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Abstract

Given an integer-valued function f : {0, 1}n → {0, 1, . . . ,m− 1} that is mildly hard to com-
pute on instances drawn from some distribution D over {0, 1}n, we show that the function
g(x1, . . . , xt) = f(x1) + · · ·+ f(xt) is strongly hard to compute on instances (x1, . . . , xt) drawn
from the product distribution Dt. We also show the same for the task of approximately com-
puting real-valued functions f : {0, 1}n → [0,m). Our theorems immediately imply hardness
self-amplification for several natural problems including Max-Clique and Max-SAT, Approxi-
mate #SAT, Entropy Estimation, etc..
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1 Introduction

Hardness amplification is the process of taking a computational problem Π and a distribution D of
instances over which Π is mildly hard, and constructing a problem Π′ and distributionD′ over which
Π′ is much harder. There has been extensive work in the past studying hardness amplification for
various computational tasks such as computing Boolean functions [Yao82, Imp95, GNW11, KS03,
Kal07], inverting efficient functions [Yao82, GIL+90], distinguishing between distributions [Gei22],
deciding languages contained in complexity classes like NP [O’D04, HVV06, Tre05, GG11, BT06],
EXP [TV07], #P [Lip89, CPS99], or P [BRSV17, GR18, BBB19], solving optimization prob-
lems [GK20], for specific interesting or structured problems [AGGS22, HS23, ASS+24], etc..

In this paper, we study hardness amplification for the task of evaluating integer- or real-valued
functions. We first describe our setting and results, and then demonstrate various corollaries of our
theorems that motivate studying such problems.

Evaluating Functions. In our first result, we consider functions f : {0, 1}n → Zm, where Zm

denotes the set of integers {0, 1, . . . ,m− 1}1, and the computational task is to compute f(x) given
an input x ∈ {0, 1}n. Suppose we are given such an f and a distribution D on {0, 1}n over which
computing f is (1 − δ)-hard – meaning that no small circuit can correctly compute f(x) with
probability greater than (1− δ) when x is drawn from D. Our objective is to construct a function
g and distribution D′ such that computing g is η-hard over D′ for some small η. Further, we would
like g to have the same type as f – to take bit-strings as input and produce integers from a bounded
range as output.

For Boolean functions, Yao’s XOR Lemma [Yao82] shows that such amplification can be achieved
by having g be the XOR of multiple instances of f ; and similar results are also known if g is the
Recursive Majority-of-3 of such instances [O’D04]. We show that in this case of integer-valued
functions, having g be the sum (over integers) of multiple instances of f achieves the same. For
t ∈ N, denote by (SUMt ⊗ f) the function that takes t inputs x1, . . . , xt ∈ {0, 1}n, and outputs the
sum

∑
i f(xi).

Theorem 1.1 (Simplification of Theorem 4.1). Suppose a function f : {0, 1}n → Zm is (1−δ)-hard
to compute over a distribution D for circuits of size s. Then, for t ∈ N, the function (SUMt⊗ f) is(

2m√
tδ

)
-hard to compute over the product distribution Dt for circuits of size

(
c′m2

t2δ2 log(t)

)
· s, as long

as t > cm2

δ , where c and c′ are some universal constants.

In a typical application of this theorem (see Section 1.1 for examples), one might take δ to be
a small constant, m to be some polynomially large value in n, assume (1− δ)-hardness for s being
any arbitrary polynomial in n, and set t to be ω(m2) but still some polynomial in n. The theorem
would then imply that (SUMt ⊗ f) is 1/poly(n)-hard for all polynomial-sized circuits.

To place the O(m/
√
tδ)-hardness we obtain in context, observe that it is not possible to show

that summation generically amplifies such a function to hardness less than Θ(1/
√
tδ). Consider, for

example, a hypothetical function that takes values in {0, 1}, is easy to compute on (1−2δ) fraction
of inputs, and on the remaining 2δ is optimally hard (so it is not possible to do better than random
guessing). This function is (1 − δ)-hard. Given t random inputs from the hard distribution, the
hardness comes only from about δt of the inputs. And simply guessing randomly on each of these
will yield the correct value for the sum of their outputs with probability Ω(1/

√
tδ).

1We only use Zm to denote set without involving any modulo operations.
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Approximating Functions. In our second result, we extend the above hardness amplification to
the task of approximately evaluating bounded real-valued functions. Here we consider functions f :
{0, 1}n → [0,m), and the task is, for some approximation parameter ϵ ∈ R+, to compute some value
in the range (f(x)− ϵ, f(x) + ϵ) given input x. We show that summation again amplifies hardness,
though with slightly different dependence on the various parameters, and also now depending on
the ϵ.

Theorem 1.2 (Simplification of Theorem 5.1). Suppose a function f : {0, 1}n → [0,m) is (1− δ)-
hard to ϵ-approximate over a distribution D for circuits of size s. Then, the function (SUMt ⊗

f) is 10 ·
(

m
ϵ
√
tδ

)1/2
-hard to ϵ-approximate over the product distribution Dt for circuits of size(

c′m
ϵ(tδ)3/2 log(t)

)
· s, as long as t > cm2

ϵ2δ
, where c and c′ are some universal constants.

Here too, in the applications we show, parameters are set as described for Theorem 1.1 earlier,
with ϵ = Θ(1).

Paper Outline. In the rest of this section, we describe various corollaries of the above theorems
(Section 1.1) and provide an overview of the proofs of these theorems (Section 1.2). In Section 2,
we set up the definitions and conventions needed in the rest of the paper. In Section 3, we prove a
hardcore lemma for relations that is central to our proofs. In Sections 4 and 5, we state and prove
more comprehensive versions of Theorems 1.1 and 1.2, respectively. In Appendix A, we present the
statements of our corollaries in more detail and present sketches of their proofs.

1.1 Corollaries

Functions mapping bit-strings to integers or real numbers, even within limited ranges, are quite
general and capture a variety of natural problems whose complexity is of significant interest –
essentially any problem Π whose solution Π(x) for an instance x is a bounded integer or real
number. For such problems, our results roughly say that computing the sum of solutions to t
instances is a much harder problem. Such a statement is not particularly meaningful in general,
but things become much more interesting if the problem Π also happens to admit an additively
homomorphic self-reduction.

That is, suppose there is an efficient algorithm R such that for any inputs x1, . . . , xt, we have
Π(R(x1, . . . , xt)) =

∑
iΠ(xi). In this case, the problem of computing the sum of solutions of t

instances can be reduced back to the solving the problem Π itself on a single instance. Then, our
results can be used to show that mild hardness of Π implies strong hardness of Π itself, possibly on a
different distribution over instances (in what is sometimes referred to as hardness self-amplification).
And this requirement is weak enough that many natural and important problems have such self-
reductions. Below, we show three examples, each of which is qualitatively distinct from the others.

Optimization Problems. Various natural optimization problems can be cast in terms of com-
puting a polynomially bounded integer-valued function of the input, and further be shown to pos-
sess simple additively homomorphic self-reductions. For example, consider the Max-Clique problem
where, given (the adjacency matrix of) a graph G, the task is to compute the size of its largest
clique. Given graphs G1, . . . , Gt, we can create a new graph consisting of one copy of each Gi, with
edges between every pair of vertices that are not from the same graph. The size of the maximum
clique in this composite graph is simply the sum of the maximums in all the Gi’s.

Another example is the MaxSAT problem, where given a CNF formula ϕ, the task is to find the
maximum number of clauses satisfied by any assignment to its variables. Given t formulas ϕ1, . . . , ϕt
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on disjoint sets of variables, the maximum number of clauses of the formula (ϕ1 ∧ · · · ∧ϕt) that can
be satisfied is simply the sum of the maximums of all the ϕi’s. Note that both of these problems
also happen to be NP-hard. We get the following from Theorem 1.1, following the arguments above.

Corollary 1.3. The following holds for any problem Π ∈ {MaxSAT,MaxClique}. If there is a
family of distributions on which Π is 0.9-hard, then there is a family of distributions on which Π is
O(n−0.49)-hard (where n is the instance size). Further, if the former family is efficiently sampleable,
then so is the latter.

In these corollaries, we consider the asymptotic hardness of these problems rather than for a
fixed input size, which is why we need to consider a family of distributions – one distribution for
each value of the instance size parameter n – rather than a single distribution. And by efficiently
sampleable, we mean sampleable by a polynomial-sized family of circuits. Similarly, when we
just say η-hard, we mean η-hard for families of circuits of size any polynomial in the instance
size parameter n. More detailed and careful statements of all the corollaries are presented in
Appendix A, along with sketches of their proofs. These are all asymptotic statements, and so
involve applying our theorems (which are stated for arbitrary input lengths and circuit sizes) for
all members of families of functions and circuits.

Hardness amplification for optimization problems, including the above examples, was studied
in [GK20]. However, they considered the task of actually finding the maximum clique, the maxi-
mally satisfying assignment, etc., and their results are incomparable to the corollary above.

Entropy Estimation. A natural problem (that has incidentally been of some significance in
cryptography [Vad99]) is that of estimating the Shannon entropy of a distribution given its sampling
algorithm (say, as a circuit). Given a distribution over {0, 1}m, its entropy is some real number in
the range [0,m], and Shannon entropy is also conveniently additive: for any random variables X
and Y , we have H(X,Y ) = H(X) +H(Y ). We cannot use Theorem 1.1 here because the entropy
is not integer-valued, but we can use Theorem 1.2 to show hardness amplification for the task of
approximately computing the entropy of a given distribution.

In this case, we can in fact go further. A related decision problem, called the Entropy Difference
problem, is known to be complete for the complexity class SZK, which consists of problems that
possess statistical zero-knowledge proofs [SV03]. In this problem, given sampling algorithms for
two distributions D0 and D1, and promised that their entropies are separated by a gap of at least
1, the task is to tell which distribution has larger entropy. If this problem is even mildly average-
case hard over some distribution of instances (D0, D1), then the task of computing the entropy
of distributions to within ±1/2 is mildly average-case hard for the distribution given by sampling
(D0, D1) as above and randomly outputting one of the two distributions. These observations,
together with Theorem 1.2, give us the following.

Corollary 1.4. If there is a problem in SZK that is 0.9-hard over some family of distributions, then
there exists a family of distributions on which O(1)-approximating Shannon entropy is O(n−0.24)-
hard. Further, if the former family of distributions is efficiently sampleable, then so is the latter.

Approximate Counting. Given as input the description of a Non-deterministic Turing Machine
M and an input x for it, define f(M,x) to be the number of accepting paths in the execution of M
given input x. This function captures the defining problem of the complexity class #P. The same
can be done with the #P-complete problem #SAT, which is the problem of counting the number
of satisfying assignments to a given Boolean formula.
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In both these cases, however, the function can take exponentially many values in the instance
size, and so trying to apply our theorems would not give meaningful bounds. However, if we instead
consider the function g(M,x) = log2(f(M,x)), this function is real-valued and lies in a polynomially
bounded range (as long as the formula is guaranteed to be satisfiable). Further, additive ±ε
approximations to g are equivalent to multiplicative 2±ϵ approximations to f . Theorem 1.2 now
implies the following.

Corollary 1.5. Suppose there is a family of distributions over satisfiable Boolean formulas on
which multiplicatively approximating the number of satisfying assignments to within a factor of 2 is
0.9-hard. Then there is a family of distributions on which the same task is O(n−0.24)-hard (where
n is the instance size). Further, if the former is efficiently sampleable, then so is the latter.

1.2 Technical Overview

In this section, we give an overview of our analysis of the hardness amplification of summation. We
start by looking at hardness amplification of evaluating integer-valued functions (Theorem 1.1), and
then describe how to extend this to approximately evaluating real-valued functions (Theorem 1.2).

Hardness of {0, 1}-valued functions. We will start by showing something even simpler – hard-
ness amplification for functions that only take two different values. Our techniques here are inspired
by ideas in the proof of existing hardness amplification theorems for problems in NP [O’D04].

Suppose that there is a function f : {0, 1}n → {0, 1}, and a corresponding distribution H
over {0, 1}n, on which the function f is strongly average-case hard; that is, there is some small
γ = 1/poly(n) such that for any circuit C of size at most s,

Pr
x←H

[C(x) = f(x)] <
1

2
(1 + γ),

For simplicity, we assume that f is balanced over H. That is,

Pr
x←H

[f(x) = 0] = Pr
x←H

[f(x) = 1]

For some t ∈ N, consider the function g : {0, 1}tn → Zt+1, where g(x1, . . . , xt) = f(x1) + · · · +
f(xt). In the following, we will show that the average-case hardness of g improves polynomially in
t. Particularly, for any circuits of size at most approximately s, we have:

Pr
x←Ht

[C(x) = g(x)] <

(
t
t
2

)
2t

(
1 +

t

2
· γ
)

(1)

Before we show this, let us understand the best hardness we can hope to show. A simple
algorithm for computing g is to just always output the value that g is most likely to take. Since f
is assumed to be balanced over H, this value would be t

2 .

Pr
x←Ht

[
g(x) =

t

2

]
=

(
t
t
2

)
2t
≈ Θ

(
1√
t

)
.

If the function f had been optimally (1/2)-hard, then this would also be the best possible
algorithm for g. What we have is that f is (1 + γ)/2-hard for some small γ, indicating that f is
still almost optimally hard. We essentially show that in this case the above algorithm is still nearly
the best possible algorithm g.
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We start by observing that the hardness of f implies the indistinguishability of the distributions
H conditioned on different outputs – H|f(x)=0 and H|f(x)=1. That is, for any circuit C of size at
most s, ∣∣∣∣ Prx←H

[C(x) = 1|f(x) = 1]− Pr
x←H

[C(x) = 1|f(x) = 0]

∣∣∣∣ < γ. (2)

To see why, suppose that this is not the case. Without loss of generality, there exists a circuit C
satisfying

Pr
x←H

[C(x) = 1|f(x) = 1]− Pr
x←H

[C(x) = 1|f(x) = 0] ≥ γ.

Then,

Pr
x←H

[C(x) = f(x)] =
1

2
Pr[C(x) = f(x)|f(x) = 1] +

1

2
Pr[C(x) = f(x)|f(x) = 0]

=
1

2
Pr[C(x) = 1|f(x) = 1] +

1

2
(1− Pr[C(x) = 1|f(x) = 0])

≥1

2
(1 + γ)

which leads to a contradiction.

For function g, consider the performance of any circuit Ĉ for computing g. We claim that, for
any k ∈ Zt and any v in the output range of Ĉ, the following holds:∣∣∣∣ Pr

x←Ht
[Ĉ(x) = v|g(x) = k + 1]− Pr

x←Ht
[Ĉ(x) = v|g(x) = k]

∣∣∣∣ < γ. (3)

To prove it, assume∣∣∣∣ Pr
x←Ht

[Ĉ(x) = v|g(x) = k + 1]− Pr
x←Ht

[Ĉ(x) = v|g(x) = k]

∣∣∣∣ ≥ γ. (4)

The distribution x← Ht|g(x)=k is equivalent to the distribution sampled as follows:

• Independently sample x1, . . . , xk ← H|f(x)=1, and xk+1, . . . , xt ← H|f(x)=0 independently

• Sample a uniformly random permutation π from all possible permutations over t coordinates

• Output π(x1, . . . , xt)

Using this observation and the linearity of expectation, (4) implies that there must exist a fixed
(x1, . . . , xk, xk+2, . . . , xt) and a permutation π, such that∣∣∣∣∣∣ Pr

x←H
x̂←π(x1,...,xk,x,xk+2,...)

[
Ĉ(x̂) = v|f(x) = 1

]
− Pr

x←H
x̂←π(x1,...,xk,x,xk+2,...)

[
Ĉ(x̂) = v|f(x) = 0

]∣∣∣∣∣∣ ≥ γ.

Then, a circuit C : {0, 1}n → {0, 1} can be constructed by taking x1, . . . , xk, xk+2, . . . , xt and
permutation π as non-uniform advice and working as follows: on the input x ∈ {0, 1}n, outputs 1
iff Ĉ(π(x1, . . . , x, . . . , xt)) outputs v. The size of C is approximately the size of Ĉ, and we have∣∣∣∣ Prx←H

[C(x) = 1|f(x) = 1]− Pr
x←H

[C(x) = 1|f(x) = 0]

∣∣∣∣ ≥ γ,

which contradicts the hardness of f as captured by (2).
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Based on (3) and a simple telescoping argument, we further obtain, for any i, j ∈ Zt+1 and any
v in the output range of Ĉ,∣∣∣∣ Pr

x←Ht
[Ĉ(x) = v|g(x) = i]− Pr

x←Ht
[Ĉ(x) = v|g(x) = j]

∣∣∣∣ < |i− j| · γ. (5)

We can now bound the probability that a circuit Ĉ can correctly compute the function g as:

Pr
x←Ht

[Ĉ(x) = g(x)] =
t∑

k=0

Pr
x←Ht

[g(x) = k] Pr
x←Ht

[Ĉ(x) = k|g(x) = k]

=

t∑
k=0

(
t
k

)
2t
· Pr
x←Ht

[Ĉ(x) = k|g(x) = k]

<
t∑

k=0

(
t
k

)
2t

(
Pr

x←Ht

[
Ĉ(x) = k

∣∣∣∣g(x) = t

2

]
+

∣∣∣∣k − t

2

∣∣∣∣ · γ)

≤

(
t
t
2

)
2t
·

t∑
k=0

Pr
x←Ht

[
Ĉ(x) = k

∣∣∣∣g(x) = t

2

]
+

t∑
k=0

(
t
k

)
2t

∣∣∣∣k − t

2

∣∣∣∣ · γ
=

(
t
t
2

)
2t
·

t∑
k=0

Pr
x←Ht

[
Ĉ(x) = k

∣∣∣∣g(x) = t

2

]
+

1

2t
· t
2
·
(
t
t
2

)
· γ

≤

(
t
t
2

)
2t

(
1 +

t

2
· γ
)
.

where the second line follows from the fact that f is balanced over H, the third line follows from
(5), the fourth line from the maximality of the central binomial co-efficient, the fifth line from
computing the sum of the series there, and the last line from the fact that the events in the
probability expressions are disjoint.

The above approach to bounding the probability of computing the sum of t independent in-
stances of a function whose value between two possible outputs is strongly hard to decide is at the
core of the proofs of our results.

Reducing to two outputs. Since our amplification approach is based on the strong indistin-
guishability of distributions over the pre-image sets of two outputs, for any evaluation problem, we
will identify such a pair of indistinguishable pre-image sets based on assumption that the evaluation
problem is hard. For simplicity, we will take the distribution over which the problem is hard to be
the uniform distribution over {0, 1}n.

Consider a function f : {0, 1}n → Zm that is (1 − δ)-hard for circuits of size s. For every
a, b ∈ Zm, a ̸= b, we define a computation problem in which we only consider the correctness on
inputs whose output belongs to {a, b}. We formalize the above problem by defining the relations
Ra,b over {0, 1}n × Zm:

• If f(x) ∈ {a, b}, then (x, y) ∈ Ra,b if and only if y = f(x);

• If f(x) ̸∈ {a, b}, then (x, y) ∈ Ra,b for every y ∈ Zm.

For any x ∈ {0, 1}n, denote by Ra,b(x) the set of y ∈ Zm such that (x, y) ∈ Ra,b. We show that
the hardness of f implies that there must exist some a ̸= b ∈ Zm and some distribution over their
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pre-image sets for which it is hard to distinguish whether f(x) is a or b. More precisely, we show
that there exists a pair (a, b) such that Ra,b is

(
1− δ/

(
m
2

))
-hard for circuits of size s

m2 .

To prove this by contradiction, suppose for every a ̸= b ∈ Zm, there exists a circuit Ca,b that
satisfies,

Pr
x←{0,1}n

[Ca,b(x) ∈ Ra,b(x)] ≥ 1− δ(
m
2

) .
For simplicity, let Cb,a = Ca,b. Then, by combining the Ca,b’s, we can construct a circuit C as
follows:

• Input: x ∈ {0, 1}n

• For i ∈ {0, . . . ,m− 1}
– If Ci,j(x) = i for every j ̸= i, output i

• Output ⊥

The size of C is approximately
(
m
2

)
· s
m2 < s. It is clear that on the input x, if every Ca,b outputs

a value in Ra,b(x), then C(x) = f(x). Then, the probability that C agree with f is

Pr
x←{0,1}n

[C(x) = f(x)] ≥ Pr
x←{0,1}n

[∀(a, b), a < b : Ca,b(x) ∈ Ra,b(x)]

≥ 1−
∑

(a,b),a<b

Pr
x←{0,1}n

[Ca,b(x) ̸∈ Ra,b(x)]

≥ 1− δ,

which results in a contradiction. Therefore, there must exist such an Ra,b that is (1− δ/
(
m
2

)
)-hard

for circuits of size s/m2.

Amplifying using hardcore sets. Pick a relation Ra,b that has such hardness. As its hardness
essentially comes from the hardness of deciding between two possible outputs a and b, we can
extend existing proofs of the hardcore lemma for Boolean functions (e.g. that of [Imp95]) to obtain
a hardcore set2 for Ra,b. This is a set H ⊆ {0, 1}n of density at least δ′ = δ/

(
m
2

)
such that the

relation Ra,b is (1 + γ)/2-hard over random inputs from H for circuits of size roughly γ2s/m2.
Further, we can ensure that all inputs x ∈ H are such that f(x) ∈ {a, b}, and with only a small
loss, we can also ensure that this set is balanced between the outputs a and b.

The rest of the argument is quite standard. Given t inputs x1, . . . , xt sampled uniformly at
random from {0, 1}n, with high probability roughly at least a δ′ fraction of these will fall in H.
Looking at just these δ′t inputs, we are essentially back in the case discussed at the beginning of
this overview – that of a function that has two possible outputs, with inputs being sampled from a
hard distribution balanced between these outputs. Applying the amplification arguments there to
this subset of inputs, we get from (1) that computing the sum of the f(xi)’s for the xi’s that fall
in H is roughly (1/

√
δ′t+

√
δ′tγ)-hard for circuits of size roughly γ2s/m2. In order to compute the

sum of all the f(xi)’s, the sum corresponding to the above δ′t inputs needs to be computed. So this
hardness carries over to computing SUMt⊗ f as well. Setting γ = 1/δ′t now gives us Theorem 1.1.
The entire process is as depicted below.

2Actually, what we obtain are hardcore distributions, but we assume these are sets in this overview for simplicity.
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f : {0, 1}n → Zm is (1− δ)-hard on {0, 1}n

f is (12 + ϵ)-hard and balanced on H, where |H| ≈ δ
m2 · 2n and |f(H)| = 2

SUMt ⊗ f is O( 1√
t
+
√
tγ)-hard on Ht

SUMt ⊗ f is O( 1√
tδm−2

+
√
tδm−2 · γ)-hard on {{0, 1}n}t

Approximating Real-valued Functions. Our main theorem (Theorem 1.2) is that summation
amplifies not just the hardness of computing functions exactly, but also the hardness of additively
approximating real-valued functions with bounded range. Our proof of this follows the same high-
level structure as that of the above theorem about exactly computing integer-valued functions:

1. Using the mild hardness of ϵ-approximating a function f : {0, 1}n → [0,m), obtain the mild
hardness of an approximate “two-output” relation Ra,b, which corresponds to ϵ-approximating
f(x) under the promise that f(x) is close to either a or b

2. Show that this mild hardness implies that there is a hardcore set of inputs of noticeable size
on which computing Ra,b is strongly hard

3. Show that when multiple samples xi are drawn from this hardcore set, the hardness of ϵ-
approximating the sum of the f(xi)’s amplifies as expected, using the fact that these f(xi)’s
are all close to either a or b

4. Observe that since this hardcore set is of noticeable size, given many uniformly random
inputs xi, a noticeable fraction of them are from this hardcore set, and so the above amplified
hardness carries over

Before we do any of this, we pick a d ≪ ϵ and partition the space [0,m) into (m/2d) intervals
of “radius” d, centered at d, 3d, etc.. Earlier, we defined the relations Ra,b by looking at every pair
of values the output f(x) could take, and essentially ignoring inputs whose outputs were not in
{a, b}. Here we do the same, except with these intervals. For every pair of centers a and b of such
intervals, we then define the relation Ra,b over {0, 1}n × [0,m) as follows:

• If f(x) ∈ [a± d) or f(x) ∈ [b± d), then y ∈ Ra,b(x) if and only if |f(x)− y| < ϵ.

• Else, y ∈ Ra,b(x) for any y.

Suppose f is (1 − δ)-hard for circuits of size s. Using arguments analogous to those in the
integer case, we show that there must exist some pair of intervals such that distinguishing between
their pre-images is also mildly hard. That is, there exist centers a, b ∈ [0,m) such that, for any

circuit C of size d2s
m2 , we have:

Pr
x←{0,1}n

[C(x) ∈ Ra,b(x)] < 1− δ(⌈m
2d
⌉

2

) ,
This completes the first step mentioned above. The second step is to prove a hardcore lemma for
such relations. To do so, we observe that a crucial element that is essentially sufficient for hardcore
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lemmas is what we call a majority combiner. This is a function M that is computable by a small
circuit, and has the property that the output of M(y1, . . . , yt) is contained in Ra,b(x) whenever a
majority of the yi’s are contained in Ra,b(x). For the Ra,b’s as defined defined in the integer case,
the majority function itself had this property. In the present case, it is not hard to see that the
median function has this property. This observation lets us extend the hardcore lemma to these
relations.

The fourth step above, being quite generic, is unchanged and follows easily, but the third step
turns out to be quite hairy and require careful arguments that take into account the relative sizes
of ϵ and d, the gap between a and b, etc.. The high-level idea is still the same as the corresponding
part of the proof in the integer case. The core there, as captured by (3), was to show that for
any circuit C (of a certain size) that takes t inputs x1, . . . , xt sampled from the hardcore set, if
the number of xi’s with f(xi) = a is changed by 1, the probability mass placed by C on any given
output changes by very little. We show the same here, except that instead of showing this for the
probability masses of specific outputs, we need to argue about the masses of intervals of various
sizes. This turns out to be the part of the proof that requires the most care, but ultimately works
out with some similar parameters. We refer the reader to Section 5 for the details.

2 Definitions

2.1 Notations

For m ∈ N, denote the set {0, . . . ,m−1} by Zm (note that this is just a set, not the ring of integers
modulo m). For v, ϵ ∈ R, we use [v± ϵ) to denote the interval [v− ϵ, v+ ϵ) and use round brackets
for open intervals and square brackets for closed intervals.

For distributions H,G over the same domain {0, 1}n, for any integers 0 ≤ k ≤ t, the sym-
bol Πt(H

k, Gt−k) stands for the following distribution: sample x1, . . . , xk from H independently
and sample xk+1, . . . , xt from G independently, sample a permutation π over t entries uniformly
randomly, and output π(x1, . . . , xt).

Functions and relations. For n, t ∈ N and some alphabet Σ,Σ′, given functions f : {0, 1}n → Σ
and g : Σt → Σ′, denote the function that outputs g(f(x1), . . . , f(xt)) over input (x1, . . . , xt) by
g ⊗ f . For a relation R ⊆ X × Y, for any x ∈ X , we define R(x) = {y : y ∈ Y ∧ (x, y) ∈ R}.

Representing real numbers. We represent real numbers using strings. In each case, the range
of relevant real numbers is some [0,m) that will be clear from the context, and the string is to be
interpreted as a fixed-point representation of numbers in that range. That is, for any y ∈ [0,m),
y is evaluated as y1 · 2⌈logm⌉−1 + y2 · 2⌈logm⌉−2 + · · · + y⌈logm⌉ · 20 + y⌈logm⌉+1 · 2−1 + · · · , where
yi ∈ {0, 1} and y is represented by (y1, y2, . . .).

2.2 Average-Case Hardness

The average-case hardness of a problem is defined with respect to a distribution over its input
domain. We start by formally defining the hardness of evaluating functions.

Definition 2.1 (Hardness of Evaluating Functions). For any δ ∈ (0, 1), n, l, s ∈ N, consider a
function f : {0, 1}n → Σ, where Σ is an output domain that can be encoded by {0, 1}l and
l = ⌈log |Σ|⌉. For a distribution D over {0, 1}n, f is called δ-hard on D for circuits of size s if, for
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any circuit C : {0, 1}n → {0, 1}l of size at most s, we have

Pr
x←D

[C(x) = f(x)] < δ.

As functions are specific instances of relations, the above definition can be generalized to a
broader context.

Definition 2.2 (Hardness of Satisfying Relations). For any δ ∈ (0, 1), n, l, s ∈ N, consider a relation
R ⊆ {0, 1}n × Σ, where Σ is an output domain that can be encoded by {0, 1}l and l = ⌈log |Σ|⌉.
For a distribution D over {0, 1}n, R is called δ-hard on D for circuits of size s, if for any circuit
C : {0, 1}n → {0, 1}l of size at most s,

Pr
x←D

[C(x) ∈ R(x)] < δ.

We introduce the following terms for real-valued functions.

Definition 2.3. For a function f : {0, 1}n → [0,m), the approximation problem with distance d is
denoted by a relation Rd

f ⊆ {0, 1}n × R, where

Rd
f = {(x, y) : |f(x)− y| < d} .

Similarly, the closed approximation is defined by

R̂d
f = {(x, y) : |f(x)− y| ≤ d} .

Definition 2.4 (Hardness of Approximating Functions). For any δ ∈ (0, 1), α, s ∈ N and m, ϵ ∈ R,
consider a function f : {0, 1}n → [0,m). For a distribution D over {0, 1}n, f is called δ-hard
to approximate on D with accuracy α and distance ϵ for circuits of size s, if the relation R ⊆
{0, 1}n × {0, 1}α is δ-hard on D for circuits of size s, where

R = {(x, y) : |f(x)− y| < ϵ},

and real value y is encoded by a binary of length α.

3 Hardcore Lemmas

Impagliazzo’s hardcore lemma [Imp95] implies the existence of a strongly hard subset within an
instance space where the Boolean function is only mildly hard on average. In this section, we first
extend the hardcore lemma to a more general setting, for relations with a closure property under
majority. Then, we will demonstrate how to transform a hard distribution into a balanced one, to
facilitate our subsequent proofs of hardness amplification.

The following definition of density is utilized to measure the flatness of the hardcore distribution
obtained, ensuring that it can be reintegrated into the original distribution [AB09, Chapter 19].

Definition 3.1 (Relative Density). For δ ∈ (0, 1] and distributions X,Y on {0, 1}n, X is called
δ-dense with respect to Y , if for any x ∈ {0, 1}n, we have

Pr[X = x] ≤ 1

δ
· Pr[Y = x].

Claim 3.1. If the distribution X has a relative density δ, with respect to Y , then there exists
another distribution X̄, such that Y = δX + (1− δ)X̄.
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Proof. We proof this by showing the construction of X̄. If δ = 1, X and Y are the same distribu-
tions. For δ ∈ (0, 1), consider any x ∈ {0, 1}n, let

Pr[X̄ = x] =
1

1− δ
(Pr[Y = x]− δ · Pr[X = x]) ∈ (0, 1).

We have

∑
x∈{0,1}n

Pr[X̄ = x] =
1

1− δ

 ∑
x∈{0,1}n

Pr[Y = x]− δ ·
∑

x∈{0,1}n
Pr[X = x]

 = 1.

Therefore, X̄ is a valid distribution satisfying Y = δX + (1− δ)X̄.

3.1 Hardcore Lemma for Relations

The closure property under majority is highly useful for identifying the hardcore distribution of
functions or relations. Several prior studies have relied on this closure property to prove the
existence of hardcore distribution [Imp95, KS03, Kal07, BHK09]. We begin by formally defining
majority combiner.

Definition 3.2 (Majority Combiner). For a relation R ⊆ {0, 1}n × Σ and t ∈ N, a circuit M :
Σt → Σ is called a majority combiner for relation R over t coordinates, if for any x ∈ {0, 1}n and
any y1, . . . , yt ∈ Σ, such that |{i : i ∈ {1, . . . , t} ∧ yi ∈ R(x)}| > t/2, we have M(y1, . . . , yt) ∈ R(x).

The key idea behind Impagliazzo’s hardcore lemma is that, if for any distribution H with certain
density, there always exists a circuit of slightly smaller size that solves the problem with probability
more than 1

2 + γ, for some γ ∈ (0, 1), then we can construct a larger circuit by taking the majority
vote of multiple carefully chosen circuits, which can result in a high probability of agreement with
function f , leading to a contradiction.

Lemma 3.2 (Extended Hardcore Lemma). For n ∈ N, consider a relation R ⊆ {0, 1}n × {0, 1}m;
define G = {x : ∀y ∈ {0, 1}m, y ∈ R(x)}. Consider any distribution D over {0, 1}n. Consider any

δ ∈ (0, 1), γ ∈ (0, 1/2), and large enough s ∈ N. Let t = ⌈8 log(2/γδ)
γ2 ⌉ be an integer. If there exists a

majority combiner for relation R over t coordinates of size at most s/2, and R is (1 − δ)-hard on
D for circuits of size s, then there is a distribution H over {0, 1}n \G which is δ-dense with respect

to D, such that R is (12 + γ)-hard on H for circuits of size γ2s
16 log(2/γδ) .

Remark 3.1. The best-known parameter for the small circuit size in the lemma is O( γ2s
log(1/δ)),

whereas the bound we present here is O( γ2s
log(2/γδ)). In fact, the proof in [BHK09], which uses a

multiplicative weight update method, can be directly adapted to our extended setting. For simplicity,
we provide a proof for a slightly weaker bound, which suffices for our purpose.

We follow the proof in [Imp95, AB09] with some subtle adjustments, and prove the statement
via the Min-Max theorem.

Proof of Lemma 3.2. For a relation R that is (1− δ)-hard on a distribution D, consider a zero-sum
game between two players A and B, defined as follows. Player A selects a circuit C : {0, 1}n →
{0, 1}m of size at most s′ = γ2s

16 log(2/γδ) to maximize the payoff, while player B chooses a distribution

S over {0, 1}n \ G that is δ-dense with respect to D, to minimize the payoff of A. The payoff of
player A is calculated by

Payoff(C, S) = Pr
x←S

[C(x) ∈ R(x)].
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Since R is (1− δ)-hard, the following should hold:

Pr
x←D

[x ∈ G] < 1− δ ⇔ Pr
x←D

[x /∈ G] > δ. (6)

Player B’s strategy set is non-empty (at least including D|x/∈G). For intuition, player A tends to
choose a powerful circuit to solve problem R and the hard instances of R would benefit player B
more. By the Min-Max theorem, if mixed strategy is allowed, the order of playing will not influence
the game value. Suppose that two players use a mixed strategy DC and DS correspondingly, the
game value is defined as

v = max
DC

min
DS

E
C←DC
S←DS

[
Pr
x←S

[C(x) ∈ R(x)]

]
= min

DS

max
DC

E
C←DC
S←DS

[
Pr
x←S

[C(x) ∈ R(x)]

]
,

where DC is a distribution over all possible choices that A can choose, and DS is a distribution
over all possible distribution S. The game value is either at least 1

2 + γ or less than 1
2 + γ. We will

show v < 1
2 + γ, as otherwise it would contradict (1− δ)-hardness of R.

Assume that game value v ≥ 1
2 + γ, then there exists a mixed strategy DC , such that the

expected payoff of player A would always be at least 1
2 + γ no matter which S is chosen by player

B. Define a bad distribution BDC
as follows,

x← D|PrC←DC
[C(x)∈R(x)]< 1

2
(1+γ).

That is, BDC
is the hard distribution D conditioned on the above probability statement. Abusing

notation, when saying x ∈ BDC
, it stands for x ∈ Supp(BDC

). The set BDC
is disjoint with G,

because for any x ∈ G, for any circuit C

Pr[C(x) ∈ R(x)] = 1 >
1

2
(1 + γ).

Since we assume that game value v ≥ 1
2 + γ, for any S with relative density δ with respect to D

over {0, 1}n \G, we always have the following,

Pr
C←DC
x←S

[C(x) ∈ R(x)] ≥ 1

2
+ γ. (7)

Then, we claim that

Pr
x←D

[x ∈ BDC
] ≤ δ

(
1− γ

2

)
.

If not, there exists a γ′ < γ, such that Prx←D[x ∈ BDC
] = δ(1− γ′

2 ). We construct a distribution

S′ to derive a contradiction: with probability (1− γ′

2 ), sample x from BDC
(which is disjoint with

G); else sample x from D conditioned on x not being in (BDC
∪G). If x ∈ BDC

, then

Pr[S′ = x] =

(
1− γ′

2

)
· Pr[BDC

= x] =

(
1− γ′

2

)
· Pr[D = x]

Prx←D [x ∈ BDC
]
=

Pr[D = x]

δ
.

For x ̸∈ BDC
, we have

Pr[S′ = x] =
γ′

2
· Pr[D = x]

Prx←D [x ̸∈ (BDC
∪G)]

=
γ′

2
· Pr[D = x]

Prx←D [x ̸∈ G]− Prx←D [x ∈ BDC
]
<

Pr[D = x]

δ
,
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where the last inequality follows from (6). Thus, S′ has relative density δ, supported in {0, 1}n \G.

Pr
C←DC
x←S′

[C(x) ∈ R(x)] ≤
(
1− γ′

2

)
Pr

C←DC
x←BDC

[C(x) ∈ R(x)] +
γ′

2
<

1

2
+ γ,

which contradicts the assumption (7).

Let t = 8 log(2/γδ)
γ2 . According to our hypothesis on R, for any large enough s, there is a circuit

M of size at most s
2 , such that, for any x ∈ {0, 1}n, M(y1, . . . , yt) ∈ R(x) if the majority of yi

satisfies yi ∈ R(x) for i ∈ {1, . . . , t}. Construct a circuit Ĉ, as follows: sample C1, . . . , Ct ← DC

independently, let Ĉ(x) = M(C1(x), . . . , Ct(x)), the size of Ĉ is at most t · γ2s
16 log(2/γδ) +

s
2 ≤ s. By

taking Chernoff bound, for any x ̸∈ BDC
, the probability that Ĉ outputs a wrong value is at most

e−γ
2t/8. Therefore,

Pr
x←D

[Ĉ(x) ∈ R(x)] ≥ Pr
x←D

[Ĉ(x) ∈ R(x) |x ̸∈ BDC
] Pr
x←D

[x ̸∈ BDC
]

≥ 1− Pr
x←D

[Ĉ(x) /∈ R(x)|x /∈ BDC
]− Pr

x←D
[x ∈ BDC

]

≥ 1− e−γ
2t/8 − δ

(
1− γ

2

)
= 1− δ.

which contradicts the assumption that R is (1 − δ)-hard on D for circuit size s. Therefore, game
value cannot exceed 1

2 + γ.
Consequently, there exists a mixed strategy DS , such that for any C with size at most s′,

Pr
S←DS
x←S

[C(x) ∈ R(x)] <
1

2
+ γ.

Then, define the hardcore distribution H as follows: sample S ← DS , x ← S. Since each S is
supported in {0, 1}n \G and is δ-dense with respect to D, and H is a convex combination of S’s,
H is also supported in {0, 1}n \G and has δ-density with respect to D.

3.2 Balancing Hardcore Distributions

Definition 3.3 (Balanced Distribution). For any domain Σ, given a distribution X on {0, 1}n and
y0, y1 ∈ Σ, a relation R ⊆ {0, 1}n × Σ is called balanced on X around {y0, y1}, if

Pr
x←X

[y0 ∈ R(x)] = Pr
x←X

[y1 ∈ R(x)] =
1

2
and Pr

x←X
[y0 ∈ R(x) ∧ y1 ∈ R(x)] = 0.

Lemma 3.3 (Balanced Hardcore). For γ ∈ (0, 12), δ ∈ (0, 1) and s ∈ N, for a relation R ⊆
{0, 1}n × Σ and distributions H,D over {0, 1}n, suppose that there exist a, b ∈ Σ, a ̸= b, such that

• For any x ∈ Supp(H), there is exactly one of the following holds: a ∈ R(x) or b ∈ R(x).

• Letting Da denote the distribution x ← D|a∈R(x)∧b̸∈R(x) and Db denote the distribution x ←
D|b∈R(x)∧a̸∈R(x); Da, Db has δ-density with respect to D.

If H is a δ-dense distribution with respect to D and R is 1
2(1 + γ)-hard on H for circuits of size

s, then there is a distribution H ′ with density δ with respect to D, on which R is balanced around
{a, b} and (12 + γ)-hard for circuits of size s.
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Proof. Let pa = Prx←H [a ∈ R(x)] and pb = Prx←H [b ∈ R(x)]. R is 1
2(1 + γ)-hard on H, then

1

2
(1− γ) < pa, pb <

1

2
(1 + γ).

Otherwise, there is a circuit that trivially outputs a or b can succeed with probability at least
1
2(1 + γ). Then, construct a distribution Ĥ by the following steps:

• Let p̂a = 1
γ

(
1+γ
2 − pa

)
and p̂b =

1
γ

(
1+γ
2 − pa

)
. If pa, pb ∈ 1

2(1± γ), p̂a, p̂b ∈ (0, 1).

• With probability p̂a, sample an instance x from Da uniformly randomly; with probability p̂b,
sample an instance x from Db uniformly randomly.

In the following, we first show that the distribution H ′ = 1
1+γH + γ

1+γ Ĥ is balanced. The support

of H ′ is over Da ∪ Db, then, for any x ∈ Supp(H ′), only one of the following holds: a ∈ R(x) or
b ∈ R(x).

Pr
x←H′

[a ∈ R(x)] =
1

1 + γ
pa +

γ

1 + γ
p̂a =

1

2
.

Similarly, Prx←H′ [b ∈ R(x)] = 1
2 . Therefore, R is balanced on H ′ around {a, b}.

Since Da, Db has δ-density with respect to D, for any x ∈ {0, 1}n, we have

Pr[Ĥ = x] ≤ max

{
p̂a ·

Pr[D = x]

δ
, p̂b ·

Pr[D = x]

δ

}
<

Pr[D = x]

δ
.

Both of H and Ĥ have δ-density with respect to D, since H ′ is a convex combination of H and Ĥ,
H ′ is δ-dense with respect to D.

Consider any circuit C of size s,

Pr
x←H′

[C(x) ∈ R(x)] =
1

1 + γ
Pr

x←H
[C(x) ∈ R(x)] +

γ

1 + γ
Pr

x←Ĥ
[C(x) ∈ R(x)]

≤ 1

1 + γ
· 1
2
(1 + γ) +

γ

1 + γ

<
1

2
+ γ.

Therefore, R is (12 + γ)-hard on H ′ for circuits of size s.

4 Evaluating Integer-Valued Functions

We now present our hardness amplification result for evaluating integer-valued functions. Given a
function f , which is somewhat hard to evaluate on average, it is feasible to show that the function
SUMt⊗f possesses a strong average-case hardness, where SUMt represents the summation function
over t coordinates. We state our main theorem below.

Theorem 4.1. For δ ∈ (0, 1), m, s, t ∈ N and a distribution D over {0, 1}n, for any large enough
s, consider a function f : {0, 1}n → Zm that is (1 − δ)-hard on D for circuits of size s, define a
function g : ({0, 1}n)t → Zt·m as follows:

g(x1, . . . , xt) =

t∑
i=1

f(xi).

14



Then, for γ ∈ (0, 1), for large enough s, g is η-hard on Dt for circuits of size s′, where

η = e−µ/4 +

( µ
⌊µ
2
⌋
)

2µ

(
1 + ⌈µ

2
⌉γ
)
, µ = ⌈ tδ

m(m− 1)
⌉,

s′ =
γ2s

512m2 log(4m2/γδ)
.

For sufficiently small γ, the dominant term of η is
( µ
µ/2)
2µ = Θ( 1√

µ). Taking t large enough enables

us to establish hardness amplification. To prove it, we will first construct the hardcore distribution
for the function f , show that summation effectively amplify the hardness on this hard distribution
and then generalize the result to the original distribution.

Intuitively, the hardcore distribution of any Boolean-valued function is straightforward, as the
output is restricted to either yes or no. However, for integer-valued functions, the structure of a
hard set is inherently more complicated. We characterize the hardcore of integer-valued functions
by defining a set of new problems, simply considering two values in the output domain and an
input value is only considered relevant if its corresponding output matches one of those. We show
that there is a pair of values such that the resulting problem is hard. Then, we extract a hardcore
from this hard problem, which possesses a good structure corresponding to the original function.

Lemma 4.2. For δ ∈ (0, 1), m, s ∈ N and a distribution D over {0, 1}n, consider a function
f : {0, 1}n → Zm. For any a, b ∈ Zm and a ̸= b, define the relation Ra,b ⊆ {0, 1}n × {0, 1}⌈logm⌉ as
follows:

• If f(x) ∈ {a, b}, then (x, y) ∈ Ra,b if and only if y = f(x);

• If f(x) ̸∈ {a, b}, then (x, y) ∈ Ra,b for any y ∈ {0, 1}⌈logm⌉.

For s ≫ m2 logm, if f is (1 − δ)-hard on D for circuits of size s, there exists a pair of a, b ∈
Zm, a ̸= b, such that Ra,b is

(
1− 2δ

m(m−1)

)
-hard on D for circuits of size s

m2 .

This lemma suggests that if the function f is hard to evaluate on average, then there must exist
output values a, b, such that distinguishing their pre-images is also hard on average. We defer the
proof to Section 4.1, and our hardcore construction is shown below.

Lemma 4.3 (Hardcore for Integer-Valued Functions). For δ, γ ∈ (0, 1), m, s ∈ N and a distribution
D, consider a function f : {0, 1}n → Zm, which is (1− δ)-hard on D for circuits of size s. If s is
sufficient large, there exist a, b ∈ Zm, a ̸= b and a 2δ

m(m−1) -dense distribution H (with respect to D),

on which f is balanced around {a, b} and 1
2(1 + γ)-hard for circuits of size γ2s

256m2 log(4m2/γδ)
.

Proof. Suppose f : {0, 1}n → Zm is (1 − δ)-hard on D for circuits of size s, by Lemma 4.2, if

s ≫ m2 logm, there exists a pair of a, b ∈ N, a ̸= b, such that Ra,b is
(
1− 2δ

m(m−1)

)
-hard on D for

circuits of size s
m2 . This hardness implies that Prx←D[f(x) = a] > 2δ

m(m−1) , then the distribution

D|f(x)=a is 2δ
m(m−1) -dense with respect to D (and the same holds for b).

For relation Ra,b, the majority gate is a natural choice for the combiner. For some γ ∈ (0, 1), let

t = 128 log(4m2/γδ)
γ2 be an integer, if the size of majority-of-t circuits is less than s

2m2 , by Lemma 3.2,

there is a 2δ
m(m−1) -dense hardcore distribution H ′ (with respect to D) over {x : f(x) ∈ {a, b}} ⊆

{0, 1}n, on which Ra,b is (
1
2 + γ

4 )-hard for circuits of size γ2s
256m2 log(4m2/γδ)

.

By Lemma 3.3, we can construct a distribution H with density 2δ
m(m−1) (with respect to D), on

which f is balanced around {a, b} and 1
2(1 + γ)-hard for circuits of size γ2s

256m2 log(4m2/γδ)
.
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We believe that this hardcore distribution exhibits a desirable structure, given that the hardness
of evaluating function f on it can be captured by indistinguishability. In the following, we consider
the inputs sampled from the hardcore distribution. It is a natural way to amplify the average-case
hardness of function f , by constructing the function SUMt ⊗ f . If f is hard on distribution H on
which there are two possible outputs, then the best algorithm with restricted running time would
not perform significantly better than random guessing. Consequently, the almost optimal way for
guessing the value of SUMt ⊗ f on Ht is output the one with the highest probability of occurring.

Lemma 4.4. For γ ∈ (0, 1), m, s, t ∈ N and a, b ∈ Zm, consider a hardcore distribution H ⊆
{0, 1}n, on which function f : {0, 1}n → Zm is balanced around {a, b} and 1

2(1+γ)-hard for circuits
of size s. Define the function g : ({0, 1}n)t → Zt·m as follows:

g(x1, . . . , xt) =

t∑
i=1

f(xi).

For k ∈ N, 0 < k ≤ t and any other distribution G over ({0, 1}n)t−k, for sufficient large s,
specifically s≫ log(t ·m), the function g is η-hard on Πt(H

k, G) for circuits of size s
2 , where

η =

( k
⌊ k
2
⌋
)

2k

(
1 + ⌈k

2
⌉γ
)
.

This lemma demonstrates that summation can effectively amplify the hardness over the hardcore
distribution, for which the proof will be presented in Section 4.2. However, the hardcore lemma only
ensures the existence of a hard distribution without guaranteeing efficient sampling. Therefore, to
derive a more meaningful hardness result, we will eventually focus on the hardness on the original
distribution.

One direct approach is to embed this distribution into the original one with some probability
mass parameterized by its relative density. When sampling instances from the original distribution
a sufficient number of times, the number of instances sampled from the hard one will concentrate
around the expected value. Based on this observation, we proceed to prove our main theorem.

Theorem 4.1. For δ ∈ (0, 1), m, s, t ∈ N and a distribution D over {0, 1}n, for any large enough
s, consider a function f : {0, 1}n → Zm that is (1 − δ)-hard on D for circuits of size s, define a
function g : ({0, 1}n)t → Zt·m as follows:

g(x1, . . . , xt) =
t∑

i=1

f(xi).

Then, for γ ∈ (0, 1), for large enough s, g is η-hard on Dt for circuits of size s′, where

η = e−µ/4 +

( µ
⌊µ
2
⌋
)

2µ

(
1 + ⌈µ

2
⌉γ
)
, µ = ⌈ tδ

m(m− 1)
⌉,

s′ =
γ2s

512m2 log(4m2/γδ)
.

Proof. Theorem 4.1 For a function f : {0, 1}n → Zm, which is (1 − δ)-hard on D for circuits
of size s, by Lemma 4.3, there exists a, b ∈ Zm, a ̸= b and a 2δ

m(m−1) -dense distribution H with

respect to D, such that f is balanced around {a, b} and 1
2(1 + γ)-hard on H for circuits of size

ŝ = γ2s
256m2 log(4m2/γδ)

.
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H has density δ̂ = 2δ
m(m−1) , then there exists a distribution G over {0, 1}n, such that D =

δ̂H + (1− δ̂)G. For t ∈ N, we have

Dt =
t∑

k=0

(
t

k

)
δ̂k(1− δ̂)t−k ·Πt(H

k, Gt−k).

Therefore, for any large enough s ∈ N, for any circuit C of size s′ = ŝ
2 , by Lemma 4.4, we have

Pr
x←Dt

[C(x) = g(x)] =

t∑
k=0

(
t

k

)
· δ̂k(1− δ̂)t−k · Pr

x←Πt(Hk,Gt−k)
[C(x) = g(x)]

≤
µ−1∑
k=0

(
t

k

)
· δ̂k(1− δ̂)t−k +

t∑
k=µ

(
t

k

)
· δ̂k(1− δ̂)t−k ·

( µ
⌊µ
2
⌋
)

2µ

(
1 + ⌈µ

2
⌉γ
)

<

µ−1∑
k=0

(
t

k

)
· δ̂k(1− δ̂)t−k +

( µ
⌊µ
2
⌋
)

2µ

(
1 + ⌈µ

2
⌉γ
)

< e−µ/4 +

( µ
⌊µ
2
⌋
)

2µ

(
1 + ⌈µ

2
⌉γ
)
,

where µ = ⌈ tδ̂2 ⌉. The last inequality is obtained by Chernoff bound, where the first term is equivalent

to the probability that a binomial distribution with parameter (n, δ̂) samples a value less than µ.

4.1 Proof of Lemma 4.2

Lemma 4.2. For δ ∈ (0, 1), m, s ∈ N and a distribution D over {0, 1}n, consider a function
f : {0, 1}n → Zm. For any a, b ∈ Zm and a ̸= b, define the relation Ra,b ⊆ {0, 1}n × {0, 1}⌈logm⌉ as
follows:

• If f(x) ∈ {a, b}, then (x, y) ∈ Ra,b if and only if y = f(x);

• If f(x) ̸∈ {a, b}, then (x, y) ∈ Ra,b for any y ∈ {0, 1}⌈logm⌉.

For s ≫ m2 logm, if f is (1 − δ)-hard on D for circuits of size s, there exists a pair of a, b ∈
Zm, a ̸= b, such that Ra,b is

(
1− 2δ

m(m−1)

)
-hard on D for circuits of size s

m2 .

Proof. Assume that, for any a, b ∈ Zm, a < b, there is a circuit Ca,b : {0, 1}n → {0, 1}⌈logm⌉ of size
s
m2 , such that

Pr
x←D

[Ca,b(x) ∈ Ra,b(x)] ≥ 1− 2δ

m(m− 1)
.

Let Cb,a = Ca,b. Then, we can construct a circuit C as follows:

• Input: x ∈ {0, 1}n

• For i ∈ {0, 1, . . . ,m− 1}:

– If for every j ̸= i, Ci,j(x) = i holds, return i.

• Return ⊥.
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During the process, C compares each output of Ci,j(x) with i, which means there are Θ(m2)
comparison of Θ(logm) bits, so the circuit complexity of C is at most

(
m
2

)
· s
m2 + c ·m2 logm, where

c is a constant. If s≫ m2 logm, the size of C is at most s.
By taking the union bound, we have

Pr
x←D

[∃(a, b), a < b : Ca,b(x) ̸∈ Ra,b(x)] ≤
∑
a<b

Pr
x←D

[Ca,b(x) ̸∈ Ra,b(x)] ≤ δ.

For any input x, there exists at most one i, such that for every j ̸= i, Ci,j(x) outputs i. If not,
we have Ci,j(x) = i = j, which leads to a contradiction.

If every Ca,b(x) outputs a correct value in Ra,b(x), there exists a unique i = f(x), such that
Ci,j(x) ∈ Ri,j(x) for every j ̸= i, then C computes f(x) correctly.

Pr
x←D

[C(x) = f(x)] ≥ Pr
x←D

[∀(a, b), a < b : Ca,b(x) ∈ Ra,b(x)] ≥ 1− δ,

which contradicts the fact that f is (1− δ)-hard for circuits of size s.

4.2 Proof of Lemma 4.4

Lemma 4.4. For γ ∈ (0, 1), m, s, t ∈ N and a, b ∈ Zm, consider a hardcore distribution H ⊆
{0, 1}n, on which function f : {0, 1}n → Zm is balanced around {a, b} and 1

2(1+γ)-hard for circuits
of size s. Define the function g : ({0, 1}n)t → Zt·m as follows:

g(x1, . . . , xt) =
t∑

i=1

f(xi).

For k ∈ N, 0 < k ≤ t and any other distribution G over ({0, 1}n)t−k, for sufficient large s,
specifically s≫ log(t ·m), the function g is η-hard on Πt(H

k, G) for circuits of size s
2 , where

η =

( k
⌊ k
2
⌋
)

2k

(
1 + ⌈k

2
⌉γ
)
.

Proof. Consider a hardcore distribution H and a function f : {0, 1}n → Zm, such that f is balanced
around {a, b} and 1

2(1 + γ)-hard on H for circuits of size s. Let Ha denote the distribution x ←
H|f(x)=a and Hb denote x ← H|f(x)=b, we have H = 1

2Ha + 1
2Hb. For any i, k ∈ N, denote

Π(H i
a, H

k−i
b ) by Hk

i Then, consider any x̂ = (x̂1, . . . , x̂t−k) ∈ ({0, 1}n)t−k and a permutation π of t
entries, we claim the following fact.

Claim 4.5. If s ≫ log(t ·m), for any circuit C : ({0, 1}n)t → {0, 1}⌈log tm⌉ of size at most s
2 and

any i ∈ Zk, v ∈ Zt·m, we have∣∣∣∣ Pr
x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

i+1

]
− Pr

x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

i

]∣∣∣∣ < γ.

By Claim 4.5 (which is proven below), combined with triangle inequality, for any i, j ∈ Zk,

Pr
x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

i

]
< Pr

x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

j

]
+ |i− j| γ.
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Let ∆ =
∑t−k

i=1 f(x̂i). For any circuit C : ({0, 1}n)t → {0, 1}⌈log tm⌉ of size at most s
2 ,

Pr
x̄←Hk

[C(π(x̄, x̂)) = g(π(x̄, x̂))]

=

k∑
i=0

Pr
x̄←Hk

[
x̄ ∈ Hk

i

]
Pr

x̄←Hk

[
C(π(x̄, x̂)) = g(x̄, x̂)

∣∣∣x̄ ∈ Hk
i

]
=

k∑
i=0

Pr
x̄←Hk

[
x̄ ∈ Hk

i

]
Pr

x̄←Hk

[
C(π(x̄, x̂)) = ai+ b(k − i) + ∆

∣∣∣x̄ ∈ Hk
i

]
<

1

2k

k∑
i=0

(
k

i

)(
Pr

x̄←Hk

[
C(π(x̄, x̂)) = ai+ b(k − i) + ∆

∣∣∣x̄ ∈ Hk
⌊ k
2
⌋

]
+

∣∣∣∣i− ⌊k2 ⌋
∣∣∣∣ γ)

≤ 1

2k

((
k

⌊k2⌋

) k∑
i=0

Pr
x̄←Hk

[
C(π(x̄, x̂)) = ai+ b(k − i) + ∆

∣∣∣x̄ ∈ Hk
⌊ k
2
⌋

]
+ γ

k∑
i=0

(
k

i

) ∣∣∣∣i− k

2

∣∣∣∣
)

≤ 1

2k

((
k

⌊k2⌋

)
+ ⌈k

2
⌉γ ·

(
k

⌊k2⌋

))

≤

( k
⌊ k
2
⌋
)

2k

(
1 + ⌈k

2
⌉γ
)
.

The second last line is obtained by Claim 4.6. Then, for any distribution G over ({0, 1}n)t−k,

Pr
x̄←Π(Hk,G)

[C(x̄) = g(x̄)] ≤

( k
⌊ k
2
⌋
)

2k

(
1 + ⌈k

2
⌉γ
)
.

Claim 4.6. For any t ∈ N,
t∑

i=0

∣∣∣∣i− t

2

∣∣∣∣ (ti
)

= ⌈ t
2
⌉ ·
(

t

⌊ t2⌋

)
.

Proof. For any t ∈ N,

t∑
i=0

∣∣∣∣i− t

2

∣∣∣∣ (ti
)

=

⌊ t
2
⌋∑

i=0

(t− 2i)

(
t

i

)
=

⌊ t
2
⌋∑

i=0

(
(t− i) · t!

i!(t− i)!
− i · t!

i!(t− i)!

)

=

⌊ t
2
⌋∑

i=0

t ·
(
t− 1

i

)
−
⌊ t
2
⌋∑

i=1

t ·
(
t− 1

i− 1

)
= t ·

(
t− 1

⌊ t2⌋

)
= ⌈ t

2
⌉ ·
(

t

⌊ t2⌋

)
.

4.2.1 Proof of Claim 4.5

Claim 4.5. If s ≫ log(t ·m), for any circuit C : ({0, 1}n)t → {0, 1}⌈log tm⌉ of size at most s
2 and

any i ∈ Zk, v ∈ Zt·m, we have∣∣∣∣ Pr
x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

i+1

]
− Pr

x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

i

]∣∣∣∣ < γ.
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Proof. Without loss of generality, suppose there exists a circuit C : ({0, 1}n)t → {0, 1}⌈log tm⌉ of
size at most s

2 and i ∈ Zk, k ∈ Zt·m, such that∣∣∣∣ Pr
x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

i+1

]
− Pr

x̄←Hk

[
C(π(x̄, x̂)) = v|x̄ ∈ Hk

i

]∣∣∣∣ ≥ γ.

Then, there must exists a tuple (x1, x2, . . . , xk−1) and a permutation πk of k entries, such that

Pr
x←H

[C(π(πk(x, x1, . . . , xk−1), x̂)) = v|x ∈ Ha]− Pr
x←H

[C(π(πk(x, x1, . . . , xk−1), x̂)) = v|x ∈ Hb] ≥ γ.

Construct a circuit C ′, implementing C by taking an input of length n, along with fixed π, x̂ and
πk, (x1, . . . , xk−1), v as the non-uniform advice, outputs a if and only if C outputs v and outputs b
otherwise. Then, ∣∣∣∣ Prx←H

[C ′(x) = a|x ∈ Ha]− Pr
x←H

[C ′(x) = b|x ∈ Hb]

∣∣∣∣ ≥ γ.

Therefore, the probability that C ′ correctly compute f is

Pr
x←H

[C ′(x) = f(x)] =
1

2
Pr[C ′(x) = a|x ∈ Ha] +

1

2
Pr[C ′(x) = b|x ∈ Hb] ≥

1

2
(1 + γ),

which contradict to f is 1
2(1 + γ)-hard on H.

5 Approximating Real-Valued Functions

In this section, we extend our results to real-valued functions. To avoid any precision loss introduced
by encoding, we assume that for any open interval of length ϵ

2 , there is a value that can be encoded
by {0, 1}α in the interval. Therefore, for any approximation considered below, we always assume
α > log(m/ϵ) + 4.

Theorem 5.1. For δ ∈ (0, 1), m, ϵ ∈ R, α, s, t ∈ N, α > log(m/ϵ) + 4 and a distribution D
over {0, 1}n, consider a function f : {0, 1}n → [0,m) that is (1 − δ)-hard to approximate on D
with accuracy α and distance ϵ, for circuits of size s. For any large enough t, define a function
g : ({0, 1}n)t → [0, t ·m) as follows:

g(x1, . . . , xt) =
t∑

i=1

f(xi).

Then, for γ ∈ (0, 1), for any large enough s, g is η-hard to approximate on Dt with accuracy α′

and distance ϵ, α′ > log(t ·m/ϵ) + 4, for circuits of size s′, where

η = e−µ/4 +

(µ
µ
2

)
2µ

(
6 +

µ

2
γ
)
, µ =

ϵ

m

√
2tδ,

s′ =
γ2ϵ

256m
√
2tδ log(8tm2/ϵ2γ2δ)

· s.

When γ is small enough, η will be dominated by
( µ
µ/2)
2µ = Θ( 1√

µ). For large enough t, we

can effectively obtain a function with strong average-case hardness to approximate by taking the
summation of multiple copies of f .
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Lemma 5.2. For δ ∈ (0, 1), m, ϵ ∈ R, α, s ∈ N, α > log(m/ϵ)+4 and a distribution D over {0, 1}n,
consider a real-valued function f : {0, 1}n → [0,m). For any l ∈ N, let d = ϵ

l , which denotes the
radius of the partitioned intervals. For any a, b ∈ {d, 3d, . . . , (2⌈m2d⌉−1)d}, a ̸= b, define the relation
Ra,b ⊆ {0, 1}n × {0, 1}α as follows:

• If f(x) ∈ [a± d) or f(x) ∈ [b± d), then (x, y) ∈ Ra,b if and only if y ∈ (f(x)± ϵ);

• If f(x) ̸∈ [a± d) and f(x) ̸∈ [b± d), then (x, y) ∈ Ra,b for any y ∈ {0, 1}α.

For any integer l > 1, for large enough s, if f is (1 − δ)-hard to approximate on D with accuracy
α and distance ϵ for circuits of size s, there exist a, b ∈ {d, 3d, . . . , (2⌈m2d⌉− 1)d}, b− a > (32 l− 2)d,

such that Ra,b is (1− 4d2δ
m2 )-hard on D, for circuits of size d2s

m2 .

The proof is deferred to Section 5.1. Following the approach used in the integer case, we
proceed with the construction of the hardcore distribution. This hard distribution maintains a
good structure, on which f will be balanced and mapped to [a± d) or [b± d), for some fixed a, b,
which implies the closed approximation of f with distance d is balanced on H around {a, b}.

Lemma 5.3 (Hardcore for Real-Valued Functions). For δ, γ ∈ (0, 1), m, ϵ ∈ R, α, s ∈ N, α >
log(m/ϵ) + 4 and a distribution D over {0, 1}n, consider a function f : {0, 1}n → [0,m), which
is (1 − δ)-hard to approximate D with accuracy α and distance ϵ for circuits of size s. For any

integer l ≥ 3, let d = ϵ
l , there exist a, b ∈ {d, 3d, . . . , (2⌈m2d⌉ − 1)d}, b − a > (32 l − 2)d, and a 4d2δ

m2 -
dense distribution H (with respect to D), on which the closed approximation of f with distance d is
balanced around {a, b} and the approximation of f with accuracy α and distance ϵ is 1

2(1 + γ)-hard

for circuits of size γ2d2s
256m2 log(2m2/d2γδ)

.

Proof. Suppose f : {0, 1}n → [0,m) is (1 − δ)-hard on D for circuits of size s, by Lemma 5.2,
for integer l > 1, d = ϵ

l , if s is sufficiently large, there exist a, b ∈
{
d, 3d, . . . , (2⌈m2d⌉ − 1)d

}
,

b − a >
(
3
2 l − 2

)
d, such that Ra,b (as defined in Lemma 5.2) is

(
1− 4d2δ

m2

)
-hard on D for circuits

of size d2s
m2 .

For Ra,b, the majority combiner can be constructed by taking the middle point. By Lemma 3.2,

when s is large enough, we have a 4d2δ
m2 -dense distribution H ′ (with respect to D) over {x : f(x) ∈

[a± d)∪ [b± d)} ⊆ {0, 1}n, on which Ra,b is (
1
2 +

γ
4 )-hard for circuits of size ŝ = γ2d2s

256m2 log(2m2/d2γδ)
,

as well as the approximation of f with accuracy α and distance ϵ is hard on H ′.
If l ≥ 3, then b − a > 2d, the intervals [a ± d] and [b ± d] are disjoint. Then, by Lemma 3.3,

we can construct a distribution H with density 4d2δ
m2 , on which the closed approximation of f with

distance d is balanced around {a, b} and the approximation of f with accuracy α and distance ϵ is
1
2(1 + γ)-hard for circuits of size ŝ.

Analogously, we prove that summation suffices to achieve amplification on hard distributions.

Lemma 5.4. For γ ∈ (0, 1), m, ϵ ∈ R and α, s, t ∈ N, α > log(m/ϵ) + 4, for large enough
l ∈ N, let d = ϵ

l , consider a hardcore distribution H ⊆ {0, 1}n and a, b ∈
{
d, 3d, . . . , (2⌈m2d⌉ − 1)d

}
,

b−a >
(
3
2 l − 2

)
d, on which the closed approximation of function f : {0, 1}n → [0,m) with distance

d is balanced around {a, b} and f is 1
2(1 + γ)-hard to approximate with accuracy α and distance ϵ

for circuits of size s. For any integer t, define a function g : ({0, 1}n)t → [0, t ·m) as follows:

g(x1, . . . , xt) =

t∑
i=1

f(xi).
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For k ∈ N, 0 < k ≤ t and any other distribution G over ({0, 1}n)t−k, for any large enough s,
function g is η-hard to approximate with accuracy α′ and distance ϵ on Πt(H

k, G) for circuits of
size s

2 , where α′ > log(t ·m/ϵ) + 4 and

η =

(k
k
2

)
2k

(
3
√
k

l
+ 3 +

k

2
γ

)
.

We postpone the proof to Section 5.2 and now present the proof for Theorem 5.1.

Theorem 5.1. For δ ∈ (0, 1), m, ϵ ∈ R, α, s, t ∈ N, α > log(m/ϵ) + 4 and a distribution D
over {0, 1}n, consider a function f : {0, 1}n → [0,m) that is (1 − δ)-hard to approximate on D
with accuracy α and distance ϵ, for circuits of size s. For any large enough t, define a function
g : ({0, 1}n)t → [0, t ·m) as follows:

g(x1, . . . , xt) =
t∑

i=1

f(xi).

Then, for γ ∈ (0, 1), for any large enough s, g is η-hard to approximate on Dt with accuracy α′

and distance ϵ, α′ > log(t ·m/ϵ) + 4, for circuits of size s′, where

η = e−µ/4 +

(µ
µ
2

)
2µ

(
6 +

µ

2
γ
)
, µ =

ϵ

m

√
2tδ,

s′ =
γ2ϵ

256m
√
2tδ log(8tm2/ϵ2γ2δ)

· s.

Proof. For α > log(m/ϵ) + 4 and a function f : {0, 1} → [0,m), which is (1 − δ)-hard for circuits
of size s, by Lemma 5.3, for l ∈ N, let d = ϵ

l , there exist a, b ∈ {d, 3d, . . . , (2⌈m2d⌉ − 1)d}, b − a >(
3
2 l − 2

)
d, and a 4d2δ

m2 -dense distribution H with respect to D, such that the closed approximation
of f with distance d is balanced around {a, b} and that f is 1

2(1 + γ)-hard to approximate with

accuracy α and distance ϵ on H for circuits of size ŝ = γ2d2s
256m2 log(2m2/d2γδ)

.

Since H has relative density δ̂ = 4d2δ
m2 , there exists a distribution G over {0, 1}n, such that

D = δ̂H + (1− δ̂)G. For t ∈ N, we have

Dt =

t∑
k=0

(
t

k

)
· δ̂k(1− δ̂)t−k ·Πt(H

k, Gt−k).

Therefore, for any large enough s, t ∈ N, for any circuit of size s′ = ŝ
2 , by Lemma 5.4, we have

Pr
x←Dt

[C(x) = g(x)] =
t∑

k=0

(
t

k

)
· δ̂k(1− δ̂)t−k · Pr

x←Πt(Hk,Gt−k)
[C(x) = g(x)]

<

µ∑
k=0

(
t

k

)
· δ̂k(1− δ̂)t−k +

(µ
µ
2

)
2µ

(
3
√
µ

l
+ 3 +

µ

2
γ

)

≤ e−µ/4 +

(µ
µ
2

)
2µ

(
3
√
µ

l
+ 3 +

µ

2
γ

)
,
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where µ = tδ̂
2 = 2td2δ

m2 . Let l =
√
µ, we have

√
µ =

√
2td2δ

m2
=

√
2tϵ2δ

l2m2
=

ϵ

lm

√
2tδ = l

Then, l =
√

ϵ
m

√
2tδ.

µ =
ϵ

m

√
2tδ, s′ =

γ2ϵ

256m
√
2tδ log(8tm2/ϵ2γ2δ)

· s.

5.1 Proof of Lemma 5.2

Lemma 5.2. For δ ∈ (0, 1), m, ϵ ∈ R, α, s ∈ N, α > log(m/ϵ)+4 and a distribution D over {0, 1}n,
consider a real-valued function f : {0, 1}n → [0,m). For any l ∈ N, let d = ϵ

l , which denotes the
radius of the partitioned intervals. For any a, b ∈ {d, 3d, . . . , (2⌈m2d⌉−1)d}, a ̸= b, define the relation
Ra,b ⊆ {0, 1}n × {0, 1}α as follows:

• If f(x) ∈ [a± d) or f(x) ∈ [b± d), then (x, y) ∈ Ra,b if and only if y ∈ (f(x)± ϵ);

• If f(x) ̸∈ [a± d) and f(x) ̸∈ [b± d), then (x, y) ∈ Ra,b for any y ∈ {0, 1}α.

For any integer l > 1, for large enough s, if f is (1 − δ)-hard to approximate on D with accuracy
α and distance ϵ for circuits of size s, there exist a, b ∈ {d, 3d, . . . , (2⌈m2d⌉− 1)d}, b− a > (32 l− 2)d,

such that Ra,b is (1− 4d2δ
m2 )-hard on D, for circuits of size d2s

m2 .

Proof. Suppose that for any a, b ∈ {d, 3d, . . . , (2⌈m2d⌉−1)d}, a < b, there is a circuit Ca,b : {0, 1}n →
{0, 1}α of size d2s

m2 , such that

Pr
x←D

[Ca,b(x) ∈ Ra,b(x)] ≥ 1− 4d2δ

m2
.

For simplicity, let Cb,a = Ca,b. Taking a combination of circuits Ca,b, construct a new circuit
C : {0, 1}n → {0, 1}α as follows:

• On input x, for any i ∈ {d, 3d, . . . , (2⌈m2d⌉ − 1)d} in ascending order:

– Compute Ci,j(x);

– if Ci,j(x) outputs a value in (i± (ϵ+ d)) for every j ̸= i, return maxj ̸=i(Ci,j(x)), which
is the maximum value among all the outputs given by Ci,j(x).

• Return ⊥ if no such i exists.

If s is large enough, specifically s ≫
(
m
d

)2 · α, the size of C is approximately
(⌈m

2d
⌉

2

)
· d2s
m2 ≤ s.

The performance of the circuit C is stated as follows.

Claim 5.5. For any x ∈ {0, 1}n, if Ca,b(x) ∈ Ra,b(x) for any distinct a, b ∈ {d, 3d, . . . , (2⌈m2d⌉−1)d},
C(x) ∈ (f(x)± ϵ).
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By Claim 5.5, we have

Pr
x←D

[C(x) ∈ (f(x)± ϵ)] ≥ Pr
x←D

[∀(a, b), a < b : Ca,b(x) ∈ Ra,b(x)] ≥ 1−
(
⌈m2d⌉
2

)
· 4d

2δ

m2
≥ 1− δ.

The second inequality is obtained by taking the union bound. It contradicts the fact that f is
(1− δ)-hard to approximate with accuracy α and distance ϵ.

In the following, we will prove that the relation Ra,b (a < b) is potentially hard only if b− a >
(32 l − 2)d. Assume the distance of two centers b − a ≤ (32 l − 2)d, construct a circuit Ca,b which
outputs a value in (b− (ϵ− d) , a+ (ϵ− d)), regardless of inputs. Since the interval length is

a− b+ 2 (ϵ− d) ≥ −
(
3

2
l − 2

)
d+ 2 (ϵ− d) ≥ ϵ

2
,

there exists a value in this interval that can be encoded in {0, 1}α.
For any input x,

• If f(x) ∈ [a± d), f(x)− ϵ < a+ d− ϵ < b− (ϵ− d) < a+ (ϵ− d) < f(x) + ϵ

• If f(x) ∈ [b± d), f(x)− ϵ < b− (ϵ− d) < a+ (ϵ− d) < b− d+ ϵ ≤ f(x) + ϵ.

• Otherwise, any output is in Ra,b(x).

Then, the output is guaranteed to have Ca,b(x) ∈ Ra,b(x).
Therefore, there exist a, b ∈ {d, 3d, . . . , (2⌈m2d⌉ − 1)d}, b − a >

(
3
2 l − 2

)
d, such that Ra,b is

(1− 4d2δ
m2 )-hard for circuits of size d2s

m2 .

5.1.1 Proof of Claim 5.5

Claim 5.5. For any x ∈ {0, 1}n, if Ca,b(x) ∈ Ra,b(x) for any distinct a, b ∈ {d, 3d, . . . , (2⌈m2d⌉−1)d},
C(x) ∈ (f(x)± ϵ).

Proof. We partition the output space into multiple intervals with length 2d and define a set relation
Ra,b. For each relation, we focus on the inputs whose outputs by f lie in the corresponding intervals
[a± d) or [b± d). Recall the process of algorithm C: for i ∈ {d, 3d, . . . , (2⌈m2d⌉ − 1)d} in ascending
order, if for every j ̸= i, Ci,j(x) ∈ (i± (ϵ+ d)) holds, then C stops and outputs maxj ̸=i(Ci,j(x)).

Suppose that the algorithm returns when i = î, then f(x) ≥ î− d. If f(x) < î− d, there exists
ĩ < î, such that f(x) ∈ [̃i ± d), since we assume the correctness of every Ca,b, then C should stop
when i = ĩ, which results in a contradiction.

If f(x) ∈
[̂
i± d

)
, Ci,j(x) ∈ (f(x)± ϵ) for every j ̸= i, then C(x) ∈ (f(x)± ϵ).

If f(x) ≥ î+ d, suppose ĩ > î and f(x) ∈ [̃i± d), then Cî,̃i(x) ∈ (f(x)± ϵ).

f(x)− ϵ < Cî,̃i(x) ≤ C(x) < î+ d+ ϵ ≤ f(x) + ϵ.

5.2 Proof of Lemma 5.4

Lemma 5.4. For γ ∈ (0, 1), m, ϵ ∈ R and α, s, t ∈ N, α > log(m/ϵ) + 4, for large enough
l ∈ N, let d = ϵ

l , consider a hardcore distribution H ⊆ {0, 1}n and a, b ∈
{
d, 3d, . . . , (2⌈m2d⌉ − 1)d

}
,

b−a >
(
3
2 l − 2

)
d, on which the closed approximation of function f : {0, 1}n → [0,m) with distance
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d is balanced around {a, b} and f is 1
2(1 + γ)-hard to approximate with accuracy α and distance ϵ

for circuits of size s. For any integer t, define a function g : ({0, 1}n)t → [0, t ·m) as follows:

g(x1, . . . , xt) =
t∑

i=1

f(xi).

For k ∈ N, 0 < k ≤ t and any other distribution G over ({0, 1}n)t−k, for any large enough s,
function g is η-hard to approximate with accuracy α′ and distance ϵ on Πt(H

k, G) for circuits of
size s

2 , where α′ > log(t ·m/ϵ) + 4 and

η =

(k
k
2

)
2k

(
3
√
k

l
+ 3 +

k

2
γ

)
.

Proof. For an integer l, let d = ϵ
l , consider a hardcore distribution H ⊆ {0, 1}n and a, b ∈{

d, 3d, . . . , (2⌈m2d⌉ − 1)d
}
, b − a >

(
3
2 l − 2

)
d, such that, the closed approximation of function

f : {0, 1}n → [0,m) with distance d is balanced around {a, b} on H. Denote distribution x ←
H|f(x)∈(a±d) by Ha and distribution x← H|f(x)∈(b±d) by Hb. Since f is balanced around {a, b} on
distribution H, H = 1

2Ha +
1
2Hb. The hardness of approximating function f implies the indistin-

guishability of this two distribution Ha and Hb.
For t ∈ N, let Ht

i = Πt(H
i
a, H

t−i
b ). Then, consider any fixed x̂ = (x̂1, . . . , x̂t−k) ∈ ({0, 1}n)t−k

and any permutation π of t coordinates, we have the following fact.

Claim 5.6. For s, α′ ∈ N, such that s≫ α′ and (t·m,α′, ϵ) is valid, for any circuit C : ({0, 1}n)t →
{0, 1}α′ of size at most s

2 , for any i, j ∈ Nk+1, such that |i− j| = 1 and any v, ϵ′ ∈ [0, t ·m), ϵ′ ≥ ϵ,
we have

Pr
x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v ± ϵ′)
∣∣x̄ ∈ Ht

j

]
− Pr

x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v + v′ ± (ϵ′ + 2d))
∣∣x̄ ∈ Ht

i

]
< γ

where v′ = (j − i)(a− b).

Let ∆ =
∑t−k

i=1 f(x̂i). For any large even t, for any circuit C : ({0, 1}n)t → {0, 1}α′ of size at
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most s
2 , the following holds,

Pr
x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′)± ϵ)
]

=
k∑

i=0

Pr
x̄←Hk

x̄′←π(x̄,x̂)

[
x̄ ∈ Hk

i

]
· Pr

x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′)± ϵ)
∣∣∣x̄ ∈ Hk

i

]

=
1

2k

k∑
i=0

(
k

i

)
Pr

x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gk(x̄) + ∆± ϵ)

∣∣∣x̄ ∈ Hk
i

]

=
1

2k

k
2∑

i=− k
2

(
k

k
2 + i

)
Pr

x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gk(x̄) + ∆± ϵ)

∣∣∣x̄ ∈ Hk
k
2
+i

]

<
1

2k

k
2∑

i=− k
2

(
k

k
2 + i

) Pr
x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gk(x̄) + i(a− b) + ∆± (ϵ+ 2d |i|))

∣∣∣x̄ ∈ Hk
k
2

]
+ γ · |i|


(8)

≤

(k
k
2

)
2k

(
3
√
k

l
+ 3 +

k

2
γ

)
.

The inequality (8) is obtained by using Claim 5.6, we use the probability with a same condition
x̄ ∈ Hk

k
2

to give an upper bound for the original term. The last inequility holds by combining Claim

4.6 and Claim 5.7.
Therefore, for any distribution G over ({0, 1}n)t−k, we have

Pr
x̄←Πt(Hk,G)

[C(x̄) ∈ (gt(x̄)± ϵ)] ≤

(k
k
2

)
2k

(
3
√
k

l
+ 3 +

k

2
γ

)
.

Claim 5.7. For large enough l ∈ N, for any circuit C, we have

k
2∑

i=− k
2

(
k

k
2 + i

)
Pr

x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gk(x̄) + i(a− b) + ∆± (ϵ+ 2d |i|))

∣∣∣x̄ ∈ Hk
k
2

]
≤
(
k
k
2

)(
3
√
k

l
+ 3

)
,

where b− a >
(
3
2 l − 2

)
d and ϵ = l · d.

Proof. Recall that ϵ denotes the tolerance of the approximation error, and for some integer l ∈ N,
we let d = ϵ

l . Since a, b are the multiples of d, let b− a = l1 · d, for some positive integer l1. By our
assumption, b− a >

(
3
2 l − 2

)
d, thus l1 >

3
2 l − 2.

For simplicity, for any integer i1, i2, let

P (i1, i2) = Pr
x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ [gk(x̄) + ∆ + i1d, gk(x̄) + ∆ + i2d)

∣∣∣x̄ ∈ Hk
k
2

]
.

26



It is clear that P (i1, i2) + P (i2, i3) = P (i1, i3) for i1 < i2 < i3. Note that
( k

k
2
+i

)
=
( k

k
2
−i
)
, the left

hand side can be upper bounded by

k
2∑

i=− k
2

(
k

k
2 + i

)
· P (i · l1 − l − 2 |i| , i · l1 + l + 2 |i|).

Then, we will try to reorder the sum by taking the property of probability:

k
2∑

i=− k
2

(
k

k
2 + i

)
· P (i · l1 − l − 2 |i| , i · l1 + l + 2 |i|)

=

k
2∑

i=− k
2

(
k

k
2 + i

) i·l1+l+2|i|−1∑
j=i·l1−l−2|i|

P (j, j + 1).

To calculate the above, we collect the sum of coefficients corresponding to each P (j, j + 1). For
each j, the term should be

ic(j)∑
i=if (j)

(
k

k
2 + i

)
P (j, j + 1), (9)

for some functions if , ic. Let S(j) =
∑ic(j)

i=if (j)

( k
k
2
+i

)
denote the coefficient of P (j, j + 1). Since the

summation of all possible P (j, j + 1) is at most 1, by the definition of probability, it is feasible to
give an upper bound for the entire summation by computing the upper bound for S(j).

For any i ∈ [if (j), ic(j)], i should satisfy the following:

i · l1 − l − 2 |i| ≤ j ≤ i · l1 + l + 2 |i| − 1 and − k

2
≤ i ≤ k

2
.

We prove S(j) = S(−j − 1) by showing the following. For any i ∈ [if (j), ic(j)],

i · l1 − l − 2 |i| ≤ j ≤ i · l1 + l + 2 |i| − 1⇔ −i · l1 − l − 2 |i| ≤ −j − 1 ≤ −i · l1 + l + 2 |i| − 1.

Then, −i ∈ [if (−j − 1), ic(−j − 1)], since
( k

k
2
+i

)
=
( k

k
2
−i
)
, S(j) = S(−j − 1).

Recall that l1 >
3
2 l−2, assume l > 6, l1−l > 1. When j ≥ 0, we necessarily have i·l1+l+2 |i| ≥ 1.

If there exists a negative i satisfies the inequality, then i(l1− 2)+ l ≤ −(l1− 2)+ l < 1, which leads
to a contradiction. Therefore,

i · l1 − l − 2i ≤ j ≤ i · l1 + l + 2i− 1,

which is equivalent to

if (j) = ⌈
j − l + 1

l1 + 2
⌉ ≤ i ≤ ⌊ j + l

l1 − 2
⌋ = ic(j).
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Therefore, we can give an upper bound for S(j),

S(j) =

ic(j)∑
i=if (j)

(
k

k
2 + i

)

≤
(

j + l

l1 − 2
− j − l + 1

l1 + 2
+ 1

)(
k

k
2 + if (j)

)
=

(
4j + 2l · l1 − (l1 − 2)

(l1 − 2)(l1 + 2)
+ 1

)(
k

k
2 + if (j)

)
≤
(

4j

(l1 − 2)(l1 + 2)
+ 3

)(
k

k
2 + if (j)

)
.

On the other hand, j can be upper bounded in terms of if (j), that is

j − l + 1

l1 + 2
< if (j) + 1⇒ j < (if (j) + 1)(l1 + 2) + l − 1 < (if (j) + 2)(l1 + 2).

Then, we plug in if (j),

S(j) ≤
(

4j

(l1 − 2)(l1 + 2)
+ 3

)(
k

k
2 + if (j)

)
<

(
4(if (j) + 2)

l1 − 2
+ 3

)(
k

k
2 + if (j)

)
.

In the following, for 0 ≤ i ≤ k
2 , we denote

T (i) =
i+ 2

l1 − 2

(
k

k
2 + i

)
. (10)

It is clear that the maximum value of S(j) is at most the maximum value of 4T (i) + 3
(k

k
2

)
, that is

max
j

S(j) = max
j≥0

S(j) ≤ 4 ·max
i

T (i) + 3

(
k
k
2

)
.

The first equality holds because S(j) = S(−j−1). To find the maximum value of T (i), we compare
each pairs of adjacent terms in the sequence.

T (i+ 1)

T (i)
=

(i+ 3)
( k

k
2
+i+1

)
(i+ 2)

( k
k
2
+i

) =
(i+ 3)

(
k
2 − i

)
(i+ 2)

(
k
2 + i+ 1

) .
Then, T (i+ 1) > T (i) if and only if i <

√
k+5−3
2 . We have

max
i

T (i) <
⌊
√
k+5−3
2 ⌋+ 2

l1 − 2

(
k
k
2

)
.

Therefore, for k ≥ 12,

max
j

S(j) < 4 ·
⌊
√
k+5−3
2 ⌋+ 2

l1 − 2

(
k
k
2

)
+ 3

(
k
k
2

)
< 3

(√
k

l
+ 1

)(
k
k
2

)
.
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5.2.1 Proof of Claim 5.6

Claim 5.6. For s, α′ ∈ N, such that s≫ α′ and (t·m,α′, ϵ) is valid, for any circuit C : ({0, 1}n)t →
{0, 1}α′ of size at most s

2 , for any i, j ∈ Nk+1, such that |i− j| = 1 and any v, ϵ′ ∈ [0, t ·m), ϵ′ ≥ ϵ,
we have

Pr
x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v ± ϵ′)
∣∣x̄ ∈ Ht

j

]
− Pr

x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v + v′ ± (ϵ′ + 2d))
∣∣x̄ ∈ Ht

i

]
< γ

where v′ = (j − i)(a− b).

Proof. Without loss of generality, suppose i ∈ Nt and j = i+ 1. Suppose that there is a circuit C
of size at most s

2 and v, ϵ′ ∈ [0, t ·m), ϵ′ ≥ ϵ, satisfying

Pr
x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v ± ϵ′)
∣∣x̄ ∈ Ht

j

]
− Pr

x̄←Hk

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v + v′ ± (ϵ′ + 2d))
∣∣x̄ ∈ Ht

i

]
≥ γ.

Then, there must exist a tuple (x1, . . . , xk−1) and a permutation πk of k entries, such that,

Pr
x←H

x̄←πk(x1,...,xk−1,x)
x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v ± ϵ′) |x ∈ Ha

]
− Pr

x←H
x̄←πk(x1,...,xk−1,x)

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v + v′ ± (ϵ′ + 2d)) |x ∈ Hb

]
≥ γ.

In fact, gt(x̄
′) = f(x) + gk−1(x1, . . . , xt−1) + gt−k(x̂), let ∆ = g(x̄′) − f(x), which is a fixed value

independent of x. Recall that ϵ is the tolerance of approximation error and d is the radius of the
intervals around a and b, while letting d = ϵ

l for some large enough integer l. Define a circuit
C ′ : {0, 1}n → {0, 1}α as follows:

1. Input: x ∈ {0, 1}n.

2. Compute y ← C(π(x, x̂)).

3. If y ∈ [a+∆+ v ± (ϵ′ + d)), output a value in (a± ϵ
4).

4. Otherwise, output a value in (b± ϵ
4).

If s is large enough, the size of C ′ is less than s. In the following, we will show that the circuit C ′

can approximate function f with a good probability, then result in a contradiction.
For any x ∈ Ha, which means f(x) ∈ [a± d), if C(x̄′) output a value y in (gt(x̄

′)+ v± ϵ′) which
is equivalent to (f(x) + ∆ + v ± ϵ′), we necessarily have y ∈ [a+∆+ v ± (ϵ′ + d)). For any value
z ∈

(
a± ϵ

4

)
, |f(x)− z| ≤ ϵ

4 + d ≤ ϵ, then

Pr
x←H

[C ′(x) ∈ (f(x)± ϵ) |x ∈ Ha ] ≥ Pr
x←H

x̄←πk(x1,...,xk−1,x)
x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v ± ϵ′) |x ∈ Ha

]
.

On the other hand, for any x ∈ Hb, f(x) ∈ [b ± d), if C(x̄′) output a value y, such that
y ̸∈ (gt(x̄

′) + v + v′ ± (ϵ′ + 2d)), which is equivalent to (f(x) + ∆ + v + (a − b) ± (ϵ′ + 2d)). The
interval above covers the interval [a+∆+ v ± (ϵ′ + d)), since

a+∆+ v + ϵ′ + d ≤ f(x) + ∆ + v + (a− b) + ϵ′ + 2d

a+∆+ v − ϵ′ − d > f(x) + ∆ + v + (a− b)− ϵ′ − 2d
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The circuit C ′ will output a value in
(
b± ϵ

4

)
, then

Pr
x←H

[C ′(x) ∈ (f(x)± ϵ) |x ∈ Hb ] ≥ Pr
x←H

x̄←πk(x1,...,xk−1,x)
x̄′←π(x̄,x̂)

[
C(x̄′) ̸∈ (gt(x̄

′) + v + v′ ± (ϵ′ + 2d)) |x ∈ Hb

]
.

Therefore, the probability that C ′ can successfully approximate function f on H is

Pr
x←H

[C ′(x) ∈ (f(x)± ϵ)]

=
1

2
Pr

x←H
[C ′(x) ∈ (f(x)± ϵ)|x ∈ Ha] +

1

2
Pr

x←H
[C ′(x) ∈ (f(x)± ϵ)|x ∈ Hb]

≥ 1

2
Pr

x←H
x̄←πk(x1,...,xk−1,x)

x̄′←π(x̄,x̂)

[
C(x̄′) ∈ (gt(x̄

′) + v ± ϵ′) |x ∈ Ha

]

+
1

2
Pr

x←H
x̄←πk(x1,...,xk−1,x)

x̄′←π(x̄,x̂)

[
C(x̄′) ̸∈ (gt(x̄

′) + v + v′ ± (ϵ′ + 2d)) |x ∈ Hb

]
.

≥ 1

2
(1 + γ),

which contradict to f is 1
2(1 + γ)-hard on H.
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A Corollaries

Our motivation for investigating this in the context of general evaluation or approximation problem
arises from the average-case hardness of SZK. The complexity class SZK consists of problems which
have statistical zero-knowledge proofs, for which Entropy Difference (ED) is a known complete
problem [GV99].
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Definition A.1 (Entropy Difference). The promise problem Entropy Difference ED is defined as,

EDY = {(C0, C1) : H(C0) ≥ H(C1) + 1},
EDN = {(C0, C1) : H(C0) ≤ H(C1)− 1},

where C0, C1 are circuits with output length n. H(C) denotes the Shannon entropy of the dis-
tribution encoded by circuit C – that is the distribution of its outputs when its input is sampled
uniformly at random.

Following our approach for hardness amplification and assuming the average-case hardness of
SZK, we derive the conclusion that the estimation of Shannon entropy for distributions exhibits
strong average-case hardness. The corollary can be formulated as follows. We will use the terms
efficient or polynomial-time alternatively.

Corollary A.1. If there is a promise problem Π ∈ SZK that is somewhat hard on average, then
there exists an efficiently sampleable distribution, on which estimating Shannon entropy is extremely
hard on average. In particular, for δ : N → (0, 1) and a constant c ∈ N, if there is an efficient
sampler S that on input 1n outputs a circuit C with output length n and k ∈ (0, n), such that it
is (1 − δ(n))-hard to decide ED on S in polynomial time, then there exists an efficient sampler S′

that on input 1m outputs a circuit with output length m, on which estimating Shannon entropy is

infinitely-often 10 ·
(
m

c−2
c+1 δ′(m)/8

)−1/4
-hard in polynomial time, where δ′(m) = δ

(
m1/(c+1)

)
.

Proof Sketch. Assume there is an ED instance sampler S, such that, for any polynomial-time algo-
rithm A,

Pr
(C0,C1)←S(1n)

[A(C0, C1) = ED(C0, C1)] < 1− δ(n).

Then, the estimating of Shannon entropy with distance 1
2 is (1− δ(n)

2 )-hard, that is, for any
polynomial-time algorithm A′,

Pr
(C0,C1)←S(1n)

b←{0,1}

[
A′(Cb) ∈

(
H(Cb)±

1

2

)]
< 1− δ(n)

2
.

We construct an infinitely-often sampler S′ as follows: on input parameter m = nc+1, sample
(Ci,0, Ci,1) ← S(1n) and (b1, . . . , bnc) for (i = 1, . . . , nc), and outputs (C1,b1 , . . . , Cnc,bnc ). The
output length of resulting circuit is nc+1. By Theorem 1.2, the approximation on S′ with circuit

output length nc+1 is 10 ·
(
nc−2δ(n)/8

)−1/4
-hard for polynomial-time algorithms, where t(n) = nc.

As m = nc+1, Shannon entropy is 10 ·
(
m

c−2
c+1 δ′(m)/8

)−1/4
-hard to approximate on S′ with distance

1
2 for polynomial-time algorithm, where m is the output length of the circuit generated by the

sampler and δ′(m) = δ
(
m1/(c+1)

)
.

Additionally, our result implies the hardness amplification for multiplicatively approximating
the problems in #P with closure property under multiplication.

Definition A.2 (Closure under multiplication). For a counting problem Π ∈ #P, Π is called
closed under multiplication, if there is an efficient algorithm Comb such that, taking problem
instances (x1, x2, . . .) as input, outputs an instance x satisfying |x| = |x1|+ |x2|+ · · · and Π(x) =
Π(x1) ·Π(x2) · · · · , where we use | · | to denote the complexity parameter of an instance.
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The closure property under multiplication requires an efficient way for combining the instances
such that the characteristics of the combined instance can be computed as the product of its
components’ characteristics. For example, the #SAT problem, a complete problem for #P, is
closed under multiplication, where the complexity is parameterized in terms of the number of
variables or clauses.

Since our hardness amplification method relies on addition, we take the logarithm of the counting
value. To ensure that the logarithm is well-defined, the problem must be total, meaning that for
every input instance, the counting value is at least 1.

Corollary A.2. For δ : N → (0, 1) and a constant ϵ, if there is total counting problem Π ∈ #P
which is closed under multiplication and is (1 − δ(n))-hard to approximate multiplicatively with
ratio 2±ϵ on some polynomial-time sampler S for any polynomial-time algorithm, where n is the
complexity parameter of Π, for any constant c ∈ N, there exists an efficient sampler S′, such that

Π is infinitely-often O
(
(m

c−2
c+1 δ′(m))−1/4

)
-hard to approximate multiplicatively with the same ratio

on S′(1m) for polynomial-time algorithms, where δ′(m) = δ
(
m1/(c+1)

)
.

Proof Sketch. For simplicity, suppose any instance x generated by S satisfies 1 ≤ Π(x) ≤ 2n.
Assume there is an efficient sampler S, such that, for any (non-uniform) polynomial-time algorithm
A, we have

Pr
x←S(1n)

[
A(x) ∈

(
2−ϵ ·Π(x), 2ϵ ·Π(x)

)]
< 1− δ(n).

Let f(x) = logΠ(x), it is equivalent to, for any efficient algorithm A′,

Pr
x←S(1n)

[
A′(x) ∈ (f(x)± ϵ)

]
< 1− δ(n).

For some constant c ∈ N, we construct another sample S′(1n
c+1

): sample x1, · · · , xnc ← S(1n)
independently and output x← Comb(x1, . . . , xnc). It is clear that f(x) =

∑nc

i=1 f(xi). By theorem

1.2, the approximation of f on S′(1n
c+1

) is 10 · ϵ−1/2
(
m

c−2
c+1 δ′(m)

)−1/4
-hard for polynomial-time

algorithms. Let m = nc+1, it follows that

Pr
x←S′(1m)

[
A(x) ∈

(
2−ϵ ·Π(x), 2ϵ ·Π(x)

)]
< O

(
(m

c−2
c+1 δ′(m))−1/4

)
where δ′(m) = δ

(
m1/(c+1)

)
.

Beyond the approximation problems mentioned above, we further explore some variants of
optimization problems. For instance, while the search version of MaxSAT is a problem to find the
optimal assignments to maximize the number of satisfied clauses, we focus on a different version of
it, that is to evaluate this maximum value. According to previous study [GK20], the hardness of
searching MaxSAT can be amplified. Our work indicates that evaluating MaxSAT also exhibits this
property. We refer to this problem as MaxSAT in the following.

Corollary A.3. For δ : N → (0, 1), if there exists an instance sampler S, on which MaxSAT
is (1 − δ(n))-hard for poly-time algorithms, for any constant c ∈ N, there exists another sampler

S′, on which MaxSAT is infinitely-often O
(
(m

c−2
c+1 δ′(m))−1/2

)
-hard for poly-time algorithm, where

δ′(m) = δ(m1/(c+1)).
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Proof Sketch. Based on sampler S, for constant c ∈ N, construct S′(1n
c+1

): sample ϕi(xi,1, . . .)
independently, for i ∈

{
1, . . . , nc+1

}
, and output ϕ1(x1,1, . . .) ∧ ϕnc+1(xnc+1,1, . . .). By theorem 1.1,

theMaxSAT on S′(1n
c+1

) isO
(
(nc−2δ(n))−1/2

)
-hard for polynomial-time algorithms. Letm = nc+1,

the following holds, for any poly-time algorithm A,

Pr
x←S′(1m)

[A(x) = MaxSAT(x)] < O
(
(m

c−2
c+1 δ′(m))−1/2

)
,

where δ′(m) = δ
(
m1/(c+1)

)
.
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