
Chain Rules for Time-Bounded Kolmogorov

Complexity

Valentine Kabanets∗ Antonina Kolokolova†

July 9, 2025

Abstract

Time-bounded conditional Kolmogorov complexity of a string x given y, Kt(x | y), is the
length of a shortest program that, given y, prints x within t steps. The Chain Rule for conditional
Kt with error e is the following hypothesis: there is a constant c ∈ N such that, for any strings
y, x1, . . . , xℓ ∈ {0, 1}∗, for any ℓ ∈ N, and all sufficiently large time bounds t,

Kt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

Ktc(xi | y, x1, . . . , xi−1)− ℓ ·O(log t)− e(N, t),

where N =
∑ℓ

i=1 |xi|.
We pinpoint the complexity assumptions equivalent to Chain Rules for conditional Kt, and

the probabilistic variant pKt, where pKt(x | y) ≤ s iff Kt(x | y, r) ≤ s for at least 2/3 of random
strings r ∈ {0, 1}t.

• Chain Rule for conditional Kt with error e(N, t) ≤ o(N) is equivalent to the conjunction
of the following two statements:

1. E ̸⊂ io-SIZE[2o(n)], and

2. GapMcKtP ∈ promise-P, where GapMcKtP is a promise problem to distinguish between
inputs (x, y, 1s) with Kt(x | y) ≤ s and those with Kpoly(t)(x | y) > s+ o(|x|).

• Chain Rule for conditional pKt with error e(N, t) ≤ o(N) is equivalent to GapMcpKtP ∈
promise-BPP, for the analog of GapMcKtP for conditional pKt.

These are the first exact complexity characterizations for natural versions of Chain Rules for
time-bounded Kolmogorov complexity.

Assuming GapMcKtP is NP-hard (which is true under cryptographic assumptions [HIR23]),
the equivalence above would simplify to “the Chain Rule for conditional Kt with error e(N, t) ≤
o(N) holds iff NP = P”. That is, under a plausible NP-hardness assumption for GapMcKtP, we
would get that proving P ̸= NP is equivalent to disproving the Chain Rule for conditional Kt.

Among other results, we present a natural promise-BPP-complete problem based on the prob-
lem of approximating pKt(x | y) for short inputs x with |x| ≤ log t, and give some algorithmic
consequences if GapMcpKtP were easy.
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1 Introduction

Kolmogorov complexity defines an algorithmic measure of information in a given string x, denoted
K(x), as the length of a shortest program that prints x. The conditional version K(x | y) is the
length of a shortest program that, given y, prints x.

One of the fundamental properties of the Kolmogorov complexity measure K, discovered by
Kolmogorov and Levin (see [ZL70]), is the Chain Rule, saying that for any binary strings x, y, and
z,

K(x, y | z) ≈ K(x | z) + K(y | z, x), (1)

where ≈ hides an additive error term, at most logarithmic in the total length of all strings. That
is, the most efficient way to describe a pair (x, y) given z is to describe one of them given z, and
then describe the other one assuming the knowledge of z and the first one.

When z = ϵ (the empty string), this Chain Rule is also called Symmetry of Information (SoI)
for K, since it implies

K(x)− K(x | y) ≈ K(y)− K(y | x),

reminding of the classical symmetry of information equality H(X)−H(X | Y ) = H(Y )−H(Y | X),
where H(X) is Shannon’s entropy of a random variable X.

SoI for K is universally regarded as one of the most beautiful and useful results in classical
Kolmogorov complexity.

Symmetry of Information for Time-Bounded Kolmogorov Complexity. Of particular
interest to computational complexity is the variant of time-bounded Kolmogorov complexity mea-
sure Kt, where Kt(x) refers to the length of a shortest program that prints x within t time steps.
An obvious question is whether the time-bounded measure Kt satisfies SoI. Since the upper bound
K2t(x, y) ⪅ Kt(x) + Kt(y | x) is straightforward, SoI for Kt is defined as the following hypothesis:

Kt(x, y) ≥ Kp(t)(x) + Kp(t)(y | x)−O(log t), (SoI for Kt)

for some polynomial p, and any sufficiently large time bound t.
According to Levin [Lev03], Kolmogorov was interested in the SoI for Kt question, since he

believed it might be useful in the quest to resolve open problems in computational complexity. In
particular, Kolmogorov suggested in the late 1960’s that disproving SoI for Kt might be a good
approach to proving that P ̸= NP. 1

However, it was only in 1995 that Longpre and Watanabe [LW95] proved that P = NP implies
SoI for Kt. Thus, Kolmogorov’s suggestion to disprove SoI fof Kt in order to prove P ̸= NP was
sound. Since then, it remains an open question if disproving SoI for Kt is also necessary for proving
P ̸= NP. More generally, the open question is to come up with a natural complexity statement (like
P = NP) that would be equivalent to SoI for Kt.

1Kolmogorov’s intuition was, perhaps, that his proof of the chain rule for the time-unbounded K used an algorithm
doing a brute-force search over exponentially many possibilities, and it was not clear to him how such exhaustive
search could be avoided.
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Multi-String Chain Rules. Applying the Chain Rule in (1) inductively, we easily get the
following version of the chain rule for multiple strings: For any x1, . . . , xℓ, y ∈ {0, 1}∗,

K(x1, . . . , xℓ | y) ≈
ℓ∑

i=1

K(xi | y, x1, . . . , xi−1), (2)

where ≈ hides an additive error term at most ℓ ·O(log(
∑ℓ

i=1 |xi|+ |y|)).
An analogous version for the time-bounded case is the following hypothesis:

Kt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

Kp(t)(xi | y, x1, . . . , xi−1)− ℓ ·O(log t)− e(N), (Chain Rule for cKt)

where p is some polynomial that is the same for any number ℓ of strings x1, . . . , xℓ, y is any string,
t is a sufficiently large polynomial time bound in the total string length N + |y| for N =

∑ℓ
i=1 |xi|,

and e(N) is an error term.
Note that the interesting setting of parameters for this Chain Rule is when ℓ is super-constant

(for example, ℓ = o(N/ log t)). For super-constant ℓ, unlike in the time-unbounded case of K, SoI for
Kt (the chain rule for two strings) does not seem to imply the multi-string chain rule by induction
on ℓ. 2 Thus, in the time-bounded setting, the multi-string Chain Rule appears to be more powerful
than SoI.

This, potentially more powerful, version of the chain rule for conditional Kt is our main subject
of study. For this chain rule, we do get an exact complexity characterization, as we explain next.

1.1 Results

Chain rule for conditional Kt. First we need to define the problem Gapτ,o(n)McKtP. This is a
promise-problem for conditional Kt(x | y), where one needs to distinguish between inputs (x, y, 1s)
with Kt(x | y) ≤ s and those with Kτ(t)(x | y) > s+ o(|x|), for some polynomial τ .

Theorem 1.1 (Case of conditional Kt, informal). Chain Rule for conditional Kt with multiple
strings, with error e(N) ≤ o(N), is equivalent to the conjunction

E ̸⊂ io-SIZE[2o(n)] & Gapτ,o(n)McKtP ∈ promise-P.

The problem Gapτ,o(n)McKtP is likely to be NP-hard. For example, [HIR23] show that this prob-
lem is NP-hard under randomized polynomial-time reductions, assuming the existence of subexpo-
nentially secure witness encryption3 for NP.

If we suppose that Gapτ,o(n)McKtP is indeed NP-hard, our equivalence in Theorem 1.1 would
simplify to the following: “Chain Rule for conditional Kt with multiple strings, with error e(N) ≤
o(N), is equivalent to P = NP”. This would show that disproving the Chain Rule for Kt is also
necessary for proving P ̸= NP, validating Kolmogorov’s intuition to the fullest!

2The reason is a polynomial blowup in the time bounds for Kt on the right-hand side of SoI after each inductive
step, resulting in super-polynomial in t time bounds on the right-hand side of the resulting chain rule when ℓ is
super-constant.

3We note that secure witness encryption for NP, introduced in [Gar+13], may exist in either the world where there
are one-way functions, or the world where P = NP.
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Chain rule for conditional pKt. In our equivalence for the chain rule for Kt above, we have a
derandomization assumption of exponential circuit complexity for a problem in exponential time.
This circuit lower bound assumption may be dropped if we consider a probabilistic variant of time-
bounded Kolmogorov complexity pKt instead of Kt. This probabilistic measure can be defined as
follows: pKt(x | y) ≤ s if Kt(x | y, r) ≤ s for at least 2/3 of uniformly random strings r ∈ {0, 1}t.

We need the problem Gapτ,o(n)McpKtP, which is a promise problem for conditional pKt(x | y),
defined analogously to Gapτ,o(n)McKtP above.

Theorem 1.2 (Case of conditional pKt, informal). Chain Rule for conditional pKt with multiple
strings, with error e(N) ≤ o(N), is equivalent to Gapτ,o(n)McpKtP ∈ promise-BPP.

Theorems 1.1 and 1.2 (and related ones) are formally stated and proved in Section 6.

The complexity of computing pKt. While it is likely that the problem Gapτ,o(n)McpKtP con-
sidered above may be NP-hard, we do not have any proof yet. A natural approach to exploring the
computational power of a problem is to assume that it is easy and see if any interesting algorithmic
consequences would follow. In that spirit, we show the following.

Theorem 1.3 (Consequences of easiness of GapMcpKtP, informal). If, for some polynomial τ ,
Gapτ,o(n)McpKtP ∈ promise-P, then

1. E ̸⊂ io-SIZE[2o(n)], and

2. there is a deterministic polynomial-time algorithm for a version of Range Avoidance, where
one is given a circuit C : {0, 1}n → {0, 1}2n, and needs to find a y ∈ {0, 1}2n such that
C(x) ̸= y for all x ∈ {0, 1}n.

Recall that deciding if pKt(x | y) ≤ s is equivalent to deciding if

Pr
r∈{0,1}t

[
Kt(x | r, y) ≤ s

]
≥ 2/3. (3)

We consider a variant of this problem where (i) the input x is very short, |x| ≤ log t, and (ii) we
just need to approximate the probability in (3) up to an additive error 1/8. It is not hard to see
that under these two restrictions, the resulting problem to approximate Prr∈{0,1}t

[
Kt(x | r, y) ≤ s

]
is in promise-BPP. (For any such short x, we can compute Kt(x | r, y) in deterministic poly(t)
time by brute force. By randomly sampling enough r’s, we can approximate the required proba-
bility in randomized time poly(t).) It turns out that this problem is promise-BPP-complete (under
polynomial-time Turing reductions).

Theorem 1.4 (promise-BPP-complete problem). The problem to estimate, for given x, y ∈ {0, 1}∗
and s, t ∈ N such that |x| ≤ log t, the probability

Pr
r∈{0,1}t

[
Kt(x | r, y) ≤ s

]
,

to within an additive error at most 1/8, is promise-BPP-complete.

The proof of Theorem 1.4 also yields a simple alternative proof of the recent result by [LPT24]
showing that if one could derandomize Yao’s “distinguisher-to-predictor” transformation, then
promise-BPP = promise-P.

Theorems 1.3 and 1.4 are formally stated and proved in Section 7.
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1.2 Techniques

To prove Theorems 1.1 and 1.2, we use the concept of a natural property for (conditional) Kt. A
natural property for conditional Kt on n-bit strings with usefulness s(n, t) is a predicate P such
that: for all x ∈ {0, 1}n and y ∈ {0, 1}∗, if Kt(x | y) ≤ s(n, t), then P(x, y, 1t) = 1; and for all
y ∈ {0, 1}∗, P(x, y, 1t) = 0 for at least 1/2 of uniformly random x ∈ {0, 1}n. Thus, in a certain
sense, a natural property distinguishes s(n, t)-easy n-bit strings (given y) from uniformly random
ones. A natural property for conditional pKt is defined analogously.

We first show that a chain rule for conditional pKt (conditional Kt) is equivalent to the existence
of an efficiently computable natural property for conditional Kt (and, in the case of the chain rule
for conditional Kt, also the derandomization assumption that E ̸⊂ io-SIZE[2o(n)]).

We then give “worst-case to average-case reductions” showing that computing a natural property
for conditional Kt is equivalent to computing a corresponding gap version of McpKtP (or, McKtP,
under the assumption that E ̸⊂ io-SIZE[2o(n)]). This implies the equivalence between chain rules
and the worst-case complexity of the corresponding gap problems for McpKtP (McKtP).

We give more details next.

Chain Rule from Natural Property. Here we sketch a proof that a natural property for
conditional Kt implies a chain rule for conditional pKt; the case of the chain rule for conditional Kt

is proved similarly (using the derandomization assumption that E ̸⊂ io-SIZE[2o(n)]).
While a natural property for conditional Kt is sufficient for all our purposes, let us assume for

simplicity that we have a natural property for conditional pKt. Using the fact that pKt(x | y) ≤ s
is equivalent to Kt(x | y, r) ≤ s for at least 2/3 of random r’s, we can adapt the argument sketched
below to work with a natural property for conditional Kt instead; see Section 3 for details.

The proof of the Chain Rule for conditional pKt from a natural property for conditional pKt is a
generalization of the proof argument from [Hir22; GK22; Gol+22]. It uses tools from pseudorandom-
ness (e.g., a hybrid argument) as well as the list-decoding algorithm for Hadamard codes of [GL89].
The latter is used to define the Hadamard Code Direct Product Generator DPx

k : {0, 1}nk → {0, 1}k
[Hir21]. For z = (z1, . . . , zk) with each zi ∈ {0, 1}n, we define

DPx
k(z) = ⟨z1, x⟩ . . . ⟨zk, x⟩,

where ⟨zi, x⟩ denotes the inner product of zi and x modulo 2.
It can be shown that DPx

k “encodes” any given string x ∈ {0, 1}n into a distribution over k-bit
strings (over all seeds z) with the following property: if this distribution can be distinguished from
the uniform distribution by some efficient algorithm (distinguisher) D (with possibly some advice
α ∈ {0, 1}∗), then pKt(x | α) ⪅ k. It follows that if we set k to be just slightly less than pKt(x | α),
then DPx

k will be a pseudorandom generator.
To prove the conditional pKt Chain Rule for strings x1, . . . , xℓ, y, we consider the concatenation

of ℓ generators
DPx1

k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ)

on independent seeds z1, . . . , zℓ, where each ki ≈ pKt′(xi | y, x1, . . . , xi−1), for some t′ = poly(t).
By a hybrid argument, this choice of ki’s ensures that the concatenation of ℓ generators is a
pseudorandom generator against efficient distinguishers with advice y. This means that a natural
property for pKt(− | y) is fooled by the generator. It follows that, for some choice of the seeds
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z1, . . . , zℓ, we have by the usefulness of the natural property that

pKt(DPx1
k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ) | y, z1, . . . , zℓ) ⪆

ℓ∑
i=1

ki

≈
ℓ∑

i=1

pKt′(xi | y, x1, . . . , xi−1).

On the other hand, for every choice of seeds z1, . . . , zℓ we have by the definition of DPx
k that

pKt(DPx1
k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ) | y, z1, . . . , zℓ) ⪅ pKt(x1, . . . , xℓ | y, z1, . . . , zℓ)

≤ pKt(x1, . . . , xℓ | y)

Combining the two inequalities above, we conclude the required Chain Rule:

pKt(x1, . . . , xℓ | y) ⪆
ℓ∑

i=1

pKt′(xi | y, x1, . . . , xi−1).

Natural Property from Chain Rule. To derive a natural property for conditional pKt from
the Chain Rule for conditional pKt, we proceed as follows. Given strings x, y, partition x ∈ {0, 1}n
into ℓ = n/(c log t) strings x1, . . . , xℓ of length c log t each. If pKt(x | y) ≤ s(n), for some s(n) < n,
then by the Chain Rule, so is the sum of conditional Kolmogorov complexities

ℓ∑
i=1

pKpoly(t)(xi | y, x1, . . . , xi−1),

where for simplicity of the presentation we ignore some additive error terms. Hence, by averaging,
there is at least one 1 ≤ i ≤ ℓ such that

pKpoly(t)(xi | y, x1, . . . , xi−1) ≤ s(n)/ℓ. (4)

Since each xi is of length O(log t), we can approximate the conditional time-bounded Kolmogorov
complexity of xi in Eq. (4) in randomized time poly(n, t).

The resulting randomized algorithm will accept (with high probability) all “easy” strings x.
By a counting argument, we can also show that this algorithm is likely to reject at least 1/2 of
uniformly random strings x. Thus we get a natural property for pKt, which is computable by a
randomized polynomial-time algorithm. See Section 4 for details.

Natural Property for Conditional Kt vs. GapMcKtP. Using the idea of the “worst-case
to average-case” reduction of [Hir18], combined with the use of DP generators as in [Hir20b;
Hir20a], we can show an equivalence between the existence of an efficiently computable natural
property for conditional Kt (with usefulness n − o(n)) and the existence of an efficient algorithm
for solving Gapτ,o(n)McKtP, for some polynomial τ (under the circuit lower bound assumption that

E ̸⊂ io-SIZE[2o(n)]). Such an equivalence allows us to relate the chain rules to the existence of
efficient algorithms for solving GapMcKtP, yielding Theorem 1.1. (A similar argument yields also
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Theorem 1.2, without using the circuit lower bound assumption.) We sketch the main idea next;
see Section 2.4 for details.

The main idea used in the proof that a natural property implies a chain rule (sketched above)
is that a given string x can be compressed to about k bits if the DP generator DPx

k can be broken
by some poly(t)-time distinguisher.

Since the conditional Kt complexity of the output of the generator DPx
k(z) (given a seed z and

an auxiliary string y) is always at most Kt(x | y), a natural property for conditional Kt (with
usefulness at least Kt(x | y)) will always accept the outputs DPx

k(z), for all z and y, no matter what
k is.

In the other direction, if this natural property accepts DPx
k(z), given z and y, with high proba-

bility (say, at least 0.6) over random z, then it distinguishes the outputs of DPx
k(z) from the uniform

distribution (because a natural property accepts at most 1/2 of random strings). Thus it breaks
the generator DPx

k. It follows that K
poly(t)(x | y) ≤ k.

These arguments can be used to imply that, for k ≈ s, estimating the acceptance probability
of the natural property on (DPx

k(z), y), over random z, allows one to distinguish between pairs of
strings (x, y) with Kt(x | y) ≤ s and those with Kpoly(t)(x | y) ≫ s: the former pairs of strings will
be accepted with probability 1, while the latter ones with probability at most 0.6.

Incompresible Strings from Chain Rules. Chain Rule for Kt implies an efficient algorithm to
construct, for any n, t ∈ N, for n ≤ t ≤ 2o(n), an incompressible string z ∈ {0, 1}n with Kt(z) ≥ n/2,
in time poly(n, t).

To find the required incompressible z ∈ {0, 1}n, for given n, t ∈ N, proceed as follows.

Set t′ = p(t), for the polynomial p from the Chain Rule for Kt. For a constant c > 0 to
be determined, set m = c log t and ℓ = n/m. Find, one after the other, by brute force,
strings w1, w2, . . . , wℓ ∈ {0, 1}m so that, for each 1 ≤ i ≤ ℓ, Kt′(wi | w1, . . . , wi−1) ≥ m.
Output z = w1w2 . . . wℓ ∈ {0, 1}n.

For the analysis, observe that such strings w1, . . . , wℓ exist by a counting argument, and each
can be found by brute force in time 2O(m) · poly(t′) ≤ poly(t). By the Chain Rule for Kt,

Kt(z1, . . . , zℓ) ≥ ℓ ·m− ℓ ·O(log t) = (n/c log t) · (c log t−O(log t)),

which is at least n/2, for a sufficiently large constant c > 0. Hence z = w1 . . . wℓ is the required
incompressible string, and it is constructed in time ℓ · poly(t) ≤ poly(n, t).

The constructed incompressible string z (for large enough polynomial t) can be shown to require
large circuit size as well. Thus we get that a chain rule for conditional Kt also yields the circuit
lower bound E ̸⊂ io-SIZE[2o(n)], completing the proof of the forward direction of Theorem 1.1. See
Section 5 for details.

Similar reasoning also proves Item (1) of Theorem 1.3. The idea is that the assumption of
Theorem 1.3 yields a chain rule for conditional pKt, by Theorem 1.2. The latter can be used
to construct an incompressible string, relative to the conditional pKt complexity measure, piece
by piece, as we constructed the string z = w1 . . . wℓ above. Here, when constructing each wi of
high conditional pKt complexity, we use an assumed deterministic polynomial-time algorithm B for
GapMcpKtP to choose the lexicographically first log-length string rejected by B.

The proof of Item (2) of Theorem 1.3 also follows since there is a close connection (in fact,
equivalence) between solving the Range Avoidance problem and efficiently constructing a string x
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of near-maximum conditional Kolmogorov complexity. The idea is that every string x ∈ {0, 1}m in
the range of a given circuit C : {0, 1}n → {0, 1}2n has Kt(x | C) ≤ n < 2n, for some t = poly(|C|).
Thus any string z ∈ {0, 1}2n with Kt(z | C) ≈ 2n will be a solution to the Range Avoidance problem
for the circuit C. See Section 7.4 for details.

Promise-BPP completeness. To prove Theorem 1.4, consider the generator

Gx1,...,xn(z) := DPx1
1 (z) ◦ · · · ◦ DPxn

1 (z),

where each xi ∈ {0, 1}m for m = c log n for some large constant c > 1, and also z ∈ {0, 1}m. That
is, we use the same seed z for all n DP generators, with each generator DPxi

1 (z) outputting just
one bit (the inner product modulo 2 of z and xi). So Gx1,...,xn(z) outputs n bits, using a seed z of
c log n bits. We will explain how to choose the strings x1, . . . , xn to make this generator “good”.

We want to use this Gx1,...,xn(z) to approximate the acceptance probability of any given circuit
C : {0, 1}n → {0, 1}, to within an additive error 1/8. This approximation problem is known to be
promise-BPP-complete.

Suppose that Gx1,...,xn(z) fails to approximate the acceptance probability of some C : {0, 1}n →
{0, 1} to within additive error 1/8. Then this circuit C is a distinguisher between Gx1,...,xn(z) and
the uniform distribution over {0, 1}n. Using an argument similar to that in the “Chain Rule from
Natural Property” paragraph above, we can show that for some 1 ≤ i ≤ n,

pKpoly(|C|)(xi | C, x1, . . . , xi−1) < c′ log n,

for some constant c′ > 1, independent of the constant c.
It follows that if we are able to select x1, . . . , xn so that, for each 1 ≤ i ≤ n,

pKpoly(|C|)(xi | C, x1, . . . , xi−1) > c′ log n,

the resulting generator Gx1,...,xn(z) will “fool” this circuit C. (Such generators fooling a specific
given circuit C are called targeted generators by [Gol11].)

Since pKt(x | w) ≤ s iff Kt(x | w, r) ≤ s for at least 2/3 of random r’s, we can show that access
to an oracle that approximates the probability

Pr
r∈{0,1}t

[
Kt(x | w, r) ≤ s

]
allows us to construct the required strings x1, . . . , xn, one by one, by trying, for each 1 ≤ i ≤ n,
all possible candidate strings for xi in {0, 1}m. See Section 7.1 and Section 7.2 for more de-
tails. For the proof that derandomizing Yao’s “distinguisher-to-predictor” construction would imply
promise-BPP = promise-P, see Section 7.3.

1.3 Related Work

SoI for Time-Bounded Kolmogorov Complexity. Some of the first formal connections be-
tween SoI for Kt and computational complexity and cryptography were discovered in the 1990s. It
was shown that SoI for Kt implies that there are no one-way functions [LM93; LW95], and that SoI
for Kt is implied by the assumption P = NP [LW95].

The gap between the necessary and sufficient conditions for SoI for Kt has been narrowed
recently. Hirahara [Hir22] and, independently, Goldberg and Kabanets [GK22] improved the result
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of [LW95] to show that SoI for Kt is implied by DistNP ⊆ AvgP, an average-case (errorless) version
of the assumption that NP = P. The argument was extended by [Gol+22] to the case of SoI for
pKt, under the assumption that DistNP ⊆ AvgBPP.

Thus, SoI for Kt is sandwiched between two average-case assumptions: that any one-way func-
tion candidate can be efficiently inverted on average, and that NP is easy on average. Hira-
hara [Hir22] makes further progress toward closing the gap. He shows that, assuming E requires
exponential-size circuits, SoI for Kt is sandwiched between the assumptions that there exists an
errorless average-case heuristic scheme and that there exists an error-prone average-case heuristic
scheme, both for computing Kt. Still, exact complexity-theoretic characterization of SoI for Kt is
missing.

Lee and Romashchenko [LR05] proved that SoI for Kt implies that EXP ̸= BPP. Perifel [Per07]
showed that a certain version of SoI for conditional Kt implies that EXP ̸⊂ P/poly. The latter paper
seems to be the first to study the Chain Rule hypothesis for conditional Kt, showing how to derive
a weak version of the Chain Rule for Kt from a variant SoI hypothesis for Kt.

Unconditionally, Ronneburger [Ron04] proved that SoI does not hold for Levin’s version of the
time-bounded Kolmogorov complexity measure Kt.

Recently, SoI for Kt has been an important tool for, among others, worst-case to average-case
reductions for problems in the polynomial-time hierarchy, computational learning, meta-complexity,
and cryptography [Hir20b; Hir21; HN21; Hir22; GK22; CHV22; Gol+22; Hir+23; Ila23].

For the probabilistic version of time-bounded Kolmogorov complexity pKt, [Hir+23] shows that
a certain average-case version of SoI for pKt (over polynomial-time samplable distributions) is
equivalent to the non-existence of one-way functions. Note that this result is also an equivalence
between a variant of SoI and a complexity (cryptography) assumption. The difference from the
equivalences proved in our paper, in particular, our Theorem 1.2, is that we consider the worst-case
version of a chain rule (“multi-string version of SoI”) for conditional pKt, and show it is equivalent
to the worst-case complexity assumption about approximating conditional pKt.

Complexity of computing Time-Bounded Kolmogorov Complexity measures. Hira-
hara [Hir18] shows worst-case to average-case reduction for GapMINKT. For the conditional Kol-
mogorov complexity Kt(x | y), the corresponding minimization problem McKtP is known to be
NP-hard (under randomized reductions) in the sublinear time-bound regime when t ≪ |y| [Hir22;
LP22b]; a sublinear-time version of computing conditional pKt(x | y) is also NP-hard [LS24]. The
problem McKtP is shown to be NP-hard also for t ≥ |y|, but only under the additional cryptographic
assumption of the existence of secure witness encryption [HIR23]. Hirahara [Hir20b] shows that
conditional Kt,SAT (where the decoding Turing machine also has oracle access to SAT) is NP-hard
to compute. For a random oracle O, the oracle version MKt,OP is also known to be NP-hard [Ila23];
see [Ila23] and the references therein for more information about the ongoing quest to prove NP-
hardness of various meta-complexity problems such as MCSP (Minimum Circuit Size Problem) and
MKtP (Minimum Kt complexity Problem).

While the worst-case complexity of MKtP is yet unknown, its average-case complexity (in the
error-prone setting of average-case complexity) has been characterized by Liu and Pass [LP20] who
showed that MKtP is hard on average if and only if one-way functions exist; this equivalence was
later extended also to the case of McKtP [LP22b]. More equivalences between one-way functions
and meta-complexity are given in [IRS22; Hir23; LS24].
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Natural properties. The concept of a natural property for circuit complexity was introduced
by Razborov and Rudich [RR97] in the context of trying to understand the limitations of current
proof techniques for showing strong circuit lower bounds. Roughly, a natural property for circuit
size S(n) is a predicate on inputs of size N = 2n that accepts all truth tables of n-input Boolean
functions of circuit complexity at most S(n) (all “easy” strings), and rejects at least 1/2 of random
N -bit strings; the first condition (of accepting “easy” strings) is called usefulness. It was shown in
[RR97] that an efficiently computable natural property (of appropriate usefulness) yields an efficient
algorithm for inverting well on average any given candidate one-way function, and so the existence
of one-way functions would imply the non-existence of efficiently computable natural properties.

The concept became highly influential, and inspired a lot of research on circuit complexity,
derandomization, computational learning, proof complexity, and meta-complexity, to name just a
few. For instance, in the context of computational learning, the power of natural properties was
explored in [Car+16; Car+17; OS17; Bin+22; Kar24]; in [GK23], stronger learning results were
obtained from the natural properties for time-bounded Kolmogorov complexity such as Kt and
KT. Natural properties were shown to imply various circuit lower bounds in, e.g., [KC00; IKW02;
IKV23]. In [Hir+24], an assumed natural property for Kt and the additional assumption that
E ̸⊂ io-SIZE[2o(n)], give efficient average-case algorithms for finding programs of size Kt(x) that
generate x within time t (i.e., Kt witnesses), for strings x coming from any efficiently samplable
distribution.

Range Avoidance Problem. The Range Avoidance Problem is related to the dual weak pi-
geonhole principle studied in the context of bounded arithmetic and propositional proof complex-
ity [Kra01; Kra04; Jer04; Jeř07]. Motivated to identify natural search problems in the polynomial-
time hierarchy, [Kle+21] studied the Range Avoidance Problem, for the case of circuits C : {0, 1}n →
{0, 1}m with m ≥ n+ 1, under the name 1-Empty. Korten [Kor21] showed that a polynomial-time
algorithm for the Range Avoidance Problem would imply polynomial-time constructions for many
important combinatorial objects (e.g., Ramsey graphs, extractors, rigid matrices, etc.). The Range
Avoidance Problem for restricted circuit classes (and for different stretch regimes) was studied
by [RSW22; GLW22; Gaj+23]. It is shown in [ILW23] that, under certain cryptographic assump-
tions, a polynomial-time algorithm for the Range Avoidance Problem (even for a polynomial stretch
regime) would imply that NP = coNP; this result provides some evidence that the Range Avoidance
problem may be intractable.

2 Preliminaries

2.1 Kolmogorov Complexity

Let U be a Turing machine. For t ∈ N and x, y ∈ {0, 1}∗, we define t-time-bounded Kolmogorov
complexity of x given y (with respect to U) as

Kt
U (x | y) = min

p∈{0,1}∗

{
|p| | U(p, y) outputs x in at most t steps

}
.

We assume that the string y is given on a separate input tape. As usual, we fix U to be a time-
optimal machine [LV19], i.e., a universal machine that is almost as fast and length efficient as
any other universal machine, and drop the index U when referring to time-bounded Kolmogorov
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complexity measures. We use K(x | y) to denote the (time-unbounded) Kolmogorov complexity of
x given y. When y = ϵ (i.e., y is the empty string), we drop the conditioning on y, getting the
definition of the (time-bounded) Kolmogorov complexity of x.

Next we recall the definitions of the randomized time-bounded Kolmogorov complexity pKt; see
[LO22] for more information on randomized time-bounded Kolmogorov complexity variants and
their applications.

For λ ∈ [0, 1] and t ∈ N, we define t-time-bounded probabilistic Kolmogorov complexity of x
given y as

pKt
λ(x | y) = min

{
k | Prr∼{0,1}t [∃p ∈ {0, 1}k, U(p, r, y) outputs x in at most t steps] ≥ λ

}
.

Equivalently, pKt
λ(x | y) ≤ s if and only if

Pr
r∈{0,1}t

[
Kt(x | r, y) ≤ s

]
≥ λ.

We assume that the random string r is given on a separate input tape. For simplicity, we omit λ
when λ = 2/3.

Lemma 2.1 (Probabilistic Incompressibility [Gol+22]). For any string y ∈ {0, 1}∗, time bound
t ∈ N (including t = ∞), 0 < λ ≤ 1, and k ∈ N, we have

Prx∈{0,1}n
[
pKt

λ(x | y) ≤ n− k
]
≤ (2/λ)

2k
.

2.2 Generators

Let Un denote the uniform distribution over n-bit strings. For a generator G : {0, 1}ℓ → {0, 1}n, a
(randomized) algorithm D : {0, 1}n → {0, 1}, and 0 < ε ≤ 1, we say that D ε-distinguishes G(Uℓ)
from Un if ∣∣∣Prz∈{0,1}ℓ,D[D(G(z)) = 1]−Pry∈{0,1}n,D[D(y) = 1]

∣∣∣ ≥ ε.

Otherwise, we say that the generator G ε-fools D. We call a generator G an ε-pseudorandom
generator (PRG) for a class C of Boolean functions, if G ε-fools every D ∈ C.

Theorem 2.2 ([NW94; IW97]). Assume E ̸⊂ io-SIZE[2o(n)]. Then, for any size parameter s(n) and
error ε, there is an explicit construction of a generator G : {0, 1}ℓ → {0, 1}n that is an ε-PRG for
the class of n-input Boolean circuits of size at most s(n), with the seed length ℓ ≤ O(log(s(n)/ε)),
that can be evaluated on any given seed in time poly(s(n)/ε).

Definition 2.3 (Hadamard Direct Product Generator (DP) [Hir21]). For k, n ∈ N and any given
x ∈ {0, 1}n, we define the k-wise direct product of the Hadamard encoding of x to be the generator

DPx
k : {0, 1}nk → {0, 1}k

such that
DPx

k(z1, . . . , zk) := (x · z1, . . . , x · zk),

where each zi ∈ {0, 1}n, for 1 ≤ i ≤ k, and x · z denotes the inner product of x and z modulo 2.
We define the strong version of the DP Generator as

s-DPx
k : {0, 1}nk → {0, 1}nk+k
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where s-DPx
k(z1, . . . , zk) = z1, . . . , zk,DP

x
k(z1, . . . , zk).

4

Lemma 2.4 (Kt Reconstruction [Hir21]). Assume E ̸⊆ io-SIZE[2o(n)]. For ε > 0, x ∈ {0, 1}n, and
k ∈ N satisfying k ≤ 2n, let D be a randomized algorithm that takes an advice string β and runs in
time tD such that D ε-distinguishes s-DPx

k(Unk) from Unk+k. Then there is a polynomial pDP such
that

KpDP(ntD/ε)(x | β) ≤ k + log pDP(ntD/ε).

Lemma 2.5 (pKt Reconstruction [Gol+22]). For ε > 0, x ∈ {0, 1}n, and k ∈ N satisfying k ≤ 2n,
let D be a randomized algorithm that takes an advice string β and runs in time tD such that D
ε-distinguishes s-DPx

k(Unk) from Unk+k. Then there is a polynomial pDP such that

pKÕ(tD)·pDP(n/ε)(x | β) ≤ k +O(log(n/ε)).

Remark 2.6. An extra dependence on tD in the Kolmogorov description size of x in Lemma 2.4 is
due to the derandomization of a distingsuisher D and the Goldreich-Levin list-decoding algorithm
for Hadamard codes [GL89], using the PRG from Theorem 2.2; some seeds of this generator, of
size O(log(ntD/ε)), are added to the Kolmogorov description of x.

2.3 Natural Properties

We recall the definition of a natural property for circuit size. For a truth table x ∈ {0, 1}N , for
N = 2n, we denote by size(x) the size of a smallest Boolean circuit that computes the n-input
Boolean function with the truth table x.

Definition 2.7 (Natural Property for Circuit Size [RR97]). A natural property for circuit size for
truth tables of length N = 2n with usefulness s(N) < N is a predicate R : {0, 1}N → {0, 1} such
that

1. for all x ∈ {0, 1}N , if size(x) ≤ s(N), then R(x) = 1, and

2. Prx∈{0,1}N [R(x) = 0] ≥ 1/2.

Such a natural property is called BPP-computable if there is a randomized polynomial-time
algorithm A such that

1. for all x ∈ {0, 1}N , if size(x) ≤ s(N), then PrA[A(x) = 1] ≥ 0.9, and

2. Prx∈{0,1}N [PrA[A(x) = 0] ≥ 0.9] ≥ 1/2.

We need the following result of [IKV23]. We use a common definition of the class BPP with
advice, where we say that L ∈ BPP/a(n), for some advice size a(n) for input length n, if there
is a probabilistic polynomial-time Turing machine M such that, for inputs x of length n and
for some good advice α ∈ {0, 1}a(n), M(x, α) either accepts or rejects every given x ∈ {0, 1}n
with probability at least 2/3 over its internal randomness. Note that there is no such acceptance
probability guarantee for any different advice string α′ ̸= α.

4In [Hir21], the output of the DP generator was defined to also include the seed z1, . . . , zk. We call that version
of the DP generator a strong DP Generator.
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Theorem 2.8 ([IKV23]). Let R be a natural property for circuit size for truth tables of length
N = 2n with usefulness s(N) ≥ N ε, for some 0 < ε < 1. Then

1. ZPEXPR ̸⊂ P/poly, and

2. ZPPR/1 ̸⊂ SIZE[nk] and promise-ZPPR ̸⊂ SIZE[nk] for all k ∈ N.

Replacing a natural property oracle R with an efficient randomized version, we immediately
get from Theorem 2.8 the following.

Corollary 2.9 (implicit in [IKV23]). Suppose there is a BPP-computable natural property for
circuit size for truth tables of length N = 2n with usefulness s(N) ≥ N ε, for some 0 < ε < 1. Then

1. BPEXP ̸⊂ P/poly, and

2. BPP/1 ̸⊂ SIZE[nk] and promise-BPP ̸⊂ SIZE[nk] for all k ∈ N.

Proof. A natural oracle R is only used as a distinguisher between a distribution over “easy” strings
and the uniform distribution. A BPP-computable natural property gives rise to a randomized such
distinguisher, which is not required to satisfy the BPP-promise (of rejecting or accepting with high
probability) on all inputs. The base ZPEXP algorithm will run a randomized algorithm for a BPP-
computable natural property to simulate its oracle access to R, becoming a BPEXP algorithm in
item (1), and a BPP/1 or promise-BPP algorithm in item (2).

We define a natural property for Kt by analogy with the natural property for circuit size above.

Definition 2.10 (Natural Property for Kt). A P-computable natural property for Kt on n-bit
inputs, with usefulness s(n, t), for some s(n, t) < n, is a polynomial-time algorithm A satisfying
the following: For some polynomial p, we have for all sufficiently large n ∈ N and t ≥ p(n) that

1. for all x ∈ {0, 1}n, if Kt(x) ≤ s(n, t), then A(x, 1t) = 1, and

2. Prx∈{0,1}n
[
A(x, 1t) = 0

]
≥ 1/2.

Such a natural property is said to be BPP-computable if there is a randomized polynomial-time
algorithm A such that, for some polynomial p, we have for all large n ∈ N and t ≥ p(n) that

1. for all x ∈ {0, 1}n, if Kt(x) ≤ s(n, t), then PrA[A(x, 1t) = 1] ≥ 0.9, and

2. Prx∈{0,1}n
[
PrA[A(x, 1t) = 0] ≥ 0.9

]
≥ 1/2.

We also define a natural property for conditional Kt as follows.

Definition 2.11 (Natural Property for Conditional Kt). A natural property for conditional Kt on
n-bit strings with usefulness s(n, t) is a predicate P : {0, 1}∗ × {0, 1}∗ × 1∗ → {0, 1} satisfying the
following: For some polynomial p, we have for all large n,m ∈ N and t ≥ p(n+m) that

1. for all x ∈ {0, 1}n and y ∈ {0, 1}m, if Kt(x | y) ≤ s(n, t), then P(x, y, 1t) = 1, and

2. for all y ∈ {0, 1}m, Prx∈{0,1}n [P(x, y, 1t) = 0] ≥ 1/2.

A BPP-computable natural property for conditional Kt is defined similarly to that for Kt above.

Below we consider natural properties with usefulness n− δ(n, t), for monotone non-decreasing
functions δ : N × N → N. When δ(n, t) depends only on one of its inputs, we omit the mention of
the other input, and think of δ as a function on one input only.
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2.4 Approximating Time-Bounded Kolmogorov Complexity

MKtP (also denoted as MINKT) is the problem to determine if Kt(x) ≤ s, for given positive integers
t and s. We recall the definition of the gap version of MKtP.

Definition 2.12 ([Ko91; Hir20a]). For a polynomial τ and a function δ : N×N → N, Gapτ,δMKtP
is the following promise problem:

Πyes = {(x, 1s, 1t) | Kt(x) ≤ s},
Πno = {(x, 1s, 1t) | Kτ(t)(x) > s+ δ(|x|, t)}.

Next we consider the Minimum Conditional Time-Bounded Kolmogorov Complexity Problem,
denoted McKtP, where

McKtP = {(x, y, 1s, 1t) | Kt(x | y) ≤ s}.

Definition 2.13. For a polynomial τ and a function δ : N × N → N, define Gapτ,δMcKtP as the
following promise problem:

Πyes = {(x, y, 1s, 1t) | Kt(x | y) ≤ s},
Πno = {(x, y, 1s, 1t) | Kτ(t)(x | y) > s+ δ(|x|, t)}.

Lemma 2.14. Gapτ,δMcKtP ∈ promise-P iff there is a polynomial-time algorithm K̃ such that, for
all x ∈ {0, 1}n and y ∈ {0, 1}m and every large enough integer t,

Kτ(t)(x | y)− δ(n, t) ≤ K̃(x, y, 1t) ≤ Kt(x | y). (5)

Proof. In the forward direction, define K̃(x, y, 1t) to be the smallest integer 0 ≤ s ≤ 2|x| such
that the assumed polynomial-time algorithm for promise-Gapτ,δMcKtP outputs “yes” on input
(x, y, 1s, 1t). Since for this s, we have (x, y, 1s, 1t) ̸∈ Πno, we conclude the required lower bound on
K̃(x, y, 1t) in (5). For the required upper bound on K̃(x, y, 1t) in (5), observe that we will get a
“yes” for some s ≤ Kt(x | y), because we definitely get a “yes” when s = Kt(x | y).

In the reverse direction, define an algorithm for Gapτ,δMcKtP as follows: “On input (x, y, 1s, 1t),

accept iff K̃(x, y, 1t) ≤ s.” By the definition of K̃, this algorithm will accept all instances in Πyes,
and reject all instances in Πno.

A natural property for conditional Kt is closely related to GapMcKtP.

Lemma 2.15. If, for some polynomial τ and a function δ : N → N, Gapτ,δMcKtP ∈ promise-P, then
there is a P-computable natural property for conditional Kt(x | y) on n-bit strings x with usefulness
s(n, t) = n− δ(n, t)− 2.

Proof. Let K be a polynomial-time algorithm for Gapτ,δMcKtP. For s(n, t) = n− δ(n, t)− 2, define

an algorithm A as follows: “On input (x, y, 1t), accept iff K(x, y, 1s(|x|,t), 1t) accepts.”
For correctness, observe that all x ∈ {0, 1}n and y ∈ {0, 1}m with Kt(x | y) ≤ s(n, t) are

accepted because (x, y, 1s(|x|,t), 1t) ∈ Πyes. For every y, we have by counting that, for at least 1/2
of random x ∈ {0, 1}n, K(x | y) > n − 2. Hence, for these random x, Kτ(t)(x | y) ≥ K(x | y) >
n− 2 = s(n, t) + δ(n, t), and so (x, y, 1s(|x|,t), 1t) ∈ Πno.
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Lemma 2.16. Assume that E ̸⊂ io-SIZE[2o(n)]. If there is a P-computable natural property for
conditional Kt(x | y) on n-bit strings x with usefulness s(n, t) = n−δ(n, t), then for some polynomial
τ , we have Gapτ,δ′McKtP ∈ promise-P, where δ′(n, t) = δ(2n, 2t) +O(log(nt)).

Proof. For this “worst-case to average-case” reduction, we rely on the ideas from [Hir18; Hir20a;
Hir20b]. Let A(x, y, 1t) be a polynomial-time p(n, t) algorithm for the assumed natural property
for Kt(x | y) for n-bit strings x. For given x ∈ {0, 1}n and y ∈ {0, 1}m, consider the generator

DPx
k : {0, 1}nk → {0, 1}k

from Definition 2.3, for some 0 ≤ k ≤ 2n to be determined. We have, for any t larger than some
polynomial in n, and for any seed z ∈ {0, 1}nk, that

K2t(DPx
k(z) | z, y) ≤ Kt(x | y) + c log n, (6)

for some constant c > 0. For any given σ ∈ N, if Kt(x | y) ≤ σ, then for k = σ + c log n+ δ(2n, 2t),
we have by (6) that

K2t(DPx
k(z) | z, y) ≤ σ + c log n

≤ k − δ(k, 2t)

= s(k, 2t).

So, A(DPx
k(z), z ◦ y, 12t) accepts with probability 1 over z ∈ {0, 1}nk (by the definition of a natural

property with usefulness s(k, 2t)).
On the other hand, for every y and z, A(w, z ◦y, 12t) rejects at least 1/2 of random w ∈ {0, 1}k.

Hence, A(w, z ◦ y, 12t) rejects with probability at least 1/2 over uniformly random independent
w ∈ {0, 1}k and z ∈ {0, 1}nk.

If it were the case that A(DPx
k(z), z◦y, 12t) accepts with probability at least 0.6 over z ∈ {0, 1}nk,

then A(−, y, 12t) would be a (0.1)-distinguisher between s-DPx
k and Unk+k. Hence, by Lemma 2.4,

we would get that

Kp(t)(x | y) ≤ k +O(log(nt))

= σ + c log n+ δ(2n, 2t) +O(log(nt))

= σ + δ(2n, 2t) +O(log(nt))

= σ + δ′(n, t),

for some polynomial p. This means that (x, y, 1σ, 1t) is not in Πno of Gapτ,δ′McKtP for τ = p. In
other words, for every instance (x, y, 1σ, 1t) in Πno of Gapτ,δ′McKtP, A(DPx

k(z), z ◦ y, 12t) accepts

with probability less than 0.6 over random z ∈ {0, 1}nk.
We conclude that the following algorithm correctly solves Gapτ,δ′McKtP:

On input (x, y, 1σ, 1t), set k = σ + c log n + δ(2n, 2t). Estimate, to within an additive
error 0.1, the probability over z ∈ {0, 1}nk that A(DPx

k(z), z ◦ y, 12t) accepts. If the
estimated probability is at least 0.9, then accept; otherwise, reject.

Using the PRG of Theorem 2.2, we can make the algorithm above run in deterministic polyno-
mial time, which concludes the proof.
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Combining Lemma 2.15 and Lemma 2.16, we immediately get the following.

Corollary 2.17. Assume E ̸⊂ io-SIZE[2o(n)]. The following are equivalent:

• For any C > 1, there is a polynomial τ such that Gapτ,δMcKtP ∈ promise-P, for δ(n, t) ≤ n/C.

• For any D > 1, there is a P-computable natural property for conditional Kt(x | y) on n-bit
strings x with usefulness s(n, t) = n− n/D.

We can similarly define the gap version of the minimum conditional pKt measure, Gapτ,δMcpKtP.

Definition 2.18. For a polynomial τ and a function δ : N × N → N, define Gapτ,δMcpKtP as the
following promise problem:

Πyes = {(x, y, 1s, 1t) | pKt(x | y) ≤ s},
Πno = {(x, y, 1s, 1t) | pKτ(t)(x | y) > s+ δ(|x|, t)}.

We get the following.

Corollary 2.19. The following are equivalent:

• For any C > 1, there is a polynomial τ such that Gapτ,δMcpKtP ∈ promise-BPP, for δ(n, t) ≤
n/C.

• For any constant D > 1, there is a BPP-computable natural property for conditional Kt(x | y)
on n-bit strings x with usefulness s(n, t) = n− n/D.

Proof sketch. By similar arguments, we can prove analogs of Lemma 2.15 and Lemma 2.16 for the
case of Gapτ,δMcpKtP and BPP-computable natural properties for conditional Kt. For the analog

of Lemma 2.16, we do not assume E ̸⊂ io-SIZE[2o(n)], and use Lemma 2.5.

2.5 Range Avoidance

Definition 2.20 (Avoid). The Range Avoidance Problem [Kle+21; Kor21] is the following search
problem: Given a circuit C : {0, 1}n → {0, 1}m, for some m > n, find a string z ∈ {0, 1}m such that,
for all x ∈ {0, 1}n, C(x) ̸= z. Let Avoid be the Range Avoidance problem for circuits C : {0, 1}n →
{0, 1}m with m > (1 + ε)n for some (arbitrarily small) constant ε > 0 (e.g., think m > (1.01) · n).

Remark 2.21. The complexity of the Range Avoidance Problem appears to be sensitive to the
assumed stretch of circuits C : {0, 1}n → {0, 1}m. [Kle+21; Kor21] considered the version with
m ≥ n+ 1, and showed that m = n+ 1 and m = 2n are equivalent under PNP-reductions. Such an
equivalence is not known under P-reductions. A similar issue arises also in the context of bounded
arithmetic where one seems to need different variants of the dual weak pigeonhole principle axiom
for different systems of randomized polynomial-time reasoning (cf. [Jeř07]). In the present paper,
we only consider the version of Range Avoidance with at least linear stretch.

For every y ∈ {C(x) | x ∈ {0, 1}n}, we can reconstruct y if we know some pre-image x ∈ {0, 1}n
such that C(x) = y. Therefore, Kt(y | C) ≤ n, for t = p(|C|), where p is the polynomial bound
on the time required to evaluate a given circuit C on a given input. Hence, to solve Avoid for a
given circuit C, it suffices to find a string of high conditional Kolmogorov complexity Kt(− | C).
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In fact, as observed in [RSW22], the two tasks are polynomial-time equivalent: one can solve Avoid
in polynomial time iff one can find “incompressible” strings for conditional Kt.5

Actually, finding a string of high conditional pKt complexity allows us to solve a natural gener-
alization of the Range Avoidance problem, which we term Collective Range Avoidance (CRA).

Definition 2.22 (Collective Range Avoidance (CRA)). The 1/3-Collective Range Avoidance (CRA)
problem is the following search problem: Given a circuit C : {0, 1}ℓ × {0, 1}n → {0, 1}m for m >
(1+ ε)n for some constant ε > 0, find a string z ∈ {0, 1}m such that, for at least 1/3 of strings r ∈
{0, 1}ℓ, the string z is not in the range of the circuit Cr : {0, 1}n → {0, 1}m where Cr(x) = C(r, x).

Note that the usual Range Avoidance problem is a special case of the CRA problem defined
above when ℓ = 0.

Consider any string y ∈ {0, 1}m that is in the range of at least 2/3 of circuits Cr : {0, 1}n →
{0, 1}m, over uniformly random r ∈ {0, 1}ℓ. Then, with probability at least 2/3 over r ∈ {0, 1}ℓ,
there is a string xr ∈ {0, 1}n such that C(r, xr) = y. This implies that pKt(y | C) ≤ n, for some
t = poly(|C|) (the time needed to evaluate the circuit C on a given input). Thus, to solve 1/3-CRA
problem for a given circuit C : {0, 1}ℓ × {0, 1}n → {0, 1}m, it suffices to find a string z ∈ {0, 1}m
with pKt(z | C) > n, for some polynomial t = poly(|C|).

For completeness, we state the following observation; the proof similar to the one in [RSW22]
for the case of unary Range Avoidance.

Lemma 2.23. The search problem (1/3)-CRA is in polynomial time if and only if, for every constant
0 < γ < 1, there is a polynomial-time algorithm that, given 1m, 1t, and y ∈ {0, 1}ℓ, finds a string
z ∈ {0, 1}m with pKt(z | y) ≥ (1− γ) ·m.

Proof. In the forward direction, given 1m, 1t, y ∈ {0, 1}ℓ, and 0 < γ < 1, set n = ⌈α · m⌉, for
some constant 0 < α < 1 to be determined, define a circuit Cy : {0, 1}t × {0, 1}n → {0, 1}m, which
simulates the following Turing machine:

On inputs r ∈ {0, 1}t and x ∈ {0, 1}n, decompose x = uv where |u| = log n. Let 0 ≤
d < n be the integer encoded by the binary string u. Let w be the last min{d, n− log n}
bits of x. Run the universal Turing machine U(w, r, y) for at most t steps, and output
the binary string it outputs, padded or trimmed to be exactly of length m.

Note that Cy is of size poly(n, ℓ, t). Applying an assumed polynomial-time algorithm for 1/3-CRA
to Cy, we get a string z ∈ {0, 1}m such that, for all sufficiently large m ∈ N,

pKt(z | y) > n− log n

≥ α ·m− logm

≥ (1− γ) ·m,

if we set α = 1− (γ/2).
In the reverse direction, For a given circuit C : {0, 1}ℓ × {0, 1}n → {0, 1}m, with m > (1 + ε)n

for some constant ε > 0, consider any string z ∈ {0, 1}m with

pKt(z | C) ≥ (1− ν)m,

5Actually, [RSW22] observes this equivalence for the case of unary Avoid and Kt, but it immediately generalizes
to the case of Avoid and conditional Kt.
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where t = p(|C|) for some polynomial p, and ν = ε/(1 + ε). By our choice of parameters, we get
that pKt(z | C) > n. Hence, by our earlier observation, the string z is a solution to 1/3-CRA, and
by our assumption, such a z can be found in polynomial time.

3 Chain Rules from Natural Properties

3.1 Case of Kt

Theorem 3.1 (Chain Rule for Kt). Suppose that

• E ̸⊂ io-SIZE[2o(n)], and

• there is a P-computable natural property A(w, 1t) for Kt on n-bit inputs w with usefulness
s(n, t) = n− δ(n, t).

Then there exist constants c0, c1 ∈ N such that, for all sufficiently large x1, . . . , xℓ ∈ {0, 1}∗ of
lengths n1, . . . , nℓ, respectively, for any ℓ ∈ N, and for every t ≥ N c0, where N =

∑ℓ
i=1 ni, we have

Kt(x1, . . . , xℓ) ≥
ℓ∑

i=1

Ktc1 (xi | x1, . . . , xi−1)− ℓ ·O(log t)− δ(2(N + n2
0), 2t), (7)

where n0 = max{ni | 1 ≤ i ≤ ℓ}.

Proof. We will apply a DP generator to each of the ℓ strings x1, . . . , xℓ, with the parameters
ki ≈ Kpoly(t)(xi | x1, . . . , xi−1) to be determined. We will use the same seed for each of these ℓ
generators.

Note that each xi of length ni ≤ n0 has Kolmogorov complexity at most ni + O(1) ≤ 2n0. So
it suffices to have a common DP seed z of length at most maxi{kini} ≤ 2n2

0. Each of the ℓ DP
generators will use a prefix of the same z of the length required by the particular DP generator’s
parameters ni and ki. We provide more details next.

For z ∈ {0, 1}2n2
0 , and for k1, . . . , kℓ ≥ 0 to be determined, consider the following generator

G(z) := z ◦ DPx1
k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ),

where each zi is the prefix of z of length ni · ki, for all 1 ≤ i ≤ ℓ.
Note that the total output length of G is

M := |z|+
ℓ∑

i=1

ki ≤ |z|+ 2N = 2(n2
0 +N),

since each ki ≤ 2ni.
First, we show how to choose the parameters ki, 1 ≤ i ≤ ℓ to make G a (1/4)-pseudorandom

generator against time τ(2(n2
0 + N), 2t)-time uniform algorithms, where τ(n, t) is the polynomial

runtime of the assumed natural property A for Kt on n-bit strings.
We will use a hybrid argument. Suppose there is a τ(2(n2

0+N), 2t)-time distinguisherD between
the uniform distribution and the output of the generator G, with a distinguishing probability at
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least 1/4. Define hybrid distributions D0, . . . ,Dℓ so that, for each 0 ≤ i ≤ ℓ, and the uniform
distribution Z over {0, 1}2n2

0 ,

Di := Z ◦ DPx1
k1
(Z1) ◦ · · · ◦ DPxi

ki
(Zi) ◦ Uki+1

◦ · · · ◦ Ukℓ ,

where each Zi is the prefix of Z of length kini.
By assumption, D is a (1/4)-distinguisher between D0 and Dℓ. By a hybrid argument, there

must exist an index 1 ≤ i ≤ ℓ such that D is a (1/(4ℓ))-distinguisher between Di−1 and Di. Note
that D can be used to define a randomized distinguisher D′ between s-DPxi

ki
(zi), for zi ∈ U|zi|, and

U|zi|+ki , given as advice x1, . . . , xi−1:

The distinguisher D′ on inputs zi and w ∈ {0, 1}ki , will sample a uniformly random
string α ∈ {0, 1}2n2

0−|zi| to define z = zi ◦ α of length 2n2
0, which will be placed in the

position of Z in Di. The string w will be placed in the ith DP position of Di. Then
D′ will use its advice and randomness to sample from the hybrid distribution Di in
the remaining positions. Finally, D′ will simulate D on the resulting tuple of strings,
accepting iff D accepts.

The runtime of the randomized distinguisher D′ is that of D plus O(M), which is O(τ(2(n2
0 +

N), 2t)). By Lemma 2.4 we get that, for a sufficiently large c0 such that t ≥ N c0 , and for q(t) =
pDP(poly(t)),

Kq(t)(xi | x1, . . . , xi−1) ≤ ki + log q(t). (8)

Set
ki = max{0,Kq(t)(xi | x1, . . . , xi−1)− log q(t)− 1} (9)

so that the inequality in (8) cannot hold. (Note that if ki = 0, then Di−1 and Di are identical,
and hence indistinguishable by any algorithm D.) It follows that for these ki’s, the generator G is
1/4-pseudorandom against τ(2(n2

0 +N), 2t)-time uniform algorithms.
Set s := M−δ(M, 2t). By the definition of a natural property, A(−, 12t) rejects with probability

at least 1/2 on the uniform distribution D0. Hence, by the (1/4)-pseudorandomness of G, A(−, 12t)
rejects with probability at least 1/2− 1/4 = 1/4 on the outputs of G.

By averaging, there exists a string z ∈ {0, 1}2n2
0 such that

A(z ◦ DPx1
k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ), 1

2t) = 0,

where, as before, each zi is the prefix of z of length kini. By the definition of a natural property
(and recalling the definition of s = M − δ(M, 2t)), we get that

K2t
(
z ◦ DPx1

k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ)

)
> s =

ℓ∑
i=1

ki + |z| − δ(M, 2t). (10)

On the other hand, for every seed z ∈ {0, 1}2n2
0 , we have

K2t
(
z ◦ DPx1

k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ)

)
≤ Kt(x1, . . . , xℓ) + |z|+ c · ℓ · log(N/ℓ), (11)

where the last term is to take into account encoding of all ni’s and ki’s, which can be done using
at most c ·

∑ℓ
i=1 log ni bits, for some constant c > 0; using the AM-GM inequality, we have∑ℓ

i=1 log ni ≤ ℓ · log(N/ℓ).
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Combining (10) and (11), and recalling the definition of ki’s in (9), we get that

Kt(x1, . . . , xℓ) + |z|+ c · ℓ · log(N/ℓ)

≥
ℓ∑

i=1

(
Kq(t)(xi | x1, . . . , xi−1)− log q(t)− 1

)
+ |z| − δ(M, 2t),

which implies the required lower bound in (7).

Remark 3.2. If we assume a natural property with δ(2(n2
0 +N), 2t) ≤ ℓ ·O(log t) in Theorem 3.1,

then we get an optimal chain rule statement for ℓ strings with an overall additive error ℓ ·O(log t).

3.2 Case of Conditional Kt

Here we generalize Theorem 3.1 to the case of conditional Kt complexity, by using a natural property
for conditional Kt. Note that we get slightly better error parameters for the conditional Chain Rule
below compared to the unconditional Chain Rule of Theorem 3.1.

Theorem 3.3 (Conditional Chain Rule for Kt). Suppose that

• E ̸⊂ io-SIZE[2o(n)], and

• there is a P-computable natural property A(w, z, 1t) for conditional Kt on n-bit inputs w,
conditioned on z ∈ {0, 1}∗, with usefulness s(n, t) = n− δ(n, t).

Then there exist constants c0, c1 ∈ N such that for all sufficiently large y, x1, . . . , xℓ ∈ {0, 1}∗, for
any ℓ ∈ N, and for every t ≥ M c0, where M = |y|+

∑ℓ
i=1 |xi|, we have

Kt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

Ktc1 (xi | y, x1, . . . , xi−1)− ℓ ·O(log t)− δ(2N, 2t), (12)

where N =
∑ℓ

i=1 |xi|.

Proof. The proof is similar to that of Theorem 3.1, with conditioning on y added and some mod-
ifications. The main difference is that we can afford to use independent seeds for different DP
generators now because we can “hide” all these seeds in the conditioned string of the assumed
natural property A for conditional Kt. This allows us to make the error of the Chain Rule for
conditional Kt to be δ(2N, 2t), independent of the maximum length of the strings x1, . . . , xℓ (in
contrast to Theorem 3.1). We provide the details next.

For given strings x1, . . . , xℓ of lengths n1, . . . , nℓ, respectively, for a string y of length m, and
for the parameters k1, . . . , kℓ to be determined, we consider the following generator

G(z1, . . . , zℓ) = DPx1
k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ),

where |zi| = ni · ki. Note that the output of this generator G is

M :=

ℓ∑
i=1

ki ≤ 2N,
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since each ki ≤ 2ni.
For every given sequence of seeds z1, . . . , zℓ, we have

K2t
(
DPx1

k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ) | y, z1, . . . , zℓ

)
≤ Kt(x1, . . . , xℓ | y) + c · ℓ · log(N/ℓ), (13)

where the term c · ℓ · log(N/ℓ) accounts for the encoding of the input lengths n1, . . . , nℓ.
We argue that, for uniformly random zi’s, G(z1, . . . , zℓ) is (1/4)-pseudorandom with respect to

the distinguisher A(−, y ◦ z1 ◦ · · · ◦ zℓ, 12t). Consider the hybrid distributions

Di = DPx1
k1
(Z1) ◦ · · · ◦ DPxi

ki
(Zi) ◦ Uki+1

◦ · · · ◦ Ukℓ ◦ y ◦ Z1 ◦ · · · ◦ Zℓ,

for independent uniform distributions Z1, . . . , Zℓ over strings of lengths n1k1, . . . , nℓkℓ, respectively.
Suppose that A(−, 12t) is a (1/4)-distinguisher between D0 and Dℓ. By a hybrid argument, there
must exist some 1 ≤ i ≤ ℓ such that A(−, 12t) is a (1/(4ℓ))-distinguisher between Di−1 and Di.

We can use this fact to get a randomized distinguisher D that, given advice y, x1, . . . , xi−1, will
(1/(4ℓ))-distinguish between s-DPxi

ki
(Ukini

) and Ukini+ki . The distinguisher D is as follows:

The distinguisher D, on input zi ∈ {0, 1}niki and wi ∈ {0, 1}ki , will randomly sample
strings zj , for 1 ≤ j ≤ ℓ with j ̸= i, will compute (using its advice x1, . . . , xi−1) the
strings DPx1

k1
(z1), . . . ,DP

xi−1

ki−1
(zi−1), and will simulate

A(DPx1
k1
(z1), . . . ,DP

xi−1

ki−1
(zi−1), wi,Uki+1

, . . . ,Ukℓ , y, z1, . . . , zℓ, 1
2t),

accepting iff A accepts.

By Lemma 2.4 we get that, for a sufficiently large c0 such that t ≥ M c0 , and for q(t) =
pDP(poly(t)),

Kq(t)(xi | y, x1, . . . , xi−1) ≤ ki + log q(t). (14)

Set
ki = max{0,Kq(t)(xi | y, x1, . . . , xi−1)− log q(t)− 1} (15)

so that the inequality in (14) cannot hold. (Note that if ki = 0, then Di−1 and Di are identical,
and hence indistinguishable by any algorithm.) We get for these kis that

A(G(z1, . . . , zℓ), y ◦ z1 ◦ · · · ◦ zℓ, 12t) = 0

with probability at least 1/2−1/4 = 1/4, since A(w, z, 1t), as a natural property for conditional Kt,
must reject at least 1/2 of random inputs w. By averaging over zi’s and by the usefulness property
of A, we get for some z1, . . . , zℓ that

K2t(G(z1, . . . , zℓ) | y, z1, . . . , zℓ) ≥ M − δ(M, 2t)

≥
ℓ∑

i=1

ki − δ(2N, 2t).

Combining this inequality with (13) and (15) above, we get the claimed chain rule.
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3.3 Case of Conditional pKt

Here we prove that a chain rule for conditional probabilistic Kolmogorov complexity pKt follows
from a BPP-computable natural property for conditional Kt. The difference from Theorem 3.3
above is that (1) no circuit lower bound for E (derandomization assumption) is needed, and (2) a
natural property for conditional Kt can be BPP-computable (rather than P-computable).6

Theorem 3.4 (Chain Rule for Conditional pKt). Suppose that there is a BPP-computable natural
property A for conditional Kt on n-bit inputs with usefulness s(n, t) = n− δ(n, t). Then there exist
constants c0, c1 ∈ N such that for all sufficiently large x1, . . . , xℓ ∈ {0, 1}∗, for any ℓ ∈ N, or every
y ∈ {0, 1}∗, and for every t ≥ (N + |y|)c0, where N =

∑ℓ
i=1 |xi|, we have

pKt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

pKtc1 (xi | y, x1, . . . , xi−1)− ℓ ·O(logN)− δ(2N, 2t). (16)

Proof. The proof is similar to that of Theorem 3.3. Let ni = |xi|, for all 1 ≤ i ≤ ℓ. For k1, . . . , kℓ
to be determined, consider the concatenation of ℓ generators

DPx1
k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ),

where |zi| = ni · ki for all 1 ≤ i ≤ ℓ. Note that the total output length of this concatenation of DP
generators is

M :=
ℓ∑

i=1

ki ≤ 2N,

assuming that each ki ≤ 2ni.
For every given sequence of seeds z1, . . . , zℓ, we have

pK2t
(
DPx1

k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ) | y, z1, . . . , zℓ

)
≤ pKt(x1, . . . , xℓ | y) +O(ℓ · log(N/ℓ)) =: σ.

By the definition of pKt, this means that, for at least 2/3 of random strings r ∈ {0, 1}2t,

K2t
(
DPx1

k1
(z1) ◦ · · · ◦ DPxℓ

kℓ
(zℓ) | r, y, z1, . . . , zℓ

)
≤ σ. (17)

Set s = M − δ(M, 2t). By the definition of a BPP-computable natural property for conditional
Kt with usefulness s, we have for every sequence of z1, . . . , zℓ, every r, and every y that A(−, 12t)
rejects on the distribution

Uk1 ◦ · · · ◦ Ukℓ ◦ r ◦ y ◦ z1 ◦ · · · ◦ zℓ,

with probability at least (1/2) · 0.9 = 0.45 (where the probability is over both the distribution of
uniformly random inputs and the internal randomness of A). Hence, it rejects with probabilty at
least 0.45 on the distribution

Uk1 ◦ · · · ◦ Ukℓ ◦R ◦ y ◦ Z1 ◦ · · · ◦ Zℓ,

6Assuming a BPP-computable natural property for Kt, rather than conditional Kt, one can get a chain rule for pKt,
albeit with worse error parameters. Since these error parameters are insufficient for getting an equivalence between
the chain rule and a natural property, we do not state this result here.
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where R is the uniform disribution over strings of length |r|, and each Zi is uniform over strings of
length |zi| (independend of all other distributions).

Next we will argue that σ > s. Towards a contradition, suppose that σ ≤ s. Then, by (17), we
have that A(−, 12t) accepts with probability at least 0.9 · (2/3) = 0.6 on the distribution

DPx1
k1
(Z1) ◦ · · · ◦ DPxℓ

kℓ
(Zℓ) ◦R ◦ y ◦ Z1 ◦ · · · ◦ Zℓ,

where the probability is both over the input distribution and the internal randomness of A.
Define hybrid distributions D0, . . . ,Dℓ so that, for each 0 ≤ i ≤ ℓ,

Di := DPx1
k1
(Z1) ◦ · · · ◦ DPxi

ki
(Zi) ◦ Uki+1

◦ · · · ◦ Ukℓ ◦R ◦ y ◦ Z1 ◦ · · · ◦ Zℓ.

Since A(−, 12t) distinguishes between D0 and Dℓ with the distinguishing probability at least
0.6− 0.55 = 0.05, we get by the hybrid argument that, for some 1 ≤ i ≤ ℓ, A(−, 12t) distinguishes
between Di−1 and Di with the distinguishing probability at least 0.05/ℓ. By Lemma 2.5 we get
that, for a sufficiently large c0 such that t ≥ N c0 , and for q(t) = pDP(poly(t)),

pKq(t)(xi | y, x1, . . . , xi−1) ≤ ki +O(logN). (18)

Set
ki = max{0, pKq(t)(xi | y, x1, . . . , xi−1)−O(logN)− 1} (19)

for all 1 ≤ i ≤ ℓ, so that (18) cannot hold. Therefore, for this setting of ki’s, we conclude that
σ > s. This means that, by the definitions of σ, s, and ki’s,

σ = pKt(x1, . . . , xℓ | y) +O(ℓ · log(N/ℓ))

> s

= M − δ(M, 2t)

=
ℓ∑

i=1

ki − δ(M, 2t)

≥
ℓ∑

i=1

(
pKq(t)(xi | y, x1, . . . , xi−1)−O(logN)− 1

)
− δ(2N, 2t),

which implies the required inequality (16).

4 Natural Properties from Chain Rules

4.1 Case of Kt and Conditional Kt

Theorem 4.1. Assume that, for every constant C > 1, the Chain Rule for Kt as in Eq. (7) of
Theorem 3.1 holds for δ(N, t) ≤ N/C. Then, for every constant D ≥ 1, there is a P-computable
natural property A for Kt on n-bit inputs with usefulness s(n, t) = n− n/D.

Proof. Given x ∈ {0, 1}n, partition x into 1 ≤ ℓ ≤ n strings x1, . . . , xℓ of length n/ℓ each, for some
ℓ = n/(c log t), for a constant c > 0 to be chosen later. Note that

K2t(x1, . . . , xℓ) ≤ Kt(x) +O(log n).
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On the other hand, by the assumed Chain Rule, we have, for sufficiently large t ≥ poly(n), that

K2t(x1, . . . , xℓ) ≥
ℓ∑

i=1

Kpoly(t)(xi | x1, . . . , xi−1)− ℓ ·O(log t)− δ(2((n/ℓ)2 + n), 2t).

Assume that Kt(x) ≤ s(n, t). Then

ℓ∑
i=1

Kpoly(t)(xi | x1, . . . , xi−1) ≤ s(n, t) + ℓ ·O(log t) + δ(2((n/ℓ)2 + n), 2t).

Hence, by averaging, there is some 1 ≤ i ≤ ℓ such that

Kpoly(t)(xi | x1, . . . , xi−1) ≤
(
s(n, t) + ℓ ·O(log t) + δ(2((n/ℓ)2 + n), 2t)

)
/ℓ =: S. (20)

Note that, by brute force, for each 1 ≤ i ≤ ℓ, we can compute Kpoly(t)(xi | x1, . . . , xi−1) in time
2n/ℓ · poly(t), which is at most poly(t) for ℓ = n/(c log t), for a constant c > 0 to be determined.
Consider the following decision algorithm A:

On input x ∈ {0, 1}n and 1t, output 1 iff there is some 1 ≤ i ≤ ℓ such that Eq. (20) is
satisfied.

Clearly, A is a polynomial-time algorithm. It accepts every string x ∈ {0, 1}n with Kt(x) ≤ s(n, t).
We need to argue that A will reject at least 1/2 of random input strings z ∈ {0, 1}n, for an
appropriately chosen s(n, t).

Suppose that s(n, t) is such that

S ≤ (n/ℓ)− 2 log ℓ, (21)

for S defined in (20). By a simple counting argument, we have, for any fixed string w,

Pry∈{0,1}n/ℓ [K(y | w) ≤ (n/ℓ)− 2 log ℓ] ≤ 2/ℓ2.

Imagine picking a uniformly random z ∈ {0, 1}n in stages, where we first pick z1 ∈ {0, 1}n/ℓ, then
z2 ∈ {0, 1}n/ℓ, and so on until zℓ ∈ {0, 1}n/ℓ, and finally output z = z1 ◦ z2 ◦ · · · ◦ zℓ. By the union
bound, the probability that at least one of z1, . . . , zℓ ∈ {0, 1}n/ℓ has

K(zi | z1, . . . , zi−1) ≤ (n/ℓ)− 2 log ℓ

is at most ℓ · (2/ℓ2) ≤ 2/ℓ. It follows that for s(n, t) satisfying (21) above, we have

Prz∈{0,1}n [A(z, 1t) = 1] ≤ 2/ℓ,

which is at most 1/2 for ℓ ≥ 4.
It remains to see which values s(n, t) will satisfy (21). We get that s(n, t) must satisfy the

following:
s(n, t) ≤ n− 2ℓ · log ℓ− ℓ ·O(log t)− δ(2((n/ℓ)2 + n), 2t).
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We will set s(n, t) equal to the expression above. Recalling that ℓ = n/(c log t), we get for any
given constant d > 0 (by choosing c a large enough constant) that

s(n, t) = n− (2n log ℓ)/(c log t)− n ·O(log t)/(c log t)− δ(2((n/ℓ)2 + n), 2t)

≥ n− n/d− δ(3n, 2t)

≥ n− n/d− (3n)/C

= n− n/D,

for C = 3d and d = 2D. The theorem follows.

Theorem 4.2. Assume that, for every constant C > 1, the Chain Rule for conditional Kt as in
Eq. (12) of Theorem 3.3 holds for δ(N, t) ≤ N/C. Then, for every constant D ≥ 1, there is a
P-computable natural property A(x, y, 1t) for conditonal Kt on n-bit inputs x, conditioned on y,
with usefulness s(n, t) = n− n/D.

Proof. The proof is analogous to that of Theorem 4.1 above, with a given string y added as a
conditioned string everywhere in the proof.

4.2 Case of Conditional pKt

Theorem 4.3. Assume that, for every constant C > 1, the Chain Rule for conditional pKt as in
Eq. (16) of Theorem 3.4 holds for δ(N, t) ≤ N/C. Then, for every constant D ≥ 1, there is a BPP-
computable natural property A for conditional Kt on n-bit inputs with usefulness s(n, t) = n−n/D.

Proof. The proof is similar to that of Theorem 4.1, appropriately adapted to the case of conditional
pKt. Given x ∈ {0, 1}n, partition x into 1 ≤ ℓ ≤ n strings x1, . . . , xℓ of length n/ℓ each, for some ℓ
to be chosen later. Note that, for every y ∈ {0, 1}∗,

pK2t(x1, . . . , xℓ | y) ≤ pKt(x | y) +O(log n).

On the other hand, by the assumed Chain Rule, we have, for sufficiently large t ≥ poly(n), that

pK2t(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

pKpoly(t)(xi | y, x1, . . . , xi−1)− ℓ ·O(log n)− δ(2n, 2t).

Assume that Kt(x | y) ≤ s(n, t). Then pKt(x | y) ≤ Kt(x | y) ≤ s(n, t), and so

ℓ∑
i=1

pKpoly(t)(xi | y, x1, . . . , xi−1) ≤ s(n, t) + ℓ ·O(log n) + δ(2n, 2t).

Hence, by averaging, there is some 1 ≤ i ≤ ℓ such that

pKpoly(t)(xi | y, x1, . . . , xi−1) ≤ (s(n, t) + ℓ ·O(log n) + δ(2n, 2t)) /ℓ =: S. (22)

By brute force, for each 1 ≤ i ≤ ℓ, we can approximate pKpoly(t)(xi | y, x1, . . . , xi−1) (by random
sampling) in randomized time 2n/ℓ · poly(t), which is at most poly(t) for ℓ = n/(c log t), for some
sufficiently large constant c > 0 to be determined. We provide the details next.

Consider the following randomized decision algorithm A:
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On input x ∈ {0, 1}n, y ∈ {0, 1}∗, and 1t, output 1 iff there is some 1 ≤ i ≤ ℓ such that
Eq. (22) is approximately satisfied. More precisely, output 1 if, for some 1 ≤ i ≤ ℓ, for
each of at least 0.6 fraction of randomly sampled n strings r ∈ {0, 1}t′ , for t′ = poly(t),
there is a string wr ∈ {0, 1}≤S such that U(wr, r, y, x1, . . . , xi−1) outputs xi within t′

steps.

Clearly, A is a randomized polynomial-time algorithm. It accepts every string x ∈ {0, 1}n with
Kt(x | y) ≤ s(n, t), with high probability over its internal randomness (which can be argued by the
Chernoff bounds). We need to argue that, for every y, A(−, y, 1t) will reject at least 1/2 of random
input strings z ∈ {0, 1}n, for an appropriately chosen s(n, t).

Suppose that s(n, t) is such that

S ≤ (n/ℓ)− 2 log ℓ, (23)

for S defined in (22). By Lemma 2.1, we have, for any fixed string w,

Pra∈{0,1}n/ℓ

[
pKt′

0.55(a | w) ≤ (n/ℓ)− 2 log ℓ
]
≤ 4/ℓ2.

Imagine picking a uniformly random z ∈ {0, 1}n in stages, where we first pick z1 ∈ {0, 1}n/ℓ, then
z2 ∈ {0, 1}n/ℓ, and so on until zℓ ∈ {0, 1}n/ℓ, and finally output z = z1 ◦ z2 ◦ · · · ◦ zℓ. By the union
bound, we have with probability at least 1 − 4/ℓ ≥ 1/2 over random z = z1 . . . zℓ ∈ {0, 1}n that,
for every one of z1, . . . , zℓ ∈ {0, 1}n/ℓ, it holds that

pKt′
0.55(zi | y, z1, . . . , zi−1) > (n/ℓ)− 2 log ℓ.

Consider any such z = z1 . . . zℓ ∈ {0, 1}n. For each 1 ≤ i ≤ ℓ, there are fewer than 0.55 fraction
of “good” random strings r ∈ {0, 1}t′ for which there is a description wr ∈ {0, 1}≤S such that
U(wr, r, y, z1, . . . , zi−1) outputs zi within t′ steps. By the Chernoff bounds, algorithm A will see
at least 0.6 fraction of “good” random strings r in its sample of size n with probability at most
2−Ω(n). By the union bound, the probability that A will accept for at least one 1 ≤ i ≤ ℓ is at most
ℓ · 2−Ω(n). Hence, the probability over the internal randomness of A that A(z, y, 1t) = 0 is at least
1− ℓ · 2−Ω(n) ≥ 0.9, for all sufficiently large n.

It remains to see which values s(n, t) will satisfy (23). We get that s(n, t) must satisfy the
following:

s(n, t) ≤ n− 2ℓ · log ℓ− ℓ ·O(log n)− δ(2n, 2t).

Recalling that ℓ = n/(c log t), we set, for any given constant D > 0 (by choosing c large enough),

s(n, t) = n− (2n log ℓ)/(c log t)− n ·O(log n)/(c log t)− δ(2n, 2t)

≥ n− n/(2D)− δ(2n, 2t)

= n− n/(2D)− (2n)/C

≤ n− n/D,

for C = 4D.
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5 Circuit Lower Bounds from Chain Rules

5.1 Case of Kt

Here we get strongly exponential, almost everywhere, circuit lower bounds from a Chain Rule for Kt,
using an idea from [Per07]; see also [All+06] for a similar argument in the setting of time-unbounded
Kolmogorov complexity.7 We will need the following lemma.

Lemma 5.1. Let x ∈ {0, 1}N , for N = 2n, be such that, for for t ≥ N3, we have

Kt(x) ≥ (0.9) ·N. (24)

Then x, viewed as a truth table of an n-variate Boolean function, requires circuit size at least
2n/(c · n), for a sufficiently large constant c ∈ N.

Proof. Suppose towards a contradiction that x can be computed by a circuit of size σ < N/(c · n).
Such a circuit can be described using

σ′ = σ · d · log σ <
N · d · n
c · n

bits, for some constant d ∈ N. We can make σ′ < N/2 by choosing c = 2d. Given the description
of this circuit, one can compute the entire string x bit by bit, by evaluating the circuit on all
possible n-bit inputs. This can be done in time 2n · (σ′)2 ≤ N3. Hence, for t ≥ N3, we have that
Kt(x) < N/2, contradicting (24).

Theorem 5.2. Assume that, for any constant D > 1, the Chain Rule for Kt as in Eq. (7) of
Theorem 3.1 holds for δ(N, t) ≤ N/D. Then

E ̸⊂ io-SIZE[o(2n/n)].

Proof. Let N = 2n, m = c · n for some constant c > 0 to be determined, and ℓ = N/m. Let
N c0 ≤ t = N c1 , for some constant c1 ≥ 3. Let t′ = poly(t) be the polynomial time bound on the
right-hand side of the Chain Rule for Kt.

By a brute-force algorithm, we construct A1 ∈ {0, 1}m so that

Kt′(A1) ≥ m. (25)

Note that by a counting argument, such a string A1 must exist. We find the lexicographically first
such string by enumerating allm-bit strings a ∈ {0, 1}m, and checking for each if some w ∈ {0, 1}≤m

exists such that U(w) outputs a within t′ steps; if yes, we skip over to the next a ∈ {0, 1}m. It
takes time 2O(n) to find A1.

Similarly, given the found string A1, we next find (again by brute force, in time 2O(n)) a string
A2 ∈ {0, 1}m such that

Kt′(A2 | A1) ≥ m.

Such a string must exist by a counting argument. To find it, we proceed similarly to the case of
A1, but now simulating U(w,A1) for t

′ steps.

7More precisely, [All+06] re-prove a result of [Buh+05] that one can efficiently deterministically construct a string
of high Kolmogorov complexity, given oracle access to the set of Kolmogorov-random strings. The proof relies on the
Symmetry of Information for time-unbounded Kolmogorov complexity.
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We continue this way to define A1, A2, . . . , Aℓ so that, for all 1 ≤ i ≤ ℓ,

Kt′(Ai | A1, . . . , Ai−1) ≥ m. (26)

Next, by the assumed Chain Rule, we get from Eq. (26) that

Kt(A1, . . . , Aℓ) ≥
ℓ∑

i=1

Kt′(Ai | A1, . . . , Ai−1)− ℓ ·O(log t)− δ(2(m2 +N), 2t)

≥ ℓ ·m− ℓ ·O(c1n)− 4N/D

=
2n

cn
· (cn−O(c1n)− 4cn/D) . (27)

Choose the constants c and D large enough so that (cn−O(c1n)− 4cn/D) ≥ (0.9) · cn. Then
B = A1 . . . Aℓ ∈ {0, 1}2n requires circuit size Ω(2n/n) by Lemma 5.1.

Finally, observe that each Ai, for 1 ≤ i ≤ ℓ, is computable in time 2O(n). Hence, the truth table
B ∈ {0, 1}2n is computable in time 2O(n). Collecting such B’s over all input lengths n, we get a
language L ∈ E that, almost everywhere, requires circuit size Ω(2n/n).

Remark 5.3. Under the assumption that a variant of the two-string Conditional Chain Rule for
Kt holds, Perifel [Per07] proved that EXP ̸⊂ P/poly. One reason that [Per07] obtained only a
superpolynomial rather than exponential circuit lower bound for EXP is that it used this two-string
Conditional Chain Rule to derive an ℓ-string Chain Rule for Kt, for a super-constant ℓ, suffering
significant blowups in the time bounds for the Kt complexities involved. This precluded the use
of sufficiently large values of ℓ in the derived Chain Rule. In contrast, we start with an optimal
ℓ-string Chain Rule for Kt for an arbitrary ℓ ∈ N, and so we can choose a sufficiently large value
of ℓ to get exponential circuit lower bounds.

5.2 Case of pKt

We get circuit lower bounds for randomized complexity classes from the assumption that a Chain
Rule for pKt holds.

Lemma 5.4. A BPP-computable natural property for Kn3
on n-bit inputs with usefulness s(n) ≥

(0.9) · n yields a BPP-computable natural property for circuit size on truth tables of length N = 2n

with usefulness s(N) ≥ N ε, for some 0 < ε < 1.

Proof. Let A be a BPP-computable natural property for Kn3
on n-bit strings with usefulness s(n) ≥

(0.9) · n. Define A′ : {0, 1}N → {0, 1} as follows:

On input x ∈ {0, 1}N , A′(x) = A(x, 1N
3
).

By definition, A′ is a randomized poly(N)-time algorithm. For at least 1/2 of random strings
w ∈ {0, 1}N , A′(w) rejects with probability at least 0.9 because so does A(w). For x ∈ {0, 1}N
with size(x) ≤ 2(0.9)·n, we get by Lemma 5.1 that KN3

(x) < (0.9) ·N , for all sufficiently large n ∈ N.
Hence, A(x, 1N

3
) accepts such an x with probability at least 0.9, and therefore so does A′(x).

Theorem 5.5. Assume the Chain Rule for conditional pKt as in Eq. (16) of Theorem 3.4, for
δ(n, t) ≤ n/c, for a sufficiently large c > 1. Then
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• BPEXP ̸⊂ P/poly, and,

• BPP/1 ̸⊂ SIZE[nk], and promise-BPP ̸⊂ SIZE[nk] for any fixed k ≥ 1.

Proof. By our assumption and by Theorem 4.3, we get that there is a BPP-computable natural
propertyA for Kn3

on n-bit strings with usefulness s(n) = (0.9)·n. By Lemma 5.4 and Corollary 2.9,
the theorem follows.

6 Proofs of Equivalences for Chain Rules

Here we prove the main equivalences stated in the introduction.

6.1 Case of Kt

Theorem 6.1 (Equivalence for Kt). Consider the following assumptions:

ckt-lb: E ̸⊂ io-SIZE[2o(n)],

prop-Kt: for any constant C > 1, there is a P-computable natural property P for Kt with usefulness
s(n, t) = n− n/C, and

chain-Kt: for any costant D > 1, for some polynomial p, for any ℓ ∈ N, for any x1, . . . , xℓ ∈ {0, 1}∗
with N =

∑ℓ
i=1 |xi| and each |xi| ≤ O(

√
N), and all sufficiently large t (at least polynomial

in N), we have

Kt(x1, . . . , xℓ) ≥
ℓ∑

i=1

Kp(t)(xi | x1, . . . , xi−1)− ℓ ·O(log t)−N/D.

We have that
ckt-lb & prop-Kt ⇔ chain-Kt.

Proof. The direction ckt-lb&prop-Kt ⇒ chain-Kt follows by Theorem 3.1. That chain-Kt ⇒
ckt-lb follows by Theorem 5.2. Finally, the direction chain-Kt ⇒ prop-Kt follows by Theo-
rem 4.1.

6.2 Case of Conditional Kt

Theorem 6.2 (Equivalence for Conditional Kt). Consider the following assumptions:

ckt-lb: E ̸⊂ io-SIZE[2o(n)],

prop-cKt: for any constant C > 1, there is a P-computable natural property P for conditional Kt with
usefulness s(n, t) = n− n/C,

gap-McKtP: for any constant C ′ > 1, there is a polynomial τ such that Gapτ,δ′McKtP ∈ promise-P, where
δ′(n, t) = n/C ′, and
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chain-cKt: for any constant D > 1, for some polynomial p, for any ℓ ∈ N, for any x1, . . . , xℓ ∈ {0, 1}∗
with N =

∑ℓ
i=1 |xi|, and any y ∈ {0, 1}∗, and all sufficiently large t (at least polynomial in

N + |y|), we have

Kt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

Kp(t)(xi | y, x1, . . . , xi−1)− ℓ ·O(log t)−N/D.

We have that

ckt-lb & prop-cKt ⇔ chain-cKt ⇔ ckt-lb & gap-McKtP.

Proof. The direction ckt-lb & prop-cKt ⇒ chain-cKt follows by Theorem 3.3. The direction
chain-cKt ⇒ ckt-lb follows by Theorem 5.2. The direction chain-cKt ⇒ prop-cKt follows by
Theorem 4.2. Finally, the equivalence ckt-lb & prop-cKt ⇔ ckt-lb & gap-McKtP is by
Corollary 2.17.

6.3 Case of Conditional pKt

Theorem 6.3 (Equivalence for Conditional pKt). The following are equivalent:

prop-cKt: For any constant C > 1, there is a BPP-computable natural property P for conditional Kt

with usefulness s(n, t) = n− n/C.

gap-McpKtP: For any constant C ′ > 1, there is a polynomial τ such that Gapτ,δMcpKtP ∈ promise-BPP, for
δ(n, t) ≤ n/C ′.

chain-cpKt: For any constant D > 1, for some polynomial p, for any ℓ ∈ N, for any x1, . . . , xℓ ∈ {0, 1}∗
and any y ∈ {0, 1}∗, and all sufficiently large t (at least polynomial in the total length of all
strings), we have

pKt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

pKp(t)(xi | y, x1, . . . , xi−1)− ℓ ·O(log t)−N/D, (28)

where N =
∑ℓ

i=1 |xi|.

Proof. The direction prop-cKt ⇒ chain-cpKt is by Theorem 3.4. The direction chain-cpKt ⇒
prop-cKt is by Theorem 4.3. The equivalence prop-cKt ⇔ gap-McpKtP is by Corollary 2.19.

6.4 If a Gap-Version of Conditional Kt Were NP-Hard

In [HIR23], it is shown under cryptographic assumptions that a certain gap-version of computing
conditional Kt is NP-hard.

Theorem 6.4 ([HIR23]). Assume subexponentially-secure witness encryption for NP. Then the
following promise-problem is NP-hard under randomized polynomial-time (black-box) reductions:
For x, y ∈ {0, 1}∗, with |x| = n and |y| = poly(n), and some polynomial t, distinguish between

• Πyes = {(x, y) | Kt(n)(x | y) ≤
√
n}, and
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• Πno = {(x, y) | K2n
2

(x | y) ≥ n−O(1)}.

Note that if, for δ(n, t) = n/C, for some large constant c > 1, and for some polynomial τ , it
would be the case that Gapτ,δMcKtP ∈ promise-BPP, then we would be able to solve the promise-
problem from Theorem 6.4 above in promise-BPP as well. Thus, it is plausible that, for any large
c > 1 and any polynomial τ , the problem Gapτ,n/cMcKtPmay in fact be NP-hard (under randomized
polynomial-time reductions). This would dramatically simplify the equivalence for the Chain Rule
for conditional Kt in Theorem 6.2, as we show next.

Theorem 6.5. Suppose that, for any large c > 1 and any polynomial τ , the problem Gapτ,n/cMcKtP
is NP-hard. Then the following are equivalent:

• NP = P, and

• for any constant D > 1, for some polynomial p, for any ℓ ∈ N, for any x1, . . . , xℓ ∈ {0, 1}∗
with N =

∑ℓ
i=1 |xi|, and any y ∈ {0, 1}∗, and all sufficiently large t (at least polynomial in

N + |y|), we have

Kt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

Kp(t)(xi | y, x1, . . . , xi−1)− ℓ ·O(log t)−N/D.

Proof. In the forward direction, NP = P implies E ̸⊂ io-SIZE[2o(n)] [Kan82], as well as a P-
computable natural property for conditional Kt with usefulness s(n, t) = n − o(n). Hence we
can apply Theorem 6.2 to get the Chain Rule for conditional Kt, as required.

In the reverse direction, by Theorem 6.2, we get from the assumed Chain Rule for conditional
Kt, for any constant C ′ > 1 and some polynomial τ , a promise-P algorithm for Gapτ,n/C′McKtP. The
latter problem was assumed to be NP-hard (under randomized reductions). Hence, we conclude
that NP ⊆ BPP. Since the Chain Rule also implies that E ̸⊂ io-SIZE[2o(n)], we get that BPP = P
(by Theorem 2.2).

7 Applications

7.1 Sparse Natural Property for Conditional pKt

Definition 7.1 (Sparse natural property for conditional pKt). A natural property for conditional
pKt with usefulness s(n, t) is a predicate P : {0, 1}∗ × {0, 1}∗ × 1∗ → {0, 1} such that, for some
polynomial p, we have for all large n,m ∈ N and t ≥ p(n,m) that

1. for all x ∈ {0, 1}n and y ∈ {0, 1}m, if pKt(x | y) ≤ s(n, t), then P(x, y, 1t) = 1, and

2. for every y ∈ {0, 1}m, Prx∈{0,1}n
[
P(x, y, 1t) = 0

]
≥ 1/2.

When n ≤ log t, we call such a property sparse.

Lemma 7.2. For every s(n, t) ≤ n−3, a natural property for conditional pKt(x | y), for x ∈ {0, 1}n
and y ∈ {0, 1}m, with usefulness s(n, t) is BPTIME(poly(2n,m, t))-computable. Hence, a sparse
natural property for conditional pKt with usefulness s(n, t) is BPP-computable.
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Proof. For given x, y ∈ {0, 1}∗, take at random strings r1, . . . , rn ∈ {0, 1}t. For each ri, compute
Kt(x | ri, y) by “brute force” in time poly(2|x|, t, |y|). If the fraction of ri’s with Kt(x | ri, y) ≤ s(n, t)
is at least 0.6, then accept; otherwise, reject.

Note that if x and y are such that pKt(x | y) ≤ s(n, t), then the algorithm above accepts with
probability at least 1− 2−Ω(n), by Chernoff bounds.

By Lemma 2.1, for any string y ∈ {0, 1}∗ and any time bound t, the fraction of strings x ∈ {0, 1}n
with pKt

1/2(x | y) ≤ n−3 is at most 1/2. It means that for each of at least 1/2 of strings x ∈ {0, 1}n,
there are at most 1/2 of strings r ∈ {0, 1}t such that Kt(x | r, y) ≤ s(n, t). By Chernoff bounds,
getting a fraction of 0.6 such r’s in a random sample of size n is at most 2−Ω(n). Thus our
randomized algorithm will reject with high probability on each of at least 1/2 of random strings
x ∈ {0, 1}n.

Theorem 7.3. promise-BPP ⊆ promise-PA for any sparse natural property A for conditional pKt

with usefulness s(n, t) ≥ Ω(n). Hence, if for some s(n, t) ≥ Ω(n), there is a P-computable sparse
natural property A for conditional pKt with usefulness s(n, t), then promise-BPP = promise-P.

Proof. For simplicity, assume that we have a P-computable sparse natural property P with useful-
ness s(n, t) ≥ n/2; a similar argument would work for s(n, t) ≥ Ω(n). Under our assumption, we
will show how to solve the canonical promise-BPP complete problem CAPP: given a Boolean circuit
C : {0, 1}n → {0, 1} of size at most n, estimate its acceptance probability Prz∈{0,1}n [C(x) = 1] to
within an additive constant error, say 1/8; see, e.g., [Vad12].

For strings x1, . . . , xn ∈ {0, 1}10 logn to be determined, consider the following generator from
10 log n to n bits: for r ∈ {0, 1}10 logn,

Gx1,...,xn(r) = x1 · r, . . . , xn · r,

where x · y denotes the inner product modulo 2 of binary strings x and y.
Suppose some circuit C : {0, 1}n → {0, 1} (of size at most n) distinguishes between the outputs

Gx1,...,xn(r), for uniformly random seeds r ∈ {0, 1}10 log, and the uniform distribution Un, with the
distinguishing probability at least 1/8. (In other words, the generator G fails to solve CAPP on the
circuit C.) We will argue this implies the following.

Claim 7.4. There exists an 1 ≤ i ≤ n such that

pKt(xi | C, x1, . . . , xi−1) ≤ 4 log n,

for some t ≤ poly(n).

Proof of Claim. This can be deduced from the pKt Reconstruction lemma (Lemma 2.5), but we
will give a self-contained argument, which will be useful for us later.

First, by a hybrid argument (see, e.g., [Vad12]), there must exist an index 1 ≤ i ≤ n such that
C distinguishes between

x1 · r, . . . , xi−1 · r, xi · r,Un−i

and
x1 · r, . . . , xi−1 · r,U1,Un−i,

for a random r ∈ {0, 1}10 logn, with the distinguishing probability at least 1/(8n).
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Next, by Yao’s distinguisher-to-predictor reduction, we get a randomized predictor algorithm
C ′ that on input r computes xi · r with probability at least 1/2 + 1/(8n) over r and its internal
randomness, given (as advice) the bits x1 · r, . . . , xi−1 · r. This C ′(r) samples at random a bit
b ∈ {0, 1} and a string w ∈ {0, 1}n−i, and simulates C(x1 · r, . . . , xi−1 · r, b, w), outputting b if C
accepts, and 1− b if C rejects.

By an averaging argument, with probability at least 1/(16n) over fixing the internal randomness
b, w, we get a deterministic circuit C ′′

b,w(r) that computes xi ·r with probability at least 1/2+1/(16n)
over r, when given as advice x1, . . . , xi−1 (so that it can compute the required bits x1 ·r, . . . , xi−1 ·r).
Call b, w good if C ′′

b,w(r) is correct with probability at least 1/2 + 1/(16n) in computing xi · r.
Next, for given b, w, we build a list of all z ∈ {0, 1}10 logn such that

Pr
r
[C ′′

b,w(r) = z · r] ≥ 1/2 + 1/(16n). (29)

We do so by enumerating all strings z, computing the probability in (29) for each z, and keeping
only those z that satisfy (29). This can be done in deterministic time poly(n), say at most n22. By
the well-known combinatorial bound on the list size of Hadamard error-correcting codes, the size
of such a list of z’s is at most (8n)2.8

For good b, w, such a list of z’s must contain the string xi, which can be identified by its index
on the list. Since the list is of size at most 64n2, such an index is of binary length at most 2 log n+6.

If we repeatedly sample random b, w for 32n rounds, at least one of b, w will be good with
probability at least 1− (1− 1/(16n))32n ≥ 1− e−2 ≥ 2/3. Assuming this happened, the description
of xi will consist of about log n + 5 bits to specify the succefull round, plus 2 log n + 6 bits to
specify xi on the list produced in that round. It follows that pKt(xi | C, x1, . . . , xi−1) ≤ 4 log n, for
t = poly(n), say t ≤ n24.

By the claim, if we have x1, . . . , xn with pKt(xi | C, x1, . . . , xi−1) > 5 log n for all 1 ≤ i ≤ n,
then Gx1,...,xn will fool the circuit C. That is, we get a PRG for a given circuit C, a targeted PRG
in the terminology of [Gol11].

We can find such xi’s one by one, starting with x1, by enumerating over all strings z ∈
{0, 1}10 logn, until we find the first one such that A(z, C ◦ x1 ◦ · · · ◦ xi−1, 1

t) = 0, for t = n24.
By the assumption on the natural property algorithm A, each such z has the required conditional
pKt complexity greater than 5 log n. To find such x1, . . . , xn takes time at most poly(n). It follows
that we can solve CAPP in polynomial time, and so promise-BPP = promise-P.

Finally, observe that to find the required strings x1, . . . , xn, we just need oracle access to the
natural property A. So we get an (adaptive) polynomial-time Turing reduction from CAPP to any
sparse natural property for conditional pKt with usefulness s(n, t) ≥ Ω(n), as required.

Remark 7.5. It is interesting to contrast the result in Theorem 7.3 with the result of [Buh+05]
(see also [All+06]) that BPP ⊆ PK, where K is a natural property for time-unbounded Kolmoogorov
complexity K, with usefulness s(n) ≥ Ω(n). Both results are proved by using the oracle adaptively,
for a polynomial number of steps. The crucial difference is that, in their case, the oracle K is
uncomputable, whereas in our case, a required sparse natural property A is BPP-computable.

8Each such z corresponds to a Fourier coefficient of the Boolean function C′′
b,w(r) of weight at least 1/(8n). By

Parseval’s identity, the sum of the squares of all Fourier coefficients of a given Boolean function is 1. Hence, the
number of “heavy” z’s is at most (8n)2.
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7.2 pKt-Based promise-BPP Complete Problem

The sparse natural property for conditional pKt considered above is not a promise-problem (as it
has no well-defined set of No-instances). We can easily modify it to be a promise-BPP problem as
follows.

Definition 7.6 (Promise-BPP problem for estimating conditional pKt on short inputs). Consider
the following Gap-pKt-problem. For x, y ∈ {0, 1}∗ and t ∈ N, with t = poly(|y|) and |x| ≤ log t, we
have the following Yes and No instances:

• Πyes = {(x, y, 1t) | pKt
2/3(x | y) ≤ |x|/2}

• Πno = {(x, y, 1t) | pKt
1/2(x | y) > |x| − 3}

Theorem 7.7. The Gap-pKt-problem of Definition 7.6 above is promise-BPP-complete (under
polynomial-time Turing reductions).

Proof. That this problem is in promise-BPP was already argued in the proof of Lemma 7.2 above.
The promise-BPP-hardness for this problem follows from Theorem 7.3.

We also get that the following problem to approximate the conditional Kt complexity over
random conditioned strings is promise-BPP-complete.

Corollary 7.8. The problem to estimate, for given x, y ∈ {0, 1}∗ and s, t ∈ N such that |x| ≤ log t,
the following probability

Pr
r∈{0,1}t

[
Kt(x | r, y) ≤ s

]
to within an additive error less than 1/6 is promise-BPP-complete (under polynomial-time Turing
reductions).

Proof. This is immediate by Theorem 7.7 and the definition of pKt
λ.

Remark 7.9. We note that the work by Liu and Pass [LP22a] also studies derandomization of
promise-BPP through the lens of (Levin’s version) of Kolmogorov complexity. Their main result is
that promise-BPP = promise-P iff a certain gap-version of computing conditional Levin’s complexity
Kt(x | y) is almost-everywhere worst-case hard (for almost all strings y ∈ {0, 1}∗) with respect to
probabilistic polynomial-time algorithms. In contrast, we characterize promise-BPP = promise-P in
terms of worst-case easiness (being in promise-P) of a promise-BPP computable version of condi-
tional pKt(x | y) problem (for logarithmically short inputs x).

7.3 On Derandomizing Yao’s Distinguisher-to-Predictor Transformation

Here we observe that Theorem 7.3 can be used to give an alternative proof of (one direction) of
the recent result by Li, Pyne, and Tell [LPT24]. One of their main results is that derandomizing
Yao’s distinguisher-to-predictor transformation (of the kind described in our proof of Theorem 7.3)
is equivalent to proving promise-BPP = promise-P. We will show the following.

Lemma 7.10 ([LPT24]). If Yao’s distinguisher-to-predictor transformation can be made determin-
istic polynomial time, then promise-BPP = promise-P.
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Proof. Given a Boolean circuit C : {0, 1}n → {0, 1} of size n, we will try to fool it with the generator
Gx1....,xn : {0, 1}10 logn → {0, 1}n as in Theorem 7.3. Assuming that C is not fooled by this G, we
follow the proof of Theorem 7.3 to get that, for some 1 ≤ i ≤ n,

Kt(xi | C, x1, . . . , xi−1) ≤ 4 log n,

rather than pKt(xi | C, x1, . . . , xi−1) ≤ 4 log n of Claim 7.4. The reason is that the only randomized
step in the proof of Claim 7.4 was Yao’s distinguisher-to-predictor transformation. Under our
current assumption that this step can be made in deterministic polynomial time, we get a bound
on the deterministic conditional Kt description of string xi.

Thus, to fool C, we just need to find n strings x1, . . . , xn ∈ {0, 1}10 logn such that, for each
1 ≤ i ≤ n,

Kt(xi | C, x1, . . . , xi−1) > 4 log n.

This can be accomplished in deterministic polynomial time, using a brute-force algorithm that, for
each i = 1, . . . , n, looks for the lexicographically first string in {0, 1}10 logn of large conditional Kt

complexity, for t ≤ n24. We conclude that CAPP ∈ promise-P.

7.4 If Conditional pKt Were Easy

As noted earlier in Section 6.4, it is plausible (and true under cryptographic assumptions) that a
gap-version of computing conditional Kt(x | y) might be NP-hard. It is reasonable to assume that a
gap-version of computing conditional pKt(x | y) might also be NP-hard. However, given the lack of
actual proofs of NP-hardness for these problems, we may ask ourselves what interesting algorithmic
consequences would follow if we were to assume the easisess of these problems instead.

Ideally, assuming such easiness, we would like to conclude that SAT is also easy (thereby es-
sentially establishing the NP-hardness of the corresponding gap-problem). We cannot achieve this
yet, but we can show the following.

Theorem 7.11. Suppose that, for δ(n, t) ≤ εn, for any constant ε > 0, there is a polynomial τ
such that Gapτ,δMcpKtP ∈ promise-P. Then we have

1. E ̸⊂ io-SIZE[2o(n)], and

2. (1/3)-CRA ∈ FP.

Proof. We give two proofs. The first one will use the chain rule.
Under our assumption, we get by Corollary 2.19 the existence of a BPP-computable (actually,

P-computable) natural property for conditional Kt(x | y) for x ∈ {0, 1}n with usefulness s(n, t) =
n− γn, for any sufficiently small γ > 0 (dependent on ε).

Next, by Theorem 3.4, we get a chain rule for conditional pKt: for some polynomial p, for
any ℓ ∈ N, for any x1, . . . , xℓ ∈ {0, 1}∗ and any y ∈ {0, 1}∗, and all sufficiently large t (at least
polynomial in the total length of all strings), we have

pKt(x1, . . . , xℓ | y) ≥
ℓ∑

i=1

pKp(t)(xi | y, x1, . . . , xi−1)− ℓ ·O(log t)−N/D, (30)

where N =
∑ℓ

i=1 |xi| and D > 1 is any sufficiently large constant (dependent on γ).
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By setting ℓ = N/(c log t) and |x1| = · · · = |xℓ| = N/ℓ = c log t, for a sufficiently large constant
c > 0, we can use the chain rule above to construct, in deterministic polynomial time, a string
x = x1, . . . , xℓ ∈ {0, 1}N of complexity pKt(x | y) ≥ (1− τ)N , for any given string y ∈ {0, 1}∗ and
any constant τ > 0. We do so by constructing each x1, . . . , xℓ in turn, by brute-forcing over all
possible strings in {0, 1}c log t and taking the first one of high conditional pKp(t) complexity; the latter
can be done in deterministic polynomial time by our assumption that Gapτ,δMcpKtP ∈ promise-P.

It follows that we can construct in polynomial time a string a ∈ {0, 1}2n of K2O(n)
(a) ≥ Ω(2n),

and hence a requires circuit size at least Ω(2n/n). This implies item (1).
Similarly, constructing in polynomial time a string b ∈ {0, 1}n with high conditional complexity

pKt(b | y) is equivalent to solving the range avoidance problem (1/3)-CRA by Lemma 2.23. This
implies item (2).

The second proof. The assumption that Gapτ,δMcpKtP ∈ promise-P implies that there is a P-
computable natural property for conditional pKt with usefulness s(n, t) ≥ n/2. By Theorem 7.3,
we conclude that promise-BPP = promise-P. By the standard “search-to-decision” reduction for
promise-BPP (see, e.g., [Vad12]), we can construct in deterministic polynomial time a string x ∈
{0, 1}n that is accepted by a given circuit C : {0, 1}n → {0, 1}, provided C accepts a significant
fraction of n-bit strings (e.g., at least 1/2). In our case, we use the assumed polynomial-time
algorithm A for Gapτ,δMcpKtP to look for a string x ∈ {0, 1}n such that A(x, y, 1s, 1t) rejects, for
given y ∈ {0, 1}∗ and parameters s and t. By choosing s and t appropriately, we can find strings of
high (conditional) pKt complexity in deterministic polynomial time. This suffices for items (1) and
(2), as noted above.

8 Concluding Remarks

The complexity of (vairants of) Kt appears to be the right notion in the context of (variant) chain
rules for Kt. By [Hir+23] and [LP20], the average-case SoI for pKt over polynomial-time sam-
plable distributions is equivalent to the (error-prone) average-case easiness of (a variant of) MKtP.
By [LS24], it is also equivalent to computing a certain promise-version for conditional pKt. By
[LP24], it is also equivalent to the worst-case easiness of a certain (somewhat complicated) version
of the promise-problem GapMKtP (where the inputs are restricted to be of “shallow computational
depth”). Our work shows that the worst-case (multi-string) chain rule for conditional pKt is equiv-
alent to Gappoly,o(n)McpKtP ∈ promise-BPP, and the chain rule for conditional Kt is equivalent to
Gappoly,o(n)McKtP ∈ promise-P (and exponential circuit lower bounds for E).

A very interesting open question is whether Gappoly,o(n)McKtP can be shown NP-hard uncondi-
tionally (without any cryptographic assumptions). Such a result would provide an extremely clean
equivalence: the chain rule for conditional Kt is equivalent to P = NP.

Another open question is to understand what complexity assumption would be equivalent to
the worst-case SoI, or chain rule on a constant number of strings, for (conditional) Kt or pKt. One
specific technical challenge is to try to derive a polynomial-time computable natural property, say
for Kt, from the assumed SoI for Kt. It is possible to get a 2O(n/ logn) computable natural property
from SoI for Kt (see Appendix B), but it is not clear how to get time, say 2O(

√
n).
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A Inverting One-Way Functions from a Chain Rule

Longpré and Watanabe [LW95] proved that a chain rule for Kt, for two strings (Symmetry of Infor-
mation for Kt) implies that no one-way functions exist. That is, every one-way function candidate
f : {0, 1}∗ → {0, 1}∗ (which is length-preserving) can be inverted by a randomized algorithm, with
high probability over uniformly random inputs x to f . Using Theorem 4.1 and Theorem 5.2, we
get the following version of their result.

Theorem A.1. Assume the Chain Rule for Kt as in Eq. (7) of Theorem 3.1, for some δ(n) ≤
o(n1/3). Then any function family f of length-preserving functions f = {fn : {0, 1}n → {0, 1}n},
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computable in polynomial time, can be inverted in deterministic polynomial time on almost all
inputs.

Proof Sketch. By [H̊as+99], one-way functions exist if and only if there are secure PRGs with
polynomial stretch, i.e., polynomial-time computable G : {0, 1}nε → {0, 1}n, for some 0 < ε <
1, such that no randomized polynomial-time algorithm can distinguish the outputs of G from
the uniform distribution with a distinguishing probability at least 1/poly(n), for some polynomial
poly(n). Note that, for every seed z ∈ {0, 1}nε

, we have Kt(G(z)) ≤ |z| + O(1), for t being the
polynomial runtime of the generator G. Hence, a polynomial-time computable natural property for
Kt on n-bit strings with usefulness s(n) = nε would be a distinguisher for G.

By Theorem 4.1, we get from our assumption the existence of a polynomial-time computable
natural property with even larger usefulness s(n) = 0.9 · n. Thus, we can break any candidate
PRG G. Hence, by [H̊as+99], we get a randomized polynomial-time algorithm A for inverting a
candidate one-way function family f that the PRG G was based on. This algorithm A succeeds
(with high probability over its internal randomness) on almost all inputs y = f(x) for uniformly
random x ∈ {0, 1}n.

Note that such a randomized inverting algorithm A for f can also always check in polynomial
time whether it has succeeded at getting an inverse z of f on a given input y = f(x) (by checking
if f(z) = y). Hence, we can derandomize this randomized inverter A in polynomial time, using a
Nisan-Wigderson-style PRG (from {0, 1}O(logn) to {0, 1}poly(n) bits) that exists under the assump-
tion that E ̸⊂ io-SIZE[2o(n)] [NW94; IW97]; see Theorem 2.2. The latter assumption holds in our
case by Theorem 5.2. The theorem follows.

We also get an analogue of Theorem A.1 from the Chain Rule for pKt as in in Eq. (16) of
Theorem 3.4, except we end up with a randomized inverting algorithm rather than a deterministic
one.

B Natural property from SoI

Borrowing some ideas from [LW95] and [Hir21] (see also [Hir22]), we show how to achieve usefulness
s(n) = n− 2, in time 2O(n/ logn), from SoI.

We need the folowing lemma.

Lemma B.1 (Computational Depth Upper Bound [Hir21]). For every ε > 0, every non-decreasing
polynomials q

dpt
and p

dpt
, and every large enough x ∈ {0, 1}n, there exists a time bound t∗ such that

q
dpt
(n) ≤ t∗ ≤ 2n

ε
, and

Kt∗(x)− Kp
dpt

(t∗)(x) ≤ O (n/ log n) .

Theorem B.2. Assume the Chain Rule for Kt as in Eq. (7) of Theorem 3.1, for some δ(n, t) ≤
O(n1/2/ log n). Let t be any sufficiently large polynomial in n. Then there is a 2O(n/ logn)-time
computable natural property A for Kt on n-bit inputs with usefulness s(n) = n− 2.

Proof. For any x ∈ {0, 1}n and any time bound τ ∈ N, let yτ ∈ {0, 1}Kτ (x) be the lexicographically
first string of length Kτ (x) such that the universal TM U(y) outputs x within τ steps; that is, yτ
is the lexicographically first Kτ (x)-witness.
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By the 2-string Chain Rule (Symmetry of Information) for strings x and yt, we have for some
polynomial p that, for any large τ ,

Kp(τ)(yτ | x) ≤ K2τ (x, yτ )− Kp(τ)(x) +O(log τ) +O(n/ log n)

≤ Kτ (yτ )− Kp(τ)(x) +O(log τ) +O(n/ log n) (yτ determines x in τ steps)

≤ |yτ | − Kp(τ)(x) +O(log τ) +O(n/ log n) (since Kt(yτ ) ≤ |yτ |+O(1))

= Kτ (x)− Kp(τ)(x) +O(log τ) +O(n/ log n). (since |yτ | = Kτ (x))

By Lemma B.1, for every ε > 0, there exists a time bound t ≤ t∗ ≤ 2n
ε
such that

Kt∗(x)− Kp(t∗)(x) ≤ O(n/ log n).

Hence, by the above, we get for τ = t∗ that

Kp(t∗)(yt∗ | x) ≤ O(n/ log n).

It follows that, by exhaustive search in time 2O(n/ logn), we can find a list of strings that contains
the Kt∗(x)-witness yt∗ . Let y be the smallest-length string on the list such that U(y) prints out x
within t′ time steps, for t ≤ t′ ≤ 2n

ε
. By the choice of y, the definition of yt∗ , and since t∗ ≥ t, we

have that
|y| ≤ |yt∗ | = Kt∗(x) ≤ Kt(x). (31)

On the other hand, since y is a time-bounded Kolmogorov description of x, we also have

K(x) ≤ |y|. (32)

Consider the following algorithm A:

On input x ∈ {0, 1}n and 1t, try all strings w ∈ {0, 1}O(n/ logn), running U(w) for at
most 2n

ε
steps on each. Collect all those outputs y of U(w) such that U(y) prints x

within 2n
ε
steps. Let d be the length of the shortest such y. If d ≤ s(n), then accept;

otherwise, reject.

Observe that A runs in time 2O(n/ logn). For correctness, if Kt(x) ≤ s(n), then by (31), A(x, 1t)
will accept. On the other hand, by a simple counting argument, with probability at least 1− 2−c+1

over uniformly random x ∈ {0, 1}n, we have that K(x) > n− c. Hence, by (32), A(x, 1t) will reject
at least 1/2 random strings x ∈ {0, 1}n, for s(n) = n− 2.
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