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Abstract
This note gives an in-depth discussion on feasible mathematics and bounded arithmetic
with a focus on Cook’s theory PV (STOC’75). We present an informal characteriza-
tion of PV based on three intuitive postulates and formulate the Feasible Mathematics
Thesis, which asserts the equivalence between this informal framework and the formal
system PV. To support this thesis, we provide a detailed exposition demonstrating how
advanced programming and reasoning tools can be systematically constructed within
the seemingly weak theory PV.
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Preface
“People” include
both computer
scientists and
logicians

The main purpose of the note is to address two common and closely related questions
that people frequently ask about bounded arithmetic.

The first question is the intuition behind the theories people are studying. Suc-
cessful candidates of mathematical foundation, such as the ZFC set theory and Peano
Arithmetic, win their positions through an extensive line of literature and education
practice that clearly establishes an intuition behind them. Similarly, the concept of
computation as well as the efficiency of computation are clearly established by both
the mathematical work of Turing (and many others) as well as the education and en-
gineering practice in the past century. Compared to these well-established concepts,
the intuition behind bounded arithmetic and more generally the concept of feasible
mathematics is still relatively unclear.

The second question, which is sometimes criticism, is about the writing standard
for formalizations in bounded theories. I’ve heard this

question from both
logicians and
computer scientists
:(

The common practice for writing proofs in a
bounded theory T (see, e.g., [Oja04, Jer07, Pic15, CLO24]) is to say that “the following
proof is done in T” and simply use natural language. However, this could be dangerous
as “the provability of a statement φ in a bounded theory T” is a precise mathematical
statement, but the common practice of writing proofs omits tons of details, including
technical details in both logic and computer science. Such a writing standard is arguably
reasonable for more popular concepts such as ZFC set theory or theory of computation,
as clear intuition has been established and technical details have been tested over time
by a long line of research, education, and engineering work. For bounded arithmetic
and the concept of feasible mathematics, however, many people (including I) tend to
feel much less confident to only write highly informal proofs.

One may argue that writing informal proofs in formalizations is not a big deal
as even if there is indeed something that cannot be formalized, we could revise the
theories according to the informal concepts we aim to capture. After all, we are mostly
interested in the informal concepts that the bounded theories aim to capture rather
than the particular formalizations of the theories. However, the excuse may easily lead
to a catastrophe when we need to combine formalizations and logical analysis results
of the same theory, as after revising the theory we will also need to perform a logical
analysis accordingly, which may not necessarily be possible after the revision. This
becomes an urgent matter as there have been examples where such combination is
necessary: Recent works in cryptography (see, e.g., [JJ22, JKLV24, JKLM24]) rely
on the combination of the propositional translation of PV as well as formalizations
of cryptographic primitives in PV, and consequences in bounded reverse mathematics
(see, e.g., [CLO24, LLR24, AT24]) rely on the combination of witnessing theorems and
certain formalizations.

This note attempts to address both questions for Cook’s theory PV [Coo75] that
corresponds to polynomial-time computation. On the one hand, we introduce the con-
cept of feasible mathematics (that PV tries to capture) by three informal postulates
and propose the Feasible Mathematics Thesis, which claims that the informal concept
is exactly captured by the theory PV (see Chapter 1). On the other hand, we try to
justify the Thesis by writing in (a disgusting level of) detail how we could formalize ba-
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sic and advanced programming functionalities in PV, as well as how we could translate
informal feasible proofs (captured by the three postulates) into formal proofs in PV.
As the byproduct, the detailed technical investigation yields convenient meta-theorems
that may be a good candidate for writing “pseudo-proofs” for PV (see, e.g., Chapter 4).

Most theorems proved in this note are either implicit in literature or widely believed
to be true (without written proofs). Here is an incomplete list of references: A large
portion of Chapter 2 is an exposition of the formal proofs in the appendix of [CU93];
the main result of Chapter 3 is claimed in [Coo75] without a written proof; and many
examples in Chapter 4 can be seen as extensions of, e.g., [Bus85, Coo90]. Detailed
historical remarks can be found at the end of each chapter. It should be mentioned
that a large portion of the technical work is inspired by the engineering practice in
the community of formal verification; for instance, the recursion and induction meta-
theorems for lists (see Theorem 4.1.3 and Corollary 4.1.6) are inspired by the recursion
and induction rules in proof assistants such as Coq [PCG+10] or Lean [DMKA+15].

In addition to the three-postulate interpretation of informal feasible mathematics,
the note contains a few “new” theorems and perspectives that may be worth noting for
readers who have been familiar with bounded arithmetic:

• In Section 1.3.2, we show (informally) that the correctness of Dijkstra’s SSSP
algorithm can be proved feasibly. Interestingly, the proof is different from the
standard textbook proof (see, e.g., [CLRS09]) that directly performs an induction
on number of rounds to prove the correctness of the algorithm.

• In Chapter 3, we define a theory PV-PL according to Cook’s original formulation of
PV1 [Coo75], which uses the universal fragment of first-order logic. The name PV1
is now used to denote the theory axiomatized by PV equations in first-order logic
rather than the universal fragment (see, e.g., [Kra19]). It is mentioned in [Coo75]
(without a formal proof) that PV-PL is conservative over PV. Indeed, we prove
a slightly stronger “translation theorem” that provides an explicit embedding of
PV-PL into PV, which may be of independent interest.

• In Chapter 4, we prove two powerful meta-theorems that essentially allow us
to manipulate lists just as a native data structure. This could be widely used
as a standard functionality in later formalizations in PV. We also show how to
simulate imperative programming languages and a Hoare logic over it in PV. This
could be useful in later formalizations, as Hoare logic (in particular, the use of
loop invariants) is arguably more natural to computer scientists and programmers
compared to PV.

• In Chapter 5, we formulate the propositional translation theorem for PV (see
Theorem 5.1.2) as an equivalence between PV proofs and PV-provably existence
of propositional proofs, rather than only a translation from PV proofs to propo-
sitional proofs. This makes the propositional translation not only a technical
result but a formal mean of interpretation of PV provability. This is closer to its
counterpart P = P-uniform P/poly in computational complexity theory, whereas
the standard formalization is similar to the weaker version P ⊆ P/poly.
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Throughout the note, we stick to the original formulation of PV as an equational
theory [Coo75] that does not allow quantifiers and logical connectives. We do not
include arithmetic functions such as addition and multiplication as basic functions and
do not include their definition equations as axioms. Moreover, the universe of the
standard model of PV (see Chapter 2) is defined as the set of binary strings {0, 1}∗

rather than natural numbers. The rationale is to emphasize that there is no need for
special treatment for natural numbers and arithmetic operations: Natural numbers are
encoded by binary strings just as other data structures, and with respect to the encoding
we use, arithmetic operations are implemented (with PV provable correctness) by the
fundamental programming functionalities provided by PV just as other programs. I
want to make sure that we are not trying to add unnecessary functions into the theory
— if we do that for addition and multiplication, how can we believe that we will not
do that again and again for more complicated algorithms?

Finally, the note only covers the theory PV and does not consider many classical
results in bounded arithmetic, including theories for even smaller complexity classes
(e.g. NC1 or TC0), the first-order theories of bounded arithmetic, and model-theoretic
approaches. Most of the missing results can be found in standard textbooks [Bus85,
Kra95a, Kra19, CN10]. The survey [Oli24] also serves as a good reference for more
recent results in bounded arithmetic.
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Chapter 1

Informal Feasible Mathematics

The concept of feasibility in computation has been extensively studied in the past
century of the development of theoretical computer science. In theoretical computer
science, it is generally accepted that a problem is feasible if and only if there is a
polynomial-time algorithm that solves the problem — known as the extended Church-
Turing thesis [Coo90].

Remarkably, this definition is widely believed to be independent of the underlying
model of computation1. As far as we know, most natural computation models — single-
tape Turing machines, multi-tape Turing machines, RAMs, or standard programming
languages — are equivalent up to a fixed polynomial time overhead (see, e.g., [AB09,
Chapter 1]).

The primary purpose of this chapter is to provide a conceptual description of fea-
sible mathematical proofs that bounded arithmetic aims to capture. We will define an
informal theory of feasible mathematics concerning the standard computation model,
namely polynomial-time computable functions, which is formalized by Cook’s theory
PV [Coo75].

1.1 Background: Constructive Mathematics
Rather than viewing mathematics as a “World of Ideas” of Plato that is eternal, un-
changing, and independent of human observation “Platonism”, constructive mathematicians assert
that mathematical objects must be constructed by human intelligence. We quote from
the book of Bishop [Bis67]:

“The positive integers and their arithmetic are presupposed by the very
nature of our intelligence and, we are tempted to believe, by the very nature
of intelligence in general. The development of the positive integers from
the primitive concept of the unit, the concept of adjoining a unit, and the
process of mathematical induction carries complete conviction. In the words
of Kronecker, the positive integers were created by God.”

1An exception is that quantum computers may be stronger.

1



2 CHAPTER 1. INFORMAL FEASIBLE MATHEMATICS

The standard interpretation of constructive mathematics is due to Brouwer, Heyt-
ing, and Kolmogorov (or the BHK interpretation). For instance, universal and existential
quantifiers are interpreted as follows:

1. The existence quantifier should be interpreted as a procedure that effectively con-
structs the quantified object, instead of merely its “existence” as an object in
the mathematics “World of Ideas”. In particular, if φ(x, y) is a formula such that
∀x ∃y φ(x, y) is provable, there must be a procedure that (given n that substitutes
x) effectively construct an m that substitutes y as well as a proof of φ(n,m).

2. A proof of a universally formula ∀x φ(x) must provides a procedure that effectively
generates a proof of φ(n) given any n that substitutes the variable x.

Interpretation of “effective procedures”. The interpretation of “effective pro-
cedures” varies. For instance, intuitionists suggest that the law of excluded middle
φ∨¬φ is troublesome and should be excluded (see [BPI22] for a comprehensive survey
on variants of constructivism).

From a computer science perspectiveAs the adversary
model in modern

cryptography.

, it is natural to interpret effective procedures as
feasible algorithms, or polynomial-time algorithms, under the extended Church-Turing
thesis. This yields the basic notion of feasible mathematics, or feasibly constructive
mathematics, as an interpretation of constructive mathematics by treating the “effective
procedures” as polynomial-time algorithms. In other words, we assume a minimal mean
of intelligence, or the intelligence of a humble computer scientist that is skeptical of
anything that cannot be constructed in polynomial time.

Example 1.1.1. Under this interpretation, the exponentiation function cannot be
defined in feasibly constructive mathematics; that is, the sentence ∀x ∃y log2(y) =
x is not provable. This is because the function outputting y given x is not a
polynomial-time function (in its input length).

Example 1.1.2. Similarly, the following version of the pigeonhole principle is un-
likely to be feasibly provable: For every definable function f : {0, 1}n → {0, 1}n−1,
there are distinct strings x, y ∈ {0, 1}n such that f(x) = f(y). Suppose, towards
a contradiction, that such principle is feasibly provable, then a polynomial-time
algorithm must exist that, given f , outputs x ̸= y such that f(x) = f(y). This
breaks a widely believed cryptographic primitive: collision-resistant hash function.

This seems like a
slippery slope for

those who are
skeptical about

working with (say)
ZFC set theory and

the existence of
large cardinals.

The two examples above seem problematic: As a cost of being humble, computer sci-
entists, or, feasible mathematicians, is unable to even define exponentially long strings,
or understand the pigeonhole principle. It turns out that feasible mathematics is “strong
and weak”: Though it cannot prove the pigeonhole principle, it is capable of proving
results like the PCP theorem [Pic15] and many known complexity lower bounds (see,
e.g., the table in [PS21]). One exception is that the Ω(n2) lower bound for deciding
Palindrome on single-tape Turing machines [CLO24] is unlikely to be feasibly provable,
as it requires a form of pigeonhole principle.
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Interpretation of “proofs”. The “effective procedures” in the BHK interpretation
manipulate “proofs” of a certain form, which is yet to be specified. The standard
definition of “proofs” in theoretical computer science is the complexity class NP, which
requires the following two properties:

1. The length of the proof is polynomial in the length of the statement.

2. The proof is verifiable by a polynomial-time algorithm.

Arguably, these two properties are necessary. After all, feasible mathematicians
cannot construct exponentially long strings (see Example 1.1.1) and do not trust verifi-
cation procedures that are not polynomial-time algorithms. Nevertheless, it is unclear
what is the interpretation of verification in the second property, which we will explore
from scratch. Indeed, we will

spend three chapters
on exploring it :)

1.2 Informal Postulates of Feasible Mathematics
Our goal is to propose a set of informal postulates for feasible mathematics by exploring
questions of the form “Is X considered feasible” — X consists of functions, axioms, and
inference rules. In other words, we consider informally what functions, axioms and
inference rules can be used by feasible mathematicians.

These questions formulate the underlying philosophy in the construction of Cook’s
theory [Coo75]. We also note that the constructions of other bounded theories, e.g.,
Parikh’s theory [Par71] and Buss’s theories [Bus86], follow similar intuition but use
different models of computation.

1.2.1 Postulate 0: Finitism
Indeed, I identify
myself as a finitist.

Before stating the three postulates, we clarify that our definition of feasible mathematics
is finitistic. Namely, one can neither define nor quantify over infinite sets of any kind.
Subsequently, all mathematical objects in feasible mathematics should be able to be
encoded by either natural numbers of Boolean strings of finite length.

1.2.2 Postulate of Feasible Functions
We start with the following question:

Question 1.2.1. Is the addition of two numbers definable in feasible mathematical
proofs?

Arguably, the answer to this question should be yes. On the one hand, the addition
of two numbers is clearly a feasible operation Please consult a

primary school
student if you have
any questions :)

. On the other hand, there is not much
mathematics we can do if we are not even allowed to define and reason about addition.
Moreover, comparably simple functions, such as the multiplication of two numbers, the
bit-length function | · |, etc., should be allowed.

Extending Question 1.2.1, we further ask:
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Question 1.2.2. Should feasible mathematicians be able to define every feasible func-
tion?Note that predicates

(languages) are just
Boolean-valued

functions. Example 1.2.1. It has been open for decades whether a deterministic polynomial-
time algorithm could output an n-bit prime number given 1n.The existence of an

n-bit prime follows
from the Bertrand-

Chebyshev theorem.

The Cramér’s con-
jecture [Cra36], which is true under the generalized Riemann Hypothesis, implies
that the following simple algorithm suffices:

• Starting from N ← 2n, we call the AKS primality testing algorithm to check
whether N is a prime number. If so, the algorithm halts and outputs N ;
otherwise, it sets N ← N + 1 and continues.

Although the algorithm in Example 1.2.1 (say, represented by a Turing machine) is
likely to be feasible, it is consistent with our knowledge that:

1. The Cramér’s conjecture could be wrong, in which case we introduce an infeasible
function in feasible mathematics.

2. The Cramér’s conjecture could be true but does not have a feasible proof.

To avoid putting the foundation of feasible mathematics in danger, we should refrain
from using the function in feasible mathematics.

Nevertheless, functions that are not only feasible but also clearly demonstrates their
feasibility through its construction should be definable in feasible mathematics.It is confusing here,

but should be more
clear in subsequent

examples.

For
instance, one would generally agree that functions constructed in the following ways
clearly demonstrate their feasibility:

• The composition of feasible functions is still feasible. That is, for any integer k ≥
1, if f(x1, . . . , xk) and g1(y1), . . . , gk(yk) are feasible functions, f(g1(y1), . . . , gk(yk))
is also a feasible function.

• For any integer c ≥ 1, any function fM(x) defined by a Turing machine M(x)
with a clock that makes the machine halt after |x|c stepsNote that x 7→ |x|c

is feasible, as it is a
composition of the
bit-length function
and multiplication.

is feasible.

• Suppose that f is feasible, the function σf (n) that either outputs the smallest
number x < |n| such that f(x) ̸= 0, or outputs |n| if ∀x < |n| f(x) = 0, is a
feasible function.

These observations motivate our first informal postulate:

Postulate 1 (Postulate of Feasible Functions). Functions that are feasible and clearly
demonstrate their feasibility through their constructions are definable in feasible math-
ematics.

We stress that the exact meaning of the phrase “clearly demonstrates their feasibil-
ity” can be interpreted in different ways, which will probably lead to multiple formal
definitions of feasible mathematics.We will go back to

this later.
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Remark 1.2.1. We say in Postulate 1 that functions with clear demonstrations of fea-
sibility are allowed in feasible mathematics. To formalize meaningful mathematical
statements, we also need to specify the atomic predicates that are allowed to be used.
The equality predicate (“=”), for instance, should certainly be allowed. Moreover,
for any predicate P (x⃗) (e.g. ≤, ∧) decidable by a feasible algorithm that can clearly
demonstrate its feasibility, we can define a function gP (x⃗) that outputs 1 (resp. 0) when
the property P (x⃗) holds (resp. does not hold), and formalize the predicate as P (x⃗) as
gP (x⃗) = 1. Therefore, without loss of generality, we can work with only one atomic
predicate “=”.

1.2.3 Postulate of Definition Axioms
We then consider what axioms are allowed in feasible mathematics. To start with:

Question 1.2.3. Should a basic rule such as n + (m + 1) = (n + m) + 1, a defining
equation for addition, be accepted as an axiom in feasible mathematics?

As by Postulate 1 we are allowed to work with functions that are far more compli-
cated than addition and multiplication, it is natural to further include definition axioms
of those functions as the axioms so that we could reason about the functions.

Recall that a feasible function f is definable only if it clearly demonstrates its
feasibility through its constructions. This specific means of “construction” should be
a set of mathematical facts that uniquely specify the function f ; for instance, it could
be a set of equations that inductively defines f (see Example 1.2.2), or the code of a
Turing machine computing f with an explicit time bound. Since we “we” := feasible

mathematicians.
accept that these

mathematical facts as “clear demonstration” of the feasibility of f , these facts should
be able to be used (i.e. be axioms) to reason about f . These mathematical facts are
considered the “definition axioms” of the function f .

The following illustrates how an inductive definition yields a set of concrete axioms
for a feasible function.

Example 1.2.2. Consider a function f that is inductively defined as

f(0) := 0 (1.1)
f(2n) := f(n) + 2n (1.2)

f(2n+ 1) := f(n) + 2n+ 1 (1.3)

Arguably, this is a feasible function that clearly demonstrates its feasibility through
this particular inductive definition Note that in each

recursive call to
evaluate f the
length of the input
is reduced by 1.

. In this case, Equations (1.1) to (1.3) are the
definition axioms of f .

This leads to the second postulate of feasible mathematics.

Postulate 2 (Postulate of Definition Axioms). For any function admissible under Pos-
tulate 1, the mathematical facts constituting the construction that serves as the “clear
demonstration of its feasibility” are accepted as axioms in feasible mathematics.
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1.2.4 Postulate of Structural Induction
The definition axioms characterize the local behavior of definable functions, which are
insufficient for establishing global properties. Consider the simple task of proving the
inequality ∀x ∈ N f(x) ≤ 2x for the function f in Example 1.2.2. Note that as
f(x), x 7→ 2x, and the comparison predicate “≤” are all feasible and can arguably
demonstrate their feasibility under suitable definitions, this sentence can be stated in
feasible mathematics.

It is unclear how we should prove it only from their definition axioms. If we consider
the last bit of n in its binary encoding, we need to prove that f(0) ≤ 0 (which is easy),
and that

∀x f(2x) ≤ 2 · 2x, ∀x f(2x+ 1) ≤ 2 · (2x+ 1).

We can apply the definition axiom of f to unfold them as:

∀x f(x) + 2x ≤ 2 · 2x, ∀x f(x) + 2x+ 1 ≤ 2 · (2x+ 1).

Assume that basic arithmetic that feasible mathematicians know basic arithmetic,
which is a minor assumption, it suffices to prove that

∀x f(x) ≤ 2x, ∀x f(x) ≤ 2x+ 1.

Attempting to prove the inequality f(x) ≤ 2x by unfolding the definition and analyzing
the last bit of x leads to a circular situation: to prove f(2x) ≤ 4x, one must already
know f(x) ≤ 2x. Thus, the definition alone cannot advance the argument.

This hints that we may need to include another tool in mathematics: the principle
of mathematical induction. For instance, the inequality above can be proved if we allow
an induction principle on the length of x in its binary encoding:

• (Base): f(0) ≤ 2 · 0, which is true as f(0) = 0, 2 · 0 = 0, and 0 ≤ 0.

• (Induction Case 1): f(x) ≤ 2x → f(2x) ≤ 2 · 2x. Assume that f(x) ≤ 2x, we
will prove f(2x) ≤ 2 · 2x. By the definition axiom (1.2), we know that f(2x) =
f(x) + 2x, thenExercise: feasibly

prove b ≤ c implies
b + a ≤ c + a.

f(2x) = f(x) + 2x ≤ 2x+ 2x = 2 · 2x.

• (Induction Case 2): f(x) ≤ 2x→ f(2x+1) ≤ 2·(2x+1). Assume that f(x) ≤ 2x,
we will prove f(2x + 1) ≤ 2 · (2x + 1). By the definition axiom (1.3), we know
that f(2x+ 1) = f(x) + 2x+ 1, then

f(2x+ 1) = f(x) + 2x+ 1 ≤ 2x+ (2x+ 1) ≤ (2x+ 1) + (2x+ 1) = 2 · (2x+ 1).

Should we accept a general form of induction principle in feasible mathematics?
Take the proof above as an example. As we proved that ∀x f(x) ≤ 2x, by the con-
structivism interpretation of the universal quantifier (see Section 1.1), there must be
an efficient “procedure” that generates a verifiable “proof” of f(x) ≤ 2x given n. More-
over, by our interpretation of “feasible mathematics”, the “procedure” must be a feasible
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(i.e. polynomial-time) algorithm, and the “proof” must be of polynomial length that is
in some sense “verifiable” by a polynomial-time algorithm (i.e. an NP-style proof).

We claim that the induction principle is feasible as long as the predicate for induction
is “verifiable”: Given an input m that substitutes the induction variable, there is a
feasible (i.e. polynomial-time) algorithm that verifies the predicate. In this example,
the predicate is f(x) ≤ 2x and we are performing induction on the variable x; given
any m, we can certainly evaluate f(x) and check whether it is smaller than 2x feasibly.
In particular, if we work with the only predicate “=”, this is equivalent to saying that
the predicate for induction must be of form g(x) = h(x) for functions g, h that clearly
demonstrates their feasibility.

Unfortunately, we are unable to provide a convincing clarification for this claim until
we formally define the “proof” and the mean of “verifiability”. Since the induction is
performed over the length of the binary representation of x, the “chain of reasoning”
is of length poly(|x|). Therefore, for any concrete input m that substitutes x, there
is a convincing proof of length poly(|m|) following the chain of reasoning that clearly
demonstrates the fact “f(m) ≤ 2m”.

We will then give the third (and the last) postulate:
Postulate 3 (Postulate of Structural Induction). Let g(x) and h(x) be functions admis-
sible under Postulate 2. Then induction over the binary representation of x is allowed
in feasible mathematics to prove statements of form g(x) = h(x). Recall that we are

working with only
one predicate “=”.Remark 1.2.2. The postulate permits induction on x with additional parameters w⃗

fixed. Let g(w⃗, x) and h(w⃗, y) be functions admissible under Postulate 2. Then the
induction principle states that for any fixed w⃗, if

• g(w⃗, 0) = h(w⃗, 0), and
• g(w⃗, x) = h(w⃗, x) implies g(w⃗, 2x+ b) = h(w⃗, 2x+ b) for b ∈ {0, 1},

then g(w⃗, x) = h(w⃗, x) for any w⃗, x.
This induction rule is different from the induction principle with universally general-

ized parameters w⃗, i.e., structural induction on x to prove the statement “∀w⃗ g(w⃗, x) =
h(w⃗, x)”. The induction principle with universally generalized parameters is infeasible
as the statement “∀w⃗ g(w⃗, x) = h(w⃗, x)” is not feasibly verifiable.

For the example above, one can think of g(x) as the function checking whether
“f(x) ≤ 2x”, and h(x) = 1. Note that we also call the induction principle a “structural
induction” as it is a structural induction over the definition of (the binary representation
of) numbers.

To streamline discussion, we now refer to any function that clearly demonstrates
its feasibility through a specific construction simply as a feasibly constructible func-
tion. The particular construction that justifies feasibility will be called the feasible
construction of the function.

1.3 Examples of Feasible Proofs
To understand the power of feasible mathematics with the three postulates we have, we
provide two examples: A “stronger” induction principle and the correctness of Dijkstra’s
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single-source shortest path algorithm.

1.3.1 A Stronger Induction Principle
Question 1.3.1. Suppose that f, g are functions that we are allowed to talk about (in
particular, it is a feasible function), and φ(n) is the sentence “f(n) = g(n)”. Is the
following induction rule, i.e.,

φ(0) ∧
(
∀n (φ(n)→ φ(n+ 1))

)
→ ∀n φ(n)

considered feasible?

This induction principle is not formulated as the structural induction over a feasibly
defined function. In particular, the “chain of reasoning” from φ(0) and φ(n)→ φ(n+1)
to ∀n φ(n) seems to be exponentially long. That is, for every n, we need to derive φ(n)
from: {

φ(0), φ(0)→ φ(1), φ(1)→ φ(2), . . . , φ(n− 1)→ φ(n)
}
,

which consists of n+ 1 = |n|ω(1) formulas.
Here, we will demonstrate that this induction rule is indeed feasible.

Theorem 1.3.1 (informal). Let f, g be feasibly constructible functions, and φ(n) :=
“f(n) = g(n)”. It is feasibly provable that

φ(0) ∧
(
∀n (φ(n)→ φ(n+ 1))

)
→ ∀n φ(n). (1.4)

Instead of considering Equation (1.4) directly, we will work with the following sen-
tence that is logically equivalent to it:Exercise: prove the

logical equivalence.
∀n ∃m (φ(0) ∧ ¬φ(n)→ φ(m) ∧ ¬φ(m+ 1)). (1.5)

This is true as long
as we stick to the

standard first-order
predicate logic to
formulate feasible

mathematics.

Recall that the constructivism interpretation requires that a proof of ∀x ∃y φ(x, y)
must provide an effective procedure that finds y such that φ(x, y) given x as well as a
proof of φ(x, y). This means that we need to find a feasible function h(n) and prove
feasibly that

∀n (φ(0) ∧ ¬φ(n)→ φ(h(n)) ∧ ¬φ(h(n) + 1)). (1.6)
The function n 7→ h(n) as an algorithmic task means that given an n such that φ(0)

is true and φ(n) is false, we need to find an m such that φ(m) is true and φ(m + 1)
is false. The algorithm should be feasibly constructible; in particular, it should run in
time poly(|n|).

Indeed, it is not hard to see that a simple binary search algorithm works (see Algo-
rithm 1).

Equivalently, one may implement the binary search by a recursive (instead of itera-
tive) algorithm. In either case, the algorithm clearly runs in polynomial time through its
construction, as the quantity r− ℓ is halved in each recursive call (iteration). Therefore
the function computed by this algorithm, denoted by h(n), is feasibly constructible.
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Input: n such that Equation (1.5) holds
Output: m such that φ(m) ∧ ¬φ(m+ 1)

1 ℓ← 0, r ← n;
2 while ℓ+ 1 < r do
3 m← ⌊(ℓ+ r)/2⌋;
4 if φ(m) is true then
5 ℓ← m
6 else
7 r ← m
8 end
9 end

10 return ℓ

Algorithm 1: Binary Search for n 7→ h(n)

If this is not clear to
you, think of the
most natural way to
prove it without
worrying about the
feasibility.

It remains to demonstrate that Equation (1.6) is feasibly provable. The only avail-
able tools are the postulate of definition axioms and the postulate of structural induc-
tion. A straightforward idea is to prove by induction over the “while” loop on some
properties regarding ℓ and r.

The standard approach to perform induction over Algorithm 1 is to prove a loop
invariant: φ(ℓ) ∧ ¬φ(r) ∧ r > ℓ. This is true before the program enters the loop, and
(by the definition axioms of the operations inside the loop) if the property holds in the
i-th iteration, it also holds in the (i+ 1)-th iteration. Finally, when we leave the loop,
we will have:

φ(ℓ) ∧ ¬φ(r) ∧ r > ℓ ∧ ℓ+ 1 ≥ r

which implies immediately that r = ℓ+ 1, and thus ℓ (the output h(n) of Algorithm 1)
satisfies φ(ℓ)∧¬φ(ℓ+1), i.e., Equation (1.6). This proof realizes the informal discussion
above that the length of the “chain of reasoning” needs to be a polynomial of the input
length.

Equivalently, if we formulate the algorithm recursively, we can introduce a variable
z indicating that we will perform |z| iterations of the binary research, and prove by
induction on the binary representation of z that the invariant holds.

We stress that there is one additional property to be verified: the loop invariant
(i.e. the property in structural induction) must be formalizable in the form f(x) = g(x)
for some feasibly constructible functions f(x), g(x). Since both φ(ℓ), ¬φ(r), and r > ℓ
are pretty easy to be checked by feasibly constructible functions, we can easily construct
some feasible f(x) (where x encodes the pair (ℓ, r)) that checks the loop invariant, and
formalize the loop invariant as f(x) = 1. All the rewinding (e.g. parse x as a pair and the
evaluation of “φ(ℓ), φ(r), r > ℓ”) should be feasibly provable from the definition axioms
under suitable formalization. Therefore, we conclude (from the informal postulates)
that Theorem 1.3.1 should be true.
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1.3.2 Correctness of Dijkstra’s Algorithm
Next, we consider a more complicated algorithmic example: The correctness of Dijk-
stra’s algorithm for single-source shortest path.

Suppose that a graph G = (V,E) is encoded by its adjacency matrix E ∈ {0, 1}n×n,
where V = [n]. Dijkstra’s algorithm is given n, E, as well as a node s ∈ [n], and outputs
a vector d ∈ [n]n such that either dj ≤ n − 1 is the length of the shortest path from s
to j, or dj = INF := n indicating that s and j are disconnected.

Welcome back to
Algorithm 101!

Recall that Dijkstra’s algorithm works as follows. At the beginning, we initialize
ds ← 0, dj ← n2 for any j ̸= s, and a set S ← [n]. Let p be a vector of paths where ps
is initialized as the path s 7→ s of length 0. For i = 1, 2, . . . , n, we find the node u ∈ S
with smallest du (breaking tie by node id), update

dv ← min(dv, du + 1)

for each neighbor v of u that is not in S, and update S ← S \ u. If dv > du + 1 before
the update, we further update

pv ← “pu 7→ v′′,

i.e., the candidate shortest path from s to v is obtained by extending the path pu from
s to u with the edge (u, v).

Let Dijkstra(V,E, s) be the feasibly constructive function that simulates Dijkstra’s
algorithm and outputs the vectors d and p. Arguably, this is a feasibly constructible
function, as it terminates in n rounds and all internal variables are of length poly(n).
Let (d, p)← Dijkstra(V,E, s). We can formalize the correctness of Dijkstra’s algorithm
by two statements:

• For any j ∈ V , if dj ≤ n− 1, pj is a path from s to j of length dj.
• For any j ∈ V and any path p from s to j, the length of p is at least dj.

We omit the detail
of defining Path(·),

which should be
straightforward in a
reasonable model of

computation that
should be supported

by feasible
mathematics.

These two properties only consist of a universal quantification over nodes or paths,
which can be formalized in feasible mathematics by an equation on feasibly constructive
functions. For instance, to formalize the second property, we need to define a function
Path(p, s, j, d, V, E) to verify that p is a path from s to j in G = (V,E) of length at
most d, which is arguably feasibly constructive and thus allowed by the postulate of
feasible functions.

We will show that both statements can be proved in (informal) feasible mathematics.
Perhaps interestingly, the proof for the latter statement differs slightly from the usual
textbook proof of the correctness.

Existence of path. First, we (feasibly) prove that if dj ≤ n − 1, a path of length
dj is given by pj. Fix any graph G = (V := [n], E), s ∈ [n], and j ∈ [n]. Recall
that Dijkstra’s algorithm consists of n iterations. Let d(i), S(i), and p(i) be the values
of corresponding variables at the end of the i-th iteration. We prove the following
statement by induction on i:

• For every node u ∈ V , if d(i)
u ≤ n− 1, p(i)

u is a path from s to u of length d(i)
u .
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Note that this suffices, as for i = n, d(i) and p(i) are exactly the output of the Dijkstra’s
algorithm. Also, as the predicate in the induction is checkable by a feasibly constructive
algorithm that enumerates every u ∈ V , this induction is available in feasible mathe-
matics either by Section 1.3.1 or by the third postulate — the “total length of the chain
of reasoning” of the induction is merely poly(n).

Clearly, for i = 0, this statement is true as the only node u with its distance label
smaller than n is the source s, where p(0)

s has been updated to the path s 7→ s of length
0. It remains to show that if the statement implies the statement obtained by replacing
i to be i + 1. Let u ∈ S(i) be the node with smallest d(i)

u selected by the Dijkstra’s
algorithm in the (i+ 1)-th iteration. Notice that for every v ∈ V , d(i+1)

v ≤ d(i)
v , and:

• If d(i+1)
v = d(i)

v , p(i+1)
v = p(i)

v . Subsequently if d(i+1)
v ≤ n − 1, we know by the

induction hypothesis and d(i)
v = d(i+1)

v ≤ n− 1 that p(i)
v (= p(i+1)

v ) is a path from s
to v of length d(i)

v (= d(i+1)
v ).

• Otherwise, we know that d(i+1)
v = d(i)

u + 1 ≤ n − 1 and v is a neighbor of u. In
such case, we know that the algorithm updates p(i+1)

v by extending p(i)
u with the

edge (u, v). As d(i)
u ≤ n− 2 ≤ n− 1 and the induction hypothesis, we know that

p(i)
u is a path from s to u of length d(i)

u ; therefore, p(i+1)
v = p(i)

u 7→ v is a path from
s to v of length d(i)

u + 1 = d(i+1)
v .

The proof above (i.e. the “chain of reasoning”) follows closely the computation of Dijk-
stra’s algorithm; if we formalize the algorithm carefully, it could be implemented using
the induction postulate as well as the definition axioms of the algorithm.

Shortness: the standard infeasible proof. To prove that every path from s to j
is of length at least dj, the standard textbook proof (see, e.g., [CLRS09, Section 24.3])
essentially uses an induction principle on i to prove that:

• for every node u ∈ V , d(i)
u is the shortest path from s to u via V \ S(i) (or INF if

unconnected via V \ S(i)).
For simplicity, we call this the shortest path condition.

This should be
considered as a
warning to feasible
mathematicians:
Easy/standard
proofs are not
necessarily feasible!

Recall that the induction postulate only allows induction on feasibly verifiable prop-
erty that can be encoded by equations of feasibly constructive functions. The property
that “d(i)

u is the shortest path from s to u via V \ S(i)” implies that “for any path p
from s to u via V \ S(i), the length of p is at least d(i)

u ”. The latter property can be
“checked” by running Dijkstra’s algorithm; however, this leads to a cyclic argument as
we have not obtained the correctness proof of Dijkstra’s algorithm yet! Without Di-
jkstra’s algorithm (or other single-source shortest path algorithms) in hands, the only
obvious approach to formalize the shortest path condition is to use a universal search
over all (exponentially many) paths, which is infeasible.

A feasible proof of shortness. Next, we present a feasible proof of the shortness
property. Instead of performing induction on a property related to shortest paths,
notice that the shortness follows from the slackness condition, namely:

• For every u ∈ V and neighbor v of u, either du = INF or dv ≤ du + 1.
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Suppose that this can be proved for Dijkstra’s algorithm, given any path p from s
to u ∈ V , we can prove by structural induction on p that the length of p is at most du.
Specifically:

• Let |p| be the length of p and p≤i be the prefix of the path p of length i.
• Let Endpoint(p) be the endpoint of the path p.
• We prove by induction on i ≤ |p| that dEndpoint[p≤i] ≤ i. Clearly this is true for
i = 0 as Endpoint[p≤0] = s and ds = 0. Moreover, suppose that this holds for
i < p, then

p≤i+1 = p≤i 7→ Endpoint[p≤i+1],

and by applying the slackness condition on u := Endpoint[p≤i] and v := Endpoint[p≤i+1],
we can conclude that dv ≤ du + 1 ≤ i+ 1, where the last inequality follows from
the induction hypothesis.

Therefore, it suffices to prove that the distance label d obtained by running Dijkstra’s
algorithm satisfies the slackness condition.

The key observation is that in contrast to the shortest path condition, the slackness
condition can be checked by a straightforward feasible algorithm — we can enumerate
the nodes u ∈ V , neighbors v of u, and check whether du = INF or dv ≤ du + 1. The
“correctness” of the algorithm does not depend on any unproven results; indeed, the
algorithm is exactly how we formalize the slackness condition in feasible mathematics.
Therefore, by the postulate of structural induction (see Postulate 3), we can prove by
induction on this condition.

More formally, let d(i) and S(i) be the values of corresponding variables at the end of
the i-th iteration, and CheckDijkstra(d, S, V, E) be the straightforward algorithm that
outputs 1 if

• (slackness condition): for every u ∈ V \ S and neighbor v of u, either du = INF
or dv ≤ du + 1, and

• (monotonicity condition): for every u ∈ V \ S and v ∈ S, du ≤ dv.
hold and outputs 0 otherwise. We prove by induction on i ≤ n that

CheckDijkstra(d(i), S(i), V, E) = 1.

Note that the base case is trivial as S(0) = V . To prove the induction case, assume
that CheckDijkstra(d(i), S(i), V, E) = 1. Let w ∈ S(i) be the node chosen in the (i+1)-th
iteration. We will prove that CheckDijkstra(d(i+1), S(i+1), V, E) = 1, for which we need
to prove that the slackness condition and monotonicity condition hold.

The monotonicity condition is relatively simple and is left as an easy exercise.Hint: Recall that u
is chosen to be the
node in S with the

smallest distance
label.

We
only consider the slackness condition. Let u ∈ S(i+1) = S(i)∪{w} and v be its neighbor.
We will perform the following case study:

• Suppose that u ∈ S(i) and v is a neighbor of u, we know that d(i+1)
u = d(i)

u (as
the Dijkstra’s algorithm will only update the distance label of nodes not in S)
and d(i+1)

v ≤ d(i)
v (as the distance label will not increase). Therefore, the slackness

condition holds for (u, v) after the (i+ 1)-th iteration provided that it held after
the i-th iteration, which is true by the induction hypothesis.
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• Suppose that u = w and v is a neighbor of u that is in S(i), we know by the
induction hypothesis that d(i)

v ≤ d(i)
u . By the description of the algorithm, it is

clear that d(i+1)
v ≤ d(i)

v and d(i+1)
u = d(i)

u , which implies that

d(i+1)
v ≤ d(i)

v ≤ d(i)
u = d(i+1)

u .

• Suppose that u = w and v is a neighbor of u that is not in S(i), it follows
immediately that the update step of the Dijkstra’s algorithm in the (i + 1)-th
iteration ensures that d(i+1)

v = min{d(i)
v , d

(i+1)
u + 1} ≤ d(i+1)

u + 1.
This completes the inductive proof and concludes that the slackness condition holds
for the distance label obtained from Dijkstra’s algorithm. Subsequently, it leads to a
feasible proof of the shortness property.
Remark 1.3.1. The proof explained in this section is informal. To accept that this is
a feasible proof, one would need to accept that the proof only utilizes allowed induc-
tions (which we explained informally) and definition axioms of feasibly constructive
algorithms (e.g., “the update step of the Dijkstra’s algorithm will ensure ...”). will
try to justify that the informal claims regarding the feasibility of proofs can indeed be
naturally formalized in a robust theory that realizes the three informal postulates.

1.4 A Philosophical Perspective
At the end of the chapter, I would like to mention an interpretation of feasible mathe-
matics as postulated that has not been discussed in the literature.

Our definition of feasible mathematics (which is intended to capture the intuition
behind Cook’s theory PV [Coo75]) is more or less the minimum theory to reason about
polynomial-time algorithms. It only includes the definition axioms of the algorithms as
well as the induction principle on the binary representation of numbers for predicates
that can be effectively verified. (Recall that in the postulate of structural induction,
the property must be an equation f(x) = g(x) for feasibly constructive functions f(x)
and g(x), and thus the equation can be verified efficiently given x.) If a property about
the algorithm, e.g., its correctness, can be proved in feasible mathematics, it indicates
that such a proof merely requires minimum power of reasoning, and in this sense, it is
an “easy” property about the algorithm.

There is another sub-area of computer science — the research on programming
languages — that particularly cares about proving the correctness of programs. In
developing computer programs, a specification (either formally written or informally
described) defines what is the intended behavior of the programs, and the programmers
aim to ensure that the program satisfies the specification, i.e., it is correct. One of
the main purposes of the design of modern programming languages is to make the
programmers’ lives easier, and in particular, it would be great if the correctness of
the programs follows closely from the construction of the programs. I quote from
E. W. Dijkstra’s Turing award lecture The Humble Programmer [Dij72]:

“The only effective way to raise the confidence level of a program signifi-
cantly is to give a convincing proof of its correctness. But one should not
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first make the program and then prove its correctness, because then the re-
quirement of providing the proof would only increase the poor programmer’s
burden. On the contrary: the programmer should let correctness proof and
program grow hand in hand.”

What Dijkstra did not mention but should arguably be true is that a good programming
language should also let feasibility proof and program grow hand in hand: Programmers
may not see immediately whether the algorithm runs in O(n2) or O(n3) time, but it
should be easy in most cases to distinguish between feasible and infeasible algorithms.

In particular, Dijkstra’s famous “go to statement considered harmful” [Dij68] is
supported by the fact that the correctness of a program with go-to statements can not
“grow hand in hand”; it does not follow immediately from the structure of the programs,
and in fact, programs with go to statements barely have any structure that can be easily
understood by humans. A program written in modern programming languages, instead,
usually clearly demonstrates their feasibility and correctness.

I would like to imagine feasible mathematics as the logic of the humble programmers
as described by Dijkstra: The correctness proof and program can grow hand in hand
if and only if the correctness proof is feasible. Putting it more carefully, I make the
following humble programmer conjecture:

A statement is feasibly provable, if and only if it is possible to write a feasible
(i.e. polynomial-time) program M in a suitable programming language such
that

• the statement encodes the correctness of M in a natural sense;
• the feasibility and correctness proof and M can “grow hand in hand”

by a common programmer.

If this conjecture is true, it indicates that the past decades of education practice
in programming are implicitly teaching people to be feasible mathematicians, although
it has never been explicitly mentioned by teachers and students. Certain aspects of
feasible mathematics are usually considered a part of “computational thinking” (see,
e.g., [Aho11]) in the theory and practice of computer science education. Following this
argument, one may further think that the highly successful development of computer
science in the past century may eventually be the consequence of the power of feasible
mathematics.

There are two clarifications of the conjecture.
If your assumption

to “common
programmers” is

stronger than mine,
maybe you could

reformulate the
conjecture with

respect to a certain
level of Buss’s

hierarchy, rather
than Cook’s PV.

First, it is possible that the correctness of some classical algorithms is not feasibly
provable. As we mentioned in Section 1.3.2, the standard proof of the correctness of
Dijkstra’s algorithm on the single-source shortest path is not feasible. Indeed, it is an
interesting open problem to systematically investigate the feasibility of the analysis of
algorithms.

Nevertheless, this does not falsify the conjecture unless one thinks that the correct-
ness of those algorithms is something that naturally comes to the mind of a program-
mer the first time they wrote down the algorithm (otherwise it is not “growing hand
in hand”). I would guess that one of the main reasons for people to think that some
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algorithms are tricky and intellectually satisfying is that the proof is beyond the mind
of programmers, i.e., feasible mathematics.

Second, the conjecture does not mean that feasible mathematics is easy. For in-
stance, we know that the PCP theorem (in a natural formalization) is provable in
Cook’s theory PV [Pic15] and thus is feasibly provable.2 However, it makes little sense
to think that the PCP theorem is easy. The only claim I made is that the feasible
proof can “grow” while writing a feasible program, while the final program could be
extremely hard and thus the proof is extremely hard even if the statement we want to
prove (i.e. the specification of the program) is simple. Computer programs (such as
modern web browsers and operating systems) can certainly be extremely hard and the
programs can be much more complicated compared to their specifications.

Although this conjecture is hard to verify, there are concrete tasks that may help
to support it. I believe that the correctness of most programs, or at least most parts of
most programs, can be formalized in a natural sense and proved in feasible theories such
as PV [Coo75]. In particular, the correctness of compilers of structured programming
languages that allow “correctness proof and program grow hand in hand”, if formalized
properly, should be provable in PV. In subsequent , we will partially demonstrate why
this could be true: Starting from Cook’s definition of PV that supports few programming
functionalities, we will show how to construct a much stronger “programming language”
that supports (for instance) data structures much as lists and maps, and how the
correctness proof in the strong programming language translates back to a correctness
proof in PV.

1.5 Bibliographical and Other Remarks
An early result on the “complexity” of mathematical proofs is Gödel’s speedup theo-
rem [Göd36] (see also [Bus94, Bus95a]) that separates the k-th and (k + 1)-th order
arithmetic in terms of the length of proofs. As a complexity measure, the length of
proofs is inherently different from the feasibility: a proof of length 10100 could still be
feasible if it satisfies the three postulates, As Ján Pich pointed

out (in private
communication),
ultrafinitists do not
think PV proofs are
feasible for this
reason. I am not an
ultrafinitist :)

while a single-line proof could be infeasible if
it violates the postulates, e.g., it defines an infeasible function. A more recent result on
the length of arithmetic proofs is due to Friedman (unpublished) and later improved
by Pudlák [Pud87].

The first bounded theory and the concept of feasible mathematics is introduced by
Parikh [Par71], with the example that the exponentiation function is infeasible (see
Example 1.1.1). Parikh’s theory I∆0 also follows variants of the three postulates, while
the interpretation of “feasibility” is the complexity class called linear-time hierarchy
rather than polynomial-time functions (see [Bus99]). Another notable example is Buss’s
theories Si2, T i2 corresponding to the polynomial-time hierarchy [Bus86].

Instead of interpreting “effective procedures” as functions in certain complexity
classes, another standard approach is to consider the computability of functions. This
is highlighted in the program of reverse mathematics (see, e.g., [Sim09, Sti20, DM22]).

2In more details, Pich [Pic15] formalizes Dinur’s combinatorial proof of the PCP theorem [Din07]
in PV.
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Example 1.1.2 is folklore (see, e.g., [Kra01, CLO24]). Unprovability results in
bounded arithmetic based on cryptographic assumptions can be found in [KP98, Bus08,
ILW23].

The provability of the induction principle in Section 1.3.1 in bounded arithmetic
is well-known and is implicit in, e.g., Buss’s proof of the witnessing theorem for S1

2
(see [Bus86, Section 5.2]) and [KPT91]. To our knowledge, the example of Dijkstra’s
algorithm in Section 1.3.2 was not in the literature.

Almost all formalizations of feasible mathematics are finitistic, and in fact, the infea-
sible first-order Peano Arithmetic is generally considered to be finitistic. Nevertheless,
there has been attempt to generalize the idea of feasible mathematics to non-finitistic
mathematics, see [BBF+19] and the references therein.



Chapter 2

Formal Definition and Basic
Programming

In this chapter, we will formally define the theory for feasible mathematics characterized
by the three informal postulates in the previous chapter. The theory, which is called PV
[Coo75], provides a way to formally define feasibly constructible functions and reason
about them.

2.1 Cook’s Theory PV

Cook’s theory PV [Coo75] is defined as an equational theory, i.e., it only deals with
equations “u = v”. Intuitively, PV is defined using a recursive-theoretic character-
ization of polynomial-time functions due to Cobham [Cob65]. The main reason to
choose this particular construction is that the definition axioms of functions are easy
to define; indeed, Cook’s theory PV can be viewed as a time-bounded counterpart of
Skolem’s primitive recursive arithmetic [Sko23]. In addition, Cobham’s characterization
is machine-independent, i.e., does not depend on any concrete machine model, which
makes it easier to work on and (probably) more general.

Concretely, we will define:

• Feasibly constructible functions are constructed according to Cobham’s rules.
Moreover, Cobham’s characterization allows introducing a function in a recur-
sion manner using the rule of limited recursion on notation. Explained below :)

• Definition axioms are Cobham’s rules to define the functions.

Moreover, PV allows a restricted version of structural induction rule. Recall in the
standard structural induction proofs, we need to prove that if an equation f(x) = g(x),
then f(2x) = g(2x) and f(2x+1) = g(2x+1). However, this requires a proper notion of
“conditional proofs” that, in Cook’s definition, is not natively supported. Instead, Cook
[Coo75] introduced a weaker version of induction that is closely related to Cobham’s
characterization, and showed that the standard induction proofs can be translated back
to the weaker version of the induction rule.

17
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2.1.1 Cobham’s Characterization of FP
Before proceeding with the formal definition, we fix the notation: ε denotes the empty
string, |a| denotes the bit-length of a ∈ {0, 1}∗, FP is the set of functions f(x1, . . . , xk) :
({0, 1}∗)k → {0, 1}∗ (for a constant k ∈ N) that are computable by polynomial-time
algorithms (i.e., in poly(|x1|, . . . , |xn|) time). We use x⃗ = (x1, . . . , xk) to denote a vector
of variables for some k ∈ N.

We first define some simple functions:
• c(x) := ε;
• ◦(x, y) means concatenation of (the binary representation of) x and y;We may use ◦ and

# as infix operators
x ◦ y and x # y,

where # has higher
precedence, and

denote TR(x) by
⌊x/2⌋.

• si(x) := x ◦ i, i ∈ {0, 1};
• #(x, y) means concatenation of the binary representation of x for |y| times;
• TR(x) removes the rightmost bit of x;
• πi(x1, . . . , xk) := xi for i ∈ [k].

We introduce two Cobham rules for defining new functions from existing functions: the
composition rule and the rule of limited recursion on notation.In particular, the

identity function is
π1(x) := x. • (Composition): From h(x1, . . . , xk) and g1(y⃗), g2(y⃗), . . . , gk(y⃗), we can introduce

f(y⃗) := h(g1(y⃗), g2(y⃗), . . . , gk(y⃗)), where k ∈ N.

• (Limited Recursion on Notation): From g(x⃗), hi(x⃗, y, z) (i ∈ {0, 1}), and k(x⃗, y),
we can introduce f(x⃗, y) as:

f(x⃗, 0) := g(x⃗) f(x⃗, si(y)) := hi(x⃗, y, f(x⃗, y)), i ∈ {0, 1}; (2.1)

provided that |f(x⃗, y)| ≤ |k(x⃗, y)|.1

Let F be the smallest class of functions that contains the base functions and is closed
under these two rules. It is clear that F ⊆ FP, and indeed, Cobham [Cob65] proved:
Theorem 2.1.1 (Cobham [Cob65]). F = FP.

We provide an illustrative example:

Example 2.1.1. The if-then-else function ITE(y, u, v) is defined as

ITE(y, u, v) :=


u y = 1;
v y = 0;
∗ otherwise;

where ∗ is a placeholder meaning that we don’t care about the value. To define
this function, we use the rule of limited recursion on notation. Let g(u, v) := ε,
h0(u, v, y, z) := v, h1(u, v, y, z) := u, and k(u, v, y) := u ◦ v. Then let f(y, u, v) as:

f(u, v, y) := g(u, v); (2.2)
f(u, v, si(y)) := hi(u, v, y, f(u, v, y)) i ∈ {0, 1}. (2.3)

1The inequality |f(x⃗, y)| ≤ |k(x⃗, y)| ensures the recursion will not generate strings of super-
polynomial bit-length.
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It can be verified that |f(u, v, y)| ≤ |k(u, v, y)|, as |u| ≤ |u◦ v| and |v| ≤ |u◦ v|. Let
We can always
permute variables
wlog using π and
composition :)

ITE(y, u, v) := f(π2(y, u, v), π3(y, u, v), π1(y, u, v)) = f(u, v, y)
is defined as the composition of f and π2, π3, π1.

The intuition behind Theorem 2.1.1 is to show that the (clocked) universal Turing
machine, i.e., the function U(M,x, t) that simulates the Turing machine M on the input
x for |t| steps, is definable in F . To see that this is sufficient, we can check that if M(x)
runs in time O(|x|c) for a constant c, then Note that one can

always hard-code
the output when the
input length is small
using the ITE
function.

U(M,x,

c+1 times︷ ︸︸ ︷
x#x# . . .#x) = M(x)

when the input length is sufficiently large.

Remark 2.1.1. We note that our definition of Cobham’s family F is different from
the original definition [Cob65] and the standard expositions in literature, where F
is defined as a class of functions over N rather than {0, 1}∗. There is essentially no
difference between these two formulations; we choose the formalization using Boolean
strings rather than N because it is more intuitive from a computational perspective.

2.1.2 Definition of PV
The Cobham rules are simple and clean except for the presence of the “upper bound
function” k(x⃗, y) in the rule of limited recursion on notation.

This causes a technical issue in defining feasible mathematics Cobham rules. The
rule of limited recursion on notation requires the inequality |f(x⃗, y)| ≤ |k(x⃗, y)| to
be “true”. To qualify as a feasible construction, however, it is not enough to have the
inequality be true. According to the postulate of feasible functions (see Postulate 1), we
require that the construction of functions needs to “clearly demonstrate” the feasibility
of the function, and the feasibility of f obtained from limited recursion on notation
using (g, h0, h1, k) is clearly demonstrated only if the inequality |f(x⃗, y)| ≤ |k(x⃗, y)| is
clearly demonstrated.

Intuition of the definition. Cook [Coo75] resolves the issue with a natural idea —
inductively define PV functions and PV proofs simultaneous. Concretely:

• Base functions in Cobham’s class F are order-0 PV functions and their definition
axioms are order-0 PV proofs.

• One can introduce an order-(i+ 1) function f by limited recursion on notation if
the inequality |f(x⃗, y)| ≤ |k(x⃗, y)| admits an order-i PV proof. and thus is clearly

demonstrated
• An order-i PV proof can use the definition axioms of order-i PV functions as well

as the structural induction over the definition of order-i PV functions.
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Finally, feasible functions are formally defined as PV functions of finite order, and
feasible proofs are formally defined as PV proofs of finite order.

Before giving the formal definition, we make a slight technical change to the rule
of limited recursion on notation. Instead of proving the inequality |f(x⃗, y)| ≤ |k(x⃗, y)|,
we require to prove two inequalities |hi(x⃗, y, z)| ≤ |z ◦ ki(x⃗, y)| for i ∈ {0, 1}. It is not
hard to show that the updated rule is at most as strong as the original one:

Lemma 2.1.2. Let F ′ be the class obtained by replacing the inequalities hi(x⃗, y) ≤
k(x⃗, y) in the rule of limited induction on notation in F to |hi(x⃗, y, z)| ≤ |z ◦ ki(x⃗, y)|
for i ∈ {0, 1}. Then F ′ ⊆ F .

Proof Sketch. We first show that F ′ ⊆ F by structural induction over the Cobham rules
(with the updated limited recursion on notation rule). We need to prove that if f is
introduced from g, h1, h2 ∈ F by Equation (2.1) such that |hi(x⃗, y, z)| ≤ |z ◦ ki(x⃗, y, z)|
for some ki ∈ F , i ∈ {0, 1}, then f ∈ F . Indeed, we will prove f ∈ FP and apply
Cobham’s theorem (see Theorem 2.1.1). This follows from the fact thatWe use BIT(x, j) to

denote the j-th bit
of x, and y>j be the
suffix of y of length

|y| − j.

|f(x⃗, si(y))| ≤ |hi(x⃗, y, f(x⃗, y))|
≤ |f(x⃗, y)|+ |ki(x⃗, y)| (unfolding f recursively)
≤ |g(x⃗)|+

∑
0≤j<|si(y)|

|kBIT(si(y),j+1)(x⃗, si(y)>j))| ≤ poly(|x⃗|, |y|)

and that g, h0, h1 ∈ F = FP. (Notice that the the computation of f only requires
calling g, h0, h1 on inputs of poly(|x⃗|, |y|) length.)

Indeed, a white-box inspection of the proof of Cobham’s theorem shows that F ′ = F .
We postpone this to Theorem 2.3.2, which will be proved in Chapter 4.

Moreover, since we will use the comparison of the bit-length of numbers, we will
need to introduce the iterative trimming function ITR(x, y) that removes the leftmost
|y| bits of x as the base function, and formalize |x| ≤ |y| by the equation ITR(x, y) = ε.

Definition of PV. Now we present the formal definition of equational theory PV. We
first define the base case:

• ε be a constant symbol.
• s0(x), s1(x), ◦(x, y),#(x, y),TR(x), ITR(x, y) are function symbols of order 0.
• A term of order i is defined by compositions of order-i functions, the constant

symbol, and variables, e.g., ITR(s0(s1(x)), s1(y)) is a term of order 0where x, y are
variables

.
• An equation of order i is of form s = t, where s, t are terms of order i.
The definition axioms of the function symbols are proofs of order 0:

x ◦ ε = x, x ◦ si(y) = si(x ◦ y) i ∈ {0, 1} (2.4)
x# ε = ε, x# si(y) = x ◦ (x# y) i ∈ {0, 1} (2.5)
TR(ε) = ε, TR(si(x)) = x i ∈ {0, 1} (2.6)
ITR(x, ε) = x, ITR(x, si(y)) = TR(ITR(x, y)) i ∈ {0, 1} (2.7)
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The intended meaning of the constant symbol ε is the empty string. The meaning of
a variable is an arbitrary Boolean string. The intended meaning of a provable equation
s = t is that s(x⃗) = t(x⃗), where x⃗ = (x1, . . . , xn) are variables in the terms s and t, s
and t are interpreted as functions over ({0, 1}∗)n. We also note that s0 and s1 do not
have definition axioms; the intended meaning of si(x) is to append a bit i ∈ {0, 1} to
the right of a string x. They are used as the encoding of Boolean strings, e.g., 0011 is
encoded as s1(s1(s0(s0(ε)))).

We assume that one can choose variables from a countably infinite set of alphabets
to form terms and introduce new functions (see the function introduction rules below).
Remark 2.1.2. I feel slightly more

comfortable working
with {0, 1} instead
of {1, 2}. What
about you?

We note that similar to our formalization of Cobham’s class (see Re-
mark 2.1.1), our treatment of the intended meaning of PV is slightly different from
that of Cook’s original definition [Coo75], in which he interpreted functions in PV
as functions in N. To deal with the encoding of natural numbers, Cook’s definition
uses the dyadic notation of natural numbers, and the functions s0, s1 are replaced by
s1(x) = 2x+ 1 and s2(x) = 2x+ 2.

Function introduction rules. For every i ≥ 1, a function of order i can be
introduced according to one of the following two rules. The feasibility of

f
(0)
t is clearly

demonstrated by
Cobham’s rule of
composition.

• (Composition). If t is an order-(i−1) term with variables x⃗, f (0)
t can be introduced

as an order-i function with the definition axiom f
(0)
t (x⃗) = t.

• (Recursion). If g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z), k0(x⃗, y), k1(x⃗, y) are order-(i − 1)
functions, and there are order-(i− 1) proofs πi of the equation: Informally, eq. (2.8)

means that:
|hi(x⃗, y, z)| ≤
|z ◦ ki(x⃗, y)|

ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε (2.8)

for i ∈ {0, 1}, then f
(1)
Π (where Π := (g, h0, h1, k0, k1, π0, π1)) may be introduced

as an order-i function with the definition axioms: 2

f
(1)
Π (x⃗, 0) = g(x⃗) (2.9)

f
(1)
Π (x⃗, si(y)) = hi(x⃗, y, f (1)

Π (x⃗, y)) i ∈ {0, 1} (2.10)

Moreover, any function of order i− 1 is also an order-i function.

Deduction rules. For every i ≥ 1, an order-i proof of an order-i equation s = t
is a sequence of order-i equations (e1, e2, . . . , eℓ) for some ℓ ∈ N, where eℓ = “s = t”
and the equations are introduced one by one following the rules below:

• (Logical Rules). The logical rules for equations follow:

– (L0): One may introduce s = s for any term s. Exercise: (L0)
follows from other
rules.

– (L1): If s = t has been introduced, one may introduce t = s.
2The feasibility of f

(1)
Π is clearly demonstrated by Cobham’s rule of limited recursion on notation

(as modified in Lemma 2.1.2).
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– (L2): If s = t, t = u have been introduced, one may introduce s = u.
– (L3): If s1 = t1, . . . , sn = tn has been introduced and f(x1, . . . , xn) is an

order-i function symbol with n variables, one may introduce the equation
f(s1, . . . , sn) = f(t1, . . . , tn).

– (L4): If s = t has been introduced, v is an order-i term, and x is an variable,
one may introduce s[x/v] = t[x/v], where s[x/v] denote the term obtained
from s by substituting all occurrences of x by v.

• (Definition Axioms). A definition axiom of an order-i function may be introduced
without premise.

• (Structural Induction). If g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z) are order i functions, and
f1(x⃗, y), f2(x⃗, y) are two functions satisfying that equations

f1(x⃗, ε) = g(x⃗), f1(x⃗, si(y)) = h(x⃗, y, f1(x⃗, y)), i ∈ {0, 1} (2.11)
f2(x⃗, ε) = g(x⃗), f2(x⃗, si(y)) = h(x⃗, y, f2(x⃗, y)), i ∈ {0, 1} (2.12)

have all been introduced, then one may introduce f1(x⃗, y) = f2(x⃗, y).It is tedious to the
extent that authors

usually omit it in
research papers. This completes the formal definition of PV.

We will use the standard notation PV ⊢ s = t to denote that there is a (finite-order)
PV proof of the equation s = t. The equational theory PV is defined as the set of
equations with (finite-order) PV proofs.

Remark 2.1.3. Here we explain the intended meaning of variables in PV equations.
Variables in an equation s = t should be considered to be universally quantified.Of course, you can

force variables in
different equations

to have different
names to avoid any

confusion...

If
s(x⃗) = t(x⃗) is a PV-provable equation, the intended meaning is that for every x⃗, s(x⃗) =
t(x⃗); or equivalently, the functions x⃗ 7→ s(x⃗) and x⃗ 7→ t(x⃗) are functionally equivalent.
Variables with the same name in an equation are considered to be identical, while
variables in different equations should be considered independent even if they share the
same name.

2.1.3 Warm-up: Basic Properties of Concatenation
As a warm-up, we first prove a couple of basic properties about the concatenation
function ◦. We will prove that ε is the left identity of concatenation (i.e. ε ◦x = x) and
that concatenation is associative (i.e. (x ◦ y) ◦ z = x ◦ (y ◦ z)).3

Proposition 2.1.3. PV ⊢ ε ◦ x = x.

Proof. We define two PV functions f1(x) := ε ◦ x and f2(x) := x by the composition
rule using terms ε ◦ x and x, respectively. We will prove in PV that f1(x) = f2(x),
which immediately implies ε ◦ x = x by (L2) transitivity and the definition axioms of
f1 and f2.

3Note that ε is the right identity of concatenation by the definition axiom.
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Intuitively, the proof follows from a structural induction on x. We first verify the
base case, i.e., x = ε:

PV ⊢ f1(ε) = ε ◦ ε ((L4) substitution x/ε to the definition axiom)
PV ⊢ x ◦ ε = x (Axiom eq. (2.4))
PV ⊢ ε ◦ ε = ε ((L4) substitution x/ε to the equation above)
PV ⊢ f1(ε) = ε ((L2) transitivity)

Similarly, f2(ε) = ε. Therefore, let g = ε be a function with no variable, then fj(ε) = g
(j ∈ {1, 2}) is provable in PV.

Then, we consider the induction step, i.e., x is of the form si(x) for i ∈ {0, 1}.
Notice that for every i ∈ {0, 1}:

PV ⊢ f1(si(x)) = ε ◦ si(x) ((L4) substitution x/si(x) to the definition axiom)
PV ⊢ ε ◦ si(x) = si(ε ◦ x) ((L4) substitution x/ε, y/x to Axiom eq. (2.4))

(∗) PV ⊢ ε ◦ x = f1(x) ((L1) symmetricity to the definition axiom)
(⋆) PV ⊢ si(x) = si(x) ((L0) reflexivity)

PV ⊢ si(ε ◦ x) = si(f1(x)) ((L3) substitution with (⋆) and (∗))
PV ⊢ f1(si(x)) = si(f1(x)) ((L2) transitivity)

Similarly, one can prove that f2(si(x)) = si(f2(x)). Therefore, let hi(x, z) = si(z), we
can prove that for j ∈ {1, 2} and i ∈ {0, 1}:

PV ⊢ fj(si(x)) = hi(x, fj(x)).
Then, by the rule of structural induction, we can prove that f1(x) = f2(x) as they are
both inductively defined from (g, h0, h1).
Proposition 2.1.4. PV ⊢ (x ◦ y) ◦ z = x ◦ (y ◦ z).
Proof. We define two functions f1(x, y, z) := (x◦ y)◦ z and f2(x, y, z) := x◦ (y ◦ z), and
it suffices to prove that f1(x, y, z) = f2(x, y, z). The strategy is to use the induction
rule. Notice that

PV ⊢f1(x, y, ε) = (x ◦ y) ◦ ε ((L4) substitution z/ε to the definition axiom)
PV ⊢x ◦ ε = x (Definition axiom of ◦)
PV ⊢(x ◦ y) ◦ ε = x ◦ y ((L4) substitution x/(x ◦ y) to equation above)
PV ⊢f1(x, y, ε) = x ◦ y ((L2) transitivity)

Similarly, we can (with slightly more steps) prove that PV ⊢ f2(x, y, ε) = x ◦ y.
Also, notice that for every i ∈ {0, 1},
PV ⊢f1(x, y, si(z)) = (x ◦ y) ◦ si(z) ((L4) substitution to the definition axiom)
PV ⊢x ◦ si(y′) = si(x ◦ y′) (Definition axiom of ◦)
PV ⊢(x ◦ y) ◦ si(z) = si((x ◦ y) ◦ z) ((L4) substitution x/(x ◦ y) and y′/z)
PV ⊢(x ◦ y) ◦ z = f1(x, y, z) ((L1) symmetricity to the definition axiom)
PV ⊢si((x ◦ y) ◦ z) = si(f1(x, y, z)) ((L3) using above and function si)
PV ⊢f1(x, y, si(z)) = si(f1(x, y, z)) ((L2) transitivity, twice)
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Similarly, we can (again with slightly more steps) prove that PV ⊢ f2(x, y, si(z)) =
si(f2(x, y, z)). Therefore, by the induction rule using g(x, y) := x ◦ y and hi(x, y, z) =
si(z), we can prove that f1(x, y, z) = f2(x, y, z).

The proof strategies of these two propositions are similar. Take the latter one as
an example. To prove the equation (x ◦ y) ◦ z = x ◦ (y ◦ z), we indeed prove that
both functions (on the LHS and RHS of the equation) are identical to the following
recursively defined functionThe function f is

not formally
introduced, but it is
instructive to think

of the proof as
induction over f .

f(x, y, ε) = x ◦ y; f(x, y, si(z)) = si(f(x, y, z)).

Note that this particular recursive construction of f is feasible, since it is constructed
inductively on the variable z that takes at most |z| rounds, and |f(x, y, z)| ≤ |f1(x, y, z)|
for a function f1(x, y, z) := (x ◦ y) ◦ z that is known to be feasible.f1 is feasible as ◦ is

feasible, and the
composition of

feasible functions is
feasible.

Moreover, the proofs that both sides of the original equation are identical to f(x, y, z)
are feasible, as they only require the definition axioms of ◦. Therefore, we can prove by
structural induction over z that both sides of the equation are identical to f(x, y, z),
concluding that the equation is true. Throughout the proof, we are only utilizing
definition axioms of feasibly constructible functions and the structural induction rule
in PV.

2.2 Thesis of Feasible Mathematics
Cook [Coo75] proposed a Verifiability Thesis: the theory PV characterizes the informal
concept of polynomially verifiability, which we have not explored carefully. Here, we
propose an alternate Thesis of Feasible Mathematics: PV is the theory that character-
izes feasible mathematics explained by the three postulates, or more concretely:

A mathematical statement is provable in feasible mathematics (informally
defined by the three postulates) if and only if there is a straightforward
formalization of the statement in PV that is provable in PV.

Subsequently, the
“proof” below is not

a mathematical
proof but rather an

illustration.

Similar to the Church-Turing Thesis and Cook’s Verifiability Thesis, the Thesis
of Feasible Mathematics is not a precise mathematical statement but a philosophical
claim, and thus cannot be proved. To some extent the Thesis is falsifiable — it will be
broken if one can construct an equation in the language of PV that is clearly feasibly
provable but does not have a straightforward proof in PV. However, people may also
disagree with whether a statement is provable in informal feasible mathematics and the
whether a formalization is “straightforward”.

Nevertheless, we will try to explain why it is reasonable to believe that PV suffices
for feasible mathematicians.

PV proofs ⇒ feasible proofs. We will need to show that the function symbols
in PV are feasibly constructible functions and PV proofs are proofs in the informal
notion of feasible mathematics. Since PV functions and proofs are inductively defined
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simultaneously, we will prove by induction on k that PV functions of order k are feasibly
constructible and PV proofs of order k are feasible proofs.4

We first consider the base case k = 0. Order-0 functions of PV are base functions,
which are simple function that clearly demonstrates their feasibility, and thus should
be considered as feasibly constructible functions by Postulate 1. Similarly, order-0 PV
proofs are simply the definition axioms of order-0 functions that support their feasibility
and thus are considered feasible by Postulate 2.

We then consider the induction case. Suppose that order-k PV functions are feasibly
constructible and order-k PV proofs are feasible. Recall that order-(k+1) PV functions
are constructed either by composition or (limited) recursion from order-k PV functions.
The composition of feasible functions is certainly feasible and clearly demonstrates
their feasibility through the construction. The mathematical facts supporting the clear
demonstration, or its definition axiom, are accepted as axioms in feasible mathematics.

Now we explain why functions introduced by the limited recursion rule are feasibly
constructible. Recall that from g, h0, h1, k0, k1 we can introduce a function through
limited recursion if there are order-k PV proofs of

ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε (i ∈ {0, 1}).

By the induction hypothesis, we know that this proof is feasible, given which by the
reasoning in Lemma 2.1.2 it is quite clear that the function f defined by limited recursion
from g, h0, h1 is feasible. Moreover, the facts that enable the clear demonstration are
the equations:

f(x⃗, 0) = g(x⃗)
f(x⃗, si(y)) = hi(x⃗, y, f(x⃗, y)) (i ∈ {0, 1})
ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε (i ∈ {0, 1})

could be included as axioms. Indeed, the first two equations are included as axioms in
order-(k + 1) PV proofs, and the last equation admits an order-k PV proof (and thus
there is no need to include it as an axiom).

Finally, we show that order-(k+1) PV proofs are also provable in feasible mathemat-
ics. The definition axioms are valid by Postulate 2. We now show that the structural
induction rule is feasibly provable.

Suppose that f1, f2, g, h0, h1 are order-(k + 1) PV functions and thus are feasibly
constructible, and the equations

f1(x⃗, y) = g(x⃗), f1(x⃗, si(y)) = h(x⃗, y, f1(x⃗, y)), i ∈ {0, 1}
f2(x⃗, y) = g(x⃗), f2(x⃗, si(y)) = h(x⃗, y, f2(x⃗, y)), i ∈ {0, 1}

are already feasibly provable, where free variables are considered to be universally
quantified. We will need to prove feasibly that ∀x⃗ ∀y f1(x⃗, y) = f2(x⃗, y). Fix any x⃗.
Note that given any y, the property f1(x⃗, y) = f2(x⃗, y) is feasibly provable, and we are
allowed to prove the equation by structural induction on y:

4In some sense, we are arguing that Lemma 2.1.2 is feasibly provable.
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• (Base Case). f1(x⃗, ε) = f2(x⃗, ε) is feasibly provable since both of them are feasibly
provably equal to g(x⃗);

• (Induction Case). Recall that by the assumption, it is feasibly provable that
fj(x⃗, si(x)) = h(x⃗, y, fj(x⃗, y)) for j ∈ {1, 2} and i ∈ {0, 1}. By the induction
hypothesis, we know that f1(x⃗, y) = f2(x⃗, y), and thus

f1(x⃗, si(y)) = h(x⃗, y, f1(x⃗, y)) = h(x⃗, y, f2(x⃗, y)) = f2(x⃗, si(y))

can be feasibly proved.
This induction proof is feasible by Postulate 3. Therefore, f1(x⃗, y) = f2(x⃗, y) is also
feasibly provable.

Feasible proofs⇒ PV proofs. The other direction is a philosophical claim as feasible
proofs are not formally defined.This is similar to

the hard direction of
the Extended

Church-Turing
Thesis, where

“efficient
computation” does
not have a precise

mathematical
definition.

For the Church-Turing Thesis, a justification that Turing machines suffice to cap-
ture the informal notion of computation is that it simulates seemingly stronger mod-
els, including multi-tape Turing machines, Turing machines with two-dimension tapes,
Church’s λ-calculus, and recursive functions. Similarly, ZFC set theory is generally
accepted as a suitable foundation of mathematics because people demonstrate natural
formalizations of many branches of mathematics in ZFC set theory.

To justify the belief that feasibly provable statements can be formalized and proved
in PV, we will need to show that:

1. A wide range of feasibly constructible functions are definable in PV in a natural
sense. That is, there is a “compiler” from functions that demonstrates their
feasibility (possibly written in a reasonable “high-level” programming language)
to functions in PV.

2. A wide range of feasibly provable statements are provable in PV in a natural
sense. That is, there is a “compiler” from feasible proofs (possibly written in a
reasonable “high-level” formal system) to functions in PV.

Note that both properties above are highly non-trivial. For instance, the function
introduction rules in PV only allow a restricted version of recursion, and the functions in
PV must deal with “raw data” in the form of binary strings rather than in a structured
form. Similarly, the deduction rules in PV only allow a special version of induction
rather than the general induction rule as discussed in Postulate 3. Nevertheless, just
as elaborate modern computer systems can be built from a rather small number of
CPU instructions, we will show that the function introduction rules and deduction
rules suffice to build a rich system for feasibly constructible functions and feasible
mathematics.

2.3 Standard Model of PV
As we demonstrated in the last section, Cobham’s class F ,F ′ and the fact that F ′ ⊆
F = FP provide an informal explanation that the definition of PV “satisfies” the three
postulates of feasible mathematics. Of course, we will not be able to formally “prove”
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this, as the three postulates themselves are intended to describe an informal concept of
feasibly constructive proofs.

Nevertheless, we can try to formally prove a couple of facts showing that PV does
not contradict the postulates in an obvious sense. We will check that all PV functions
are indeed feasible (so that it is not too strong), and all feasible functions are definable
in PV (so that it is not too weak).

Skip this part if you
are a real feasible
mathematician as
you may refuse to
believe the existence
of the ground-truth.

Standard model of PV. We first formally define the standard model (or the standard
interpretation) of PV, i.e., the “ground-truth” that PV tries to depict. We will first
define what does it mean by the model of an equational theory.

Formally, an (equational) theory T is a set of equations that are considered true.
For instance, the theory PV is defined as the set of equations s = t that admits an
order-k proof for some k ∈ N.

Let L = (Σ,F) be the language of an (equational) theory T , where Σ is the set of
constant symbols and F is the set of function symbols. For PV, we have Σ = {ε} and
F be the set of all (finite order) PV functions. There is only one

predicate “=” that
is more or less
embedded in the
logic, so we don’t
include it in the
language.

A model or structure is defined as a tuple M = (U , Ic, I f) where:
• U is the universe, i.e., the set of possible values.
• Ic : c 7→ u maps every c ∈ Σ to an element u ∈ U .
• I f : f 7→ F maps every function symbol f ∈ F with k variables to a function
F : Uk → U over the universe, for every k ∈ N.

We call u ∈ U and F : Uk → U above the interpretation of c ∈ Σ and f ∈ F ,
respectively. We may denote the interpretation of c ∈ Σ (resp. f ∈ F) by cM or cIc

(resp. fM or fIf ) for simplicity. Moreover, the mappings Ic and I f naturally induce
an interpretation of terms, i.e., a mapping from any term t in the language of L with
k ∈ N free variables to a function F : Uk → U , as follows. Formally, one can

define the mapping
inductively over the
structure of a term.

Recall that A term is a
composition of function symbols and constant symbols, we replace the constant and
function symbols by their interpretation in the universe U according to Ic and I f ,
respectively, and compose the functions and elements in the same way that the term is
constructed. We will denote the induced interpretation of a term t as tM or tIc,If for
simplicity.

We say that an equation s = t satisfies a model M, denoted by M ⊨ s = t, if sM

is the same function as tM; a theory T is said to satisfy a model M if every equation
in T satisfies M. In particular, the theory of the model M, denoted by the set of all
equations satisfying M, is the maximum theory that satisfies M.

M is used to
distinguish it from
N, i.e., the standard
interpretation as
natural numbers
rather than strings.

The standard theory of PV, denoted by M, is defined as the tuple ({0, 1}∗, Ic, I f),
where Ic maps the only constant symbol ε to ε ∈ {0, 1}∗, and I f maps the PV function
symbols according to their definitions. Formally, we define the mapping I f

k from order-k
PV functions to functions over {0, 1}∗ inductively over k ∈ N, and define I f = ⋃

k∈N I f
k.

The mapping I f
k is defined as:

• For k = 0, the base functions as functions satisfying their definition axioms, see
Equation (2.4) to (2.7). That is, ◦ is the function that concatenates two strings,
#(x, y) concatenates the string x with itself for |y| times, TR(x) removes the
leftmost bit of x, and ITR(x, y) removes the |y| leftmost bits of x.
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• For k ≥ 1 consider two cases:
– If f = f

(0)
t is introduced by the composition rule, where t is an order-(i− 1)

term, f is interpreted as the function tI
c,If

k−1 , i.e., the interpretation of the
term t based on I f

k−1 as given in the induction hypothesis.
– If f = f

(1)
Π is introduced by the recursion rule, where Π = (g, h0, h1, k0, k1, π0, π1),

we define the interpretation of f as the unique function satisfying the def-
inition axioms Equation (2.9) and (2.10) with g, h0, h1 replaced by their
interpretation in I f

k−1.

PV functions in the standard model. Now we show that PV functions are polynomial-
time computable on the standard model, as required by the postulate of feasible func-
tions (see Postulate 1).

Lemma 2.3.1. The following two properties hold.
• For every PV function f , its standard interpretation fM ∈ F ′.
• PV satisfies its standard model.

Proof Sketch. We prove by simultaneous induction on k that (1) every k-order PV
function is interpreted as a polynomial-time computable function by I f

k and (2) every
order-k provable equation e : s = t satisfies that sIc

k,I
f
k and tIc

k,I
f
k are the same function.

The base case for k = 0 is obvious. For k ≥ 1, we can see that:

• For any function f = f
(0)
t introduced by the composition rule, we know by the

induction hypothesis that all order-(k − 1) functions are interpreted as functions
in F ′ (by I f

k), and thus all order-(k− 1) terms are interpreted as functions in F ′.
It follows by the definition of I f

k that fIf
k ∈ F ′.

• For any function f = f
(1)
Π introduced by the recursion rule, where the tuple

Π = (g, h0, h1, k0, k1, π0, π1), π0, π1 are order-(k− 1) proofs of Equation (2.8), and
g, h0, h1, k0, k1 ∈ F ′. By the definition of Equation (2.8), its standard interpre-
tation, and the induction hypothesis (2), we know that over the standard model
M,

|hMi (x⃗, y, z)| ≤ |z ◦ kMi (x⃗, y)| i ∈ {0, 1}
and thus fM ∈ F ′.

• For every order-k equation e : s = t that admits an order-k proof π, by induction
over the length of π and a case study on the deduction rules, we can show that
sM = tM.

This completes the proof.

By Lemma 2.1.2 and Theorem 2.1.1, we know that every (finite-order) PV function
is polynomial-time computable. On the other hand, we will prove in Chapter 4 that:

Theorem 2.3.2 ([Coo75]). For every function F ∈ FP, there is a (finite-order) function
symbol f such that fM = F .
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Also note that the
combination of
Lemma 2.3.1 and
Theorem 2.3.2
proves that
F ′ ⊆ FP = F , and
thus by
Lemma 2.1.2
F ′ = F = FP.

This indicates that the formalization of PV is not syntactically too weak in the sense
that it defines every polynomial-time computable function.

We note, however, that there might be two PV functions f1, f2 that are functionally
equivalent in the standard model, but f1 = f2 is not PV provable — because their func-
tional equivalence is not provable by feasible mathematics. This is expected, as PV (and
feasible mathematics in general) only allows the use of the definition axioms and the
induction over feasibly checkable properties, while the functional equivalence of two fea-
sibly constructible functions may only be provable using more advanced mathematics.
Here is an example:

Example 2.3.1. Let Prime be the function that Prime(x) = [x is a prime number].
By the celebrated AKS algorithm [AKS04] we know that Prime ∈ FP, and thus by
Theorem 2.3.2 there is a function symbol f such that fM = Prime. Then:

• Let AKS be the Turing machine implementing the AKS algorithm running in
time cnc, U(M,x, T ) be the PV function that simulates the Turing machine
M(x) for |T | steps. The equation U(AKS, x, 1c|x|c) = f(x) may not be provable
in PV, although it is a true equation in M.

• [p] is the function
that returns 0/1 if
the proposition p is
false/true.

Let Div, Le, Imp,And,Not be the PV functions: Div(x, y) := [x | y], Le(x, y) :=
[x < y], Imp(x, y) := [x ≤ y], And(x, y) := x × y, Not(x) = 1 − x. The
equation

Imp(f(x),Not(And(And(Div(y, x), Le(1, y)), Le(y, x)))) = 1,

which formalizes the statement “f(x) = 1 implies y is not a non-trivial divisor
of x” is a true statement, but may not be provable in PV.

2.4 Control and Logic

Although the formal definition of PV has been quite tedious, the “programming func-
tionality” or “instruction set” provided by PV is still limited. For instance, it is not
immediately clear how Theorem 2.3.2 can be proved. Moreover, it is unclear whether
PV can formalize classical algorithms, such as quick sort, in a straightforward way and
prove their correctness.

Glad to see you
again, real feasible
mathematicians.

Our goal is to build a “computer” or “programming language” with feasibly prov-
able functionality: This will be similar to designing a CPU or programming language,
except that the “underlying platform” is not (say) LLVM [LA04], but Cook’s theory
PV (i.e. modified Cobham’s class F ′). For an analogy in mathematics, the purpose of
this and subsequent chapters is similar to the first few chapters of an axiomatic set the-
ory textbook that shows how to encode standard mathematical objects such as natural
numbers in ZF or ZFC.

We start by constructing necessary tools and proving meta-theorems about control
and (propositional) logic PV.
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2.4.1 If-Then-Else Function
We first show how to implement the if-then-else function ITE(y, u, v) discussed in Ex-
ample 2.1.1. 5Concretely, we will show that it is possible to define a PV-function
ITE(y, u, v) such that the followings are provable in PV:

ITE(s0(x), u, v) = v, ITE(s1(x), u, v) = u (2.13)

Indeed, we define ITE to be slightly more general: it will choose to output u or v based
on the rightmost bit of y.

Similar to Example 2.1.1, we will use the limited recursion rule in PV. Let g(u, v) :=
ε, h0(u, v, y, z) := v, h1(u, v, y, z) := u, k0(u, v, y) := v, and k1(u, v, y) = u. These three
functions are of order-1 introduced by the rule of composition. We need to verify that
for i ∈ {0, 1}, there is a PV proof πi for

ITR(hi(u, v, y, z), z ◦ ki(u, v, y)) = 0, (2.14)

define f (1)
Π (u, v, y) from Π := (g, h0, h1, k0, k1, π0, π1), and then it is easy to see that

Equation (2.13) follows if we define ITE(y, u, v) = f
(1)
Π (u, v, y).

It remains to prove Equation (2.14). Indeed, both of the cases for i ∈ {0, 1} can be
derived from the following equation using the definition axioms of hi and ki as well as
the substitution rules:

Proposition 2.4.1. PV ⊢ ITR(x, z ◦ x) = ε.

Informally, the proof will be done by induction on x. Let f1(z, x) := ITR(x, z◦x) and
f2(z, x) = ε. We first consider the base case x/ε. It is easy to see that PV ⊢ f2(z, ε) = ε
by (L4) substitution, and therefore we only need to prove:

Proposition 2.4.2. PV ⊢ f1(z, ε) = ε.

Proof. We need to prove in PV that ITR(ε, z ◦ε) = ε. Notice that z ◦ε = z, and thus by
applying (L3) on the function w 7→ ITR(ε, w ◦ ε) we know that ITR(ε, z ◦ ε) = ITR(ε, z).
By transitivity, we only need to prove in PV that

ITR(ε, x) = ε. (2.15)

It can be proved using the rule of structural induction. Concretely, we will define func-
tions f3(x) = ITR(ε, x) and f4(x) = ε, and prove that both of them can be constructed
by recursion from g = ε, hi(x, z) = TR(z). The details are omitted and left as an
exercise.

Now we consider the case when x is of form si(x). Note that PV ⊢ f1(z, si(x)) =
ITR(si(x), z ◦ si(x)) by (L4) substitution, and to apply the induction rule, we need to
see how f1(z, si(x)) can be constructed as a function of z, x, and f1(z, x). Notice that
by the definition axiom of ITR and (L4) substitution we know that

PV ⊢ ITR(si(x), z ◦ si(x)) = TR(ITR(si(x), z ◦ x)).
5We will encode False with 0 (i.e. s0(ε)) and True with 1 (i.e. s1(ε)). Alternatively, one may

encode them using (say) ε and 0.
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By thinking about its interpretation in the standard model M, it is easy to see that

TR(ITR(si(x), z ◦ x)) = ITR(x, z ◦ x) (2.16)

and the RHS of the equation is indeed f1(z, x) — completing our goal of constructing
f1(z, si(x)) as a function of z, x and f1(z, x). Therefore it suffices to prove that:

Proposition 2.4.3. PV ⊢ TR(ITR(si(x), z ◦ x)) = ITR(x, z ◦ x).

To prove this, we need the fact that ITR and TR commute:

Proposition 2.4.4. PV ⊢ TR(ITR(x, y)) = ITR(TR(x), y).

Proof Sketch. We will prove by induction on y that both sides of the equation are
identical to the feasibly constructive function recursively defined from g′(x) = TR(x)
and h′

i(x, y, z) = TR(z).
To see this for the LHS, notice that PV ⊢ TR(ITR(x, ε)) = TR(x) by unfolding ITR,

and that for i ∈ {0, 1},

PV ⊢ TR(ITR(x, si(y))) = TR(TR(ITR(x, y))).

by unfolding ITR.
To see this for the RHS, notice that ITR(TR(x), ε) = TR(x) by unfolding ITR, and

that for i ∈ {0, 1},

PV ⊢ ITR(TR(x), si(y)) = TR(ITR(TR(x), y))

by unfolding ITR. Therefore, we can prove the original equation by the structural
induction rule in PV using g′(x) = TR(x) and h′

i(x, y, z) = TR(z).

Proof of Proposition 2.4.3. By Proposition 2.4.4 with the substitutions x/si(x) and
y/z ◦ x, we know that the LHS of the equation is equal to ITR(TR(si(x)), z ◦ x). Note
that PV ⊢ TR(si(x)) = x by the definition equation of TR, therefore we can unfold TR
and further prove that ITR(TR(si(x)), z ◦ x) = ITR(x, z ◦ x), which is exactly the RHS
of the equation.

Therefore, by applying Proposition 2.4.3, we notice that for i ∈ {0, 1},

PV ⊢ f1(z, si(x)) = hi(z, x, f1(z, x))

Finally, I gave up
the plan of always
using z as the last
variable while
writing the function
hi; but z′ is not
that bad, I guess.

for hi(z, x, z′) := z′. Also, notice that for i ∈ {0, 1}

PV ⊢ f2(z, si(x)) = hi(z, x, f2(z, x))

as both sides of the equation directly evaluate to ε. Therefore, by the induction rule,
we can prove that f1(z, x) = f2(z, x), which leads to the proof of Proposition 2.4.1.

Finally, one can easily verify Equation (2.13) are provable in PV by the definition
axioms

f
(1)
Π (u, v, si(y)) = hi(u, v, y, f (1)

Π (u, v, y)) (i ∈ {0, 1})
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of f (1)
Π and the definition axiom ITE(y, u, v) = f

(1)
Π (u, v, y) of ITE. Therefore, we will

safely refer ITE as the function defined here and use Equation (2.13) while writing PV
proofs.

We note that an additional benefit of our definition is that PV proves

ITE(ε, u, v) = ε. (2.17)

We can treat ε as a symbol for “error” or “undefined”, which may be useful at some
point.
Remark 2.4.1. Another application of Proposition 2.4.1 is to show that that the function
x# y in PV and its definition equations are indeed redundant. This is because we can
define the function via limited recursion by g(x) = ε, hi(x, y, z) = z◦x, ki(x) = x where
i ∈ {0, 1}. The requirement for limited recursion is that PV ⊢ ITE(z ◦ x, z ◦ x) = ε,
which can be obtained from Proposition 2.4.1 by (L4) substitutions z/ε, x/z ◦ x, and
applying Proposition 2.4.2.

The function LastBit. As an immediate application, we can define the function
LastBit(x) as LastBit(x) = ITE(x, 1, 0). It can be easily proved from the PV proofs
of Equation (2.13) that

PV ⊢ LastBit(ε) = ε; PV ⊢ LastBit(si(x)) = i (2.18)

for i ∈ {0, 1}.

IsEps and IsNotEps. Similar to ITE, we can define functions that determine whether
a string is ε or not. Let IsEps(x) and IsNotEps(x) be defined as follows:

IsEps(ε) = 1; IsEps(si(x)) = 0 (i ∈ {0, 1}) (2.19)
IsNotEps(ε) = 0; IsNotEps(si(x)) = 1 (i ∈ {0, 1}) (2.20)

Notice that: IsEps(x) can be defined using limited recursion from g = 1, hi(x, z) = 0,
and ki(x) = 0; and IsNotEps(x) can be defined from g = 0, hi(x, z) = 1, and ki(x) = 1.
The equations ITR(hi(x, z), z ◦ ki(x)) = 0 can be proved in PV using Proposition 2.4.1
by unfolding ki, hi and applying (L4) substitution to the variable x in Proposition 2.4.1.

2.4.2 Proof by Case Study
We now introduce a meta-theorem that implements the idea of proof by case study. Let
s(x⃗, y) = t(x⃗, y) be an equation. A standard way to prove the equation is to consider
whether the last bit of y is 0, 1, or y = ε. Formally:

Theorem 2.4.5. Let s(x⃗, y) = t(x⃗, y) be an equation. If
• PV ⊢ s(x⃗, ε) = t(x⃗, ε);
• PV ⊢ s(x⃗, si(y)) = t(x⃗, si(y)) for i ∈ {0, 1};

then PV ⊢ s(x⃗, y) = t(x⃗, y).
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Proof. We define two functions fs(x⃗, y) = s(x⃗, y) and ft(x⃗, y) = t(x⃗, y) by the rule of
composition. We will prove that both fs and ft are identical to the function inductively
defined by some g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z). Indeed, we will simply choose

g(x⃗) := fs(x⃗, ε)
hi(x⃗, y, z) := fs(x⃗, si(y)) (i ∈ {0, 1});

that is, we define g, h0, h1 based on the LHS of the equation to prove. We need to prove
that:

PV ⊢ ft(x⃗, ε) = g(x⃗)
PV ⊢ ft(x⃗, si(y)) = hi(x⃗, y, z) (i ∈ {0, 1}).

Indeed, by unfolding the definition of g and hi and applying (L2) transitivity, these three
equations are exactly the equations in the assumption. This completes the proof.

Case on ITE. A typical application of the theorem is to perform a case study on the
condition in the if-then-else function, summarized as the following meta-theorem:
Theorem 2.4.6. Let fc(x⃗), f0(x⃗), f1(x⃗), g(x⃗, y), f ′

0(x⃗), f ′
1(x⃗), g′(x⃗, y) are PV functions.

Suppose that
• PV ⊢ g(x⃗, ε) = g′(x⃗, ε)
• PV ⊢ g(x⃗, fi(x⃗)) = g′(x⃗, f ′

i(x⃗)) for i ∈ {0, 1};
then PV ⊢ g(x⃗, ITE(fc(x⃗), f1(x⃗), f0(x⃗))) = g′(x⃗, ITE(fc(x⃗), f ′

1(x⃗), f ′
2(x⃗))).

Proof Sketch. We can prove a stronger result that

PV ⊢ g(x⃗, ITE(z, f1(x⃗), f0(x⃗))) = g′(x⃗, ITE(z, f ′
1(x⃗), f ′

0(x⃗)))

and the theorem follows by performing (L4) substitution z/fc(x⃗) to the equation. To
prove this stronger result, we perform a case study on the variable z using Theo-
rem 2.4.5, and the three cases (after unfolding ITE) will be the three cases in the
assumption. For instance, consider the case that z = ε in Theorem 2.4.5, we need to
prove that

PV ⊢ g(x⃗, ITE(ε, f1(x⃗), f0(x⃗))) = g′(x⃗, ITE(ε, f ′
1(x⃗), f ′

0(x⃗))). (2.21)

Notice that PV ⊢ ITE(ε, x, y) = ε by the definition axiom of ITE Equation (2.17). Then,
by applying (L4) substitution x/f1(x⃗) and subsequently y/f0(x⃗), we have This “unfolding”

trick will be used
multiple times; we
will simply say
“unfolding” later on.

PV ⊢ ITE(ε, f1(x⃗), f0(x⃗)) = ε

PV ⊢ ITE(ε, f ′
1(x⃗), f ′

0(x⃗)) = ε.

We now apply (L3) to the equations above with the PV function y 7→ g(x⃗, y) to obtain

PV ⊢g(x⃗, ITE(ε, f1(x⃗), f0(x⃗))) = g(x⃗, ε)
PV ⊢g′(x⃗, ITE(ε, f ′

1(x⃗), f ′
0(x⃗))) = g(x⃗, ε)

Recall that PV ⊢ g(x⃗, ε) = g′(x⃗, ε) holds by the assumption. We can therefore obtain
Equation (2.21) by applying (L2) transitivity. The other cases can be proved accord-
ingly using a similar approach.
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Remark 2.4.2. We further note that the same proof technique leads to a more general
result: We can perform case analysis even if there are multiple ITE’s in g and g′ with
the same condition fc(x⃗).

Suppose we have sequences of PV functions f⃗1(x⃗), f⃗0(x⃗), f⃗ ′
1(x⃗), f⃗ ′

0(x⃗) each of which
has say k ∈ N functions, e.g., f⃗1(x⃗) = (f (1)

1 (x⃗), . . . , f (k)
1 (x⃗)), and both g and g′ takes x⃗

and k additional variables. Suppose that we define f (j)
−1 (x⃗), f (j)

−1 (x⃗) as ε for simplicity of
the notation. If PV proves for each j⃗ ∈ {0, 1,−1}k that

g(x⃗, f (1)
j1 (x⃗), . . . , f (k)

jk
(x⃗)) = g′(x⃗, f ′(1)

j1 (x⃗), . . . , f ′(k)
jk

(x⃗))),

Then PV also proves that

g(x⃗, ITE(fc(x⃗), f (1)
1 (x⃗), f (1)

0 (x⃗)), . . . , ITE(fc(x⃗), f (k)
1 (x⃗), f (k)

0 (x⃗)))
= g′(x⃗, ITE(fc(x⃗), f ′(1)

1 (x⃗), f ′(1)
0 (x⃗)), . . . , ITE(fc(x⃗), f ′(k)

1 (x⃗), f ′(k)
0 (x⃗))),

This also holds for the case study on “dirty” ITE that will be discussed below.

Why do I know
this? There is no
magic: I stuck at
Section 2.5.1 and

found this necessary.

Case on “dirty” ITE. We will occasionally need an alternative version of Theo-
rem 2.4.6: When it can be feasibly proved that fc(x⃗) is not ε, or not of form si(y) for
some i ∈ {0, 1}, we will be able to remove one of the three assumptions of Theorem 2.4.6.
To formalize this method, we will define a “dirty” ITE, denoted by ITE(ε)

j (x, u1, u0) as
follows:

ITE(ε)
j (ε, u1, u0) = uj ITE(ε)(si(x), u1, u0) = ui (i ∈ {0, 1}). (2.22)

The formal definition of the function is similar to the definition of ITE and is left as an
exercise. Informally, this function is called “dirty” ITE as it does not “correctly” deal
with the case for x = ε. Then we have

Theorem 2.4.7. Let fc(x⃗), f0(x⃗), f1(x⃗), g(x⃗, y), f ′
0(x⃗), f ′

1(x⃗), g′(x⃗, y) are PV functions.
Suppose that

• PV ⊢ g(x⃗, fi(x⃗)) = g′(x⃗, f ′
i(x⃗)) for i ∈ {0, 1};

then PV ⊢ g(x⃗, ITE(ε)
j (fc(x⃗), f1(x⃗), f0(x⃗))) = PV ⊢ g′(x⃗, ITE(ε)

j (fc(x⃗), f ′
1(x⃗), f ′

0(x⃗))) for
j ∈ {0, 1}.

The proof is similar to Theorem 2.4.6 and is left as an exercise. As a corollary:

Corollary 2.4.8. Let fc(x⃗), f0(x⃗), f1(x⃗), g(x⃗, y), f ′
0(x⃗), f ′

1(x⃗), g′(x⃗, y) are PV functions,
j ∈ {0, 1}. Suppose that

• PV ⊢ ITE(ε)
j (fc(x⃗), u1, u0) = ITE(fc(x⃗), u1, u0);

• PV ⊢ g(x⃗, fi(x⃗)) = g′(x⃗, f ′
i(x⃗)) for i ∈ {0, 1};

then PV ⊢ g(x⃗, ITE(ε)
j (fc(x⃗), f1(x⃗), f0(x⃗))) = g′(x⃗, ITE(ε)

j (fc(x⃗, f ′
1(x⃗), f ′

0(x⃗)))).
Remark 2.4.3. Similarly, we can define “dirty” ITE that does not correctly deal with
the case where x is of form si(y) for some i ∈ {0, 1}, and prove a meta-theorem similar
to Theorem 2.4.7.
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2.4.3 Propositional Logic: And, Or, Not
An important application of the ITE function is to simulate propositional logic, i.e.,
implementing the connectives And,Or,Not. They are naturally defined as

And(x, y) := ITE(x, ITE(y, 1, 0), ITE(y, 0, 0)) (2.23)
Or(x, y) := ITE(x, ITE(y, 1, 1), ITE(y, 1, 0)) (2.24)
Not(x) := ITE(x, 0, 1) (2.25)

by compositions of ITE.
One may wonder why we write ITE(y, 0, 0) instead of 0 in the definition equation

of And, and ITE(y, 1, 1) instead of 1 in the definition equation of Or. It prevents short-
circuit evaluation, i.e., it ensures that if one of the inputs is ε, the output of the function
is always ε. Therefore, we can use ε to encode “undefined” or “error”.

Therefore, we can embed an arbitrary propositional formula with constants and
variables into a term in PV. We will show a powerful meta-theorem showing that
PV is sound and complete as a propositional proof system (PPS for short) using this
embedding.

Theorem 2.4.9 (PV as a PPS). Let φ1, φ2 be propositional formulas consisting of
variables and constants (i.e. True or False), and pφ1 , pφ2 be the PV-terms by replacing
propositional connectives with {And,Or,Not} and replacing True and False with s1(t)
and s0(t′) for arbitrary terms t and t′ (not necessarily the same for all replacements).
Assume that there is no variable that appears in exactly one of φ1 and φ2. Then:
φ1 ≡ φ2 if and only if PV ⊢ LastBit(pφ1) = LastBit(pφ2).

Proof. The proof is not
feasibly constructive
as it involves the
standard model M.

One side is easy: If pφ1 = pφ2 admits a PV proof, the equation holds in the
standard model M. By the interpretation of ITE in M, we can see that it immediately
implies that for all assignments to variables x⃗ ∈ {True, False}∗, φ1(x⃗) = φ2(x⃗), which
implies that φ1 ≡ φ2. (In the rest of the proof, we identify 0 and False, as well as 1
and True.)

Now we prove the other side. Let k ∈ N be the number of variables involved in
φ1, φ2. We prove that there is a PV-proof of pφ1 = pφ2 for every φ1, φ2 such that
φ1 ≡ φ2 by induction on k. (Note that this induction is not made within PV but in
our meta-theory.) The case for k = 0 is simple: By referring to the axioms of ITE (see
Equation (2.13)) and using the logical rules for equation (as well as using the meta-
theorem Theorem 2.4.6), we can prove in PV for some b ∈ {0, 1} that LastBit(pφ1) = b
and LastBit(pφ2) = b, i.e., we can evaluate both sides of the equation. Thus by (L1)
symmetricity and (L2) transitivity, we can prove that pφ1 = pφ2 .

Now, assuming that it is true for all φ1, φ2 consisting of at most k variables, we
want to prove the case for k + 1. Let φ′

1(x⃗, y) and φ′
2(x⃗, y) be formulas consisting

of at most k + 1 variables and every variable in {x⃗, y} appears in both φ′
1 and φ′

2,
where |x⃗| = k. Assume that φ′

1(x⃗, y) ≡ φ′
2(x⃗, y). Let pφ′

1
(x⃗, y) and pφ′

2
(x⃗, y) be the

terms embedding φ′
1 and φ′

2 into PV as mentioned above, respectively. Notice that for
i ∈ {0, 1}, j ∈ {1, 2}, and a fresh variable w, we will have that pφ′

j
(x⃗, si(w)) is a valid

translation of the formula φ′
j(x⃗, y/i) obtained by replacing occurrences of y in φ′

j to i
as mentioned above, i.e., by To make everything

super formal, we can
prove by induction
on the formation of
the formulas.



36 CHAPTER 2. FORMAL DEFINITION AND BASIC PROGRAMMING

• replacing propositional connectives with {And,Or,Not},
• replacing True and False with s1(t) and s0(t′) for arbitrary terms t, t′.
Notice that as φ′

1 ≡ φ′
2, we know that φ′

1(x⃗, y/i) ≡ φ′
2(x⃗, y/i) for i ∈ {0, 1}. There-

fore, by the induction hypothesis, there are PV-proofs of

LastBit(pφ′
1
(x⃗, si(w))) = LastBit(pφ′

2
(x⃗, si(w))) (2.26)

for i ∈ {0, 1}.Obviously, I’m being
a bit more sloppy

while writing proofs
in meta-theory

compared to writing
proofs in PV.

Hopefully, there is
no confusion for

readers.

Also, we can prove (by Equation (2.17) and Equation (2.18)) that

LastBit(pφ′
1
(x⃗, ε)) = LastBit(pφ′

2
(x⃗, ε)); (2.27)

indeed, PV proves that both sides of the equation are equal to ε (recall that y appears
in both φ′

1 and φ′
2). We can then prove

LastBit(pφ′
1
(x⃗, y)) = LastBit(pφ′

2
(x⃗, y)) (2.28)

by applying Theorem 2.4.5 (i.e. proof by case study) on y.

Remark 2.4.4. We note that the reason to put LastBit(·) outside of both pφ1 and pφ2

is to deal with the case that pφi
is not wrapped by And,Or,Not. The assumption that

no variable appears in exactly one of φ1 and φ2 is necessary because it can be the case
that the variable is ε in PV so that one side is ε and another side is 0 or 1.

2.4.4 Conditional Equations
Another application of the if-then-else function is to implement conditional equations.
Let tc be a term and t1, t2 be terms. (As we will not deal with variables in this section,
we hide all x⃗ in terms.) The conditional equation tc ⇒ t1 = t2 is defined as the PV
equation

ITE(tc, t2, t1) = t1.

We call tc the antecedent of the conditional equation, while t1 = t2 is the consequence
of the conditional equation.

Intuitively, this equation is true if LastBit(tc) = 0 or t1 = t2 and is false if LastBit(tc) =
1 and t1 ̸= t2. The case for tc = ε is considered a non-defined behavior.

It is not hard to see that:

Proposition 2.4.10 (Modus Ponens). If PV proves tc ⇒ t1 = t2 and tc = 1, then
PV ⊢ t1 = t2.

Proof. If PV ⊢ tc = 1, we know that ITE(tc, y, x) = x by unfolding ITE. Therefore,
PV ⊢ ITE(tc, t2, t1) = t2 by substitution, and thus t1 = t2 by transitivity (as PV ⊢
ITE(tc, t2, t1) = t1 by the assumption).

Proposition 2.4.11 (Explosion Rule). PV proves that s0(z)⇒ x = y.

Proof. By unfolding the definition, we need to prove that ITE(s0(z), y, x) = x, where
the LHS of the equation PV-provably evaluates to x.
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Conditioning is an important tool in PV, and we will see later on that with con-
ditional equations we can make it possible for PV to encode equations, which is the
key to developing useful meta-theorems in the next chapter. Here we provide a simple
example of how conditioning could help:

Theorem 2.4.12. Let t be a PV-term. Suppose that PV proves IsEps(t) = 1, then PV
also proves t = ε.

Proof. We first prove that IsEps(x) ⇒ x = ε. This can be proved by a simple case
study using Theorem 2.4.5. Suppose that x = ε the conditional equation PV-provably
evaluates to ε = ε, which is true by (L0) reflexivity. Otherwise, PV ⊢ IsEps(si(x)) = 0
and by the explosion rule, PV also proves the equation.

By (L3) substitution, we can then prove that IsEps(t)⇒ t = ε, and thus by Modus
Ponens, we can conclude that PV ⊢ t = ε.

2.5 Basic Data Structures in PV
In this section, we move on to design basic data structures for the programming lan-
guage of feasible mathematicians. We will design pairs and tuples that are critical to
implement algorithms in PV in a natural sense.

2.5.1 Pairs

We first show how to encode pairs in PV. To support making and unwinding pairs,
we need to implement three PV functions: MakePair(x, y) intended to make a pair
τ = (x, y), Left(τ) = x, and Right(τ) = y. We also need to ensure that the properties
of pairs are PV-provable:

Left(MakePair(x, y)) = x, Right(MakePair(x, y)) = y. (2.29)

Description of encoding. A standard trick of encoding a pair (x, y) using a string
is to encode y with the alphabet {00, 10} and use 11 as a comma which separates x and
y.

We define a couple of functions in turn. Let PLen(x) be the function that outputs
1 (i.e. s1(ε)) if |x| is odd and 0 (i.e. s0(ε)) if |x| is even. This can be easily defined by
limited recursion as

PLen(ε) := 0 (2.30)
PLen(si(x)) := Not(PLen(x)) (i ∈ {0, 1}) (2.31)

We define PEnc(x), PDec(y) be the encoding and decoding functions from the alphabet
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{0, 1} to the alphabet {00, 10}, as follows:6

PEnc(ε) := ε (2.32)
PEnc(si(x)) := s0(si(PEnc(x))) (i ∈ {0, 1}) (2.33)

PDec(ε) := ε (2.34)
PDec(si(x)) := ITE(LastBit(PLen(x)), si(PDec(x)),PDec(x)) (2.35)

To formally define these functions in PV, we need to apply the limited recursion rule
using some g, h0, h1, k0, k1. We take PDec as an example:

g := ε

hi(x, z) := ITE(LastBit(PLen(x)), si(z), z) (i ∈ {0, 1})
ki(x) := si(ε) (i ∈ {0, 1})

and we need to prove that:

Proposition 2.5.1. PV ⊢ ITR(hi(x, z), z ◦ ki(x)) for i ∈ {0, 1}.

Proof Sketch. The idea is to perform case analysis on the condition LastBit(PLen(x))
using Theorem 2.4.6. It suffices to prove in PV that ITR(ε, z ◦ ε) = 0 and ITR(si(z), z ◦
i) = 0 for i ∈ {0, 1}. The former equation follows from Proposition 2.4.1 by applying
(L4) substitution z/ε, while the later equation (for i ∈ {0, 1}) follows from PV ⊢
ITR(x, x) = 0, which can be prove following the proof of Proposition 2.4.1. The details
are omitted and left as an exercise.

It can be verified that:

Proposition 2.5.2. PV ⊢ PLen(PEnc(x)) = 0.

Proof Sketch. We prove by induction on x. More formally, let f1(x) := PLen(PEnc(x))
and f2(x) = 0, it can be verified that both f1(x) and f2(x) are identical to the function
recursively defined by g = 0 and hi(x, z) := z (i ∈ {0, 1}).

Proposition 2.5.3. PV ⊢ PDec(PEnc(x)) = x.

Proof Sketch. We prove by induction on x. More formally, let f1(x) := PDec(PEnc(x))
and f2(x) = x, it can be verified that both f1(x) and f2(x) are identical to the function
recursively defined by g = ε and hi(x, z) = si(z). To see how to prove

PV ⊢ f(si(x)) = hi(x, f(x)),

notice that (by applying definition axioms) the LHS is PV provably equal to:

ITE(LastBit(PLen(s0(si(PEnc(x))))), s0(si(PDec(PEnc(x)))),PDec(s0(si((PEnc(x))))))
= ITE(LastBit(Not(Not(PLen(PEnc(x))))), s0(si(PDec(PEnc(x)))),PDec(s0(si(PEnc(x)))))
= ITE(LastBit(PLen(PEnc(x))), s0(si(f(x))),PDec(s0(si(PEnc(x)))))
= ITE(0, s0(si(f(x))),PDec(s0(si(PEnc(x))))) (Proposition 2.5.2)
= PDec(s0(si(PEnc(x))))

6Wrapping LastBit outside of the condition for ITE helps to apply Theorem 2.4.9.
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Note that the second equation applied Theorem 2.4.9 with the propositional formula
¬¬x = x. Again, after a sequence of tedious but straightforward unfolding, the last
line is PV-provably equal to si(f(x)), which completes the proof.

Pairing and unpacking functions. Then, we can simply define MakePair(x, y) as Recall that
11 = s1(s1(ε))

MakePair(x, y) := x ◦ 11 ◦ PEnc(y). (2.36)

Then we define the functions Left(τ) and Right(τ). Notice that if we can define Right(τ),
Left(τ) can be simply defined as

Left(τ) := TR(TR(ITR(τ,PEnc(Right(τ))))). (2.37)

Therefore, we now focus on defining Right(τ). The idea is to read the encoding of y bit
by bit until touching the comma “11”, and then decode the string using PDec.

We first define a function RightRaw(τ) that reads a suffix of τ before “11”:

RightRaw(ε) := ε (2.38)
RightRaw(s0(τ)) := s0(RightRaw(τ)) (2.39)
RightRaw(s1(τ)) := ITE(τ, 1, s1(RightRaw(τ))) (2.40)

The formal definition of RightRaw in PV should be clear and left as an exercise. Note
that there could be two cases: RightRaw(MakePair(x, y)) may be equal to 1 ◦ PEnc(y)
if the leftmost bit of y is 0 or y = ε, and is equal to PEnc(y) otherwise. We need to
define a function that removes the leftmost 1 when the string is of odd length.

Recall that IsEps(x) is the PV function that determines whether x = ε. Let RT and
CleanLeft be defined as follows

RT(ε) := ε (2.41)
RT(si(x)) := ITE(IsEps(x), ε, si(RT(x))) (i ∈ {0, 1}) (2.42)

CleanLeft(x) := ITE(LastBit(PLen(x)),RT(x), x) (2.43)

then it can be verified that:

PV ⊢CleanLeft(PEnc(y)) = PEnc(y) (2.44)
PV ⊢CleanLeft(1 ◦ PEnc(y)) = PEnc(y) (2.45)

(Recall that PV proves PLen(PEnc(y)) = 0 by Proposition 2.5.2, and PLen(1◦PEnc(y)) =
1 by essentially the same proof.)

Finally, we define:

Right(τ) := PDec(CleanLeft(RightRaw(τ))). (2.46)
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Proof of Correctness. We will sketch the proof that PV proves Equation (2.29):Here we hide tons of
unfolding; I may try
to write a Lean/Coq
proof at some point

as these unfolding
can be done by

calling “simp”, I
think.

Lemma 2.5.4. PV proves the following equations:
• Left(MakePair(x, y)) = x;
• Right(MakePair(x, y)) = y.

Proof Sketch. (Correctness of Right). We start by proving the second equation. We
first need to prove that:

RightRaw(MakePair(x, y)) = ITE(ε)
0 (FirstBit(y),PEnc(y), 1 ◦ PEnc(y)) (2.47)

where FirstBit(y) := ITR(y,TR(y)), ITE(ε)
0 (c, x, y) outputs y if c = ε or LastBit(c) = 1,

and outputs x if LastBit(c) = 0. This equation formally describes the fact that

RightRaw(MakePair(x, y))

is 1 ◦ PEnc(y) if y = ε or the leftmost bit of y is 0, and is PEnc(y) otherwise. Equa-
tion (2.47) can be proved by induction on y that both sides of the equation are identical
to the function recursively defined by g(x) = 1 and

h0(x, y, z) = ITE(IsEps(y), 100, s0(s0(z))) (2.48)
h1(x, y, z) = ITE(IsEps(y), 10, s0(s1(z))) (2.49)

for i ∈ {0, 1}. Note that

• To prove that the LHS of Equation (2.47) is equal to the function recursively
defined by g, h0, h1, notice that PV proves

RightRaw(MakePair(x, si(y))) = s0(RightRaw(si(MakePair(x, y))))

by unfolding for i ∈ {0, 1}. Then we prove by a case study on y thatHere we hide tons of
unfolding.

PV ⊢ s0(RightRaw(s0(MakePair(x, y)))) = ITE(IsEps(y), 100, s0(s0(z)))
PV ⊢ s0(RightRaw(s1(MakePair(x, y)))) = ITE(IsEps(y), 10, s0(s0(z)))

by Theorem 2.4.5. Notice that the RHS of the equations above are exactly
h0(x, y, z) and h1(x, y, z).

• To prove that the RHS of Equation (2.47) is equal to the function recursively
defined by g, h0, h1, the hard part is to prove that PV proves

ITE(ε)
0 (FirstBit(si(y)),PEnc(si(y)), 1 ◦ PEnc(si(y)))

=hi(x, y, ITE(ε)
0 (FirstBit(y),PEnc(y), 1 ◦ PEnc(y)))

for i ∈ {0, 1}. We can prove this by case study on y using Theorem 2.4.5, the fact
that PV ⊢ FirstBit(sj(si(y))) = FirstBit(si(y)), and Theorem 2.4.7.
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The details of the proofs above are omitted.
Now we prove that Right(MakePair(x, y)) = y. Notice that PV proves the following

sequence of calculation:

Right(MakePair(x, y))
= PDec(CleanLeft(RightRaw(MakePair(x, y)))) (Unfolding Right)
= PDec(CleanLeft(ITE(ε)

0 (FirstBit(y),PEnc(y), 1 ◦ PEnc(y)))). (2.50)

The last equation follows from Equation (2.47).
To further simplify Equation (2.50), we will perform a case study on “dirty” ITE

using Theorem 2.4.7. Recall that I said
Theorem 2.4.7 will
be useful :)

We need to prove that

PDec(CleanLeft(PEnc(y))) = y (2.51)
PDec(CleanLeft(1 ◦ PEnc(y))) = y (2.52)

By Equation (2.44) and (2.45), both of them are implied by PDec(PEnc(y)) = y, which
is given by Proposition 2.5.3.

(Correctness of Left). We will prove that PV ⊢ Left(MakePair(x, y)) = x. By the
definition axiom of Left, it suffices to show that PV proves:

TR(TR(ITR(MakePair(x, y),PEnc(Right(MakePair(x, y)))))) = x.

By the correctness of Right, we know that Right(MakePair(x, y)) = y and thus we need
to prove in PV that:

TR(TR(ITR(x ◦ 11 ◦ PEnc(y),PEnc(y)))) = x.

Note that by induction on y, it can be proved that:
Proposition 2.5.5. PV ⊢ ITR(x ◦ y, y) = x.

Thus, it suffices to prove in PV that TR(TR(x ◦ 11)) = x, which can be proved by
unfolding TR’s.

2.5.2 Tuples
To support making and unwinding tuples, we need to implement the following functions
for every k ∈ N and i ∈ [k]:

• MakeTuple(k)(x1, . . . , xk) intended to construct a tuple π = (x1, . . . , xk);
• UnwindTuple(k)

i (π) = xi takes the i-th element.
We use the standard construction: a (k + 1)-tuple (x1, . . . , xk) is defined as a pair

of x1 and (x2, . . . , xk). Formally, we define by induction on k that for k ≥ 3:

MakeTuple(k)(x1, x2, . . . , xk) = MakePair(x1,MakeTuple(k−1)(x2, . . . , xk)) (2.53)
UnwindTuple(k)

1 (π) = Left(π) (2.54)
UnwindTuple(k)

i (π) = UnwindTuple(k−1)(Right(π)) (2 ≤ i ≤ k) (2.55)

and for k = 2, MakeTuple(2) = MakePair, UnwindTuple(k)
1 = Left, UnwindTuple(k)

2 =
Right. We can prove that:
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Lemma 2.5.6. For every k ≥ 2 and i ∈ [k], PV proves that:

UnwindTuple(k)
i (MakeTuple(k)(x1, . . . , xk)) = xi.

Proof Sketch. We prove by induction on k and applying Lemma 2.5.4. Notice that this
induction is in meta-theory instead of PV.

For simplicity, we will ignore the superscript (k) if there is no ambiguity. We will
simply denote the tuple MakeTuple(x1, . . . , xk) as π = (x1, . . . , xk), and the function
UnwindTuplei(π) as πi.

2.6 Extensions on Recursion and Induction
In this section, we will propose a few extensions on the (limited) recursion rule for
introducing PV functions, as well as the (structural) induction rule on the extensions
of recursion.

2.6.1 Recursion on Multiple Variables
We first consider a version of recursion on multiple variables. As a motivating example,
we will consider how to define a function EQ(x, y) that outputs 1 if and only if x = y,
and outputs 0 otherwise. Intuitively we will define the function by considering the last
bit of x and y:

EQ(ε, ε) := 1 (2.56)
EQ(ε, si(y)) := 0 (i ∈ {0, 1}) (2.57)
EQ(si(x), ε) := 0 (i ∈ {0, 1}) (2.58)
EQ(si(x), sj(y)) := EQ(x, y) (i, j ∈ {0, 1}, i = j) (2.59)
EQ(si(x), sj(y)) := 0 (i, j ∈ {0, 1}, i ̸= j) (2.60)

Recursion on multiple variables. Generalizing this example, we would like to have
the following meta-theorem:

Theorem 2.6.1 ([Coo75]). Let g00(x⃗), g01(x⃗, y), g10(x⃗, y) be PV functions, hα(x⃗, y1, y2, z)
and kα(x⃗, y1, y2) for α ∈ {0, 1}2 be PV functions. If

PV ⊢ ITR(hα(x⃗, y1, y2, z), z ◦ kα(x⃗, y1, y2)) = 0

for every α ∈ {0, 1}2, then there is a PV function f(x⃗, y1, y2) such that the following
equations are provable in PV:

• f(x⃗, ε, ε) = g00(x⃗);
• f(x⃗, ε, si(y)) = g01(x⃗, si(y)) for i ∈ {0, 1};7
• f(x⃗, si(y), ε) = g10(x⃗, si(y)) for i ∈ {0, 1};
7Here we write si(y) instead of y because otherwise we will need to ensure that g01(x⃗, ε) = g10(x⃗, ε).
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• f(x⃗, si1(y1), si2(y2)) = hi1i2(x⃗, y1, y2, f(x⃗, y1, y2)) for i1, i2 ∈ {0, 1}.

Similarly, we can propose a further generalization of the theorem where we perform
simultaneous recursion on more than two variables, which can be proved similar to this
meta-theorem.

To prove Theorem 2.6.1, we need to implement recursion on two variables using the
limited recursion rule in PV that only allows recursion on a single variable. The idea
is to introduce two auxiliary variables w1, w2 and define a function f ′(x⃗, y1, y2, w1, w2)
that is supposed to satisfy that

f ′(x⃗, y1, y2, w1, w2) = f(x⃗, ITR(y1, ITR(w1, w2)), ITR(y2, ITR(w1, w2)))

and define f ′ by recursion on the variable w2. Finally, we will define

f(x⃗, y1, y2) := f ′(x⃗, y1, y2, y1 ◦ y2, y1 ◦ y2)

and verify that all equations in Theorem 2.6.1 can be proved in PV.

Proof Sketch of Theorem 2.6.1. We will define a function f ′(x⃗, y1, y2, w1, w2) as dis-
cussed above. That is, we will use the limited recursion rule on the auxiliary variable
w2 using the functions g, h0, h1, where g(x⃗, y1, y2, w1)

=


ε Not(Or(IsEps(ITR(y1, w1)), IsEps(ITR(y2, w1))))
g00(x⃗) And(IsEps(ITR(y1, w1)), IsEps(ITR(y2, w1)))
g01(x⃗, ITR(y2, w1)) And(IsEps(ITR(y1, w1)),Not(IsEps(ITR(y2, w1))))
g10(x⃗, ITR(y1, w1)) And(Not(IsEps(ITR(y1, w1))), IsEps(ITR(y2, w1)))

(2.61)

and for i ∈ {0, 1}, hi(x⃗, y1, y2, w1, w2, z)

=
g(x⃗, ŷ1, ŷ2, ε) Or(IsEps(ŷ1), IsEps(ŷ2))
hi1i2(x⃗,TR(ŷ1),TR(ŷ2), z) (LastBit(ŷ1), LastBit(ŷ2)) = (i1, i2)

(2.62)

where ŷj := ITR(yj, ITR(w1, si(w2))) for j ∈ {1, 2}. Note that the case study in defining
g, h0, and h1 can be done by the if-then-else function. We will define the function
ki(x⃗, y1, y2, w1, w2) as

=
g(x⃗, ŷ1, ŷ2, ε) Or(IsEps(ŷ1), IsEps(ŷ2))
ki1i2(x⃗,TR(ŷ1),TR(ŷ2)) (LastBit(ŷ1), LastBit(ŷ2)) = (i1, i2)

(2.63)

Inequality for limited recursion. We need to verify that (g, h0, h1, k0, k1) satisfy
that

PV ⊢ ITR(hi(x⃗, y1, y2, w1, w2, z), ki(x⃗, y1, y2, w1, w2)) = 0

for i ∈ {0, 1} to use the limited recursion rule. This is implied by the assumption, the
fact that PV ⊢ ITR(x, x) = 0, and the case study technique on ITE (see Theorem 2.4.6
and Remark 2.4.2).
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Correctness. As mentioned above, we will define

f(x⃗, y1, y2) := f ′(x⃗, y1, y2, y1 ◦ y2, y1 ◦ y2),

and it remains to verify that the equations in the theorem statement are provable in
PV. We sketch the proof of each equation:

• To see that f(x⃗, ε, ε) = g00(x⃗), notice that f(x⃗, ε, ε) is equal to g(x⃗, ε, ε, ε).
By the definition of g, we will obtain (after unfolding ITR, IsEps and And) that
g(x⃗, ε, ε, ε) = g00(x⃗).

• To see that f(x⃗, ε, sj(y)) = g01(x⃗, sj(y)), notice that f(x⃗, ε, sj(y)) is equal to

f ′(x⃗, ε, sj(y), ε ◦ sj(y), ε ◦ sj(y)) = f ′(x⃗, ε, sj(y), sj(y), sj(y)).

Since ŷ1 = ITR(ε, sj(y), sj(y)) = ε, we know (by unfolding ITE in the definition of
hj) that this is PV-provably equal to

g(x⃗, ε, ITR(sj(y), ITR(sj(y), sj(y))), ε) = g(x⃗, ε, sj(y), ε)

(The equation follows from that ITR(x, x) = ε and ITR(y, ε) = y are provable in
PV.) By unfolding g and ITE’s (in the definition of g), we can prove in PV that
g(x⃗, ε, sj(y), ε) = g01(x⃗, sj(y)).

• The case for f(x⃗, sj(y), ε) = g10(x⃗, sj(y)) is similar to the case above.
• To see that f(x⃗, si1(y1), si2(y2)) = hi1i2(x⃗, y1, y2, f(x⃗, y1, y2)) for i1, i2 ∈ {0, 1},

notice that PV proves

f(x⃗, si1(y1), si2(y2)) (2.64)
= f ′(x⃗, si1(y1), si2(y2), si1(y1) ◦ si2(y2), si1(y1) ◦ si2(y2)) (2.65)
= f ′(x⃗, si1(y1), si2(y2), si2(si1(y1) ◦ y2), si2(si1(y1) ◦ y2)) (2.66)
= hi2(x⃗, si1(y1), si2(y2), si2(si1(y1) ◦ y2), si1(y1) ◦ y2, z) (2.67)

where

z := f ′(x⃗, si1(y1), si2(y2), si2(si1(y1) ◦ y2), si1(y1) ◦ y2) (2.68)
= f ′(x⃗, y1, y2, y1 ◦ y2, y1 ◦ y2) (2.69)
= f(x⃗, y1, y2). (2.70)

Here, Equation (2.69) is non-trivial and will be deferred to the end of the proof.
Also, notice that

ŷ1 = ITR(si1(y1), ITR(si2(si1(y1) ◦ y2), si2(si1(y1) ◦ y2))) = si1(y1) (2.71)
ŷ2 = ITR(si2(y2), ITR(si2(si1(y1) ◦ y2), si2(si1(y1) ◦ y2))) = si2(y2) (2.72)

By unfolding hi2 we can see that

(2.67) = hi1i2(x⃗, y1, y2, z), (2.73)

which (together with Equation (2.70)) obtains the equation we need.
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It remains to prove Equation (2.69). Indeed, we will prove a more general equation
(which derives Equation (2.69) by z1/y1 and z2/y2).

Proposition 2.6.2. PV proves the following equation

f ′(x⃗, si1(z1), si2(z2), si2(si1(y1) ◦ y2), si1(y1) ◦ y2) = f ′(x⃗, z1, z2, y1 ◦ y2, y1 ◦ y2).

Proof Sketch. Let f1(x⃗, z1, z2, y1, y2) and f2(x⃗, z1, z2, y1, y2) be the LHS and RHS of the
equation, respectively. Notice that when y1 and y2 are substituted by ε, the equation
is provable in PV by simply unfolding f ′. We then prove that

f1(x⃗, z1, z2, y1, ε) = f2(x⃗, z1, z2, y1, ε). (2.74)

To see this, notice that both sides of the equation are identical to the function recursively
defined on y1 using some PV functions g′, h′

0, h
′
1. Specifically, the base case is given

by that f1(x⃗, z1, z2, ε, ε) = f2(x⃗, z1, z2, ε, ε), and the induction step requires proving
identities on ITR, such as ITR(z, ITR(si2(si1(y1) ◦ y2), si1(y1) ◦ y2)) = TR(z). Hopefully you are

convinced that all
these identities are
PV provable...

Subsequently, we prove

f1(x⃗, z1, z2, y1, y2) = f2(x⃗, z1, z2, y1, y2)

by showing that both sides of the equation are identical to the function recursively
defined on y2 using some PV functions g′′, h′′

0, h
′′
1. This time, the base case is given by

Equation (2.74), while the induction case also requires proving identities on ITR.

This completes the proof.

2.6.2 Induction on Multiple Variables
After defining the function EQ, we need to prove properties about it to use it in math-
ematical reasoning. For instance, we may need to prove that

PV ⊢ EQ(x, y) = EQ(y, x). (2.75)

Since EQ is defined using Theorem 2.6.1 instead of the standard recursion rule in PV,
we will need a structural induction rule for functions defined by recursion on multiple
variables. Formally, we will need to prove:

Theorem 2.6.3. Let f1(x⃗, y1, y2), f2(x⃗, y1, y2) be two PV functions. Let g00(x⃗), g01(x⃗, y),
g10(x⃗, y), and hα(x⃗, y1, y2, z), α ∈ {0, 1}2 be PV functions. Suppose that for j ∈ {1, 2},
PV proves that

• fj(x⃗, ε, ε) = g00(x⃗);
• fj(x⃗, ε, sj(y)) = g01(x⃗, sj(y)) for j ∈ {0, 1};
• fj(x⃗, sj(y), ε) = g10(x⃗, sj(y)) for j ∈ {0, 1};
• fj(x⃗, si1(y1), si2(y2)) = hi1i2(x⃗, y1, y2, fj(x⃗, y1, y2)) for i1, i2 ∈ {0, 1}.

Then PV ⊢ f1(x⃗, y1, y2) = f2(x⃗, y1, y2).
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To see that the theorem suffices to prove Equation (2.75), notice that for f1(x, y) :=
EQ(x, y) and f2(x, y) = EQ(y, x), both f1 and f2 PV-provably satisfy the precondition
in Theorem 2.6.3 with g00 = 1, g01 = 0, g10 = 0, andSee Equation (2.56)

to (2.60)

hij(x, y, z) =
z i = j

0 i ̸= j
,

therefore by Theorem 2.6.3 we know that PV ⊢ f1(x, y) = f2(x, y).

Proof Sketch of Theorem 2.6.3. The proof idea of Theorem 2.6.3 closely follows the
proof of Theorem 2.6.1. For each j ∈ {1, 2}, we define

f ′
j(x⃗, y1, y2, w1, w2) := fj(x⃗, ITR(y1, ITR(w1, w2)), ITR(y2, ITR(w1, w2))). (2.76)

We will prove that

PV ⊢ f ′
0(x⃗, y1, y2, y1 ◦ y2, w2) = f ′

1(x⃗, y1, y2, y1 ◦ y2, w2) (2.77)

and thus the theorem follows by substituting w2 with y1 ◦ y2.
To prove Equation (2.77), we will use the induction rule in PV on the variable w2.

Concretely, we define g′(x⃗, y1, y2) = g00(x⃗) and for i ∈ {0, 1}, h′
i(x⃗, y1, y2, w2, z)

=



g00(x⃗) And(IsEps(ITR(y1, ITR(w1, si(w2)))),
IsEps(ITR(y2, ITR(w1, si(w2))))) = 1

g01(x⃗, ITR(y2, ITR(w1, si(w2)))) IsEps(ITR(y1, ITR(w1, si(w2)))) = 1
g10(x⃗, ITR(y1, ITR(w1, si(w2)))) IsEps(ITR(y2, ITR(w1, si(w2)))) = 1
hi1i2(x⃗,TR(ŷ1),TR(ŷ2), z) (LastBit(ŷ1), LastBit(ŷ2)) = (i1, i2)

where w1 := y1 ◦ y2, ŷj := ITR(yj, w1, si(w2)) for j ∈ {1, 2}. It can be verified (similar
to the proof of Theorem 2.6.3) that both LHS and RHS of Equation (2.77) are identical
to the function recursively defined by g′(x⃗, y1, y2), h0(x⃗, y1, y2, w2, z), h1(x⃗, y1, y2, w2, z)
inductively on the variable w2.

Remark 2.6.1. Although we only consider the case for two variables, the same proof
idea generalizes to induction on k variables for all k ∈ N.

2.6.3 Application: Basic Arithmetic
Cheers! Feasible

mathematicians are
finally starting to

study primary
school mathematics.

Another important application of recursion and induction on multiple variables (i.e. The-
orem 2.6.1 and 2.6.3) is to implement basic arithmetic operations of natural numbers
such as addition and multiplication.
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Encoding of natural numbers. Recall that natural numbers are not “first-class
citizens” in the theory of PV — only binary strings have native support in PV. We will
need to specify an encoding of natural numbers with binary strings.

Following [Coo75], we will use dyadic encoding where the leftmost bit is the most
significant. Formally, let [x]N be the number encoded by the string x, we define

[ε]N := 0, [s0(x)]N := 2x+ 2, [s1(x)]N := 2x+ 1.

This encoding method ensures a bijection between natural numbers and binary strings
so that we will no longer need to verify whether a string encodes a valid number. A downside is that ε

means both “error”
and 0 :(

For
simplicity, we will identify s2(x) with s0(x); we also denote s2(x) by x2 and s1(x) by
x1.

Addition. To define addition Add(x, y) (i.e. [Add(x, y)]N = [x]N + [y]N), we perform
the standard algorithm on the dyadic encoding using Theorem 2.6.1:

Add(x, ε) = Add(ε, x) := x (2.78)
Add(x2, y2) := s2(Succ(Add(x, y))) (2.79)
Add(x2, y1) = Add(x1, y2) := s1(Succ(Add(x, y))) (2.80)
Add(x1, y1) := s2(Add(x, y)) (2.81)

where Succ(x) is the successor function x 7→ x+1, whose definition is left as an exercise.
Specifically, Add is defined from g00 = ε, g01(y) = g10(y) = y, h00(x, y, z) = s2(Succ(z)),
h01(x, y, z) = h10(x, y, z) = s1(Succ(z)), and h11(x, y, z) = s2(z).

Note that to apply Theorem 2.6.1, we will also need to define functions kα for
α ∈ {0, 1} and proves in PV that

ITR(hα(x, y, z), z ◦ kα(x, y)) = 0.

Indeed, it is not hard to verify that it suffices to define k00(x, y) = k01(x, y) = k10(x, y) =
k11(x, y) = 11. (To see this, we will need that PV ⊢ ITR(Succ(x), s0(x)) = 0, which is
easy if Succ is defined properly.)

Proposition 2.6.4. The following equations are provable in PV.
• Add(x, y) = Add(y, x)
• Add(x, 1) = Succ(x)
• Add(Add(x, y), z) = Add(x,Add(y, z))

The first equation can be proved similar to the proof of EQ(x, y) = EQ(y, x). The
second can be proved by unfolding Add using the definition axioms.

To prove the last equation, we will need to apply induction on three variables (see
Theorem 2.6.3 and Remark 2.6.1). Specifically, let g000 = 0, g001(x, y) = g010(x, y) =
g100(x, y) = Add(x, y), g011(x) = g101(x) = g110(x) = x, and some hα(x, y, z, w) for
α ∈ {0, 1}3, both LHS and RHS of the equation are PV-provably equal to the function
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recursively defined from these gα and hα. For instance, for α = 111, h111(x, y, z, w) :=
s1(Succ(w)) and we can prove in PV that

Add(Add(x1, y1), z1) = h111(x, y, z,Add(Add(x, y), z))
Add(x1,Add(y1, z1)) = h111(x, y, z,Add(x,Add(y, z))

by unfolding Add and h111. Note that other basic properties of addition can also be
proved following a similar approach.

From now on, we will slightly abuse the notation to write Add(x, y) as x+ y.

Multiplication. Similarly, we can define multiplication Mul(x, y) of two numbers.
Let 2 · x := Add(x, x) and 4 · x := Add(2 · x, 2 · x). We define:

Mul(x, ε) = Mul(ε, x) = ε (2.82)
Mul(x1, y1) := 4 ·Mul(x, y) + 2 · x+ 2 · y + 1 (2.83)
Mul(x2, y1) := 4 ·Mul(x, y) + 2 · x+ 4 · y + 2 (2.84)
Mul(x1, y2) := 4 ·Mul(x, y) + 4 · x+ 2 · y + 2 (2.85)
Mul(x2, y2) := 4 ·Mul(x, y) + 4 · x+ 4 · y + 4 (2.86)

More formally, Mul is recursively defined using Theorem 2.6.1 from g00 = g01(x) =
g10(x) = ε, h11(x, y, z) = 4 · z + 2 · x + 2 · y + 1, h01(x, y, z) = 4 · z + 2 · x + 4 · y + 2,
h10(x, y, z) = 4 · z + 4 · x+ 2 · y + 2, and h00(x, y, z) = 4 · z + 4 · x+ 4 · y + 4. We will
need to ensure that for every α ∈ {0, 1}2, there is a function kα such that

PV ⊢ ITR(hα(x, y, z), z ◦ kα(x, y)) = ε.

Indeed, we can define kα(x, y) := 1111 ◦ (x ◦ 1111) ◦ (y ◦ 1111). To see that this suffices,
we will need to prove that

Proposition 2.6.5. PV proves the following equations:
• ITR(Add(x, y), x ◦ y) = 0
• ITR(2 · x, x ◦ 1111) = 0
• ITR(4 · x, x ◦ 1111) = 0

The first equation can be proved by induction on x and y using Theorem 2.6.3. The
second and third equations can be proved by induction on x using the induction rule
of PV. From now on, we will slightly abuse the notation to denote Mul(x, y) as x · y or
xy.

Similar to the case for addition, basic properties of multiplication can be proved by
induction on one or multiple variables. For instance:

Proposition 2.6.6. PV proves the following equations:
• xy = yx
• (xy)z = x(yz)
• x(y + z) = xy + xz
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We sketch the proof of the third equation for completeness. We will prove the
equation by induction on x, y, z (see Theorem 2.6.3 and Remark 2.6.1). The cases that
at least one of x, y, z is ε are straightforward by unfolding Mul and Add. It suffices to
show that there are hα(x, y, z, w) for α ∈ {0, 1}3 such that both sides of the equation
satisfy the recursive relation specified by hα. For instance, letting α = 111, we will have

x1 · (y1 + z1) = x1 · ((y + z)2)
= 4 · x(y + z) + 4 · x+ 2 · (y + z) + 2;

x1 · y1 + x1 · z1 = 4 · xy + 2 · x+ 2 · y + 1 + 4 · xz + 2 · x+ 2 · z + 1
= 4 · (xy + xz) + 4 · x+ 2 · (y + z) + 2;

where the last equation follows from the commutativity and associativity of addition.
Therefore, it suffices to define h111(x, y, z, w) = 4 · z + 2 · x+ 2 · (y + z) + 2.

2.7 The Function EQ and Equality
An important application of the induction principle on multiple variables is to prove
that the function EQ we defined before is indeed the characteristic function of the
equality relation in PV. We will use the notion of conditional equation introduced in
Section 2.4.4.

Lemma 2.7.1. PV ⊢ EQ(y1, y2)⇒ y1 = y2.

Proof. Unfolding the definition of conditional equations, we need to prove that PV ⊢
ITE(EQ(y1, y2), y2, y1) = y1. We prove this by applying Theorem 2.6.3 on the variables
y1 and y2. Let f1(x, y) = ITE(EQ(x, y), y, x) and f2(x, y) = x. We define g00 = 1,
g10(y) = y, g01(y) = ε, h01(y1, y2, z) = s0(y1), h10(y1, y2) = s1(y1), and hii(y1, y2, z) =
si(z) for i ∈ {0, 1}. Then both f1 and f2 are identical to the function recursively defined
from gi1i2 and hi1i2 .

We verify this for the LHS of the equation. The base cases (i.e. at least one of yj is ε)
are straightforward, so we will only consider the recursion case. Fix any i1, i2 ∈ {0, 1},
we need to prove that

ITE(EQ(si1(y1), si2(y2)), si2(y2), si1(y1))
= hi1i2(y1, y2, ITE(EQ(y1, y2), y2, y1)). (2.87)

We prove this by a case study on whether i1 = i2. (Note that the case study happens
in meta-theory.)

Suppose that i1 = i2, then by the definition equations of EQ we know that EQ(si1(y1), si2(y2)) =
EQ(y1, y2). Therefore, the LHS of Equation (2.87) is PV-provably equal to

ITE(EQ(y1, y2), si2(y2), si1(y1))

which is further PV-provably equal to

si1(ITE(EQ(y1, y2)), y2, y1) = hi1i2(y1, y2, ITE(EQ(y1, y2), y2, y1)).
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(Here, we use the property that i1 = i2.)
Suppose that i1 ̸= i2, then by the definition equations of EQ we know that

EQ(si1(y1), si2(y2)) = 0,

and hence by unfolding ITE we know that the LHS of Equation (2.87) is PV-provably
equal to si1(y1) = hi1i2(y1, y2, z) for any z.

Theorem 2.7.2. PV ⊢ EQ(s(x⃗), t(x⃗)) = 1 if and only if PV ⊢ s(x⃗) = t(x⃗).

Proof. The (⇐) side is straightforward and we will only prove the (⇒) side. Suppose
that PV ⊢ EQ(s(x⃗), t(x⃗)) = 1. By Lemma 2.7.1 and (L44) substitution we have

PV ⊢ EQ(s(x⃗), t(x⃗))⇒ s(x⃗) = t(x⃗).

Then PV ⊢ s(x⃗) = t(x⃗) by Modus Ponens (see Proposition 2.4.10).

Remark 2.7.1. One remark to this theorem is that the (⇒) direction is proved in a
black-box manner: The transformation from the proof of EQ(s(x⃗), t(x⃗)) = 1 to the
proof of s(x⃗) = t(x⃗) does not read the proof; the only information needed is the proof
is correct and the last line is EQ(s(x⃗), t(x⃗)) = 1.

2.8 Bibliographical and Other Remarks
The theory PV. Cook’s theory PV [Coo75] can be viewed as a time-bounded ver-
sion of Skolem’s primitive recursive arithmetic PRA [Sko23], where the time-bound is
achieved with the idea from Cobham’s characterization [Cob65]. Both theories are
equational and “logic-free”, i.e., do not contain logical connectives or quantifiers, and
therefore their consistencies are arguably more trustworthy than that of those with con-
nectives and quantifiers. One notable application is that extensions of Skolem’s theory
PRA were used as the base theory for Gentzen’s celebrated consistency proof of Peano
Arithmetic [Gen36].

Cook [Coo75] also introduced an extension of PV with logical connectives (but no
quantifiers), which will be explained in the next chapter. Cook called the theory PV1,
though PV1 usually refers to the first-order extension of PV that has both connectives
and quantifiers in bounded arithmetic literature (see, e.g., [Kra95a, KPT91]).

Buss’s theories. Independently, Buss [Bus86] introduced a first-order theory S1
2 by

extending Parikh’s theory I∆0 [Par71]. The theory allows a stronger induction prin-
ciple beyond Postulate 3 and is thus not known to be admissible in PV; indeed, S1

2
is strictly stronger than PV unless the polynomial-time hierarchy collapses [Bus95b].
Interestingly, Buss’s witnessing theorem [Bus86] (see also [Kra95a]) shows that S1

2(PV)
(i.e. S1

2 equipped with PV functions) is an conservative extension over PV — in terms
of provable equations, S1

2 is as strong as PV.
It is worth noting that a slight modification of T 0

2 , the lowest level of Buss’s T2
hierarchy, is equivalent to Cook’s theory PV [Jeř06].
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Two-sorted theories. An alternative approach to define bounded theories is to con-
sider “two-sorted” first-order logic, where the variables are either strings X or indices i
(see, e.g., [CN10, CKKO21]). The distinction between strings and indices is necessary
to develop theories corresponding to very weak complexity classes, say AC0. The two-
sorted version of PV is called VPV, and is known to be equivalent to PV in a strong
sense (see [Kra19, Section 9]).

For instance, the
postulate of
induction induces a
uniform verification
method following
“the chain of
reasoning”, which is
of polynomial
length.

Feasible Mathematics Thesis. We refer interested readers to the introduction sec-
tion of [Coo75] for discussions of the Verifiability Thesis. The Thesis of Feasible Mathe-
matics is arguably weaker than Cook’s original Verifiability Thesis as any theory satisfy-
ing the three postulates should immediately give the polynomial-time verifiability of the
theory — our postulates ensure that the proof itself is “a uniform mean of verification”
as considered by Cook [Coo75].

In particular, It could be the case that the Thesis of Feasible Mathematics is correct
but the Verifiability Thesis is incorrect if there is a new widely accepted “uniform mean
of verification” (e.g., a new interpretation of “verification” from quantum computing)
that is independent of the three postulates (and therefore also cannot be implemented
in PV).

Programming in PV. Cook’s 1975 paper [Coo75] does not prove the admissibility
of basic programming functionalities such as pairing, tuples, or recursion on multiple
variables in PV. A detailed exposition was given later by Cook and Urquhart [CU93];
the idea of implementing conditional equations with ITE (see Section 2.4.4) plays an
important role in their construction.





Chapter 3

Basic Proof Theory of PV

In the previous chapter, we have already proved several meta-theorems that serve as
an abstraction of particular proof tactics. However, the meta-theorems are still far
from informal mathematical reasoning — this leaves a significant gap between informal
feasible mathematics, where standard logical rules are allowed, and the “logic-free”
theory PV.

In this chapter, we will develop more tools for reasoning in PV. We will define a
natural proof system that is close to human reasoning, and in particular, is close to
the informal notion of feasible mathematics. This will be an important step towards
constructing more advanced algorithms and data structures as the results developed in
this section will relieve us from writing long and tedious PV proofs.

3.1 A Predicate Logic and its Proof System
We define a proof system PV-PL that, intuitively, extends PV by allowing logical con-
nectives {→,∧,∨,¬} and conditional proofs.

Syntax. We define the syntax of the system PV-PL as follows:
• We will denote

PV-PL formulas
using Greek letters.

An atomic formula of PV-PL is either ⊥ (denoting contradiction) or an equation
in the language of PV. A formula of PV-PL is either an atomic formula or a com-
position of atomic formulas using the logical connective → for implication. This
is without loss of generality, as we can define other propositional logic connectives
from {⊥,→}, for instance:

¬φ := φ→ ⊥; φ ∨ ψ := ¬φ→ ψ; φ ∧ ψ := ¬(¬φ ∨ ¬ψ).

• An assertion of PV-PL is of form Γ ⊢ φ, where Γ is a finite sequence of formulas
and φ is a formula. Γ is called the antecedents, and φ is called the consequence.

• We say that x is a variable of an atomic formula is x is a variable of the PV
equation. Similarly, x is a variable of a formula if it is a variable of any atomic
formula inside it, and is called a variable of an assertion if it is a variable of any
formula of the assertion.

53
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• A deduction rule of PV-PL is written of form
Γ1 ⊢ φ1 . . . Γk ⊢ φk

Γ ⊢ φ ,

where the assertions above the line are called premises and the assertion below
the line is called the conclusion. An axiom of PV-PL is a deduction rule with no
premise.

• A proof of a PV-PL assertion Γ ⊢ φ is a tree, where each leaf is an axiom, each
internal node is a deduction rule, and the root is Γ ⊢ φ. A PV-PL assertion is
said to be provable if there is a proof of it.

Interpretation of assertions. Suppose that x⃗ contains all variables occurred in
Γ ⊢ φ, the intuitive interpretation of the assertion is that for every n⃗ running over the
universe, if α[x⃗/n⃗] is true for all α ∈ Γ, then φ[x⃗/n⃗] is also true. That is:

• Suppose x appears in both Γ and φ, they are considered as the occurrences of the
same variable, instead of different variables.

• Variables in an assertion are considered to be universally quantified.
We can define models (and the standard model) and interpretations of assertions similar
to the definition of models and interpretations of PV, which is left as an exercise.

Deduction rules. There are three groups of deduction rules. Firstly, we have struc-
tural rules that deal with the antecedents.

• (W). The weakening rule is used to introduce a dummy condition in the antecedent
of an assertion:

Γ ⊢ φ
Γ, α ⊢ φ.

• (C). The contraction rule removes redundant conditions in the antecedent:
Γ, α, α ⊢ φ
Γ, α ⊢ φ

• (P). The permutation rule allows an arbitrary permutation of conditions in the
antecedent:

Γ, α, β,∆ ⊢ φ
Γ, β, α,∆ ⊢ φ.

Note that the contraction and permutation rules essentially make the antecedent a set
rather than a sequence.Sets and multisets

will be available in
the next chapter,

but we have to avoid
circular reasoning...

Some authors (see, e.g., [TS00]) directly define the antecedent
as a set (so that both rules are embedded) or a multiset (so that the permutation rule
is embedded). We will not do that, as we will eventually translate PV-PL proofs back
to PV proofs, and sets or multisets are not yet supported in PV.

We have the following logical rules that deal with assumptions, logical connectives,
equations, and variables in the formulas.

• (A). This axiom is used to apply an assumption:

Γ, α ⊢ α.
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• (→i). This rule is used to introduce an implication connective to the conclusion,
formally:

Γ, φ ⊢ ψ
Γ ⊢ φ→ ψ

.

• (→e). This rule is used to eliminate an implication connective in the conclusion,
formally:

Γ ⊢ φ→ ψ Γ ⊢ φ
Γ ⊢ ψ

• (⊥e). This rule is used to eliminate a contradiction in the conclusion, which
captures the standard “proof by contradiction” tactic:

Γ,¬φ ⊢ ⊥
Γ ⊢ φ ,

where ¬φ is a shorthand of φ→ ⊥. Exercise: Define
and prove the
Explosion Rule from
(⊥e) and (W).

• (V). This is the substitution rule for variables. Let x be a variable and t be a
term that does not contain x. Then for any formula φ,

Γ ⊢ φ
Γ[x/t] ⊢ φ[x/t] ,

where α[x/t] denotes the formula obtained by substituting all occurrences of x in
α with t, and Γ[x/t] := {α ∈ Γ | α[x/t]}.

• (=r). This is the reflexivity axiom of equality: Γ ⊢ x = x.
• (=s). This is the symmtricity axiom of equality: Γ, x = y ⊢ y = x.
• (=t). This is the transitivity axiom of equality: Γ, x = y, y = z ⊢ x = z.
• (=/). This is the substitution axiom of equality: Γ, x = y ⊢ t[z/x] = t[z/y].
We stress that the substitution rule (V) for variables is valid because the variables in

an PV-PL assertion are considered universally quantified. This rule essentially means
that if we can prove that for all x, Γ ⊢ α is true, we can substitute x in both the
antecedent and the conclusion to any term t. In particular, the conclusion of the
deduction rule Γ[x/t] ⊢ α[x/t] could be weaker than Γ ⊢ α.

It can be verified
that (Dε) and (Di)
are not necessary
and can be deduced
from (PV). We
choose to include
them as they are
quite useful :)

Finally, we have non-logical axioms that allow us to include equations in PV and
some useful facts. Concretely:

• (PV). This axiom is used to apply a PV-provable equation. Concretely, for every
PV provable equation e, we have Γ ⊢ e.

• (Dε). This axiom distinguishes the empty string ε and any non-empty string.
For i ∈ {0, 1}, we have Γ ⊢ ε ̸= si(x), where for all terms t1 and t2, t1 ̸= t2 is a
shorthand of ¬(t1 = t2).

• (Di). This axiom distinguishes 0 and 1: Γ ⊢ s0(x) ̸= s1(y).
Recall that the main reason that PV only includes a restricted version of structural

induction rather than the standard version is that it is not clear how to define conditional
proofs in PV. As we have already introduced the notion of assertions, we can now
formulate the standard structural induction scheme as:
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• (Indn). Suppose that t1, t2 are terms and x1, · · · , xn are variables, n ∈ N. Then
we have the following rule:

∀j ∈ [n] : Γ ⊢ t1[xj/ε] = t2[xj/ε]; ∀i1 . . . , in ∈ {0, 1} :
Γ, t1 = t2 ⊢ t1[x1/si1(x1), xn/sin(xn)] = t2[x1/si1(x1), . . . , xn/sin(xn)]

Γ ⊢ t1 = t2
.

Note that the quantification over j and i1, . . . , in is running in the meta-theory,
instead of the proof system. That is, if we have all 2n + n assumptions above the
line, where j ∈ [n] and i1, . . . , in ∈ {0, 1}, we can prove the conclusion below the
line.

We note that (Indn) can be used to implement the method of the case study (see
Theorem 2.4.5) by simply ignoring the induction hypothesis t1 = t2, where “ignoring
the induction hypothesis” can be formally done by the weakening rule (W).

Interpretation of the deduction rules. One may read a natural deduction proof
from the root to the bottom as a goal-directed proof search. We use the elimination
rule of ⊥e (i.e. proof by contradiction) as an example. To prove that Γ ⊢ α, we can
assume, towards a contradiction, that α is false and prove a contradiction, i.e., deduce
⊥ from Γ,¬α.For instance, the

rule Y
X can be read

as: To prove the
assertion X, we only

need to prove Y ...

Similarly, the induction rule (Indn) can be interpreted as follows. Suppose that we
want to prove Γ ⊢ t1 = t2. It suffices to prove that

• We can prove the identity if one of x1, . . . , xn is an empty string. That is, for
every j ∈ [n], we can prove t1 = t2 from Γ if we substitute xj/ε.

• From Γ and t1 = t2, we can prove the identity t1 = t2 if we append a bit
to each of x1, . . . , xn. That is, for every i1, . . . , in ∈ {0, 1}, we can deduce
t1[xj/sij (xj) (∀j)] = t2[xj/sij (xj) (∀j)] from t1 = t2 and Γ.

This exactly captures the informal version of structural induction as we discussed in
the first section.

The substitution rule (V) for variables, in the interpretation, is the tactic of proof by
generalization. Suppose that we want to prove a fact φ[x/t] from Γ[x/t], the substitution
rule (V) suggests that we can prove a more general form φ from Γ, where we pick a
fresh variable x to replace some occurrences of the term t. Note that it is said to be
more general as from Γ ⊢ φ we can deduce Γ[x/t′] ⊢ φ[x/t′] for any term t′ instead of
just for t = t′.

Note that since the goal-directed proof search interpretation is closer to the standard
writing style of mathematical reasoning, we will mostly write PV-PL proofs in this way.
Nevertheless, it should be straightforward to translate such proofs into a proof tree in
PV-PL.

The rule of cut. One important proof tactic in informal mathematics is to propose
a lemma, prove that the lemma suffices to derive the conclusion, and then prove the
lemma. This is called the rule of cut, formally denoted as

(Cut) : Γ ⊢ φ Γ, φ ⊢ ψ
Γ ⊢ ψ
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where Γ ⊢ ψ is the final goal, and φ is the “lemma”, or called the cut formula. Indeed,
the rule of cut is admissible in that it can be implemented by the axioms and rules in
PV-PL. Concretely, we can use the following proof tree:

Γ, φ ⊢ ψ (→i)Γ ⊢ φ→ ψ Γ ⊢ φ (→e)Γ ⊢ ψ

to simulate the rule of cut.

3.2 Warmup: Reasoning in PV-PL
We first provide two examples to demonstrate the power of the system PV-PL. The
first example considers a basic property of strings: If si(x) = si(y), then x = y. The
second example considers a form of the correctness of EQ (see Lemma 2.7.1).

Example 3.2.1. We will show that si(x) = si(y) ⊢ x = y for i ∈ {0, 1}. To see this,
we first apply the substitution rule of equality (=/) to prove that

si(x) = si(y) ⊢ TR(si(x)) = TR(si(y)).

Therefore by the rule of cut, it suffices to prove that

si(x) = si(y),TR(si(x)) = TR(si(y)) ⊢ x = y.

Note that we can prove by the definition axiom of TR (using the rule (PV)) and
weakening (to introduce dummy conditions) we can prove that

si(x) = si(y),TR(si(x)) = TR(si(y)) ⊢ x = TR(si(x)),

and therefore by the rule of cut, it suffices to prove that

si(x) = si(y),TR(si(x)) = TR(si(y)), x = TR(si(x)) ⊢ x = y.

We can introduce TR(si(y)) = y in the antecedent using the rule of cut as above,
and it suffices to prove that

si(x) = si(y),TR(si(x)) = TR(si(y)), x = TR(si(x)),TR(si(y)) = y ⊢ x = y.

Then by the substitution (generalization) rule (V), it suffices to prove

si(x) = si(y), z1 = z3, z2 = z1, z3 = z4 ⊢ z2 = z4.

The rest of the proof is straightforward applications of the transitivity of equality
and the rule of cut, which is left as an exercise.
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Example 3.2.2. As an example to show the power of the induction rule in PV-PL,
we consider the correctness of equality (see Lemma 2.7.1), that is:

⊢ EQ(y1, y2) = 1→ y1 = y2,

where the conditional equations are replaced by the logical connective → that is
natively supported in PV-PL.

Implementing the
rules require a full

unwinding of
Theorem 3.3.4,

which is painful... I
can tell because I

have tried :(

To prove this, we first apply the introduction rule of→ to move the assumption
into the antecedent, and therefore it suffices to prove EQ(y1, y2) = 1 ⊢ y1 = y2. We
perform induction on y1 and y2 simultaneously using (Ind2). This introduces the
following subgoals:

• (Base Case 1). EQ(ε, y2) = 1 ⊢ ε = y2. To prove this, we apply a case study
on y2 using the induction rule and the weakening rule, which introduces the
following sub-goals:

– (Base Case 1.i). EQ(ε, ε) = 1 ⊢ ε = ε. This follows from a weakening
(that removes the assumption), a generalization using (V) with t = ε,
and applying the rule of reflexivity.

– (Base Case 1.ii). Let i ∈ {0, 1}, we need to prove EQ(ε, si(x)) = 1 ⊢
ε = si(x). Recall that by the definition axiom of EQ we have that PV ⊢
EQ(ε, si(x)) = 0, and therefore by the (PV) rule as well as weakening we
can obtain that

EQ(ε, si(x)) = 1 ⊢ EQ(ε, si(x)) = 0.

By the rule of cut, it suffices to prove that

EQ(ε, si(x)) = 1,EQ(ε, si(x)) = 0 ⊢ ε = si(x).

By the explosion rule (which can be simulated by the elimination rule
of ⊥ and weakening), it suffices to prove that

EQ(ε, si(x)) = 1,EQ(ε, si(x)) = 0 ⊢ ⊥. (3.1)

From the antecedent we can deduce that 0 = EQ(ε, si(x)) (by symmetric-
ity) and subsequently 0 = 1 (by transitivity). Also, from the axiom (Di)
we know that 0 ̸= 1, i.e., ⊢ 0 = 1 → ⊥. Therefore, by applying the
elimination rule of → we can conclude Equation (3.1), which concludes
the sub-goal.

• (Base Case 2). EQ(y1, ε) = 1 ⊢ y1 = ε. The proof is almost identical to the
proof of the previous case and is therefore omitted.

• (Base Case 3). EQ(si(y1), sj(y2)) = 1, y1 = y2 ⊢ si(y1) = sj(y2), where i = j.
This can be proved by weakening (to remove the first assumption) and then
applying the substitution rule of equality (=/).
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• (Base Case 4). EQ(si(y1), sj(y2)) = 1, y1 = y2 ⊢ si(y1) = sj(y2), where i ̸= j.
In this case, we know from the definition rule that EQ(si(y1), sj(y2)) = 0. The
rest of the proof is similar to that of Base Case 1, which is left as an exercise.

Through these examples, one can notice that an informal proof almost directly
translates to a natural deduction proof in PV-PL. In the rest of the note, we may write
informal proofs that can be translated to PV-PL proofs straightforwardly.
Remark 3.2.1. One can verify that the PV-PL rules for logical connectives are complete
for propositional logic in the sense that if φ can be derived from Γ only through propo-
sitional logic deduction, then Γ ⊢ φ is PV-PL provable. Moreover, this is also true for
connectives defined from {→,⊥} such as ∧ and ∨.

We say that a rule is admissible in PV-PL if it can be implemented by PV-PL proof
trees. In particular, the following rules for ∧ and ∨ can be implemented by PV-PL proof
trees.

Γ ⊢ φ ∧ ψ
Γ ⊢ φ (∧1

e)
Γ ⊢ φ ∧ ψ

Γ ⊢ ψ (∧2
e)

Γ ⊢ φ Γ ⊢ ψ
Γ ⊢ φ ∧ ψ (∧i)

Γ ⊢ φ
Γ ⊢ φ ∨ ψ (∨1

i )
Γ ⊢ ψ

Γ ⊢ φ ∨ ψ (∨2
i )

Γ ⊢ φ ∨ ψ Γ, φ ⊢ α Γ, ψ ⊢ α
Γ ⊢ β (∨e)

Remark 3.2.2. We also note that the axiom of excluded middle, i.e., ⊢ φ ∨ ¬φ, can be
proved by the (⊥e) rule using the following proof tree:

(φ ∨ ¬φ)→ ⊥ ⊢ (φ→ ⊥)→ ⊥ (φ ∨ ¬φ)→ ⊥ ⊢ φ→ ⊥ (→e)(φ ∨ ¬φ)→ ⊥ ⊢ ⊥ (⊥e)φ ∨ ¬φ

The proofs for the two leaves are similar. Notice that the second leaf node can be
proved as follows:

(φ ∨ ¬φ)→ ⊥, φ ⊢ φ ∨ ¬φ (φ ∨ ¬φ)→ ⊥, φ, φ ∨ ¬φ ⊢ ⊥ (Cut)(φ ∨ ¬φ)→ ⊥, φ ⊢ ⊥ (→i)(φ ∨ ¬φ)→ ⊥ ⊢ φ→ ⊥

where the two leaves can be easily proved by the rules for disjunction and implication
and if left as an exercise.

3.3 The Translation Theorem
Now we are ready to formulate and prove a theorem that connects PV-PL and PV. By
the (PV) rule in PV-PL we know that a provable equation in PV is also provable in
PV-PL, and therefore PV-PL is an extension of PV-PL. Moreover, we can prove that
the extension does not introduce any provable equation that is not provable in PV.
Formally:

Theorem 3.3.1 (implicit in [Coo75]). Let e be an equation in PV. Then ⊢ e is provable
in PV-PL if and only if PV ⊢ e.
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Such an extension T ′ of a theory T that does not introduce new provable theorems
that can be formulated in the language of a theory T is called a conservative extension.
In particular, the theorem suggests that PV-PL is a conservative extension of the theory
PV.

Indeed, we will prove a stronger result, called the translation theorem, that provides
an explicit embedding of PV-PL assertions Γ ⊢ φ into PV equations [Γ ⊢ φ]PV such that
a proof of φ can be translated back to a PV proof of [Γ ⊢ φ]PV.

An extension of conditional equations. To define the embedding [·]PV, we need
to introduce an extension of conditional equations. Since t⇒ e itself is an equation, we
can also talk about a “conditional conditional equation” t1 ⇒ (t2 ⇒ e), or even with
more (⇒)’s. We may remove the parentheses by assuming that ⇒ is right-associative.

We slightly extend the notation. For a sequence of terms t(1)
c , . . . , t(ℓ)c , ℓ ∈ N, we

define
t(1)
c , . . . , t(ℓ)c ⇒ t1 = t2

as
t(1)
c ⇒ . . .⇒ t(ℓ)c ⇒ t1 = t2,

which intuitively means that the conjunction of all conditions t(1)
c , . . . , t(ℓ)c imply t1 = t2.

We use RHS[e] and LHS[e] to represent the RHS and LHS of the conditional equation
e. Note that they are not PV functions but meta-functions (in the meta-theory) dealing
with formulas.Nevertheless, they

should be feasible
assuming reasonable

encoding of PV
equations.

We use e1 ≡ e2 to denote that the terms (or equations) e1 and e2 are
the same terms (or equations).

The PV Translation. Let Γ ⊢ φ be an assertion, we define the PV translation of it,
denoted by [Γ ⊢ φ]PV, as a PV equation defined as follows:

• (Translation of Assertion): Let Γ = (α1, . . . , αn), n ∈ N. We define

[Γ ⊢ φ]PV := “[αn]PV ⇒ [αn−1]PV ⇒ . . .⇒ [α1]PV ⇒ [φ]PV = 1”,

where [α]PV is the PV translation of formulas that will be defined later, and
tc ⇒ t1 = t2 denotes conditional equation. In particular, if n ∈ N, we have

[Γ ⊢ φ]PV := [φ]PV = 1.

• (Translation of Atomic Formula). We define

[⊥]PV := 0,
[t = s]PV := “EQ(t, s)”.

• (Translation of the Connective). We define

[φ→ ψ]PV := ITE([φ]PV, [ψ]PV, 1).

Proposition 3.3.2. Let φ be a formula. Then PV ⊢ IsNotEps([φ]PV) = 1.
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Proof Sketch. We perform induction (in the meta-theory) on the outermost connective
of φ. If φ is an atomic formula, then either φ = ⊥ or φ is a PV equation. In the first case
it suffices to prove that PV ⊢ IsNotEps(0) = 1, which follows from a simple unfolding of
IsNotEps, while in the latter case it suffices to prove that PV ⊢ IsNotEps(EQ(x, y)) = 1,
which follows from a simultaneous induction on x and y using Theorem 2.6.3.

Suppose that φ := ψ1 → ψ2. From the induction hypothesis, we know that PV ⊢
IsNotEps([ψ1]PV) = 1 and IsNotEps([ψ2]PV) = 1. We will need to prove that

PV ⊢ IsNotEps(ITE([ψ1]PV, [ψ2]PV, 1)) = 1. (3.2)

Indeed, we will prove that

PV ⊢ IsNotEps(x)⇒ IsNotEps(y)⇒ IsNotEps(ITE(x, y, 1)) = 1. (3.3)

If this is provable, we can derive Equation (3.2) by the substitution x/[ψ1]PV, y/[ψ2]PV
and applying Modus Ponens (see Proposition 2.4.10).

It remains to prove Equation (3.3). We perform a case study on x and y using
Theorem 2.4.5, where all 9 cases can be proved by simply unfolding of IsNotEps and
ITE. The details are omitted.

Proposition 3.3.3. Let φ be a formula. Then PV ⊢ TR([φ]PV) = ε.

The proof is similar to the proposition above. The detail is omitted.
The translation theorem claims that the PV translation of an assertion preserves its

provability. Formally:

Theorem 3.3.4 (Translation Theorem). Let Γ ⊢ φ be a PV-PL assertion. Then Γ ⊢ φ
is provable in PV-PL if and only if PV ⊢ [Γ ⊢ φ]PV.

To see that the translation theorem implies Theorem 3.3.1, notice that if we take
Γ = ∅ and φ := s = t, we will have that [Γ ⊢ φ]PV = “EQ(s, t) = 1. Therefore, suppose
that ⊢ s = t is provable in PV-PL, we have that PV ⊢ EQ(s, t) = 1, which implies that
PV ⊢ s = t by Lemma 2.7.1.

Road map to the proof of the translation theorem. The proof of the translation
theorem is highly constructive. Indeed, we will show that each deduction rule in PV-PL
is PV-admissible, in the sense that if the PV translation of all premises of the rule are
PV-provable, then the PV translation of the conclusion is also PV-provable; this implies
the proof of translation theorem by structural induction on the PV-PL proof tree.

In the rest of this chapter, we will prove the admissibility of all PV-PL rules, which
concludes the translation theorem.

3.4 Admissibility of Structural Rules
We prove the admissibility of the structural rules, including the weakening, contraction,
and permutation rules that deal with the antecedents.
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3.4.1 Admissibility of Weakening
Lemma 3.4.1. The weakening rule is admissible. That is, for any assertion Γ ⊢ φ,
suppose that PV ⊢ [Γ ⊢ φ]PV, then PV ⊢ [Γ, α ⊢ φ]PV.

Let Γ = (β1, . . . , βn), n ∈ N. By the definition of the PV translation, we know that
it suffices to prove that

PV ⊢ [βn]PV ⇒ . . .⇒ [β1]PV ⇒ [φ]PV = 1
PV ⊢ [α]PV ⇒ [βn]PV ⇒ . . .⇒ [β1]PV ⇒ [φ]PV = 1 .

Moreover, it suffices to prove that:

Proposition 3.4.2. Let tc, t1, t2 be terms. If PV ⊢ t1 = t2 and PV ⊢ IsNotEps(tc) = 1,
PV ⊢ tc ⇒ t1 = t2.

To see this, we can treat [βn]PV ⇒ . . . ⇒ [β1]PV ⇒ [φ]PV = 1 as the equation s = t
and [α]PV as the term t′, and that PV ⊢ IsNotEps([α]PV) = 1 by Proposition 3.3.2.

Furthermore, the following proposition implies the fact above by the substitution
z/t′, x/s, y/t, and Modus Ponens (see Proposition 2.4.10).

Proposition 3.4.3. PV ⊢ IsNotEps(z)⇒ EQ(x, y)⇒ z ⇒ x = y.

It remains to prove the proposition.

Proposition 3.4.4. PV proves that
• LHS[s1(z)⇒ x = y] = LHS[x = y]
• RHS[s1(z)⇒ x = y] = RHS[x = y]

Proof Sketch. Both equations can be proved by a straightforward unfolding of ITE in
the definition of conditional equations.

Proof of Proposition 3.4.3. We can prove this by a case study on z using Theorem 2.4.5.
In the case of z/ε, IsNotEps(ε) = 0, and thus we prove the equation by the Explosion
Rule (see Proposition 2.4.11). Otherwise, for i ∈ {0, 1}, we need to prove the equation
after the substitution z/si(z). In either case, we know that IsNotEps(si(z)) = 1, and
thus by Proposition 3.4.4

PV ⊢ LHS[IsNotEps(si(z))⇒ e] = LHS[e],
PV ⊢ RHS[IsNotEps(si(z))⇒ e] = RHS[e],

where e is defined as the equation “EQ(x, y)⇒ si(z)⇒ x = y”. Subsequently, it suffices
to prove LHS[e] = RHS[e], i.e., the equation

e ≡ “EQ(x, y)⇒ si(z)⇒ x = y”.

For the case that i = 0, notice that the conditional equation s0(z) ⇒ x = y is
provable by the Explosion Rule (see Proposition 2.4.11), and thus by Proposition 3.4.4
we know that e is also provable.
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For the case that i = 1, let e′ := s1(z)⇒ x = y, notice that
e ≡ “LHS[e] = RHS[e]”
≡ “ITE(EQ(x, y),RHS[e′], LHS[e′]) = LHS[e′]”
≡ “ITE(EQ(x, y), x, ITE(s1(z), y, x)) = ITE(s1(z), y, x)”.

By unfolding ITE, it suffices to prove that ITE(EQ(x, y), x, y) = y, i.e., EQ(x, y)⇒ y =
x. This can be proved following the proof of the correctness of EQ, i.e., EQ(x, y) ⇒
x = y (see Lemma 2.7.1).

3.4.2 Admissibility of Contraction
Lemma 3.4.5. The contraction rule is admissible. That is, for any assertion Γ, α ⊢ φ,
suppose that PV ⊢ [Γ, α, α ⊢ φ]PV, then PV ⊢ [Γ, α ⊢ φ]PV.

Similar to the case for weakening, we know by unfolding the definition of the PV
translation that it suffices to prove the following meta-theorem of PV:
Proposition 3.4.6. Let tc, t1, t2 be terms. Suppose that PV ⊢ IsNotEps(tc) = 1 and
PV ⊢ tc ⇒ t1 = t2, then PV ⊢ tc ⇒ tc ⇒ t1 = t2.

To prove the proposition, we need to further extend the syntactic of conditional
equations to allow equations (as well as conditional equations) to appear in the an-
tecedent of a conditional equation, rather than only in the conclusion of a conditional
equation. Let e be an equation, we use [e]EQ to denote the term EQ(LHS[e],RHS[e]).
We define the conditional equation e⇒ s = t as the equation [e]EQ ⇒ s = t. Similarly,
the equation

“(e1 ⇒ e2)⇒ s = t” ≡ “[[e1]EQ ⇒ LHS[e2] = RHS[e2]]EQ ⇒ s = t′′.

We can therefore allow the formulation of an arbitrary composition of equations and
the condition symbol ⇒.

By substitution and Modus Ponens (see Proposition 2.4.10), it is easy to verify that
the following proposition implies Proposition 3.4.6.
Proposition 3.4.7. PV ⊢ IsNotEps(z)⇒ (x = y)⇒ z ⇒ x = y.
Proof Sketch. The proof is done by a case study on z using Theorem 2.4.5. We will
only demonstrate the case for z/s1(z), while the other two cases z/ε and z/s0(z) are
left as an exercise.

By the definition of the conditional equation, we know that s1(z) ⇒ x = y is the
equation ITE(s1(z), y, x) = x. It then suffices to prove that

PV ⊢ EQ(x, y)⇒ ITE(s1(z), y, x) = x,

which is the equation
PV ⊢ ITE(EQ(x, y), x, ITE(s1(z), y, x)) = ITE(s1(z), y, x).

(Recall that we can add a dummy condition IsNotEps(z) by Proposition 3.4.2.)
Note that PV ⊢ ITE(s1(z), y, x) = y. Therefore, it suffices to prove that PV ⊢

ITE(EQ(x, y), x, y) = y, which is exactly PV ⊢ EQ(x, y) ⇒ y = x. This can be proved
similar to the proof of Lemma 2.7.1.
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3.4.3 Admissibility of Permutation
Lemma 3.4.8. The permutation rule is admissible. That is, for any assertion Γ, α, β,∆ ⊢
φ, suppose that PV ⊢ [Γ, α, β,∆ ⊢ φ]PV, then PV ⊢ [Γ, β, α,∆ ⊢ φ]PV.

Again, to prove the admissibility of permutation, it suffices to prove the following
meta-theorem of PV:

Proposition 3.4.9. Let s1, . . . , sn, t
1
c , t

2
c , t1, t2 be terms, n ∈ N. Suppose that PV ⊢

IsNotEps(tic) = 1 for i ∈ {0, 1}, and that PV ⊢ sn ⇒ . . . ⇒ s1 ⇒ t1c ⇒ t2c ⇒ t1 = t2,
then

PV ⊢ sn ⇒ . . .⇒ s1 ⇒ t2c ⇒ t1c ⇒ t1 = t2.

This can be easily derived from the following proposition:

Proposition 3.4.10. Let n ∈ N. Then PV proves

IsNotEps(z1)⇒ IsNotEps(z2)⇒ (wn ⇒ . . .⇒ w1 ⇒ z1 ⇒ z2 ⇒ x = y)
⇒ (wn ⇒ . . .⇒ w1 ⇒ z2 ⇒ z1 ⇒ x = y).

We will prove this by a case study on z using Theorem 2.4.5. The cases for z1/ε or
z2/ε are easy. For instance, if we substitute z2/ε, we have that IsNotEps(z2) = 0 and
thus by the Explosion Rule (see Proposition 2.4.11),

PV ⊢ IsNotEps(ε)⇒ (wn ⇒ . . .⇒ w1 ⇒ z1 ⇒ ε⇒ x = y)
⇒ (wn ⇒ . . .⇒ w1 ⇒ ε⇒ z1 ⇒ x = y).

We can further add a dummy condition IsNotEps(z1) by Proposition 3.4.2.
Now we consider the case for z1/si(z1) and z2/sj(z2). We will prove that

PV ⊢ (wn ⇒ . . .⇒ w1 ⇒ si(z1)⇒ sj(z2)⇒ x = y)
⇒ (wn ⇒ . . .⇒ w1 ⇒ sj(z2)⇒ si(z1)⇒ x = y).

Again, if i = 0 or j = 0, we can complete the proof by the Explosion Rule (see
Proposition 2.4.11) and adding dummy conditions using Proposition 3.4.2. Therefore,
it suffices to deal with the case for i = j = 1.

This will be proved by induction on n in the meta-theory. Suppose that n = 0, we
will need to prove that:

Proposition 3.4.11. PV ⊢ (s1(z1)⇒ s1(z2)⇒ x = y)⇒ s1(z1)⇒ s1(z2)⇒ x = y.

By unfolding all the definitions, this equation will essentially reduce to the correct-
ness of equality. The details are omitted.

Now we consider the induction case. That is, if

PV ⊢ (wn ⇒ . . .⇒ w1 ⇒ si(z1)⇒ sj(z2)⇒ x = y)
⇒ (wn ⇒ . . .⇒ w1 ⇒ sj(z2)⇒ si(z1)⇒ x = y),
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then

PV ⊢ (wn+1 ⇒ . . .⇒ w1 ⇒ si(z1)⇒ sj(z2)⇒ x = y)
⇒ (wn+1 ⇒ . . .⇒ w1 ⇒ sj(z2)⇒ si(z1)⇒ x = y),

With the substitution x/[wn ⇒ . . .⇒ w1 ⇒ si(z1)⇒ sj(z2)⇒ x = y]EQ, y1/LHS[wn ⇒
. . . ⇒ w1 ⇒ sj(z2) ⇒ si(z1) ⇒ x = y], y2/RHS[wn ⇒ . . . ⇒ w1 ⇒ sj(z2) ⇒ si(z1) ⇒
x = y], w/wn+1 and Modus Ponens (see Proposition 2.4.10), it suffices to prove the
“transitivity” of ⇒, formalized as:

Proposition 3.4.12. PV ⊢ (x⇒ y1 = y2)⇒ (w ⇒ x)⇒ w ⇒ y1 = y2.

This can be proved by applying a case study on w and x using Theorem 2.4.5, and
using the correctness of EQ (see Lemma 2.7.1). The detail is omitted and left as an
exercise.

3.5 Admissibility of Axioms for Equality
Now we consider the admissibility of axioms for equality, including the logical axioms
(=r), (=s), (=t), and (=/), as well as the non-logical axioms (PV), (Dε), and (Di).

3.5.1 Non-logical Axioms about Equality
The non-logical axioms are relatively straightforward, so we quickly scan over them.

Lemma 3.5.1. The (PV) axiom is admissible. That is, for any Γ and any PV provable
equation e, PV ⊢ [Γ ⊢ e]PV.

Proof. Let e ≡ t1 = t2. It suffices to prove that PV ⊢ [⊢ e]PV and apply the admissibility
of weakening. Notice that [⊢ e]PV ≡ “EQ(t1, t2) = 1”. Since PV ⊢ t1 = t2, we know by
the correctness of EQ (see Lemma 2.7.1) that EQ(t1, t2) = 1.

Lemma 3.5.2. The (Dε) axiom is admissible. That is, for any Γ and i ∈ {0, 1},
PV ⊢ [Γ ⊢ ε ̸= si(x)]PV.

Proof. It suffices to prove that PV ⊢ [⊢ ε ̸= si(x)]PV and apply the admissibility of
weakening. Notice that [⊢ ε ̸= si(x)]PV ≡ “EQ(ε, si(x)) ⇒ 0 = 1”. By the definition
axioms of EQ we know that this conditional equation PV-provably evaluates to 0 ⇒
0 = 1, which is provable in PV by the Explosion Rule (see Proposition 2.4.11).

Lemma 3.5.3. The (Di) axiom is admissible. That is, for any Γ, PV ⊢ [Γ ⊢ s0(x) ̸=
s1(y)].

Proof. It suffices to prove that PV ⊢ [⊢ s0(x) ̸= s1(y)]PV and apply the admissibility
of weakening. Notice that [⊢ s0(x) ̸= s1(y)]PV ≡ “EQ(s0(x), s1(y)) ⇒ 0 = 1”. By the
definition axioms of EQ we know that this conditional equation PV-provably evaluates to
0⇒ 0 = 1, which is provable in PV by the Explosion Rule (see Proposition 2.4.11).
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3.5.2 Logical Axioms for Equality
Lemma 3.5.4. The reflexivity rule (=r) is admissible. That is, for any Γ, PV ⊢ [Γ ⊢
x = x]PV.

Proof. It suffices to prove that PV ⊢ [⊢ x = x]PV and apply the admissibility of weak-
ening. Notice that [⊢ x = x]PV ≡ “EQ(x, x) = 1”, which is provable in PV by a simple
induction on x.

Lemma 3.5.5. The symmetricity rule (=s) is admissible. That is, for any Γ, PV ⊢
[Γ, x = y ⊢ y = x]PV.

Proof Sketch. It suffices to prove that PV ⊢ [x = y ⊢ y = x]PV and apply the admissi-
bility of weakening. Notice that [x = y ⊢ y = x]PV ≡ “EQ(x, y) ⇒ EQ(y, x) = 1”, or
equivalently:

ITE(EQ(x, y), 1,EQ(y, x)) = EQ(y, x).
This can be proved by simultaneous induction on x, y using Theorem 2.6.3, which is
similar to the proof of the correctness of EQ (see Lemma 2.7.1).

Lemma 3.5.6. The transitivity rule (=t) is admissible. That is, for any Γ, PV ⊢
[Γ, x = y, y = z ⊢ x = z]PV.

Proof Sketch. It suffices to prove that PV ⊢ [x = y, y = z ⊢ x = z]PV and apply the
admissibility of weakening. Notice that

[x = y, y = z ⊢ x = z]PV

≡ “EQ(y, z)⇒ EQ(x, y)⇒ EQ(x, z) = 1”
≡ “EQ(y, z)⇒ ITE(EQ(x, y), 1,EQ(x, z)) = EQ(x, z)”
≡ “ITE(EQ(y, z),EQ(x, z), ITE(EQ(x, y), 1,EQ(x, z))) = ITE(EQ(x, y), 1,EQ(x, z))”.

To see that this is provable in PV, we will perform induction simultaneously on x,
y, and z using Theorem 2.6.3 (see Remark 2.6.1). Specifically, we will show that both
sides of the equation are identical to the function f(x, y, z) recursively defined by the
equations:

f(ε, y, z) := ITE(EQ(ε, y), 1,EQ(ε, z)), f(x, ε, z) := ITE(EQ(x, ε), 1,EQ(x, z)),
f(x, y, ε) := ITE(EQ(x, y), 1,EQ(x, ε))

f(si(x), sj(y), sk(z)) :=


f(x, y, z) i = j = k

ITE(EQ(x, y), 1, 0) i = j ∧ i ̸= k

EQ(x, z) i = k ∧ i ̸= j

0 j = k ∧ i ̸= j

Note that for cases where one of x, y, z is substituted by ε, we need to further perform
induction on the remaining variables. The details are omitted and left as an exercise.

Before proving the admissibility of the substitution rule for equality, we first prove
a technical lemma showing the correctness of EQ in conditional equations.
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Proposition 3.5.7. PV ⊢ IsNotEps(x) ⇒ (x ⇒ y = z) ⇒ x ⇒ EQ(y, z) = 1. More-
over, if for any terms tc, t1, t2, if PV ⊢ IsNotEps(tc) and PV ⊢ tc ⇒ t1 = t2, then
PV ⊢ tc ⇒ EQ(t1, t2) = 1.

Proof Sketch. The “moreover” part follows straightforwardly, so we will only prove the
first part. To show that PV ⊢ IsNotEps(x) ⇒ (x ⇒ y = z) ⇒ x ⇒ EQ(y, z) = 1, we
perform a case study on z using Theorem 2.4.5. The case for z/ε can be proved using
the Explosion Rule (see Proposition 2.4.11), and the case for z/s0(z) can be proved
using the Explosion Rule by adding dummy conditions using Proposition 3.4.2.

For the case z/s1(z), the conditional equation PV-provably evaluates to EQ(y, z)⇒
EQ(y, z) = 1, which can be proved using the fact that

PV ⊢ IsNotEps(x)⇒ TR(x) = ε⇒ x⇒ x = 1

(which can be proved by a simple case study) and that PV ⊢ IsNotEps(EQ(y, z)) = 1
and PV ⊢ TR(EQ(y, z)) = ε (both of which can be proved by simultaneous induction
on y and z.

Lemma 3.5.8. The substitution rule (=/) for equality is admissible. That is, for any
Γ, PV ⊢ [Γ, x = y ⊢ t[z/x] = t[z/y]]PV.

Proof Sketch. Again, it suffices to prove that PV ⊢ [x = y ⊢ t[z/x] = t[z/y]]PV, or
equivalently:

PV ⊢ EQ(x, y)⇒ EQ(t[z/x], t[z/y]) = 1.
Indeed, we will prove a stronger result (by Proposition 3.5.7) that

PV ⊢ EQ(x, y)⇒ t[z/x] = t[z/y].

Suppose that z, w⃗ are the variables that occurred in t, and ft(z, w⃗) = t is the function
defined from t using the composition rule in PV. It suffices to prove that

PV ⊢ EQ(x, y)⇒ ft(x, w⃗) = ft(y, w⃗),

or equivalently PV ⊢ ITE(EQ(x, y), ft(y, w⃗), ft(x, w⃗)) = ft(x, w⃗).

Auxiliary functions. Let EQL(x, y) be the function that outputs 1 (resp. 0) if and
only if x and y are of the same length. It can be defined, for instance, by simultaneous
recursion on x and y, provided that it proves

EQL(ε, si(y)) = EQL(sj(x), ε) = 0, EQL(si(x), sj(y)) = EQL(x, y).

Let Suf(x, y) be the function that outputs the suffix of x of length |y|, that is:

Suf(x, ε) := ε, Suf(ε, y) := ε

Suf(si(x), sj(y)) := si(Suf(x, y)).

It can be proved by induction on x that Suf(x, y ◦ x) = x. Moreover, we can prove the
following properties of Suf:
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Proposition 3.5.9. PV proves the following equations:
• EQL(y, z)⇒ Suf(x, y) = Suf(x, z).
• Suf(x, y ◦ x) = x.
• Suf(x, si(y)) = LastBit(ITR(x, y)) ◦ Suf(x, y), i ∈ {0, 1}.
• Suf(x, x ◦ y) = x.

Proof Sketch.Hopefully I’m not
making any stupid

mistake here :)

The first bullet can be proved by simultaneous induction on y and z using
Theorem 2.6.3. The second bullet can be proved by induction on x. The third bullet
can be proved by simultaneous induction on x and y using Theorem 2.6.3, where we
would need the first bullet as well as EQL(s0(y), s1(y)) = 1 and Modus Ponens (see
Proposition 2.4.10) to prove that Suf(x, s0(y)) = Suf(x, s1(y)). The last bullet can be
proved by induction on y and using the second and the third bullets to prove that
Suf(x, x ◦ ε) = x and Suf(x, x ◦ si(y)) = Suf(x, x ◦ y).

A generalized equation. We will show that PV proves:

ITE(EQ(Suf(x, z), Suf(y, z)), ft(ITR(x, z) ◦ Suf(y, z), w⃗), ft(x, w⃗)) = ft(x, w⃗). (3.4)

To see that this suffices, we can substitute z/x ◦ y, so that the LHS of the equation is
PV-provably equal to ITE(EQ(x, y), ft(y, w⃗), ft(x, w⃗)) by Proposition 3.5.9.

It remains to prove Equation (3.4). We will perform induction on the auxiliary
variable z using the induction rule in PV. Concretely, we will show that both sides of
the equation are identical to the function g(z, x, y, w⃗) recursively defined as

g(ε, x, y, w⃗) = ft(x, w⃗),

g(si(z), x, y, w⃗) =
ft(x, w⃗) EQ(LastBit(ITR(x, z)), LastBit(ITR(y, z))) = 1;
g(z, x, y, w⃗) otherwise.

The RHS of Equation (3.4) is identical to g.

Useful properties. Now we show that this is also true for the LHS, starting from
proving a few properties that will help simplify Equation (3.4) with z/si(z). Notice
that by Proposition 3.5.9:

EQ(Suf(x, si(z)), Suf(y, si(z)))
= EQ(LastBit(ITR(x, z)) ◦ Suf(x, z), LastBit(ITR(y, z)) ◦ Suf(y, z)). (3.5)

Moreover, by simultaneous induction on x and y using Theorem 2.6.3, we can prove that
EQ(LastBit(z) ◦ x, LastBit(w) ◦ y) = And(EQ(LastBit(z), LastBit(w)),EQ(x, y)), which
implies that

(3.5) = And(EQ(LastBit(ITR(x, z)), LastBit(ITR(y, z))),EQ(Suf(x, z), Suf(y, z))).

Also, notice that

ITR(x, si(z)) ◦ Suf(y, si(z))
= ITR(x, si(z)) ◦ (LastBit(ITR(y, z)) ◦ Suf(y, z)). (Proposition 3.5.9)
= ITR(x, si(z)) ◦ LastBit(ITR(y, z)) ◦ Suf(y, z)
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Proof of Equation (3.4). Note that it is clear that the LHS of Equation (3.4) with
the substitution z/ε is identical to g(ε, x, y, w⃗) by unfolding. We will now simplify
Equation (3.4) with z/si(z). The strategy is to perform a case study on whether
LastBit(ITR(x, z)) = LastBit(ITR(y, z)). Formally, let z′ be a fresh variable, and we will
prove thatft(TR(z′) ◦ LastBit(z′′) ◦ Suf(y, z), w⃗) And(EQ(LastBit(z′), LastBit(z′′)),

EQ(Suf(x, z), Suf(y, z))) = 1
ft(x, w⃗) otherwise

=
ITE(EQ(Suf(x, z), Suf(y, z)), ft(z′ ◦ Suf(y, z), w⃗), ft(x, w⃗)) EQ(LastBit(z′), LastBit(z′′)) = 1;
ft(x, w⃗) otherwise;

≡

LHS[(3.4)] EQ(LastBit(z′), LastBit(z′′)) = 1;
ft(x, w⃗) otherwise;

To see that this suffices, we can substitute

z′/ITR(x, z), z′′/ITR(y, z)

so that according to the properties we proved above, the equation shows exactly that
the LHS of Equation (3.4) is identical to the function g recursively defined as above.

Finally, we prove the equation above by a case study on z′ and z′′ using Theo-
rem 2.4.5. In all cases that LastBit(z′) ̸= LastBit(z′′), both sides of the consequence
of the conditional equation evaluates to ft(x, w⃗). Now we consider the cases that
LastBit(z′) = LastBit(z′′), for instance, with the substitution z′/s0(z′) and z′′/s0(z′′). In
such case, the LHS of the equation evaluates toft(z′ ◦ 0 ◦ Suf(y, z), w⃗) EQ(Suf(x, z), Suf(y, z))) = 1;

ft(x, w⃗) otherwise,

while the RHS evaluates to

ITE(EQ(Suf(x, z), Suf(y, z)), ft(s0(z′) ◦ Suf(y, z), w⃗), ft(x, w⃗))

=
ft(s0(z′) ◦ Suf(y, z), w⃗) EQ(Suf(x, z), Suf(y, z))) = 1;
ft(x, w⃗) otherwise.

Since z′ ◦ 0 = s0(z′), we can prove that they are identical by a case study on ITE using
Theorem 2.4.6. This completes the proof.

3.6 Admissibility of Logical Rules
Now we will prove the admissibility of logical rules, including the assumption axiom
(V), the substitution rule (V), and the introduction and elimination rules for logical
connectives {→,⊥}.
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3.6.1 Assumption and Substitution
Lemma 3.6.1. The assumption rule (A) is admissible. That is, for any Γ and formula
α, PV ⊢ [Γ, α ⊢ α]PV.

Proof Sketch. Again, it suffices to prove the admissibility of α ⊢ α, i.e., PV ⊢ [α ⊢ α]PV.
Notice that [α ⊢ α]PV ≡ “[α]PV ⇒ [α]PV = 1”, which is provable in PV by the fact that

PV ⊢ IsNotEps(x)⇒ (TR(x) = ε)⇒ x⇒ x = 1

and that PV ⊢ IsNotEps([α]PV) (see Proposition 3.3.2) and PV ⊢ TR([α]PV) = ε (see
Proposition 3.3.3) using Modus Ponens (see Proposition 2.4.10).

Lemma 3.6.2. The substitution rule (V) is admissible. That is, for any assertion
Γ ⊢ α such that PV ⊢ [Γ ⊢ α]PV, we have PV ⊢ [Γ[z/t] ⊢ α[z/t]]PV for any term t.

Proof Sketch. It suffices to prove that substitution commutes with the PV translation,
i.e., [Γ[z/t] ⊢ α[z/t]]PV ≡ [Γ ⊢ α]PV[z/t], so that the lemma follows directly from the
substitution rule (L4) in PV.

We first prove that substitution commutes with conditional equations, i.e., (sc ⇒
s1 = s2)[z/t] ≡ sc[z/t]⇒ s1[z/t] = s2[z/t], which follows directly from the definition of
conditional equations. Let Γ = (β1, . . . , βn). Notice that

[Γ ⊢ α]PV[z/t]
≡ [βn]PV[z/t]⇒ . . .⇒ [β1]PV[z/t]⇒ [α]PV[z/t] = 1
≡ [Γ[z/t] ⊢ α[z/t]]PV,

where the first equality follows from applying the fact that substitution commutes with
conditional equations for n times, and the second equality follows from the definition
of the translation [·]PV.

3.6.2 Rules of Implication
Next, we show that the introduction (→i) and elimination (→e) rules of implication
are PV admissible.

Lemma 3.6.3. The introduction rule of implication (→i) is admissible. That is, for
any Γ and formulas φ, ψ, suppose that PV ⊢ [Γ, φ ⊢ ψ]PV, then PV ⊢ [Γ ⊢ φ→ ψ]PV.

Proof Sketch. By the admissibility of the permutation rule, it suffices to prove that
PV ⊢ [φ,Γ ⊢ ψ]PV implies that PV ⊢ [Γ ⊢ φ→ ψ]PV.

Let Γ = (β1, . . . , βn), n ∈ N. By the assumption and the definition of PV translation,
we have that

PV ⊢ [βn]PV ⇒ . . .⇒ [β1]PV ⇒ [φ]PV ⇒ [ψ]PV = 1. (3.6)
and we need to prove that

PV ⊢ [βn]PV ⇒ . . .⇒ [β1]PV ⇒ ITE([φ]PV, [ψ]PV, 1) = 1. (3.7)
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Proposition 3.6.4. Let n ∈ N. Then PV proves

IsNotEps(x)⇒ IsNotEps(y)⇒ TR(x) = ε⇒ TR(y) = ε⇒
IsNotEps(zn)⇒ . . .⇒ IsNotEps(z1)⇒
(zn ⇒ . . .⇒ z1 ⇒ x⇒ y = 1)⇒ zn ⇒ . . .⇒ z1 ⇒ ITE(x, y, 1) = 1.

To see that this proposition suffices, notice that with the substitution x/[φ]PV,
y/[ψ]PV, zi/[βi]PV for i ∈ [n] and Proposition 3.3.2 and 3.3.3, we obtain that

([βn]PV ⇒ . . .⇒ [β1]PV ⇒ [φ]PV ⇒ [ψ]PV = 1)
⇒ [βn]PV ⇒ . . .⇒ [β1]PV ⇒ ITE([φ]PV, [ψ]PV, 1) = 1,

where the antecedent (and thus its [·]EQ translation) is provable in PV. Therefore, by
Modus Ponens (see Proposition 2.4.10), we can obtain Equation (3.7).

Proof of Proposition 3.6.4. It remains to prove Proposition 3.6.4. Similar to the
proof of Proposition 3.4.10, we will prove the conditional equation by induction on n
(in the meta-theory).

Consider the case for n = 0. That is:

IsNotEps(x)⇒ IsNotEps(y)⇒ TR(x) = ε⇒ TR(y) = ε⇒
x⇒ y = 1⇒ ITE(x, y, 1) = 1.

To prove this, we perform a case analysis on x and y using Theorem 2.4.5, where all
cases are straightforward.

It remains to consider the induction case. That is, assuming that PV proves

IsNotEps(x)⇒ IsNotEps(y)⇒ TR(x) = ε⇒ TR(y) = ε⇒
IsNotEps(zn)⇒ . . .⇒ IsNotEps(z1)⇒
(zn ⇒ . . .⇒ z1 ⇒ x⇒ y = 1)⇒ zn ⇒ . . .⇒ z1 ⇒ ITE(x, y, 1) = 1,

we will show that PV proves

IsNotEps(x)⇒ IsNotEps(y)⇒ TR(x) = ε⇒ TR(y) = ε⇒
IsNotEps(zn+1)⇒ . . .⇒ IsNotEps(z1)⇒
(zn+1 ⇒ . . .⇒ z1 ⇒ x⇒ y = 1)⇒ zn+1 ⇒ . . .⇒ z1 ⇒ ITE(x, y, 1) = 1,

We perform a case analysis on x and y twice (i.e. we consider what is the last and the
second last bits of x and y). All cases are trivial except for the case x/1 and y/0, in
which it suffices to prove that

IsNotEps(zn+1)⇒ . . .⇒ IsNotEps(z1)⇒
(zn+1 ⇒ . . .⇒ z1 ⇒ 1⇒ 0 = 1)⇒ zn+1 ⇒ . . .⇒ z1 ⇒ 0 = 1. (3.8)

We perform a case study on zn+1. The only non-trivial case is that zn+1/s1(zn+1),
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Let e be the conditional equation zn ⇒ . . . ⇒ z1 ⇒ 0 = 1. With the substitution
zn+1/s1(zn+1), Equation (3.8) PV-provably evaluates to

IsNotEps(zn)⇒ . . .⇒ IsNotEps(z1)⇒
(zn ⇒ . . .⇒ z1 ⇒ 1⇒ 0 = 1)⇒ zn ⇒ . . .⇒ z1 ⇒ 0 = 1, (3.9)

which follows from the assumption (with the same substitution x/1 and y/0). This
completes the proof.

Lemma 3.6.5. The elimination rule of implication (→e) is admissible. That is, for
any Γ and formula φ, ψ, suppose that PV ⊢ [Γ ⊢ φ→ ψ]PV and PV ⊢ [Γ ⊢ φ], we have
that PV ⊢ [Γ ⊢ ψ].

Proof Sketch. We can deal with the antecedent Γ similar to the proof of the admissibility
of (→i); for simplicity of presentation, we will only demonstrate the admissibility in case
that Γ = ∅. By the definition of the PV translation, we will need to derive PV ⊢ [ψ]PV
from PV ⊢ ITE([φ]PV, [ψ]PV, 1) = 1 and PV ⊢ [φ]PV = 1. Therefore, it suffices to prove
that:

PV ⊢ IsNotEps(y)⇒ (TR(y) = ε)⇒ (x = 1)⇒ (ITE(x, y, 1) = 1)⇒ y = 1. (3.10)

To see that this suffices, notice that we can substitute x/[φ]PV, y/[ψ]PV, and apply
Modus Ponens (see Proposition 2.4.10).

To prove Equation (3.10), we perform a case analysis on x and y using Theorem 2.4.5,
and all cases can be proved directly by unfolding with the Explosion Rule (see Propo-
sition 2.4.11) and the trick of adding dummy conditions (see Proposition 3.4.2).

3.6.3 Rules of Contradiction
The last logical rule we need to consider is the elimination rule of ⊥, i.e., “proof by
contradiction”.

Lemma 3.6.6. The elimination rule (⊥e) of ⊥ is admissible. That is, for any Γ and
any formula α, suppose that PV ⊢ [Γ,¬α ⊢ ⊥]PV, then PV ⊢ [Γ ⊢ α]PV.

Proof Sketch. We will prove that the axiom of double negation elimination is admissible
in PV, that is:

PV ⊢ [Γ ⊢ ¬¬α→ α]PV.

To see that this suffices, notice that the elimination rule (⊥e) can be simulated by
the following proof tree using double negation elimination using the introduction and
elimination rules of → that have already proved to be admissible:

Γ ⊢ ¬¬α→ α

Γ,¬α ⊢⊥ (→i)Γ ⊢ ¬¬α (→e)Γ ⊢ α
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Moreover, by the admissibility of weakening (W), it suffices to prove the admissibility
of the case Γ = ∅. That is,

PV ⊢ [⊢ ¬¬α→ α]PV

⇐⇒ PV ⊢ ITE(ITE(ITE([α]PV, 0, 1), 0, 1), [α]PV, 1) = 1.
Furthermore, it suffices to prove the more general version:

PV ⊢ IsNotEps(x)⇒ ITE(ITE(ITE(x, 0, 1), 0, 1), x, 1) = 1,
which can be proved by a case study on x using Theorem 2.4.5.

3.7 Admissibility of Structural Induction
I guess there is no
need to “recall”,
dear fellow feasible
mathematicians :)

Finally, we prove that the structural induction rule is admissible in PV.
Recall that in the definition of PV, we only provide a restricted version of structural

induction in the sense that if two functions are both identical to a recursively defined
feasible function, we can conclude that the two functions are identical. The induction
rule in PV-PL, however, captures the generic structural induction principle as discussed
in Postulate 3. Therefore, the feasibility of the induction rule in PV-PL shows that
the restricted structural induction rule in PV suffices to capture the informal notion of
structural induction.
Remark 3.7.1. For simplicity, we will only prove the feasibility of (Ind2); nevertheless,
the admissibility of (Indn) clearly follows from the same technique.
Lemma 3.7.1. The structural induction rule (Ind2) is admissible. That is, for any
terms t1, t2, Γ, and variables x1, x2, suppose that PV proves

• [Γ ⊢ t1[xj/ε] = t2[xj/ε]]PV, where j ∈ {1, 2}.
• [Γ, t1 = t2 ⊢ t1[x1/si1(x1), x2/si2(x2)] = t2[x1/si1(x1), x2/si2(x2)]]PV, where i1, i2 ∈
{0, 1}.

Then PV ⊢ [Γ ⊢ t1 = t2]PV.
Proof. By the admissibility of the permutation rule, we can change the second bullet to
[t1 = t2,Γ ⊢ t1[x1/si1(x1), x2/si2(x2)] = t2[x1/si1(x1), x2/si2(x2)]]PV. Moreover, we can
(without loss of generality) replace t1, t2 by the PV functions symbols f1, f2 defined by
fi(x1, x2, w⃗) = ti, i ∈ {1, 2}, where w⃗ denote other variables in t1, t2. For simplicity, we
will ignore w⃗ in the proof and write fi(x1, x2).

Let Γ = (β1, . . . , βn). We will prove the admissibility in PV by induction on n (in
the meta-theory). Concretely, we will prove that for any PV terms u1, . . . , un, if PV
proves

• IsNotEps(ui) = 1 for any i ∈ [n],
• un ⇒ . . .⇒ u1 ⇒ EQ(f1(ε, x2), f2(ε, x2)) = 1,
• un ⇒ . . .⇒ u1 ⇒ EQ(f1(x1, ε), f2(x1, ε)) = 1,
• un ⇒ . . .⇒ u1 ⇒ EQ(f1(x1, x2), f2(x1, x2))⇒ EQ(f1(si1(x1), si2(x2)), f2(si1(x1), si2(x2))) =

1, for any i1, i2 ∈ {0, 1},
Then PV proves un ⇒ . . . ⇒ u1 ⇒ EQ(f1(x1, x2), f2(x1, x2)) = 1. (Note that by
instantiating ui := [βi]PV for i ∈ [n] we can derive the lemma.)
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Base case. We first consider the case n = 1. The case for Γ = ∅ can be derived from
this case, which is left as an exercise.Hint: Introduce a

provable equation,
e.g., ε = ε in the
antecedent using

cut.

Note that we need to prove that if PV proves for
any PV term u,

• IsNotEps(u) = 1,
• u⇒ EQ(f1(ε, x2), f2(ε, x2)) = 1,
• u⇒ EQ(f1(x1, ε), f2(x1, ε)) = 1,
• u ⇒ EQ(f1(x1, x2), f2(x1, x2)) ⇒ EQ(f1(si1(x1), si2(x2)), f2(si1(x1), si2(x2))) = 1,

for any i1, i2 ∈ {0, 1},
then PV ⊢ u⇒ EQ(f1(x1, x2), f2(x1, x2)) = 1. That is:

ITE(u, 1,EQ(f1(x1, x2), f2(x1, x2))) = EQ(f1(x1, x2), f2(x1, x2)). (3.11)

We will prove the alternative equation:

ITE(u,EQ(f1(x1, x2), f2(x1, x2)), 1) = 1 (3.12)

in PV, and it is left as an exercise to prove that this suffices.Hint: Prove a more
general conditional
equation and apply

Modus Ponens.

We will prove the equation by simultaneous induction on x1 and x2 using The-
orem 2.6.3. Let g00 = g01(x) = g10(y) = 1, and hi1i2(x, y, z) = ITE(z, 1, 0) for
i1, i2 ∈ {0, 1}. It is easy to see that the RHS of (⋆) is identical to the function de-
fined recursively from gj1j2 and hi1i2 . Moreover, we can easily see that PV proves:

• ITE(u,EQ(f1(ε, ε), f2(ε, ε)), 1) = g00 = 1,
• ITE(u,EQ(f1(ε, sj(x2)), f2(ε, sj(x2))), 1) = g01(sj(x2)) = 1,
• ITE(u,EQ(f1(sj(x1), ε), f2(sj(x1), ε)), 1) = g01(sj(x1)) = 1,

from the assumption. Therefore, it suffices to prove that

ITE(u,EQ(f1(si1(x1), si2(x2)), f2(si1(x1), si2(x2))), 1)
= ITE(ITE(u,EQ(f1(x1, x2), f2(x1, x2)), 1), 1, 0). (3.13)

We will first prove a more general result:

Proposition 3.7.2. PV ⊢ (x⇒ y ⇒ z = 1)⇒ ITE(x, z, 1) = ITE(ITE(x, y, 1), 1, 0).

This can be proved by a simple case study on x, y, and z using Theorem 2.4.5.
Finally, with the substitution

x/u

y/EQ(f1(x1, x2), f2(x1, x2))
z/EQ(f1(si1(x1), si2(x2)), f2(si1(x1), si2(x2)))

we can see that the antecedent of Proposition 3.7.2 is exactly the second bullet of the
assumption, and the consequence is exactly Equation (3.13) that we need to prove.
This concludes the base case by Modus Ponens (see Proposition 2.4.10).
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Induction case. Our strategy is to “merge” un+1 and un in the antecedents of the
conditional equation so that it reduces to the case for |Γ| = n. Concretely, we will prove
the following meta-theorem of PV:

Proposition 3.7.3. Let t1, t2, tc, t′c be terms such that PV ⊢ IsNotEps(tc) = 1 and
PV ⊢ IsNotEps(t′c) = 1. Then PV ⊢ tc ⇒ t′c ⇒ t1 = t2 if and only if PV ⊢ And(tc, t′c)⇒
t1 = t2.

To see that this suffices, notice that by applying the meta-theorem on both the
premise and the conclusion of the rule, it suffices to derive from

PV ⊢ IsNotEps(ui) = 1 (i ∈ [n− 1])
PV ⊢ IsNotEps(And(un+1, un)) = 1
PV ⊢ And(un+1, un)⇒ un−1 ⇒ . . .⇒ u1 ⇒ EQ(f1(ε, x2), f2(ε, x2)) = 1
PV ⊢ And(un+1, un)⇒ un−1 ⇒ . . .⇒ u1 ⇒ EQ(f1(x1, ε), f2(x1, ε)) = 1
PV ⊢ And(un+1, un)⇒ un−1 ⇒ . . .⇒ u1 ⇒ EQ(f1(x1, x2), f2(x1, x2))⇒

EQ(f1(si1(x1), si2(x2)), f2(si1(x1), si2(x2))) = 1 (i1, i2 ∈ {0, 1})

that PV ⊢ And(un+1, un) ⇒ un−1 ⇒ . . . ⇒ u1 ⇒ EQ(f1(x1, x2), f2(x1, x2)) = 1, which
is true by the induction hypothesis and the fact that if PV ⊢ IsNotEps(u) = 1 and
PV ⊢ IsNotEps(u′) = 1, then PV ⊢ IsNotEps(And(u, u′)) = 1.

It remains to prove Proposition 3.7.3. We will only prove the (⇒) directly, and the
converse can be proved using the same approach. Consider the following more general
version:

Proposition 3.7.4. PV ⊢ IsNotEps(z1) ⇒ IsNotEps(z2) ⇒ (z1 ⇒ z2 ⇒ x = y) ⇒
And(z1, z2)⇒ x = y.

This can be proved by a case study on z1 and z2 using Theorem 2.4.5. The cases for
z1/ε, z2/ε, z1/s0(z1), and z2/s0(z2) can be proved by the Explosion Rule (see Proposi-
tion 2.4.11). For the case z1/s1(z1) and z2/s1(z2), we can unfold all the definitions and
apply the correctness of EQ (see Lemma 2.7.1).

To see that this implies the (⇒) direction of Proposition 3.7.3, we can substitute
z1/tc, z2/t

′
c, x/t1, y/t2. We can remove the outermost three antecedents using the

assumption and Modus Ponens (see Proposition 2.4.10), which derives And(tc, t′c) ⇒
t1 = t2 and completes the proof.

3.8 Extensions of Rules
Now we show a few extensions of the rules in PV-PL that may be helpful in formalizing
informal mathematical proofs.

Rewrite of formulas. We will also consider a stronger form of (=/), denoted by
(=̂/), together with its converse (=̂−1

/ ). Both of the rules will be referred as “rewrite
rules” as it can be used to rewrite a formula based on an equation in the antecedent.
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Let Γ, x = y ⊢ φ be an assertion. Suppose that φ′ is obtained from φ by replacing
some occurrences of x to y, then the axioms (=̂/) and its converse (=̂−1

/ ) are defined as

(=̂/) : Γ, x = y, φ ⊢ φ′ ; (=̂−1
/ ) : Γ, x = y, φ′ ⊢ φ

.

We call φ the substitution formula of the rule.
Note that (=̂/) and its converse simulate each other by the cut rule and the sym-

metricity of equality; the following proof tree simulates (=̂−1
/ ) using (=̂/):

(=s)Γ, x = y ⊢ y = x
(=̂/)Γ, x = y, y = x, φ′ ⊢ φ (Cut)Γ, x = y, φ′ ⊢ φ

(All structural rules are omitted.)

Lemma 3.8.1. (=̂/) and (=̂−1
/ ) are admissible in PV-PL.

Proof Sketch. We prove by induction on the depth of the substitution formula φ.

Base case. Suppose that φ is atomic, i.e., it is either ⊥ or a PV equation u = v.
Note that the case for φ ≡ ⊥ is trivial by the assumption rule (A). Consider the case
for φ ≡ “u = v” and φ′ ≡ “u′ = v′”, and it suffices to prove the admissibility of (=̂/)
as (=̂−1

/ ) can be simulated by (=̂/) with substitution formula of the same depth. Let z
be a fresh variable and û and v̂ be the terms satisfying that

û[z/y] = u′, û[z/x] = u, v̂[z/y] = v′, v̂[z/x] = v.

Notice that we can prove Γ, x = y, u = v ⊢ u = u′ by the proof tree (where all structural
rules are omitted):

(=/)Γ, x = y, u = v ⊢ û[z/x] = û[z/y]
Similarly, we can prove that Γ, x = y, u = v ⊢ v = v′. Therefore by the cut rule and
the symmetricity and transitivity of equality, we can prove Γ, x = y, u = v ⊢ u′ = v′.

Induction case. Suppose that φ is of form β → α and φ′ ≡ β′ → α′. By
the induction hypothesis, we know that both (=̂/) and (=̂−1

/ ) are admissible if the
substitution formula is α, α′, β or β′. It suffices to prove the admissibility of (=̂s) with
φ being the substitution formula, i.e.,

Γ, x = y, β → α ⊢ β′ → α′.

By the introduction rule of implication, it suffices to prove that Γ, x = y, β → α, β′ ⊢
α′. We then apply the cut rule with β being the cut formula, so that it generates two
subgoals to resolve:

(Subgoal 1): Γ, x = y, β → α, β′ ⊢ β. This is provable by the induction hypothesis, as
we can apply (=̂−1

/ ) with β′ being the substitution formula.
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(Subgoal 2): Γ, x = y, β → α, β′, β ⊢ α′. We apply the cut rule again with α being the
cut formula, so that it further generates two subgoals:

(Subgoal 2.1 ): Γ, x = y, β → α, β′, β ⊢ α. Notice that this can be proved by
Modus Ponens on two assumptions This is usually

called the apply
tactic in proof
assistants.

, which can be implemented by the elim-
ination rule of →:

(A)Γ, x = y, β → α, β′, β ⊢ β → α
(A)Γ, x = y, β → α, β′, β ⊢ β (→e)Γ, x = y, β → α, β′, β ⊢ α

(Subgoal 2.2 ): Γ, x = y, β → α, β′, β, α ⊢ α′. This is provable by the induction
hypothesis, as we can apply (=̂/) with α being the substitution formula.

This completes all subgoals and leads to the lemma.

Comprehension of PV translation. Recall that the PV translation could translate
a formula φ in PV-PL into a PV term [φ]PV. We now show that we can prove the
equivalence of a formula and its PV translation in PV-PL, formalized as the following
comprehension axiom (CPV) and its converse (C−1PV):

(CPV) : Γ, φ ⊢ [φ]PV = 1; (C−1PV) : Γ, [φ]PV = 1 ⊢ φ.

Lemma 3.8.2. Both (CPV) and (C−1PV) are admissible in PV-PL.

Proof Sketch. We prove this by induction on the depth of the formula φ in the com-
prehension axiom. The case for φ = ⊥ is trivial. Suppose that φ is of form u = v,
then (CPV) follows from the rewrite rule as well as PV ⊢ EQ(x, x) = 1, while (C−1PV)
follows from the correctness of EQ as demonstrated in Example 3.2.2.

Now we consider the case that φ is of form β → α, so that it suffices to prove in
PV-PL that:

• Γ, β → α ⊢ ITE([β]PV, [α]PV, 1) = 1,
• Γ, ITE([β]PV, [α]PV, 1) = 1 ⊢ β → α.

The proofs of these two assertions are similar, so we only explain the first bullet.
By the cut rule, we first prove that Γ, β → α ⊢ [β]PV = 1 → [α]PV = 1, which

reduces to Γ, β → α, [β]PV = 1 ⊢ [α]PV = 1. By the induction hypothesis, we know that
Γ, β → α, [β]PV = 1 ⊢ β and subsequently

Γ, β → α, [β]PV = 1 ⊢ α.

Using the cut rule it suffices to prove that Γ, β → α, α, [β]PV = 1 ⊢ [α]PV, which again
follows from the induction hypothesis.

Induction on formulas. One primary application of the comprehension axioms is
to generalize the induction principle (Indn) from equations to formulas. Suppose that
φ is a formula and z is a variable, we have

(Indφ1 ) : Γ ⊢ φ[z/ε] Γ, φ ⊢ φ[z/s0(z)] Γ, φ ⊢ φ[z/s1(z)]
Γ ⊢ φ
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Lemma 3.8.3. (Indφ1 ) is admissible in PV-PL.

Proof Sketch. By the cut rule and the comprehension axiom, it suffices to prove that
Γ ⊢ [φ]PV = 1 from the premises. By the induction rule (Ind1) in PV-PL, it suffices to
prove that

• Γ ⊢ [φ]PV[z/ε] = 1
• Γ, [φ]PV = 1 ⊢ [φ]PV[z/si(z)] = 1 for i ∈ {0, 1}.

It is easy to see that substitution commutes with the PV translation, and therefore it
is equivalent to proving that

• Γ ⊢ [φ[z/ε]]PV = 1,
• Γ, [φ]PV = 1 ⊢ [φ[z/si(z)]]PV = 1 for i ∈ {0, 1},

which can be proved from the premises using the comprehension axioms.

Remark 3.8.1. Though we only wrote down the induction principle with one variable
for simplicity of presentation, the same proof clearly generalizes to the case for multiple
variables.

3.9 Bibliographical and Other Remarks
The theory PV-PL is almost identical to the theory PV1 that Cook introduced in [Coo75].
We use the name PV-PL as nowadays the name PV1 usually refers to the first-order
extension of PV (see, e.g., [Kra95a, KPT91, Kra19]). The theory PV-PL can be viewed
as the universal fragment of PV1, and thus by the subformula property (see, e.g., [TS00,
Section 4.2]), PV1 is a conservative extension of PV-PL.

The theory PV-PL is defined by a natural deduction system, where the consequences
of assertions are formulas. Alternatively, one can define the theory using a sequent
calculus system (similar to Buss’s theory T 0

2 and S1
2 [Bus86]) where the consequences

of assertions are sequences of formulas. We choose the natural deduction formulation
as it is closer to human reasoning.

Another proof of Theorem 3.3.1 is to apply Buss’s witnessing theorem [Bus86], which
relies on a form of Gentzen’s cut elimination theorem (see, e.g., [TS00, Chapter 4]) for
the theory S1

2 .
As far as we know, the direct embedding of PV-PL assertions to PV equation and the

translation theorem (see Theorem 3.3.4) is not explicitly stated in literature. Arguably,
the proof is more straightforward than proofs using the cut elimination theorem. It
might be worth noting that the direct translation proof avoids the super-polynomial
proof size blowup of the cut elimination theorem (see, e.g., [Ngu07] and [TS00, Chapter
5]). This could be an advantage if the sizes of the PV-PL and PV proofs are important.



Chapter 4

Advanced Tools in PV

With the stronger reasoning system PV-PL and the translation theorem (see Theo-
rem 3.3.4), we continue the investigation of the programming language built from Cook’s
theory PV.

In this chapter, we will develop advanced programming and mathematical tools,
which significantly extend our capability of programming and reasoning about pro-
grams. This provides further evidence for the Feasible Mathematics Thesis. In more
detail, we will provide:

1. Constructions of advanced data structures such as lists and maps with PV (or
PV-PL) provable correctness. In addition, we will prove meta-theorems that allow
recursion and induction on lists just like the limited recursion and induction rules
over strings.

2. A simple imperative programming language IMP(PV) and a proof system for its
functionality based on Hoare logic. We prove that IMP(PV) programs can be
compiled back to PV functions, and proofs about the functionality of programs
using Hoare logic can be compiled back to PV proofs.

3. A simulation of Turing machines by IMP(PV) programs (and subsequently by PV
functions). This concludes Theorems 2.1.1 and 2.3.2.

4. A development of feasible set theory, which allows set-theoretic operations (e.g. union
and intersection) on finite sets encoded by enumeration. We show that proofs in
the first-order logic over finite sets (i.e. allowing quantifiers ∀x ∈ S and ∃x ∈ S)
can be translated back to PV proofs.

Throughout this chapter, we will write “pseudo-proofs”, i.e., goal-targeted mathe-
matical proofs in natural language that could be directly translated to a proof tree in
PV-PL, and subsequently a proof in PV by the translation theorem.

4.1 Lists
Next, we implement lists, i.e., a sequence of unbounded length. The list is arguably the
most important data structure in functional programming and will greatly simplify the

79
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formalization of algorithms in PV.

4.1.1 Definition of Lists
We first implement basic functions to form and unfold a list: Append(ℓ, x) (also denoted
by ℓ :: x) appends a string x to the end of a list ℓ, Head(ℓ), Tail(ℓ) and proves in PV
that1

Head(ε) = ε, Head(ℓ :: x) = x (4.1)
Tail(ε) = ε, Tail(ℓ :: x) = ℓ (4.2)

Also, we will prove that the description length of a list does not grow super-polynomially
so that we can create a list of polynomial length. Formally:

PV ⊢ ITR(ℓ :: x, ℓ ◦ 11 ◦ PEnc(x)) = ε. (4.3)

(We will see how this equation will be useful later.)
Indeed the construction is similar to tuples. We define:

Append(ℓ, x) := MakePair(ℓ, x), Head(ℓ) = Right(ℓ), Tail(ℓ) = Left(ℓ).

The proof of Equation (4.1) and (4.2) naturally follows from Lemma 2.5.4. Therefore,
it suffices to verify Equation (4.3):

Lemma 4.1.1. PV ⊢ ITR(ℓ :: x, ℓ ◦ (11 ◦ PEnc(x))) = ε.

Proof. By unfolding the definition of Append (i.e. ℓ :: x), subsequently unfolding MakePair,
and applying the associativity of concatenation (see Proposition 2.1.4), it suffices to
prove that

PV ⊢ ITR(ℓ ◦ 11 ◦ PEnc(x), ℓ ◦ 11 ◦ PEnc(x)) = ε. (4.4)
This follows from PV ⊢ ITR(x, x) = ε using (L4) substitution, and ITR(x, x) = ε can
be proved in PV using Proposition 2.4.1 and Proposition 2.1.3.

Generating a list. As an example, we will define a function GenList(v, y) that gen-
erates a list of length |y| consists of v. Formally, it will satisfy that

PV ⊢ GenList(v, ε) = ε (4.5)
PV ⊢ GenList(v, si(y)) = GenList(v, y) :: v (4.6)

We will define the function using limited recursion on the variable y. Let g(v) = ε,
hi(v, y, z) = z :: v, and ki(v, y) = 11 ◦ PEnc(v), we can verify that

Proposition 4.1.2. PV ⊢ ITR(hi(v, y, z), z ◦ ki(v, y)) = ε for i ∈ {0, 1}.

Proof. Unfolding hi, ki, we will notice that this is exactly Lemma 4.1.1.
1Here we encode the empty list using ε; notice that the empty list ε is different from a single-element

list consisting of ε (i.e. ε :: ε).
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Therefore, we can define a function f from limited recursion rule using the functions
(g, h0, h1, k0, k1). It is easy to verify that if we define GenList(v, y) := f(v, y), it will
satisfy Equation (4.5) and (4.6).

We also note that by composing GenList and #, we can initiate a list of arbitrary
polynomial lengths. For instance, GenList(v, y# y# y) will generate a list of length |y|3
consisting of v.

4.1.2 Recursion on Lists
Now, we state a meta-theorem that allows us to define functions recursively over lists.
Using this tool, we can define useful functions over lists, such as the length of a list and
the concatenation of lists.

Theorem 4.1.3 (Recursion on Lists). Let g(x⃗), h(x⃗, u, ℓ, z), k(x⃗, u, ℓ) be PV functions
satisfying that

PV ⊢ ITR(h(x⃗, u, ℓ, z), z ◦ k(x⃗, u, ℓ)) = ε.

Then there is a PV function f(x⃗, ℓ) such that PV proves:

f(x⃗, ε) = g(x⃗) (4.7)
f(x⃗, ℓ :: u) = h(x⃗, u, ℓ, f(x⃗, ℓ)) (4.8)

We defer the proof of the theorem to the end of this chapter as it is quite technical.
Here we will first define some functions on lists using this meta-theorem. Note that the
existence of the length upper bound k in all the examples below is obvious, and is left
as an exercise.

Type-checking. We can define a function using Theorem 4.1.3 that performs type-
checking on lists. Let g = 1 and

h(u, ℓ, z) = And(EQ(ℓ,Tail(ℓ) :: Head(ℓ)), z),

we can apply Theorem 4.1.3 to define a function IsList′(ℓ) such that

PV ⊢ IsList′(ε) = 1 (4.9)
PV ⊢ IsList′(ℓ :: u) = And(Or(IsEps(ℓ),EQ(ℓ,Tail(ℓ) :: Head(ℓ))), IsList′(ℓ)). (4.10)

We can define IsList(ℓ) = And(Or(IsEps(ℓ),EQ(ℓ,Tail(ℓ) :: Head(ℓ))), IsList′(ℓ)).

Proposition 4.1.4. PV-PL proves ⊢ IsList(ε) = 1 and IsList(ℓ) = 1 ⊢ IsList(ℓ :: u) = 1.

Proof Sketch. Both assertions can be proved by simple unfolding.

Length. Similarly, we can define a function using Theorem 4.1.3 that outputs the
length of a list in unary. Concretely:

PV ⊢ Len(ε) = 0 (4.11)
PV ⊢ Len(ℓ :: u) = s0(Len(ℓ)) (4.12)
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Concatenation. We can also define the concatenation of two lists ℓ1 and ℓ2 by re-
cursion on ℓ2. Concretely:

PV ⊢ Concat(ℓ1, ε) = ℓ1 (4.13)
PV ⊢ Concat(ℓ1, ℓ2 :: u) = Concat(ℓ1, ℓ2) :: u (4.14)

For simplicity, we will use ℓ1 ++ ℓ2 to denote Concat(ℓ1, ℓ2).

Map. We can define a functional2 Mapf that produces a function given any PV func-
tion symbol f(x, w⃗). Intuitively, Mapf (ℓ) will apply the function f to each element in
ℓ and return the new list. That is:

PV ⊢ Mapf (ε) = ε

PV ⊢ Mapf (ℓ :: u) = Mapf (ℓ) :: f(u, w⃗)

Find. Another functional that will be particularly important in our development of
other data structures is to find the rightmost element in a list satisfying a given property.
Let f(x, w⃗) be a PV function symbol, Findf (ℓ) will satisfy that

PV ⊢ Findf (ε) = ε

PV ⊢ Findf (ℓ :: u) = ITE(f(u, w⃗), s0(u),Findf (ℓ))

(Note that we output s0(u) instead of u as otherwise we cannot distinguish between
the case that Findf (ℓ) does not find the element, or find the element ε ∈ ℓ satisfying
that f(ε, w⃗).)

In particular, we can define the membership query of an element in a list as Findx(ℓ) :=
IsNotEps(Findfx(ℓ)) with fx(u) = EQ(x, u). For simplicity, we write [x ∈ ℓ] as the ab-
breviation of Findx(ℓ) = 1. It is left as an exercise that PV-PL proves:

⊢ ¬[x ∈ ε]
⊢ [x ∈ ℓ :: x]
[x ∈ ℓ] ⊢ [x ∈ ℓ :: u]

This is certainly not a complete list of functions we can define using Theorem 4.1.3.
The fun puzzle of defining other functions on lists is left to the readers.

4.1.3 Induction on Lists
We will then prove an induction principle on lists that as an analogy of the induction
rule (Indn) in PV-PL. For simplicity, we will only consider induction on one list:

Theorem 4.1.5 (Induciton on Lists). Let u be a variable with no occurrences in Γ, t1, t2,
and ℓ be a variable with no occurrences in Γ. The following rule is admissible in PV-PL:

Γ ⊢ t1[ℓ/ε] = t2[ℓ/ε] Γ, IsList(ℓ) = 1, t1 = t2 ⊢ t1[ℓ/ℓ :: u] = t2[ℓ/ℓ :: u]
Γ, IsList(ℓ) = 1 ⊢ t1 = t2

2Functional should be considered as a notation in the meta-theory, rather than a symbol in PV.
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The proof of the theorem is deferred to Section 4.6.
Note that a stronger version of induction is admissible, namely induction on an

arbitrary PV-PL formula:

Corollary 4.1.6. Let u be a variable with no occurrences in Γ, t1, t2, and ℓ be a variable
with no occurrences in Γ. The following induction rule for lists is admissible in PV-PL:

Γ ⊢ φ[ℓ/ε] Γ, IsList(ℓ) = 1, φ ⊢ φ[ℓ/ℓ :: u]
Γ, IsList(ℓ) = 1 ⊢ φ

The proof utilizes the admissibility of the comprehension axioms (see Lemma 3.8.2)
and is similar to that of Lemma 3.8.3, which is left as an exercise.

Example 4.1.1. We now show how to prove the transitivity of concatenation of lists
using Corollary 4.1.6. Our goal is to prove in PV-PL that:

IsList(ℓ3) = 1 ⊢ (ℓ1 ++ ℓ2) ++ ℓ3 = ℓ1 ++(ℓ2 ++ ℓ3).

We prove this by induction on ℓ3 using Corollary 4.1.6, which generalizes the fol-
lowing two subgoals.

(Subgoal 1 ). ⊢ (ℓ1 ++ ℓ2) ++ ε = ℓ1 ++(ℓ2 ++ ε). This can be easily proved by the
definition equation of ++.

(Subgoal 2 ). We need to prove that

IsList(ℓ3) = 1, (ℓ1 ++ ℓ2) ++ ℓ3 = ℓ1 ++(ℓ2 ++ ℓ3)
⊢ (ℓ1 ++ ℓ2) ++(ℓ3 :: u) = ℓ1 ++(ℓ2 ++(ℓ3 :: u))

By the definition equations of ++ (see Equation (4.13) and (4.14)), we can prove
that the LHS of the consequence is equal to ((ℓ1 ++ ℓ2) ++ ℓ3) :: u, which is sub-
sequently equal to (ℓ1 ++(ℓ2 ++ ℓ3)) :: u by rewriting using the assumption that
(ℓ1 ++ ℓ2) ++ ℓ3 = ℓ1 ++(ℓ2 ++ ℓ3) (see Lemma 3.8.1).

Similarly, we can prove by the definition equations of ++ that the RHS of
the consequence is equal to ℓ1 ++((ℓ2 ++ ℓ3) :: u), and is subsequently equal to
(ℓ1 ++(ℓ2 ++ ℓ3)) :: u. Therefore, we can prove

(ℓ1 ++ ℓ2) ++(ℓ3 :: u) = ℓ1 ++(ℓ2 ++(ℓ3 :: u))

by the symmetricity and transitivity of equality. This completes the proof.

4.1.4 Dictionaries
Building on lists, we will implement dictionaries, i.e., the data structure maintaining
key-value relation that can be updated. In particular, we can use a dictionary to
simulate an array of length ℓ by fixing the keys to be [ℓ].

Definition of dictionaries. We will implement a dictionary using a list containing
a list of pairs maintaining key-value relations. Concretely, we define the functions
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Lookup(γ, x) and Update(γ, x, y) as follows:

Lookup(γ, x) := Right(TR(Findf (γ))), f(τ, x) = EQ(Left(τ), x); (4.15)
Update(γ, x, y) := γ :: MakePair(x, y). (4.16)

Intuitively, Lookup(γ, x) finds the value corresponding to the key x by searching for the
rightmost (i.e. latest) pair of the form (x, ·), and Update(γ, x, y) adds a new key-value
relation (x, y) to the dictionary γ. Note that we encode an empty dictionary using an
empty list ε.

Correctness. We will prove the correctness of dictionaries formalized by the following
PV-PL assertions:

Γ ⊢ Lookup(ε, x) = ε; (4.17)
Γ, Lookup(γ, x) = y, x′ ̸= x ⊢ Lookup(Update(γ, x′, y′), x) = y; (4.18)
Γ ⊢ Lookup(Update(γ, x, y), x) = y. (4.19)

All these three assertions can be proved in PV-PL by simply unfolding all the functions;
here, we will demonstrate the proof of Equation (4.18), and the rest of the proof is left
as an exercise.

Proposition 4.1.7. PV-PL proves Equation (4.18).

Proof. By unfolding Update, the consequence of the assertion can be changed to Lookup(γ ::
MakePair(x′, y′)) = y, and by further unfolding Lookup and Findf , it suffices to prove
from Γ, Lookup(γ, x) = y, x′ ̸= x that

Right(TR(ITE(EQ(Left(MakePair(x′, y′)), x), s0(MakePair(x′, y′)),Findf (γ))) = y,

where f(τ, x) := EQ(Left(τ), x). By applying the correctness of Left and MakePair
(using the cut rule), it suffices to prove (from the same antecedent) that

Right(TR(ITE(EQ(x′, x), s0(MakePair(x′, y′)),Findf (γ)))) = y.

Note that by the correctness of EQ (see, e.g., Example 3.2.2) in PV-PL and the
property x′ ̸= x in the antecedent, we can conclude that EQ(x′, x) = 0, and there-
fore by the cut rule, it suffices to prove the equation above from the antecedent
Γ, Lookup(γ, x) = y, x′ ̸= x,EQ(x′, x) = 0. Using the substitution/generalization rule,
it suffices to prove

Right(TR(ITE(z, s0(MakePair(x′, y′)),Findf (γ)))) = y

from Γ, Lookup(γ, x) = y, x′ ̸= x, z = 0, and subsequently we can change the conse-
quence to

Right(TR(ITE(0, s0(MakePair(x′, y′)),Findf (γ)))) = y

using the rewriting rule (see Lemma 3.8.1). Therefore, by unfolding ITE, it suffices to
prove that Right(TR(Findf (γ))) = y, which, by the definition equation of Lookup (see
Equation (4.15)) is provably identical to Lookup(γ, x) = y. This is available in the
assumption and thus concludes the proof.
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Type-checking. Similar to lists, we can define a function IsDict(γ) that verifies
whether a string correctly encodes a dictionary. Concretely, given any string γ, our
algorithm first checks whether γ is a list using IsList(γ). Let f(x) be defined as

f(x) := Not(EQ(MakePair(Left(x),Right(x)), x)),

our algorithm further checks whether IsEps(Findf (γ)) = 1. The algorithm accepts if it
passes both checks.

Proposition 4.1.8. PV-PL proves the following assertions:
• ⊢ IsDict(ε) = 1.
• IsDict(γ) = 1 ⊢ IsDict(Update(γ, x, v)) = 1.

4.2 Simulation of Imperative Programming Languages
We now demonstrate how to simulate ordinary imperative programming languages using
functions in PV and reason about programs. After all, most

programmers rely
on imperative
programming
languages in their
minds, I guess...

4.2.1 Syntax of IMP(PV)
We introduce a simple untyped imperative programming language IMP(PV) that ex-
tends PV functions with variables and control statements. We first define the syntax of
IMP(PV).

• (Expressions). An expression is an arbitrary PV term.

• (Commands). Commands in IMP(PV) is defined by the following BNF:

Cmd := skip | let x := Exp | Cmd; Cmd
| if Exp then Cmd else Cmd
| for x := Exp; x ̸= ε; x := TR(x) do Cmd

where x denotes an arbitrary variable name.

For simplicity, we will assume that all variables are global variables (i.e. structural
statements do not create namespaces). The semantics of an IMP(PV) in the standard
model should be clear.

To ensure that the program terminates in polynomial time, we further introduce
two restrictions to IMP(PV) programs:

• (Read-only restriction). The variable x used as the index variable of a for-loop
statement is read-only within the loop, i.e., it is neither assigned using the let
statement within the loop nor the index variable of an inner for-loop statement.

• (Length restriction). Let P be an IMP(PV) program satisfying the read-only
restriction, and ω be a fresh variable, an ω-length-restricted program is of the form
(P, ω), which intuitively means that all variables and expressions are subject to
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the length upper bound ω. An expression that evaluates to a string y longer than
ω will be rounded to Suf(y, ω), i.e., the rightmost |ω|-bits of y. (Nevertheless, we
allow the intermediate computation within an expression to temporarily exceed
the length restriction, as it will not cause any trouble.)

Arguably, these two restrictions should usually not trouble programmers: The read-
only restriction is enforcing a good programming habitI guess...? , and the length restriction also
occurs in real-world programming languages due to the word length of built-in data
types.

4.2.2 Formal Semantic via Hoare Logic
To define the semantics of IMP(PV) and reason about programs, we introduce a Hoare
logic for IMP(PV).

Let φ1, φ2 be PV-PL formulas and c ∈ Cmd be a command, a Hoare tuple is of the
form {φ1} c {φ2} indicating (intuitively) that if φ1 is true before the execution of c,
φ2 is true after the execution of c. The formula φ1 is called the precondition, and φ2 is
called the postcondition.

The semantic of IMP(PV) is given by the following axioms and rules:
• Consequence rule: Suppose that PV-PL proves φ1 ⊢ φ′

1 and φ′
2 ⊢ φ2, then

{φ′
1} c {φ′

2}
{φ1} c {φ2}

This rule is used to weaken the precondition and strengthen the postcondition.
• Empty statement axiom scheme:

{φ} skip {φ}
• Assignment axiom scheme:

{φ[x/e]} let x := e {φ}
• Rule of composition:

{φ1} c1 {ψ} {ψ} c2 {φ}
{φ1} c1; c2 {φ2}

• Rule of if-then-else:3

{φ1 ∧ LastBit(e) = 1} c1 {φ2} {φ1 ∧ LastBit(e) ̸= 1} c0 {φ2}
{φ1} if e then c1 else c0 {φ2}

• Rule of for-loop: For i ∈ {0, 1}, we have
{φ[x/si(x)]} c {φ}

{φ[x/e]} for x := e; x ̸= ε; x := TR(x) do c {φ[x/ε]}
This rule allows us to reason about the for-loop using a loop invariant φ main-
tained throughout the loop.

3φ ∧ φ2 is indeed defined using connectives {→,¬} in PV-PL.
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We say that a Hoare tuple {φ1} c {φ2} is provable if there is a proof tree using the
axioms and rules above concluding {φ1} c {φ2}.

The rules of Hoare logic provide an intuitive reasoning framework on the behavior
of IMP(PV) programs. The interpretation of the rules should be clear. We will use the
following example to show the application of the Hoare rules.

Example 4.2.1. Consider the following IMP(PV) program for calculating the length
of a list by iteratively removing the rightmost element:

LenITR := let z := ℓ;
let y := ε;
for x := ℓ; x ̸= ε; x := TR(x) do
if IsEps(z) then skip else let y := s0(y); let z := Tail(z)

We can formalize its correctness as the Hoare tuple

{IsList(ℓ) = 1} LenITR {y = Len(ℓ)}, (4.20)

where Len is the function defined by Equation (4.11) and (4.12).
It can be proved using the loop invariant:

φ :=
∧
{IsList(z) = 1, Len(z) ◦ y = Len(ℓ), ITR(x, ℓ) = ε, z = ITRL(ℓ, ITR(ℓ, x))} ,

where ITRL(ℓ, y) is the function defined as

ITRL(ℓ, ε) := ℓ, ITRL(ℓ, si(y)) := Tail(ITRL(ℓ, y)) (i ∈ {0, 1}).

More formally, let LenITR3 be the for-loop in LenITR, we will prove the Hoare tuple
{φ[x/ℓ]} LenITR3 {φ[x/ε]}. It is left as an exercise that Equation (4.20) can be
derived from this Hoare tuple.

To prove {φ[x/ℓ]} LenITR3 {φ[x/ε]}, notice that LenITR3 is a for-loop, and
therefore we can apply the rule of for-loop so that it suffices to prove that

{φ[x/si(x)]} if IsEps(z) then skip else let y := s0(y); let z := Tail(z) {φ}.

Subsequently, we can apply the rule of if-then-else, so that it suffices to prove the
following two subgoals:

• (Subgoal 1 ). {φ[x/si(x)] ∧ LastBit(IsEps(z)) = 1} skip {φ}
• (Subgoal 2 ). {φ[x/si(x)] ∧ LastBit(IsEps(z)) ̸= 1} let y := s0(y); let z :=

Tail(z) {φ}.
To prove (Subgoal 1 ), it suffices to prove in PV-PL that

φ[x/si(x)] ∧ LastBit(IsEps(z)) = 1 ⊢ φ,
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apply the consequence rule, and subsequently apply the empty statement axiom.
The PV-PL proof of the assertion above is easy and left as an exercise.

To prove (Subgoal 2 ), it suffices to prove in PV-PL that

φ[x/si(x)] ∧ LastBit(IsEps(z)) ̸= 1 ⊢ φ[z/Tail(z)][y/s0(y)],

apply the consequence rule to weaken the precondition to φ[z/Tail(z)][y/s0(y)],
and subsequently apply the rule of composition (with ψ := φ[z/Tail(z)]) and the
assignment axiom in both branches generated by the rule of composition. The proof
of the assertion above is tedious but straightforward.

Similarly, we can define the Hoare logic of ω-length-restricted PV programs, where
the assignment axiom scheme and the rule of for-loop are modified by replacing all
occurrences of the expression e in the preconditions and postconditions to Suf(e, ω).
We will denote a Hoare tuple for ω-length-restricted programs by {φ1} (P, ω) {φ2}.

It is left as an exercise that for the example above, we can pick an appropriate length
upper bound ω such that we can still prove the correctness of the (ω-length-restricted)
program.

4.2.3 Compiling Programs to PV Functions
Next, we show that it is possible to compile any (length-restricted) IMP(PV) program
back to a PV function in a way that preserves the semantics of the function computed
by the program.

Let (P, ω) be an ω-length-restricted IMP(PV) program. We define its PV translation,
denoted also by [P ]PV, as a PV function fP (ω, π) follows.

• (Context storage). Suppose that k ∈ N variables are used in P named x1, . . . , xk,
we will use a k-tuple π of length k to store the context, i.e., UnwindTuplei(π)
stores the value of xk. For simplicity, we will denote UnwindTuplei(π) simply by
πi.

• (Expressions). For an expression e in P , where the variables are from x1, . . . , xk,
we define its PV translation with respect to the context π, denoted by [e]π,ωPV ,
as Suf(e[xi/πi ∀i ∈ [k]], ω). We may omit ω in the superscript if there is no
ambiguity.

• (Empty statement). We define [skip]PV(ω, π) := π, i.e., the identity function.

• (Assignment). We define [let xi := e]PV(ω, π) be the function that outputs the
tuple MakeTuple(π1, . . . , πi−1, [e]πPV, πi+1, . . . , πk).

• (Composition). We define [c1; c2]PV(ω, π) := [c2]PV([c1]PV(π)), i.e., the PV trans-
lation commutes with composition of IMP(PV) programs.

• (If-then-else). We define the PV translation of if-then-else statement as

[if e then c1 else c0]PV(π) := ITE(ε)
0 ([e]πPV, [c1]PV(π), [c2]PV(π)).



4.2. SIMULATION OF IMPERATIVE PROGRAMMING LANGUAGES 89

Recall that ITE(ε)
0 (c, u, v) is the “dirty” if-then-else function, where the “else”-

branch is chosen when c = ε.

• (For Loop). We define [for xi := e; xi ̸= ε; xi := TR(xi) do c]PV as the function
f(ω, π) constructed below:

– Let fiter(ω, π) := MakeTuple(π′
1, . . . , π

′
i−1,TR(π′

i), π′
i+1, . . . , π

′
k), where π′ =

[c]PV(ω, π).
– Let g(ω, π) = π, hi(ω, π, y, z) = π′, ki(ω, π, y, z) = π′′, i ∈ {0, 1}, where

π′ := MakeTuple(k)(Suf(fiter(ω, z)1, ω), . . . , Suf(fiter(ω, z)k, ω))
π′′ := MakeTuple(k)(ω, ω, . . . , ω)

It can be proved in PV that ITR(hi(ω, π, y, z), z ◦ ki(ω, π, y, z)) = ε by the
properties of MakeTuple and Suf, which is left as an exercise. Therefore, by
the recursion rule of PV, there is a function floop satisfying that

floop(ω, π, ε) = g(ω, π)
floop(ω, π, si(y)) = hi(ω, π, y, floop(ω, π, y))

– Let f(ω, π) = floop(ω,MakeTuple(π1, . . . , πi−1, [e]πPV, πi+1, . . . , πk), [e]πPV).

The following lemma shows that the PV translation of IMP(PV) programs correctly
preserves the length restriction on variables:

Lemma 4.2.1 (Length Restriction). For any ω-length-restricted IMP(PV) program
(P, ω), PV-PL proves

π = [P ]PV(ω,MakeTuple(Suf(x1, ω), . . . , Suf(xk, ω)) ⊢ πi = Suf(πi, ω)

for i ∈ [k], where πi is an abbreviation of UnwindTuplei(π).

Proof Sketch. We will prove this by structural induction on the program P . All cases
will essentially reduce to the PV equation that

Suf(Suf(x, ω), ω) = Suf(x, ω),

which is provable in PV by induction on x and w simultaneously using the (Ind2) rule
of PV-PL.

4.2.4 Translating of Hoare Proofs to PV Proofs
It should be easy to see that in the standard model, the semantic of an ω-length-
restricted IMP(PV) program is identical to its PV translation. In addition, we will now
prove that Hoare proofs can also be translated back into PV proofs — providing a
strong and intuitive tool to reason about IMP(PV) programs.
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Hopefully feasible
mathematicians will

be satisfied with
writing even less
formal (pseudo)

proofs after
developing this

result :)

Translation of Hoare tuples. We first demonstrate the formalization of Hoare tu-
ples as PV-PL assertions. Let φ be a formula with variables x1, . . . , xk, we define the
translation of φ in the context π, denoted as φπ as the formula obtained by replac-
ing each xi with πi(= UnwindTuple(k)

i (π)). Then a Hoare tuple {φ1} (P, ω) {φ2} for
ω-length-restricted programs is formalized as the PV-PL assertion

Ω, φ1 ⊢ φ[c]PV(MakeTuple(x1,...,xk))
2 ,

where Ω := {x1 = Suf(x1, ω), . . . , xk = Suf(xk, ω)}. This assertion will be denoted by
[{φ1} (P, ω) {φ2}]PV-PL. In the rest of the chapter, we will use Ω as the abbreviation of
{x1 = Suf(x1, ω), . . . , xk = Suf(xk, ω)} for simplicity.

Theorem 4.2.2. Let (P, ω) be a length-restricted IMP(PV) program. Suppose that there
is a Hoare proof of the tuple {φ1} (P, ω) {φ2}, there is a PV-PL proof the the assertion

Ω, φ1 ⊢ φ[P ]PV(ω,MakeTuple(x1,...,xk))
2 .

Admissibility of Hoare rules. With the translation of Hoare tuples to PV-PL as-
sertion, we can translate Hoare rules and axioms into PV-PL rules and axioms by
translating both premises and the conclusion into PV-PL assertions. Since Hoare logic
is also formulated as a natural deduction type system, it remains to prove that all Hoare
rules (under this translation) are admissible in PV-PL.

We start by showing that the consequence rule is admissible.

Lemma 4.2.3. The consequence rule is admissible in PV-PL:

φ1 ⊢ φ′
1 φ′

2 ⊢ φ2 Ω, φ′
1 ⊢ φ

′[c]PV(MakeTuple(x1,...,xk))
2

Ω, φ1 ⊢ φ[c]PV(MakeTuple(x1,...,xk))
2

Proof. Note that from the premises, it suffices to derive that

φ
′[c]PV(MakeTuple(x1,...,xk))
2 ⊢ φ[c]PV(MakeTuple(x1,...,xk))

2

and apply the transitivity of PV-PL assertions.
Recall that φ′[c]PV(MakeTuple(x1,...,xk))

2 (resp. φ[c]PV(MakeTuple(x1,...,xk))
2 ) is obtained from φ′

2
(resp. φ2) by substituting

xi/UnwindTuplei(MakeTuple(x1, . . . , xk))

for each i ∈ [k]. Therefore, this assertion can be proved from the premise φ′
2 ⊢ φ2

directly using the substitution rule (V) of PV-PL.

The proofs for the admissibility of other rules are similar, so we will only demonstrate
the proofs of the assignment axiom scheme and rule of for-loop.

Lemma 4.2.4. The assignment axiom scheme is admissible in PV-PL:

Ω, φ[xi/Suf(e, ω)] ⊢ φ[let xi:=e]PV(ω,MakeTuple(x1,...,xk))
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Proof. By the definition of the PV translation of length-restricted IMP(PV) programs
and the correctness of tuples (see Equation (2.53) to (2.55)), we know that PV proves

[let xi := e]PV(ω,MakeTuple(x1, . . . , xk))
= MakeTuple(x1, . . . , xi−1, Suf(e, ω), xi+1, . . . , xk).

Moreover, notice that PV also proves

φMakeTuple(x1,...,xi−1,Suf([e],ω),xi+1,...,xk) = φ[xi/Suf(e, ω)].

Therefore the axiom scheme is provable by rewriting the consequence to φ[xi/Suf(e, ω)]
(using Lemma 3.8.1) and then applying the assumption axiom of PV-PL.

Before proving the admissibility of the for-loop rule, we need the following proposi-
tion showing that an ω-length restricted program will terminate with variables bounded
by ω. Formally:

Proposition 4.2.5. Let c be an IMP(PV) program. PV-PL proves for every i ∈ [k] that
Ω ⊢ zi = Suf(zi, ω), where zi := ([c]PV(ω,MakeTuple(x1, . . . , xk)))i.

The proof is a straightforward structural induction on the program c (in the meta-
theory) and is left as an exercise.

Lemma 4.2.6. Let c be an IMP(PV) program, P be the program for xi := e; xi ̸=
ε; xi := TR(xi) do c. The rule of for-loop, formalized as follows, is admissible in
PV-PL:

Ω, φ[xi/sj(xi)] ⊢ φ[c]PV(ω,MakeTuple(x1,...,xk)) (∀j ∈ {0, 1})
Ω, φ[xi/Suf(e, ω)] ⊢ φ[xi/ε][P ]PV(ω,MakeTuple(x1,...,xk))

Proof Sketch. Let fiter, floop, and f be the functions in the translation of for-loop (see
Section 4.2.3) for P ; in particular, f(ω, π) = [P ]PV(ω, π) and it satisfies that

f(ω, π) = floop(ω,MakeTuple(π1, . . . , πi−1, [e]πPV, πi+1, . . . , πk), [e]πPV),

where floop is recursively defined and satisfies that

floop(ω, π, ε) = π

floop(ω, π, si(y)) = MakeTuple(Suf(fiter(ω, z)1, ω), . . . , Suf(fiter(ω, z)k, ω))
(z := floop(ω, π, y))

fiter(ω, π) = MakeTuple(π′
1, . . . , π

′
i−1,TR(π′

i), π′
i+1, . . . , π

′
k)

(π′ := [c]PV(ω, π))

We first prove, by induction on y, that after |y| iteration of the for-loop, xi will
be ITR(xi, y), xj = Suf(xj, ω), and the invariant φ still holds. Formally, let π :=
MakeTuple(x1, . . . , xk):

Ω, φ ⊢ ITR(y, xi) = ε→ (floop(ω, π, y))i = ITR(xi, y); (4.21)
Ω, φ ⊢ ITR(y, xi) = ε→ (floop(ω, π, y))j = ITR((floop(ω, π, y))j, ω); (4.22)
Ω, φ ⊢ ITR(y, xi) = ε→ φfloop(ω,π,y). (4.23)
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for j ∈ [k].
Note that Equation (4.21) formalizes that xi will be ITR(xi, y) after |y| iterations; the

base case is straightforward, while the induction case requires that ([c]PV(ω, π))i = πi,
which is true as xi is not changed in the for-loop by the read-only restriction, and can
be formally proved by structural induction on the definition of c (in the meta-theory).
Similarly, Equation (4.22) formalizes that all variables are bounded by ω, which can be
proved by induction on y and apply Proposition 4.2.5.

Equation (4.23) formalizes that the loop invariant φ holds throughout the loop; the
base case is also straightforward, so we will only explain the proof of the induction case
of Equation (4.23). That is, suppose that

Ω, φ, ITR(y, xi) = ε→ φfloop(ω,π,y), (4.24)

we need to prove for σ ∈ {0, 1} that

ITR(sσ(y), xi) = ε→ φfloop(ω,π,sσ(y)),

which is equivalent to say (by the definition axiom of floop) that:

ITR(sσ(y), xi) = ε→ φMakeTuple(Suf(fiter(ω,z)1,ω),...,Suf(fiter(ω,z)k,ω))

where z := floop(ω, π, y). By Equation (4.22) and Proposition 4.2.5, we know that
all coordinates of fiter(ω, z) are bounded by ω, and thus it suffices to prove that
ITR(sσ(y), xi) = ε→ φfiter(ω,z), i.e., for π′ := [c]PV(ω, z):

ITR(sσ(y), xi) = ε→ φMakeTuple(π′
1,...,π

′
i−1,TR(π′

i),π
′
i+1,...,π

′
n). (4.25)

Suppose that ITR(sσ(y), xi) = ε, we also know that ITR(y, xi) = ε.4 Recall that
we have π′

i = zi = floop(ω, π, y) as the variable xi is read-only in the program c. By
Equation (4.21) and ITR(y, xi) = ε, we further know that π′

i = ITR(xi, y). Moreover, we
know by ITR(sσ(y), xi) = ε that π′

i ̸= ε, and thus π′
i = sσ′(TR(π′

i)) for some σ′ ∈ {0, 1}.
This allows us to apply the premise

Ω, φ[xi/sσ′(xi)] ⊢ φ[c]PV(ω,MakeTuple(x1,...,xk))

by substituting xi/TR(π′
i) and xj/zj for any j ∈ [k] \ {i}.

Let δ be the aforementioned substitution, we can see that Ω[δ] is provable by Equa-
tion (4.22), φ[xi/sσ′(xi)][δ] is given by the antecedent Equation (4.24) of the assertion
we are proving, and φ[c]PV(ω,MakeTuple(x1,...,xk))[δ] is exactly what we need to prove (see
Equation (4.25)). This completes the induction case.

4.3 Simulation of Turing Machines
Now we are ready to show that there is a PV-function computing a universal Turing
machine in the standard model M, which completes the proof of Theorem 2.3.2 that
every function in FP can be defined in PV.

4This can be proved by structural induction on the program in meta-theory.
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Moreover, we can see through the construction that the PV-function for a uni-
versal Turing machine is defined straightforwardly; in particular, properties of Turing
machines that are intuitively feasibly provable are likely to be provable in PV, which
justifies the Feasible Mathematics Thesis.

Encoding of Turing machines. We will simulate ordinary single-tape Turing ma-
chines with a two-way infinite tape. Nevertheless, the same construction generalizes
directly to machine models such as multi-tape Turing machines and RAMs.

• (Alphabet): For some parameter k (encoded in unary), the alphabet is Σ :=
{0, 1}≤k, and the empty string ε is used to encode “blank”.

• (States): For some parameter s (encoded in binary), the Turing machine has state
[s], where 1 is the initial state and s is the only halting state.

• (Transition): The transition function is encoded by a dictionary Γ : [s] × Σ →
[s]×{0, 1}. That is, for every state u ∈ [s] and character x ∈ Σ read by the head,
Lookup(Γ,MakePair(u, x)) outputs a pair MakePair(u′,m), where u′ ∈ [s] is the
new state, and m ∈ {0, 1} encodes the movement of the head.

Formally, a Turing machine is defined as a tuple (K, s,Γ) such that the following
assertions are provable in PV-PL:

[u ∈ [s]] = 1, ITR(x,K) = ε ⊢ [Left(Lookup(Γ,MakePair(u, x))) ∈ [s]] = 1;
[u ∈ [s]] = 1, ITR(x,K) = ε ⊢ Right(Lookup(Γ,MakePair(u, x))) ̸= ε;
[u ∈ [s]] = 1, ITR(x,K) = ε ⊢ TR(Right(Lookup(Γ,MakePair(u, x)))) = ε;

where [u ∈ [s]] is the PV-function checking whether u encodes a natural number in [s],
which can be easily defined by simultaneous induction on u and s (see Theorem 4.1.3),
or alternatively by a straightforward length-restricted IMP(PV) program.

Simulation of tapes. We will implement the two-way infinite tape by two lists ℓleft
and ℓright. The tape is supposed to be ℓleft ++ RevList(ℓright), where RevList(ℓ) denotes the
reversion of the list ℓ, and can be defined by recursion on lists (see Theorem 4.1.3), or
by a straightforward length-restricted IMP(PV) program. The head position is at the
rightmost (i.e. outermost) entry of ℓright, i.e., the head is reading Head(ℓright).

Suppose that we are simulating a Turing machine for |T | steps, we initialize both
lists with |T | “blanks” (i.e. ε) so that there is no need to check whether the lists are
empty. This can be implemented by the IMP(PV) commands:

(initialize tape): let ℓleft := GenList(ε, T ); let ℓright := GenList(ε, T ),

where GenList is defined by Equation (4.5) and (4.6). The movement of the head can
thus be simulated as:

• (move right): let ℓleft := ℓleft :: Head(ℓright); let ℓright := Tail(ℓright);
• (move left): let ℓright := ℓright :: Head(ℓleft); let ℓleft := Tail(ℓright).
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Generating the output. At the end of the simulation, we need to generate the
output of the Turing machine by reading the tape encoded by ℓleft and ℓright. We make
the convention that, in case the Turing machine reaches the halting state s, the output
of the Turing machine is the longest continuous string from the current head position
to the right direction until reaching an ε.

We can define a function Output(ℓ) using recursion on lists (see Theorem 4.1.3):

Output(ε) = ε, (4.26)
Output(ℓ :: u) = ITE(IsEps(u), ε, u ◦ Output(ℓ)). (4.27)

It is clear to see that Output(ℓright) is the output of the Turing machine.

Universal Turing machine. We now describe the PV function for a universal Tur-
ing machine by a length-restricted IMP(PV) program. The program has the following
variables: K, s,Γ intended to describe a Turing machine, T encoding in unary the num-
ber of steps to simulate, ℓleft, ℓright intended to simulate the tape, u intended to simulate
the current state, r to record the output of the Turing machine, and auxiliary variables
i, x1, x2. At the beginning of the program, we call (initialize tape) and let u := 1 to
initialize the context.

To simulate one step of a Turing machine M = (K, s,Γ), we proceed as follows:

(one step): let x1 := Tail(ℓright);
let x2 := Lookup(Γ,MakePair(u, x));
let u := Left(x2);
if Right(x2) then (move left) else (move right)

We will obtain the IMP(PV) program for a universal Turing machine:

(UTM): (initialize tape); let u := 1;
for i := T ; i ̸= ε; i := TR(i) do

if EQ(u, s) then skip else (one step);
if EQ(u, s) then let r := Output(ℓright) else let r := ε

Compiling to PV. Finally, notice that the length of all variables is at most

max{|GenList(K,T )|, |s|}

provided that the Turing machine is valid, we can set ω := GenList(K,T ) ◦ s and define
a PV function U(K, s,Γ, T ) as

U(K, s,Γ, T ) := GetVarr([(UTM)]PV(GenList(K,T ) ◦ s, πK,s,Γ,T )),

where GetVarr(π) denotes the PV function that unwind the tuple π and outputs the
entry corresponding to the variable r, πK,s,Γ,T is the tuple that assigns variables

ℓleft, ℓright, r, i, x1, x2
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to be ε and K, s,Γ, T to be the corresponding variables in the input of U .
It is clear that this PV function U(K, s,Γ, T ), in the standard model, simulates the

Turing machine that is encoded by (K, s,Γ) for at most |T | steps and returns the output
of the Turing machine in case that it terminates.

4.4 Feasible Set Theory
In this section, we will develop an extension of PV-PL that allows set-theoretic oper-
ations including union, intersection, and membership query, as well as universal and
existential quantifiers over a finite set encoded by a list.

4.4.1 Membership, Quantification, and Subset Relation
We first define membership relation, existence and universal quantifiers over sets, and
the subset relation. Following set-theoretic notation, we will denote the empty set ε by
∅.

Membership relation. Recall that in the previous chapter, we have already defined
a function Findx(ℓ) that outputs 1 if and only if x is in the list ℓ. With the abbreviation
[x ∈ ℓ] ≡ “Findx(ℓ) = 1”, we can prove in PV-PL that

⊢ ¬[x ∈ ∅], (4.28)
⊢ [x ∈ ℓ :: x], (4.29)
[x ∈ ℓ] ⊢ [x ∈ ℓ :: u]. (4.30)

Hint: Prove that the
output length of
Findx(ℓ) is smaller
than the length of ℓ.

The following proposition can be a good exercise for the readers to get familiar with
the definition of the membership relation:

Proposition 4.4.1. PV-PL proves that IsList(x) = 1 ⊢ x /∈ x.

Quantification. Similar to the membership relation, we will define universal and
existential quantifiers over a list ℓ. Concretely, let φ(x⃗, y) be a PV-PL formula, ∃y ∈ ℓ : φ
is the abbreviation of a PV-PL formula with variables x⃗ defined as Find[φ(x⃗,y)]PV(ℓ) ̸= ε.
Subsequently, we can define ∀y ∈ ℓ : φ ≡ ¬∃y ∈ ℓ : ¬φ. Note that the bounded variable
y is not a variable of the PV-PL formula ∃y ∈ ℓ : φ.

We will show that the PV-PL rules usually considered as the logical rules of quan-
tifiers are admissible in PV-PL. This justifies the definition of quantifiers.

Theorem 4.4.2. The following rules are admissible in PV-PL. Suppose that Γ =
Γ′, IsList(ℓ) = 1, then:

(∃i) : Γ ⊢ φ[y/t] Γ ⊢ [t ∈ ℓ]
Γ ⊢ ∃y ∈ ℓ : φ (4.31)

(∃e) : Γ ⊢ ∃y ∈ ℓ : φ Γ, [z ∈ ℓ], φ[y/z] ⊢ ψ
Γ ⊢ ψ (4.32)
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where in (∃i) t is an arbitrary term, and in (∃e) z must be a fresh variable that has no
occurrence in Γ, φ, ψ, y.

Proof. We first consider the introduction rule (∃i). Indeed, we will show that the
assertion

IsList(ℓ′), φ[y/t] ⊢ [t ∈ ℓ′]→ ∃y ∈ ℓ′ : φ

is provable in PV-PL, where t′ is a fresh variable that has no occurrence in φ, t. The
admissibility of (∃i) follows from the provability of the assertion.

We will prove the assertion by induction on ℓ′ using Corollary 4.1.6. In the base
case, i.e., ℓ′/∅, it is easy to see by the definition of the membership relation (and
subsequently the definition axioms of Findx) that [t ∈ ∅] is false. In the induction case,
suppose that we have IsList(ℓ′), φ[y/t] and [t ∈ ℓ′] → ∃y ∈ ℓ′ : φ in the antecedent, we
need to prove that

[t ∈ ℓ′ :: u]→ ∃y ∈ ℓ′ :: u : φ.

We introduce [t ∈ ℓ′ :: u] as an assumption and aim to prove ∃y ∈ ℓ′ :: u : φ. We
perform a case study on whether t = u (recall that excluded middle is available by the
cut rule and proof by contradiction, see Remark 3.2.2).

• If t = u, we can see φ[y/u] (by rewriting), and thus Find[φ]PV(ℓ′ :: u) = s0(u) ̸= ε,
which means that ∃y ∈ ℓ′ :: u : φ by the definition as well as the comprehension
of PV translation in PV-PL (see Lemma 3.8.2).

• If t ̸= u, we can see that Findt(ℓ′ :: u) = Findt(ℓ′), so that [t ∈ ℓ′ :: u] implies that
[t ∈ ℓ′]. By the induction hypothesis (and the elimination rule of implication), we
can show that ∃y ∈ ℓ′ : φ. This implies the goal ∃y ∈ ℓ′ :: u : φ by a case study
on whether φ[y/u] holds.

Next, we prove that the elimination rule (∃e) is admissible. From the premise
that Γ ⊢ ∃y ∈ ℓ : φ and the definition of the existential quantifier, we know that
Γ ⊢ Find[φ]PV(ℓ) ̸= ∅, which, by the correctness of Findf , deduces that

Γ ⊢ [φ]PV(y/TR(Find[φ]PV(ℓ))) = 1.

By the comprehension rule of the PV translation, we further know that

Γ ⊢ φ[y/TR(Find[φ]PV(ℓ))].

Similarly, we have that Γ ⊢ [TR(Find[φ]PV(ℓ)) ∈ ℓ].
By the substitution z/TR(Find[φ]PV(ℓ)) to the second premise, we can prove the

assertion
Γ, [TR(Find[φ]PV(ℓ)) ∈ ℓ], φ[y/TR(Find[φ]PV(ℓ))] ⊢ ψ.

Notice that all formulas in the antecedent are provable from Γ as we demonstrated
above. Therefore, by the cut rule, we can conclude that Γ ⊢ ψ.

Using the admissibility of (∃i) and (∃e) and rules in PV-PL, we can deduce the
admissibility of the introduction and elimination rules for the universal quantifier:
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Corollary 4.4.3. The following rules are admissible in PV-PL.

(∀i) : Γ, z ∈ ℓ ⊢ φ[y/z]
Γ ⊢ ∀y ∈ ℓ : φ (∀e) : Γ ⊢ ∀y ∈ ℓ : φ

Γ, t ∈ ℓ ⊢ φ[y/t] (4.33)

where in (∀i) z must be a fresh variable that has no occurrence in Γ, φ, y, and in (∀e) t
is an arbitrary term.

The proof is left as an exercise.

Subset relation. Using the universal quantifier over sets, we can easily define the
subset relation [ℓ1 ⊆ ℓ2] := ∀x ∈ ℓ1 : [x ∈ ℓ2]. For simplicity, we define a notation
IsList[ℓ1, . . . , ℓk] as the sequence of formulas

IsList(ℓ1) = 1, . . . , IsList(ℓk) = 1.

The following lemma shows that the basic properties of the subset relation are provable.
Lemma 4.4.4. The following assertions are provable in PV-PL:

• (Reflexivity): IsList[ℓ] ⊢ ℓ ⊆ ℓ.
• (Transitivity): IsList[ℓ1, ℓ2, ℓ3], ℓ1 ⊆ ℓ2, ℓ2 ⊆ ℓ3 ⊢ ℓ1 ⊆ ℓ3.
• (Empty Set): IsList[ℓ] ⊢ ∅ ⊆ ℓ.
All three properties follow easily from the basic properties of membership relation

and the introduction and elimination rules of quantifiers.
With the subset relation, we can define ℓ1 ≡ ℓ2 meaning that ℓ1 and ℓ2 denotes

the same set as ℓ1 ⊆ ℓ2 ∧ ℓ2 ⊆ ℓ1. It can be easily proved that “≡” is an equivalence
relation, i.e., reflexive, transitive, and symmetric.
Remark 4.4.1. One difference between our current definition and the standard set theory
formulation is that our sets do not satisfy that axiom of extensionality, namely two sets
ℓ1, ℓ2 may not be “identical” (i.e. ℓ1 = ℓ2) if they contain the same elements. One
may define a PV function sorting and deduplicating lists to ensure that the property
is satisfied, which can be implemented using (for instance) the insertion sort algorithm
that can be easily implemented by an IMP(PV) program. The details are omitted and
left as an exercise for interested readers.

4.4.2 Specification Axiom Scheme
The specification axiom scheme in set theory allows us to construct a subset T ⊆ S
that exactly contains the elements in S that satisfy a property φ. If the property φ is
feasibly verifiable (e.g. it is a PV-PL formula), we can indeed efficiently construct the
subset T given S. This is formalized as the specification axiom scheme:
Lemma 4.4.5. For every PV-PL formula φ(x, w⃗), there is a PV function Selectφ such
that the following assertions are provable in PV-PL:

IsList[ℓ] ⊢ IsList[Selectφ(ℓ, w⃗)]; (4.34)
IsList[ℓ] ⊢ ∀x ∈ ℓ : φ(x, w⃗)→ [x ∈ Selectφ(ℓ, w⃗)]; (4.35)
IsList[ℓ] ⊢ ∀x ∈ Selectφ(ℓ, w⃗) : φ(x, w⃗). (4.36)
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Following standard notation, {x ∈ ℓ | φ} is an abbreviation of Selectφ(ℓ, w⃗).
The proof of the lemma is straightforward, so we will only sketch the proof. The

function Selectφ(ℓ, w⃗) is defined using recursion on lists (see Theorem 4.1.3):

Selectφ(ε, w⃗) = ε (4.37)
Selectφ(ℓ :: u, w⃗) = ITE([φ]PV(u, w⃗), Selectφ(ℓ, w⃗) :: u, Selectφ(ℓ)) (4.38)

All these three properties can be proved by induction on ℓ using Corollary 4.1.6, and
we will only demonstrate Equation (4.36).

In base case (i.e. ℓ/ε), we know by the definition axiom of Selectφ that it suffices to
prove ∀x ∈ ∅ : φ(x, w⃗). By the introduction rule of the universal quantifier, it suffices
to prove that IsList[ℓ], [x ∈ ∅] ⊢ φ(x, w⃗). This is provable as ⊢ ¬[x ∈ ∅] is provable
(see Equation (4.28)).

In the induction case, we need to prove from Γ = (IsList[ℓ],∀x ∈ Selectφ(ℓ, w⃗) :
φ(x, w⃗)) that ∀x ∈ Selectφ(ℓ :: u, w⃗) : φ(x, w⃗). By the definition axiom of Selectφ, it
suffices to prove that

ψ := ∀x ∈ ITE([φ]PV(u, w⃗), Selectφ(ℓ, w⃗) :: u, Selectφ(ℓ)) : φ(x, w⃗).

We prove by a case study on φ(u, w⃗); the case study is done by the provability of
the law of excluded middle (see Remark 3.2.2). The case study generates two subgoals:

• (Subgoal 1 ): Γ,¬φ(u, w⃗) ⊢ ∀x ∈ ψ. In this case, we can see that [φ(u, w⃗)]PV = 0
by the comprehension of PV translation (see Lemma 3.8.2), and we can then
rewrite ψ as

∀x ∈ Selectφ(ℓ) : φ(x, w⃗),
which has already been available in Γ.

• (Subgoal 2 ): Γ, φ(u, w⃗) ⊢ ∀x ∈ ψ. In this case, we can see that [φ(u, w⃗)]PV = 1 by
the comprehension of PV translation (see Lemma 3.8.2), and we can then rewrite
ψ as

∀x ∈ Selectφ(ℓ) :: u : φ(x, w⃗).
By the introduction rule, we can add [x ∈ Selectφ(ℓ :: u)] into the antecedent
towards proving φ(x, w⃗). Finally, we perform a case study on whether x = u,
where both cases can be resolved by φ(u, w⃗) and the induction hypothesis ∀x ∈
Selectφ(ℓ, w⃗) : φ(x, w⃗).

This completes the proof of Equation (4.36).

4.4.3 Union, Intersection, and Cartesian Product
The union of two sets ℓ1∪ℓ2 can be simply defined by the concatenation of the lists, i.e,
ℓ1 ∪ ℓ2 := ℓ1 ++ ℓ2. The intersection requires the specification axiom scheme: ℓ1 ∩ ℓ2 :=
{x ∈ ℓ2 | [x ∈ ℓ1]}.

Lemma 4.4.6. PV-PL proves the following assertions:
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• IsList[ℓ1, ℓ2] ⊢ [x ∈ ℓ1 ∪ ℓ2]↔ [x ∈ ℓ1] ∨ [x ∈ ℓ2]
• IsList[ℓ1, ℓ2] ⊢ [x ∈ ℓ1 ∩ ℓ2]↔ [x ∈ ℓ1] ∧ [x ∈ ℓ2]
• IsList[ℓ1, ℓ2] ⊢ ℓ1 ∩ ℓ2 ≡ ℓ2 ∩ ℓ1
• IsList[ℓ1, ℓ2] ⊢ ℓ1 ∪ ℓ2 ≡ ℓ2 ∪ ℓ1
• IsList[ℓ1, ℓ2, ℓ3] ⊢ ℓ1 ∩ (ℓ2 ∪ ℓ3) ≡ (ℓ1 ∩ ℓ2) ∪ (ℓ1 ∩ ℓ3).
• IsList[ℓ1, ℓ2, ℓ3] ⊢ ℓ1 ∪ (ℓ2 ∩ ℓ3) ≡ (ℓ1 ∪ ℓ2) ∩ (ℓ1 ∪ ℓ3).

The proofs are omitted and left as an exercise. Also, this is of course not a complete
list of properties we can prove in PV-PL; most straightforward properties of intersection
and union should be provable.

We can also define the Cartesian product5 of two sets ℓ1 and ℓ2. For instance, we
can first define a function Cartesian′(x, ℓ) that constructs the set {x} × ℓ by recursion
on lists using Theorem 4.1.3:

Cartesian′(x, ε) = ε, (4.39)
Cartesian′(x, ℓ :: u) = Cartesian′(x, ℓ) :: MakePair(x, u). (4.40)

Next, we define a function Cartesian(ℓ1, ℓ2) by recursion on ℓ1:

Cartesian(ε, ℓ2) = ε, (4.41)
Cartesian(ℓ1 :: u, ℓ2) = Cartesian(ℓ1, ℓ2) ∪ Cartesian′(u, ℓ2). (4.42)

Following standard notation, we may use ℓ1× ℓ2 as an abbreviation of Cartesian(ℓ1, ℓ2).
By induction on lists (see Corollary 4.1.6), we can prove the following meta-theorem

showing the correctness of the Cartesian product:

Lemma 4.4.7. PV-PL proves the following assertions:
• IsList[ℓ1, ℓ2] ⊢ IsList[ℓ1 × ℓ2]
• IsList[ℓ1, ℓ2] ⊢ ∀x ∈ ℓ1 × ℓ2 : x = MakePair(Left(x),Right(x))
• IsList[ℓ1, ℓ2] ⊢ ∀x ∈ ℓ1 × ℓ2 : Left(x) ∈ ℓ1 ∧ Right(x) ∈ ℓ2
• IsList[ℓ1, ℓ2] ⊢ ∀x ∈ ℓ1 : ∀y ∈ ℓ2 : MakePair(x1, x2) ∈ ℓ1 × ℓ2

The detail is omitted and left as an exercise. Hint: Induction on
ℓ1 first and then on
ℓ2, which follows
from the order when
we recursively define
the Cartesian
product.

4.4.4 Counting
Except for ordinary set-theoretic operations, finite sets are widely used as the mathe-
matical framework for combinatorics.

Indeed, for each PV-definable equivalence relation R (e.g. EQ or ≡), one can define
a PV function CardR(ℓ) that counts the number of different equivalence classes in ℓ with
respect to R. For instance, we can use recursion on lists (see Theorem 4.1.3), or the

5The standard construction of Cartesian product in ZF set theory depends on the power set axiom,
which is not feasible.
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following IMP(PV) program:

(CardR) : let S := ∅; let ℓ′ := ℓ;
for i := Len(ℓ′); i ̸= ε; i := TR(i) do

if Find[R]PV(Head(ℓ),·)(S) then let S := S :: Head(ℓ) else skip;
let ℓ := Tail(ℓ);

let r := Len(S)

As none of the intermediate variables will be longer than ℓ, we can fix the length bound
ω = ℓ and translate the IMP(PV) program to a PV function.

We introduce the notation Equiv[R] as the sequence of sentences R(x, x), R(x, y)→
R(y, x), R(x, y) → R(y, z) → R(x, z); namely, R is an equivalence relation. Similarly,
we may use Equiv[R1, . . . , Rk] as a shorthand of Equiv[R1], . . . ,Equiv[Rk].

We can prove basic counting principles, such as the addition principle and multipli-
cation principle, are provable in PV-PL:

Lemma 4.4.8. PV-PL proves the following assertions:
• (Addition Principle): Equiv[R], IsList[ℓ1, ℓ2],∀x ∈ ℓ1 ∀y ∈ ℓ2 ¬R(x, y) ⊢ CardR(ℓ1∪
ℓ2) = CardR(ℓ1) ◦ CardR(ℓ2).

• (Multiplication Principle): Equiv[R], IsList[ℓ1, ℓ2], R(MakePair(x, y),MakePair(x′, y′))↔
R(x, x′) ∧R(y, y′) ⊢ CardR(ℓ1 × ℓ2) = CardR(ℓ1) # CardR(ℓ2).

Moreover, PV-PL also proves the inclusion-exclusion principle:

Lemma 4.4.9. PV-PL proves the following assertion:

Equiv[R], IsList[ℓ1, ℓ2] ⊢ CardR(ℓ1 ∪ ℓ2) = ITR(CardR(ℓ1) ◦ CardR(ℓ2),CardR(ℓ1 ∩ ℓ2)).

The proofs of these lemma can be down by induction on ℓ1 and ℓ2 in appropriate
order, which is left as an exercise to the readers.

4.5 Proof of the Recursion on Lists Meta-theorem
Recall the statement of Theorem 4.1.3:

Theorem 4.1.3 (Recursion on Lists). Let g(x⃗), h(x⃗, u, ℓ, z), k(x⃗, u, ℓ) be PV functions
satisfying that

PV ⊢ ITR(h(x⃗, u, ℓ, z), z ◦ k(x⃗, u, ℓ)) = ε.

Then there is a PV function f(x⃗, ℓ) such that PV proves:

f(x⃗, ε) = g(x⃗) (4.7)
f(x⃗, ℓ :: u) = h(x⃗, u, ℓ, f(x⃗, ℓ)) (4.8)
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The intuition of our proof is to define a function f ′(x⃗, ℓ, y) that outputs f(x⃗, ℓ̂y),
where ℓ̂y denotes the list obtained by iteratively removing the last (i.e. rightmost)
element in ℓ for y′ := ITR(ℓ, y) times. Note that the function ITRL(ℓ, y) that outputs
the list obtained by iteratively removing the last element in ℓ for y times can be defined
naturally by recursion on y, and we can prove that ITRL(ℓ, ℓ) = ε.

Subsequently, f ′(x⃗, ℓ, y) can be defined by recursion on y. Note that when y = ε,
we have that ℓy = ε and thus f ′(x⃗, ℓ, ε) = f(x⃗, ε). Moreover, observe that

f ′(x⃗, ℓ, si(y)) =
f(x⃗, ε) IsEps(ℓ̂)
h(x⃗,Head(ℓ̂),Tail(ℓ̂), f ′(x⃗, ℓ, y)) otherwise

where ℓ̂ := ITRL(ℓ, ITR(ℓ, si(y))). Finally, we will define f(x⃗, ℓ) := f ′(x⃗, ℓ, ℓ) and prove
that Equation (4.7) and (4.8) hold.

Step 1: Defining the function ITRL. Let ITRL(ℓ, y) be the function defined as

ITRL(ℓ, ε) := ℓ, ITRL(ℓ, si(y)) := Tail(ITRL(ℓ, y)) (i ∈ {0, 1}).

We need to prove that ITRL(ℓ, ℓ) = ε. Indeed, we will prove a stronger result in PV-PL:

⊢ ITR(ITRL(ℓ, x), ITR(ℓ, x)) = ε,

which suffices as we can substitute x/ℓ.
The assertion above can be proved by induction on x using the (Ind1) rule. The

base case is straightforward. In the induction case, we need to prove that

ITR(ITRL(ℓ, x), ITR(ℓ, x)) = ε ⊢ ITR(ITRL(ℓ, si(x)), ITR(ℓ, si(x))) = ε,

Note that the consequence is PV-provably equivalent to

ITR(Tail(ITRL(ℓ, x)),TR(ITR(ℓ, x))) = ε.

Therefore, it suffices (by the substitution/generalization rule) to prove that ITR(x, y) =
ε ⊢ ITR(Tail(x),TR(y)) = ε. This can be derived from basic properties of ITR and ⊢
ITR(Tail(x),TR(x)) = ε, which subsequently follows from a tedious but straightforward
induction on x.

Step 2: Defining the function f ′. We now define the function f ′(x⃗, ℓ, y) that
(intuitively) outputs f(x⃗, ITRL(ℓ, ITR(ℓ, y))).

Let g′(x⃗, ℓ) = g(x⃗). For i ∈ {0, 1}, we define

h′
i(x⃗, ℓ, y, z) :=

g(x⃗) IsEps(ℓ̂)
h(x⃗,Head(ℓ̂),Tail(ℓ̂), z) otherwise

where ℓ̂ := ITRL(ℓ, ITR(ℓ, si(y))), and

k′
i(x⃗, ℓ, y) :=

g(x⃗) IsEps(ℓ̂)
k(x⃗,Head(ℓ̂),Tail(ℓ̂), z) otherwise
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To recursively define a function from g′, h′
i, k

′
i, we need to show that it is provable

in PV that ITR(h′
i(x⃗, ℓ, y, z), z ◦ k′

i(x⃗, ℓ, y)) = ε for i ∈ {0, 1}. Notice that both h′
i and

k′
i are defined with a case study on the condition IsEps(ℓ̂). Therefore, by case study on

ITE (see Theorem 2.4.6 and Remark 2.4.2), it suffices to prove that
• ITR(g(x⃗), g(x⃗)) = ε

• ITR(h(x⃗,Head(ℓ̂),Tail(ℓ̂), z), z ◦ k(x⃗,Head(ℓ̂),Tail(ℓ̂), z)) = ε

The first equation follows from ITR(x, x) = ε, and the second follows from the assump-
tion.

We can then define a function f ′(x⃗, ℓ, y) recursively from g′, h′
i, k

′
i in PV, and we

define f(x⃗, ℓ) := f ′(x⃗, ℓ, ℓ).

Step 3: Verifying the properties. Now it suffices to verify the properties in Equa-
tion (4.7) and (4.8) for the function f we defined above. To see that Equation (4.7),
notice that PV proves

f(x⃗, ε) = f ′(x⃗, ε, ε) = g(x⃗)

by unfolding the definitions.
The proof of Equation (4.8), however, is much more complicated. We will prove

that
f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(y))) = f ′(x⃗, ℓ, ITR(ℓ, y)). (4.43)

Recall that f ′(x⃗, ℓ, y) is intended to be f(x⃗, ITRL(ℓ, ITR(ℓ, y))), and when |y| ≤ |ℓ|,
Equation (4.43) is intended to be

f(x⃗, ITRL(ℓ :: u, s0(y))) = f(x⃗, ITRL(ℓ, y)),

which should be true since ITRL(ℓ :: u, s0(y)) = ITRL(ℓ, y).

Proposition 4.5.1. PV ⊢ ITRL(ℓ :: u, s0(y)) = ITRL(ℓ, y).

Proof. This can be proved by induction on y. The equation trivially holds when y = ε
by unfolding the LHS. Suppose that the equation holds for y, notice that

ITRL(ℓ :: u, s0(s0(y))) = Tail(ITRL(ℓ :: u, s0(y)))

and
ITRL(ℓ, s0(y)) = Tail(ITRL(ℓ, y)).

Since ITRL(ℓ :: u, s0(y)) = ITRL(ℓ, y) by the assumption hypothesis, we can prove the
induction case by applying the PV-PL axioms of equality.

Proof of Equation (4.8). We first show that Equation (4.43) suffices to prove
Equation (4.8). Suppose that Equation (4.43) is true, by substituting y/ε and unfolding
ITR, we can obtain that

f ′(x⃗, ℓ :: u,TR(ℓ :: u)) = f ′(x⃗, ℓ, ℓ)
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where the RHS is f(x⃗, ℓ). We will then show that

f(x⃗, ℓ :: u) = h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(ℓ :: u))),

which, together with the fact that f ′(x⃗, ℓ :: u,TR(ℓ :: u)) = f(x⃗, ℓ), concludes the proof
of Equation (4.8).

Proposition 4.5.2. PV proves that

f ′(x⃗, ℓ :: u, y) =
g(x⃗) Or(IsEps(ℓ̂), IsEps(y))
h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(y))) otherwise

where ℓ̂ := ITRL(ℓ :: u, ITR(ℓ :: u, y)).

Proof Sketch. We perform a case study on y using the induction rule of PV-PL. This
equation holds for all three cases y/ε, y/s0(y), and y/s1(y) by simple unfolding.

Proposition 4.5.3. PV ⊢ f(x⃗, ℓ :: u) = h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(ℓ :: u))).

Proof Sketch. Note that it is easy to prove that PV ⊢ IsNotEps(ℓ :: u) = 1 by unfolding
the definition of Append. Moreover, let ℓ̂ = ITRL(ℓ :: u, ITR(ℓ :: u, ℓ :: u)), we know that
ℓ̂ = ℓ :: u and thus we can prove that IsEps(ℓ̂) = 0. By Proposition 4.5.2 with y/ℓ :: u
and unfolding ITE’s (used to implement the case analysis), we can conclude that

f ′(x⃗, ℓ :: u, ℓ :: u) = h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(ℓ :: u))),

where the LHS is exactly f(x⃗, ℓ :: u) by the definition axiom of f .

Proof of Equation (4.43). We will prove Equation (4.43) by induction on
ITR(ℓ, y). Concretely, let y′ be a fresh variable, we will prove the equation where y
is substituted by ITR(ℓ, y′) by induction on y′.

Note that this will lead to a proof of

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, y′)))) = f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, y′))) (4.44)

that is not known to imply Equation (4.43). Nevertheless, since what we need to do is
to prove the original property Equation (4.8) of the function f by substituting y/ε, the
equation above also suffices with the substitution y′/ℓ instead.

Recall that EQL(x, y) outputs 1 (resp. 0) if and only if |x| = |y| (resp. |x| ≠ |y|). It
turns out:

Proposition 4.5.4. PV-PL proves the following assertions:
• IsNotEps(ITR(x, y)) ⊢ EQL(ITR(x, ITR(x, y)), y) = 1.
• EQL(x, y) ⊢ ITRL(ℓ, x) = ITRL(ℓ, y).
• EQL(x, y) ⊢ f ′(z⃗, ℓ, x) = f ′(z⃗, ℓ, y).

Proof Sketch. All the equations can be proved by applying induction on x and y using
the induction rule of PV-PL.
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We perform induction on y′ to prove Equation (4.44), in which we will need to
resolve the following three subgoals:
(Subgoal 1). ⊢ Equation (4.44) with substitution y′/ε.
(Subgoal 2). Equation (4.44) ⊢ Equation (4.44) with substitution y′/s0(y′)
(Subgoal 3). Equation (4.44) ⊢ Equation (4.44) with substitution y′/s1(y′)
We will deal with the three cases in the following lemmas.

Lemma 4.5.5 (Subgoal 1). PV ⊢ f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ℓ))) = f ′(x⃗, ℓ, ITR(ℓ, ℓ)).

Proof Sketch. Since PV ⊢ ITR(ℓ, ℓ) = ε, the RHS of the equation is PV-provably equal
to f ′(x⃗, ℓ, ε), and by the definition axiom of f ′ it is further PV-provably equal to g(x⃗).

As for the LHS, notice that PV ⊢ IsEps(ITR(ℓ :: u, s0(ℓ))) = 0 by unfolding ℓ :: u
and proving basic properties about ITR. By Proposition 4.5.2, we know that

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ℓ)))

=
g(x⃗) Or(IsEps(ℓ̂), IsEps(ITR(ℓ :: u, s0(ℓ))))
h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(ITR(ℓ :: u, s0(ℓ)))) otherwise

where ℓ̂ := ITRL(ℓ :: u, ITR(ℓ :: u,TR(ITR(ℓ :: u, s0(ℓ))))). Note that

EQL(ITR(ℓ :: u, ITR(ℓ :: u, s0(ℓ))), s0(ℓ)) = 1,

and the proof is left as an exercise.Hint: Using
Proposition 4.5.4.

By EQL(x, y) = 1 ⇒ ITRL(ℓ, x) = ITRL(ℓ, y) we
can further prove that

ℓ̂ = ITRL(ℓ :: u, s0(ℓ)),
which is further equal to ITRL(ℓ, ℓ) = ε. Therefore by unfolding the equation from
Proposition 4.5.2 we have f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ℓ))) = g(x⃗).

Next, we prove (Subgoal 2) and (Subgoal 3). 6Fix any i ∈ {0, 1}. Let ℓ̂ be a fresh
variable, so that we can introduce ℓ̂ = ITRL(ℓ :: u, s0(ITR(ℓ, si(y′)))) as an assumption
(aka. in the antecedent). Note that by unfolding ITRL we can prove in PV that ℓ̂ =
ITRL(ℓ, ITR(ℓ, si(y′))).

We will perform a case analysis on whether IsEps(ℓ̂) = 1. Concretely, let Γ be the
set of antecedents including:

• ℓ̂ = ITRL(ℓ :: u, s0(ITR(ℓ, si(y′))))
• ℓ̂ = ITRL(ℓ, ITR(ℓ, si(y′)))
• f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, y′)))) = f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, y′))) (i.e. Equa-

tion (4.44)).
We will prove the following two lemmas:

Lemma 4.5.6. PV-PL proves Γ, IsEps(ℓ̂) = 1 ⊢

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, si(y′))))) = f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, si(y′)))).
6Introduction of a fresh variable can be done by (V), (A), and (Cut).
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Lemma 4.5.7. PV-PL proves Γ, IsEps(ℓ̂) = 0 ⊢

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, si(y′))))) = f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, si(y′)))).

These two lemma suffices to prove that Γ ⊢ Equation (4.44) (with the substitution
y′/si(y′) by a case study on ℓ̂, which subsequently completes the proof of all subgoals.

Proof Sketch of Lemma 4.5.6. Indeed, we will prove that the LHS and the RHS of the
equation are both identical to g(x⃗).

(LHS). Note that by Proposition 4.5.2, we know that

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, si(y′)))))

=
g(x⃗) Or(IsEps(ℓ̂′), IsEps(y′′))
h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(y′′))) otherwise

where

y′′ := ITR(ℓ :: u, s0(ITR(ℓ, si(y′)))),
ℓ̂′ := ITRL(ℓ :: u, ITR(ℓ :: u, y′′)).

Note that we can prove EQL(ITR(ℓ :: u, y′′), s0(ITR(ℓ, si(y′)))) = 1 (details omitted), so
that by Proposition 4.5.4:

ℓ̂′ = ITRL(ℓ :: u, ITR(ℓ :: u, y′′)) = ITRL(ℓ :: u, s0(ITR(ℓ, si(y′)))) = ℓ̂.

Since IsEps(ℓ̂) = 1 is available in the antecedent, we can apply the rewrite rule (=̂/),
unfold Or and ITE, and conclude that

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, si(y′))))) = g(x⃗).

(RHS). Again, by Proposition 4.5.2, we know that

f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, si(y′))))

=
g(x) Or(IsEps(ℓ̂′), IsEps(y′′))
h(x⃗, u, ℓ, f ′(x⃗, ℓ,TR(y′′))) otherwise

where

y′′ := ITR(ℓ, ITR(ℓ, si(y′))),
ℓ̂′ := ITRL(ℓ, ITR(ℓ, y′′)).

Note that we can prove EQL(ITR(ℓ, y′′), ITR(ℓ, si(y′))) = 1 (details omitted), so that by
Proposition 4.5.4:

ℓ̂′ = ITRL(ℓ, ITR(ℓ, y′′)) = ITRL(ℓ, ITR(ℓ, si(y′))) = ℓ̂.

Since IsEps(ℓ̂) = 1 is available in the antecedent, we can apply the rewrite rule (=̂/),
unfold Or and ITE, and conclude that

f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, si(y′)))) = g(x⃗).

This completes the proof.
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Proof of Lemma 4.5.7. Similar to the proof of Lemma 4.5.6, we can apply Proposi-
tion 4.5.2 to show that:

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, si(y′)))))

=
g(x⃗) Or(IsEps(ℓ̂′), IsEps(y′′))
h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(y′′))) otherwise

where it is provable that ℓ̂′ = ℓ̂, and y′′ := ITR(ℓ :: u, s0(ITR(ℓ, si(y′)))). It can be
proved that IsEps(y′′) = 0 as IsEps(ITR(ℓ :: u, s0(ℓ))) = 0. Therefore, by the assumption
that IsEps(ℓ̂) = 0, we can conclude by applying the rewrite rule and unfolding that:

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, si(y′)))))
= h(x⃗, u, ℓ, f ′(x⃗, ℓ :: u,TR(ITR(ℓ :: u, s0(ITR(ℓ, si(y′))))))). (4.45)

Similarly, we can also prove that

f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, si(y′))))
= h(x⃗, u, ℓ, f ′(x⃗, ℓ,TR(ITR(ℓ, ITR(ℓ, si(y′)))))). (4.46)

Notice that the LHS of Equation (4.45) and (4.46) are the LHS and RHS of the equation
in the lemma, respectively. Therefore, it suffices to prove that

f ′(x⃗, ℓ :: u,TR(ITR(ℓ :: u, s0(ITR(ℓ, si(y′))))))
= f ′(x⃗, ℓ,TR(ITR(ℓ, ITR(ℓ, si(y′))))). (4.47)

Finally, notice that PV proves:

EQL(TR(ITR(ℓ :: u, s0(ITR(ℓ, si(y′))))), ITR(ℓ :: u, s0(ITR(ℓ, y′)))) = 1,
EQL(TR(ITR(ℓ, ITR(ℓ, si(y′)))), ITR(ℓ, ITR(ℓ, y′))) = 1.

(The detail is omitted.) We can therefore modify our goal Equation (4.47) using Propo-
sition 4.5.4 and the rewrite rule to:

f ′(x⃗, ℓ :: u, ITR(ℓ :: u, s0(ITR(ℓ, y′)))) = f ′(x⃗, ℓ, ITR(ℓ, ITR(ℓ, y′))),

which is available as the third bullet of the antecedent (see the definition of Γ above).

4.6 Proof of the Admissibility of Induction on Lists
We first recall the formal statement of the induction rule on lists:

Theorem 4.1.5 (Induciton on Lists). Let u be a variable with no occurrences in Γ, t1, t2,
and ℓ be a variable with no occurrences in Γ. The following rule is admissible in PV-PL:

Γ ⊢ t1[ℓ/ε] = t2[ℓ/ε] Γ, IsList(ℓ) = 1, t1 = t2 ⊢ t1[ℓ/ℓ :: u] = t2[ℓ/ℓ :: u]
Γ, IsList(ℓ) = 1 ⊢ t1 = t2
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Intuitively, we will prove the theorem by induction on the length of the list ℓ using
the (Ind1) rule of PV-PL, where the base case and the induction case will be resolved
by the premises of the rule. The idea is quite similar to the proof of Theorem 4.1.3; we
will prove by induction on a fresh variable y that t1 = t2 after the substitution

y/ITRL(ℓ, ITR(ℓ, y)).

That is, t1 = t2 holds for every prefix of the list ℓ, and we prove the fact by induction
on the list of the prefix.

We will prove Theorem 4.1.5 in two steps: We first define the partial list func-
tion PrfList(ℓ, x) = ITRL(ℓ, ITR(ℓ, x)) and proves its properties, and then perform the
induction proof.

Step 1: Properties of partial lists. Recall that ITRL(ℓ, x) iteratively remove the
outermost element in the list ℓ for |x| times, and Len(ℓ) computes the length of the list
ℓ. We can define a function PrfList(ℓ, x) = ITRL(ℓ, ITR(ℓ, x)).

Proposition 4.6.1. The following assertions are provable in PV-PL:7

• IsList[ℓ] ⊢ PrfList(ℓ, ε) = ε;
• IsList[ℓ] ⊢ IsList[PrfList(ℓ, x)]
• IsList[ℓ] ⊢ PrfList(ℓ, x) = PrfList(ℓ, si(x)) ∨ PrfList(ℓ, x) = Tail(PrfList(ℓ, si(x))).

Proof Sketch. The first bullet is equivalent to ITRL(ℓ, ℓ) = ε, which has been proved in
Step 1 of the proof of Theorem 4.1.3 (see Section 4.5).

The second bullet can be proved by induction on y on the stronger statement
IsList[ℓ] ⊢ IsList[ITRL(ℓ, y)]. The base case is trivial as ITRL(ℓ, ε) = ε, while the in-
duction case follows from the definition equation of ITRL and IsList.

For the last bullet, we first prove a case study on whether ITR(x, ℓ) = ε. If this is not
the case, we have that ITR(ℓ, x) = ITR(ℓ, si(x)) = ε and the left side of the disjunction
holds by the reflexivity of equality. Otherwise, we know that

PV ⊢ EQL(ITR(ℓ, x), s0(ITR(ℓ, si(x)))) = 1.

and it suffices to prove for a fresh variable z that

ITRL(ℓ, z) = ITRL(ℓ, s0(z)) ∨ ITRL(ℓ, s0(z)) = Tail(ITRL(ℓ, z))

by the second bullet of Proposition 4.5.4. The right side of the disjunction is implied
by the definition equation of ITRL.

Step 2: Induction. Let y be a fresh variable. We will prove a stronger statement
that

Γ, IsList[ℓ] ⊢ t1[ℓ/PrfList(ℓ, y)] = t2[ℓ/PrfList(ℓ, y)]. (4.48)
7The disjunction is defined in terms of→ and ⊥. Note that standard inference rules are admissible,

see Remark 3.2.1.
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It is easy to verify that this suffices as we can make the substitution y/Len(ℓ) so that
the consequence is PV-PL provably equivalent to t1 = t2.

We prove Equation (4.48) by applying (Ind1) on the variable y. It generates three
subgoals:

• (Subgoal 1 ): Γ, IsList[ℓ] ⊢ t1[ℓ/PrfList(ℓ, ε)] = t2[ℓ/PrfList(ℓ, ε)].
• (Subgoal 2 ): From Γ, IsList[ℓ], t1[ℓ/PrfList(ℓ, y)] = t2[ℓ/PrfList(ℓ, y)] deduce that

t1[ℓ/PrfList(ℓ, s0(y))] = t2[ℓ/PrfList(ℓ, s0(y))].
• (Subgoal 3 ): From Γ, IsList[ℓ], t1[ℓ/PrfList(ℓ, y)] = t2[ℓ/PrfList(ℓ, y)] deduce that

t1[ℓ/PrfList(ℓ, s1(y))] = t2[ℓ/PrfList(ℓ, s1(y))].
We first prove (Subgoal 1 ). By the first bullet of Proposition 4.6.1, we know that

PrfList(ℓ, ε) = ε, and thus it suffices to prove t1[ℓ/ε] = t2[ℓ/ε], which follows from the
first premise of the rule.

It remains to prove the (Subgoal 2 ) and (Subgoal 3 ). Let i ∈ {0, 1}, we need to
prove that

t1[ℓ/PrfList(ℓ, si(y))] = t2[ℓ/PrfList(ℓ, si(y))] (4.49)
from Γ, IsList[ℓ], t1[ℓ/PrfList(ℓ, y)] = t2[ℓ/PrfList(ℓ, y)]. By the last bullet of Proposi-
tion 4.6.1, we can perform a case study on whether

PrfList(ℓ, x) = PrfList(ℓ, si(x)) or PrfList(ℓ, x) = Tail(PrfList(ℓ, si(x))).
In the former case, we can prove Equation (4.49) as the equation is equivalent to

t1[ℓ/PrfList(ℓ, y)] = t2[ℓ/PrfList(ℓ, y)], which is available in the antecedent.
In the latter case, we first prove that IsList[PrfList(ℓ, y),PrfList(ℓ, si(y))] by the sec-

ond bullet of Proposition 4.6.1. Then it follows that
PrfList(ℓ, si(x))

= Tail(PrfList(ℓ, si(x))) :: Head(PrfList(ℓ, si(x)))
= PrfList(ℓ, x) :: Head(PrfList(ℓ, si(x))),

where the first equality follows from the definition equation of IsList[PrfList(ℓ, si(x))],
and the second equality follows from that PrfList(ℓ, x) = Tail(PrfList(ℓ, si(x))).

By the cut rule, we can add this equation to the antecedent, and thus it suffices to
prove from

Γ, IsList[PrfList(ℓ, y)], t1[ℓ/PrfList(ℓ, y)] = t2[ℓ/PrfList(ℓ, y)]
that

t1[ℓ/PrfList(ℓ, x) :: Head(PrfList(ℓ, si(x)))]
= t2[ℓ/PrfList(ℓ, x) :: Head(PrfList(ℓ, si(x))]).

Pick fresh variable ℓ̂ and u. By the substitution/generalization rule of PV-PL, it then
suffices to prove that:

Γ, IsList[ℓ̂], t1[ℓ/ℓ̂] = t2[ℓ/ℓ̂] ⊢ t1[ℓ/ℓ̂ :: u] = t2[ℓ/ℓ̂ :: u].

This can be proved from the second premise with the substitution ℓ/ℓ̂, which completes
the proof.
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4.7 Bibliographical and Other Remarks

Feasible Mathematics Thesis. In the previous four chapters, we have worked hard
to justify the Feasible Mathematics Thesis, namely PV captures the informal notion of
feasible mathematics we defined with the three postulates. We provide evidence that
PV is strong enough to simulate known feasible algorithms and carries known feasibly
constructive proofs over feasible algorithms:

• In Chapter 2, we developed if-then-else, basic Boolean logic, the pairing function,
conditional equations, and extensions on recursion and induction. As computer

scientists, we always
love abstraction :)

The pairing
function allows us to work with structured data rather than raw strings, and the
extensions on recursion allow us to define, for instance, arithmetic operations and
the function EQ.

• In Chapter 3, we developed a natural deduction style proof system called PV-PL
that allows us to perform conditional reasoning, propositional reasoning, as well
as a general form of induction (similar to Postulate 3) that is more general and
easier to use. Note that the function EQ, the method of conditional equations, as
well as induction on multiple variables, are the key ingredients empowering the
translation theorem (see Theorem 3.3.4) to PV proofs.

• In this chapter, we developed lists and dictionaries, which further extend our abil-
ity to define new functions by recursion and performing induction on the recur-
sively defined function. Trust me, as in the

first draft I tried to
prove Theorem 4.1.3
without PV-PL, and
it’s not a good
experience :(

The meta-theorems (Theorem 4.1.3 and 4.1.6) effectively
allow us to deal with lists just as strings, for which the recursion and induction
rules are built-in functionalities of PV. We highlight that in the proof of these two
meta-theorems, we heavily rely on the PV-PL system and conditional reasoning;
the proof will be much harder without the system PV-PL as an abstract layer.

• We further provide simulations of other computation models, namely an imper-
ative programming language IMP(PV) built upon PV and (single-tape) Turing
machines in PV. Moreover, we show that the Hoare logic over IMP(PV) pro-
grams, which serves as a natural and intuitive tool to reason about IMP(PV)
programs, can be translated back to PV-PL (and thus PV) proofs. We also show
that the elementary first-order theory of finite sets, when sets are explicitly given
as lists, can be formalized in PV-PL using the meta-theorems for lists developed
in Section 4.1.

Given the robustness of PV as demonstrated in previous chapters, we will put more
trust in the Feasible Mathematics Thesis in writing PV functions and proofs. We will
write proofs in informal feasible mathematics like computer scientists and programmers
pseudo-codes (rather than Turing machines or real programs), and as mathematicians
writing informal mathematical formulations and proofs (rather than writing proofs in
axiomatized set theory).
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Lists and maps. The constructions of lists and maps are implicit in, e.g., [Bus86,
Kra95a]. To our knowledge, the recursion meta-theorem (see Theorem 4.1.3) and in-
duction meta-theorem (see Theorem 4.1.5) have not been explored in the literature;
nevertheless, both theorems are widely believed to be true.

It is worth noting that these meta-theorems can be viewed as time-bounded versions
of the recursion and induction functionalities for inductively defined types in modern
proof assistants, see, e.g., [DMKA+15, Section 3].

Imperative programming language IMP. The imperative programming language
IMP(PV) is an abstraction of modern structured programming languages. Similar lan-
guages are popular in compiler and formal verification textbooks, see, e.g., [PCG+10,
ImpCEvalFun]. One major difference between our and the standard formulation is that
we require an explicit length bound for all variables, which ensures that the program
runs in polynomial time.

A similar imperative programming language was introduced by Cook [Coo90] to de-
fine high-order polynomial-time functions. Cook [Coo90] did not develop proof systems
for the functionality of programs.

Feasible set theory. The universal and existential quantification over feasible sets
can be viewed as a “typed” version of Buss’s sharply bounded quantifiers [Bus86],
as the numbers of elements in sets encoded by lists are bounded by their encoding
lengths. All results in Section 4.4 are widely believed to be true, and we view them as a
formalization of the folklore intuition that “almost all standard mathematics on small
sets can be formalized in PV”.

A recent work of Beckmann, Buss, Friedman, Müller, and Thapen [BBF+19] de-
veloped a feasible set theory that combines the axiomatic set theory and complexity
theory. Their results extend to infinite sets such as ω.



Chapter 5

Connection to Propositional Proofs

We will now answer a question posted in Chapter 1. Recall that feasible mathematics is
defined as an interpretation of constructive mathematics (i.e. the BHK interpretation),
where the “effective procedures” are interpreted by feasible functions, i.e., polynomial-
time computable functions. However, the meaning of “proofs” remains unspecified.

We will introduce the interpretation of “proofs” in [Coo75], which is known as Cook’s
translation, that provides a tight connection between propositional proof systems and
feasible mathematics.

5.1 Cook’s Translation and Interpretation of Proofs
Equivalently, one
may consider
equations in PV,
which is essentially
identical by the [·]PV
translation.

We first explain our goal — the interpretation of proofs in BHK interpretation — in
more detail. Suppose that φ(x⃗) is a PV-PL formula, a proof of φ(x⃗) must correspond
to an efficient procedure that given any x⃗, outputs a “proof” of φ(x⃗).

Intuition of the Cook’s interpretation. To further clarify the question, we con-
sider the meaning of “φ(x⃗)”. Let x⃗ = (x1, . . . , xk). Cook [Coo75] interprets φ(x⃗) as a
family of propositional formulas, where for n1, . . . , nk ∈ N,

[φ(x⃗)]n1,...,nk
Cook

is a propositional formula consisting of n1+n2+· · ·+nk Boolean variables that simulates
the formula φ(x⃗) when x1, . . . , xk are of length n1, . . . , nk, respectively.

Such propositional formulas can be constructed by the Cook-Levin theorem; this
ensures that the size of the formula [φ(x⃗)]n1,...,nk

Cook is at most poly(n1, . . . , nk). Indeed,
this translation is essentially the same as the translation of uniform polynomial-time
Turing machines to polynomial-sized circuits.

Therefore, we can naturally interpret proofs of φ(x⃗) as a family of propositional
proofs of the formula [φ(x⃗)]n1,...,nk

Cook in some propositional proof systems P . Following
the BHK interpretation, we would like to prove a meta-theorem:

Theorem 5.1.1 (Cook’s interpretation of proofs, informal). The following holds for a
(sound and complete) propositional proof system P . Suppose that φ(x⃗) is provable in

111
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PV-PL, there is PV-function Genφ such that PV-PL proves that Genφ(z1, . . . , zk) outputs
a correct propositional proof of [φ(x)]|z1|,...,|zk|

Cook in P .

As an immediate consequence, we know that if φ(x⃗) is provable in PV-PL, the
propositional formula [φ(x)]n1,...,nk

Cook admits P -proof of size poly(n1, . . . , nk), as Genφ is a
feasible function.

We stress that the statement “PV-PL proves that Genφ(z1, . . . , zk) outputs . . . ”
needs to be formalized as a PV-PL sentence. Nevertheless, as long as P is a standard
propositional proof system, there will be a straightforward feasible algorithm verifying
VerifierP (ψ, π) whether a proof π is a correct proof of a formula ψ or not. This statement
can therefore be formalized as the PV equation

VerifierP ([φ(x)]|z1|,...,|zk|
Cook ,Genφ(z1, . . . , zk)) = 1,

where the function (z1, . . . , zk) 7→ [φ(x)]|z1|,...,|zk|
Cook can also be implemented by a straight-

forward PV function.
Theorem 5.1.1 shows that PV-PL can be simulated by a uniform family of (short)

propositional proofs in P . This could be a trivial statement if P is too strong; for
instance, we can even define a proof π of ψ in P as a tuple π := (φ(x), πPV), and the
proof is correct if ψ = [φ(x)]nCook and πPV is a PV-proof of ψ. Therefore, a complement
of Theorem 5.1.1 must be proved to show that P is not too strong:

Theorem 5.1.2 (Cook’s interpretation of proofs, strengthened). The followings are
equivalent for a (sound and complete) propositional proof system P .

• φ(x⃗) is provable in PV-PL;
• PV-PL proves that for any z1, . . . , zk, Genφ(z1, . . . , zk) outputs a correct proposi-

tional proof of [φ(x⃗)]|z1|,...,|zk|
Cook .

In some sense, this is similar to the standard result in complexity theory that P =
P-uniform P/poly that connects feasible algorithms with feasibly generated families of
circuits.

Extended Frege system. The propositional proof system P in Theorem 5.1.2 is
indeed the Extended Frege system, denoted by EF. Extended Frege EF consists of a
finite set of axiom schemes as well as two rules:

• (Modes Ponens). From φ, φ→ ψ, deduce ψ.
• (Extension). Let z be a fresh variable that does not appear in previous lines of

the proof. Deduce z ↔ φ.
Note that the primary reason for introducing the extension rule is to allow us formalizing
and reasoning about circuits rather than only formulas without significant blowup on
the length of the sentences and proofs.

As a concrete example, we can define EF using the following set of axiom schemes
that is known to be sound and complete for propositional logic:

• K : φ→ ψ → φ;
• S : (φ→ ψ → γ)→ (φ→ ψ)→ φ→ γ;
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• D : ¬¬φ→ φ, where ¬φ is short for φ→ ⊥.
Similar to the definition of PV-PL, we can consider propositional formulas using

only {→,⊥} as connectives, while other connectives such as ∧ and ∨ can be introduced
naturally. Alternatively, we can define formulas to have more connectives (e.g. →
,⊥,∧,∨) by introducing corresponding axioms (see, e.g., Remark 3.2.1).

Remark 5.1.1. Why do we need EF while translating PV proofs? Specifically, why is the
extension rule crucial? It turns out that the induction rule of PV (more generally, the
induction postulate of informal feasible mathematics) requires intermediate variables
to record the intermediate computation during the induction procedure. In particular,
if we remove the extension rules, we can only argue about formulas, which corresponds
to the complexity class NC1 that is unlikely to be equal to P.

This should be more clear in the proof sketch of Cook’s translation theorem; see
Section 5.3 for more details.

5.2 Formal Definitions
Now we formally define Cook’s translation, the encoding of Extended Frege proofs in
PV, and Theorem 5.1.2.

5.2.1 Translation from PV Equations to Propositional Formu-
las

Alternatively, one
can define the
translation of PV-PL
formulas directly.

We first formally define Cook’s translation from PV equations to propositional formu-
las; that is, for any PV equation s = t with k variables, we will define a PV function
z1, . . . , zk 7→ [s = t]|z1|,...,|zk|

Cook . The translation of PV-PL formulas can be obtained by
the [·]PV translation. For simplicity, we will describe the translation without formal-
izing it in PV; nevertheless, the formalization should be clear given the programming
functionalities we have developed by now.

Indeed, formulas obtained from the translation [·]Cook will be of form ∧Γ → ∧∆,
where Γ and ∆ are sets of formulas that contain at most three variables.

Specification of the translation. We first define the translation of PV functions
and terms. Formally, the translation of a PV-function f(x1, . . . , xk) on input lengths
n1, . . . , nk is a formula [f ]n1,...,nk

Cook consisting of poly(n1, . . . , nk) variables, where
• There are n1 + · · · + nk variables x1 ∈ {0, 1}n1 , . . . , xk ∈ {0, 1}nk that takes the

input to the function f .
• There are m variables y1, . . . , ym defined to carry out the internal computation of

the function f . Note that m depends on the function f , while for every fixed PV
function f , m = m(n⃗) is a polynomial in n1, . . . , nk.

• There are ℓ variables z ∈ {0, 1}ℓ denoting the output of f . Similar to the previous
case, ℓ = ℓ(n⃗) is a polynomial in n1, . . . , nk depending on f .

• A set Γ of formulas containing at most three variables, where [f ]n1,...,nk
Cook = ∧Γ.
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• The translation satisfies that for any assignment of the variables, if all formulas
in Γ are satisfied, z must be the output of f(x1, . . . , xk).

The translation of terms can be defined accordingly.
One technical issue that is worth mentioning is that the output length of a PV

function is not necessarily the same even if the input length is fixed. Therefore, the
translation must deal with the issue of encoding strings of different lengths by a fixed
number of variables. We will use the following simple encoding: Strings of length
at most m are encoded by m + 1 variables, where the encoding of x ∈ {0, 1}≤m is
0m+1−|x|−1 ◦ 1 ◦ x.This also proves∑

i≤m 2i ≤ 2m+1 :)
Remark 5.2.1. An advantage of the encoding is that to convert the n-bit encoding of
a string to a (n + 1)-bit encoding of a string, we only need to add a leading zero to
the encoding, which can be implemented by introducing an additional variable z and a
constraint ¬z.

Description of the translation. Now we went through the formulation rules of
functions and terms to define the translation. Let n⃗ = (n1, . . . , nk) be the input length
of variables x1, . . . , xk. The translation of functions and terms is defined by structural
induction on the formulation of formulas and terms (in the meta-theory).

• (Variable).That is, the output
is the same as the

input.

The translation of a variable [xi]n⃗Cook is defined as m := 0, ℓ := ni,
Γ := {zj → xij | j ∈ [ni]} ∪ {xij → zj | j ∈ [ni]}.

• (Constants). The translation of the constant ε is defined as m := 0, ℓ := 1,
Γ := {z1}. That is, ε is encoded as the string 1.

• (Composition). Suppose that f is a d-variant function and t1, t2, . . . , td be terms
such that we have already obtained the translation of f , t1, . . . , td. The translation
of the term f(t1, . . . , tk) is obtained as follows:

–Well, it’s just
composition... The

only job is to define
new variables for

the output of
t1, . . . , td.

Let ℓf , ℓ1, . . . , ℓd be the output length of f, t1, . . . , td, respectively. The output
length of the composition is ℓ(n⃗) = ℓf (ℓ1(n⃗), . . . , ℓd(n⃗)).

– Let mf ,m1, . . . ,md be the number of internal variables of f, t1, . . . , td, re-
spectively. The number of internal variables of the composition is

m(n⃗) := mf (ℓ1(n⃗), . . . , ℓd(n⃗)) +
∑
i∈[d]

ℓi(n⃗) +
∑
i∈[d]

mi(n⃗).

Note that ℓ1 + · · ·+ ℓd variables p1 ∈ {0, 1}m1 , . . . , pd ∈ {0, 1}md are used to
maintain the output of t1, . . . , td (see the second term).

– Let Γ1, . . . ,Γd are the constraints for t1, . . . , td, respectively, on input length
n⃗. Let Γf be the constraints of f on input length ℓ1(n⃗), . . . , ℓd(n⃗). We identify
the input variables of the translation of f on input length ℓ1(n⃗), . . . , ℓd(n⃗) and
the new internal variables p1, . . . , pd. The constraints for the composition are
Γ = ∪i∈[d]Γi ∪ Γf .

• (Non-Recursive Initial Functions). Next, we consider the translation of initial
functions s0(x), s1(x) that are not recursively defined.
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– The translation [s0(xi)]n⃗Cook is defined as m := 0, ℓ := ni + 1, and Γ :=
{zj+1 → xij | j ∈ [ni]} ∪ {xij → zj+1 | j ∈ [ni]} ∪ {¬z1}.

– The translation [s1(xi)]n⃗Cook is defined as m := 0, ℓ := ni + 1, and Γ :=
{zj+1 → xij | j ∈ [ni]} ∪ {xij → zj+1 | j ∈ [ni]} ∪ {z1}.

• (Functions via Composition). For a function ft defined by a term t, the translation
of ft is defined as the translation of the term t.

• (Functions via Recursion). This is essentially
the only non-trivial
step, but it’s just as
simple as unwinding
a for-loop :)

Now we consider a function f(x⃗, y) that is recursively
defined from g(x⃗) and hi(x⃗, y, z) (i ∈ {0, 1}).

This includes the initial functions TR(x) (where g = ε and hi(x, y, z) = y),
ITR(x, y) (where g(x) = x and hi(x, y, z) = TR(z)), and ◦(x, y) (where g(x) = x
and hi(x, y, z) = si(z)), as well as functions introduced by the rule of limited
recursion. (Note that #(x, y) is redundant, see Remark 2.4.1). In either case, we
can assume that we have already obtained the translation of g, h0, and h1. Also,
we assume that PV proves that ITR(hi(x⃗, y, z), z ◦ ki(x, y)) = ε, i ∈ {0, 1}, for
some PV function ki whose translation is known.

– Let (mg, ℓg,Γg) be the translation of g, (mi
h, ℓ

i
h,Γih) be the translation of hi,

and (mi
k, ℓ

i
k,Γik) be the translation of ki. For simplicity, we only consider the

case that x⃗ = x, i.e., there is only one additional variable.

– Suppose that we are translating to the input length nx for x and ny for y of
the function f(x, y). Let x1, . . . , xnx ∈ {0, 1} and y1, . . . , yny ∈ {0, 1} be the
Boolean variables for the input (x1, y1 are the leftmost bits).

– (Parse Input Length). We introduce variables w1, w2, . . . , wny ∈ {0, 1} in-
tended to be wi = 1 if and only if y is of form 0i−1 ◦ 1 ◦ y′; this is used
to determine the actual input length of y. We need to introduce O(ny)
additional variables and constraints for each i ∈ [ny] to implement wi.

– (Recursion). For each i ∈ [ny], we will introduce internal variables zi0, zi1, . . . , ziny

where

zi0 maintains the output of g(x) (5.1)
zi1 maintains the output of hyi+1(x, ε, zi0) (5.2)
zi2 maintains the output of hyi+2(x, yi+1, z

i
1) (5.3)

... (5.4)
ziny−i maintains the output of hyny

(x, yi+1 ◦ · · · ◦ yny−1, z
i
ny−i−1). (5.5)

In addition, we introduce necessary internal variables to carry out the cor-
responding computation of g(x), hyi+1(x, ε, z0), . . . The total number of in-
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ternal variables introduced is at most
mi
f (nx, ny) := mg(nx) + ζ0 (g(x) and zi0)

+
∑

i∈{0,1}
mi
h(nx, 0, ζ0) + ζ1 (hyi+1(x, ε, z0) and zi1)

+
∑

i∈{0,1}
mi
h(nx, 1, ζ1) + ζ2 (hyi+2(x, y1, z1) and zi2)

+ · · ·+
∑

i∈{0,1}
mi
h(nx, ny, ζny−1) + ζny−i

(hyny
(x, y1+1 ◦ · · · ◦ yny−1, z

i
ny−i−1) and ziny

)

where ζj is an upper bound of the length of zij, which is determined by
ζ0 := ℓg(nx) and ζj+1 := ζj + ℓ0

k(nx, j) + ℓ1
k(nx, j). Clearly, mf (nx, ny) ≤

poly(nx, ny).WLOG, we assume
that ζj+1 ≥ ζj . – (Collect Output). Let ℓf (nx, ny) = ζny and ẑ ∈ {0, 1}ζny be the output

variables. We add additional variables and constraints such that
ẑj =

∨
i∈[ny ]

(wi ∧ zij).

This requires O(ny) variables and constraints for each j ∈ [ζny ].
– (Internal Variables). The total number of internal variables introduced in

the translation is at most
mf (nx, ny) = O(n2

y) +
∑
i∈[ny ]

mi
f (nx, ny) +O(ny · ζny) = poly(nx, ny).

The first term counts the variables for defining w1, . . . , wny , the second term
counts the number of variables for zi0, . . . , ziny−i, and the last term counts the
number of variables to collect the output (i.e. ẑ1, . . . , ẑζny

).
– (Constraints). The set of constraints Γf is defined as the constraints cor-

responding to Equation (5.1) to Equation (5.5), the constraints to define
w1, . . . , wny , and the constraints to collect the output. The total number of
constraints is bounded by poly(mf (nx, ny)) = poly(nx, ny).

Translation of equations. Finally, we can consider the propositional translation of
equations. Let s(x⃗) and t(x⃗) be terms and n⃗ be the input lengths. We first obtain the
translation (ms, ℓs,Γs) := [s(x⃗)]n⃗Cook and (mt, ℓt,Γt) := [t(x⃗)]n⃗Cook. Assume, without loss
of generality, that ℓs(n⃗) ≤ ℓt(n⃗). Let z(s) ∈ {0, 1}ℓs(n⃗) be the output variables for s and
z(t) ∈ {0, 1}ℓt(n⃗) be the output variables for t.Additional variables

should also be
introduced to deal
with the 0i ◦ 1 ◦ x

encoding of strings,
which we ignore

here.

Let z(s)
i and z

(t)
j be the i-th bit of z(s) and z(t), where the rightmost bit of the first

bit, respectively. The translation of the equation s(x⃗) = t(x⃗) is defined as the formula
∧Γ→ ∧∆, where

Γ := Γs ∪ Γt;
∆ := {z(s)

i → z
(t)
i | i ∈ [ms(n⃗)]} ∪ {z(t)

i → z
(s)
i | i ∈ [ms(n⃗)]}

∪ {¬z(t)
j | ms(n⃗) < j ≤ mt(n⃗)}.
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The set of constraints Γ encodes the computation of s(x⃗) and t(x⃗), while ∆ encodes
the fact that the output of s(x⃗) is the same as the output of t(x⃗).

5.2.2 Formalizing EF in PV
Propositional formulas and EF proofs can be naturally formalized in PV. The exact
formalization is usually not important as natural formalizations are usually PV-provably
equivalent; we provide the following encoding for concreteness.

• (Formulas). We formalize a formula φ as a list ℓ of natural numbers, where for
each u ∈ ℓ, it denotes “⊥” if u = 0, or “→” if u = 1, or a variable of ID u
otherwise. The list is the prefix expression of φ according to the encoding above,
and it is easy to define (by recursion on lists using Theorem 4.1.3) functions that
decide what is the outermost connective and (in case that it is →) what are the
left and right sides of it. For simplicity, we use [φ] to denote the encoding of a
formula φ.

• (Proofs). We formalize a EF proof as a list ℓ, where each element denotes a line
of the proof encoded by a tuple (τ, [ϕ0], [ϕ1], [ϕ2]) for τ ∈ [5] and ϕ0, ϕ1, ϕ2 be
encoding of formulas.

– The MP rule (i.e. φ, φ→ ψ ⊢ ψ) is encoded by (1, [φ], [ψ],⊥).
– The extension rule (i.e. z ↔ φ for a fresh variable z) is encoded by (2, [z], [φ],⊥).
– The axiom K (i.e. φ→ ψ → φ) is encoded (3, [φ], [ψ],⊥).
– The axioms S,D are encoded similar to the axiom K. The outermost element

in the list ℓ is the last line of the proof.

• (Conclusion). We can define a function Conc(π) that takes a tuple π encoding
a line of the proof and outputs the conclusion. For instance, Conc((3, [p], [q]))
outputs [p → q → p]. Similarly, the conclusion of a proof ℓ, also denoted by
Conc(ℓ), is defined to be the conclusion of the last line of the proof.

• (Pattern Matching). For each axiom scheme σ ∈ {K, S,D}, we can define a
pattern matching function Matchσ(φ) that checks whether φ satisfies the pattern
of the axiom scheme σ. It returns ε if it fails, and returns a tuple denoting
the sub-formulas matched for each symbol of the axiom scheme σ; for instance,
MatchK([p→ (q → p)→ p]) will return a pair ([p], [q → p]).

• (Proof Verification). We can define a function Verifier(ℓ) that checks whether the
EF proof is valid by recursion on the list ℓ (see Theorem 4.1.3). Concretely, we
have that:

– An empty list ε is a valid proof.
– If a proof ℓ is valid and u encodes a new line, we first verify that u is a

correctly encoded line of proof, and then verify accordingly. For instance,
if u = (1, [φ], [ψ],⊥), the proof ℓ :: u is valid if both [φ → ψ] and [φ] are
conclusions of existing lines of proofs in ℓ.
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5.3 Arithmetic Proofs to Propositional Proofs
As the first half of Cook’s translation theorem (see Theorem 5.1.2), we will need to prove
that an arithmetic proof of φ(x⃗) in PV-PL implies the existence of short propositional
proofs of [φ(x⃗)]n⃗Cook, and such existence of short propositional proofs can be proved in
PV-PL. Formally:

Lemma 5.3.1. Let s(x⃗) = t(x⃗) be a PV equation, where x⃗ = (x1, . . . , xk) be the vari-
ables. Suppose that PV proves s(x⃗) = t(x⃗), then there exists a PV function Gens=t such
that PV-PL proves

ℓ = Gens=t(z1, . . . , zk) ⊢ Verifier(ℓ) = 1 ∧ Conc(Head(ℓ)) = [s = t]|z1|,...,|zk|
Cook .

That is, Gens=t(z1, . . . , zk) produces an EF proof of [s = t]|z1|,...,|zk|
Cook .

The proof of the lemma is tedious but straightforward, so we will only sketch the
proof. Intuitively, we will perform induction on the PV proof of s(x⃗) = t(x⃗); that
is, we translate the PV proof line-by-line into short propositional proofs. We need to
consider the case that the next line to translate is a definition axiom, a logical rule, or
the induction rule.

Indeed, what we will exactly prove is that suppose the translations of the first i− 1
lines on any input length m⃗ admit poly(m⃗)-size proofs, then the translation of the i-th
line on any input length m⃗′ also admits a poly(m⃗)-size proof. This induction is infeasible
as it is unclear how to verify whether the translation works on any input length. This
is not a problem as the induction is done in meta-theory.Sorry to hear that

you cannot
understand this,

real feasible
mathematicians :(

Moreover, the construction
of the function Gens=t can be easily extracted from the inductive proof, which we will
omit here.

Definition axioms. The definition axiom of functions introduced via composition
trivially admits short EF proofs, thus it suffices to consider functions f(x⃗, y) introduced
via recursion. This includes the initial functions TR(x), ITR(x, y), and ◦(x, y), as well
as other functions introduced by the rule of limited recursion. In either case, we may
assume that:

• f(x⃗, y) is introduced by g(x⃗) and hi(x⃗, y, z) for i ∈ {0, 1}.
• It is provable in PV that ITR(hi(x⃗, y, z), z ◦ ki(x⃗, y)) = ε.

We need to show that the translations of the definition axioms

f(x⃗, ε) = g(x⃗), f(x⃗, si(y)) = hi(x⃗, y, f(x⃗, y))

admit short EF proofs. For simplicity, we will only sketch the proof.

• (Base Case). The base case f(x⃗, ε) = g(x⃗) can be proved in EF as follows. Recall
that the translation of f(x⃗, ε) is the composition of the translation of f(x⃗, y) and
ε. In the translation of f(x⃗, y), we introduce variables w1, . . . , wny to determine
the input length of y; here, we can prove in EF that wny = 1 and wj = 1 for
j ̸= ny, i.e., the input length is 0.
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In such case, we can further prove that the output of f(x⃗, ε) is determined by
the internal variable zny

0 , which is defined to maintain the output of g(x⃗). This
implies a proof of the equation, as the RHS is also g(x⃗).

• (Recursion Case). Fix i ∈ {0, 1}. The first step of the proof is to show that the
length of si(y) is the length of y plus 1. Formally, let w1, . . . , wny be the variables
corresponding to the input length for the function f in the LHS and w′

1, . . . , w
′
ny

be the variables for f in the RHS, we will prove that wi ↔ w′
i+1. I’m being a bit

sloppy on the
boundary; hopefully
you would agree
that it’s fine :)

For each possible
input length i ∈ [ny], we can see that the LHS and the RHS are following the
same computation procedure, and thus we can prove that the output of them are
identical.

Remark 5.3.1. With careful inspection, we can see that for this case, the proof can be
formalized in the Frege system (i.e. without using the extension rule).

It may be instructive to think about the following task as an abstraction of the
proofs above. Suppose that C1 : {0, 1}n → {0, 1} and C2 : {0, 1}n → {0, 1} are two
copies of the same circuit represented by a 3-CNF by introducing additional variables
for each gate (i.e. in the fashion of Cook-Levin Theorem). Let x1, x2 ∈ {0, 1}n. We
need to prove from

Γ := {x1i ↔ x2i | i ∈ [n]}

that C1(x1) ↔ C2(x2). (For instance, f(x⃗, si(·)) and hi(x⃗, ·, f(x⃗, ·)) are essentially two
copies of the same circuit by construction.)

Our proof goes as follows. We prove gate-by-gate that the output wires of C1 and
C2 are identical. For each gate, we only need to deal with a 3-CNF of O(1) size, which
can be proved in Frege with O(1) size. Therefore, the total size of the proof is bounded
by the number of gates in C1 and C2.

Logical rules. Next, we need to consider the case that the next line to translate is a
logical rule. Recall that we have the following logical rules:

• (L0): One may introduce s = s for any term s.
• (L1): If s = t has been introduced, one may introduce t = s.
• (L2): If s = t, t = u have been introduced, one may introduce s = u.
• (L3): If s1 = t1, . . . , sn = tn has been introduced and f(x1, . . . , xn) is an order-i

function symbol with n variables, one may introduce the equation f(s1, . . . , sn) =
f(t1, . . . , tn).

• (L4): If s = t has been introduced, v is an order-i term, and x is an variable, one
may introduce s[x/v] = t[x/v], where s[x/v] denote the term obtained from s by
substituting all occurrences of x by v.

The first three rules (L0), (L1), and (L2) are simple, so we will only sketch the proof
for (L3) and (L4).

For (L3), we know by the induction hypothesis that we have already obtained the
proofs for the translation of s1 = t1, . . . , sn = tn. That is, the output variables of si and
ti are identical to each other. By the definition of the translation of composition, we are
identifying the input variables of f to the output variables of s1, . . . , sn (resp. t1, . . . , tn)
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to obtain the translation of f(s1, . . . , sn) (resp. f(t1, . . . , tn)). We then reduce the task
to the form of Remark 5.3.1, which can be proved in polynomial size without the
extension rule.

For (L4), we know by the induction hypothesis that we have already obtained the
proofs for the translation of s = t. Note that this means that we have the proofs for
the translation of s = t on any input length.Here is why we need

the translation to
work on any input

length!

In particular, let ℓv be the output length
of the translation of the term v, we first obtain the proof of the translation of s = t
where the input length of x is ℓv, and the input lengths of other variables depend on
the input lengths we need for the translation of s[x/v] = t[x/v].

Next, we prove by structural induction on s (resp. t), again in the meta-theory, that
the translation of s[x/v] (resp. t[x/v]) is obtained from the translation of s (resp. t) by
identifying (each occurrence of) the variable x and (a copy of) the output variables of v.
We can easily prove that all copies of the output variables of v are identical according
to Remark 5.3.1 in polynomial size as there are only O(1) copies. Therefore, it suffices
to prove the translation of s[x/v] = t[x/v] where, instead of creating copies of v for
each of its occurrences, always refers to the same translation of v. This is because the
following substitution axiom scheme

φ ∧ (p↔ q)→ φ[p/q]

admits a polynomial size proof in Frege (i.e. without the extension rule) by structural
induction on the formula φ, which is left as an exercise.

Subsequently, we can use the substitution (generalization) rule
(EF ⊢)φ

(EF ⊢)φ[p/ψ]
to derive a proof of the translation of s[x/v] = t[x/v] (with all occurrences of v referring
to the same set of variables) from a proof of the translation of s = t where the input
length of x is ℓv; this is because we can substitute each bit of x in the latter proof to
the corresponding bits of the output bits of v. This rule can be proved to be feasibly
admissible in EF by performing induction on the proof of φ; that is, the size of the
EF proof of φ[p/ψ] is bounded by a polynomial of the size of the EF proof of φ. This
completes the case for the rule (L4).
Remark 5.3.2. The admissibility of the substitution (generalization) rule φ

φ[p/ψ] is feasi-
bly admissible in EF as well as Frege system (i.e. without the extension rule). This is
because the axioms and rules in both systems are schematic, and we can simply replace
all occurrences of the variable p to a formula ψ without incurring a significant size
overhead.

Induction. Finally, it suffices to consider the next line to translate to be an applica-
tion of the induction rule.This is the only

place that we really
need the extension

rule.

Recall that the induction rule is as follows: Suppose that
g(x⃗), h0(x⃗, y, z), h1(x⃗, y, z) functions, and f1(x⃗, y), f2(x⃗, y) are two functions satisfying
that equations

f1(x⃗, ε) = g(x⃗), f1(x⃗, si(y)) = h(x⃗, y, f1(x⃗, y)), i ∈ {0, 1} (5.6)
f2(x⃗, ε) = g(x⃗), f2(x⃗, si(y)) = h(x⃗, y, f2(x⃗, y)), i ∈ {0, 1} (5.7)
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have all been proved, then one may prove f1(x⃗, y) = f2(x⃗, y). For simplicity, we consider
the case where x⃗ = x (i.e. there is only one additional variable).

Let nx be the input length for x and ny be the input length for y in the translation.
We assume for simplicity that y is the actual string rather than the 0i ◦ 1 ◦ x encoding
of a string, but the proof extends to the latter case. Suppose that the translation of fi
is (mi

f , ℓ
i
f ,Γif ). Let ζj for 0 ≤ j ≤ ny be defined as

ζj := m1
f (nx, j) +m2

f (nx, j)

and ζ = max{ζj}0≤j≤ny . We introduce fresh variables z0, z1, . . . , zny ∈ {0, 1}ζ satisfying
that zj = f1(x, y≤j) (y≤j denotes the prefix of y of length j); concretely, this is done by
the extension rules

zjk ↔ the k-th output bit of f1(x, y≤j)
for each j ≤ ny and k ∈ [ζ].

Next, we will show that for j = 0, 1, . . . , ny there is an EF proof that “zj is equal to
the output of f2(x, y≤j)”, which is formalized as∧

k∈[ζ]
znyk ↔ the k-th output bit of f2(x, y≤j)

This suffices as for j = ny, it implies that zny = f2(x⃗, y) = f1(x⃗, y). We will prove this
by induction on ny. Note that this induction works within PV rather than in the meta-
theory. Therefore, to formalize the induction argument in PV, we need to construct an
explicit PV function that outputs the proof of “zj is equal to the output of f2(x, y≤y)
given x, y and j, which is left as an exercise.

Base case of the inner induction. For j = 0, we can first prove in EF that “z0
is identical to the output of g(x)” by the induction hypothesis. Subsequently, since we
have the EF proof of “g(x) is identical to f2(x⃗, ε)”, we can obtain an EF proof of “z0
is identical to the output of f2(x, ε)”. (More formally, we will use the transitivity of
implication that is admissible in Frege.)

Induction case of the inner induction. We then consider the induction case.
Suppose that we have already obtained the EF proof of “zj is equal to the output
of f2(x, y≤j)”, we need to search for the EF proof of “zj+1 is equal to the output of
f2(x, y≤j+1)”. Indeed, we first find the EF proof of the translation of

f1(x, y≤j+1) = hyj+1(x, y≤j, f1(x, y≤j)), (5.8)

which follows from the induction hypothesis (of the “outer” induction in the meta-
theory) and the definition of the translation. By the definition, we know that “zj is
equal to the output of f2(x, y≤j)” and “zj+1 is equal to the output of f2(x, y≤j+1)”.

The “equality” is formalized as a bit-by-bit comparison using the equivalence con-
nective ↔. Therefore, we can use the substitution axiom scheme φ∧ (p↔ q)→ φ[p/q]
to obtain a proof of

“zj+1 is equal to the output of hyj+1(x, y≤j, zj)”; (5.9)
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that is, we start from Equation (5.8) and substitute the output bits of f1(x, y≤j+1) to
zj+1, and the output bits of f1(x, y≤j) to zj.

Subsequently, we find the EF proof of the translation of
f2(x, y≤j+1) = hyj+1(x, y, f2(x, y≤j)), (5.10)

similar to Equation (5.8). As “zj is equal to the output of f2(x, y≤j)” admits an EF
proof, we can again use the substitution axiom scheme to prove the translation of

f2(x, y≤j+1) = hyj+1(x, y≤j, zj)
in EF. By Equation (5.9) and the substitution axiom scheme, we can then prove in EF
that the output of f2(x, y≤j+1) is identical to zj+1, which completes the proof.
Remark 5.3.3. We make a brief remark on why we need the extension rule here. Suppose
that we do not have the extension rule, to formalize the same proof, we will need to
explicitly write down a sequence of formulas ψ⃗0, ψ⃗1, . . . , ψ⃗ny such that ψ⃗j+1 syntactically
encodes hyj+1(x, y≤j, ψ⃗j) — the näıve encoding requires exponential size as we need to
consider 2ny possibilities of the variable y.

5.4 Propositional Proofs to Arithmetic Proofs
Finally, we prove the other side of Theorem 5.1.1, i.e., the existence of short proposi-
tional proofs to Cook’s translation of an arithmetic formula implies provability in PV.
Formally:
Lemma 5.4.1. Let s(x⃗) = t(x⃗) be a PV equation, where x⃗ = (x1, . . . , xk) be the vari-
ables. Suppose that there exists a PV function Gens=t such that PV-PL proves

ℓ = Gens=t(z1, . . . , zk) ⊢ Verifier(ℓ) = 1 ∧ Conc(Head(ℓ)) = [s = t]|z1|,...,|zk|
Cook ,

i.e., Gens=t(z1, . . . , zk) produces an EF proof of [s = t]|z1|,...,|zk|
Cook , then the equation s(x⃗) =

t(x⃗) is provable in PV.

Intuition. The proof of Lemma 5.4.1 involves two steps. First, assume towards a
contradiction that s(x⃗) ̸= t(x⃗), we need to prove that

“there is a falsifying assignment of the propositional formula [s = t]|x1|,...,|xk|
Cook .”

(Here, we assume a straightforward formalization of the assignment and valuation of
propositional formulas.) This is proved by structural induction on s and t in the meta-
theory. Next, we prove the “reflection principle” of EF in PV-PL, namely,

(PV-PL ⊢) “for any formula φ, assignment a, and EF proof π, if π is a valid
proof of φ, then a is not a falsifying assignment of φ.”

This suffices as we know by the assumption that [s = t]|x1|,...,|xk|
Cook admits an explicit EF

proof, which leads to a contradiction that x⃗ is a falsifying assignment.
To prove the reflection principle, we perform induction on the proof π within PV-PL

— from a computational perspective, we will design an explicit feasible algorithm such
that given a formula φ, a falsifying assignment a, and an EF proof π, it outputs a line
of the EF proof π that is syntactically incorrect.
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Step 1: False arithmetic statement to falsifying assignment. In the first step,
we need to show that if s(x⃗) ̸= t(x⃗), then x⃗ induces a falsifying assignment of the propo-
sitional formula [s = t]|x1|,...,|xk|

Cook . The formalization of the statement is straightforward:
Fix encoding of assignments (e.g. as a dictionary from variable ID to {0, 1}); Hopefully you are

convinced that such
an encoding method
can be implemented
:)

consider
a function Val(φ, a) that evaluates the formula φ with the assignment a, we will design
a function Assigns ̸=t(x⃗) such that PV-PL proves

s(x⃗) ̸= t(x⃗) ⊢ Val([s = t]|x1|,...,|xk|
Cook ,Assigns=t(x⃗)) = 0.

Note that Assigns ̸=t(x⃗) does not simply output x⃗, as the translation [s = t]|x1|,...,|xk|
Cook

involves additional variables that encode the intermediate computation and the output
of s(x⃗), t(x⃗), and the judgment of whether s(x⃗) = t(x⃗).

Nevertheless, the assignment to all intermediate and output variables can be feasibly
derived from the assignment x⃗ of the input variables to [s = t]|x1|,...,|xk|

Cook .
Recall that the Cook translation of s = t is defined in two steps. We first obtain

the Cook translation of the terms s and t, each of which is a tuple (Γ,m(n⃗), ℓ(n⃗)). Let
(Γs,ms(n⃗), ℓs(n⃗)) be the translation of s and (Γt,mt(n⃗), ℓt(n⃗)) be the translation of t.
The translation of s = t is then defined by a formula formalizing

∧
Γs ∧

∧
Γt (i.e., if variables encode correct computation of s and t)

→“the output variables for s is identical to the output variables for t”. (5.11)

(The last line is formalized by a bit-by-bit comparison of the output variables of s and
t.)

We first define Assigns(x⃗) that outputs an assignment to the ms(|x1|, . . . , |xk|) inter-
nal and ℓs(|x1|, . . . , |xk|) output variables of [s]|x1|,...,|xk|

Cook . We require that PV-PL proves
Val(∧Γs,Assigns(x⃗)) = 1, i.e., Assigns(x⃗) encodes a correct computation history of s, and
that “the ℓ(|x1|, . . . , |xk|) output variables are assigned to encode s(x⃗) by Assigns(x⃗)”.
To see that this is possible, we prove by induction on the term s in the meta-theory,
where in each case we need to properly assign values to the internal variables. Similarly,
we define Assignt(x⃗) that outputs an assignment to [t]|x1|,...,|xk|

Cook .
Next, we define Assigns=t(x⃗) as the following assignment to [s = t]|x1|,...,|xk|

Cook : We
assign Assigns(x⃗) to the internal and output variables of s and Assignt(x⃗) to the internal
and output variables. Now we can see that under the assignment Assigns=t(x⃗) and given
s(x⃗) ̸= t(x⃗), PV-PL proves

• ∧ Γs is satisfied by the correctness of Assigns(x⃗).
• ∧ Γt is satisfied by the correctness of Assignt(x⃗).
• The output variables for s and t are not identical; this is because the output

variables for s is identical to s(x⃗) and the output variables for t is identical to
t(x⃗), but s(x⃗) ̸= t(x⃗).

Namely, Equation (5.11) (i.e. the Cook translation of s(x⃗) = t(x⃗)) evaluates to 0 given
the assignment Assigns=t(x⃗).
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Step 2: Reflection principle. In the second step, we prove the reflection principle
of EF in PV-PL. This could be formalized as the PV-PL assertion

Verifier(π),Conc(π) = φ ⊢ Val(φ, a) = 1.

Nevertheless, under the Feasible Mathematics Thesis, it suffices to informally prove
the statement

“for any formula φ, assignment a, and EF proof π, if π is a valid proof of φ,
then a is not a falsifying assignment of φ.”

using informal feasible mathematics, i.e., the three informal postulates.
Recall that in Extended Frege, a valid proof π is a list of formulas where each line is

either an instance of an axiom scheme (i.e. K, S or D), or an application of the extension
rule, or an application of Modus Ponens rule. Let π be a (possibly invalid) EF proof
and φ be the conclusion of the proof π. We will design a feasible algorithm that given
π and a falsifying assignment a of φ, outputs a line of π that is invalid. Note that the
correctness proof of the feasible algorithm implies the reflection principle of EF.

The algorithm works as follows.The algorithm could
be formalized as an

IMP(PV) program of
form c1; c2, where c1
denotes the program
for the substitution

step, and c2 denotes
the program for the

iteration step.

• (Substitution). Let π be the proof concluding φ. We substitute all variables to
Boolean values {0, 1} such that the proof remains valid if it was valid before the
substitution. Concretely:

– For each variable x in φ that is assigned to be ax ∈ {0, 1} by the assignment
a, we substitute all occurrences of x in the proof π to ax.

– For each variable y in π that is neither in φ nor introduced by the extension
rule, we substitute all occurrences of y in the proof π to 0.

– For variables z1, z2, . . . , zk in π introduced by the extension rule, if they are
introduced by

z1 ↔ ψ1

z2 ↔ ψ2
...

zk ↔ ψk

where ψi does not consist of zi, . . . , zk for each i ∈ [k], we can assign z1, . . . , zk
to {0, 1} one by one such that all formulas are valid. Otherwise, it means
that one of the applications of the extension rule is invalid as it does not
introduce a “fresh” variable — the algorithm outputs the line and halts.

• (Iteration).This invariant is
feasibly checkable;

therefore it could be
formalized, for

instance, using the
(Hoare) loop rule of
IMP(PV) programs.

Now we obtain a proof π that does not contain any variable and
the conclusion of π (i.e. the last line) is a formula that evaluates to 0 (as a is
a falsifying assignment of φ). Suppose that there are ℓ lines in π. We initialize
i← ℓ and consider the following iterative procedure:

– We maintain the iteration invariant that at the start of each iteration, the i-
th line in π is a formula that evaluates to 0, which holds in the first iteration.
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The index i is strictly decreased at the end of the iteration if the algorithm
does not halt (by finding an invalid line of proof in π). Therefore, the
algorithm halts in at most ℓ iterations.

– In each iteration, we consider the axiom or rule applied in the i-th line of
π — it is either an application of one of the axiom schemes K, S,D, or an
extension rule, or a Modus Ponens rule.

∗ Suppose that the i-th line is an application of an axiom scheme, it must
be invalid, and the algorithm can halt and output the index i. This is
because axiom schemes are PV provably valid (i.e., it cannot evaluate to
0), but by the invariant that the i-th line evaluates to 0.

∗ It could not be an application of the extension rule. This is because
by the (substitution) step of the algorithm, we have assigned {0, 1} to
variables introduced by the extension rule such that all applications of
the extension rule are valid formulas, i.e., evaluates to 1.

∗ Suppose that the i-line is an application of the Modus Ponens rule con-
cluding ψ, the i-th line also maintains a formula φ such that φ and
φ → ψ should have appeared as the conclusions of the j1-th and the
j2-th line of π, respectively, for some j1, j2 < i. If this is not the case,
the i-th line is invalid and our algorithm can simply halt and output the
index i. Otherwise, we PV provably know that either φ evaluates to 0,
or φ→ ψ evaluates to 0. We can update i← j1 in the former case and
i← j2 in the latter case.

The correctness and feasibility of the iteration algorithm can be feasibly provable
(using induction on feasible property) by the iteration invariant.

Wrapping up the proof. Recall that we want to show that if PV proves that [s =
t]|z1|,...,|zk|

Cook admits an EF proof (generated by an explicit PV formula Gens=t), then s(x⃗) =
t(x⃗) is provable in PV. We argue in informal feasible mathematics (which can be
formalized in PV-PL). Suppose, towards a contradiction that s(x⃗) ̸= t(x⃗) for some x⃗,

Sanity Check: Why
ain’t we assuming
s(x⃗) = t(x⃗) is
unprovable in PV?

we prove in the first step that we can obtain a falsifying assignment a of the formula

φ := [s = t]|x1|,...,|xk|
Cook

from x⃗. Moreover, we know by the assumption that Gens=t generates an EF proof π of
φ. By the reflection principle proved in the second step, however, either the proof π is
invalid or a is not a falsifying assignment of φ, which leads to a contradiction.

5.5 Bibliographical and Other Remarks
The idea of translating arithmetic formulas and proofs to families of propositional
formulas and proofs is due to Cook [Coo75] (see also [KP90] for an extension). Cook
[Coo75] used Extended Resolution instead of Extended Frege, while these two systems
polynomially simulate each other [CR79]. Indeed, one can verify that the simulation
is formalizable in PV. The propositional translation was later generalized to other
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bounded theories, including Parikh’s I∆0 [PW85, Ajt83] and Buss’s theories [KP90,
KT90].

The idea of simulating propositional proof systems with the reflection principle is
due to Cook [Coo75] and was extended to other systems [KP90, KT90, Kra95b].

Readers interested in the propositional translation of other theories are referred to
standard textbooks, see [Kra95a, Chapter 9], [Kra19, Chapter 12], [CN10, Chapter 10].

The propositional translation is crucial to the model-theoretic approach in bounded
arithmetic, which we will not cover. We refer interested readers to the textbook [Kra11]
and [Kra19, Chapter 20] and the references therein.
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[Kra95b] Jan Kraj́ıček. On frege and extended frege proof systems. In Feasible
Mathematics II, pages 284–319. Springer, 1995.
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