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1 Introduction

This paper studies the following fundamental question — do all factors of “succinctly represented”
polynomial have “succinct representations”? The answer to this question could depend on the
particular model of representation. For instance, if the size of the representation is just the sum of
monomials, then there are classical examples to show that s-sparse polynomials could have factors
that are sΩ(log s) sparse. Are other “natural models” of computation for polynomials closed under
taking factors?

The decade of 1980s witnessed remarkable progress for this problem for the representation
of general algebraic circuits. A sequence of results [Kal82, Kal85, GK85], culminating in the
celebrated results of Kaltofen [Kal89] and Kaltofen & Trager [KT88], showed that for any n-variate
polynomial of degree d computable by a size s algebraic circuit, all its factors have algebraic circuits
of size poly(s, d, n) as well. Not only that, there are randomized algorithms that take a circuit
for f and output circuits for all the irreducible factors of f together with their multiplicities, in
poly(s, d, n) time.1 The fact that (low degree) algebraic circuits have this highly non-trivial property
is perhaps one of the strongest pieces of evidence of this model being innately natural when
studying computational questions about polynomials.

Do similar “closure” results hold for other natural subclasses of algebraic circuits? Indeed, such
closure results for algebraic models under polynomial factorization appear to be rare. For instance,
even though the last three decades or so of research in algebraic complexity has brought intense
focus on the study of algebraic models, the only models where we know such closure results
are for the class VNP (Chou, Kumar & Solomon [CKS19]), bounded individual degree constant-
depth circuits (works of Dvir, Shpilka & Yehudayoff [DSY09] and Oliveira [Oli16]), bounded
individual degree sparse polynomials [BSV20] and algebraic branching programs (Sinhababu &
Thierauf [ST20]).

In addition to their considerable inherent interest, closure results for polynomial factorization
for various algebraic models are also closely tied to the questions of hardness-randomness trade-offs
for these algebraic models, as well as the complexity of derandomizing polynomial factorization
for these models. For example, a fundamental result of Kabanets & Impagliazzo [KI04] shows
that sufficiently strong lower bounds for algebraic circuits for explicit polynomial families implies
quasipolynomial time deterministic PIT algorithms for these circuits. This result crucially relies on
the closure of algebraic circuits under factorization, and thus is not readily applicable for models
such as formulas or constant-depth circuits. If these models were indeed closed under taking
factors, then we perhaps only need strong enough lower bounds for these models to derandomize
PIT for these models.

Similarly, a result of Kopparty, Saraf & Shpilka [KSS15] shows that given a deterministic

1Strictly speaking, we need the underlying field to be rationals for this version of the result, but something very
similar is true for finite fields as well.
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PIT algorithm for algebraic circuits, one can derandomize Kaltofen’s factorization algorithm for
algebraic circuits. The main technical bottleneck for extending such a connection to other models
such as formulas or constant-depth circuits is again the absence of a closure result for these models!

In the last few years, we have had partial progress on showing such closure results for models
like formulas and constant-depth algebraic circuits, and indeed even these partial results have led
to extremely interesting consequences for derandomizing PIT and polynomial factorization for
these models. Specifically, Chou, Kumar & Solomon [CKS19] showed low (but growing) degree
factors of polynomials with small constant-depth circuits have non-trivially small constant-depth
circuits, and used this to conclude that if we had superpolynomial lower bounds for constant-depth
circuits, we would get subexponential time deterministic PIT for such circuits. Quite remarkably,
such lower bounds were proved by Limaye, Srinivasan & Tavenas [LST21] a few years ago, and
these lower bounds yielded non-trivial deterministic PIT for constant-depth circuits due to the
results in [CKS19]. Similarly, in recent years, we have seen steady progress on the question of
derandomizing polynomial factorization for constant-depth circuits [KRS23, KRSV24, DST24],
including a recent result of Bhattacharjee, Kumar, Ramanathan, Saptharishi & Saraf [BKR+25] that
gives deterministic subexponential time algorithms for factorization of constant-depth circuits
over fields of characteristic zero. Once again, this result crucially relies on both the results and the
techniques in the partial closure result of Chou, Kumar & Solomon [CKS19].

Thus, while the question of closure under factorization of models like formulas and constant-
depth circuits has remained open, partial progress on this problem, e.g. in [CKS19] has already
had some fascinating consequences. Given this, it seems conceivable that complete closure-under-
factorization results for these models would not only be of inherent interest on their own, they
might also yield quantitative improvements for some of the aforementioned applications.

1.1 Our results

The main result in this paper is that constant-depth algebraic circuits and algebraic formulas are
closed under taking factors over fields of zero or sufficiently large characteristic. More formally, we
have the following theorem.

Theorem 1.1 (Closure under factorization). Let F be a field of characteristic zero, f be a polynomial on n
variables of degree d over F and g be a factor of f . Then, the following are true.

If f can be computed by an algebraic circuit of size s and depth ∆ over F, then g can be computed by an
algebraic circuit of size poly(s, d, n) and depth ∆ + O(1) over F.

If f can be computed by an algebraic formula of size s over F, then g can be computed by an algebraic
formula of size poly(s, d, n) over F.

Remark 1.2. While the statement above is stated for fields of characteristic zero, it is also true for fields of
sufficiently large characteristic (depending on the degree d) via the same proof. ♢
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Over fields of small positive characteristic, we have the following weaker version of the above
theorem.

Theorem 1.3 (Closure over finite fields of positive characteristic). Let Fq be a field of positive charac-
teristic p, f be an n variate polynomial of degree d over Fq and g be a factor of f , such that the largest power
of g that divides f is pℓ · e where gcd(p, e) = 1.

If f can be computed by an algebraic circuit of size s and depth ∆ over Fq, then gpℓ can be computed by
an algebraic circuit of size poly(s, d, n) and depth ∆ + O(1) over the algebraic closure of Fq.

If f can be computed by an algebraic formula of size s over Fq, then gpℓ can be computed by an algebraic
formula of size poly(s, d, n) over the algebraic closure of Fq.

Remark 1.4. Theorem 1.3 is weaker than Theorem 1.1 in two aspects - (a) we only have a circuit/formula for
a power of the factor g and not g itself and (b) the circuit/formula for the power of g is over the algebraic
closure of the base field.

For the rest of the paper, we just focus on the case of fields of characteristic zero. The same ideas essentially
extend to the case of fields of positive characteristic with small technical changes and we discuss this case in
the appendix for completeness. ♢

To an extent, Theorem 1.1 answers some very natural open questions asked in recent years
in the polynomial factorization literature (over fields of sufficiently large or zero characteristic).
This includes the question of natural subclasses of algebraic circuits being closed under taking
factors (Questions 1.2 and 3.1 in [FS15] and also an open question in [KSS15]) and the question
of proving a non-trivial upper bound on the complexity of the factors of sparse polynomials in
any algebraic model (Question 1.3 in the survey of Forbes & Shpilka [FS15]). As we discuss in
more detail in Section 1.1.1, when combined with the ideas in the recent work of Bhattacharjee
et al. [BKR+25], Theorem 1.1 gives an efficient and deterministic reduction from the question
of deterministic factoring and in particular deterministic irreducibility testing of polynomials
computed by formulas and constant-depth circuits to the question of blackbox deterministic PIT
for formulas and constant-depth circuits respectively. The general question of relationship between
derandomization of polynomial factorization for algebraic models and PIT (both in the whitebox
and blackbox settings) for them was mentioned as an open problem (Question 4.1) in [FS15]. For
general algebraic circuits, such a result was shown by Kopparty, Saraf & Shpilka [KSS15].

As alluded to in the introduction, since the closure result for general circuits has many interesting
applications, perhaps one can expect some applications of the closure result in Theorem 1.1. This
indeed turns out to be the case.2 We now discuss these applications.

2As we will see in the proofs, many of these applications are in fact a consequence of the intermediate statements in
the proof of Theorem 1.1.
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1.1.1 Applications

A unified proof of closure results: The proof of Theorem 1.1 is essentially a single unified
proof of most of the closure results for factorization that we know. The proof extends over all
algebraic models with some simple properties — models should support operations such as taking
products and sums, extracting homogeneous components, interpolation, etc., without significant
cost. Algebraic circuits, branching programs, formulas, constant-depth circuits and exponential
sums over algebraic circuits (polynomials in the class VNP) are robust enough to satisfy these
properties, and hence closure for them follows from the proof of Theorem 1.1. We stress the fact
that almost nothing changes in the argument as we try to infer the closure of these models under
factorization.

In addition to these closure results, we also get an alternative and perhaps slightly simpler
proof that shows that factors of degree d of a size s circuit (of potentially exponential degree) is
in the border of a circuit of size poly(s, d). This border version of Kaltofen’s factor conjecture was
originally proved by Bürgisser [Bür04]. The proof in this paper seems to differ from the original
proof conceptually, and the appearance of the notion of border complexity here happens fairly
naturally.

Improved hardness-randomness trade-offs: Theorem 1.1 immediately implies that the hardness-
randomness trade-off of Kabanets and Impagliazzo [KI04] also holds for models like formulas
and constant-depth circuits. In particular, exponential lower bounds for constant-depth circuits
for explicit polynomial families imply quasipolynomial time deterministic PIT for constant-depth
circuits.

Previously, only weaker statements of this form were known. Chou, Kumar & Solomon [CKS19]
showed that hardness of low-degree explicit polynomial families for constant-depth circuits gives
non-trivial PIT for such circuits, and Andrews & Forbes [AF22] constructed an alternative way of
using hardness of the symbolic determinant to get non-trivial PIT for these circuits. It is unclear to
us if either of these routes implies a quasipolynomial time deterministic PIT, when the hardness
assumption is somewhat stronger (and yet weak enough that we do not get hardness for general
algebraic circuits from the depth reduction results). For instance, one concrete conclusion that can
be obtained from Theorem 1.1 here is that if we have an explicit n-variate degree n polynomial
family Pn, such that any depth ∆ circuit for Pn has size nnε

for any ε > 0, then we have deterministic
quasipolynomial time PIT for circuits of size poly(n) and depth ∆ + O(1).

Deterministic factorization of constant-depth circuits: A recent work of Bhattacharjee et al.
[BKR+25] gave a deterministic subexponential time algorithm for factoring constant-depth circuits.
Theorem 1.1 and the techniques therein improve the results in [BKR+25] in a few aspects.

• A simpler and modular proof of correctness - the proof of correctness of the algorithms in
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[BKR+25] turns out to be fairly technical. At a high level, [KSS15] show that Kaltofen’s
result can be derandomized if we can solve PIT for certain identities that are built using
the various factors of the circuit. Even though it was not known that factors of constant-
depth circuits have constant-depth circuits, [BKR+25] managed to show that the hitting set
generator obtained by combining the lower bounds in [LST21] and the hardness-randomness
trade-offs in [CKS19] (which are typically intended to be used against constant-depth circuits)
do preserve nonzeroness of these identities that do not appear to be constant depth. This part
of the proof relies on finer details of the structure of power series roots obtained via Newton
Iteration, and the structure of the specific hitting set generator.

The techniques in the proof of Theorem 1.1 give a clean and direct proof of the correctness
of the algorithms in [BKR+25], and essentially demystefy and give a more satisfying reason
for why the [LST21] plus [CKS19] hitting set generator works in the algorithm in [BKR+25]—
factors of constant-depth circuits are indeed constant depth, and hence so are the relevant
identities involved in the above sketch. Thus, any hitting set generator for constant-depth
circuits will preserve irreducibility and factorization pattern of such circuits as well.

• Constant-depth circuits for factors as output - The algorithm in [BKR+25] outputs polynomial
size circuits for the irreducible factors of the input circuit. However, these output circuits need
not be of constant depth (naturally, since it was not even known if there exist constant-depth
circuits for them). Theorem 1.1 implies that these output polynomials have small constant-
depth circuits. We show that the ideas in the proof of Theorem 1.1 can be combined with the
algorithm in [BKR+25] to output constant-depth circuit for all the factors.

Additionally, stronger lower bounds for constant-depth circuit would translate to faster de-
terministic algorithms for polynomial identity testing, and this, in turn, would translate to faster
deterministic factorization algorithms for constant-depth circuits.

Blackbox PIT and deterministic factorization: A result of Kopparty, Saraf and Shpilka [KSS15]
showed that deterministic PIT algorithms for general circuits (in both the blackbox and the whitebox
models) implies a deterministic factorization algorithm for such circuits. We can now extend this
connection in the blackbox setting to models such as constant-depth circuits or formulas. However,
at the moment, it is unclear to us if such a conclusion also follows from whitebox derandomization
of PIT for these models.

Randomized algorithms for factorization: By sampling random points instead of using a deter-
ministic PIT algorithm in the aforementioned reduction, we also obtain an efficient randomized
algorithm that takes a polynomial with a small formula / constant-depth circuit as input and
outputs small formulas / constant-depth circuits for all the irreducible factors of the input, along
with their multiplicities.
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We now move on to a discussion of the main techniques.

1.2 Proof overview

The difficulty of proving closure for weaker models

Before discussing the main techniques in the proof of Theorem 1.1, we start with a brief discussion
about the technical difficulty of proving close results for models like constant-depth circuits and
formulas.

One of the main ingredients of all the multivariate factorization algorithms and closure results
is the notion of Newton Iteration or one of its variants (e.g. Hensel Lifting). For this discussion,
we confine ourselves to Newton iteration. Let us assume that the input polynomial P is of the
form P(x, y) = (y − f (x)) · Q(x, y) for some unknown f and Q, with f (0) = 0 and ∂yP(0, 0) ̸= 0.
Let f0(x) = f (0). We first start by observing that f0(x) = 0 satisfies P(x, f0(x)) = 0 mod ⟨x⟩ and
iteratively define

fi+1 = fi −
P(x, fi)

∂yP(0, 0)
mod ⟨x⟩i+1,

and show that fi satisfies P(x, fi(x)) = 0 mod ⟨x⟩i+1, and (in some sense) is unique. Once i exceeds
deg( f ), then uniqueness would guarantee that fi(x) is (essentially) f (x).

This is a strategy that works for general circuits, but since this process is quite sequential and
involves successive composition of P with itself, we were unable to show that fi’s were computable
by constant-depth circuits even if P was. Similar issues also arise in algorithms that use Hensel
lifting. Almost all closure results [Kal89, KT88, Bür04, DSY09, KSS15, Oli16, CKS19, ST20, DSS22]
follow the above overall sketch.

One way of getting around these issues would be to argue about the structure of these approxi-
mations of these power series roots directly without relying on the explicit iterative process used to
construct them. This is essentially how the proof of Theorem 1.1 proceeds. We now discuss this in
more detail.

Main ideas

All our results stem from the following fundamental (and surprising) result of Furstenberg from
the 1960s, that essentially gives a “closed form” expression for the Newton iteration process, which
we state now. The following statement is a special case of Theorem 3.1 for roots of multiplicity 1.

Theorem 1.5 ([Fur67]). Let F be an arbitrary field and let P(t, y) ∈ F [t, y] be a polynomial and φ(t)∈ FJtK

8



with φ(0) = 0 be a power series satisfying P(t, y) = (y − φ(t)) · Q(t, y) and Q(0, 0) ̸= 0. Then

φ = D

(
y2 · ∂yP(ty, y)

P(ty, y)

)
,

where, the diagonal operator D operates on a bivariate power series F(t, y) = ∑i≥0,j≥0 Fi,jtiyj as follows:

D(F)(t) := ∑
i≥0

Fi,i · ti.

Semantically, under some mild conditions, the above theorem almost gives a way of writing a
power series root of a bivariate polynomial P as a ratio of two polynomials whose complexity is
close to that of the complexity of P. Here, the almost part hides the complexity of computing the
diagonal of a power series.

It is worth stressing that the proof of the above result is completely elementary, and a full proof
is provided in Section 3 for completeness. Also, via standard transformations, the above can be
simplified to the following corollary.

Corollary 1.6. Let F be an arbitrary field and let P(t, y) ∈ F [t, y] be a polynomial and φ(t)∈ FJtK with
φ(0) = 0 be a power series satisfying P(t, y) = (y − φ(t)) · Q(t, y) with Q(0, 0) = 1. Then

φ(t) = ∑
m≥1

[ym−1]
{
(1 − ∂yP(t, y)) · (y − P(t, y))m}

= ∑
m≥1

1
m

· [ym−1] {(y − P(t, y))m} (over char. 0 fields)

where [ya] {G(t, y)} refers to the coefficient of ya in the polynomial G(t, y).

Remark. A reader familiar with techniques in enumerative combinatorics / generating functions might
notice similarities with the classical Lagrange inversion formula, and that is indeed the case. The above
can also be derived from the Lagrange inversion formula. A more elaborate discussion on this connection is
provided in Section 1.2.1. ♢

From Corollary 1.6, it almost immediately follows that truncations of power series roots of
formulas and constant-depth circuits have small formulas and constant-depth circuits respectively
over the closure of the base field. To go from power series roots (over the field closure) to general
irreducible factors (over the base field) and to do so within constant depth (or formulas) requires
some new observations on combining power series roots to get general irreducible factors. In
particular, we rely on the fact that the transformation between elementary symmetric and power
symmetric polynomials can be done within constant depth over fields of characteristic zero (or
sufficiently large characteristic), as recently shown and crucially used in a work of Andrews and
Wigderson [AW24].
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Given the simplicity of ideas in the proofs in this paper, perhaps the main contribution of this
work is to bring Theorem 1.5 to the attention of a theoretical computer science audience, and to
notice its connections and consequences for some very natural questions in multivariate polynomial
factorization and its applications.

1.2.1 Connections to the Lagrange Inversion Formula

Power series that are implicitly defined via functional equations have been a subject of intense
study, especially in the area of enumerative combinatorics. A classical functional equation in this
context is the following — given a power series g(y), find a power series φ(x) with φ(0) = 0 that
satisfies the equation x · g(φ(x)) = φ(x). The Lagrange Inversion Formula (from the 18th century!),
for formal power series, states that

φ(x) = ∑
m≥1

1
m

· xm · [ym−1] {g(y)m}

is a solution to the above (and is also unique for nonzero g). (See [SW23] for a simple proof and its
applications in enumerative combinatorics.)

To get this closer to the setup for approximate roots, suppose P(x, y) is a polynomial with
∂yP(0, 0) = 1. Then, if φ(x) is a power series root satisfying φ(0) = 0 and P(x, φ(x)) = 0, then we
have that G(x, φ(x)) = φ(x) where G(x, y) = y − P(x, y), which is very similar to the functional
equation x · g(φ(x)) = φ(x) above. Unsurprisingly, the Lagrange Inversion Formula can be used
to derive a closed form expression for φ(x). In fact, this precise question is explicitly stated as an
exercise3 in Stanley’s book [Sta99] on Enumerative Combinatorics!

Theorem 1.7 (Exercises 5.59 in [Sta99]). Let F be a field of characteristic 0. Suppose φ(x) ∈ FJxK with
φ(0) = 0. Let G(x, y) ∈ FJx, yK and φ satisfies the functional equation G(x, φ) = φ. Then,

φ(x) = ∑
m≥1

1
m

· [ym−1] {G(x, y)m}

(where [ya] {P} refers to the coefficient of ya in P).

The above result appears to have been discovered several times (see [Sok09, Ges16] and refer-
ences within for several avatars of the above statement) in the enumerative combinatorics literature
with a different set of motivations and applications in mind, and appears to have evaded the gaze
of the algebraic complexity theorists. The fact that the above can also be derived from Furstenberg’s
identity was also observed by Hu [Hu16]. Corollary 1.6 is an immediate consequence of the above
by setting G(x, y) = y − P(x, y).

3The book also provides solutions. For this setting, one could solve for φ(t, x) satisfying t · G(x, φ(t, x)) = φ(t, x) via
the Lagrange Inversion Formula to obtain φ(t, x) = ∑m≥1

1
m · tm · [ym−1] {G(x, y)m}, and set t = 1.
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Organization

The rest of this paper is organized as follows. We begin with some preliminaries in algebraic
complexity in Section 2 (readers familiar with standard notions in algebraic complexity can safely
skip this section). Section 3 presents the theorem of Furstenberg and alternate formulations, and
Section 4 uses these to prove the structural closure results for power series roots and factors.
Section 5 gives deterministic algorithms for computing factors of constant-depth circuits (and
other natural subclasses of algebraic circuits). Section 6 presents other applications to some known
structural results in the context of factorization. We discuss the extension of the closure results to
finite fields of small characteristic in Appendix A.

For readers familiar with algebraic complexity, we suggest starting directly with Section 3, and
referring to the preliminaries in Section 2 as and when necessary.

2 Preliminaries

Notation:

• We use bold-face letters (such as F, K) to denote fields. We use F[x] to denote the polynomial
ring, FJxK to the ring of formal power series, and F((x)) refer to ring of Laurent series with
respect to the variable x with coefficients from the field F. We use F to refer to the algebraic
closure of the field F.

• We use boldface letters such as x to refer to an order tuple of variables such as (x1, . . . , xn).
The size of the tuple would usually be clear from context.

• For a polynomial f (x) ∈ F[x] (or more generally in F((x))) and a monomial xn, we use
[xn] { f } to denote the coefficient of xn in f . For multivariate polynomials such as f (x, y),
we will use [xn] { f } by interpreting f (x) ∈ F[y][x] and extracting the coefficient of xn as a
function of y.

• The notation Homd(F) refers to the degree d homogeneous part of F, and Hom≤d(F) refers
to the sum of all homogeneous parts of F up to degree d (which is sometimes also referred to
as ‘truncating’ the polynomial at degree d).

• The model of computation for multivariate polynomials would be the standard model of
algebraic circuits (which are directed acyclic graphs with internal gates labelled by + and ×,
with leaves labelled by variables or field constants, with field constant on edges). The size of
a circuit C, denoted by size(C), would be the number of wires in the circuit. The depth of
the circuit, denoted by depth(C), would be the length of the longest path from root to a leaf
node. For a polynomial f (x), we shall use size( f ) to denote the size of the smallest circuit
that computes f .
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We also briefly use the notion of border computation which is given by a circuit C with co-
efficients from F(ε) where ε is a formal variable. We shall say that the circuit C is a border
computation for a polynomial f (x) if C = f (x) + ε · g(x, ε) where g(x, ε) ∈ F[ε][x]. We use
size( f ) to denote the size of the smallest circuit that border computes f .

• A polynomial f (x) is said to be squarefree if there is no non-constant polynomial g(x) such
that g2 divides f . Extending this, if f (x) = ge1

1 · · · ger
r (with each ei ≥ 1) is the factorization of

the polynomial into distinct irreducibles, the squarefree part of f is given by g1 · · · gr.

• A map G : F[x] → F[w] is said to be a hitting-set generator for a class C of polynomials
if for every F ∈ C we have that F ◦ G = 0 implies F = 0. The degree of the generator
is maxi deg(G (xi)). The hitting-set generator is said to be explicit if G can be computed
efficiently.

2.1 Polynomial Identity Lemma

Lemma 2.1 (Polynomial Identity Lemma [GRS23, Lemma 9.2.2]). Let F be an arbitrary field and let
P(x) ∈ F[x] be a nonzero n-variate polynomial of degree d. Let S be an arbitrary subset of F. Then,

Pr
a∈Sn

[P(a) = 0] ≤ d
|S|

2.2 Interpolation and consequences

The following applications of polynomial interpolation to algebraic circuits is attributed to Michael
Ben-Or.

Lemma 2.2 (Interpolation). Let R be a commutative ring that contains a field F of at least d + 1 elements,
and let α0, . . . , αd be distinct elements in F. Then, for every i ∈ {0, . . . , d}, there exists fields elements
βi0, . . . , βid such that for any f (t) = f0 + f1t + · · ·+ fdtd ∈ R[t] of degree at most d, we have

[ti] { f } = fi = βi0 f (α0) + · · ·+ βid f (αd)

Corollary 2.3 (Standard consequences of interpolation). Let α0, . . . , αd be distinct elements in F. Then,

1. [Partial derivatives] If C(x, y) has degree d in the variable y, then the i-th order partial derivative of
C with respect to y can be expressed as an F[y]-linear combination of

{
C(x, αj) : j ∈ {0, . . . , d}

}
.

That is, there are polynomials µ0(y), . . . , µd(y) (not depending on C) of degree at most d such that

∂yi C(x, y) = µ0(y) · C(x, α0) + · · ·+ µd(y) · C(x, αd).

2. [Homogeneous components] Let C(x) be a degree d polynomial. Then, for any subset xS ⊆ x and
any i ∈ [d], the degree i homogeneous part of C with respect to xS, denoted by HomxS,i(C), can be
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expressed as

HomxS,i(C) =
d

∑
j=0

βi,j · C(αj · xS, xS)

for some constants βi,j ∈ F (not depending on C).

In particular, if C is computable by a size s, depth ∆ circuit, then all the above operations yield a circuit of
size poly(s, d) and depth ∆ + O(1).

Observe that even if d ≪ deg( f ), interpolating the coefficient of td in f (t) requires deg( f ) + 1
many evaluations. However, we can express the coefficient of td in f (t) as the limit (or border) of a
sum of just d + 1 evaluations of f . The following lemma states this formally.

Lemma 2.4 (Border Interpolation). Let R be a commutative ring that contains a field F of at least d + 1
elements, and let α0, . . . , αd be distinct elements in F. Then, there exists fields elements β0, . . . , βd such that
for any f (t) ∈ RJtK, we have

[td] { f } =
1
εd · (β0 f (εα0) + · · ·+ βd f (εαd)) + O(ε).

Proof. Suppose f = f0 + f1t + f2t2 + · · · . Define f ′(t) = f0 + f1t + · · ·+ fdtd and f ′′(t) = f − f ′.
Then, applying Lemma 2.2 for g(t) = f ′(ε · t) and i = d, we get constants β0, . . . , βd such that

β0 f ′(εα0) + · · ·+ βd f ′(εαd) = β0g(α0) + · · ·+ βdg(αd) = [td] {g} = εd · [td]
{

f ′
}
= εd fd

On the other hand, f ′′(εα) = O(εd+1) for any constant α. Therefore, since f = f ′ + f ′′, we have

1
εd · (β0 f (εα0) + · · ·+ βd f (εαd)) = [td]

{
f ′
}
+ O(εd+1−d) = fd + O(ε).

2.3 Resultant, Discriminant and Gauss Lemma

We now recall some definitions that are standard in the factorization literature. For more details,
we encourage the readers to refer to von zur Gathen and Gerhard’s book on computer algebra
[vzGG13].

Definition 2.5 (Sylvester Matrix and Resultant). Let F be a field. Let P(z) and Q(z) be polynomials of
degree a ≥ 1 and b ≥ 1 in F[z]. Define a linear map ΓP,Q : Fa × Fb → Fa+b that takes polynomials A(z)
and B(z) in F[z] of degree a − 1 and b − 1 respectively, and maps them to AP + BQ, a polynomial of degree
a + b − 1.
The Sylvester matrix of P and Q, denoted by Sylz(P, Q), is defined to be the (a + b)× (p + q) matrix for
the linear map ΓP,Q.
The Resultant of P and Q, denoted by Resz(P, Q), is the determinant of Sylz(P, Q). ♢
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Definition 2.6 (Discriminant). Let P(z) be a polynomial over a field F. The Discriminant of P, denoted by
Discz(P), is defined as the resultant of P and ∂P

∂z . ♢

Lemma 2.7 (Resultant and GCD [vzGG13, Corollary 6.20]). Let R be a unique factorization domain,
and let P(z), Q(z) ∈ R[z] be polynomials of degree p ≥ 1 and q ≥ 1 respectively. Then, Resz(P, Q) =

0 ⇐⇒ degz(gcd(P, Q)) ≥ 1. Moreover, there exist polynomials A and B of degree q − 1 and p − 1 such
that AP + BQ = Resz(P, Q).

Lemma 2.8 (Discriminant and squarefreeness[DSS22, Lemma 12]). Let R be a unique factorization
domain, and let P(z) ∈ R[z] be a polynomial of degree at least 1. Then, Discz(P) = 0 if and only if P is
squarefree i.e. every irreducible factor of P has multiplicity one.

Lemma 2.9 (Gauss Lemma [vzGG13, Section 6.2, Corollary 6.10]). Let R be a unique factorization
domain and let K be its field of fractions. Let P(z) ∈ R[z] be a monic polynomial. Then, P(z) is irreducible
in R[z] if and only if P(z) is irreducible in K [z]. In particular, the factorization of a monic polynomial
P(z) into its irreducible factors in R[z] is identical to its factorization into irreducible factors in K [z].

2.4 Reducing to factorizing bivariate polynomials

For many of the factorization applications, it would be convenient to reduce the problem to a bivari-
ate setting. The following definition and subsequent lemmas formalize the precise transformation
and their properties. In what follows, it would be convenient to imagine the set of variables instead
as (x, y) (that is, calling the last variable as y since it plays a slightly different role). We sometimes
abuse notation to refer to a set x of variables as (x, y) by reusing the same names by artificially
introducing a variable.

Definition 2.10 (Valid pre-processing maps for factorization). Let a, b ∈ F|x| and let K = F(x). The
homomorphism Ψa,b : F[x, y] → K[t, y] given by

Ψa,b : xi 7→ txi + aiy + bi, for all i,

Ψa,b : y 7→ y

is said to be a valid pre-processing map for a polynomial F(x, y) ∈ F[x, y] if G(t, y) = Ψa,b(F) satisfies
the following properties:

1. The coefficient of ydeg(F) in G is nonzero.

2. If G̃ be the squarefree part of G, then G̃(0, y) must be squarefree as well. ♢

Lemma 2.11 (Recovering factors from pre-processed factors). If G(t, y) = Ψa,b(F(x, y)) for a valid
pre-processing map, then G(0, y) is a univariate polynomial in y over the base field F. Furthermore, the
factors of G(t, y) ∈ F(x)[t, y] are in one-to-one correspondence with the factors of F(x, y), with the inverse
map Ψ−1

a,b given by xi 7→ xi − aiy − bi and t 7→ 1.
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Proof. For any choice of a, b, the map ψa,b : xi 7→ xi + aiy+ bi is an automorphism of the polynomial
ring F[x, y] that keeps non-constant polynomials non-constant. Therefore, for any polynomial
F(x, y), the factors of F(x, y) are in one-to-one correspondence with the factors of ψa,b(F(x, y)).

If Ψa,b is a valid pre-processing map for F(x, y) and G(t, y) = Ψa,b(F) ∈ F[x][t, y] then by
Definition 2.10 Item 1 we have that G(t, y) is monic in y.4 By Gauss’ lemma, the G(t, y) is reducible
over F(x) if and only if G(t, y) is reducible over F[x]. If G(t, y) = G1(t, y) · G2(t, y) is a non-trivial
factorization, we get a non-trivial factorization of ψa,b(F(x, y)) by setting t = 1 since Gi(t, y) is
monic for i = 1, 2 and will remain non-trivial under the substitution t = 1.

Thus, the factors of G(t, y) are in one-to-one correspondence with the factors of F(x, y), and we
can easily obtain one from the other.

Lemma 2.12. Let F(x, y) be a nonzero polynomial of degree d. Suppose a, b ∈ Fn (where n = |x|) satisfy
the following properties:

1. Homd(F)(a) ̸= 0,

2. Discy(F̃(a1y + b1, . . . , any + bn, y)) ̸= 0 where F̃ is the squarefree part of F and Discy(F) denotes
the discriminant of F with respect to y.

Then, Ψa,b is a valid pre-processing map for F(x, y).

Proof. It is easy to observe that the coefficient of yd in G(t, y) = Ψa,b(F) is precisely Homd(F)(a).
Thus, this implies Definition 2.10 Item 1.

By Lemma 2.11, if G̃ is the squarefree part of G, then G̃ = Ψa,b(F̃). Therefore, G̃(0, y) will
be squarefree if and only if F̃(a1y + b1, . . . , any + bn, y) is square free. Hence, Discy(F̃(a1y +

b1, . . . , any + bn, y)) ̸= 0 implies Definition 2.10 Item 2.

Remark 2.13. A consequence of the above lemma, along with the Polynomial Identity Lemma (Lemma 2.1)
is that, for any polynomial F(x, y), the map Ψa,b when a, b is picked at random is a valid pre-processing
map. In particular, valid pre-processing maps always exist. ♢

2.5 Factorization of monic polynomials into power series

The following are some standard facts about power series roots of polynomials under modest
conditions.

Lemma 2.14 (Factorization into power series). Let f (t, y) ∈ K[t, y] be a polynomial that is monic in
y such that f (0, y) is squarefree. For each α ∈ K (the algebraic closure) such that f (0, α) = 0, there is a
unique power series φα(t) ∈ KJtK satisfying φα(0) = α such that f (t, φα(t)) = 0.

4Here we just mean that the coefficient lies in F.
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In fact, the polynomial f (t, y) factorizes in KJtK[y] as

f (t, y) = ∏
α∈Z

(y − φα(t))

where Z is the set of roots of f (0, y) in K.

The above lemma is essentially folklore and [DSS22, Section 3] gives a formal proof of the above.

2.6 Some known results on algebraic circuits

Theorem 2.15 (Computing squarefree decomposition (Theorem I.9 in [AW24])). Let F be a field
of characteristic zero. Given an algebraic circuit of size s and depth ∆ computing a polynomial degree d
polynomial f (x), consider the (unique) sequence of polynomials f1, . . . , fd ∈ F[x] such that gcd( fi, f j) = 1
and f = ∏n

i=1 f i
i . Then, each fi can be computed using size poly(s, d) and depth ∆ + O(1) circuits. In

particular, the squarefree part of f (which is equal to f1 · · · fn) is computable by size poly(s, d) and depth
∆ + O(1) circuits.

Furthermore, the circuits can be computed in polynomial time given access to an oracle solving PIT for
polynomial size constant-depth circuits (assuming ∆ is constant).

Remark 2.16. The model of constant depth algebraic circuits as defined in [AW24] are allowed to have
division gates. However, an inspection of their proof of Theorem 2.15 reveals that an oracle access to a PIT
algorithm for division free constant depth algebraic circuits is sufficient to obtain an efficient algorithm that
takes as input a constant depth circuit (without divisions) and outputs constant depth algebraic circuits
(again, without division gates) for its squarefree decomposition.

Moreover, the same argument holds for algebraic formulas, provided we have a PIT oracle for such
formulas. ♢

We also make use of known hitting set generators for polynomial size constant-depth circuits.
Although [LST21, Corollary 5] is stated as a whitebox PIT, this also provides an explicit hitting set
generator. The statement below is an alternate generator construction from a result of Andrews
and Forbes [AF22].

Theorem 2.17 (Explicit hitting sets for constant-depth circuits (Theorem 6.8 in the full version
of [AF22])). Let F be a field of characteristic zero. For every k ∈ N, there is a hitting set generator
Gk : F[x] → F[w] with |w| = n1/2k+o(1) and for the class of poly(n)-size depth ∆ ≤ o(log log log n)
circuits.
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3 Explicit formulas for implicitly defined power series

For a bivariate power series F(x, y) = ∑i,j Fi,jxiyj ∈ FJx, yK, define the diagonal operator D(F)(t) as

D(F)(t) = ∑
i≥0

Fi,i · ti.

The following result of Furstenberg [Fur67] allows us to express power series roots as a diagonal of
a rational function. We present Furstenberg’s proof to keep the exposition self-contained.

Theorem 3.1 ([Fur67, Proposition 2]). Let F be an arbitrary field. Let P(t, y) ∈ FJt, yK be a power series
and φ(t)∈ FJtK be a power series satisfying

P(t, y) = (y − φ(t))e · Q(t, y)

for some e ≥ 1 that is invertible in F. If φ(0) = 0 and Q(0, 0) ̸= 0, then

φ = D

(
y2 · ∂yP(ty, y)

e · P(ty, y)

)
(3.2)

Remark. Although the [Fur67, Proposition 2] originally stated it for P(t, y) being a polynomial and for
e = 1, it can be seen to readily extend to P(t, y) being a power series as well (cf. [Hu16]) and for any e that
is invertible in F. ♢

Proof. By scaling P if required, we may assume without loss of generality that Q(0, 0) = 1.

P(t, y) = (y − φ(t))eQ(t, y)

=⇒
∂yP(t, y)
P(t, y)

=
e

y − φ(t)
+

∂yQ(t, y)
Q(t, y)

=⇒
y2 · ∂yP(ty, y)

e · P(ty, y)
=

y2

y − φ(ty)
+

y2 · ∂yQ(ty, y)
e · Q(ty, y)

=⇒ D

(
y2 · ∂yP(ty, y)

e · P(ty, y)

)
= D

(
y2

y − φ(ty)

)
+D

(
y2 · ∂yQ(ty, y)

e · Q(ty, y)

)
.

We first deal with the second summand. Since Q(0, 0) = 1, we can write Q(ty, y) as (1 − Q̃(ty, y))
for with Q̃ satisfying Q̃(0, 0) = 0. Thus, the second summand, as a power series expression,
becomes

D

(
y2∂yQ(ty, y)
e · Q(ty, y)

)
= D

(
y2 · e−1 · ∂yQ(ty, y)

(
∞

∑
i=0

Q̃(ty, y)i

))

In ∂yQ(ty, y) · (∑∞
i=0 Q̃(ty, y)i), every monomial has y-degree at least as large as the t-degree (since
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we replaced t by ty). Multiplying by y2 ensures that there are no monomials with t-degree equal to
y-degree. Hence, D

(
y2∂yQ(ty,y)

eQ(ty,y)

)
= 0.

For the first summand, since φ(0) = 0, we have φ(ty) is divisible by y and hence

D

(
y

1 − (φ(ty)/y)

)
= D

(
y ∑

i≥0

(
φ(ty)

y

)i
)

= D

(
∞

∑
i=0

(
(φ(ty))i

yi−1

))
.

Observe that for every i ≥ 0, mi := (φ(ty))i/yi−1 satisfies degt(mi) = degy(mi) + i − 1, which

means that degt(mi) = degy(mi) if and only if i = 1. Thus, D
(

y
1−(φ(ty)/y)

)
= D (φ(ty)) = φ.

The diagonal expression above can be simplified to a slightly more convenient expression for
implicitly defined power series roots (which we state below for the case of roots of multiplicity
one).

Corollary 3.3. Let F be an arbitrary field. Let P(t, y) ∈ FJt, yK and φ(t) ∈ FJtK such that φ(0) = 0,
P(t, φ(t)) = 0 and ∂yP(0, 0) = α ̸= 0. Then,

φ(t) = ∑
m≥1

1
αm+1 · [ym−1]

{
∂yP(t, y) · (αy − P(t, y))m} .

For characteristic zero fields, the following is an alternate expression

φ(t) = ∑
m≥1

1
m · αm · [ym−1] {(αy − P(t, y))m} .

Proof. By scaling P if required, assume ∂yP(0, 0) = 1. Since P(0, 0) = 0, this implies that P(ty,y)
y is a

polynomial with constant term equal to 1, and is thus invertible as a power series. By Theorem 3.1,
we have

φ(t) = D

(
y · ∂yP(ty, y)

P(ty, y)/y

)
= D

 y · ∂yP(ty, y)

1 − (1 − P(ty,y)
y )


= D

(
∑

m≥0
y · ∂yP(ty, y) ·

(
1 − P(ty, y)

y

)m
)

The term corresponding to m = 0 is just y · ∂yP(ty, y) and consists only of monomials where the
y-degree is greater than the t-degree and hence does not contribute any diagonal terms. Hence,

φ(t) = D

(
∑

m≥1
y · ∂yP(ty, y) ·

(
1 − P(ty, y)

y

)m
)

=⇒ [tn](φ) = [tnyn]

{
∑

m≥1
y · ∂yP(ty, y) ·

(
1 − P(ty, y)

y

)m
}
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= [tnyn]

{
∑

m≥1
y1−m · ∂yP(ty, y) · (y − P(ty, y))m

}
= ∑

m≥1
[tnyn+m−1]

{
∂yP(ty, y) · (y − P(ty, y))m}

For any Laurent series R(t, y), we have [tiyj] {R(t, y)} = [tiyi+j] {R(ty, y)}. Hence, we have

[tn](φ) = ∑
m≥1

[tnym−1]
{

∂yP(t, y) · (y − P(t, y))m}
= [tn]

{
∑

m≥1
[ym−1]

{
∂yP(t, y) · (y − P(t, y))m}}

which completes the proof of the first expression (the proof for ∂yP(0, 0) = α ̸= 1 follows similarly).

For the expression over characteristic zero fields, let G(t, y) = y − P(t, y). Then

[tn] {φ(t)} = ∑
m≥1

[ym−1]
{
(1 − ∂yG(t, y)) · G(t, y)m}

= ∑
m≥1

(
[ym−1] {G(t, y)m} − [ym−1]

{
∂yG(t, y) · G(t, y)m})

= ∑
m≥1

(
[ym−1] {G(t, y)m} −

(
1

m + 1

)
[ym−1]

{
∂yG(t, y)m+1

})

For any power series R(x, y) and any k > 0, note that [yk−1]
{

∂yR(x, y)
}
= k · [yk] {R(x, y)}. Hence,

[tn] {φ(t)} = ∑
m≥1

(
[ym−1] {G(t, y)m} −

(
m

m + 1

)
[ym]

{
G(t, y)m+1

})
= ∑

m≥1

1
m

· [ym−1] {G(t, y)m} .

4 Closure under taking factors

In this section, we use the techniques discussed in Section 3 to prove closure results (Theorem 1.1).
We start by proving upper bounds on the complexity of power series roots, followed by a proof

of upper bounds on general factors.

4.1 Complexity of power series roots

Theorem 4.1 (Power series roots without multiplicity). Let P(x, y) ∈ F[x, y] be a polynomial computed
by a circuit C, and let φ(x)∈ FJxK be a power series satisfying φ(0) = 0, P(x, φ(x)) = 0 and ∂yP(0, 0) ̸=
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0. Then, for any d ∈ N, there is a circuit C′ computing Hom≤d [φ] such that

size(C′) ≤ poly(d, size(C))

depth(C′) ≤ depth(C) + O(1)

Proof. This theorem follows almost immediately from Corollary 3.3 along with some standard ideas
in factorization literature.

For simplicity, by scaling the polynomial P if required, we may assume without loss of generality
that ∂yP(0, 0) = 1. We first perform the standard transformation of replacing each xi by t · xi and
work over the field K := F(x). We define P̂(t, y) := P(t · x, y) ∈ K[t, y] and φ̂(t) := φ(t · x)∈ KJtK.
Thus, we maintain the conditions φ̂(0) = 0, P̂(t, φ̂(t)) = 0 and ∂yP̂(0, 0) = 1. We can now apply
Corollary 3.3 to get

φ̂(t) = ∑
m≥1

[ym−1]
{

∂yP̂(t, y) · (y − P̂(t, y))m} .

Note that, since P̂(0, 0) = 0 and ∂yP̂(0, 0) = 1, we have that every monomial of y − P̂(t, y) is
either divisible by t or by y2. Therefore,

Hom≤d [φ̂(t)] = Hom≤d

[
∑

m≥1
[ym−1]

{
∂yP̂(t, y) · (y − P̂(t, y))m}]

= Hom≤d

[
2d

∑
m=1

[ym−1]
{

∂yP̂(t, y) · (y − P̂(t, y))m}]

since every monomial of (y− P̂(t, y))ℓ = (t · A+ y2 · B)ℓ either has t-degree at least ℓ/2, or y-degree
at least ℓ and thus terms with m > 2d have no contribution to the LHS.

The expression is clearly in F[x, t] and not just K[t]. Setting t = 1 helps us retrieve Hom≤d [φ(x)]
since the transformation xi 7→ t · xi ensures that each monomial has the same x-degree and t-degree
in φ(t · x). The depth and size bounds follow via interpolation and homogenization (Lemma 2.2
and Corollary 2.3).

4.2 Complexity of general factors

We now proceed to prove our closure result for general factors. If f (t, y) is a polynomial that is
monic in y and is divisible by g(t, y), then over the algebraic closure F we can express g(0, y) =

∏ℓ
i=1(y − αi). Thus, a simple proof to obtain a constant-depth circuit for g(t, y) over the algebraic

closure F would be to just consider

g(t, y) = Hom≤d

(
ℓ

∏
i=1

(y − Cαi(t))

)
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where Cαi(t) is the root of the power series lifted from αi obtained via Theorem 4.1. (We need a few
additional ingredients, such as reducing to the square-free case and taking a suitable shift )

To obtain a circuit for the factors over the base field, we require a few more modifications that
we now describe (and obtaining a circuit over the base field would also be essential for computing
the factors algorithmically). We would require the following statement from the recent work of
Andrews and Wigderson [AW24] to prove our closure result for general factors.

Theorem 4.2 (Theorem I.8 of [AW24]). Let F be a field of zero or large characteristic. Suppose f , g, h ∈
F[z] with deg( f ), deg(g), deg(h) ≤ d. Suppose α1, . . . , αd ∈ F be the roots of f (z) with multiplicity,
with h(αi) ̸= 0 for all i. Then, for any r ∈ [d], Esymr(

g(α1)
h(α1)

, . . . , g(αd)
h(αd)

) can be computed by a circuit of size
poly(d) and depth O(1) over the coefficients of f , g and h.

It is worth stressing that the above circuit is over the base field F, and does not take the αi’s as
input; the inputs are just the coefficients of f , g and h which come from the base field.

Theorem 4.3 (General factors of algebraic circuits). Let F be a field of zero or large enough characteristic,
and let P(x) ∈ F[x] be a polynomial on n variables of degree d computed by a circuit C of size s and depth ∆.
Then, any factor g(x) ∈ F[x] of P is computable by a circuit of size poly(s, d, n) and depth ∆ + O(1) over
F.

Proof. We may assume that we work with the squarefree part of P(x), which is also computable by
a circuit of size poly(s, d, n) and depth ∆ +O(1) by appealing to Theorem 2.15. By reusing symbols,
let us assume that P(x) is squarefree.

By interpreting P(x) as an element of F[x, y], let P̃(t, y) = Ψ(P(x, y)) for some valid pre-
processing map Ψ (recall Definition 2.10, and that they always exist (Remark 2.13)). Note that
P̃(0, y) is squarefree, and we have that P̃(t, y) ∈ F[x][t, y] is computable by a size poly(s, d, n), depth
∆+O(1) circuit over F. By Lemma 2.11, it suffices to show that an arbitrary factor g(t, y) ∈ F[x][t, y]
of P̃(t, y) is computable by a poly(s, d, n) size, depth ∆ + O(1) circuit over the field F.

Define the Laurent series R̂(z) ∈ F[x, t]((z)), and its truncated rational function R(z) ∈ F[x, t](z)
as follows:

R̂(z) = z + ∑
m≥1

(
1

∂yP̃(0, z)

)m+1

· [ym−1]
{

∂yP̃(t, y + z) · (y · ∂yP̃(0, z)− P̃(t, y + z))m}
R(z) = z +

2d+2

∑
m=1

(
1

∂yP̃(0, z)

)m+1

· [ym−1]
{

∂yP̃(t, y + z) · (y · ∂yP̃(0, z)− P̃(t, y + z))m}
Note that we have that the rational function R(z) can be easily expressed as Rnum(z)

Rdenom(z) where each
Rnum(z) and Rdenom(z) are both computable by a poly(s, d, n) sized depth ∆ + O(1) circuits since
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P̃(t, y) is given by a poly(s, d, n) sized depth ∆ + O(1) circuit (using Lemma 2.2 and Corollary 2.3).
Furthermore, Rdenom(z) = (∂yP̃(0, z))2d+3 and since P̃(0, y) is square free we have Rdenom(α) is
nonzero for every root α of P̃(0, y).

For any α ∈ F such that P̃(0, α) = 0, note that R̂(α) is in fact an element of F[x]JtK and R(α) is
an element of F[x][t]. Also, if λ(t, y) = (y · ∂yP̃(0, α)− P̃(t, y + α)), then λ(0, 0) = ∂yλ(0, 0) = 0
and hence every monomial of λ(t, y) is divisible by either t or y2. Therefore, we have

R(α) = R̂(α) mod td+1.

For any such α ∈ F, by Corollary 3.3 (applied to φα(t)− α being a root of P̃(t, y + α)), we have
φα(t) := R̂(α) ∈ F[x]JtK as the unique power series such that φα(0) = α and P̃(t, φα(t)) = 0.

Thus, if P̃(0, y) = ∏r
i=1(y − αi) for αi ∈ F, and g(0, y) = ∏α∈S(y − α) for some subset S ⊂

{α1, . . . , αr}, then the power series roots of g(t, y) are precisely φα(t) for α ∈ S and hence

g(t, y) = ∏
α∈S

(y − φα(t)) = ∏
α∈S

(y − R̂(α)).

= ∏
α∈S

(y − R(α)) mod td+1

=⇒ g(t, y) = Hom≤d
(

g′(t, y)
)

where g′(t, y) = ∏
α∈S

(y − R(α)).

Each coefficient of any yi in g′(t, y) is an appropriate elementary symmetric polynomial of the
set
{

Rnum(α)
Rdenom(α)

: α ∈ S
}

. Since g(0, y) = ∏α∈S(y − α), the elementary symmetric polynomials of
the set {α : α ∈ S} are just the coefficients of g(0, y), which are just elements of the field F. By
Theorem 4.2, the elementary symmetric polynomials of the set

{
Rnum(α)

Rdenom(α)
: α ∈ S

}
can computed

as poly(s, d, n) sized depth ∆ + O(1) circuits. Therefore, we have a similar circuit for g′(t, y) and
hence also for g(t, y) (by Corollary 2.3).

Therefore, over any characteristic zero (or large enough characteristic) field, classes of algebraic
circuits such as VP, VNP, algebraic branching programs, algebraic formulas, constant-depth circuits
are all closed under taking factors. (See Corollary 5.7 for a slightly more detailed statement.)

5 Deterministic algorithms for factorization

As discussed in Section 1.1.1, our closure results lead to a clean proof of correctness for the results
of [BKR+25], which gave deterministic subexponential time algorithms to output efficient circuits
(of potentially unbounded depth) for each of the factors of constant-depth circuit. Moreover, we
can output constant-depth circuits for each of the factors.
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The core of the algorithm is the following lemma whose proof we will defer to the end of the
section. A version of this lemma also appeared in [BKR+25] but only for a specifically chosen
hitting set generator. The statement below is more general, and the proof is much cleaner.

Lemma 5.1 (Irreducibility preservation). Let F be a field of zero (or large enough) characteristic. Let
F(x, t, y) ∈ F[x, t, y] be a nonzero degree d polynomial that is computable by a circuit of size s and depth
∆. Suppose F is monic in y, with the property that F(x, 0, y) = F(0, 0, y) ∈ F[y] (i.e., every monomial
divisible by an xi is also divisible by t), and F(0, 0, y) is squarefree.

Let G : F[x] → F[w] be a hitting set generator for the class of size poly(s, d), depth ∆ + O(1) circuits.
Then, for every irreducible factor G(x, t, y) of F(x, t, y) we have that G ◦ G ∈ F[w, t, y] is also irre-

ducible.

We now proceed with the main theorem of this section.

Theorem 5.2. Let F be the field of rational numbers. Fix any constant ∆ ∈ N and ε > 0. Then, there
is a deterministic algorithm A∆,ε that takes as input a size s depth-∆ circuit for a degree d polynomial
P(x) ∈ F[x1, . . . , xn] and outputs circuits of size poly(s, d) and depth ∆ + O(1) for each irreducible factor
g(x) of P(x), along with their multiplicities. Moreover, A∆,ε runs in time poly(s, d)O(nε).

Remark 5.3. The theorem continues to be true over any field of zero or sufficiently large characteristic
assuming that we have an efficient deterministic algorithm to factor univariates over this field. ♢

For any bivariate degree d polynomial F(t, y) ∈ F[x][t, y] that is monic in y, we define the
polynomial RF(z) ∈ F[x, t][z] (as in the proof of Theorem 4.3), as follows

RF(z) = z +
2d+2

∑
m=1

(
1

∂yF(0, z)

)m+1

· [ym−1]
{

∂yF(t, y + z) · (y · ∂yF(0, z)− F(t, y + z))m} .

Proof of Theorem 5.2. Let P(x) be an n-variate degree d polynomial given by a circuit of size s and
depth ∆. We may assume without loss of generality that P(x) is squarefree (as the squarefree
component5 can be extracted using Theorem 2.15). We outline the rough steps of the algorithm
A∆,ε below and elaborate on the correctness.

1. (Pre-processing) Build a circuit C of size poly(s) and depth ∆+O(1) for F(x, t, y) = Ψa,b(P) ∈
F[x][t, y] where Ψa,b is a valid pre-processing map for P(x).

5In fact, the algorithm from Theorem 2.15 outputs the squarefree decomposition of the polynomial. The squarefree
decomposition of a polynomial P(x) is a sequence of polynomials (P1, . . . , Pr) such that each Pi is a product of exactly
those irreducible factors of P that have multiplicity i in its factorization. In particular, Theorem 2.15 immediately gives
us the multiplicity of each factor that we obtain from the rest of the algorithm. Since our candidate factors from the
algorithm have constant-depth circuits, we can also run a divisibility test on powers of each candidate factor to compute
their multiplicities.
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2. (Variable reduction) For a generator G : F[x] → F[w] for size poly(s), depth ∆ + O(1)
circuits, define the polynomial F̃(w, t, y) := F(x, t, y) ◦ G . (Instantiating with the generator in
Theorem 2.17, we may assume |w| = nε)

3. (Factorizing variable-reduced polynomial) Factorize F̃(w, t, y) into irreducibles as F̃(w, t, y) =
G̃1(w, t, y) · · · G̃k(w, t, y). Use interpolation to compute the coefficients of gi(y) = G̃i(w, 0, y) =
G̃i(0, 0, y) for all i ∈ [k].

4. (Building the factors) For each j ∈ [r], if Sj ⊂ F are the roots of gj(y) in the algebraic closure,
define the polynomial

Gj(x, t, y) := Hom≤d

∏
i∈Sj

(y − RF(αi))


From the coefficients of gj(y), use Theorem 4.2 to compute the coefficients (as elements of
F[x, t]) of Gj(x, t, y) via poly(s) size depth ∆ + O(1) circuits.

5. (Undo pre-processing and return) Return
{

Ψ−1
a,b(Gj) : j ∈ [k]

}
.

We will justify correctness for each of the above steps.

Pre-processing: By Corollary 2.3, the highest degree homogeneous part of P(x) is also computable
by size poly(s), depth ∆ +O(1) sized circuits, and by [AW24] we have that Discy(P) is computable
by a size poly(s), depth ∆ + O(1) circuit. Thus, by Lemma 2.12, any hitting set for size poly(s),
depth ∆ + O(1) circuits may be used to compute a valid pre-procesing map Ψa,b.

For what follows, let F(x, t, y) = Ψa,b(P).

Variable reduction: Note that the polynomial F(x, t, y) satisfy the requirements of Lemma 5.1.
Thus, by Lemma 5.1, we have that G preserves the irreducibility of the irreducible factors of
F(x, t, y).

Factorizing variable-reduced polynomial: Once we have a variable reduced polynomial, any
off-the-shelf factorization algorithm (such as [Lec07]) may be employed to factorize F ◦ G in time
poly((sd)|w|). Computing the coefficients of gk(y) can be done via interpolation (Lemma 2.2).

Building the factors: Let F̃(w, t, y) = F ◦ G = G̃1 · · · G̃k. By Lemma 5.1, we have that F =

G1 · · · Gk is the decomposition of F into irreducibles with G̃j(w, t, y) = Gj ◦G . Consider an arbitrary
irreducible factor Gj(x, t, y) of F with coefficients over the field F. By Lemma 5.4, we have that
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Gj(x, t, y) = QU(x, t, y) for an appropriate set U ⊆ [r]. Since the generator is only applied to the x
variables, we have that G̃j(w, 0, y) = Gj(x ◦ G , 0, y) = Gj(0, 0, y) = ∏i∈U(y − αi). Since we have
already computed G̃j, we have the coefficients of Gj(x, 0, y) = Gj(0, 0, y) which are the elementary
symmetric polynomials of {αi : i ∈ U}. As in the proof of Theorem 4.3, we can use Theorem 4.2 to
compute a poly(s) size, depth ∆ + O(1) circuit for Gj.

Undo pre-processing: Now that we have obtained the irreducible factors of F(x, t, y) = Ψa,b(P(x)),
Lemma 2.11 provides the inverse transformation to obtain the corresponding factors of P(x).

Running time: Finding the right pre-processing map Ψa,b using G takes time poly(s, d)O(nε). The
factorization of the variable-reduced polynomial also runs in time poly(s, d)O(nε). Rest of the steps
take time poly(s, d). Thus, the total running time is poly(s, d)O(nε).

This completes the proof correctness of Theorem 5.2 modulo the proof of Lemma 5.1.

5.1 Proof of Lemma 5.1

At the core of the algorithm of Bhattacharjee et al [BKR+25] was a method to characterize variable
reductions that preserve the factorization structure of the polynomial F(x, t, y). Recall that F(x, t, y)
is monic in y and F(0, 0, y) is a squarefree.

Lemma 5.4 (Lemma 8.3 in [BKR+25]). Let {α1, . . . , αr} be the roots of F(0, 0, y) in F. For a subset
S ⊂ [r], define

QS(x, t, y) = Hom≤d

(
∏
i∈S

(y − RF(αi))

)

Then the factors of F(x, t, y) over the field F is exactly the same as

F =

{
QU(x, t, y) :

U ⊆ [r] where QU(x, t, y) ∈ F[x, t, y] divides F and
QU(x, 0, y) = QU(0, 0, y) = ∏i∈U(y − αi) ∈ F[y]

}
.

Let G(x, t, y) ∈ F[x, t, y] be an arbitrary irreducible factor of F(x, t, y). By the above lemma,
there exists some U ⊆ [d] such that G(x, t, y) = QU(x, t, y) with QU(0, 0, y) having coefficients in
F. Note that, since F(0, 0, y) is squarefree, distinct elements of F have distinct set of roots when
x, t are set to zero. Since G(x, t, y) is irreducible, the set U is minimal in the sense that for every
∅ ̸= U′ ⊊ U, we have that QU′(x, t, y) has coefficients outside F or does not divide F(x, t, y).

For the sake of contradiction, assume that G̃(w, t, y) := G ◦ G is reducible and h(w, t, y) ∈
F[w, t, y] is a non-trivial factor of G̃. Then, h(0, 0, y) divides G̃(0, 0, y) = G(0, 0, y) and the set of
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roots of h(0, 0, y) in F is {αi : i ∈ U′} for some ∅ ̸= U′ ⊊ U.
Consider the polynomial QU′(x, t, y). As in the proof of Theorem 4.3, since h(0, 0, y) has

coefficients in F and the QU′ is symmetric with respect to the set {αi : i ∈ U′}, we have that
QU′(x, t, y) has all coefficients in F as well. Hence, as argued above, QU′(x, t, y) does not divide
F(x, t, y).

However, applying Lemma 5.4 for G̃(w, t, y), we have

h(w, t, y) = Hom≤d

(
∏
i∈U′

(y − RG̃(αi))

)

As F(0, 0, y) = F̃(0, 0, y) is squarefree and F̃(0, 0, αi) = 0 for each αi ∈ U′, by Lemma 2.14 there is a
unique power series root φ̃i(w, t) for F̃ mod td+1 that satisfies F̃(w, t, φ̃i) = 0 and φ̃i(0) = αi. Note
that both RG̃(αi) and RF(αi) ◦ G satisfy these properties. Hence, by the uniqueness of the power
series modulo td+1, we have

RF(αi) ◦ G = RG̃(αi) mod td+1

=⇒ h(w, t, y) = Hom≤d

(
∏
i∈U′

(y − RG̃(αi))

)

= Hom≤d

(
∏
i∈U′

(y − RF(αi) ◦ G )

)

= Hom≤d

(
∏
i∈U′

(y − RF(αi))

)
◦ G = QU′ ◦ G .

Therefore, we have that QU′(x, t, y) ∈ F[x, t, y] does not divide F(x, t, y) but h(w, t, y) =

QU′ ◦ G ∈ F[w, t, y] does divide F̃(w, t, y) = F(w, t, y) ◦ G . It turns out that divisiblity testing
of a pair of polynomials can be reduced to an appropriate polynomial identity test. This reduction
was first observed by Forbes [For15] and then crucially used in deterministic factorization algo-
rithms [KRS23, KRSV24, DST24, BKR+25]. We give below a lemma from [BKR+25] that implements
the reduction in [For15] via the results of [AW24].

Lemma 5.5. (Lemma 8.9 in [BKR+25]) Let D ≥ t ≥ 0 be integer parameters. Let F be any field of
characteristic zero or large enough. Then, there is a constant-depth poly(D, t)-sized circuit DivTestD,t on
D + t + 1 variables, that takes (D + t) inputs labelled f0, . . . , fD−1 ∈ F and g0, . . . , gt−1 ∈ F respectively,
such that

DivTestD,t(y, f0, . . . , fD−1, g0, . . . , gt−1) = 0

if and only if the polynomial f (y) = f0 + f1y + · · ·+ fD−1yD−1 + yD divides the polynomial g(y) =
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g0 + g1y + · · ·+ gt−1yt−1 + yt.

Define C(x, t, y) := DivTest(y, coeffy(F(x, t, y)), coeffy(QU′(x, t, y))) where coeffy(F) refers to
the vector of coefficients when F is interpreted as a univariate in y (with coefficients involving the
other variables). By Lemma 5.5, we have that C(x, t, y) is a nonzero polynomial since QU′ does
not divide F but C ◦ G is zero since QU′ ◦ G divides F ◦ G . But C is a circuit of size poly(s) and
depth ∆ +O(1) and hence this violates the assumption that G is a hitting set generator for this class.
Hence, we must have that G ◦ G continues to be irreducible for every irreducible factor G(x, t, y) of
F(x, t, y). (Lemma 5.1)

Remark 5.6. In [BKR+25], the polynomials RF(αi) were instead replaced by truncated power series obtained
via Newton Iteration, and therefore it was not known if the polynomials Q ∈ F are computable by constant-
depth circuits. As a consequence, [BKR+25] could not provide a polynomial size constant depth upper
bound for the above circuit C. Thus, [BKR+25] involved a fairly delicate argument to show that the
[LST21]+[KI04]+[CKS19] generator maintains the nonzeroness of these non-divisibility identity tests that
arises from approximate power series roots obtained via Newton Iteration.

With Theorem 4.1, we now can argue that the circuit C above is indeed a polynomial size constant-depth
circuit and hence any generator for this class of circuits would preserve the factorization of F(x, t, y). ♢

5.2 Deterministic factorization from hitting-set generators

The algorithm in Theorem 5.2 and its analysis via Lemma 5.1 proves a more general statement.

Corollary 5.7. (Informal) Let F be a field of characteristic zero or large enough, and let C be a robust
enough class of circuits that is C is closed under small sums and products, substitution by sparse polyno-
mials (thereby admitting interpolation). Consider the larger class C ′ computing polynomials of the form
F(g1, . . . , gm) where F is computable by a poly(m)-sized constant-depth circuit, and each gi ∈ C .

If we have a blackbox PIT for the class C ′ running in time T(n), then we have a deterministic T(poly(n))-
time algorithm to factorize polynomials from the class C .

This, for natural subclasses of algebraic circuits — such as algebraic formulas, algebraic branch-
ing programs, algebraic circuits, etc. — we have a reduction from factorization to polynomial
identity testing. This generalizes the result of Kopparty, Saraf and Shpilka [KSS15] who established
this connection for the class of general algebraic circuits. Further, by solving each PIT instance by
random sampling (and using Lemma 2.1), we get an efficient randomized algorithm that takes a
polynomial from C as input and outputs circuits in C for each irreducible factor, where C is some
robust enough class of polynomials.

However, Theorem 5.2 appears to require blackbox PITs for the class C ′, whereas [KSS15]
established such connections even in the whitebox setting. It is an intriguing open question if
efficient whitebox algorithms for PIT of C ′ would imply efficient deterministic factoring algorithms
for C .
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6 Other applications

6.1 Hardness-randomness trade-offs for constant-depth circuits

An immediate consequence of the closure theorems is that we get better hardness-randomness
trade-offs for constant-depth circuits directly from the Kabanets-Impagliazzo hitting-set generator
[KI04].

Theorem 6.1 (Hardness-randomness for constant-depth circuits). Let F be any field of characteristic 0
or large enough. Fix any ∆ > 0. Suppose there is an explicit family { fm(x1, . . . , xm)}m≥0 of polynomials
with deg( fm) ≤ m that requires depth ∆ circuits of size B(m) to compute them. Then, there is a family
{Hn} of explicit hitting sets for the class polynomial size circuits of depth at most ∆ − O(1) such that

|Hn| = nO((B−1(n))2/ log n).

In particular,

• If B(m) = 2Ω(m), then |Hn| = nO(log n).

• If B(m) = 2mε
for some ε > 0, then |Hn| = nO(log n)c

for some c > 0.

• If B(m) = mω(1), then |Hn| ≤ nO(nε) for every ε > 0.

Proof sketch. The proof is exactly the same as the standard Kabanets-Impagliazzo generator for
general circuits, except that instead of using Kaltofen’s result for closure of general circuits under
roots, we use Theorem 4.1 instead.

6.2 Border version of the factor conjecture

Another consequence of the techniques in this paper is a conceptually simpler alternative proof
of a result of Bürgisser that shows that low degree factors of polynomials with small circuits (but
potentially exponentially high degree) are in the border of small circuits. We recall the formal
theorem and discuss its proof below.

Theorem 6.2 (Bürgisser [Bür04]). Assume that char(F) = 0. Suppose P(x) ∈ F[x] is computable by a
size s circuit (of possibly exponential degree) and g is a factor of P. Then, the size(g) = poly(s, deg(g)).

Proof. As in the previous cases, it would suffice to prove a size upper bound for truncated power
series roots of P. By working with a suitable shift, and the substitution xi 7→ txi, we can assume we
have P(t, y) ∈ K[t, y] where K = F(x) with φ(t) ∈ KJtK satisfying φ(0) = 0 and

P(t, y) = (y − φ(t))e · (1 + Q(t, y))

with Q(0, 0) = 0.
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By Theorem 3.1, we have

φ(t) = D

(
y2 · ∂yP(ty, y)

e · P(ty, y)

)
= D

(
y · ∂yP(ty, y)/ye−1

e · P(ty, y)/ye

)

=⇒ [tn] {φ(t)} = [tnyn]

{
y · ∂yP(ty, y)/ye−1

e · P(ty, y)/ye

}

Since P(t, y) = (y − φ(t))e · (1 + Q(t, y)), we have

P(ty, y)
ye =

(
1 − φ(ty)

y

)e

· (1 + Q(ty, y)) = 1 − R(t, y)

for some R(t, y) ∈ KJt, yK with R(0, 0) = 0.
Given a circuit C for P(t, y), we now have circuits C1(t, y), C2(t, y) of O(s) size such that C1 has

a single division by ye−1 computing ∂yP(ty, y)/(e · ye−1), and C2 has a single division by ye and
computes R(t, y). Therefore,

[tnyn]

{
y · ∂yP(ty, y)/ye−1

e · P(ty, y)/ye

}
= [tnyn]

{
y · C1

1 − C2

}
= [tnyn]

{
y · C1 ·

(
1 + C2 + C2

2 + · · ·
)}

= [tnyn]
{

y · C1 ·
(
1 + C2 + C2

2 + · · ·+ C2n
2
)}

=: [tnyn] {C3,n(t, y)}

Note that C3,n is a circuit of size poly(s, n) with divisions only by powers of y. By the border
interpolation (Lemma 2.4), we can choose nonzero α

(n)
0 , . . . , α

(n)
n , β

(n)
0 , . . . , β

(n)
n ∈ F(ε) such that

n

∑
i=0

β
(n)
i · C3,n(t, α

(n)
i ) = [yn] {C3,n(t, y)}+ O(ε)

and the LHS is now a division-free circuit C4,n(t) of size poly(s, n). Once again,

n

∑
i=0

β
(n)
i · C4,n(α

(n)
i ) =

n

∑
i,j=0

β
(n)
i β

(n)
j · C3,n(α

(n)
i , α

(n)
j )

= [tn] {C4,n(t)}+ O(ε) = [tnyn] {C3,n(t, y)}+ O(ε)

Thus, we have a circuit C5(t) ∈ K(ε)[t] of size poly(n, s) defined by

C5(t) :=
n

∑
r=1

tr ·
(

r

∑
i,j=0

β
(r)
i β

(r)
j · C3,r(α

(r)
i , α

(r)
j )

)
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such that C5(t) = Hom≤n (φ(t)) + O(ε). Therefore, size (Hom≤n (φ(t))) = poly(s, n).

7 Open questions

We conclude with some open problems.

1. Whitebox PIT to deterministic factorization: Kopparty, Saraf and Shpilka [KSS15] showed
that efficient algorithms for PIT for the class of general circuits leads to efficient determin-
istic factorization of general circuits, and this connection is for both the whitebox and the
blackbox setting for PITs. Although Corollary 5.7 extends the blackbox connection to other
natural subclasses of circuits (such as formulas, branching programs, constant-depth circuits),
establishing a similar connection in the whitebox setting remains open.

2. Computing p-th roots of circuits: One of the simplest-to-state open problems in the area
of factorization of algebraic circuits is the following — over a characteristic p field, if a
polynomial f p is an n-variate, degree d polynomial computed by a poly(n, d)-sized circuit,
is f also computable by a poly(n, d)-sized circuit? The answer to this question is unknown
even for the setting of general algebraic circuits.
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A Extending closure results to fields of small characteristic

The closure results (Theorem 4.1, Theorem 4.3) over zero or large characteristic fields extend to
small characteristic fields, with some caveats. Suppose P(x) ∈ F[x] (where char(F) = p) has a
constant-depth circuit, and let g(x) be any irreducible factor of P(x) with multiplicity pℓe satisfying
gcd(p, e) = 1. Then, we show that g(x)pℓ has a constant-depth circuit over F, the algebraic closure
of F. These results follow due to a version of Furstenberg’s theorem over small characteristic fields,
which we state and prove below. Note that the case of roots of multiplicity 1 already follows from
the original version of Furstenberg’s theorem. In the following theorem we show how to extend it
to higher-order multiplicity roots.
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A.1 Furstenberg’s theorem over small characteristic fields

We shall work with the notion of Hasse derivative, which is the standard alternative to partial
derivatives in the small characteristic setting. We state the definition and the product rule for Hasse
derivatives. For more details, we recommend the reader to refer to [For14, Appendix C].

Definition A.1 (Hasse derivatives). The Hasse Derivative of order i of F(t, y) ∈ F[t, y] with respect to
y, denoted as D(i)

y (F), is defined as the coefficient of zi in the polynomial F(t, y + z). ♢

Lemma A.2 (Product rule for Hasse derivatives). Let G(t, y), H(t, y) ∈ F[t, y] be bivariate polynomials
and let k ≥ 0. Then,

D(k)
y (GH) = ∑

i+j=k
D(i)

y (G) · D(j)
y (H)

The following version of Furstenberg’s theorem over small characteristic is very similar to
Theorem 3.1, with some key differences. The theorem expresses an appropriate power of a power
series root of a polynomial as a diagonal of a rational expression involving the polynomial and its
derivatives.

Theorem A.3 (Furstenberg’s theorem over small characteristic fields). Let F be a field of characteristic
p. Let P(t, y) ∈ FJt, yK be a power series and φ(t)∈ FJtK be a power series satisfying

P(t, y) = (y − φ(t))pℓe · Q(t, y)

for some ℓ ≥ 0, e ≥ 1 such that gcd(p, e) = 1. If φ(0) = 0 and Q(0, 0) ̸= 0, then

φpℓ = D

y2pℓ · D(pℓ)
y (P)(ty, y)

e · P(ty, y)

 (A.4)

Proof. Firstly, observe that

D(j)
y ((y − φ(t))pℓe) = [zj]

{
(y + z − φ(t))pℓe

}
= [zj]

{
(ypℓ + zpℓ − φ(t)pℓ)e

}
Hence, D(j)

y ((y − φ(t))pℓe) = 0 for all 0 < j < pℓ, and

D(pℓ)
y ((y − φ(t))pℓe) = e · (y − φ(t))pℓ(e−1)
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By applying product rule for Hasse derivatives (Lemma A.2), D(pℓ)
y (P)(t, y) simplifies to

D(pℓ)
y (P)(t, y) = ∑

i+j=pℓ
D(i)

y ((y − φ(t))pℓe) · D(j)
y (Q)(t, y)

= D(pℓ)
y ((y − φ(t))pℓe) · D(0)

y (Q)(t, y) + D(0)
y ((y − φ(t))pℓe) · D(pℓ)

y (Q)(t, y)

= e · (y − φ(t))pℓ(e−1) · Q(t, y) + (y − φ(t))pℓe · D(pℓ)
y (Q)(t, y)

Following along the lines of proof of Theorem 3.1,

P(t, y) = (y − φ(t))pℓeQ(t, y)

=⇒
D(pℓ)

y (P)(t, y)
P(t, y)

=
e

(y − φ(t))pℓ
+

D(pℓ)
y (Q)(t, y)

Q(t, y)

=⇒
y2pℓ · D(pℓ)

y (P)(ty, y)
e · P(ty, y)

=
y2pℓ

(y − φ(ty))pℓ
+

y2pℓ · D(pℓ)
y (Q)(ty, y)

e · Q(ty, y)

=⇒ D

y2pℓ · D(pℓ)
y (P)(ty, y)

e · P(ty, y)

 = D

(
y2

y − φ(ty)

)pℓ

+D

y2pℓ · D(pℓ)
y (Q)(ty, y)

e · Q(ty, y)

 .

As in the proof of Theorem 3.1, the second term in the RHS is zero and

D

(
y2

y − φ(ty)

)
= φ(t) =⇒ D

(
y2

y − φ(ty)

)pℓ

= (φ(t))pℓ

We can further simplify the expression in Theorem A.3 to get a version of Corollary 3.3 over
small characteristic fields.

Corollary A.5 (Corollary 3.3 for small characteristic). Let P(t, y), Q(t, y) ∈ FJt, yK and φ(t) ∈ FJtK
satisfy

P(t, y) = (y − φ(t))pℓe · Q(t, y)

with gcd(p, e) = 1, φ(0) = 0 and Q(0, 0) = α ̸= 0. Then,

φ(t)pℓ = ∑
m≥0

[ypℓ(e(m+1)−2)]

D(pℓ)
y (P)(t, y)

e · αm+1

(
αypℓ·e − P(t, y)

)m

 .

Moreover,

Hom≤d[φ(t)pℓ ] = Hom≤d

2e(d+pℓ)

∑
m≥0

[ypℓ(e(m+1)−2)]

D(pℓ)
y (P)(t, y)

e · αm+1

(
αypℓ·e − P(t, y)

)m


 .
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Proof. By dividing P by α, let us assume without loss of generality that Q(0, 0) = 1.

φpℓ = D

y2pℓ · D(pℓ)
y (P)(ty, y)

e · P(ty, y)


[tk]
{

φpℓ
}
= [tkyk]

y2pℓ · D(pℓ)
y (P)(ty, y)

e · P(ty, y)

 = [tkyk]

ypℓ(2−e) · D(pℓ)
y (P)(ty, y)

e · P(ty, y)/ypℓ·e


= [tkyk]

ypℓ(2−e) · D(pℓ)
y (P)(ty, y)
e ∑

m≥0

(
1 − P(ty, y)

ypℓ·e

)m


= [tkyk]

∑
m≥1

ypℓ(2−e(m+1)) · D(pℓ)
y (P)(ty, y)

e

(
ypℓ·e − P(ty, y)

)m


= ∑

m≥0
[tkyk−pℓ(2−e(m+1))]

D(pℓ)
y (P)(ty, y)

e

(
ypℓ·e − P(ty, y)

)m


= ∑

m≥0
[tkypℓ(e(m+1)−2)]

D(pℓ)
y (P)(t, y)

e

(
ypℓ·e − P(t, y)

)m


= [tk]

∑
m≥0

[ypℓ(e(m+1)−2)]

D(pℓ)
y (P)(t, y)

e

(
ypℓ·e − P(t, y)

)m




∴ φpℓ = ∑
m≥0

[ypℓ(e(m+1)−2)]

D(pℓ)
y (P)(t, y)

e

(
ypℓ·e − P(t, y)

)m


The first part of the corollary follows from the above statement for the case of Q(0, 0) = 1.

To obtain a finite expression for Hom≤d φpℓ , observe that in

ypℓe − P(t, y) = ypℓ·e −
(
(ypℓ − φ(tpℓ))e · (Q(t, y))

)
every monomial in t has degree at least pℓ. Furthermore, setting t = 0 reduces the above expression
to ypℓe − ypℓe · Q(0, y) which is divisible by ypℓe+1 (since Q(0, 0) = 1). Therefore,

ypℓ·e − P(t, y) = tpℓ · A + ypℓe+1 · B

for some A, B ∈ FJt, yK. Therefore, every monomial in
(

ypℓ·e − P(t, y)
)m

with t-degree at most

d has y-degree at least (m − d
pℓ ) · (pℓe + 1), which is greater than pℓ(e(m + 1) − 2) when m >

d(e + 1
pℓ ) + pℓ(e − 2). Thus, for m ≥ 2e(d + pℓ), there is no term with t-degree at most d and
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y-degree pℓ(e(m + 1)− 2). Therefore,

Hom≤d[φ(t)pℓ ] = Hom≤d

2e(d+pℓ)

∑
m≥0

[ypℓ(e(m+1)−2)]

D(pℓ)
y (P)(t, y)

e · αm+1

(
αypℓ·e − P(t, y)

)m


 .

A.2 Complexity of power series roots and factors over Fq

Using Theorem A.3 and Corollary A.5, we get the following analogue of Theorem 4.1 over arbitrary
fields of small characteristic.

Theorem A.6 (Power series roots with multiplicity over small characteristic). Let F be a field of positive
characteristic p. Suppose P(x, y) ∈ F[x, y] is a polynomial computed by a circuit C, and φ(x)∈ FJxK is a
power series satisfying P(x, y) = (y− φ(x))pℓe · Q(x, y) where φ(0) = 0, gcd(p, e) = 1 and Q(0, 0) ̸= 0.
Then, for any d ∈ N, there is a circuit C′ over F computing Hom≤d

[
φpℓ
]

such that

size(C′) ≤ poly(d, size(C))

depth(C′) ≤ depth(C) + O(1)

Almost immediately, a similar statement follows for all factors of constant-depth circuits. Given
a polynomial P(x), we apply a valid pre-processing map (Definition 2.10) to get P(t, y) that is
monic in y and has the property that different power-series roots have different constant terms
(a random shift suffices). We then apply Theorem A.6 to get small constant-depth circuits over F

for appropriate powers of each of the power-series roots, and then combine them (followed by a
truncation) to get the following theorem.

Theorem A.7 (Complexity of factors over Fq). Let Fq be a field of positive characteristic p. Let
P(x) ∈ Fq[x] be a polynomial on n variables of degree d computed by a circuit C of size s and depth ∆.
Further, let g(x) be a factor of P(x) with multiplicity pℓ · e where gcd(p, e) = 1. Then, g(x)pℓ is computable
by a circuit of size poly(s, d, n) and depth ∆ + O(1) over Fq.
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