th root of a circuit computing 𝑝-th power can be computed
efficiently by a small circuit, provided the number of variables is bounded.

Theorem 1 was subsequently improved with better parameters by the authors
of [Guo+22]. They showed that a constant-variate hard polynomial can imply a

14 Closure of algebraic complexity classes

polynomial-time black-box PIT algorithm. A key contribution in their work is the use
of an algebraic generator, in contrast to the combinatorial design-based generator
used in [KI04]. The combinatorial design inherently suffers from limitations–most
notably, it cannot yield better than a quasipolynomial-time PIT algorithm.

Theorem 2 (Non-combinatorial Hardness-to-PIT) Let 𝑘 := 𝑂 (1). Suppose
{ 𝑓𝑑}𝑑∈N is a family of 𝑘-variate polynomials of degree 𝑑, and each 𝑓𝑑 requires
algebraic circuits of size at least 𝑑0.1. Then, there exists a black-box PIT algorithm
running in time 𝑠𝑂 (𝑘2) for the class of 𝑠-variate, degree-𝑠 polynomials computable
by algebraic circuits of size 𝑠.

We conclude this section by highlighting an important application of the hardness
versus randomness paradigm–namely, the phenomenon of bootstrapping [AGS19;
KST23; Guo+22]. This idea relies on recursively leveraging the connection be-
tween hardness and polynomial identity testing (PIT). Remarkably, it shows that a
complete derandomization of PIT can be achieved from even a mildly non-trivial
derandomization of PIT.

Theorem 3 (Bootstrapping) Suppose there exists a black-box PIT algorithm that
runs in time

(
𝑠𝑘 − 1

)
for the class of 𝑘-variate polynomials of individual degree

𝑠, computable by algebraic circuits of size 𝑠0.1. If 𝑠 is sufficiently large, then there
exists a black-box PIT algorithm running in time 𝑠𝑂 (𝑘2) for 𝑠-variate polynomials
computable by algebraic circuits of size 𝑠.

For a more detailed exposition of this connection between factoring and its
implications for the hardness versus randomness frontier, we refer the reader to the
lucid survey by Kumar and Saptharishi [KS19].

3.3 Other applications

The field of coding theory [GRS23] deals with developing error-correcting codes –
ways of adding (minimal) redundancy to data such that even if parts of it get corrupted
during transmission, one can recover the original information. Reed-Solomon codes
are particularly ubiquitous and also ‘optimal’, in a sense. They treat the original
message as a univariate polynomial and the encoding is the evaluation of this
polynomial at various points over some finite field. When the number of errors is too
large, we cannot decode a corrupted message uniquely, but we can produce a small

Bhargav, Dwivedi & Saxena 15

list of potential decodings (also known as list decoding). The list decoding algorithm
of Sudan [Sud97] and the later improvement by Guruswami and Sudan [GS99]
crucially use polynomial factorization. We point the reader to the survey of Forbes
and Shpilka [FS15, Section 3.1] for more details.

The problem of learning algebraic circuits is called reconstruction [SY10, Chapter
5]. We are given black box access to a polynomial computed by a circuit 𝐶 from
some nice family of circuits C, and we need to ‘learn’ an arithmetic circuit computing
the same polynomial as 𝐶. Efficient polynomial factorization plays an important
role in many reconstruction algorithms [KS09; Sin16; Sin22; SS25]. Polynomial
factorization is also helpful in algebraic property testing [AS03] and the construction
of pseudorandom generators for low-degree polynomials [Bog05; DGV24].

In proof complexity, a central problem is to prove that certain propositional
tautologies need extremely lengthy proofs, even in very powerful proof systems. An
important work of Cook and Rechow [CR79] showed that such proof complexity
lower bounds, provided we are able to show them for every propositional proof
system, would separate the complexity classes NP and coNP, and in turn, also P
from NP. Closure of a class under factoring is another way of saying that multiples
of hard polynomials from the class remain hard (more generally, one can study the
complexity of ideals [Gro20]). Using such hard multiples, Forbes, Shpilka, Tzameret,
and Wigderson [For+21] showed lower bounds against certain algebraic proof systems.
For more about proof complexity, see [Kra95; Juk12; Kra19].

Polynomial factorization also has applications to various other problems in mathe-
matics, such as derandomizing Noether’s Normalization Lemma [Mul17], the primary
decomposition of polynomial ideals [GTZ88], and isomorphism of algebras [KS06;
Iva+12]. In cryptography, polynomial factorization is often used as a subroutine—for
example, in index calculus algorithms and public-key encryption [MOV97, Chapter
3], and in factoring integers [Bre00]. Polynomial factorization algorithms—and the
tools developed alongside them—have proven invaluable in the cryptanalysis of
lattice-based schemes [NV10] as well as post-quantum cryptosystems [DPS20].

4 Factoring via Hensel lifting

Hensel lifting was first introduced by Kurt Hensel in a series of papers [Hen97;
Hen04; Hen08; Hen18], although an earlier form of it was known to Gauß [Fre07].
For an element 𝑝 in a ring R, Hensel lifting gives a method to compute factorization

16 Closure of algebraic complexity classes

modulo 𝑝ℓ (for any ℓ > 0) from the factorization modulo 𝑝. The term lifting refers
to improving the approximation of the factors with each iteration. The explicit
algorithm has applications in various areas of mathematics, including number theory,
and computer algebra.

Theorem 4 (Hensel Lifting) Let R be a ring and I be an ideal in R. Consider
elements 𝑓 , 𝑔, ℎ ∈ R such that 𝑓 ≡ 𝑔 · ℎ (mod I) and there exist 𝑎, 𝑏 ∈ R such that
𝑎 · 𝑔 + 𝑏 · ℎ ≡ 1 (mod I). Then, we have:

1. Existence. There exists 𝑔′, ℎ′ ∈ R such that 𝑓 ≡ 𝑔′ · ℎ′ (mod I2) and

𝑔′ ≡ 𝑔 (mod I) and ℎ′ ≡ ℎ (mod I)

2. Pseudo-Coprimality. For some 𝑎′ ≡ 𝑎 (mod I) and 𝑏′ ≡ 𝑏 (mod I), we have
𝑎′ · 𝑔′ + 𝑏′ · ℎ′ ≡ 1 (mod I2).

3. Uniqueness. If any other �̃�, ℎ̃ satisfy the above conditions, then there must be a
𝑢 ∈ 𝐼 such that �̃� ≡ 𝑔′ (1 + 𝑢) (mod I2) and ℎ̃ ≡ ℎ′ (1 − 𝑢) (mod I2).

The polynomials 𝑔′ and ℎ′ are called the lifts of 𝑔 and ℎ, respectively. The theorem
is not only existential but also constructive–it yields an explicit algorithm to compute
the lifts. Let 𝑒 := 𝑓 − 𝑔ℎ. Then the lifts can be obtained as follows:

𝑔′ := 𝑔 + 𝑒 · 𝑏 and ℎ′ := ℎ + 𝑒 · 𝑎. (2)

To use Hensel lifting for polynomial factoring, we consider R = F[𝑥, 𝑦] and I = 𝑦𝑘

for some 𝑘 ≥ 1. In the case of a multivariate polynomial, we transform it to a bivariate
polynomial. We will discuss this in more detail in the upcoming sections. When
working over a ring of polynomials, a monic version of the theorem further guarantees
the uniqueness of the monic lifts.

Theorem 5 (Monic Hensel Lifting) Let F[𝑥, 𝑦] be a ring of polynomials. Consider
monic polynomials 𝑓 , 𝑔, ℎ ∈ F[𝑥, 𝑦] such that 𝑓 ≡ 𝑔 · ℎ (mod 𝑦) and there exist
𝑎, 𝑏 ∈ F[𝑥, 𝑦] such that 𝑎 · 𝑔 + 𝑏 · ℎ ≡ 1 (mod 𝑦). Then, we have:

1. Existence. There exists monic polynomials 𝑔′, ℎ′ ∈ F[𝑥, 𝑦] such that 𝑓 ≡ 𝑔′ · ℎ′

(mod 𝑦2) and

𝑔′ ≡ 𝑔 (mod 𝑦) and ℎ′ ≡ ℎ (mod 𝑦)

2. Uniqueness. If any other monic �̃�, ℎ̃ satisfy the above conditions, then �̃� ≡ 𝑔′

(mod 𝑦2) and ℎ̃ ≡ ℎ′ (mod 𝑦2).

Bhargav, Dwivedi & Saxena 17

3. Pseudo-Coprimality. For some 𝑎′ ≡ 𝑎 (mod 𝑦) and 𝑏′ ≡ 𝑏 (mod 𝑦), we have
𝑎′ · 𝑔′ + 𝑏′ · ℎ′ ≡ 1 (mod 𝑦2).

Once again let 𝑒 := 𝑓 − 𝑔ℎ, and define �̂�, ℎ̂ as in Equation (2). Compute the
following expressions using the division algorithm:

𝑢 :=
�̂� − 𝑔

𝑦
= 𝑞 · 𝑔 + 𝑟.

Then the unique monic lifts can be computed as follows:

𝑔′ := 𝑔 + 𝑦 · 𝑟 and ℎ′ ≔ ℎ̂ · (1 + 𝑞 · 𝑦) (3)

An expository proof of Hensel lifting can be found in [KSS15, Lemma 3.4].

4.1 Dense representation

To demonstrate the use of Hensel lifting in factoring, consider the problem of factoring
a bivariate polynomial 𝑓 ∈ F𝑞 [𝑥, 𝑦] of degree at most 𝑑, where 𝑞 = 𝑝𝑎. The input is
given in the dense representation, as in Section 1.1. In fact, the univariate factoring
algorithms will be used as subroutines in the bivariate setting. For convenience, it is
useful to view the input polynomial 𝑓 as an element of

(
𝐹𝑞 [𝑥]

)
[𝑦], thereby treating

the variable 𝑦 informally as a constant.

Resultants.

We saw in Section 1.1 that GCD is an important tool forunivariate factoring algorithms.
A closely related polynomial called the resultant plays an important role in several
factoring algorithms.

Definition 2 (Resultant) Consider two 𝑛-variate polynomials 𝑓 , 𝑔 ∈ F[𝒙] [𝑦] as
follows:

𝑓 (𝒙, 𝑦) =

𝑑1∑︁
𝑖=0

𝑓𝑖 (𝒙) · 𝑦𝑖 and 𝑔(𝒙, 𝑦) =

𝑑2∑︁
𝑖=0

𝑔𝑖 (𝒙) · 𝑦𝑖 .

Define Sylvester matrix of 𝑓 and 𝑔 as the following (𝑑1 + 𝑑2) × (𝑑1 + 𝑑2) matrix:

18 Closure of algebraic complexity classes

S𝑦 (𝑓 , 𝑔) =

©«

𝑓0 𝑔0

𝑓1 𝑓0 𝑔1 𝑔0

𝑓2 𝑓1
. . .

... 𝑔1
. . .

...
...

. . . 𝑔𝑑2

...
. . .

. . .

𝑓𝑑1 𝑓𝑑1−1 𝑓0 𝑔𝑑2

. . . 𝑔0

𝑓𝑑1

. . . 𝑓1
. . . 𝑔1

. . .
...

. . .
. . .

...

𝑓𝑑1

. . . 𝑔𝑑2

ª®®®®®®®®®®®®®®®®®®®¬
Then the resultant of the two polynomials with respect to 𝑦 is defined as the determi-
nant of the Sylvester matrix as:

Res𝑦 (𝑓 , 𝑔) := Det(S𝑦 (𝑓 , 𝑔)).

The resultant is a polynomial of degree at most 2(𝑑1 · 𝑑2) in the coefficients of 𝑓 and
𝑔. The following lemma captures the one of several properties of the resultant that
are useful in factoring algorithms. See [GG13, Section 6.3] for the detailed proof of
the following lemma.

Lemma 6 (Resultant and GCD) Let 𝑓 , 𝑔 ∈ F[𝑥] [𝑦] such that degree with respect
to 𝑦 is positive. Then the following is true:

1. Res𝑦 (𝑓 , 𝑔) = 0 if and only if 𝑓 and 𝑔 share a common factor of positive degree
in 𝑦.

2. There exists 𝑎, 𝑏 such that 𝑎 · 𝑓 + 𝑏 · 𝑔 = Res𝑦 (𝑓 , 𝑔).

Bivariate Factoring.

The high-level idea of bivariate factoring is to first obtain factorization of 𝑓 modulo
𝑦, and then lift them using Hensel lifting. But before we can do that, we need to
ensure that the 𝑓 satisfy certain properties, as described below.

1. 𝑓 (𝑥, 0) is square-free: For 𝑎 ∈ F𝑞 , the univariate polynomial 𝑓 (𝑥, 𝑎) is square-
free if and only if

gcd
(
𝑓 (𝑥, 𝑎), 𝜕𝑥 𝑓 (𝑥, 𝑎)

)
≠ 1.

Bhargav, Dwivedi & Saxena 19

From Lemma 6, this is equivalent to Res𝑥 (𝑓 , 𝜕𝑥 𝑓) |𝑦=𝑎 ≠ 0. Since the degree of
the resultant in 𝑦 is at most 2𝑑2, it suffices to test 𝑂 (2𝑑2) values of 𝑎 ∈ F𝑞 (or a
suitable extension) to find one for which 𝑓 (𝑥, 𝑎) is square-free. A simple linear
transformation will ensure that the resultant is non-zero at 𝑎 = 0. Further, this
would also imply that 𝑓 is square-free.

2. 𝑓 is monic in 𝑥: Let 𝑓𝑑 (𝑥) be the leading coefficient of 𝑓 of degree at most 𝑑.
Then,

𝑓 = 𝑓 𝑑−1
𝑑 · 𝑓

(
𝑥/ 𝑓𝑑 , 𝑦

)
is a monic polynomial in 𝑥.

For simplicity, we denote the monic and square-free polynomial obtained after the
above transformations by 𝑓 . The significance of ensuring that 𝑓 (𝑥, 0) is square-free
is that it allows us to apply univariate factoring algorithms Section 1.1 to compute
polynomials 𝑔0 and ℎ0 such that

𝑓 ≡ 𝑔0 · ℎ0 mod 𝑦,

where 𝑔0 is a monic irreducible factor in 𝑥. We now use Hensel lifting Theorem 5,
repeatedly 𝑡 times to obtain 𝑔𝑘 and ℎ𝑘 satisfying

𝑓 ≡ 𝑔𝑘 · ℎ𝑘 mod 𝑦2𝑡 .

The lifting process is continued until 2𝑡 > 2𝑑2, a bound that hints at a connection
with resultant polynomials. We address this connection in the proof of the following
claim.

Proposition 1 If the input polynomial 𝑓 is reducible then there exists a non-trivial
factor 𝑓1 of 𝑓 such that 𝑓1 ≡ 𝑔𝑘 · ℓ (mod 𝑦2𝑘). Further, deg𝑥 (𝑓1), deg𝑦 (𝑓1) is at most
deg𝑥 (𝑓) and deg𝑦 (𝑓) respectively.

Proof. First let us prove that such a factor exists. Since 𝑔0 is an irreducible factor of
𝑓 (mod 𝑦), we know that 𝑔0 must divide some irreducible factor of 𝑓 , say 𝑓1. Let
𝑓 = 𝑓1 · ℎ. Then, for some ℓ0,

𝑓1 ≡ 𝑔0 · ℓ0 mod 𝑦.

By Theorem 5, we get 𝑓1 ≡ 𝑔′
𝑘
· ℓ𝑘 (mod 𝑦2𝑘). Multiplying ℎ both sides gives

𝑓 ≡ 𝑔′𝑘 · ℎ
′
𝑘 mod 𝑦2𝑘

.

20 Closure of algebraic complexity classes

From the uniqueness part of Theorem 5, we must have 𝑔′
𝑘
= 𝑔𝑘 , and hence 𝑓1 ≡ 𝑔𝑘 ·ℓ𝑘

(mod 𝑦2𝑘) exists.
To see that 𝑓1 is non-trivial, let us assume for the sake of contradiction that

gcd𝑥 (𝑓 , 𝑓1) = 1. Then there exist 𝑢, 𝑣 such that

𝑢 · 𝑓 + 𝑣 · 𝑓1 = Res𝑥 (𝑓 , 𝑓1).

Substituting the lifted expressions, we get

𝑔𝑘 · (𝑢 ℎ𝑘 + 𝑣 ℓ𝑘) ≡ Res𝑥 (𝑓 , 𝑓1) mod 𝑦2𝑘

.

Since 𝑔𝑘 is monic, and Res𝑥 (𝑓 , 𝑓1) ∈ F𝑞 [𝑦], it follows that

𝑢 ℎ𝑘 + 𝑣 ℓ𝑘 ≡ 0 mod 𝑦2𝑘

.

Since 2𝑘 is greater than the degree of the resultant 2𝑑2, it follows that Res𝑥 (𝑓 , 𝑓1) = 0.
This yields a contradiction, and thus gcd𝑥 (𝑓 , 𝑓1) ≠ 1. ⊓⊔

The above claim suggests that a non-trivial factor of 𝑓 , if it exist, can be obtained
by solving the following linear system:

𝑔 ≡ 𝑔𝑘 · ℓ mod 2𝑦𝑘 , (4)

where the degree bounds are same as before.
Finally, we recall that the algorithm factors a polynomial that results from a se-

quence of preprocessing steps. Hence, it is necessary to undo these steps—particularly
the monic transformation—in order to recover a factor of the original input polyno-
mial. By applying the Cantor–Zassenhaus algorithm for univariate factorization and
analyzing the cost of lifting factors via Hensel lifting, it can be observed that the
overall complexity of bivariate factoring is poly(𝑑, log 𝑞) operations over F𝑞 .

Naturally, the bivariate factoring algorithm extends to the multivariate setting.
However, as the number of variables increases, the runtime of the algorithm degrades
rapidly. Later, we will explore how to address this challenge while still reusing
insights from the factoring algorithms discussed thus far.

Bhargav, Dwivedi & Saxena 21

4.2 Factoring polynomials over integers

The finite field factoring algorithm can be extended to factoring polynomials over
integers and thereby over rationals as well. Although the details of it is outside the
scope of this survey, we will briefly discuss the high-level idea of the algorithm.
Consider a degree 𝑑 input polynomial 𝑓 ∈ Z[𝑥] with coefficients of bit-length at
most 2ℓ. Therefore, the coefficients of 𝑓 are between −2ℓ and 2ℓ , and the goal is to
obtain a non-trivial factor of 𝑓 in poly(𝑑, ℓ) time.

The algorithm for factoring polynomials over the integers closely follows the same
template as the bivariate factoring algorithm. It begins by choosing a sufficiently
large prime 𝑝 such that 𝑓 mod 𝑝 is square-free. The prime 𝑝 plays a role analogous
to the variable 𝑦 in the bivariate setting. The polynomial 𝑓 is then factored modulo
𝑝 using a univariate factoring algorithm (see Section 1.1). The resulting factors are
lifted to a factors modulo 𝑝2𝑘 via Hensel lifting. As in the bivariate case, it can be
shown that log(𝑛3ℓ) iterations of the lifting step suffice.

The most challenging part of the algorithm lies in solving the linear system similar
to Equation (4), under the additional constraint that the coefficients of the factor 𝑔
are small. Although this is not immediately obvious, the problem reduces to finding
a shortest vector in a lattice—-a task that is known to be NP-hard in general.

Nevertheless, the celebrated algorithm of Lenstra, Lenstra, and Lovász [LLL82]
provides an efficient weak-approximation algorithm for this problem, which turns out
to be sufficient for the purposes of polynomial factoring. For a detailed exposition,
see [Sap17, Chapter 13].

4.3 𝒑-adic factoring: Chistov, Cantor-Gordon algorithm

There is no topology, nor a geometric interpretation, inherent in a finite field. Classi-
cally, this motivated mathematicians to ‘extend’ a finite field F𝑞 (𝑞 is a power of a
prime 𝑝) to a characteristic zero field. The latter is called an unramified 𝑝-adic field
construction.

𝑝-adics. For simplicity, consider the object Z𝑝 , the ring of 𝑝-adic integers. Its
elements are infinite series of the type (𝑎0 + 𝑎1 · 𝑝 + 𝑎2 · 𝑝2 + · · ·) with the digits 𝑎𝑖’s
in [0 . . . 𝑝 − 1]. The notion of convergence here requires an ultra-metric, defined
via prime-powers, |𝑝𝑖 |𝑢 := 𝑝−𝑖 . (Exercise: Check that it defines a metric in the space
Z𝑝 → Q.) This forces an unreal comparison of real numbers: 1 > 𝑝 > 𝑝2 > · · · >

22 Closure of algebraic complexity classes

𝑝∞ = 0 ! The convergence allows certain integers to become invertible or units,
e.g. 1/(1 − 𝑝) = 1 + 𝑝 + 𝑝2 + · · · ∈ Z𝑝 . It is easy to show: (1) Z𝑝 is an integral
domain, so it has a field of fractions called 𝑝-adic rationals Q𝑝 , which has non-integer
elements like 1/𝑝 and 1/(𝑝2 + 2𝑝3). (2) The characteristic of Z𝑝 and Q𝑝 is 0.

Given a polynomial 𝑓 (𝑥) ∈ Q𝑝 [𝑥] as a binary string of size 𝑛, can we factor
it, over Q𝑝 , in time poly(𝑛)? A randomized poly-time algorithm was provided by
[Chi87; CG00]. The two papers are written in very different styles. We will sketch
the basic ideas common to them, by working through an example.

Consider the 2-adic polynomial 𝑓 (𝑥) = (𝑥 − 2)2 (𝑥 − 4) + 32 ∈ Q2 [𝑥]. Note that
𝑓 ≡ 𝑥4 mod 2 has no coprime factors over F2, so the algorithm of Section 1.1.2
cannot be applied to get factors, or check irreducibility, ‘lifted’ to Z/4Z. This forces
us to work modulo higher 2-powers and to perform some new operations. Seeing
broadly, there are two major algebraic themes in the algorithm, which we oversimplify
for the sake of presentation as follows.

𝑥 monomial

coeff.valuation 𝑝 = 2

(0,4)

(1,2)

(2,3)

(3,0)

Fig. 3 The Newton Diagram for 𝑓 (𝑥) .

Theme 1 (Newton-Hensel). Consider the Newton diagram of 𝑓 = 𝑥3−8𝑥2+20𝑥+
16, by plotting the monomial-exponents in the X-axis (namely, {0, 1, 2, 3}) and the
2-adic valuation of the integral-coefficients in the Y-axis (respectively, {4, 2, 3, 0}).
The lower-boundary of this diagram has two edges of slopes 1 and 2 respectively,
suggesting that the Q2-roots of 𝑓 (𝑥) are (exactly) divisible by 21 and 22 respectively.
This gives us the ‘transformation’ 𝑓 (2𝑥) to study, and to find the first factor by a
version of Hensel lifting. Thus, 𝑓 (2𝑥)/8 = (𝑥−2) (𝑥−1)2+4 = (𝑥−2+22+25+· · ·)·
(𝑥2 − (2 + 22 + 25 + · · ·)𝑥 + 1 − 24). The key property we use here is the coprimality

Bhargav, Dwivedi & Saxena 23

of the two factors (𝑥 − 2), (𝑥 − 1)2 mod 2; so, the algorithm of Section 1.1.2 can be
applied.

An inverse transformation (𝑥 ↦→ 𝑥/2) gives us the two factors of 𝑓 as, 𝑔1 :=
(𝑥 − 22 + 23 + 26 + · · ·) and 𝑔2 := (𝑥2 − (22 + 23 + 26 + · · ·)𝑥 + (22 − 26 + · · ·)),
respectively. Clearly, 𝑔1 is an irreducible 2-adic factor of 𝑓 . What about 𝑔2?

Theme 2 (𝑝-adic ramification). Again from the Newton diagram of 𝑔2 we learn
that it has two distinct Q2-roots, both (exactly) divisible by 21. So, we study the new
transformation 𝑔2 (2𝑥)/4 = (𝑥2 − (2 + 22 + 25 + · · ·)𝑥 + 1 − 24) =: 𝑇 (𝑥). Clearly,
𝑇 ≡ (𝑥 − 1)2 mod 4 with no coprime factors mod2. In this case both the tricks of
Newton and Hensel fail.

We have𝑇 ≡ 𝑥2−6𝑥+1 ≡ (𝑥−3)2−8 mod 16. From here we learn two properties:
(1) 𝑇 is irreducible (yielding a certificate of irreducibility for 𝑔2), as

√
8 does not

exist in Q2; and (2) 𝑇 suggests a more intricate transformation to progress to a deeper
root of 𝑓 , namely, (𝑥 − 3) ↦→ (𝑥 − 3)

√
2 over the (ramified) field Q2 (

√
2).

In general, if a repeated number of these steps achieve a ramification degree equal
to that of the degree of 𝑓 , then we have a certificate of irreducibility of 𝑓 over Q𝑝 .

The above two algebraic themes give a randomized poly-time algorithm to factor
𝑓 (𝑥) ∈ Q𝑝 [𝑥]. The time-complexity is based on analyzing the (Galois) symmetries of
both the ramified and unramified field extensions of Q𝑝 that the algorithm constructs.

Question 2 (Open) Given an integral polynomial 𝑓 (𝑥) ∈ Z[𝑥] of degree 𝑑 and a
prime-power 𝑝𝑘 , can we factor 𝑓 mod 𝑝𝑘 , in randomized poly(𝑑𝑘 log 𝑝) time?

In this case, there is no unique factorization property, and we cannot use division
by 𝑝, as it is now a zerodivisor. See [DMS21; CDS24] for a detailed survey.

4.4 Small algebraic circuits

The factoring algorithms discussed in earlier sections assume that the input polyno-
mial is given in the dense representation, that is, as an explicit list of its coefficients.
However, algebraic circuits—-introduced in Section 2 provide a much more succinct
way to represent polynomials. From now on, we will work over fields of character-
istic zero unless otherwise specified. The results also holds if the characteristic is
sufficiently greater than the degree of the polynomial under consideration.

Let 𝑓 ∈ F[𝒙] be a 𝑛-variate polynomial computed by an algebraic circuit C of
size 𝑠. In the black-box model, access to C is restricted to evaluation queries only

24 Closure of algebraic complexity classes

(see Figure 4). Given such a circuit C and the degree bound 𝑑 = deg(𝑓), the goal is
to compute the irreducible factors of 𝑓 .

C

𝛼1

𝛼𝑛

.

.

.
𝑓 (𝜶) ∈ F

Fig. 4 Black-box access to polynomial via circuit C

A special case of multivariate factorization arises when 𝑓 = 𝑔𝑒, where 𝑔 is an
irreducible polynomial and 𝑒 ≥ 1. For fields for large characteristic, the binomial
theorem gives a simple way to compute 𝑔 from 𝑓 . Start with performing a linear
transformation on 𝑓 to ensure that 𝑓 (0, . . . , 0) = 1. Then we have

𝑔 = 𝑓 1/𝑒 =

(
1 + (𝑓 − 1)

)1/𝑒

=

𝑑∑︁
𝑖=0

(
1/𝑒
𝑖

)
· (𝑓 − 1)𝑖 mod ⟨𝒙⟩𝑑+1 . (5)

The last equality holds because (𝑓 − 1)𝑖 contributes larger than degree 𝑑 terms
for 𝑖 > 𝑑. Algebraic circuits can be efficiently added and multiplied, and further the
division required to compute Equation (5) can be eliminated using Lemma 4. Overall,
given only blackbox access to C computing 𝑓 , we can obtain the circuit for 𝑔 of size
poly(𝑠, 𝑛, 𝑑).

Blackbox multivariate factoring.

Remarkably, Kaltofen and Trager [KT90] showed that in the black-box setting, ef-
ficient circuit factorization is achievable. To describe it, we need to state Hilbert’s
Irreducibility Theorem, which guarantees that irreducible factors of 𝑓 maintain their
irreducibility profile when restricted to the random subspace.

Theorem 6 (Effective Hilbert Irreducibility Theorem) Let 𝑆 ⊆ F be a large
enough finite subset and 𝑔 ∈ F[𝒙, 𝑦] be a monic polynomial of degree 𝑑, and 𝜕𝑦𝑔 is

Bhargav, Dwivedi & Saxena 25

non-zero. If |𝑆 | is at least 𝑑6 and 𝑔 is irreducible, then for most of the 𝛼, 𝛽 ∈ 𝑆𝑛, the
polynomial 𝑔(𝑦, 𝛼1𝑥 + 𝛽1, . . . , 𝛼𝑛𝑥 + 𝛽𝑛) is irreducible.

The effective version of Hilbert’s Irreducibility Theorem was first proved by
Kaltofen [Kal95, Section 3]. For a clear and accessible exposition, see Sudan’s
lecture notes [Sud98, Lecture 9].

Consider the polynomial 𝑓 restricted to a suitable subspace so that the theorem
above holds:

𝑓𝛼,𝛽 := 𝑓
(
𝑦, 𝛼1𝑥 + 𝛽1, . . . , 𝛼𝑛𝑥 + 𝛽𝑛

)
.

Let ℓ be the number of irreducible factors of 𝑓𝛼,𝛽 obtained using bi-variate factoring
algorithm (see Section 4.1). Assuming 𝑓 is monic in 𝑦 and 𝜕𝑦 𝑓 is non-zero, one
can prove using Theorem 6 that 𝑓 has ℓ irreducible factors with high probability.
Note that, since the bivariate factoring algorithm requires the input polynomial to be
in dense representation, the coefficients of 𝑓𝛼,𝛽 are computed via interpolation (ref
Lemma 2).

Given a point (𝑎, 𝑏1, . . . , 𝑏𝑛) ∈ F𝑛+1 and an index 𝑖, we want to compute the 𝑖-th
factor 𝑓𝑖 (𝑎, 𝑏1, . . . , 𝑏𝑛). For this define a trivariate polynomial which captures both
projection of 𝑓 on 𝛼, 𝛽 and the evaluation point (𝑎, 𝑏1, . . . , 𝑏𝑛) as follows:

𝑓 (𝑦, 𝑧1, 𝑧2) := 𝑓
(
𝑦, 𝛼1𝑧1 + 𝛽1 + (𝑏1 − 𝛽1)𝑧2, . . . , 𝛼𝑛𝑧1 + 𝛽𝑛 + (𝑏𝑛 − 𝛽𝑛)𝑧2

)
,

where each 𝑥𝑖 ↦→ 𝛼𝑖𝑧1 + 𝛽𝑖 + (𝑏𝑖 − 𝛽𝑖)𝑧2. Note that 𝑓 (𝑎, 0, 1) = 𝑓 (𝑎, 𝑏1, . . . , 𝑏𝑛) and
𝑓 (𝑦, 𝑥, 0) = 𝑓𝛼,𝛽 (𝑦, 𝑥). Using interpolation described in Lemma 2, we can obtain the
coefficients of 𝑓 . Kaltofen [Kal85] proved that factoring a constant variate polynomial,
in particular the trivariate polynomial 𝑓 , is efficiently doable using univariate and
bivariate factorizations. Let

{
𝑓𝑖 (𝑦, 𝑥1, 𝑥2) : 𝑖 ∈ [ℓ′]

}
be the set of irreducible factors

of 𝑓 . Find an index 𝑗 such that 𝑓 𝑗 (𝑦, 𝑥, 0) = 𝑓𝑖 (𝑦, 𝑥) and output 𝑓 𝑗 (𝑎, 0, 1).

Circuit factoring

Black-box factoring is a strong notion of factorization, wherein the algorithm is
given oracle access to a polynomial and is required to construct oracle access to its
factors–without relying on or even knowing the underlying representation or model
of computation. Remarkably, this idea can be adapted to show that if a polynomial is
computed by a small algebraic circuit, then all its irreducible factors can be computed
by small circuits [Kal89]. The complexity class VP contains all polynomial families
that can be computed by ‘small’ circuits.

26 Closure of algebraic complexity classes

Definition 3 (VP) A polynomial family 𝑓 = (𝑓𝑛) is in the class VP over the field F if
both the number of variables and degree of 𝑓𝑛 are bounded by poly(𝑛) and moreover,
the size of the smallest circuit over F computing 𝑓𝑛, denoted sizeF (𝑓𝑛) is bounded
by poly(𝑛).

Note that polynomials of degree exp(𝑛) can be computed by circuits of size poly(𝑛)
by repeated squaring. Such families are not in VP due to the degree restriction in
its definition. There are good reasons for imposing this restriction [Gro13]. We will
also encounter small circuits of high degree in Section 5.2. The main result of this
section is the closure of VP under taking factors.

Over characteristic zero, we can without loss of generality assume that 𝑓 = 𝑔𝑒 · ℎ,
where 𝑔 and ℎ are co-prime and 𝑒 ≥ 1. The special case of ℎ = 1 can be handled as
before using Equation (5).

Input: 𝑓 ∈ F[𝒙] Preprocessing

Univariate FactoringHensel Lifting

Solve Linear System GCD Computation

Undo PreprocessingOutput: Factor 𝑔

Square-free reduction, monic
transformation, and bivariate
projection.

Factor 𝑓 (𝑥, 0) using uni-
variate algorithms such as
Berlekamp or Cantor Zassen-
haus.

Apply Hensel lifting to itera-

tively lift factors modulo 𝑦2𝑘 .

Solve a linear system to refine
the lifted factor to match actual
factor.

Recover a non-trivial factor of
𝑓 using gcd.

Undo preprocessing to return
factor of original input polyno-
mial.

Fig. 5 Overview of Multivariate Factoring using Hensel Lifting.

Theorem 7 (VP factor closure) Let 𝑓 ∈ F[𝒙, 𝑦] be a (𝑛 + 1)-variate, degree 𝑑

polynomial computable by a circuit of size 𝑠. If there are co-prime factors 𝑔 and ℎ

such that 𝑓 = 𝑔𝑒 · ℎ, where 𝑒 ≥ 1, then 𝑔 is also computable by a circuit of size
poly(𝑠, 𝑛, 𝑒).

Bhargav, Dwivedi & Saxena 27

Proof Sketch. As in the univariate case, we begin by eliminating repeated factors from
𝑓 via square-free reduction. This is done by repeatedly dividing 𝑓 by gcd(𝑓 , 𝜕𝑥 𝑓),
yielding a square-free polynomial. The efficiency of these operations follows from
the structural results on algebraic circuits discussed in Section 2.1. After this step,
we may assume that 𝑓 = 𝑔ℎ, where 𝑔 and ℎ are coprime. It is important to note that
the multiplicity parameter 𝑒 appearing in the final size bound for the factor originates
from this square-free reduction step.

As before, we apply a linear transformation to make 𝑓 monic in 𝑥, followed by a
shift to reduce it to a bivariate polynomial (see Theorem 6). After this sequence of
transformations, we may assume that 𝑓 = 𝑔ℎ ∈ F[𝑥, 𝑦], where 𝑔 and ℎ are coprime,
and 𝑓 is monic in 𝑥. Moreover, 𝑔(𝑥, 0) and ℎ(𝑥, 0) are also coprime. These conditions
together set the stage for applying Hensel lifting. It is important to observe here that
these preprocessing steps are reversible and can be efficiently performed on circuits.

We iteratively apply Hensel lifting to compute polynomials 𝑔𝑘 and ℎ𝑘 such that
𝑓 ≡ 𝑔𝑘 · ℎ𝑘 (mod 𝑦2𝑘). The lifting proceeds until 2𝑘 > 2𝑑2(refer to Proposition 1).
Each iteration consists of basic algebraic operations outlined in Equation (3), all of
which can be performed efficiently by leveraging the structural results of algebraic
circuits. Since Hensel lifting yields only an approximate factorization modulo 𝑦2𝑘 , the
actual factor 𝑔 of 𝑓 is recovered by solving the linear system 𝑔′ ≡ 𝑔𝑘 · ℓ (mod 𝑦2𝑘).

By computing the gcd of 𝑓 with the solution 𝑔′ of the linear system, we recover
a non-trivial factor 𝑔 of 𝑓 . Finally, we reverse all preprocessing steps to obtain an
algebraic circuit computing 𝑔. ⊓⊔

It remains open to extend the closure result to fields of small characteristic.

Question 3 (Open) Is the class VP closed under taking factors over fields of positive
characteristic?

As mentioned earlier, Kaltofen [Kal87, Theorem 2] proved a special case of factor
closure for polynomials in VP of the form 𝑔𝑒 (i.e., ℎ = 1 in Theorem 7) over fields
of characteristic zero. Andrews [And20] removed the dependence on characteristic
in this result for the log-variate regime, thereby making progress toward resolving
Question 3. Later, we will discuss a more general progress on this question, where
factors of polynomials in VP over finite fields are shown to be explicit.

There are other natural classes for which a factor closure result, similar to The-
orem 7, does hold. Notably, these include classes that contain VP, and also classes
that are contained in VP. We discuss these next.

28 Closure of algebraic complexity classes

4.5 Algebraic branching programs

The Algebraic Branching Program (ABP) is another model of computation for
polynomials, and in terms of computational power it lies between algebraic circuits
and formulas.

Definition 4 (Algebraic Branching Program) An Algebraic Branching Program
(ABP) is a directed acyclic graph where the edges are labeled by a linear polynomial
over a field. The graph has a unique source node 𝑠 and a sink node 𝑡 (refer Figure 6).
For every path 𝑝 from 𝑠 to 𝑡, let 𝑓𝑝 denote the product of the labels on the edges of
𝑝. The polynomial computed by the ABP is the sum of polynomials computed along
all the different 𝑠 − 𝑡 paths:

𝑓 =
∑︁
𝑝:𝑠⇝𝑡

𝑓𝑝 .

The size of the ABP refers to the total number of vertices in the graph, while the
length of the ABP is the length of the longest path from 𝑠 to 𝑡.

𝑡

.

.

.

. . .

. . .

. . .

𝑝

.

.

.
.
.
.

𝑠

edge labels: linear polynomials.

𝑓𝑝 = prod. of edge labels in 𝑝

𝑓 =
∑

𝑝:𝑠⇝𝑡 𝑓𝑝

Fig. 6 Algebraic Branching Program (ABP)

Although not immediately evident, ABPs are equivalent to restricted algebraic
circuits known as skew circuits. In a skew circuit, each multiplication gate is allowed
to have at most one child that is not an input gate. For a proof of equivalence between
ABPs and skew circuits, see [Mah14]. Similar to general circuits, ABPs are closed
under addition and multiplication with only an additive increase in size. Strassen’s
classical technique for division elimination, originally developed for algebraic circuits,

Bhargav, Dwivedi & Saxena 29

can be adapted to ABPs as well (see Lemma 4). We state a few non-trivial structural
results about ABPs that will be instrumental in the upcoming factor closure result.

Lemma 7 (ABP Closure Properties) Let 𝑓 ∈ F[𝒙, 𝑦] be a (𝑛+1)-variate polynomial
of degree 𝑑 computed by an ABP of size 𝑠, such that 𝑓 =

∑𝑑
𝑖=1 𝑓𝑖 (𝒙)𝑦𝑖 . Then:

1. Coefficient Extraction. For any 𝑖 ∈ [𝑑], 𝑓𝑖 can be computed by an ABP of size
poly(𝑠, 𝑛, 𝑑).

2. GCD. For any polynomial 𝑔 computable by an ABP of size 𝑠, gcd(𝑓 , 𝑔) can be
computed by an ABP of size poly(𝑠, 𝑛, 𝑑).

3. Composition. Let 𝑔1, . . . , 𝑔𝑛 be polynomials computable by ABPs of size 𝑠. Then
the composition 𝑓 (𝑔1, . . . , 𝑔𝑛) can be computed by an ABP of size poly(𝑠, 𝑛).

Similar to class of small degree polynomials computable by small circuits Defini-
tion 3, we can define the class of polynomials computable by small ABPs.

Definition 5 (VBP) A polynomial family 𝑓 = (𝑓𝑛) is said to be in the class VBP if
the number of variables and degree of 𝑓𝑛 are bounded by poly(𝑛) and furthermore,
𝑓𝑛 can be computed by an algebraic branching program of size at most poly(𝑛).

It is not hard to show that VBP ⊆ VP. In the previous section, we discussed the
closure of the class VP under factorization. A natural question is whether a similar
closure property holds for VBP. Kaltofen and Koiran [KK08] made progress in
this direction by showing that if 𝑓 , 𝑔 ∈ VBP and 𝑓 = 𝑔 · ℎ, then ℎ also belongs to
VBP. Their approach relies on interpreting algebraic branching programs (ABPs)
as a restricted class of circuits known as skew circuits discussed earlier. Using this
division closure, Jansen [Jan11] leveraged the connection between ABPs and the
determinant to adapt the power iteration algorithm for computing eigenvalues, to
prove factor closure for polynomials of the form 𝑓 = 𝑓1 · (𝑦 − 𝑓2) · · · (𝑦 − 𝑓𝑛), where
the 𝑓𝑖 are pairwise distinct. More recently, Sinhababu and Thierauf [ST21] revisited
the Hensel lifting method to completely solve the open problem by proving factor
closure of VBP.

It is important to observe that the multivariate factoring algorithm from Theorem 7
does not directly extend to Algebraic Branching Programs (ABPs). The main chal-
lenge lies in the monic variant of Hensel lifting, which requires division at each step–a
costly operation for ABPs when repeated frequently (see Equation (3)). Although
composition is technically feasible in ABPs (Lemma 7), the multiplicative blow-
up renders repeated use impractical. This limitation also rules out other factoring
strategies that rely on efficient composition, which we shall explore in later sections.

30 Closure of algebraic complexity classes

Nevertheless, Sinhababu and Thierauf [ST21, Theorem 4.1] circumvented the
obstacles by employing the classical version of Hensel lifting (Theorem 4), which
avoids division altogether.

Theorem 8 (VBP Closure) Let 𝑓 ∈ F[𝒙] be a 𝑛-variate polynomial of degree 𝑑

computed by an ABP of size 𝑠. Then its arbitrary factor 𝑔 can be computed by an
ABP of size poly(𝑠, 𝑛, 𝑑).

Proof Sketch. The special case where 𝑓 = 𝑔𝑒 is handled using the binomial expansion,
as detailed in Equation (5), in conjunction with structural results from Lemma 7. For
the general case, we follow the same sequence of preprocessing steps as before: taking
a derivative to perform square-free reduction, applying a random shift to ensure that
𝑓 is monic and that the factors of 𝑔 and ℎ remain coprime, and finally reducing the
polynomial to a bivariate form. These steps prepare the polynomial for the application
of Hensel lifting. As before, we begin the lifting process by applying a univariate
factoring algorithm to 𝑓 (𝑥, 0) (see Section 1.1). However, instead of using the monic
variant of Hensel lifting–as in the previous setting–which involves division at each
step, we employ the classical version of Hensel lifting (see Theorem 4). The process
is repeated as before for 𝑘 iterations to obtain polynomials 𝑔𝑘 and ℎ𝑘 such that

𝑓 ≡ 𝑔𝑘 · ℎ𝑘 mod 𝑦2𝑘

,

where 𝑘 = 𝑂 (log 𝑑) suffices. Finally all that remains is to solve the linear system
arising as before from

�̃� ≡ 𝑔𝑘 · ℎ′𝑘 mod 𝑦2𝑘

.

Since a guaranteed solution requires the linear system to be homogeneous, the poly-
nomial �̃� is not monic. Sinhababu and Thierauf observed that the monic irreducible
factor 𝑔 can be recovered by dividing �̃� by its leading coefficient (see [ST21, Lemma
4.19]). It is then easy to observe that all the steps, including the preprocessing
steps, can be performed efficiently on ABPs using the structural results discussed
earlier. ⊓⊔

As for VP, it is an open question to extend the above result to fields of small
characteristic.

Question 4 (Open) Is the class VBP closed under taking factors over fields of positive
characteristic?

Bhargav, Dwivedi & Saxena 31

4.6 Explicit polynomials

A compelling class of polynomials was defined by Valiant [Val79] as a non-
deterministic analog of VP. This class is denoted by VNP and is defined as follows.

Definition 6 (VNP) A family of polynomials 𝑓 = (𝑓𝑛) is said to be in VNP over
the field F if there exist functions 𝑘, ℓ, 𝑚 : N → N all polynomially bounded, and
a polynomial family 𝑔 = (𝑔𝑛) ∈ VP with 𝑔𝑛 ∈ F[𝑥1, . . . , 𝑥𝑘 (𝑛) , 𝑦1, . . . , 𝑦𝑚(𝑛)] such
that for all 𝑛,

𝑓𝑛 (𝑥1, . . . , 𝑥𝑘 (𝑛)) =
∑︁

𝒂∈{0,1}𝑚(𝑛)

𝑔ℓ (𝑛) (𝑥1, . . . , 𝑥𝑘 (𝑛) , 𝑎1, . . . , 𝑎𝑚(𝑛)).

The polynomial family 𝑔 is often referred to as the family of verifier polynomials,
and the variables 𝑦1, . . . , 𝑦𝑚(𝑛) are called witness variables. This is analogous to
the boolean class NP which contains functions 𝑓 (𝑥1, . . . , 𝑥𝑛) that can be written as
a logical OR of a verifier function 𝑔(𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑚), 𝑚 = poly(𝑛) over all
boolean assignments to the witness variables 𝑦1, . . . , 𝑦𝑚. The OR is replaced by a
sum in VNP, making it perhaps closer to #P, the counting version of NP.

Clearly, VP ⊆ VNP. Motivated by Kaltofen’s results on the factors of VP,
Bürgisser [Bür00a, Conjecture 2.1] conjectured that VNP is closed under factor-
ization as well. Chou, Kumar and Solomon [CKS19b, Theorem 2.9] showed that
Bürgisser’s conjecture is in fact true when the field has characteristic 0. The key ideas
were based on a related but different factoring tool that we are going to discuss in the
upcoming section.

Further, Bhargav, Dwivedi, and Saxena [BDS24, Theorem 1.6] proved that the
factor closure holds over finite fields as well, using Hensel lifting in combination
with Valiant’s criterion (and its converse) for low-degree polynomials to be in VNP
(cf. [Bür00a, Proposition 2.20]). We denote by ⟨𝑎⟩ the boolean encoding of any
mathematical object 𝑎.

Proposition 2 (Valiant’s Criterion) Consider a polynomial family 𝑓 = (𝑓𝑛) with
the number of variables and degree of 𝑓𝑛 bounded by poly(𝑛). Suppose 𝑓𝑛 =

∑
𝒆 𝑐𝒆𝒙

𝒆.
If for every 𝑛, there exists a function 𝜙𝑛 ∈ #P/poly such that given any exponent
vector 𝒆, we have 𝜙𝑛 (⟨𝒆⟩) = ⟨𝑐𝒆⟩, then 𝑓 ∈ VNP.

Over finite fields, a weaker variant of Valiant’s criterion suffices, wherein the
coefficient function 𝜙 lies in #𝑝P/poly (see [Bür00a, Section 4.3]). We omit this
subtlety when it is clear from the context.

32 Closure of algebraic complexity classes

Finally, it is once again important to state that VNP is closed under several standard
operations, such as addition, multiplication, and composition [Val82, Section 4].
However, the closure under composition is particularly subtle. A naive substitution of
variables may not work, and a more refined approach is needed [CKS19b, Claim 8.4].
In particular, an alternative characterization of VNP proves useful–namely, that VNP
polynomials can be expressed as hypercube sums of polynomial-size formulas (see
[MP08, Theorem 2] for a proof). We refer the reader to the full version of [BDS24]
for detailed proofs.

Theorem 9 (Closure of VNP) Let 𝑓 (𝒙) be an 𝑛–variate polynomial of degree 𝑑

such that
𝑓 (𝒙) =

∑︁
𝒂∈{0,1}𝑚

𝑞(𝒙, 𝒂),

where 𝑞(𝒙, 𝒚) can be computed by a circuit of size 𝑠. If 𝑔(𝒙) is any factor of 𝑓 of
degree 𝑟 , then it can be written as

𝑔(𝒙) =
∑︁

𝒆∈{0,1}𝑚′
𝑢(𝒙, 𝒆),

where 𝑚′ and size(𝑢) are both bounded by poly(𝑛, 𝑠, 𝑟, 𝑑, 𝑚).

Proof Sketch. Let F = F𝑞 , where 𝑞 = 𝑝𝑎 for some prime 𝑝 < deg(𝑓). Without loss of
generality, we can assume 𝑓 = 𝑔𝑒 · ℎ, where 𝑒 ≥ 1. Recall that in earlier proofs, the
special case ℎ = 1 was handled separately. For large fields, an identity of the form
Equation (5) works in VNP as well. However, over finite fields, extra care is needed.

Let 𝑒 = 𝑝𝑖 · 𝑒. If 𝑒 > 1, then we define the polynomial

𝑓 = 𝑧�̂� − 𝑓 = (𝑧 − 𝑔�̂�1) · (𝑧
�̂�−1 + 𝑧�̂�−2𝑔1 + · · · + 𝑔�̂�−1

1),

where 𝑔1 := 𝑔𝑝𝑖 . It is easy to see that the two factors of 𝑓 are coprime if 𝑝 does not
divide 𝑒. Then the monic Hensel lifting template can be applied to show that (𝑧− 𝑔�̂�1)
is in VNP. The high-level idea is that, after all the required transformations, Hensel
lifting performed on 𝑓 yields a small circuit computing the factor (see [BDS24,
Lemma 5.9]). Since VNP is closed under composition, the required factor (𝑧 − 𝑔�̂�1),
and hence 𝑔�̂�1 , belongs to VNP.

If 𝑔 and ℎ are coprime, then we can directly apply the Hensel lifting approach to
compute 𝑔𝑒 in VNP, and then proceed as before.

Therefore, the only remaining case is when 𝑒 = 1 and 𝑓 = 𝑔𝑝𝑖 . Note that
this case requires separate attention only over small characteristic fields. Since the

Bhargav, Dwivedi & Saxena 33

characteristic of the field is 𝑝, we can associate the coefficients of 𝑓 to those of 𝑔 via
the standard Frobenius map. In particular, if the coefficient of 𝒙𝒂 in 𝑔 is 𝑐𝑔, and the
coefficient of 𝒙𝑝𝑖 ·𝒂 in 𝑓 is 𝑐 𝑓 , then 𝑐𝑔 = (𝑐 𝑓)1/𝑝𝑖 .

In [BDS24], the authors observed that the converse of Valiant’s criterion holds
over finite fields. In particular, all the coefficients of 𝑓 can be computed by a #P/poly
function. Together with the Frobenius correspondence between the coefficients, this
yields a #P/poly function for computing the coefficients of the factor 𝑔. Then, using
Proposition 2, we can conclude that 𝑔 can be written as a hypercube sum of small
sized circuits. ⊓⊔

Theorem 9 also partially answers Question 3 and Question 4, proving that factors
of polynomials in VP (and VBP) are in VNP over finite fields. Robert Andrews
communicated to us an (as yet) unpublished proof (based on the ideas of Malod and
Portier [MP08] and Andrews [And20]) that extends the closure of VNP to all perfect
fields. A field F is perfect if either it is of characteristic zero, or, if the characteristic is
a prime 𝑝, then all elements of F are 𝑝-th powers. All finite fields are perfect. Thus,
it only remains to settle the closure of VNP over infinite non-perfect fields (e.g. the
fraction field F𝑝 (𝑡) for some indeterminate 𝑡).

Question 5 (Open) Is the class VNP closed under taking factors over infinite non-
perfect fields of positive characteristic?

5 Factoring via Newton iteration

In 1669, Isaac Newton described a method to approximate roots of real valued
functions. Also known as the Newton-Raphson method, the idea is to start with an
initial approximate root 𝑥0 of the equation 𝑓 (𝑥) = 0 and successively produce better
approximations using the rule

𝑥𝑖+1 = 𝑥𝑖 −
𝑓 (𝑥𝑖)
𝑓 ′ (𝑥𝑖)

,

provided 𝑓 ′ (𝑥𝑖) ≠ 0. The value 𝑥𝑖+1 is the 𝑥-intercept of the tangent to the curve of
𝑓 (𝑥) at the point 𝑥𝑖 . Alternately, we can think of this as finding a root of 𝑓 (𝑥𝑖) +
𝑓 ′ (𝑥𝑖) (𝑥 − 𝑥𝑖), the Taylor approximation of 𝑓 (𝑥) (up to linear terms) at the point 𝑥𝑖 .
It is intuitive that 𝑥𝑖+1 is closer than 𝑥𝑖 to a root of 𝑓 . Similar to the notion of 𝑝-adic
numbers (Section 4.3), two multivariate polynomials (or even power series) 𝑝(𝒙)

34 Closure of algebraic complexity classes

and 𝑞(𝒙) are considered close up to degree 𝑡 if they only differ in terms of degree
greater than 𝑡, i.e., 𝑝(𝒙) = 𝑞(𝒙) mod ⟨𝒙⟩𝑡+1.

We first state a slower version of Newton’s method over the power series ring that
is useful in factoring applications.

Lemma 8 ([CKS19b, Lemma 5.1]) Let 𝑓 (𝒙, 𝑦) ∈ F(𝒙) [𝑦] be a polynomial over
F(𝒙) and 𝜇 ∈ F be such that 𝑓 (0, 𝜇) = 0 but 𝛿 := 𝜕𝑦 𝑓 (0, 𝜇) ≠ 0.

Then, there is a unique power series 𝜑 ∈ F[[𝒙]] with 𝜑(0) = 𝜇 such that
𝑓 (𝒙, 𝜑) = 0. Set 𝜑0 = 𝜑(0), and for all 𝑡 ≥ 0, define

𝜑𝑡+1 := 𝜑𝑡 −
𝑓 (𝒙, 𝜑𝑡)

𝛿
.

The rate of convergence of the sequence of polynomials 𝜑𝑡 ∈ F[𝒙] to the root 𝜑
is linear:

𝜑 = 𝜑𝑡 mod ⟨𝒙⟩𝑡+1 for all 𝑡 ≥ 0.

Consider the case when a polynomial 𝑓 (𝒙, 𝑦) ∈ F[𝒙, 𝑦] has a degree-𝑟 polynomial
𝑔(𝒙) ∈ F[𝒙] as a root (w.r.t. 𝑦). After 𝑟 steps of Newton Iteration, we get a polynomial
𝜑𝑟 (of degree possibly greater than 𝑟) that agrees with 𝑔 on all terms up to degree
𝑟. We obtain 𝑔 by truncating 𝜑𝑟 up to terms of degree at most 𝑟. Seen differently,
Newton Iteration lets us find a linear factor (𝑦 − 𝑔(𝒙)) of 𝑓 (𝒙, 𝑦) by iteratively
approximating the root 𝑔(𝒙), provided the root is of multiplicity one, also called a
simple root. If the root is not simple, i.e. 𝑦 − 𝑔(𝒙) occurs with multiplicity 𝑒 > 1 in
𝑓 , the derivative at the root 𝜕𝑦 𝑓 (𝒙, 𝑔(𝒙)) = 0, so we consider instead the (𝑒 − 1)–th
partial derivative 𝜕𝑦𝑒−1 𝑓 (𝒙, 𝑦), which has 𝑔(𝒙) as a simple root.

A ‘random’ invertible shift of the variables 𝒙 ↦→ 𝒙 + 𝛼𝑦 + 𝛽 where 𝛼 and 𝛽 are
random elements from F𝑛 ensures that 𝑓 is monic in 𝑦 and thus, so are its factors (see,
for e.g., [DSS22, Lemma 14]). However, in general, the factors of 𝑓 (𝒙, 𝑦) may not
be linear. Nevertheless, over the algebraically closed field F(𝒙), 𝑓 uniquely factors
as

∏
𝑖 (𝑦 − 𝜑𝑖 (𝒙))𝑒𝑖 where for all 𝑖, 𝑒𝑖 > 0 and 𝜑𝑖 (𝒙) ∈ F(𝒙). In fact, it can be shown

that after the variable shift, 𝑓 splits over the power series ring i.e., 𝜑𝑖 (𝒙) ∈ F[[𝒙]]
for all 𝑖 (see [DSS22, Theorem 17] for a proof). Moreover, the constant terms of the
roots 𝜇𝑖 := 𝜑𝑖 (0) are all distinct non-zero field elements. Using Newton Iteration, we
can approximate these power series roots. A faster version with a quadratic rate of
convergence is sometimes more useful.

Lemma 9 ([DSS22, Lemma 15]) Let 𝑓 (𝒙, 𝑦) ∈ F(𝒙) [𝑦] be a polynomial over F(𝒙)
and 𝜇 ∈ F be such that 𝑓 (0, 𝜇) = 0 but 𝛿 := 𝜕𝑦 𝑓 (0, 𝜇) ≠ 0.

Bhargav, Dwivedi & Saxena 35

Then, there is a unique power series 𝜑 ∈ F[[𝒙]] with 𝜑(0) = 𝜇 such that
𝑓 (𝒙, 𝜑) = 0. Set 𝜑0 = 𝜑(0), and for all 𝑡 ≥ 0 define

𝜑𝑡+1 := 𝜑𝑡 −
𝑓 (𝒙, 𝜑𝑡)

𝜕𝑦 𝑓 (𝒙, 𝜑𝑡)
.

Since 𝜑𝑡 (0) = 𝜇 for all 𝑡 ≥ 0 and since 𝛿 ≠ 0, the denominator above is invertible
in the power series ring. The sequence of rational functions 𝜑𝑡 (𝒙) ∈ F(𝒙) converges
to 𝜑 at a quadratic rate:

𝜑 = 𝜑𝑡 mod ⟨𝒙⟩2𝑡 for all 𝑡 ≥ 0.

The above Newton-Iteration lemmas can also be viewed as power series versions of
the Implicit Function Theorem (see, for e.g. [KP13, Chapter 1] and [Art22, Theorem
9.2.1]). Returning to the problem of factoring 𝑓 (𝒙, 𝑦), suppose it has a non-trivial
factor 𝑔(𝒙, 𝑦) of degree 𝑟. As discussed earlier, we can assume 𝑔 is a factor of
multiplicity one by considering appropriate partial derivatives. Since 𝑓 is monic in
𝑦, so is 𝑔, and splits as

∏𝑟
𝑖=1 (𝑦 − 𝜑𝑖) for some power series roots 𝜑𝑖 (𝒙) ∈ F[[𝒙]].

Crucially, these 𝜑𝑖’s are a subset of the roots of 𝑓 . Given this set (via the distinct
degree-0 terms of the 𝜑𝑖’s), we can approximate each of these power series roots up
to degree 𝑟 using Newton Iteration on 𝑓 . Whether we use the faster or slower version
will depend on the convenience afforded by the computational model. Finally, in
order to obtain 𝑔, it is enough to multiply the approximations, truncate the result up
to terms of degree 𝑟 , and invert the variable shift.

5.1 Low depth circuits

In this section, we consider factors of polynomials computable by small-size circuits
that are also of bounded-depth. These circuits form an extremely interesting subclass
of arithmetic circuits since general circuits can be “efficiently” depth-reduced, unlike
Boolean circuits. An influential body of work [Val+83; AV08; Koi12; Tav15; Gup+16]
shows that any circuit of size 𝑠 computing a polynomial of degree 𝑑 can be equivalently
written as a homogeneous depth-4 circuit of size 𝑠𝑂 (

√
𝑑) , or even a depth-3 circuit of

that size, if one foregoes homogeneity.
Dvir, Shpilka, and Yehudayoff [DSY09] studied factors of low-depth circuits

in order to extend the Hardness-Randomness paradigm of Kabanets and Impagli-
azzo [KI04] (see Section 3.2) to this model. Of particular interest to them were

36 Closure of algebraic complexity classes

factors of the form 𝑦 − 𝑔(𝒙) of a bounded-depth circuit 𝑓 (𝒙, 𝑦). They showed that
if the individual degree of 𝑓 with respect to 𝑦 is bounded, then the root 𝑔(𝒙) has a
small bounded-depth circuit.

Theorem 10 ([DSY09, Theorem 4]) Let 𝑓 ∈ F[𝒙, 𝑦] be a (𝑛+1)–variate polynomial
with deg(𝑓) ≤ 𝑑 and deg𝑦 (𝑓) ≤ 𝑘 , computed by a depth-Δ circuit of size 𝑠. Then,
its factors of the form 𝑦 − 𝑔(𝒙) with deg(𝑔) = 𝑟 can be computed by circuits of size
poly(𝑠, 𝑟𝑘 , 𝑑, 𝑛) and depth Δ +𝑂 (1).

Proof Sketch. The obvious approach would be to use Lemma 8 to successively
approximate the root 𝑔(𝒙) via Newton Iteration. Let us assume the preconditions
for using the lemma are met. The crucial observation [DSY09, Lemma 3.1] is that
the 𝑡–th approximate 𝜑𝑡 can be expressed as a (𝑘 + 1)–variate, degree–𝑡 polynomial
𝑄𝑡 in the coefficients of 𝑓 , i.e., 𝜑𝑡 = 𝑄𝑡 (𝑓0, . . . , 𝑓𝑘), where 𝑓 (𝒙, 𝑦) = ∑𝑘

𝑗=0 𝑓 𝑗 (𝒙)𝑦 𝑗 ,
with 𝑓 𝑗 (𝒙) ∈ F[𝒙]. After 𝑟 iterations, we get the polynomial 𝜑𝑟 = 𝑄𝑟 (𝑓0, . . . , 𝑓𝑘) of
degree at most 𝑑𝑟 such that 𝑔 = 𝜑𝑟 mod ⟨𝒙⟩𝑟+1.

The sparsity of 𝑄𝑟 is at most
(𝑟+𝑘

𝑘

)
= 𝑂 (𝑟𝑘). Composing the trivial depth-2 circuit

for 𝑄𝑟 (of size 𝑂 (𝑟𝑘)) with the depth-Δ circuits for 𝑓 𝑗 ’s (of size 𝑂 (𝑠𝑘), obtained
via interpolation on 𝑓 Lemma 2), we have a circuit for 𝜑𝑟 of depth Δ + 2 and size
poly(𝑟𝑘 , 𝑠). To extract 𝑔, we can use interpolation on 𝜑𝑟 by first mapping 𝑥𝑖 → 𝑧𝑥𝑖

and using Lemma 2 to obtain all the components of degree at most 𝑟 (w.r.t 𝑧) with a
size blow up of poly(𝑟𝑘 , 𝑠, 𝑑). The depth does not change.

By repeatedly taking partial derivatives of 𝑓 using Lemma 3 (incurring a size
blow-up of at most poly(𝑠, 𝑘)) and a translation of the coordinates (resulting in a
depth increase by 1), we can ensure that 𝑔 is a simple root of 𝑓 (and thus, Lemma 8 is
applicable). So we have a depth Δ+3 circuit for 𝑦−𝑔(𝑥) of size poly(𝑟𝑘 , 𝑠, 𝑑, 𝑛). ⊓⊔

Note that the size bound in Theorem 10 is poly(𝑛) if 𝑠, 𝑑 ≤ poly(𝑛) and 𝑘 = 𝑂 (1).
In fact, one can also obtain a randomized polynomial time algorithm to find the root 𝑔.
Rafael Oliveira [Oli16] generalized this result to show that polynomials of bounded
individual degrees and computable by small bounded-depth circuits are closed under
factorization. A little thought reveals that if a polynomial has its individual degree
bounded, then so will its factors.

Theorem 11 ([Oli16,Theorem 1.2]) Let 𝑓 ∈ F[𝒙, 𝑦] be a (𝑛+1)–variate polynomial
with deg(𝑓) ≤ 𝑑, and individual degree bounded by 𝑘 . Suppose 𝑓 can be computed
by a depth-Δ circuit of size 𝑠. Then, any factor 𝑔(𝒙, 𝑦) of degree 𝑟 that divides 𝑓 can
be computed by a circuit of size poly(𝑟𝑘 , 𝑘, 𝑠, 𝑑, 𝑛) and depth Δ +𝑂 (1).

Bhargav, Dwivedi & Saxena 37

Proof Sketch. The main idea is to use the argument at the beginning of Section 5 and
essentially lift the above result of Dvir Shpilka and Yehudayoff to all factors. Let us
begin by writing 𝑓 (𝒙, 𝑦) = ∑𝑘

𝑗=0 𝑓 𝑗 (𝒙)𝑦 𝑗 and 𝑔(𝒙, 𝑦) = ∑ℓ
𝑗=0 𝑔 𝑗 (𝒙)𝑦 𝑗 , where ℓ ≤ 𝑘 .

A shift of the variables 𝒙 ↦→ 𝒙 + 𝛼𝑦 + 𝛽 to ensure that 𝑓 is monic in 𝑦, however,
would make its individual degree 𝑘𝑛. Therefore, in order to reduce to the monic case,
we rewrite

𝑓 (𝒙, 𝑦) = 𝑓𝑘 (𝒙)
©«𝑦𝑘 +

𝑘−1∑︁
𝑗=0

𝑓 𝑗 (𝒙)/ 𝑓𝑘 (𝒙)𝑦 𝑗ª®¬ and

𝑔(𝒙, 𝑦) = 𝑔ℓ (𝒙)
©«𝑦ℓ +

ℓ−1∑︁
𝑗=0

𝑔 𝑗 (𝒙)/𝑔ℓ (𝒙)𝑦 𝑗ª®¬ .
The idea is that, since 𝑔 divides 𝑓 , the leading term 𝑔ℓ divides 𝑓𝑘 . If we are able

to recover the factor 𝑔ℓ from 𝑓𝑘 by an induction on the number of variables (note
the one fewer variable), and we somehow obtain a circuit for 𝑔/𝑔ℓ using Newton
Iteration (Section 5) for monic polynomial factoring, then multiplying the circuits
for 𝑔ℓ and 𝑔/𝑔ℓ would give us 𝑔.

Although we can extract 𝑓𝑘 from 𝑓 via interpolation, we cannot afford the resulting
size blow-up (by a factor of 𝑘) in the induction argument. To avoid this, we work with
the polynomial 𝑓 (𝒙, 𝑦) := 𝑦𝑘 𝑓 (𝒙, 1/𝑦), which is the reversal of (the coefficients of)
the polynomial 𝑓 . The leading coefficient of 𝑓 is now 𝑓0 (𝒙) = 𝑓 (𝒙, 0) which has a
smaller circuit than 𝑓 . Moreover, the factors of the reversal of a polynomial are just
the reversals of the original factors.

Once we find (by induction) a circuit of depth Δ + 𝑂 (1) and size poly(𝑟𝑘 , 𝑠, 𝑑)
for 𝑔0 (𝒙) (the leading coefficient of �̃�(𝒙, 𝑦)), we can use Theorem 10 to approximate
the roots 𝜑𝑖 (𝒙) ∈ F[[𝒙]] (up to degree 𝑑) of the monic rational function �̃�/𝑔0 =∏ℓ

𝑖=1 (𝑦 − 𝜑𝑖). Using Newton Iteration on 𝑓 , whose degree in 𝑦 is bounded by 𝑘 , we
can approximate these roots by circuits of depth Δ + 𝑂 (1) and size poly(𝑟𝑘 , 𝑠, 𝑑).
We further obtain a circuit of size poly(𝑟𝑘 , 𝑠, 𝑘, 𝑑) for �̃�/𝑔0 by multiplying the
approximations for the circuits and truncating using interpolation, resulting in a
depth increase by at most a constant. Finally, we get 𝑔(𝒙, 𝑦) by multiplying 𝑔0 and
�̃�/𝑔0 and computing the reversal of �̃�. ⊓⊔

The above result can be used to obtain a randomized algorithm running in time
poly(𝑠, (𝑛𝑘)𝑘) to compute all the factors of the polynomial 𝑓 with individual degree
bounded by 𝑘 .

38 Closure of algebraic complexity classes

Chou, Kumar, and Solomon [CKS19b] removed the restriction on individual
degrees at the expense of requiring that the total degree of the factor 𝑓 be small.

Theorem 12 ([CKS19b, Theorem 2.1]) Let 𝑓 ∈ F[𝒙, 𝑦] be a (𝑛 + 1)–variate
polynomial of degree 𝑑. Suppose 𝑓 can be computed by a depth-Δ circuit of size 𝑠.
Then, any factor 𝑔(𝒙, 𝑦) of degree 𝑟 that divides 𝑓 can be computed by a circuit of
size poly(𝑟

√
𝑟 , 𝑛, 𝑑, 𝑠) and depth Δ +𝑂 (1).

Proof Sketch. The broad outline is still the reduction of factoring to approximating
roots, same as in the proof of Theorem 11. Consider the simple case when 𝑔 is a
root of 𝑓 . If deg𝑦 (𝑓) ≥ 𝑛, the earlier observation by Dvir et.al that there exists a
(deg𝑦 (𝑓) + 1)–variate polynomial 𝜑𝑟 that approximates 𝑔 up to degree 𝑟 becomes
trivial since 𝑔 is already an 𝑛–variate polynomial.

However, irrespective of deg𝑦 (𝑓), Chou, Kumar and Solomon show that 𝜑𝑟 can
in fact be written as a (𝑟 + 1)–variate, poly(𝑟)–sized, degree–𝑟 polynomial 𝐴𝑟 in
the (at most) 𝑟–th order partial derivatives of 𝑓 [CKS19b, Lemma 5.3]3. Using the
depth-reduction results mentioned at the beginning of this section, we can further
squash this to a depth–3 circuit for 𝐴𝑟 of size 𝑟𝑂 (

√
𝑟) . Composition with the depth–Δ,

poly(𝑠, 𝑑, 𝑟)–sized circuits for the partial derivatives results in a depth–(Δ+3) circuit
for 𝜑𝑟 , from which we can extract 𝑔 using interpolation, as before.

The rest of the argument to lift this to a general factor remains almost the same as in
Theorem 11. The argument does not need special handling of the leading coefficient
as we do not need to worry about maintaining individual degree after the coordinate
shift. ⊓⊔

Hence, if the degree 𝑟 of the factor is at most log2 𝑛/log log 𝑛, then the size bound
for 𝑔 above is poly(𝑛). When 𝑟 is large, it still leaves open the following question of
Shpilka and Yehudayoff [SY10, Open Problem 19]:

Question 6 (Open) If a polynomial 𝑓 (𝒙, 𝑦) can be computed by a depth-Δ circuit
of size 𝑠, can any factor 𝑔(𝒙, 𝑦) be computed by a circuit of depth 𝑂 (Δ) and size
poly(𝑠)?

Recently, there have been a series of works on derandomizing factorization for
constant depth circuits [KRS24; Kum+24; DST24]. There has also been progress on
computing GCD, resultants, and various other linear algebra problems in constant

3 A proof of closure of VNP under factoring also follows from here using closure properties of VNP
under coefficient extraction and composition (see [CKS19b, Claim 8.3 and Claim 8.4]).

Bhargav, Dwivedi & Saxena 39

depth [AW24]. Building on this, Bhattacharjee, Kumar, Ramanathan, Saptharishi and
Saraf [Bha+25] gave the first subexponential deterministic algorithm for factorization
of constant depth circuits.

5.2 High degree circuits

The families of polynomials we considered till now had ‘low’ degree, bounded by a
polynomial in the number of variables. Malod [Mal03; Mal07] considered the case
when the degrees are not bounded.

Definition 7 A family of polynomials 𝑓 = (𝑓𝑛) is said to be in VP𝑛𝑏 over the field
F if the number of variables and the size of the smallest circuit over F are bounded
by poly(𝑛).

Note that the degree of a polynomial family in VP𝑛𝑏 can be exponential in the size
of the circuit. Kaltofen [Kal87] showed (Theorem 7) that for an 𝑛-variate polynomial
𝑓 = 𝑔𝑒ℎ where 𝑔 and ℎ are coprime and 𝑔 has multiplicity 𝑒,

size(𝑔) = poly(size(𝑓), deg(𝑔), 𝑒, 𝑛) (6)

Hence, the best size upper bound one can deduce for (exponential–degree) factors
of polynomials in VP𝑛𝑏 from Kaltofen’s result is exponential. This is unavoidable
in general: the polynomial 𝑥2𝑛 − 1 =

∏2𝑛
𝑖=1 (𝑥 − 𝜉𝑖) where 𝜉 is a 2𝑛–th root of

unity, can be computed by a circuit of size 𝑂 (𝑛). Lipton and Stockmeyer [LS78]
showed that a random exponential–degree factor

∏
𝑖∈𝑆 (𝑥 − 𝜔𝑖) where 𝑆 ⊂ [2𝑛]

and |𝑆 | = exp(𝑛) requires exp(𝑛)–size circuits. So VP𝑛𝑏 is not closed under taking
factors. Nevertheless, Bürgisser’s Factor Conjecture [Bür00a, Conj. 8.3] states that
the size of the factor 𝑔 in Equation (6) should be independent of its multiplicity 𝑒. In
particular, poly(𝑛)–degree factors of a polynomial family in VP𝑛𝑏 should be in VP.

Question 7 (Open) Show that if 𝑔(𝒙) is a factor of an 𝑛–variate polynomial 𝑓 (𝒙)
then,

size(𝑔) = poly(size(𝑓), deg(𝑔), 𝑛).

See [Bür04, Section 4] for some applications of the above conjecture to decision
complexity. Over the years, there has been partial progress on the problem. In the
case when 𝑓 is a power of 𝑔, Kaltofen [Kal87] (cf. [Bür04, Proposition 6.1]) already
showed the conjecture to be true.

40 Closure of algebraic complexity classes

Theorem 13 ([Kal87, Theorem 2]) Suppose 𝑓 (𝒙) = 𝑔(𝒙)𝑒 ∈ F[𝒙] is an 𝑛-variate
polynomial. Then,

size(𝑔) = poly(size(𝑓), deg(𝑔), 𝑛).

Proof Sketch. We cannot directly approximate the roots of 𝑓 (and hence 𝑔) as outlined
in Section 5 since we cannot reduce to the multiplicity one case by taking (𝑒 − 1)
partial derivatives – the size blow up will be poly(size(𝑓), 𝑒). Instead, we find the
root of the equation 𝑦𝑒 − 𝑓 (𝒙) by Newton Iteration (Lemma 9).

By shifting variables we can ensure that all the 𝑂 (log(deg(𝑔))) steps can
be performed. Crucially, we only need the homogeneous components of 𝑓 up
to deg(𝑔) for the intermediate steps. Straightforward analysis will show that
size(𝑔) = poly(size(𝑓), deg(𝑔), 𝑛, log 𝑒), whereby noting that 𝑒 ≤ exp(size(𝑓))
gives the result. ⊓⊔

As another special case, Dutta, Saxena and Sinhababu [DSS22] showed that
the conjecture also holds if the squarefree part of 𝑓 is of low degree. Suppose
𝑓 =

∏𝑚
𝑖=1 𝑓

𝑒𝑖
𝑖

is the complete factorization of 𝑓 with 𝑓𝑖’s irreducible. Recall that the
squarefree part of 𝑓 (also called the radical) is the polynomial rad(𝑓) :=

∏𝑚
𝑖=1 𝑓𝑖 .

Theorem 14 Let 𝑓 (𝒙, 𝑦) be an 𝑛–variate polynomial and let 𝑔(𝒙, 𝑦) be a factor of
𝑓 . We then have

size(𝑔) = poly(size(𝑓), deg(rad(𝑓)), 𝑛).

Proof Sketch. We follow the exposition of Sinhababu [Sin19]. Consider the derivative

𝜕𝑦 𝑓 (𝒙, 𝑦) = 𝜕𝑦

(
𝑚∏
𝑖=1

𝑓
𝑒𝑖
𝑖

)
=

𝑚∑︁
𝑖=1

𝑒𝑖 𝑓
𝑒𝑖−1
𝑖

𝜕𝑦 𝑓𝑖

(∏
𝑗≠𝑖

𝑓
𝑒 𝑗

𝑗

)
.

Rewrite it as 𝜕𝑦 𝑓 =
∏𝑚

𝑖=1 𝑓
𝑒𝑖−1
𝑖

𝑢 with 𝑢 =
∑𝑚

𝑖=1 𝑒𝑖𝜕𝑦 𝑓𝑖

(∏
𝑗≠𝑖 𝑓 𝑗

)
. The auxiliary

polynomial 𝐹 := 𝑓 + 𝑧𝜕𝑦 𝑓 factors as
∏𝑚

𝑖=1 𝑓
𝑒𝑖−1
𝑖

(∏𝑚
𝑖=1 𝑓𝑖 + 𝑧 · 𝑢

)
, where 𝑧 is a fresh

variable. The factor 𝐺 := rad(𝑓) + 𝑧 ·𝑢 is coprime to
∏𝑚

𝑖=1 𝑓
𝑒𝑖−1
𝑖

, has the same degree
as rad(𝑓) and is of multiplicity one. Using Kaltofen’s result (Theorem 7), we get
size(𝐺) = poly(size(𝑓), deg(rad(𝑓)), 𝑛). One can obtain rad(𝑓) by setting 𝑧 = 0
in 𝐺, and any irreducible factor 𝑓𝑖 in size poly(size(𝑓), deg(rad(𝑓)), 𝑛) by further
factoring rad(𝑓). The result follows by suitably combining powers of 𝑓𝑖 (via repeated
squaring) to form 𝑔. ⊓⊔

Shortly after proposing the factor conjecture, Bürgisser [Bür04] showed its plau-
sibility: low-degree factors can be approximated by small circuits!

Bhargav, Dwivedi & Saxena 41

5.3 Algebraic approximation

A natural notion of approximation for algebraic computation was defined by
Bürgisser [Bür04]. A polynomial 𝑓 ∈ F[𝒙] is approximated by a polynomial
𝐹 ∈ F[𝜀] [𝒙] to an order of approximation 𝑀 if

𝐹 (𝒙, 𝜀) = 𝜀𝑀 𝑓 (𝒙) + 𝜀𝑀+1 𝑄(𝒙, 𝜀), (7)

for some polynomial𝑄(𝒙, 𝜀) ∈ F[𝒙, 𝜀]. The approximate/border size of 𝑓 , denoted
size(𝑓), is defined as the size of the smallest circuit over the ring of constants F[𝜀]
computing a polynomial 𝐹 ∈ F[𝜀] [𝒙] that approximates 𝑓 .

Over fields like R or C, one can think of the above as an approximation in the
sense lim𝜀→0 𝜀

−𝑀𝐹 = 𝑓 . Another way of formulating the notion of approximation
is to consider 𝐹𝜀 ∈ F(𝜀) [𝒙] over the rational function field F(𝜀) instead, and require
an approximation of the form

𝐹𝜀 (𝒙) = 𝑓 (𝒙) + 𝜀𝑄𝜀 (𝒙),

where𝑄𝜀 ∈ F[𝜀] [𝒙] is a polynomial. The border complexity of 𝑓 is defined as before,
but with the circuit size now calculated over F(𝜀). In this case, although 𝐹𝜀=0 = 𝑓

is defined at 𝜀 = 0, the intermediate computations in the circuit for 𝐹 (over F(𝜀))
might not be. Scaling arguments show that these two notions of approximation are
equivalent [Bür04, Lemma 5.6]. For a detailed discussion on other natural definitions
of approximation (both topological and algebraic), and their equivalence, we point the
reader to [Bür04, Section 5] and [BIZ18, Section 2]. The notion of border complexity
naturally suggests an approximation version of the class VP.

Definition 8 (VP) A polynomial family 𝑓 = (𝑓𝑛) is in the class VP if the number of
variables of 𝑓𝑛, its degree, and the size of the smallest circuit over F[𝜀] approximating
𝑓𝑛 are bounded by poly(𝑛).

It is clear that VP ⊆ VP. In an attempt to utilize sophisticated tools from algebraic
geometry and representation theory to study Valiant’s conjecture, Mulmuley and
Sohoni [MS01; MS08] proposed VP ⊈ VNP as the mathematically nicer (but
possibly harder) conjecture. Further details on the Geometric Complexity Theory
(GCT) program for proving lower bounds can be found in [Reg02; Mul11; Bür+11;
Mul12; Gro12; Lan17; BI25].

Returning to the factorization problem, Bürgisser showed that poly(𝑛)-degree
factors of families in VP𝑛𝑏 are in VP.

42 Closure of algebraic complexity classes

Theorem 15 ([Bür04, Theorem 1.3]) Let F be a field of characteristic 0 and let
𝑓 (𝒙, 𝑦) be an (𝑛 + 1)–variate polynomial over F. Suppose 𝑔(𝒙, 𝑦) is a factor of 𝑓 .
Then,

size(𝑔) = poly(size(𝑓), deg(𝑔), 𝑛).

Proof Sketch. It suffices to show the result for irreducible 𝑔. Let 𝑓 = 𝑔𝑒ℎ where 𝑔 and
ℎ are coprime. As earlier, we would like to approximate the roots of 𝑔. Due to the
possibly exponential multiplicity 𝑒, we cannot reduce to the case of a simple root by
taking derivatives of 𝑓 . We can, however, find a point 𝑝 (equal to (0, 0) after shifting
coordinates), such that 𝑔 vanishes at 𝑝 but both ℎ and 𝜕𝑦𝑔 do not [Bür04, Lemma 3.3].
We can then try to build the corresponding (unique) power series root 𝜑 ∈ F[[𝒙]] of
𝑔 (which it shares with 𝑓) using Newton Iteration (Lemma 9) on 𝑓 . This seems quite
straightforward, except that 𝜕𝑦 𝑓 = 𝑒𝑔𝑒−1ℎ𝜕𝑦𝑔 + 𝑔𝑒𝜕𝑦ℎ always vanishes at 𝑝 when
𝑒 > 1. The main idea is to consider the perturbed polynomial

𝐹𝜀 (𝒙, 𝑦) := 𝑓 (𝒙, 𝑦 + 𝜀) − 𝑓 (0, 𝜀).

Note that 𝐹𝜀=0 = 𝑓 and 𝐹𝜀 (0, 0) = 0. We encourage the reader to check that the
derivative 𝜕𝑦𝐹𝜀 (0, 0) does not vanish anymore, and hence we can use Lemma 9 to
construct the root 𝜓𝜀 of 𝐹𝜀 , which in fact is an algebraic approximation of the root
𝜑 of 𝑓 (and also 𝑔), i.e. 𝜓𝜀=0 = 𝜑 (see [Bür04, Proposition 3.4]). This way, we can
efficiently approximate the factor 𝑔. ⊓⊔

The approximate circuit constructed for the low-degree factor in Theorem 15 has
additional structure. Note that a priori, the order of approximation 𝑀 for a polynomial
𝑓 can be arbitrarily large. However, Bürgisser [Bür04; Bür20, Theorem 5.7] showed
that over algebraically closed fields, 𝑀 = exp(size(𝑓)). Therefore, the free constants
from F[𝜀] used for approximation can be assumed to be ‘only’ exponential in
degree and hence, size. Since the circuit for the factor 𝑔 above is constructed via
Newton Iteration, the constants in F[𝜀] are in fact circuits of size poly(size(𝑓)) (but
exponential in degree). Hence, imposing this restriction on the size of the univariate
polynomials in 𝜀 is quite natural.

Definition 9 (VP𝜀) A polynomial family 𝑓 = (𝑓𝑛) over the field F is in the class VP𝜀

if the number of variables of 𝑓𝑛, its degree, and the size of the smallest circuit over F
approximating 𝑓𝑛 are bounded by poly(𝑛).

Bhargav, Dwivedi & Saxena 43

Note that the circuit size of the approximating polynomial is over the base field F,
thus also incorporating the size of the constants in F[𝜀]. Over finite fields, the present
authors showed that VP𝜀 is in fact in VNP, something that is not known about VP.

Theorem 16 ([BDS24, Theorem 1]) Let F be a finite field, and 𝑓 ∈ F[𝒙] be an
𝑛–variate polynomial of degree 𝑑 such that the size of the smallest circuit (over F)
approximating 𝑓 is of size 𝑠. Then, 𝑓 can be written as

𝑓 (𝒙) =
∑︁

𝒂∈{0,1}𝑚
𝑔(𝒙, 𝒂),

where 𝑚, and sizeF (𝑔(𝒙, 𝒚)) are bounded by poly(𝑠, 𝑛, 𝑑).

Proof Sketch. The main idea is to use Valiant’s criterion (Proposition 2) to show that
the polynomial 𝑓 =

∑
𝒆 𝑐𝒆𝒙

𝒆 has coefficients 𝑐𝒆 that are “easy to describe”. Notice
that the polynomial 𝐹 approximating 𝑓 has a small circuit but exponential degree,
where the high degree is only due to 𝜀.

In the approximating expression for 𝑓 (Equation (7)), we interpolate 𝐹 on all
the variables (including 𝜀) using appropriate powers of unity. Consequently, each
coefficient 𝑐𝒆 of 𝑓 can be written as a hypercube sum over a small-size high-degree
circuit. When F is a finite field, we can simulate this algebraic circuit using a small
boolean circuit. As a result, we further obtain that the coefficient function of 𝑓 is in
#P/poly, whence we can apply Valiant’s criterion. ⊓⊔

As a corollary of Theorem 16, and the observation that the approximate circuit in
Theorem 15 is presentable, we can conclude that the families of low-degree factors
of high-degree circuits are in VNP.

Corollary 1 Let 𝑓 ∈ F𝑞 [𝒙] be an 𝑛–variate polynomial over a finite field F𝑞 of char-
acteristic 𝑝. Suppose 𝑔 is a poly(𝑛)–degree irreducible factor of 𝑓 with multiplicity
coprime to the characteristic 𝑝. If size(𝑓) = 𝑠, then 𝑔 can be written as

𝑔(𝒙) =
∑︁

𝒂∈{0,1}𝑚
𝑢(𝒙, 𝒂),

where 𝑚, and size(𝑢(𝒙, 𝒚)) are bounded by poly(𝑠, 𝑛, 𝑑).

It is an open problem to extend these results to all fields.

Question 8 (Open) Can we show that VP𝜀 ⊆ VNP over any field F?

44 Closure of algebraic complexity classes

6 To Hensel lift or Newton iterate?

Hensel Lifting (Section 4) and Newton Iteration (Section 5), though different when
viewed from afar, are quite similar upon closer inspection.

Let 𝑓 (𝒙, 𝑦) be a monic (with respect to 𝑦) polynomial of degree 𝑑 with a root 𝑔(𝒙)
(with respect to 𝑦) of multiplicity one, i.e. 𝑓 (𝒙, 𝑔(𝒙)) = 0, but 𝜕𝑦 𝑓 (𝒙, 𝑔(𝒙)) ≠ 0.
When we wanted to find iteratively better approximations to 𝑔, we started with an
approximation 𝑔0 that was consistent with 𝑔 modulo the ideal I := ⟨𝒙⟩ and used
Newton’s method to obtain a better approximation 𝑔1 that was consistent with 𝑔

modulo I2 = ⟨𝒙⟩2. The polynomial 𝑔 being a root of 𝑓 implies that 𝑓 can be factored
as 𝑓 (𝒙, 𝑦) = (𝑦 − 𝑔(𝒙))ℎ(𝒙, 𝑦) for some polynomial ℎ. So, we can instead view our
Newton Iteration process as a Hensel lift of the factorization 𝑓 = (𝑦 − 𝑔0)ℎ0 mod I
to the factorization 𝑓 = (𝑦 − 𝑔1)ℎ1 mod I2. Since 𝑔 was a root of multiplicity one,
the factors (𝑦 − 𝑔(𝒙)) and ℎ(𝒙, 𝑦) were coprime. In this sense, Newton Iteration is a
special case of Hensel Lifting.

Suppose now that we have the factorization 𝑓 (𝒙, 𝑦) = 𝑔(𝒙, 𝑦)ℎ(𝒙, 𝑦). Let us
write 𝑓 =

∑𝑑
𝑖=0 𝑓𝑖𝑦

𝑖 , and similarly 𝑔 =
∑𝑑1

𝑖=0 𝑔𝑖𝑦
𝑖 , ℎ =

∑𝑑2
𝑖=0 ℎ𝑖𝑦

𝑖 where for all 𝑖,
𝑓𝑖 , 𝑔𝑖 , ℎ𝑖 ∈ F[𝒙] and 𝑑1 + 𝑑2 = 𝑑. Noting that 𝑓𝑑 = 1, we can view this factorization
as a system of equations:

𝑓0 = 𝑔0ℎ0

𝑓1 = 𝑔0ℎ1 + 𝑔1ℎ0

...

𝑓𝑑−1 = 𝑔𝑑1−1ℎ𝑑2 + 𝑔𝑑1ℎ𝑑2−1 = 𝑔𝑑1−1 + ℎ𝑑2−1 .

For a new set of 𝑑 variables {𝒖,𝒘} = 𝑢0, . . . , 𝑢𝑑1−1, 𝑤0, . . . , 𝑤𝑑2−1, consider the
𝑑 equations

𝜑0 := 𝑓0 − 𝑢0𝑤0

𝜑1 := 𝑓1 − 𝑢0𝑤1 − 𝑢1𝑤0

...

𝜑𝑑−1 := 𝑓𝑑−1 − 𝑢𝑑1−1 − 𝑤𝑑2−1.

The coefficients (𝑔0, . . . , 𝑔𝑑1−1, ℎ0, . . . , ℎ𝑑2−1) are a common zero of the equations
𝜑 = (𝜑0, . . . , 𝜑𝑑−1). Given an approximate root (𝒂, 𝒃) ∈ F[𝒙]𝑑 modulo the ideal I,

Bhargav, Dwivedi & Saxena 45

a multivariate generalization of Newton Iteration gives a better approximation

(𝒂∗, 𝒃∗) = (𝒂, 𝒃) − 𝐽−1𝜑(𝒂, 𝒃)

modulo the ideal I2, where the matrix of polynomials 𝐽 = (𝜕𝑡𝜑𝑖)0≤𝑖≤𝑑−1,𝑡∈{𝒖,𝒘} is
the Jacobian of 𝜑. We can now view a Hensel Lift of the factorization 𝑓 = 𝑔 (0)ℎ (0)

mod I to 𝑓 = 𝑔 (1)ℎ (1) mod I2 as a multivariate Newton Iteration step of improving
an approximate root to the above set of equations modulo I, to modulo I2. The
Jacobian and the Sylvester Matrix (Definition 2) are the same up to permutation of
rows and columns [CKS19a, Lemma 3.2]. Hence, the invertibility of the Jacobian
is equivalent to the coprimality of 𝑔 and ℎ [GG13, Exercise 15.21]. Thus, Newton
Iteration generalizes Hensel Lifting. More generally over valuation rings, the two
methods can be derived from one another. This is what Gathen [Gat84] has to say:

“Note that while Yun [Yun76] motivates the Hensel method as a special form of
the Newton method (”Hensel meets Newton”), here the Newton method is a corollary
of the Hensel method (”Hensel beats Newton”).”

This folklore connection between Hensel Lifting and Newton Iteration has also
appeared explicitly in a few places [Zip81; Gat84; Art22]. Chou, Kumar, and
Solomon [CKS19a] used this connection to give a simplified proof of Kaltofen’s VP
closure result using the multivariate Newton Iteration. For more restricted models, the
method that is convenient while factoring depends on the efficiency of the factoring
primitive that the model affords.

7 Factoring ‘weak’ models

There are models weaker than circuits and branching programs. Algebraic formulas,
as seen previously, are a very natural example.

7.1 Formulas

The class VF is a natural restriction of VP where the DAG underlying the circuit is a
tree (Figure 2). Since a formula of size 𝑠 can never compute a polynomial of degree
greater than 𝑂 (𝑠), we do not need to impose any additional degree restriction.

46 Closure of algebraic complexity classes

Definition 10 (VF) A family of polynomials 𝑓 = (𝑓𝑛) is said to be in VF over the
field F if the minimum size of the formula (over F) computing 𝑓𝑛 is bounded by a
polynomial function in the number of variables 𝑛.

Remark 1 It is not hard to see that VF ⊆ VBP ⊆ VP. None of the containments are
known to be strict.

The factors obtained via monic Hensel lifting (Section 4.4) turn out to require
polynomial divisions with remainder (essentially circuits), even if we start with a
formula. We do not know how to convert circuits to formulas without a superpoly-
nomial blow up in the formula size. The best result we know in this direction is the
factor closure of superpolynomial sized formulas, first shown by Dutta, Saxena and
Sinhababu [DSS22, Theorem 3]. We state here the version from the work of Chou,
Kumar and Solomon [CKS19b] which gives an alternate proof of the same result
using the ideas in Section 5.1.

Theorem 17 ([CKS19b, Theorem 9.1]) Let 𝑓 (𝒙) be a polynomial of degree 𝑑 in 𝑛

variables which can be computed by a formula of size 𝑠. If 𝑔(𝒙) is a degree-𝑟 factor
of 𝑓 , then it can be computed by a formula of size poly(𝑠, 𝑛, 𝑑, 𝑟𝑂 (log 𝑟)).

To avoid divisions, a reasonable try would be to extend the techniques of Sinhababu
and Thierauf for factoring branching programs (Section 4.5). All but the last step of
solving a linear system (equivalently, computing a determinant) can indeed be done
using small formulas. Unfortunately, we do not know of any poly(𝑛)-sized formulas
for the 𝑛 × 𝑛 symbolic determinant. Thus the question of factor closure for formulas
is still open.

Question 9 (Open) Is the class VF closed under factoring over any field F?

Note that a negative answer to the above question would separate VF from VBP
and VP, which are closed under factoring (at least when 𝑐ℎ𝑎𝑟 (F) is 0 or large).

When the depth is bounded (constant), formulas and circuits are essentially the
same. Every circuit of depth Δ and size 𝑠 can be equivalently written as a formula
of size 𝑂 (𝑠2Δ) while maintaining the same depth Δ. The only results we know for
formulas in this case come from Section 5.1 – bounded-depth formulas are closed
under factoring either when the individual degree is bounded (Theorem 11), or the
total degree is very low (Theorem 12).

Bhargav, Dwivedi & Saxena 47

7.2 Sparse polynomials

Sparse polynomials are another interesting and perhaps the simplest class that one can
study. The sparsity of a polynomial 𝑓 , denoted by ∥ 𝑓 ∥, is the number of monomials
in it. Alternatively, one can think of the sparsity as the size of a ΣΠ circuit computing
𝑓 . The work of von zur Gathen and Kaltofen [GK85], which initiated the study of
factoring sparse polynomials, gave a randomized algorithm that outputs a factor in
time polynomial in the sparsity of the factor. Naturally, it makes sense to ask if factors
of sparse polynomials are sparse. Unfortunately, as they showed, this is not true in
general. The sparsity of a factor can be superpolynomial in the sparsity of the original
polynomial.

Example 1 ([GK85]) The polynomial 𝑓 =
∏𝑛

𝑖=1 (𝑥𝑑𝑖 − 1) has sparsity ∥ 𝑓 ∥ = 2𝑛, but
one of its factors 𝑔 =

∏𝑛
𝑖=1 (1 + 𝑥𝑖 + . . . + 𝑥𝑑−1

𝑖
) has sparsity ∥𝑔∥ = 𝑑𝑛 = ∥ 𝑓 ∥log 𝑑 .

If the individual degree is comparable to the number of variables, then the blow-up
can be exponential.

Example 2 ([BSV20]) Over the field F𝑝 , the polynomial 𝑓 =
∑𝑛

𝑖=1 𝑥
𝑝

𝑖
has sparsity

∥ 𝑓 ∥ = 𝑛, but the factor 𝑔 =
(∑𝑛

𝑖=1 𝑥𝑖
)𝑑 , for 0 < 𝑑 < 𝑝 has sparsity ∥𝑔∥ =

(𝑛+𝑑−1
𝑑

)
≈

∥ 𝑓 ∥𝑑 .

One might still hope that factors of a polynomial with bounded individual degree
are sparse.

Question 10 (Open) Let 𝑓 = 𝑔 ·ℎ be a polynomial with bounded (constant) individual
degree. Then, does the following hold: ∥𝑔∥ = poly(∥ 𝑓 ∥)?

Tools from convex geometry have been useful in recent progress in studying this
question. For a polynomial 𝑓 =

∑
𝒆 𝑐𝒆𝒙

𝒆, consider the set of exponent vectors in its
support,

sup(𝑓) := {𝒆 : 𝑐𝒆 ≠ 0} ⊆ Z𝑛.

The convex hull of the points in the support denoted Conv(sup(𝑓)) is called the
Newton Polytope corresponding to 𝑓 :

𝑃 𝑓 := Conv(sup(𝑓)) =
{∑︁

𝒆

𝛼𝒆𝒆 :
∑︁
𝒆

𝛼𝒆 = 1, 0 ≤ 𝛼𝒆 ∈ R, 𝒆 ∈ sup(𝑓)
}
⊆ R𝑛.

48 Closure of algebraic complexity classes

A vertex of 𝑃 𝑓 is a point in the polytope that cannot be written as a non-trivial
convex combination (i.e., 𝛼𝒆 < 1 for all 𝒆) of points in 𝑃 𝑓 . We will denote the vertex
set of a polytope 𝑃 by 𝑉 (𝑃). Ostrowski [Ost99] observed that for polynomials 𝑔 and
ℎ,

𝑃𝑔ℎ = 𝑃𝑔 + 𝑃ℎ,

where the addition is a Minkowski sum, consisting of all points 𝒂+ 𝒃, such that 𝒂 ∈ 𝑃𝑔

and 𝒃 ∈ 𝑃ℎ. It can be shown that

max{|𝑉 (𝑃𝑔) |, |𝑉 (𝑃ℎ) |} ≤ |𝑉 (𝑃𝑔 + 𝑃ℎ) | ≤ |𝑉 (𝑃𝑔) | · |𝑉 (𝑃ℎ) |. (8)

The upper bound on |𝑉 (𝑃𝑔+𝑃ℎ) | is straightforward. For the lower bound, see Bhar-
gava et al. [BSV20, Proposition 3.2] and Appendix K in the book of Schinzel [Sch00].
This suggests a way to prove sparsity bounds. For a polynomial 𝑓 = 𝑔ℎ, if we can
show 𝑔 is ‘dense’ by showing a lower bound on |𝑉 (𝑃𝑔) |, then by the above inequality,
we also get a lower bound on |𝑉 (𝑃𝑔 + 𝑃ℎ) |, and in turn the sparsity of 𝑓 . In other
words, if 𝑓 is sparse, so is 𝑔.

Consider the case when 𝑓 = 𝑔ℎ and 𝑔 is multilinear, i.e., the individual degree of
𝑔 is at most 1. A moment’s thought shows that every monomial of 𝑔 corresponds to
a vertex, i.e., sup(𝑔) = 𝑉 (𝑃𝑔). Combining this with the lower bound in Equation (8),
we get

∥ 𝑓 ∥ ≥ |𝑉 (𝑃 𝑓) | = |𝑉 (𝑃𝑔 + 𝑃ℎ) | ≥ |𝑉 (𝑃𝑔) | = ∥𝑔∥ . (9)

Therefore, if 𝑓 = 𝑔ℎ is a multilinear polynomial, then 𝑔 is also multilinear, and
we get ∥𝑔∥ ≤ ∥ 𝑓 ∥ from above, showing that sparse multilinear polynomials are
closed under factoring. Shpilka and Volkovich [SV10] gave an efficient deterministic
algorithm for factoring sparse multilinear polynomials. Volkovich [Vol15] used the
sparsity bound in Equation (9) to first extend their result to sparse polynomials
that split into multilinear factors. In a later work [Vol17], he proved that factors
of multiquadratic polynomials are also sparse, and gave an efficient deterministic
algorithm to factor such polynomials.

However, in general, the size of the vertex set |𝑉 (𝑃𝑔) | could be much smaller than
the sparsity ∥𝑔∥ of the polynomial. The polynomial 𝑔 =

(∑𝑛
𝑖=1 𝑥𝑖

)𝑑 in Example 2
has only 𝑛 vertices in its Newton Polytope (corresponding to 𝑥𝑑1 , . . . , 𝑥

𝑑
𝑛), but has

𝑂 (𝑛𝑑) monomials. If the individual degree of a polynomial is bounded, Bhargava et
al. [BSV20] showed that the vertex set is not too small either.

Theorem 18 Let 𝑔 be a polynomial in 𝑛 variables of individual degree 𝑑. Then,

Bhargav, Dwivedi & Saxena 49

|𝑉 (𝑃𝑔) | ≥ ∥𝑔∥1/𝑂 (𝑑2 log 𝑛) .

The bound is tight with regards to dependence on 𝑛 (see [BSV20, Claim 4.4]). As
an immediate corollary of the above theorem, we deduce a sparsity bound for the
factors of polynomials with bounded individual degrees.

Corollary 2 Let 𝑓 = 𝑔ℎ be a polynomial in 𝑛 variables of individual degree 𝑑 and
sparsity ∥ 𝑓 ∥ = 𝑠. Then, the sparsity of 𝑔 is ∥𝑔∥ ≤ 𝑠𝑂 (𝑑2 log 𝑛) .

Proof. Note that the individual degree of𝑔 is bounded by 𝑑 as well. Using Equation (8)
and Theorem 18, we get

∥ 𝑓 ∥ ≥ |𝑉 (𝑃 𝑓) | = |𝑉 (𝑃𝑔 + 𝑃ℎ) | ≥ |𝑉 (𝑃𝑔) | ≥ ∥𝑔∥1/𝑂 (𝑑2 log 𝑛) ,

and thus, the required bound. ⊓⊔

Using the above sparsity bound, one can obtain a deterministic superpolynomial
time algorithm for sparse polynomials of bounded individual degree [BSV20, Theo-
rem 2] (also see [HG23]). We now give a brief overview of the ideas in the proof of
Theorem 18.

Proof Sketch.[Theorem 18] The classical Carathéodory’s theorem of convex geometry
states that any point 𝒙 ∈ Conv(𝑋) in the convex hull of a set of points 𝑋 ⊆ R𝑛 can
be written as a convex combination of at most 𝑛 + 1 points in 𝑋 . In fact, the convex
combination only needs to use the vertices of Conv(𝑋). We need much fewer than
𝑛 + 1 points if we are okay with approximating 𝒙 by a convex combination.

The approximate version of Carathéodory’s theorem is about a set 𝑋 with bounded
ℓ∞ norm (i.e., max𝒚∈𝑋 ∥𝒚∥∞ ≤ 1). Given an 𝜀 > 0, any point 𝒙 ∈ Conv(𝑋) that lies
in the convex hull of 𝑋 can be 𝜀-approximated by a point 𝒙′ (i.e., ∥𝒙 − 𝒙′∥∞ ≤ 𝜀)
that is a uniform convex combination of at most 𝑘 = 𝑂 (log 𝑛

𝜀2) vertex points from
𝑉 (Conv(𝑋)). For us, 𝑋 will be the scaled-down version of sup(𝑔), i.e.,

𝑋 = {1/𝑑 · 𝒆 : 𝒆 ∈ sup(𝑔)}.

Note that |𝑋 | = ∥𝑔∥ and |𝑉 (Conv(𝑋)) | = |𝑉 (𝑃𝑔) |. Moreover, for distinct 𝒙 ≠ 𝒚 ∈ 𝑋 ,
we have ∥𝒙 − 𝒚∥∞ ≥ 1/𝑑. Hence, if we choose 𝜀 to be something slightly smaller
than 1/2𝑑, by triangle inequality, a point 𝒙′ ∈ Conv(𝑋) can 𝜀-approximate only
one of 𝒙 or 𝒚, not both. So, every point 𝒙 ∈ 𝑋 is guaranteed a distinct point
𝒙′ ∈ Conv(𝑋) that approximates it and is a uniform convex combination of at most
𝑘 points of 𝑉 (Conv(𝑋)). The number of such 𝒙′ is at most |𝑉 (Conv(𝑋)) |𝑘 . Hence,

50 Closure of algebraic complexity classes

|𝑋 | ≤ |𝑉 (Conv(𝑋)) |𝑘 , and we can choose 𝜀 sufficiently close to (but smaller than)
1/2𝑑 to get 𝑘 = 𝑂 (𝑑2 log 𝑛), and thus our desired bound. ⊓⊔

Note that the polynomials in Example 1 and Example 2 with dense factors were
symmetric. Bisht and Saxena [BS25] answered Question 10 in the affirmative in this
case.

Theorem 19 ([BS25, Lemma 4.12]) Let 𝑓 = 𝑔ℎ be a factorization with 𝑔 being a
symmetric polynomial in 𝑛 variables of individual degree 𝑑 and sparsity ∥ 𝑓 ∥ = 𝑠.
Then, ∥𝑔∥ ≤ 𝑠𝑂 (𝑑2 log 𝑑) .

Furthermore, they used the above result to give a deterministic polynomial-time
factoring algorithm [BS25, Theorem 1.2] in this case. For general sparse polynomials,
the aforementioned result of Bhattacharjee, Kumar, Ramanathan, Saptharishi and
Saraf [Bha+25] gives a subexponential deterministic algorithm as a special case
when the depth is two.

Acknowledgements

The authors thank the conducive atmosphere of the Workshop on Algebraic Complex-
ity Theory 2023 in University of Warwick to initiate new ideas; and the Workshop
on Recent Trends in Computer Algebra 2023 in Institut Henri Poincaré, Paris for
giving N.S. the opportunity to chalk out the details of [Sax23]. C.S.B. and N.S. thank
the organizers and the participants in Ruhr University Bochum for the interesting
discussions in the 8th Workshop on Algebraic Complexity Theory (WACT 2025). We
also thank Amit Sinhababu for insightful discussions on Newton Iteration and for
pointing us to some relevant references.

N.S. thanks the DST-SERB agencies for funding support through the Core Research
Grant (CRG/2020/000045) and the J.C. Bose National Fellowship (JCB/2022/57), as
well as the N. Rama Rao Chair (2019–) of the Department of CSE, IIT Kanpur.

P.D. thanks the Independent Research Fund Denmark for funding support (FLows
10.46540/3103-00116B), and also acknowledges the support of Basic Algorithms
Research Copenhagen (BARC) through the Villum Investigator Grant 54451.

https://qi.rub.de/events/wact25/

Bhargav, Dwivedi & Saxena 51

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity. Cambridge
University Press, Cambridge, 2009 (cit. on pp. 4, 9).

[Agr05] Manindra Agrawal. “Proving Lower Bounds via Pseudo-Random Gen-
erators”. In: FSTTCS 2005: Foundations of Software Technology and
Theoretical Computer Science. Vol. 3821. Lecture Notes in Comput.
Sci. Springer, Berlin, 2005, pp. 92–105 (cit. on p. 12).

[Agr06] Manindra Agrawal. “Determinant versus Permanent”. In: International
Congress of Mathematicians. Vol. III. Eur. Math. Soc., Zürich, 2006,
pp. 985–997 (cit. on p. 9).

[AGS19] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. “Bootstrapping
Variables in Algebraic Circuits”. In: Proc. Natl. Acad. Sci. USA 116.17
(2019), pp. 8107–8118 (cit. on p. 14).

[And20] Robert Andrews. “Algebraic Hardness versus Randomness in Low Char-
acteristic”. In: 35th Computational Complexity Conference. Vol. 169.
LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent.
Inform., Wadern, 2020, Art. No. 37, 32 (cit. on pp. 13, 27, 33).

[Art22] Michael Artin. Algebraic Geometry—Notes on a Course. Vol. 222.
Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2022 (cit. on pp. 35, 45).

[AS03] Sanjeev Arora and Madhu Sudan. “Improved Low-Degree Testing and
Its Applications”. In: Combinatorica 23.3 (2003), pp. 365–426 (cit. on
p. 15).

[AV08] Manindra Agrawal and V. Vinay. “Arithmetic Circuits: A Chasm at
Depth Four”. In: 49th Annual IEEE Symposium on Foundations of
Computer Science (FOCS). IEEE Computer Society, 2008, pp. 67–75
(cit. on p. 35).

[AW24] Robert Andrews and Avi Wigderson. “Constant-Depth Arithmetic Cir-
cuits for Linear Algebra Problems”. In: 2024 IEEE 65th Annual Sym-
posium on Foundations of Computer Science—FOCS 2024. IEEE Com-
puter Society, 2024, pp. 2367–2386 (cit. on p. 39).

[BCS97] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Alge-
braic Complexity Theory. Vol. 315. Grundlehren Der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1997 (cit. on p. 9).

http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1007/11590156_6
http://dx.doi.org/10.1007/11590156_6
http://dx.doi.org/10.4171/022-3/48
http://dx.doi.org/10.1073/pnas.1901272116
http://dx.doi.org/10.1073/pnas.1901272116
http://dx.doi.org/10.4230/LIPICS.CCC.2020.37
http://dx.doi.org/10.4230/LIPICS.CCC.2020.37
http://dx.doi.org/10.1090/gsm/222
http://dx.doi.org/10.1007/s00493-003-0025-0
http://dx.doi.org/10.1007/s00493-003-0025-0
http://dx.doi.org/10.1109/FOCS.2008.32
http://dx.doi.org/10.1109/FOCS.2008.32
http://dx.doi.org/10.1109/FOCS61266.2024.00138
http://dx.doi.org/10.1109/FOCS61266.2024.00138
http://dx.doi.org/10.1007/978-3-662-03338-8
http://dx.doi.org/10.1007/978-3-662-03338-8

52 Closure of algebraic complexity classes

[BDS24] C. S. Bhargav, Prateek Dwivedi, and Nitin Saxena. “Learning the Coef-
ficients: A Presentable Version of Border Complexity and Applications
to Circuit Factoring”. In: STOC’24—Proceedings of the 56th Annual
ACM Symposium on Theory of Computing. ACM, New York, 2024,
pp. 130–140 (cit. on pp. 31–33, 43).

[Bha+25] Somnath Bhattacharjee, Mrinal Kumar, Varun Ramanathan, Ramprasad
Saptharishi,and Shubhangi Saraf. Deterministic Factorization of Constant-
Depth Algebraic Circuits in Subexponential Time. 2025. arXiv: 2504.
08063 [cs] (cit. on pp. 39, 50).

[BI25] Markus Bläser and Christian Ikenmeyer. “Introduction to Geometric
Complexity Theory”. In: Theory Comput. Graduate Surveys 10 (2025),
p. 166 (cit. on p. 41).

[BIZ18] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. “On Alge-
braic Branching Programs of Small Width”. In: J. ACM 65.5 (2018),
Art. 32, 29 (cit. on p. 41).

[Bog05] Andrej Bogdanov. “Pseudorandom Generators for Low Degree Polyno-
mials”. In: STOC’05: Proceedings of the 37th Annual ACM Symposium
on Theory of Computing. ACM, New York, 2005, pp. 21–30 (cit. on
p. 15).

[Bre00] Richard P. Brent. “Recent Progress and Prospects for Integer Factori-
sation Algorithms”. In: Computing and Combinatorics (Sydney, 2000).
Vol. 1858. Lecture Notes in Comput. Sci. Springer, Berlin, 2000, pp. 3–
22 (cit. on p. 15).

[BS25] Pranav Bisht and Nitin Saxena. “Derandomization via Symmetric Poly-
topes: Poly-time Factorization of Certain Sparse Polynomials”. In: ACM
Trans. Comput. Theory 17.2 (2025), 12:1–12:20 (cit. on p. 50).

[BSV20] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. “Deterministic
Factorization of Sparse Polynomials with Bounded Individual Degree”.
In: J. ACM 67.2 (2020), Art. 8, 28 (cit. on pp. 47–49).

[Bür+11] Peter Bürgisser, J. M. Landsberg, Laurent Manivel, and Jerzy Weyman.
“An Overview of Mathematical Issues Arising in the Geometric Com-
plexity Theory Approach to VP ≠ VNP”. In: SIAM J. Comput. 40.4
(2011), pp. 1179–1209 (cit. on p. 41).

[Bür00a] Peter Bürgisser. Completeness and Reduction in Algebraic Complexity
Theory. Vol. 7. Algorithms and Computation in Mathematics. Springer-
Verlag, Berlin, 2000 (cit. on pp. 9, 31, 39).

http://dx.doi.org/10.1145/3618260.3649743
http://dx.doi.org/10.1145/3618260.3649743
http://dx.doi.org/10.1145/3618260.3649743
http://dx.doi.org/10.48550/arXiv.2504.08063
http://dx.doi.org/10.48550/arXiv.2504.08063
https://arxiv.org/abs/2504.08063
https://arxiv.org/abs/2504.08063
http://dx.doi.org/10.4086/toc.gs.2025.010
http://dx.doi.org/10.4086/toc.gs.2025.010
http://dx.doi.org/10.1145/3209663
http://dx.doi.org/10.1145/3209663
http://dx.doi.org/10.1145/1060590.1060594
http://dx.doi.org/10.1145/1060590.1060594
http://dx.doi.org/10.1007/3-540-44968-X_2
http://dx.doi.org/10.1007/3-540-44968-X_2
http://dx.doi.org/10.1145/3719022
http://dx.doi.org/10.1145/3719022
http://dx.doi.org/10.1145/3365667
http://dx.doi.org/10.1145/3365667
http://dx.doi.org/10.1137/090765328
http://dx.doi.org/10.1137/090765328
http://dx.doi.org/10.1007/978-3-662-04179-6
http://dx.doi.org/10.1007/978-3-662-04179-6

Bhargav, Dwivedi & Saxena 53

[Bür00b] Peter Bürgisser. “Cook’s versus Valiant’s Hypothesis”. In: Theoret.
Comput. Sci. 235 (2000), pp. 71–88 (cit. on p. 9).

[Bür04] Peter Bürgisser. “The Complexity of Factors of Multivariate Polyno-
mials”. In: Found. Comput. Math. 4.4 (2004), pp. 369–396 (cit. on
pp. 39–42).

[Bür20] Peter Bürgisser. “Correction to: The Complexity of Factors of Multi-
variate Polynomials”. In: Found. Comput. Math. 20.6 (2020), pp. 1667–
1668 (cit. on p. 42).

[Bür24] Peter Bürgisser. Completeness Classes in Algebraic Complexity Theory.
2024. arXiv: 2406.06217 [cs] (cit. on p. 8).

[Bür99] Peter Bürgisser. “On the Structure of Valiant’s Complexity Classes”. In:
Discrete Math. Theor. Comput. Sci. 3.3 (1999), pp. 73–94 (cit. on p. 9).

[CDS24] Sayak Chakrabarti, Ashish Dwivedi, and Nitin Saxena. “Solving Polyno-
mial Systems over Non-Fields and Applications to Modular Polynomial
Factoring”. In: J. Symbolic Comput. 125 (2024), Paper No. 102314, 29
(cit. on p. 23).

[CG00] David G. Cantor and Daniel M. Gordon. “Factoring Polynomials over 𝑝-
adic Fields”. In: Algorithmic Number Theory (Leiden, 2000). Vol. 1838.
Lecture Notes in Comput. Sci. Springer, Berlin, 2000, pp. 185–208
(cit. on p. 22).

[Chi87] A. L. Chistov. “Efficient Factorization of Polynomials over Local Fields”.
In: Doklady Akademii Nauk SSSR 293.5 (1987), pp. 1073–1077 (cit. on
p. 22).

[CKS19a] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Closure of VP
under Taking Factors: A Short and Simple Proof . 2019. arXiv: 1903.
02366 [cs] (cit. on p. 45).

[CKS19b] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. “Closure Results
for Polynomial Factorization”. In: Theory Comput. 15 (2019), Paper No.
13, 34 (cit. on pp. 31, 32, 34, 38, 46).

[CKW10] Xi Chen, Neeraj Kayal, and Avi Wigderson. “Partial Derivatives in
Arithmetic Complexity and Beyond”. In: Found. Trends Theor. Comput.
Sci. 6.1-2 (2010), front matter, 1–138 (cit. on p. 9).

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”.
In: Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing (STOC). ACM, 1971, pp. 151–158 (cit. on p. 9).

http://dx.doi.org/10.1016/S0304-3975(99)00183-8
http://dx.doi.org/10.1007/s10208-002-0059-5
http://dx.doi.org/10.1007/s10208-002-0059-5
http://dx.doi.org/10.1007/s10208-020-09477-6
http://dx.doi.org/10.1007/s10208-020-09477-6
http://dx.doi.org/10.48550/arXiv.2406.06217
https://arxiv.org/abs/2406.06217
http://dx.doi.org/10.46298/DMTCS.260
http://dx.doi.org/10.1016/j.jsc.2024.102314
http://dx.doi.org/10.1016/j.jsc.2024.102314
http://dx.doi.org/10.1016/j.jsc.2024.102314
http://dx.doi.org/10.1007/10722028_10
http://dx.doi.org/10.1007/10722028_10
http://mi.mathnet.ru/dan8179
http://dx.doi.org/10.48550/arXiv.1903.02366
http://dx.doi.org/10.48550/arXiv.1903.02366
https://arxiv.org/abs/1903.02366
https://arxiv.org/abs/1903.02366
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.4086/toc.2019.v015a013
http://dx.doi.org/10.1561/0400000043
http://dx.doi.org/10.1561/0400000043
http://dx.doi.org/10.1145/800157.805047

54 Closure of algebraic complexity classes

[CR79] Stephen A. Cook and Robert A. Reckhow. “The Relative Efficiency
of Propositional Proof Systems”. In: J. Symbolic Logic 44.1 (1979),
pp. 36–50 (cit. on p. 15).

[DG24] Pranjal Dutta and Sumanta Ghosh. “Complexity Theory Column 121:
Advances in Polynomial Identity Testing”. In: ACM SIGACT News 55.2
(2024), pp. 53–88 (cit. on p. 11).

[DGV24] Ashish Dwivedi, Zeyu Guo, and Ben Lee Volk. “Optimal Pseudorandom
Generators for Low-Degree Polynomials over Moderately Large Fields”.
In: Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques. Vol. 317. LIPIcs. Leibniz Int. Proc. Inform.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2024, Art. No. 44,
19 (cit. on p. 15).

[DL78] Richard A. DeMillo and Richard J. Lipton. “A Probabilistic Remark on
Algebraic Program Testing”. In: Inf. Process. Lett. 7.4 (1978), pp. 193–
195 (cit. on p. 11).

[DMS21] Ashish Dwivedi, Rajat Mittal, and Nitin Saxena. “Efficiently Factoring
Polynomials modulo 𝑝4”. In: J. Symbolic Comput. 104 (2021), pp. 805–
823 (cit. on p. 23).

[DPS20] Jintai Ding, Albrecht Petzoldt, and Dieter S. Schmidt. Multivariate
Public Key Cryptosystems. Vol. 80. Advances in Information Security.
Springer, New York, 2020 (cit. on p. 15).

[DSS22] Pranjal Dutta, Nitin Saxena, and Amit Sinhababu. “Discovering the
Roots: Uniform Closure Results for Algebraic Classes under Factoring”.
In: J. ACM 69.3 (2022), Art. 18, 39 (cit. on pp. 34, 40, 46).

[DST24] Pranjal Dutta, Amit Sinhababu, and Thomas Thierauf. “Derandomizing
Multivariate Polynomial Factoring for Low Degree Factors”. In: Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Vol. 317. LIPIcs. Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2024, Art. No. 75, 20 (cit. on
p. 38).

[DSY09] Zeev Dvir,Amir Shpilka,and Amir Yehudayoff. “Hardness-Randomness
Tradeoffs for Bounded Depth Arithmetic Circuits”. In: SIAM J. Comput.
39.4 (2009), pp. 1279–1293 (cit. on pp. 35, 36).

[For+21] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson.
“Proof Complexity Lower Bounds from Algebraic Circuit Complexity”.
In: Theory Comput. 17 (2021), Paper No. 10, 88 (cit. on p. 15).

http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.1145/3674159.3674165
http://dx.doi.org/10.1145/3674159.3674165
http://dx.doi.org/10.4230/lipics.approx/random.2024.44
http://dx.doi.org/10.4230/lipics.approx/random.2024.44
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/0020-0190(78)90067-4
http://dx.doi.org/10.1016/j.jsc.2020.10.001
http://dx.doi.org/10.1016/j.jsc.2020.10.001
http://dx.doi.org/10.1007/978-1-0716-0987-3
http://dx.doi.org/10.1007/978-1-0716-0987-3
http://dx.doi.org/10.1145/3510359
http://dx.doi.org/10.1145/3510359
http://dx.doi.org/10.4230/lipics.approx/random.2024.75
http://dx.doi.org/10.4230/lipics.approx/random.2024.75
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.1137/080735850
http://dx.doi.org/10.4086/toc.2021.v017a010

Bhargav, Dwivedi & Saxena 55

[For14] Michael Andrew Forbes. “Polynomial Identity Testing of Read-Once
Oblivious Algebraic Branching Programs”. PhD thesis. Massachusetts
Institute of Technology, 2014 (cit. on p. 13).

[For15] Michael A. Forbes. “Deterministic Divisibility Testing via Shifted Par-
tial Derivatives”. In: 2015 IEEE 56th Annual Symposium on Founda-
tions of Computer Science—FOCS 2015. IEEE Computer Soc., Los
Alamitos, CA, 2015, pp. 451–465 (cit. on p. 12).

[Fre07] Günther Frei. “The Unpublished Section Eight: On the Way to Function
Fields over a Finite Field”. In: The Shaping of Arithmetic after C. F.
Gauss’s It Disquisitiones Arithmeticae. Springer, Berlin, 2007, pp. 159–
198 (cit. on p. 15).

[FS13] Michael A. Forbes and Amir Shpilka. “Quasipolynomial-Time Iden-
tity Testing of Non-Commutative and Read-Once Oblivious Algebraic
Branching Programs”. In: 2013 IEEE 54th Annual Symposium on Foun-
dations of Computer Science—FOCS 2013. IEEE Computer Soc., Los
Alamitos, CA, 2013, pp. 243–252 (cit. on p. 12).

[FS15] Michael A. Forbes and Amir Shpilka. “Complexity Theory Column 88:
Challenges in Polynomial Factorization”. In: ACM SIGACT News 46.4
(2015), pp. 32–49 (cit. on pp. 3, 12, 15).

[Gat06] Joachim von zur Gathen. “Who Was Who in Polynomial Factorization:
1”. In: Proceedings of the 2006 International Symposium on Symbolic
and Algebraic Computation. ISSAC ’06. Association for Computing
Machinery, 2006, p. 2 (cit. on p. 3).

[Gat84] Joachim von zur Gathen. “Hensel and Newton Methods in Valuation
Rings”. In: Math. Comp. 42.166 (1984), pp. 637–661 (cit. on p. 45).

[GG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Third. Cambridge University Press, Cambridge, 2013 (cit. on pp. 3, 4,
18, 45).

[GK85] Joachim von zur Gathen and Erich Kaltofen. “Factoring Sparse Multi-
variate Polynomials”. In: J. Comput. System Sci. 31 (1985), pp. 265–287
(cit. on p. 47).

[GP01] Joachim von zur Gathen and Daniel Panario. “Factoring Polynomials
over Finite Fields: A Survey”. In: J. Symbolic Comput. 31.1 (2001),
pp. 3–17 (cit. on p. 3).

https://dspace.mit.edu/handle/1721.1/89843
https://dspace.mit.edu/handle/1721.1/89843
http://dx.doi.org/10.1109/FOCS.2015.35
http://dx.doi.org/10.1109/FOCS.2015.35
http://dx.doi.org/10.1007/978-3-540-34720-0_6
http://dx.doi.org/10.1007/978-3-540-34720-0_6
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1109/FOCS.2013.34
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1145/2852040.2852051
http://dx.doi.org/10.1145/1145768.1145770
http://dx.doi.org/10.1145/1145768.1145770
http://dx.doi.org/10.2307/2007608
http://dx.doi.org/10.2307/2007608
http://dx.doi.org/10.1017/CBO9781139856065
http://dx.doi.org/10.1016/0022-0000(85)90044-3
http://dx.doi.org/10.1016/0022-0000(85)90044-3
http://dx.doi.org/10.1006/jsco.1999.1002
http://dx.doi.org/10.1006/jsco.1999.1002

56 Closure of algebraic complexity classes

[Gro12] Joshua A. Grochow. “Symmetry and Equivalence Relations in Classical
and Geometric Complexity Theory”. PhD thesis. University of Chicago,
2012 (cit. on p. 41).

[Gro13] Joshua Grochow. Degree Restriction for Polynomials in VP. Theoretical
Computer Science Stack Exchange. 2013 (cit. on p. 26).

[Gro20] Joshua A. Grochow. “Complexity in Ideals of Polynomials: Questions
on Algebraic Complexity of Circuits and Proofs”. In: Bull. Eur. Assoc.
Theor. Comput. Sci. EATCS 130 (2020), pp. 40–62 (cit. on p. 15).

[GRS23] Venkat Guruswami, Atri Rudra, and Madhu Sudan. “Essential Coding
Theory”. Book Draft. 2023 (cit. on p. 14).

[GS13] S. B. Gashkov and I. S. Sergeev. “Complexity of Computation in Finite
Fields”. In: J. Math. Sci. 191.5 (2013), pp. 661–685 (cit. on p. 4).

[GS92] Joachim von zur Gathen and Victor Shoup. “Computing Frobenius
Maps and Factoring Polynomials”. In: Comput. Complexity 2.3 (1992),
pp. 187–224 (cit. on pp. 5, 7).

[GS99] Venkatesan Guruswami and Madhu Sudan. “Improved Decoding of
Reed-Solomon and Algebraic-Geometry Codes”. In: Institute of Elec-
trical and Electronics Engineers 45.6 (1999), pp. 1757–1767 (cit. on
p. 15).

[GTZ88] Patrizia Gianni, Barry Trager, and Gail Zacharias. “Gröbner Bases and
Primary Decomposition of Polynomial Ideals”. In: J. Symbolic Comput.
6.2-3 (1988), pp. 149–167 (cit. on p. 15).

[Guo+22] Zeyu Guo, Mrinal Kumar, Ramprasad Saptharishi, and Noam Solomon.
“Derandomization from Algebraic Hardness”. In: SIAM J. Comput. 51.2
(2022), pp. 315–335 (cit. on pp. 13, 14).

[Gup+16] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi.
“Arithmetic Circuits: A Chasm at Depth 3”. In: SIAM J. Comput. 45.3
(2016), pp. 1064–1079 (cit. on p. 35).

[Hen04] Kurt Hensel. “Neue Grundlagen Der Arithmetik”. In: J. Reine Angew.
Math. 127 (1904), pp. 51–84 (cit. on p. 15).

[Hen08] Kurt Hensel. Theorie der algebraischen Zahlen. Vol. 1. BG Teubner,
1908 (cit. on p. 15).

[Hen18] Kurt Hensel. “Eine Neue Theorie Der Algebraischen Zahlen”. In: Math.
Z. 2.3-4 (1918), pp. 433–452 (cit. on p. 15).

https://dl.acm.org/doi/abs/10.5555/2518605
https://dl.acm.org/doi/abs/10.5555/2518605
https://cstheory.stackexchange.com/q/19268
http://bulletin.eatcs.org/index.php/beatcs/article/view/607
http://bulletin.eatcs.org/index.php/beatcs/article/view/607
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
http://dx.doi.org/10.1007/s10958-013-1350-5
http://dx.doi.org/10.1007/s10958-013-1350-5
http://dx.doi.org/10.1007/BF01272074
http://dx.doi.org/10.1007/BF01272074
http://dx.doi.org/10.1109/18.782097
http://dx.doi.org/10.1109/18.782097
http://dx.doi.org/10.1016/S0747-7171(88)80040-3
http://dx.doi.org/10.1016/S0747-7171(88)80040-3
http://dx.doi.org/10.1137/20M1347395
http://dx.doi.org/10.1137/140957123
http://dx.doi.org/10.1515/crll.1904.127.51
https://archive.org/embed/in.ernet.dli.2015.493154
http://dx.doi.org/10.1007/BF01199422

Bhargav, Dwivedi & Saxena 57

[Hen97] Kurt Hensel. “Über eine neue Begründung der Theorie der algebraischen
Zahlen.” In: Jahresbericht der Deutschen Mathematiker-Vereinigung 6
(1897), pp. 83–88 (cit. on p. 15).

[HG23] Qiao-Long Huang and Xiao-Shan Gao. “New Sparse Multivariate Poly-
nomial Factorization Algorithms over Integers”. In: Proceedings of
the International Symposium on Symbolic & Algebraic Computation
(ISSAC 2023). ACM, New York, 2023, pp. 315–324 (cit. on p. 49).

[HS80] Joos Heintz and Claus-Peter Schnorr. “Testing Polynomials Which Are
Easy to Compute (Extended Abstract)”. In: Proceedings of the 12th
Annual ACM Symposium on Theory of Computing, April 28-30, 1980,
Los Angeles, California, USA. ACM, 1980, pp. 262–272 (cit. on p. 12).

[Iva+12] Gábor Ivanyos, Marek Karpinski,Lajos Rónyai, and Nitin Saxena. “Trad-
ing GRH for Algebra: Algorithms for Factoring Polynomials and Related
Structures”. In: Math. Comp. 81.277 (2012), pp. 493–531 (cit. on pp. 7,
15).

[Jan11] Maurice J. Jansen. “Extracting Roots of Arithmetic Circuits by Adapting
Numerical Methods”. In: Innovations in Computer Science - ICS 2011.
Tsinghua University Press, 2011, pp. 87–100 (cit. on p. 29).

[Juk12] Stasys Jukna. Boolean Function Complexity. Vol. 27. Algorithms and
Combinatorics. Springer, Heidelberg, 2012 (cit. on p. 15).

[Kal82] Erich Kaltofen. “Factorization of Polynomials”. In: Computer Algebra:
Symbolic and Algebraic Computation. Vienna: Springer, 1982, pp. 95–
113 (cit. on p. 3).

[Kal85] Erich Kaltofen. “Polynomial-Time Reductions from Multivariate to Bi-
and Univariate Integral Polynomial Factorization”. In: SIAM J. Comput.
14.2 (1985), pp. 469–489 (cit. on p. 25).

[Kal87] Erich Kaltofen. “Single-Factor Hensel Lifting and Its Application to
the Straight-Line Complexity of Certain Polynomials”. In: Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing.
STOC ’87. Association for Computing Machinery, 1987 (cit. on pp. 27,
39, 40).

[Kal89] Erich Kaltofen. “Factorization of Polynomials given by Straight-Line
Programs”. In: Adv. Comput. Res. 5 (1989), pp. 375–412 (cit. on p. 25).

[Kal90] Erich Kaltofen. “Polynomial Factorization 1982–1986”. In: Computers
in mathematics. CRC Press, 1990, pp. 285–309 (cit. on p. 3).

http://eudml.org/doc/144593
http://eudml.org/doc/144593
http://dx.doi.org/10.1145/3597066.3597087
http://dx.doi.org/10.1145/3597066.3597087
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1145/800141.804674
http://dx.doi.org/10.1090/S0025-5718-2011-02505-6
http://dx.doi.org/10.1090/S0025-5718-2011-02505-6
http://dx.doi.org/10.1090/S0025-5718-2011-02505-6
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/4.html
http://conference.iiis.tsinghua.edu.cn/ICS2011/content/papers/4.html
http://dx.doi.org/10.1007/978-3-642-24508-4
http://dx.doi.org/10.1007/978-3-7091-3406-1_8
http://dx.doi.org/10.1137/0214035
http://dx.doi.org/10.1137/0214035
http://dx.doi.org/10.1145/28395.28443
http://dx.doi.org/10.1145/28395.28443
https://api.semanticscholar.org/CorpusID:14414372
https://api.semanticscholar.org/CorpusID:14414372
http://dx.doi.org/10.1201/9781003072157-9

58 Closure of algebraic complexity classes

[Kal92] Erich Kaltofen. “Polynomial Factorization 1987–1991”. In: LATIN ’92
(São Paulo, 1992). Vol. 583. Lecture Notes in Comput. Sci. Springer,
Berlin, 1992, pp. 294–313 (cit. on p. 3).

[Kal95] Erich Kaltofen. “Effective Noether Irreducibility Forms and Applica-
tions”. In: J. Comput. System Sci. 50.2 (1995), pp. 274–295 (cit. on
p. 25).

[KI04] Valentine Kabanets and Russell Impagliazzo. “Derandomizing Polyno-
mial Identity Tests Means Proving Circuit Lower Bounds”. In: Comput.
Complexity 13.1-2 (2004), pp. 1–46 (cit. on pp. 12–14, 35).

[KK08] Erich Kaltofen and Pascal Koiran. “Expressing a Fraction of Two
Determinants as a Determinant”. In: ISSAC 2008. ACM, New York,
2008, pp. 141–146 (cit. on p. 29).

[KL94] Erich L. Kaltofen and Austin Lobo. “Factoring High-Degree Polyno-
mials by the Black Box Berlekamp Algorithm”. In: Proceedings of
the International Symposium on Symbolic and Algebraic Computation,
ISSAC ’94. ACM, 1994, pp. 90–98 (cit. on p. 7).

[Koi12] Pascal Koiran. “Arithmetic Circuits: The Chasm at Depth Four Gets
Wider”. In: Theoret. Comput. Sci. 448 (2012), pp. 56–65 (cit. on p. 35).

[Kop14] Swastik Kopparty. Algorithmic Number Theory. 2014. Lecture notes,
Rutgers University (cit. on p. 6).

[KP13] Steven G. Krantz and Harold R. Parks. The Implicit Function Theorem.
Modern Birkhäuser Classics. Birkhäuser/Springer, New York, 2013 (cit.
on p. 35).

[Kra19] Jan Krajı́ček. Proof Complexity. Vol. 170. Encyclopedia of Mathematics
and Its Applications. Cambridge University Press, Cambridge, 2019 (cit.
on p. 15).

[Kra95] Jan Krajı́ček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory. Vol. 60. Encyclopedia of Mathematics and Its Applications.
Cambridge University Press, Cambridge, 1995 (cit. on p. 15).

[KRS24] Mrinal Kumar, Varun Ramanathan, and Ramprasad Saptharishi. “Deter-
ministic Algorithms for Low Degree Factors of Constant Depth Circuits”.
In: Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). SIAM, Philadelphia, PA, 2024, pp. 3901–3918 (cit.
on p. 38).

[KS06] Neeraj Kayal and Nitin Saxena. “Complexity of Ring Morphism Prob-
lems”. In: Comput. Complexity 15.4 (2006), pp. 342–390 (cit. on p. 15).

http://dx.doi.org/10.1007/BFb0023837
http://dx.doi.org/10.1006/jcss.1995.1023
http://dx.doi.org/10.1006/jcss.1995.1023
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1007/s00037-004-0182-6
http://dx.doi.org/10.1145/1390768.1390790
http://dx.doi.org/10.1145/1390768.1390790
http://dx.doi.org/10.1145/190347.190371
http://dx.doi.org/10.1145/190347.190371
http://dx.doi.org/10.1016/j.tcs.2012.03.041
http://dx.doi.org/10.1016/j.tcs.2012.03.041
https://www.math.toronto.edu/swastik/courses/rutgers/ANT-F14/
http://dx.doi.org/10.1007/978-1-4614-5981-1
http://dx.doi.org/10.1017/9781108242066
http://dx.doi.org/10.1017/CBO9780511529948
http://dx.doi.org/10.1017/CBO9780511529948
http://dx.doi.org/10.1137/1.9781611977912.137
http://dx.doi.org/10.1137/1.9781611977912.137
http://dx.doi.org/10.1007/s00037-007-0219-8
http://dx.doi.org/10.1007/s00037-007-0219-8

Bhargav, Dwivedi & Saxena 59

[KS09] Zohar S. Karnin and Amir Shpilka. “Reconstruction of Generalized
Depth-3 Arithmetic Circuits with Bounded Top Fan-In”. In: 24th Annual
IEEE Conference on Computational Complexity. IEEE Computer Soc.,
Los Alamitos, CA, 2009, pp. 274–285 (cit. on p. 15).

[KS19] Mrinal Kumar and Ramprasad Saptharishi. “Hardness-Randomness
Tradeoffs for Algebraic Computation”. In: Bull. Eur. Assoc. Theor.
Comput. Sci. EATCS 129 (2019), pp. 56–87 (cit. on p. 14).

[KS98] Erich Kaltofen and Victor Shoup. “Subquadratic-Time Factoring of Poly-
nomials over Finite Fields”. In: Math. Comp. 67.223 (1998), pp. 1179–
1197 (cit. on p. 7).

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. “Equivalence of
Polynomial Identity Testing and Polynomial Factorization”. In: Comput.
Complexity 24.2 (2015), pp. 295–331 (cit. on pp. 10, 11, 17).

[KST23] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. “Near-
Optimal Bootstrapping of Hitting Sets for Algebraic Models”. In: Theory
Comput. 19 (2023), Paper No. 12, 30 (cit. on p. 14).

[KT90] Erich Kaltofen and Barry M. Trager. “Computing with Polynomials
given by Black Boxes for Their Evaluations: Greatest Common Divi-
sors, Factorization, Separation of Numerators and Denominators”. In:
J. Symbolic Comput. 9.3 (1990), pp. 301–320 (cit. on p. 24).

[KU11] Kiran S. Kedlaya and Christopher Umans. “Fast Polynomial Factor-
ization and Modular Composition”. In: SIAM J. Comput. 40.6 (2011),
pp. 1767–1802 (cit. on p. 7).

[Kum+24] Mrinal Kumar,Varun Ramanathan,Ramprasad Saptharishi, and Ben Lee
Volk. Towards Deterministic Algorithms for Constant-Depth Factors
of Constant-Depth Circuits. 2024. arXiv: 2403.01965 [cs] (cit. on
p. 38).

[Lan17] J. M. Landsberg. Geometry and Complexity Theory. Vol. 169. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 2017 (cit. on p. 41).

[LLL82] A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász. “Factoring Polynomials
with Rational Coefficients”. In: Math. Ann. 261.4 (1982), pp. 515–534
(cit. on p. 21).

[LS78] Richard J. Lipton and Larry J. Stockmeyer. “Evaluation of Polynomials
with Super-Preconditioning”. In: J. Comput. System Sci. 16.2 (1978),
pp. 124–139 (cit. on p. 39).

http://dx.doi.org/10.1109/CCC.2009.18
http://dx.doi.org/10.1109/CCC.2009.18
http://bulletin.eatcs.org/index.php/beatcs/article/view/591
http://bulletin.eatcs.org/index.php/beatcs/article/view/591
http://dx.doi.org/10.1090/S0025-5718-98-00944-2
http://dx.doi.org/10.1090/S0025-5718-98-00944-2
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.1007/s00037-015-0102-y
http://dx.doi.org/10.4086/toc.2023.v019a012
http://dx.doi.org/10.4086/toc.2023.v019a012
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1016/S0747-7171(08)80015-6
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.1137/08073408X
http://dx.doi.org/10.48550/arXiv.2403.01965
http://dx.doi.org/10.48550/arXiv.2403.01965
https://arxiv.org/abs/2403.01965
http://dx.doi.org/10.1017/9781108183192
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1016/0022-0000(78)90041-7
http://dx.doi.org/10.1016/0022-0000(78)90041-7

60 Closure of algebraic complexity classes

[Mah14] Meena Mahajan. “Algebraic Complexity Classes”. In: Perspectives in
Computational Complexity. Vol. 26. Progr. Comput. Sci. Appl. Logic.
Birkhäuser/Springer, Cham, 2014, pp. 51–75 (cit. on pp. 9, 28).

[Mal03] Guillaume Malod. “Polynômes et coefficients”. PhD thesis. Université
Claude Bernard - Lyon, 2003 (cit. on p. 39).

[Mal07] Guillaume Malod. “The Complexity of Polynomials and Their Co-
efficient Functions”. In: Twenty-Second Annual IEEE Conference on
Computational Complexity (CCC’07). 2007, pp. 193–204 (cit. on p. 39).

[MOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press Series on Discrete Mathe-
matics and Its Applications. CRC Press, Boca Raton, FL, 1997 (cit. on
p. 15).

[MP08] Guillaume Malod and Natacha Portier. “Characterizing Valiant’s Alge-
braic Complexity Classes”. In: J. Complexity 24.1 (2008), pp. 16–38
(cit. on pp. 32, 33).

[MS01] Ketan D. Mulmuley and Milind Sohoni. “Geometric Complexity Theory.
I. An Approach to the P vs. NP and Related Problems”. In: SIAM J.
Comput. 31.2 (2001), pp. 496–526 (cit. on p. 41).

[MS08] Ketan D. Mulmuley and Milind Sohoni. “Geometric Complexity The-
ory. II. Towards Explicit Obstructions for Embeddings among Class
Varieties”. In: SIAM J. Comput. 38.3 (2008), pp. 1175–1206 (cit. on
p. 41).

[Mul11] Ketan D. Mulmuley. “On P vs. NP and Geometric Complexity Theory”.
In: J. ACM 58.2 (2011), Art. 5, 26 (cit. on p. 41).

[Mul12] Ketan D. Mulmuley. “The GCT Program toward the P vs. NP Problem”.
In: Commun. ACM 55.6 (2012), pp. 98–107 (cit. on p. 41).

[Mul17] Ketan D. Mulmuley. “Geometric Complexity Theory V: Efficient Algo-
rithms for Noether Normalization”. In: J. Amer. Math. Soc. 30.1 (2017),
pp. 225–309 (cit. on p. 15).

[NV10] Phong Q. Nguyen and Brigitte Vallée, eds. The LLL Algorithm: Sur-
vey and Applications. Information Security and Cryptography. Berlin,
Heidelberg: Springer, 2010 (cit. on p. 15).

[NW94] Noam Nisan and Avi Wigderson. “Hardness vs. Randomness”. In: J.
Comput. System Sci. 49.2 (1994), pp. 149–167 (cit. on pp. 12, 13).

[Oli16] Rafael Oliveira. “Factors of Low Individual Degree Polynomials”. In:
Comput. Complexity 25.2 (2016), pp. 507–561 (cit. on p. 36).

https://doi.org/10.1007/978-3-319-05446-9_4
https://theses.hal.science/tel-00087399
http://dx.doi.org/10.1109/CCC.2007.33
http://dx.doi.org/10.1109/CCC.2007.33
https://doi.org/10.1201/9780429466335
https://doi.org/10.1201/9780429466335
http://dx.doi.org/10.1016/j.jco.2006.09.006
http://dx.doi.org/10.1016/j.jco.2006.09.006
http://dx.doi.org/10.1137/S009753970038715X
http://dx.doi.org/10.1137/S009753970038715X
http://dx.doi.org/10.1137/080718115
http://dx.doi.org/10.1137/080718115
http://dx.doi.org/10.1137/080718115
http://dx.doi.org/10.1145/1944345.1944346
http://dx.doi.org/10.1145/2184319.2184341
http://dx.doi.org/10.1090/jams/864
http://dx.doi.org/10.1090/jams/864
http://dx.doi.org/10.1007/978-3-642-02295-1
http://dx.doi.org/10.1007/978-3-642-02295-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1007/s00037-016-0130-2

Bhargav, Dwivedi & Saxena 61

[Ore22] Øystein Ore. “Über höhere kongruenzen”. In: Norsk Mat. Forenings
Skrifter (1922) (cit. on p. 11).

[Ost99] Alexander Ostrowski. “On the Significance of the Theory of Convex
Polyhedra for Formal Algebra”. In: SIGSAM Bull. 33.1 (1999), p. 5
(cit. on p. 48).

[Reg02] Kenneth W. Regan. “Understanding the Mulmuley-Sohoni Approach to
P vs. NP”. In: Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 78 (2002),
pp. 86–99 (cit. on p. 41).

[RS05] Ran Raz and Amir Shpilka. “Deterministic Polynomial Identity Testing
in Non-Commutative Models”. In: Comput. Complexity 14.1 (2005),
pp. 1–19 (cit. on p. 12).

[Sap17] Ramprasad Saptharishi. “Algebra and Computation”. Lecture Notes.
TIFR, Mumbai, 2017 (cit. on p. 21).

[Sap21] Ramprasad Saptharishi. “A Survey of Lower Bounds in Arithmetic
Circuit Complexity”. Github Survey, 2021 (cit. on p. 9).

[Sax09] Nitin Saxena. “Progress on Polynomial Identity Testing”. In: Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 99 (2009), pp. 49–79 (cit. on p. 11).

[Sax14] Nitin Saxena. “Progress on Polynomial Identity Testing-II”. In: Perspec-
tives in Computational Complexity. Vol. 26. Progr. Comput. Sci. Appl.
Logic. Birkhäuser/Springer, Cham, 2014, pp. 131–146 (cit. on p. 11).

[Sax23] Nitin Saxena. Closure of Algebraic Classes Under Factoring. 2023. Talk
at Recent Trends in Computer Algebra (2023) in Institut Henri Poincaré,
Paris. (Cit. on p. 50).

[Sch00] Andrzej Schinzel. Polynomials with Special Regard to Reducibility.
Vol. 77. Encyclopedia of Mathematics and Its Applications. Cambridge
University Press, Cambridge, 2000 (cit. on p. 48).

[Sch80] J. T. Schwartz. “Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities”. In: J. ACM 27.4 (1980), pp. 701–717 (cit. on p. 11).

[Sho09] Victor Shoup. A Computational Introduction to Number Theory and
Algebra. 2nd ed. Cambridge University Press, Cambridge, 2009 (cit. on
p. 3).

[Sin16] Gaurav Sinha. “Reconstruction of Real Depth-3 Circuits with Top Fan-in
2”. In: 31st Conference on Computational Complexity. Vol. 50. LIPIcs.
Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2016, Art. No. 31, 53 (cit. on p. 15).

http://dx.doi.org/10.1145/329984.329986
http://dx.doi.org/10.1145/329984.329986
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/toran/beatcs/column78.pdf
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/toran/beatcs/column78.pdf
http://dx.doi.org/10.1007/s00037-005-0188-8
http://dx.doi.org/10.1007/s00037-005-0188-8
https://www.tcs.tifr.res.in/~ramprasad/assets/courses/2017-algComp/algComp_2017.pdf
https://github.com/dasarpmar/lowerbounds-survey
https://github.com/dasarpmar/lowerbounds-survey
https://www.uni-ulm.de/fileadmin/website_uni_ulm/iui.inst.190/Mitarbeiter/toran/beatcs/column99.pdf
http://dx.doi.org/10.1007/978-3-319-05446-9_7
https://www.cse.iitk.ac.in/users/nitin/talks/Sep2023-paris.pdf
http://dx.doi.org/10.1017/CBO9780511542916
http://dx.doi.org/10.1145/322217.322225
http://dx.doi.org/10.1145/322217.322225
https://shoup.net/ntb/
https://shoup.net/ntb/
http://dx.doi.org/10.4230/LIPICS.CCC.2016.31
http://dx.doi.org/10.4230/LIPICS.CCC.2016.31

62 Closure of algebraic complexity classes

[Sin19] Amit Sinhababu. “Power series in complexity: Algebraic Dependence,
Factor Conjecture and Hitting Set for Closure of VP”. PhD thesis. Indian
Institute of Technology Kanpur, 2019 (cit. on p. 40).

[Sin22] Gaurav Sinha. “Efficient Reconstruction of Depth Three Arithmetic
Circuits with Top Fan-in Two”. In: 13th Innovations in Theoretical
Computer Science Conference (ITCS 2022). Vol. 215. Leibniz Interna-
tional Proceedings in Informatics (Lipics). Dagstuhl, Germany: Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022, 118:1–118:33 (cit. on
p. 15).

[SS25] Shubhangi Saraf and Devansh Shringi. Reconstruction of Depth 3
Arithmetic Circuits with Top Fan-in 3. 2025. Electronic Colloquium
on Computational Complexity: TR25-008 (cit. on p. 15).

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. “A Case of
Depth-3 Identity Testing, Sparse Factorization and Duality”. In: Comput.
Complexity 22.1 (2013), pp. 39–69 (cit. on p. 11).

[ST21] Amit Sinhababu and Thomas Thierauf. “Factorization of Polynomials
given by Arithmetic Branching Programs”. In: Comput. Complexity
30.2 (2021), Paper No. 15, 47 (cit. on pp. 29, 30).

[Str73] Volker Strassen. “Vermeidung von Divisionen”. In: J. Reine Angew.
Math. 264 (1973), pp. 184–202 (cit. on p. 10).

[Sud97] Madhu Sudan. “Decoding of Reed Solomon Codes beyond the Error-
Correction Bound”. In: J. Complexity 13.1 (1997), pp. 180–193 (cit. on
p. 15).

[Sud98] Madhu Sudan. “Algebra and Computation”. Lecture Notes. Mas-
sachusetts Institute of Technology, 1998 (cit. on p. 25).

[SV10] Amir Shpilka and Ilya Volkovich. “On the Relation between Polynomial
Identity Testing and Finding Variable Disjoint Factors”. In: Automata,
Languages and Programming. (ICALP 2010). Vol. 6198. Lecture Notes
in Comput. Sci. Springer, Berlin, 2010, pp. 408–419 (cit. on pp. 11, 48).

[SY10] Amir Shpilka and Amir Yehudayoff. “Arithmetic Circuits: A Survey of
Recent Results and Open Questions”. In: Found. Trends Theor. Comput.
Sci. 5.3-4 (2010), 207–388 (2010) (cit. on pp. 9, 11, 12, 15, 38).

[Tav15] Sébastien Tavenas. “Improved Bounds for Reduction to Depth 4 and
Depth 3”. In: Inform. and Comput. 240 (2015), pp. 2–11 (cit. on p. 35).

https://www.cse.iitk.ac.in/users/nitin/theses/sinhababu-2019.pdf
https://www.cse.iitk.ac.in/users/nitin/theses/sinhababu-2019.pdf
http://dx.doi.org/10.4230/LIPIcs.ITCS.2022.118
http://dx.doi.org/10.4230/LIPIcs.ITCS.2022.118
https://eccc.weizmann.ac.il/report/2025/008/
https://eccc.weizmann.ac.il/report/2025/008/
TR25-008
http://dx.doi.org/10.1007/s00037-012-0054-4
http://dx.doi.org/10.1007/s00037-012-0054-4
http://dx.doi.org/10.1007/s00037-021-00215-0
http://dx.doi.org/10.1007/s00037-021-00215-0
http://dx.doi.org/10.1515/crll.1973.264.184
http://dx.doi.org/10.1006/jcom.1997.0439
http://dx.doi.org/10.1006/jcom.1997.0439
https://madhu.seas.harvard.edu/courses-fall1998/
http://dx.doi.org/10.1007/978-3-642-14165-2_35
http://dx.doi.org/10.1007/978-3-642-14165-2_35
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1016/j.ic.2014.09.004
http://dx.doi.org/10.1016/j.ic.2014.09.004

Bhargav, Dwivedi & Saxena 63

[Val+83] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. “Fast Paral-
lel Computation of Polynomials Using Few Processors”. In: SIAM J.
Comput. 12.4 (1983), pp. 641–644 (cit. on p. 35).

[Val79] L. G. Valiant. “Completeness Classes in Algebra”. In: Proceedings of
the Eleventh Annual ACM Symposium on Theory of Computing (STOC).
ACM, New York, 1979, pp. 249–261 (cit. on pp. 8, 9, 31).

[Val82] L. G. Valiant. “Reducibility by Algebraic Projections”. In: Logic and
Algorithmic (Zurich, 1980). Vol. 30. Monogr. Enseign. Math. Univ.
Genève, Geneva, 1982, pp. 365–380 (cit. on pp. 8, 32).

[Vol15] Ilya Volkovich. “Deterministically Factoring Sparse Polynomials into
Multilinear Factors and Sums of Univariate Polynomials”. In: Approxi-
mation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Vol. 40. LIPIcs. Leibniz Int. Proc. Inform. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015, pp. 943–958 (cit. on
p. 48).

[Vol17] Ilya Volkovich. “On Some Computations on Sparse Polynomials”. In:
Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques. Vol. 81. LIPIcs. Leibniz Int. Proc. Inform.
Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2017, Art. No. 48,
21 (cit. on p. 48).

[Yun76] David Y. Y. Yun. “Hensel Meets Newton–Algebraic Constructions in an
Analytic Setting”. In: Analytic Computational Complexity (Proc. Sym-
pos., Carnegie-Mellon Univ., Pittsburgh, Pa., 1975). Academic Press,
New York-London, 1976, pp. 205–215 (cit. on p. 45).

[Zip79] Richard Zippel. “Probabilistic Algorithms for Sparse Polynomials”.
In: Symbolic and Algebraic Computation (EUROSAM ’79, Internat.
Sympos., Marseille, 1979). Vol. 72. Lecture Notes in Comput. Sci.
Springer, Berlin-New York, 1979, pp. 216–226 (cit. on p. 11).

[Zip81] Richard Zippel. “Newton’s Iteration and the Sparse Hensel Algorithm
(Extended Abstract)”. In: Proceedings of the Fourth ACM Symposium
on Symbolic and Algebraic Computation. SYMSAC ’81. New York, NY,
USA: Association for Computing Machinery, 1981, pp. 68–72 (cit. on
p. 45).

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1137/0212043
http://dx.doi.org/10.1145/800135.804419
https://web.vu.lt/mif/s.jukna/tropical/Valiant1982.pdf
http://dx.doi.org/10.4230/LIPICS.APPROX-RANDOM.2015.943
http://dx.doi.org/10.4230/LIPICS.APPROX-RANDOM.2015.943
http://dx.doi.org/10.4230/LIPICS.APPROX-RANDOM.2017.48
http://dx.doi.org/10.1016/B978-0-12-697560-4.50017-4
http://dx.doi.org/10.1016/B978-0-12-697560-4.50017-4
http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1145/800206.806372
http://dx.doi.org/10.1145/800206.806372

