
Linear Prover IOPs in Log Star Rounds

Noor Athamnah∗ Noga Ron-Zewi† Ron D. Rothblum‡

July 10, 2025

Abstract

Interactive Oracle Proofs (IOPs) form the backbone of some of the most efficient general-
purpose cryptographic proof-systems. In an IOP, the prover can interact with the verifier over
multiple rounds, where in each round the prover sends a long message, from which the verifier
only queries a few symbols.

State-of-the-art IOPs achieve a linear-size prover and a poly-logarithmic verifier but require
a relatively large, logarithmic, number of rounds. While Fiat-Shamir heuristic can be used to
eliminate the need for actual interaction, in modern highly-parallelizable computer architectures
such as GPUs, the large number of rounds still translates into a major bottleneck for the prover,
since it needs to alternate between computing the IOP messages and the Fiat-Shamir hashes.
Motivated by this fact, in this work we study the round complexity of linear-prover IOPs.

Our main result is an IOP for a large class of Boolean circuits, with only O(log∗(S)) rounds,
where log∗ denotes the iterated logarithm function (and S is the circuit size). The prover has
linear size O(S) and the verifier runs in time polylog(S) and has query complexity O(log∗(S)).
The protocol is both conceptually simpler, and strictly more efficient, than prior linear prover
IOPs for Boolean circuits.

∗Technion. Email: noor.athamnah@gmail.com
†University of Haifa. Email: noga@cs.haifa.ac.il
‡Succinct. Email: rothblum@gmail.com

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 90 (2025)

Contents

1 Introduction 3
1.1 Our results . 4
1.2 Technical overview . 5

1.2.1 Warmup: Logarithmic round IOP . 6
1.2.2 Inner product IOP with log star rounds . 10

1.3 Related works . 13
1.4 Organization . 13

2 Preliminaries 13
2.1 Interactive oracle proofs . 14
2.2 Error-correcting codes . 15

3 Inner product check in log rounds 17
3.1 Setting of parameters . 18
3.2 Reducing Inner Product Claim to Matryoshka points in MLE 19
3.3 Computing a Matryoshka point in the MLE . 23
3.4 Fast code switching for MLE . 24

4 Inner product check in log star rounds 29
4.1 Setting of parameters . 30
4.2 Reducing Inner Product Claim to Matryoshka points in LDE 32
4.3 Computing a Matryoshka point in the LDE . 38
4.4 Fast code switching for LDE . 39
4.5 IOP for inner product check in log star rounds . 45

5 From inner product check to IOPs for circuits 47

A PCPPs with improved proximity parameter dependence 53

2

1 Introduction

Succinct arguments enable a prover to efficiently prove correctness of a complex computational
statement to a weak verifier. Such proof-systems, which originated and have been studied for
decades in the theory literature, are now starting to enjoy broad interest and adoption also in
practice.

In this work we study proof-systems for proving correctness of computations expressed in
arguably the most basic computational model: Boolean circuits. Thus, we consider a fixed Boolean
circuit C : {0, 1}n×{0, 1}m → {0, 1} (consisting of gates of fan-in 2). Both parties are given as input
x ∈ {0, 1}n, and the prover should convince the verifier that there exists some witness w ∈ {0, 1}m
such that C(x,w) = 1. The witness w is given as an auxiliary input to the prover, which should be
implemented as a (small as possible) Boolean circuit.

The motivation for studying the Boolean circuit model is two-fold:

1. (Natural and Basic Model:) The Boolean circuit model is a natural and extremely basic
model of computation. It allows for a clear apples-to-apples comparison between the cost
of computing vs. the cost of proving. There is no question about the types of operations
that are allowed and no restriction to arithmetic computations (in contrast to the arithmetic
circuit model). The model is also not tied down to the structure imposed by the underlying
proof-system.

2. (Batching via Bit-Slicing:) Suppose that a function f can be proved by a Boolean circuit
of size S. Observe that on a RAM machine with a word size of w bits, we can use this
proof-system to prove correctness of w instances of f using only S word operations via bit-
slicing : that is, we pack all of the i-th input bits of the w copies into a single machine
word and then emulate the bit operation of the circuit (such as AND and XOR) by running
the corresponding word operations, while observing that the word operations are actually
operating on the individual bits within each word according to the structure of the Boolean
circuit.

The state-of-the-art proof-systems in the Boolean circuit model, due to Ron-Zewi and Rothblum
[RR25] and Holmgren and Rothblum [HR22], construct a prover whose size (as a Boolean circuit)
is strictly linear in the original computation.

In this work we focus on the number of rounds of interaction in the proof-system. Part of our
motivation stems from the fact that the number of rounds is a fundamental resource in proof-systems
and so we should try to minimize it. While it is true that these rounds can potentially be eliminated
via Fiat-Shamir [FS86], this heuristic is known not to be sound in general [Bar01,GK03,BBH+19],
and there are attacks even against some practical protocols [KRS25].

However, even putting these considerations aside, a large part of our motivation actually comes
from efficiency. Many modern proof-systems are currently being implemented on GPUs (see,
e.g., [Suc]). In this extremely parallelizable architecture, the number of rounds turns out to be
a fundamental bottleneck. Even when employing the Fiat-Shamir transform, if the underlying
interactive protocol has t-rounds, the prover has to run t sequential steps (of computing the next
round message and applying the Fiat-Shamir hash function). Thus, reducing the number of rounds
almost immediately improves the number of parallel steps (aka latency) of the proof-system.

Essentially all succinct arguments in the literature are built by first constructing an information-
theoretic proof-system, and then applying a cryptographic compiler. We also follow this approach

3

and so focus on the underlying information-theoretic component, which in our case is an interactive
oracle proof (IOP). Recall that the IOP model [BCS16,RRR21] is an extension of the PCP model:
it is an interactive protocol in which the prover is allowed to send long strings (aka oracles) in each
round, so that the verifier only reads a few bits from each string.

Most of the practical IOPs in the literature, including those of [RR25,HR22] have a number of
rounds that is logarithmic in the circuit size. Some exceptions are interleaving based IOPs such
as [AHIV17,BCG+17,GLS+23,BFK+24] which are constant-round, but require O(

√
S) verification

and have a super-linear prover for Boolean computations. Another IOP by Arnon et al. [ACY23]
has O(log log(S)) rounds but has linear verification, operates over a large finite field, and with a
super-linear size prover (but offers a better soundness vs. alphabet size tradeoff).

We know that in principle it is possible to construct IOPs which have only a single round —
indeed, these are PCPs. Alas, these single round IOPs seem far less efficient than their interactive
counterparts. Indeed, it is a major open question to construct a PCP of linear length (let alone
with a linear-size prover). Other IOPs such as that of [RR24, RW24] have a constant number of
rounds and linear length, but the prover runtime is a large polynomial.

In this work we ask whether there is a way to balance between these results: obtain highly
efficient provers for Boolean computations, while using significantly less rounds. Thus, the main
question that we study in this work is: what is the smallest number of rounds with which we can
prove correctness using a strictly linear-size Boolean circuit?

1.1 Our results

Our main result is a construction of an IOP, for satisfiability of a large class of Boolean circuits,
with a linear-size prover and only O(log∗(S)) rounds of interaction, where S denotes the circuit size.
Recall that the iterated logarithm function log∗ is the number of times the logarithm function must
be iteratively applied before the result is less than or equal to 1. The function log∗(n) grows very
slowly, and in particular is less than or equal to 5, for n ≤ 265536 (which, for context, is roughly
20,000 orders of magnitude larger than the number of atoms in the universe).

Similarly to [RR25] we focus on the constant soundness error regime, but note that via a
technique from [HR22], the soundness error can be reduced to 2−λ while only paying a (multiplicative)
polylog(λ) overhead (see Remark 1.3 below).

Theorem 1.1 (Informally Stated, see Section 5). Let C : {0, 1}n × {0, 1}m → {0, 1} be a fan-in 2
“regular” Boolean circuit (with constant fan-in) of size S . Then, there exists an O(log∗(S))-round
IOP for the language {x ∈ {0, 1}n : ∃w ∈ {0, 1}m, s.t. C(x,w) = 1}, with a constant soundness
error, where the prover can be implemented as a size O(S) Boolean circuit. Following a preprocessing
step, the verifier has size polylog(S) and query complexity O(log∗(S)).

Theorem 1.1 is a strict improvement over the prior state-of-the-art for proof-systems for Boolean
circuits, which achieve similar parameters but with O(log(S)) rounds, and a corresponding number
of queries. We elaborate on the precise technical meaning of “regular circuit” in Section 5, but loosely
speaking we mean that the wiring pattern has a lot of repeated structure. As particular special
cases of interest, this includes batch verification circuits of the form C(x1, . . . , xk;w) =

∧
iC0(xi;w),

or sequential composition of a single circuit C(x) = C0(C0(. . . C0(x)), where in both cases C0

is a smaller base circuit of size at most S/polylog(S), which can be arbitrary. The cost of the
preprocessing step is quasi-linear in the “irregularity” of the circuit (e.g., the size of C0).1

1Our focus is on the setting of sub-linear verification following a public pre-processing step. We remark that if

4

While our focus is on Boolean circuits, our techniques extend directly to arithmetic circuits over
large fields. To the best of our knowledge, all prior results over such large fields, with a linear-size
prover, used at least a logarithmic number of rounds. We remark that the extension of our result
to arithmetic circuits over large fields can work for arbitrary (rather than just regular) arithmetic
circuits (using an arithmetization as in [BCG20]).

Remark 1.2. Given how slowly log∗ grows, it is interesting to consider also the hidden constant in
the big O notation in the round complexity of Theorem 1.1. Our somewhat loose analysis shows that
the number of rounds is bounded by 2 log∗(S) + O(1) (see Claim 4.4), but we believe that a tighter
analysis of the same protocol should yield a round complexity of (1 + o(1)) · log∗(S) +O(1).

As an additional contribution, we also construct a new IOP for Boolean circuits with a linear-size
prover, and logarithmically many rounds. This matches the prior works of [RR25,HR22] but via
a conceptually simpler protocol. The new protocol also achieves better communication complexity
and uses the code-switching technique of [RR24] in a more lightweight manner.

We emphasize that our focus is theoretical in nature and we do not claim these protocols, as
described, to be practical. Nevertheless, similarly to prior related results in the literature (e.g.,
code-switching [RR24]) we believe that similar techniques can be used to reduce rounds also in
practice.

Remark 1.3. Our protocols have a constant soundness error, which can be reduced to 2−λ via
parallel repetition, or more efficiently (i.e., with only polylog(λ) multiplicative overhead) via a
technique from [HR22].

However, if the Fiat-Shamir transform is to be employed, the protocol needs a stronger notion of
soundness called round-by-round soundness [CCH+19]. Unfortunately, at first glance, both a λ-fold
parallel repetition, as well as the method of [HR22], seem to yield round-by-round soundness error
of 2−Ω(λ/ℓ) (see [CCH+18, Corollary 5.7]), where ℓ is the round complexity of the protocol (rather
than the desired 2−Ω(λ)).

Looking more closely though, we observe that our base protocol has round-by-round soundness
εi in the i-th round, where the εi’s are gradually shrinking, and in particular

∑
i εi ≪ 1. This

implies that the λ-fold parallel repetition of our protocol, as well as the more efficient amplification
via [HR22], reduces the round-by-round soundness error to 2−Ω(λ).

1.2 Technical overview

Our construction of a round-efficient IOP for circuit satisfiability follows the basic blueprint in
[RR25, HR24]. In particular, the key technical ingredient in [RR25] is a protocol in which the
verifier gets oracle access to encodings, under a good error-correcting code, of two strings x and y,
and needs to verify their inner product ⟨x, y⟩ =

∑
i xi ·yi (mod 2), using an IOP, while making only

a few queries to both the proof oracles and the (encoded) inputs.2 We refer to such a protocol as
an “inner-product IOP”.3

one allows linear-time verification, or private (and unreusable) pre-processing, with poly-logarithmic verification, our
IOP can be extended to any circuit (rather than just regular ones) similarly to [RR25].

2In the technical sections we consider a more general case in which the input is x1, . . . , xd and the goal is to verify∑
i x1(i) · · ·xd(i). In the technical overview, for sake of simplicity, we focus on the case d = 2.
3 [RR25] uses the terminology of “multi-sumcheck” but in retrospect we find the term “inner product check” more

appealing.

5

Definition 1.4 (Inner-product IOP, Informally Stated). An inner product IOP relative to a code
E : {0, 1}n → {0, 1}n′ , is an IOP in which the prover gets as input x, y ∈ {0, 1}n and the verifier
gets oracle access to E(x) and E(y) and explicit access to a value v ∈ {0, 1}. If ⟨x, y⟩ = v, the
verifier should accept when interacting with the honest prover, and if ⟨x, y⟩ ̸= v the verifier should
reject whp when interacting with any cheating prover.

Loosely speaking, the inner product IOP can be used (more or less) as a drop-in replacement
for a standard sumcheck used in traditional arithmetization.4

The traditional solution to this problem is to use a code E that is multiplicative — that is, a code
in which the point-wise product between two codewords is guaranteed to reside in a related linear
code. Using such a code, one can just run a “sumcheck-like” procedure on the product codeword
E(x) ◦ E(y). Indeed, in the special case that the code E is the multilinear extension (which is
multiplicative), the classical sumcheck protocol [LFKN92] can be directly used as an inner product
check.

The benefit of looking at the generalized notion is that we can now consider inner product
IOPs, relative to more efficient codes — in particular, linear-time encodable codes (e.g., [Spi96]).
The challenge that we face however is that there are no known linear-time encodable multiplications
codes.

The key technical contribution of our work is a new inner product IOP, relative to a linear-
time encodable error-correcting code E, with a linear-size prover and only O(log∗(n)) rounds of
interaction (and a constant soundness error, which can later be reduced via Remark 1.3).

1.2.1 Warmup: Logarithmic round IOP

As a warmup, we first consider the goal of constructing an inner product IOP with a logarithmic
number of rounds and a prover implemented as a linear-size Boolean circuit. While this goal is non-
trivial, it was already achieved in [RR25]. However, we give here a conceptually simpler protocol
which we find interesting in its own right, and will also be very helpful in our eventual goal of
O(log∗(n)) rounds. Furthermore, while the protocol of [RR25] is an IOP (i.e., that involves sending
large linear-length oracle messages), the logarithmic round protocol that we propose here can be
viewed as a standard interactive proof, with communication nε, for any desired ε > 0 (but can also
be transformed into an IOP with O(log n) query complexity). See Remark 1.7 below for a more
detailed comparison with the [RR25] protocol.

For the warmup, our main conceptual insight is that the inner product protocol can be broken
down into two distinct steps:

1. As our first step, we construct an inner product protocol with a linear-size prover, but assume
that the verifier can access the multilinear extensions (MLEs) of the inputs x and y, rather
than their encoding under the linear-time encodable code E. Furthermore, we ensure that
the queries to the multilinear extension have a particular “nice” structure, on which we will
elaborate shortly.

2. The second step shows that if the verifier is given oracle access to an encoded message E(x),
a linear-size prover can prove to it such nice claims about the multilinear extension x̂ of x.

4For the arithmetization we also need the code to be locally testable and (relaxed) locally correctable (via auxiliary
IOPs). This is usually easy to achieve via code tensoring [Vid15,GRR18].

6

Given these two components, an inner product protocol for E follows easily: the parties run the
first step to obtain the “nice” claims about x̂ and ŷ, and then use the second step to verify these
claims (separately) wrt to E(x) and E(y).

We proceed to elaborate on these two steps.

Linear-size inner product IOP relative to MLE. Our goal now is to construct an inner
product protocol, in which the prover gets as input x, y ∈ {0, 1}n and is trying to prove that
⟨x, y⟩ = v, for some v ∈ {0, 1}. We view the verifier as receiving only v as input, and outputting
claims about the multilinear extensions of x and y (rather than accepting/rejecting). Thus, the
protocol should be thought of as a reduction from the inner product problem to claims about the
MLEs of the two strings. We emphasize that this protocol does not involve the linear-time code E
(which will only come into play in the second step).

Observe that the classical sumcheck protocol solves exactly this problem. To see this, it will be
useful to make a syntactic change of viewing the inputs as functions rather than strings. Namely, let
f, g : {0, 1}m → {0, 1} be functions whose truth tables are exactly the strings x and y, respectively,
and where m = log(n). Let f̂ , ĝ : Fm → F be the respective multilinear extensions of f and g.5

Thus, we can solve our problem by just running the sumcheck protocol to verify that v =∑
b∈{0,1}m f̂(b)·ĝ(b) (indeed, this uses the fact that the MLE is a multiplication code). The sumcheck

prover can be implemented as a linear-size arithmetic circuit over the field F. The problem however
is that the sumcheck protocol is an m-round protocol, with a soundness error of O(1/|F|) in each
round. Thus, to get a meaningful bound, the size of the field |F| must be larger than m. Since
we want the prover to be a Boolean circuit, we need to emulate each of the field operations via a
Boolean circuit. Unfortunately, this yields a super-linear size prover.

To explain our approach, let us zoom in on the computation that the prover does to produce its
first message. Recall that the first message in the sumcheck protocol is (a concise description of)
the polynomial p1(λ) =

∑
b∈{0,1}m−1 f̂(λ, b) · ĝ(λ, b). Using the formula directly, it is not difficult

to construct a linear-size arithmetic circuit that computes p1. Indeed, if the field were constant-
sized, this would suffice for us. But, as discussed above, a constant-sized field leads to a constant
soundness error. While we could tolerate this in the first round, if we apply the same logic to the
subsequent m− 1 rounds then the soundness error becomes extremely close to 1.

Our main observation, which is related to the main observation in [RR25] (and later used
also in [ACFY24,ACFY25]) is that as the protocol progresses, the size of the instance being proved
shrinks, and so we can afford to invest more time (relative to the current instance size). In particular,
we can use a larger field.

Thus, rather then working with a single finite field, we will be working with a tower of extension
fields F1 ⊂ F2 ⊂ · · · ⊂ Fm (whose exact sizes will be determined soon). In round i of the sumcheck,
the prover message is computed over the field Fi, but the verifier samples a random challenge
element ri from the extension field Fi+1 ⊃ Fi. Since each sumcheck round halves the problem size,
and the cost of emulating field operations by a Boolean circuit, for a size |Fi| field, is polylog(|Fi|),
the overall prover computation can be bounded by:

m∑
i=1

2m−i · polylog(|Fi|),

5Recall that the multilinear extension f̂ : Fm → F of a function f : {0, 1}m → F is the unique multilinear
polynomial that agrees with f on {0, 1}m, see Fact 2.8 for details.

7

whereas the soundness error (over all rounds) is proportional to:

m∑
i=1

1

|Fi+1|
.

By setting |Fi| ≈ 2i we get the best of both worlds — a strictly linear-size prover (as a Boolean
circuit) and a constant soundness error.

Remark 1.5. It is worth nothing that a vast range of different parameters for the field sizes would
have also worked here (ranging from polynomial in i to almost doubly-exponential), but eventually
lead to a similar asymptotic result. We will leverage this fact later on when reducing the number of
rounds.

Thus, we run the sumcheck protocol, while gradually increasing the field size as the protocol
progresses. At the end of the sumcheck, the verifier will need to verify a claim of the form f̂(r)·ĝ(r) =
v′, for r = (r1, . . . , rm) ∈ Fm and v′ ∈ F, where F = Fm is the field used in the last round of the
protocol (i.e., the largest extension field). To verify this claim, the verifier asks the prover to provide
its claimed values for both f̂(r) and ĝ(r) and check that their product is equal to v′.

This simple tweak of sumcheck, in which we gradually increase the field sizes, suffices for our
first goal — reducing the inner product claim to separate claims about the MLEs of f and of g.

Verifying MLE Queries via Tensors. The task at hand now is the following. The prover gets
as input f : {0, 1}m → {0, 1} and r ∈ Fm. The verifier get oracle access to an encoding of the truth
table of f under a linear-time encodable code, as well as the point r and a scalar v ∈ F, and needs
to be able to verify that f̂(r) = v.

Before discussing how to prove this claim, let us first consider the task of merely computing it
(as, needless to say, proving can be no easier than computing). That is, how can the prover even
compute the value f̂(r). By definition of the multilinear extension, this value is equal to:

f̂(r) =
∑

b∈{0,1}m
eq(r, b) · f(b), (1)

where eq(r, b) =
∏m

i=1 eq1(ri, bi) and eq1(α, β) = α ·β+(1−α) ·(1−β) (see Section 2.2 for additional
details). The known (efficient) methods for computing this expression boil down to generating
the sequence of values (eq(r, b))b∈{0,1}m (see [VSBW13]). Unfortunately, generating this sequence
requires a Boolean circuit of size at least 2m · log(|F|), since that is the amount of space required to
just store this sequence. In our case the field F will be the last field from the previous step, which
has a super-constant size and therefore it seems that even just computing f̂(r) inherently requires
a super-linear size circuit.

Notice however that the point r ∈ Fm generated by the previous protocol is not actually arbitrary.
Specifically, in the i-th round of our sumcheck variant, the challenge ri was chosen randomly from
the field Fi. Thus, the point r actually belongs to F1 × F2 × · · · × Fm ⊆ Fm (i.e., its components
come from gradually increasing extension fields). We refer to such points as Matryoshka points.6

We show that for a Matryoshka point r as above, it is possible to compute f̂(r) using a linear-size
Boolean circuit. To see this, let us rework Eq. (1) as follows:

6Matryoshka dolls, popular in Russian culture, are a set of wooden dolls of increasing size placed one inside
another, see https://en.wikipedia.org/wiki/Matryoshka_doll.

8

https://en.wikipedia.org/wiki/Matryoshka_doll

f̂(r) =
∑

b∈{0,1}m
eq(r, b) · f(b)

=
∑

b∈{0,1}m

(
m∏
i=1

eq1(ri, bi)

)
· f(b)

=
∑

bm∈{0,1}

eq1(rm, bm) ·
∑

bm−1∈{0,1}

eq1(rm−1, bm−1) · · ·
∑

b1∈{0,1}

eq1(r1, b1) · f(b1, . . . , bm), (2)

where the equalities follow from from the definition of the multilinear extension and elementary
algebraic manipulations.

Thus, we can compute f̂(r) using the following algorithm:

Matryoshka MLE Algorithm:

1. Initialize f0 = f .

2. For i = 1, . . . ,m, compute fi : {0, 1}m−i → Fi as fi(bi+1, . . . , bm) =
∑

bi∈{0,1} eq1(ri, bi) ·
fi−1(bi, . . . , bm) (this entails O(2m−i) arithmetic operations over the field Fi).

3. Output fm (this is indeed a single scalar in Fm).

The Matryoshka MLE algorithm precisely follows the RHS of Eq. (2), while computing the
intermediate expressions from the innermost outward. Observe that iteration i only involves operations
over the field Fi (since ri ∈ Fi and the rest of the values are in Fi−1). Thus, overall the algorithm
can be implemented as a Boolean circuit of size:

m∑
i=1

2m−i · polylog(|Fi|),

and we have already set our fields to be such that this quantity is bounded by O(2m).

Remark 1.6. Somewhat surprisingly, the Matryoshka MLE algorithm is actually also faster, by
constant factors, than existing algorithms for computing a standard multilinear extension (i.e., when
r ∈ Fm).

Specifically, we observe that Step 2 in the Matryoshka MLE algorithm can be implemented using
exactly 2m−i multiplications, since∑
bi∈{0,1}

eq1(ri, bi)·fi−1(bi, . . . , bm) = fi−1(0, bi+1, . . . , bm)+ri·
(
fi−1(1, bi+1, . . . , bm)−fi−1(0, bi+1, . . . , bm)

)
,

and so for each bi+1, . . . , bm, Step 2 requires only a single multiplication.
This leads to a total of 2m − 1 multiplications. The standard algorithm for this problem (see

[Tha22, Lemma 3.8]) due to [VSBW13] requires 2m+1−1 multiplications, although we also mention
that an algorithm implicit in [DT24] uses only 2m +O(2m/2) multiplications.

9

Back to Proving MLE Claims. The Matyoshka MLE algorithm shows how to compute the
MLE at a Matryoshka point, but what about proving its value? Recall that the prover is given as
input f : {0, 1}m → {0, 1} and a Matryoshka point r ∈ F1 × · · · × Fm. The verifier is given oracle
access to an encoding, under a linear-time encodable code E of f , and the goal is to verify the value
of f̂(r).

To do so we will choose E = (E′)2 to be a tensor product of a linear-time encodable code. Recall
that the tensor code E is obtained from E′ by viewing its messages as square matrices, and then
encoding all of the rows via E′ and the columns - both old and new - once again using E′.

Thus, the task at hand is to verify a particular linear combination of an encoded message.
Following [RR24], if one arranges the coefficients of this linear combination as a square matrix, the
matrix has rank 1 (basically because the multilinear extension is itself a tensor code). In other
words, each coefficient is the product of two coefficients. One that is determined only by the row
and the other only by the column. Thus, our approach will be to run the sumcheck protoocl for
rank 1 coefficients.

The protocol for rank 1 coefficients from [RR24] (based on [Mei13]) relies on the sumcheck
protocol, however it requires weighing the sums computed by the prover with the tensor coefficients
which depend on the point r and come from large fields, and we do not generally know how to
compute these weighted sums in linear time. To overcome this, we observe that in the special case
that r has a Matryoshka structure, computing these weighted sums reduces to computing MLEs of
certain functions at certain points that also have a Matryoshka structure, and so we can use the
linear-time algorithm presented in the previous section to perform this task in linear time.

The above yields an interactive proof with O(
√
n) communication, but the idea can be extended

to a d-dimensional tensor for any constant d ≥ 2, reducing the communication complexity to
n1/d and the verification complexity to nO(1/d). By composing the resulting interactive proof with
a PCPP, one can further reduce the query complexity to O(log n) and the verification time to
polylog(n).

To conclude, the logarithmic round interactive proof proceeds by first reducing the inner product
to separate claims about the MLEs of x and y at Matryoshka points. Then these claims are
established using a sumcheck for tensor codes, while exploiting the structure of the Matryoshka
points.

Remark 1.7 (Comparison with [RR25]). At a high-level, the protocol of [RR25] works by tensoring a
large linear-time encodable tensor code with a tiny multiplication code. The protocol uses a sumcheck
like step to reduce the size of the instance, and applies the code-switching technique of [RR24] to
progress to the next round. In particular, the code-switching is applied in every step, to smaller and
smaller instances.

In contrast, our approach only involves a single application of code-switching (from a claim about
the MLE to a claim about the tensor encoding). We find this protocol both simpler, and more efficient
as it involves sending much shorter messages.

1.2.2 Inner product IOP with log star rounds

Our goal now is to reduce the number of rounds. The log-round protocol described above halves
the instance size in each iteration, and therefore requires a logarithmic number of rounds in total.
As an initial positive indication, observe that if we ran the procedure for only O(logm) many

10

rounds, the original instance, which has size 2m, shrinks to size 2m

poly(m) . At this point we could solve
the problem using an off-the-shelf tool such as the PCPP theorem, which has a poly-logarithmic
overhead (via [BS08,Din07,Mie09]), which we can afford at this point.

This observation already reduces the number of rounds exponentially: from logarithmic to double
logarithmic, but we show that we can do much better. Rather than making a sharp transition (i.e.,
initially reducing by half, and then abruptly reducing by the large remaining factor), we will attempt
to make the transition smoother.

To do so, rather than considering the multilinear extension of functions, we will be looking at
a different form of low-degree extension — one in which the individual degrees gradually increase.
Thus, rather than considering Boolean functions f, g : {0, 1}m → {0, 1}, we consider functions
f, g : H1 ×H2 × · · · ×Hℓ → {0, 1}, where each Hi ⊆ Fi is some subset of the corresponding field.
Based on the previous discussion, we would like to have the Hi’s be increasing in size so that we can
have the number of variables ℓ (which also corresponds to the number of rounds) be much smaller
than m (recall that m in the case of the warmup was logarithmic in the problem size).

In other words, we need to chose H1, . . . ,Hℓ such that
∏ℓ

i=1Hi = 2m, and so that ℓ is as
small as possible, and under some efficiency and soundness constraints about the Hi’s that we need
to analyze. We proceed directly to the analysis, and then chose the Hi’s based on the induced
constraints.

Let us now revisit the analog of the first step from the warmup: an inner product protocol in
which the prover gets as input f, g : H1 × · · · × Hℓ → {0, 1}, the verifier gets as input the low
degree extensions f̂ , ĝ : F1 × · · · × Fℓ → Fℓ, which are polynomials which agree with f and g on
H1 × · · · ×Hℓ, and have individual degree |Hi| − 1 in their i-th variable, for every i ∈ [ℓ]. The goal
of the verifier, as before, is to check that

∑
h∈H1×···×Hℓ

f(x) · g(x) = v, for a given v ∈ {0, 1}.
Following the sumcheck protocol, in each round i, the verifier now needs to generate the degree

2 · (|Hi| − 1) polynomial:

pi(λ) =
∑

h∈Hi+1×···×Hℓ

f̂(r1, . . . , ri−1, λ, h) · ĝ(r1, . . . , ri−1, λ, h),

where r1, . . . , ri−1 is the randomness generated in the previous rounds.
To generate pi, it suffices to compute its evaluation at 2|Hi| − 1 values of λ. Let us assume

that we have already pre-computed the two sequence of values
(
f̂(r1, . . . , ri−1, h)

)
h∈Hi×···×Hℓ

and(
ĝ(r1, . . . , ri−1, h)

)
h∈Hi×···×Hℓ

as in the usual linear-time sumcheck protocol.
Thus, to evaluate pi at a point λ, we iterate over all h ∈ Hi+1 × · · · × Hℓ and then compute

the inner summand. Computing the inner summand requires interpolating two degree |Hi| − 1
univariate polynomials at a point λ ∈ Fi, which can be done in O(Hi) operations. Thus, the cost
of computing pi(λ) is roughly O(|Hi| · · · |Hℓ|). Since we need to do so for 2|Hi| − 1 values of λ, this
leads to a total cost of roughly O

(
|Hi|2 · |Hi+1| . . . |Hℓ|

)
, for round i.

Unfortunately, this actually does not seem very helpful toward our goal — in round i we manage
to shrink the problem by a factor of |Hi|, but we cannot make |Hi+1| much larger than |Hi| since
in the next round we will have a cost that is quadratic in it.

The last, simple but crucial, observation is that we can actually compute the round polynomials
much faster. Evaluating pi(λ) separately for each value of λ is actually wasteful — it amounts
to evaluating f̂(r1, . . . , ri−1, λ, h) and ĝ(r1, . . . , ri−1, λ, h) at the O(|Hi|) distinct points separately.
But we know, via the FFT, that it is possible to evaluate a given univariate polynomial in time that
is only quasi-linear in the number of evaluation points. Thus, we compute pi as follows:

11

1. Fix a set Λ of 2|Hi| − 1 evaluation points.

2. For h ∈ Hi+1 × · · · ×Hℓ:

(a) Observe that f̂(r1, . . . , ri−1, ·, h) is a degree |Hi| − 1 univariate polynomial, and we
know its evaluations on the points Hi. Thus, using the FFT, we generate the sequence(
f̂(r1, . . . , ri−1, λ, h)

)
λ∈Λ

. We do the same for ĝ.7 To do so, note that at the beginning

of the round we have already computed the values
(
f̂(r1, . . . , ri−1, h)

)
h∈Hi×···×Hℓ

and(
ĝ(r1, . . . , ri−1, h)

)
h∈Hi×···×Hℓ

.

(b) For every λ ∈ Λ, update a running sum that computes pi(λ).

Notice that this algorithm is much faster — it runs in time |Hi| . . . |Hℓ|·polylog(|Hi|) (we assume
here that |Fi| ≈ |Hi| so this accounts also for the cost of emulating the field operations).

This running time puts us at a much better position. Intuitively, the i-th round shaves off an
|Hi| factor from the input size, but will only have a polylog(|Hi+1|) overhead in the next round.
This suggests that we can afford for Hi+1 to be sub-exponentially larger than Hi, while still ensuring
that the cost of round i+ 1 is geometrically smaller than that of round i.

For sake of simplicity of the analysis, let us pretend that the running time for generating the
i-th round polynomial is |Hi| . . . |Hℓ| · log(|Hi|) Boolean operations (i.e., the overhead is exactly
logarithmic in |Hi|, rather than poly-logarithmic). In this case, we set H1 to be a constant, and for
every i ∈ [ℓ− 1] we set

|Hi+1| = 2|Hi|/2.

Thus, the prover’s computation time in round i+ 1 is:

|Hi+1| · · · |Hℓ| · log(|Hi+1|) = |Hi| · · · |Hℓ|/2,

which is less than half of the computation time in round i. Thus the total running time is a geometric
series which converges to be linear in the cost of the initial round O(|H1| · · · |Hℓ|) = O(2m).

Let us turn to analyzing the number of rounds ℓ in the protocol. Observe that in the last round
of the protocol we are shaving a factor that is roughly equivalent to ℓ repeated exponentiations
(starting off from a constant). Since we cannot shave off more than the original input length, this
shows that (up to the inaccuracies mentioned above) ℓ is at most the number of times that the log
function can be applied to 2m before it becomes a constant. That is, O(log∗(2m)).

Query reduction via PCPP compositon. The protocol, as described so far, requires the
verifier to do work proportional to |Hi| in the i-th round. In particular, this is the amount of
queries that the verifier needs to do in each of the rounds. While this is fine for the first few rounds
(when |Hi| is small), for later rounds the cost becomes exorbitant (e.g., |Hℓ| will be close to linear).

To reduce the number of queries, as well as the verification complexity, we compose the resulting
interactive proof with a PCPP (see [RRR21, Section 7] or [ACY22]). This reduces the number of
queries to be linear in the round complexity of the protocol. For this to to work, we need to make
sure that none of the |Hi|’s is too large — in particular the last one. To ensure this, rather than

7To run the FFT we can either ensure that Λ is a suitable subgroup of the field, or alternatively, use general
purpose results for multipoint evaluation, see Theorem 2.9. The former is significantly faster in practice, but as our
focus is on simplicity, we prefer the latter option.

12

maintaining the exponential growth throughout the entire protocol, we cap them at a sufficient
sub-linear size (say polylog(n)) and add a constant number of additional rounds to compensate for
that.

This concludes the first step in the protocol — reducing the inner product claim to separate
claims about low degree extensions at Matryoshka points. The second step — proving MLE
evaluations at Matryoshka points — actually works almost exactly the same as in the case of
the warmup (indeed notice that that protocol only had a constant number of rounds).

By combining the two steps we obtain an inner product protocol with O(log∗(n)) rounds relative
to a linear-time encodable code E.

Using the inner product protocol, the construction of an IOP for “regular” circuits follows using
standard arithmetization techniques, see Section 5 for details.

1.3 Related works

As mentioned above, our works builds on prior IOPs for Boolean circuits [RR24, RR25, HR24].
We also note that Ron-Zewi and Weiss [RW24] extend the [RR24] protocol to be zero-knowledge.
We leave open the question of whether their techniques can be combined with ours to construct a
zero-knowledge IOP with a linear-time prover (and log star rounds).

Our use of higher degree extensions is similar, but also distinct, from other uses in the proof-
systems literature. Notably, in their seminal work, Babai et al. [BFLS91] use a low degree extension
in which the individual degree of each variable is poly-logarithmic, to make the corresponding low
degree code have an inverse polynomial rate (whereas the multi-linear extension has an inverse quasi-
polynomial rate). This setting of parameters has become typical in much of the PCP literature,
but we emphasize that in these works all of the variables have the same degree. Somewhat closer
to our technique is a technique used by [HR22], and later also by Gruen [Gru24], in which the first
variable has a higher degree than the rest of the variables (in both works this is motivated by the
fact that the original computation is expressed in a smaller base field).

Linear-time provers for arithmetic circuits over large finite fields were constructed in a sequence
of works [BCG+17, BCG20, GLS+23, XZS22, BCF+25, NST24, BMMS25]. Additionally, Bootle et
al. [BCGL22] construct an IOP for computations over small fields, in which the prover is a random-
access machine that runs in time linear in the circuit size. All of these works use (at least) a
logarithmic number of rounds, prior to the application of Fiat-Shamir. We also mention the
very recent works of Bünz et al. [BCFW25] and Baweja et al. [BMMS25] construct hash based
accumulation schemes with linear-time provers.

1.4 Organization

Preliminaries are in Section 2. In Section 3 we give our new construction of an inner product IOP
with a logarithmic number of rounds, and in Section 4 the one with log star rounds. In Section 5
we give a sketch of the (by now standard) construction of an IOP for Boolean circuits (or Boolean
R1CS to be precise) from an inner product IOP.

2 Preliminaries

We will often view a string w ∈ Σn, over an alphabet Σ, as a function w : [n] → Σ. In particular,
the i-th entry of w is denoted w(i). For strings x, y ∈ Σn, we let distΣ(x, y) denote the fraction of

13

coordinates i ∈ [n] on which x and y differ, that is, distΣ(x, y) := |{i ∈ [n] : x(i) ̸= y(i)}| /n.
Following Diamond and Posen [DP24] we use Wiedemann’s construction [Wie88] of a tower of

binary fields. The fields in this construction are fields of characteristic 2, where the (i+ 1)-th field
is the quadratic extension of the i-field. The important fact that we need about this construction is
that there is a simple mapping of elements in the i-th field, to their representation in the (i+1)-th
field.

The relevant needed facts are summarized in the following lemma.

Lemma 2.1 ([Wie88]). There exists a sequence of finite fields (Fn)n∈N, where Fi is the field of size
22

n such that:

• (Constructible:) Elements of Fn can be represented by O(log |Fn|) bits, and given this representation,
the field operations (addition, subtraction, multiplication, inversion and sampling random
elements) can be done by polylog(|Fn|) size Boolean circuits.

• (Extension:) There is a polylog(Fn)-size Boolean circuit that maps a representation of an
element α ∈ Fn to its representation as an element of the extension field Fn+1.

2.1 Interactive oracle proofs

We next define the notion of interactive oracle proof, due to [BCS16, RRR21]. We restrict our
attention to the public-coin setting which means that all of the verifier’s messages simply consist
of uniformly random coins. Since we care about very small factors in the parties running times,
the definition will be more detailed than usual. The definition is similar to the one given in [RR25,
Section 2] (but slightly less detailed).

An ℓ-round (public-coin) interactive oracle protocol consists of two entities, a prover P and a
verifier V. The prover P consists of ℓ Boolean circuits P1, . . . ,Pℓ. For every i ∈ [ℓ], the input to Pi

is the state Si−1 from the previous round (where S0 is simply the main input x and potentially also
a witness w) as well as uniformly random coins Ri−1, which are generated by the verifier (where
R0 is defined as the empty string). The output of each circuit Pi is the state Si for the next round
and a message Mi to be transmitted to the verifier. The size |P| of the prover P is defined as the
sum of the prover circuit sizes, i.e., |P| := |P1|+ · · ·+ |Pℓ|.

The verifier V is a Boolean circuit that given as input the transcript (x,M1, R1, . . . ,Mℓ−1, Rℓ−1,Mℓ)
decides whether to accept or reject. We will often be interested in verifiers that run in sub-linear
time, and in particular are unable to read the entire transcript. To facilitate this, we consider
pair languages for which the input is split into two parts x = (xexp, ximp). The first part, xexp
is read explicitly by the verifier (and will often consist of a parameterization of the problem). In
contrast, the verifier only has oracle access to ximp.8 We model the verifier V as consisting of
two separate circuits. The first circuit V1 takes as input xexp, R1, . . . , Rℓ−1, and outputs the set of
query locations I. The circuit V2 then gets as input xexp, R1, . . . , Rℓ−1, as well as the projection of
(ximp,M1, . . . ,Mℓ) to the query set I, denoted by (ximp,M1, . . . ,Mℓ)|I , and based on these decides
whether to accept or reject. The size |V| of the verifier V is defined as the sum of the sizes of its
constituent parts, i.e., |V| := |V1|+ |V2|.

The key parameters that we will care about are:
8The way the input is split is part of the specification of the language, and in all of our theorem statements we

explicitly state how the input is split.

14

1. Query Complexity: the number of bits q = |I| that the verifier reads from the input and
transcript. An interactive proof corresponds to the case in which the verifier reads all of the
transcript.

2. Round complexity: the number of rounds ℓ.

3. Communication complexity: The total length of P ’s messages M1, . . . ,Mℓ.

4. Randomness complexity: The total length of V ’s messages R1, . . . , Rℓ.

5. Verifier Size: the size of the verifier V, as defined above.

6. Prover Size: the size of the prover P, as defined above. In the context of interactive oracle
protocols for NP relations we will often assume that the prover is also given as an auxiliary
input a witness w proving that the input x satisfies the relation.

Using the notion of interactive oracle protocols, we can now define interactive oracle proofs.

Definition 2.2 (Interactive oracle proof (IOP)). An ℓ-round interactive oracle proof (IOP) with
soundness error ε for a promise problem (YES,NO) is an ℓ-round (public-coin) interactive oracle
protocol (P,V) such that:

• Completeness: If x ∈ YES, then when V interacts with P, it accepts with probability 1.

• Soundness: If x ∈ NO, then for every prover strategy P∗, when V interacts with P∗, it
accepts with probability at most ε over the verifier’s random string R1, . . . , Rℓ−1.

We call ε the soundness error of the IOP.

Focusing on promise problems allows us to model settings in which the input has some particular
structure (e.g., is encoded under an error-correcting code). In particular, this will sometimes allow
our verifier to run in time that is sub-linear even in the input.

Lastly, we note that the standard notion of PCP corresponds to the special case of IOP, when
the round complexity is ℓ = 1, while the notion of an interactive proof corresponds to the special
case in which the verifier reads all of the transcript.

2.2 Error-correcting codes

Let Σ be a finite alphabet, and k, n be positive integers (the message length and the codeword length,
respectively). An (error-correcting) code is an injective map C : Σn → Σn′ . The elements in the
domain of C are called messages, and the elements in the image of C are called codewords. We say
that C is systematic if the message is a prefix of the corresponding codeword, i.e., for every x ∈ Σn

there exists z ∈ Σn′−n such that C(x) = (x, z). If Σ = Fs for some finite field F and integer s ≥ 1,
and C is a linear map over F, then we say that C is F-linear. In the case that Σ = F, we simply say
that C is linear. The generating matrix of a linear code C : Fn → Fn′ is a matrix G ∈ Fn′×n such
that C(x) = G · x for any x ∈ Fn.

The rate of a code C : Σn → Σn′ is the ratio ρ := n
n′ . The relative distance dist(C) of C

is the maximum δ > 0 such that for every pair of distinct messages x, y ∈ Σn it holds that
distΣ(C(x), C(y)) ≥ δ.

Below we mention some specific families of codes we will use in our protocols, and list their
properties.

15

Tensor codes. A main ingredient in our constructions is the tensor product operation, defined
as follows (see, e.g., [Sud01,DSW06]).

Definition 2.3 (Tensor codes). The tensor product code of linear codes C1 : Fn1 → Fn′
1 and

C2 : Fn2 → Fn′
2 is the code C ⊗ C ′ : Fn1×n2 → Fn′

1×n′
2, where the encoding (C1 ⊗ C2)(M) of any

message M ∈ Fn1×n2 is obtained by first encoding each column of M with the code C1, and then
encoding each resulting row with the code C2.

Note that by linearity, the codewords of C1 ⊗ C2 are n1 × n2 matrices (over the field F) whose
columns belong to the code C1, and whose rows belong to the code C2. It is also known that the
converse is true: any n1×n2 matrix, whose columns belong to the code C1, and whose rows belong
to the code C2, is a codeword of C1 ⊗ C2.

Fact 2.4. A matrix w ∈ Fn1×n2 is a codeword of C1 ⊗ C2 if and only if the restriction of w to any
column is a codeword of C1, and the restriction of w to any row is a codeword of C2.

The following effects of the tensor product operation on the classical parameters of the code are
well known.

Fact 2.5. Suppose that C1 : Fn1 → Fn′
1, C2 : Fn2 → Fn′

2 are linear codes of rates ρ1, ρ2 and relative
distances δ1, δ2 respectively. Then, the tensor product code C1 ⊗ C2 is a linear code of rate ρ1 · ρ2
and relative distance δ1 · δ2. Moreover, if C1, C2 can be encoded by Boolean circuits of sizes s1, s2
respectively, then C1 ⊗ C2 can be encoded by a Boolean circuit of size n1 · s1 + n1 · s2.

For a linear code C : Fn → Fn′ , let C⊗1 := C and C⊗t := C ⊗ C⊗(t−1), for any t ≥ 2. As in
the 2-dimensional case, the codewords of C⊗t : Fnt → F(n′)t can be viewed as t-dimensional cubes,
satisfying that their projection on any axis-parallel line is a codeword of C. Once more, we have
that the converse is also true.

Fact 2.6. A t-dimensional cube w ∈ F(n′)t is a codeword of C⊗t if and only if the restriction of w
to any axis-parallel line is a codeword of C.

By applying Fact 2.5 iteratively, we get the following corollary.

Corollary 2.7. If C is a linear code of rate ρ and relative distance δ, then C⊗t is a linear code of
rate ρt and relative distance δt. Furthermore, if C can be encoded by a Boolean circuit of size s,
then C⊗t can be encoded by a Boolean circuit of size t(n′)t−1s.

Low-degree extension. One well-known example of tensor codes is obtained using the low-degree
extension, defined as follows.

Fact 2.8 (Low-degree extension). Let F be a field and let H1, . . . ,Hm be arbitrary subsets of F.
Given a function f : H1×. . .×Hm → F, there exists a unique m-variate polynomial f̂ ∈ F[x1, . . . , xm]
that agrees with f on H1×· · ·×Hm, and where each variable xi has individual degree at most |Hi|−1.

We call f̂ the low-degree extension of f . In the special case that H1 = · · · = Hm = {0, 1}, we call
f̂ the multilinear extension of f , and in the special case that m = 1, we call f̂ the univariate extension
of f .

We also use the following extension of the FFT, which allows to interpolate a given univariate
polynomial in quasi-linear time, on any set of points.

16

Theorem 2.9 (Fast Evaluation of univariate extension (see [vzGG13, Chapter 10])). Let F be a
field and let H ⊆ F be an arbitrary subset. Given a function f : H → F, and points α1, . . . α|H| ∈ F
the values of the (|H| − 1)-degree univariate extension f̂ at the points α1, . . . , α|H| can be computed
using Õ(|H|) field operations.

Linear-time encodable codes. For our protocols, we shall also require linear-time encodable
codes of distance arbitrarily close to 1, which can be obtained by combining the linear-time encodable
codes of Spielman [Spi96] with the distance amplification method of [AEL95].

Theorem 2.10 (Linear-time encodable codes). There exists an absolute constant σ0 so that the
following holds. For any ε > 0, and for any prime power q ≥ (1/ε)σ0, there exists a family
C = {Cn : Fn → Fn′}n∈N of systematic linear codes of relative distance 1−ε over the field F = GF(q)
that can be encoded by a Boolean circuit of size n · poly(1/ε).

Proof sketch. Theorem 3 of [GI05] shows how to combine the linear-time encodable codes of Spielman
[Spi96] with the distance amplification method of [AEL95] to obtain Fq-linear codes of relative
distance 1− ϵ

2 and alphabet size q∆ for q,∆ = poly(1/ϵ), that can be encoded by a Boolean circuit
of size n · poly(1/ε) (the structure of the alphabet and the dependence of the running time on ϵ
are not explicitly stated in the theorem but can be deduced from the proof). By encoding each
alphabet symbol in the resulting code with any explicit linear code over Fq of relative distance 1− ϵ

2
(e.g., a Reed-Solomon code), one can obtain a linear code over Fq of relative distance at least 1− ϵ
and encoding time n · poly(1/ϵ).

3 Inner product check in log rounds

In this section, we prove the warmup version of our main result, as described in Section 1.2. Namely,
a logarithmic-round interactive proof with a linear-size prover which reduces checking the inner
product of a pair of strings to checking the value of an entry in the encoding of these strings via a
linear-time encodable code C. Recall that a similar result was already shown in [RR25], but via a
more complicated IOP protocol.

Theorem 3.1. For any ϵ ∈ (0, 12) and constant γ > 0, there exists a field F1 of characteristic 2 and
of size poly(1/ε), and a family C = {Cn : (F1)

n → (F1)
n′}n∈N of linear codes of constant relative

distance that can be encoded by a Boolean circuit of size n · poly(1/ε), so that the following holds.
There exists an O(log n)-round interactive protocol, where the prover gets as input a pair of

codewords c1 = Cn(x), c2 = Cn(y) ∈ Cn, where x, y ∈ Fn
1 , and a value v ∈ F1, and the verifier gets

as input only the value v. At the end of the interaction, the verifier either rejects or outputs indices
i1, i2 ∈ [n′] and values u1, u2 ∈ F1 such that:

• Completeness: If
∑

i∈[n] x(i) · y(i) = v, then when V interacts with P it outputs i1, i2 ∈ [n′]
and u1, u2 ∈ F1 such that c1(i1) = u1 and c2(i2) = u2.

• Soundness: If
∑

i∈[n] x(i) · y(i) ̸= v then, for every P ∗, when V interacts with P ∗, with
probability at least 1 − ε, either V rejects or it outputs i1, i2 ∈ [n′] and u1, u2 ∈ F1 such that
either c1(i1) ̸= u1 or c2(i2) ̸= u2.

17

The protocol has communication complexity nγ · poly(1/ε) and randomness complexity log(n) ·
O(log log(n) + 1/ε). The prover can be implemented as a Boolean circuit of size n · poly(1/ε), and
the verifier has running time nO(γ) · poly(1/ε).
Remark 3.2. Theorem 3.1 can also be extended to checking the inner product of a constant number
of strings instead of just two strings, however we state and prove it only for a pair of strings for
simplicity of exposition.

Also, using proof composition, the interactive proof given in the above theorem can be turned into
an IOP with logarithmic query complexity and polylogarithmic verifier running time, and the same
communication complexity and prover size as in the above theorem (See Section 4.5, where we apply
a similar transformation to our O(log∗ n)-round interactive proofs).

Remark 3.3. We remark that the polynomial dependence on 1/ε in the prover size in Theorem 3.1
can be improved by invoking the theorem wrt a constant ε0 and applying (parallel) repetition or the
more efficient amplification strategy from [HR22] to reduce the soundness error.

Towards the proof of the above theorem, we first set in Section 3.1 below the parameters that
will be used throughout this section. Then, in Section 3.2 we present a logarithmic-round interactive
protocol with a linear-size prover which reduces checking the inner product of a pair of strings to
checking the evaluation of their multilinear extension at a special point coming from a Matryoshka
series (see Definition 3.4 in Section 3.1 below). In Section 3.3, we show a linear-time algorithm
for computing the evaluation of the multilinear extension at Matryoshka points, and we use this
algorithm in Section 3.4 to design a constant-round interactive protocol with a linear-size prover
which reduces checking the evaluation of the multilinear extension at a Matryoshka point to checking
the value of an entry in the encoding of the input strings via a linear-time encodable (tensor) code.

The above Theorem 3.1 then follows as a direct corollary of Lemma 3.5 from Section 3.2 and
Lemma 3.10 from Section 3.4.

3.1 Setting of parameters

Our goal is to design a protocol that given a pair of strings x, y ∈ Fn
1 and a value v ∈ F1, checks

that
∑

i∈[n] x(i) · y(i) = v. In what follows, it will be convenient for us to view the strings x, y ∈ Fn
1

as (the truth table of) functions f, g : {0, 1}m → F1, respectively, for m = ⌈log n⌉. Under this
notation, our goal is to check that ⟨f, g⟩ :=

∑
b∈{0,1}m f(b) · g(b) = v.

Our protocols use a special kind of increasing field ensemble, that we call Matryoshka series.

Definition 3.4 (Matryoshka series). Let F = (Ft)t∈N be an ensemble of finite fields. We say that F
is increasing if Ft ⊆ Ft+1 for every t ∈ N. Let F = (Ft)t∈N be an increasing fields ensemble. Then
its Matryoshka series is the sequence MF = (MF

t)t∈N, where MF
t = F1 × F2 × · · · × Ft.

When the field ensemble F = (Ft)t∈N is clear from the context, we shall omit it from the notation
of MF. We emphasize that the notation Ft simply refers to the t-th field in the ensemble, whereas
GF(a) refers to the finite field containing a elements.

We shall use a specific choice of field ensemble F = (Ft)t∈N, defined as follows. Let σ0 be a
sufficiently large constant to be determined later on, let ε ∈ (0, 12) be a parameter, and let γ > 0 be
a constant. For t ∈ N, let at be the smallest integer of the form 22

j that is larger than t2

εσ0 , and let
Ft = GF(at) be the field of at elements. Note that for every t ∈ N, it holds that

t2

(εγ)σ0
< at ≤

(
t2

(εγ)σ0

)2

. (3)

18

Also note that F = (Ft)t∈N is an increasing field ensemble, where Ft is a field of characteristic 2 and
size at. We let M := MF = (Mt)t∈N denote its Matryoshka series.

3.2 Reducing Inner Product Claim to Matryoshka points in MLE

In this section, we present a logarithmic-round interactive protocol with a linear-size prover which
reduces checking the inner product of a pair of functions f, g : {0, 1}m → F1 to checking the
evaluation of their multilinear extensions at a special point coming from the Matryoshka series
defined in the previous section.

Lemma 3.5. Let ϵ ∈ (0, 12) be a parameter, let γ > 0 be a constant, and let Ft and Mt be defined
as in Section 3.1 with respect to ϵ and γ. Then there exists an (m + 1)-round interactive protocol,
where the prover gets as input a pair of functions f, g : {0, 1}m → F1 and a value v ∈ F1, and the
verifier gets as input only the value v. At the end of the interaction, the verifier either rejects or
outputs a point r ∈ Mm and values α, β ∈ Fm such that:

• Completeness: If ⟨f, g⟩ = v, then when V interacts with P it outputs r ∈ Mm and α, β ∈ Fm

such that f̂(r) = α and ĝ(r) = β, where f̂ , ĝ : (Fm)m → Fm denote the multilinear extension
of f, g, respectively, when viewed as functions f, g : {0, 1}m → Fm.

• Soundness: If ⟨f, g⟩ ≠ v then, for every P ∗, when V interacts with P ∗, with probability at
least 1 − ε, either V rejects or it outputs r ∈ Mm and α, β ∈ Fm such that f̂(r) ̸= α or
ĝ(r) ̸= β.

The protocol has communication and randomness complexity at most m·O(log(m/ε)), the prover
can be implemented as a Boolean circuit of size 2m · polylog(1/ε), and the verifier has running time
m · polylog(m/ε).

Proof. The protocol establishing Lemma 3.5 follows along the lines of the classical sumcheck protocol
[LFKN92], except that it uses increasingly large fields from our carefully chosen field ensemble F.
The formal description of the protocol is given in Fig. 1. We proceed to show that it satisfies the
requirements.

Completeness. We start by proving the following claim:

Claim 3.6. For every t ∈ {0, 1, . . . ,m} and bt+1, . . . , bm ∈ {0, 1} it holds that

ft(bt+1, . . . , bm) = f̂(r1, . . . , rt, bt+1, . . . , bm)

and
gt(bt+1, . . . , bm) = ĝ(r1, . . . , rt, bt+1, . . . , bm).

Proof. We prove the claim for f , the proof for g is identical.
The proof is by induction over t. For t = 0, this is true by our setting of f0 = f . Assuming

the claim holds for t − 1, we prove it holds for t. By definition of ft in Step 3e, we have that
8We assume without loss of generality that n is a power of 2, otherwise padding with zeros at most doubles the

input size.

19

Prover Input: A pair of functions f, g : {0, 1}m → F1, a value v ∈ F1.
Verifier Input: The value v ∈ F1.

The Protocol:

1. Let Λ ⊆ F1 be an arbitrary subset of three distinct field elements such that 0, 1 ∈ Λ.

2. Set v0 := v, f0 =: f , g0 := g.

3. For t = 1, 2, . . . ,m:
▷ Invariant: At the beginning of iteration t, the functions ft−1, gt−1 : {0, 1}m−(t−1) →
Ft−1 and scalar vt−1 ∈ Ft−1 have already been computed (where we set F0 := F1). Recalling
that Ft−1 is a subfield of Ft, in what follows, we view the range of ft−1 and gt−1 as being
Ft.

(a) The prover P computes and sends to V the function wt : Λ → Ft defined as

wt(λ) =
∑

bt+1,...,bm∈{0,1}

f̂t−1(λ, bt+1, . . . , bm) · ĝt−1(λ, bt+1, . . . , bm),

for every λ ∈ Λ, where f̂t−1, ĝt−1 : (Ft)
m−(t−1) → Ft denote the multilinear extensions

of ft−1, gt−1 : {0, 1}m−(t−1) → Ft, respectively.

(b) V checks that wt(0) + wt(1) = vt−1, otherwise it rejects.

(c) V randomly chooses rt ∈ Ft and sends it to P .

(d) V computes vt = ŵt(rt), where ŵt : Ft → Ft denotes the univariate extension of
wt : Λ → Ft (a degree 2 polynomial).

(e) P computes ft, gt : {0, 1}m−t → Ft, defined as ft(bt+1, . . . , bm) =
f̂t−1(rt, bt+1, . . . , bm) and gt(bt+1, . . . , bm) = ĝt−1(rt, bt+1, . . . , bm) for all
bt+1, . . . , bm ∈ {0, 1}.

4. P sends α := fm ∈ Fm and β := gm ∈ Fm.

5. V checks that α · β = vm, otherwise it rejects.

6. V outputs r = (r1, . . . , rm) ∈ Mm and α, β ∈ Fm.

Figure 1: Matroyshka Inner Product Check

20

ft(bt+1, . . . , bm) = f̂t−1(rt, bt+1, . . . , bm) for any bt+1, . . . , bm ∈ {0, 1}. On the other hand, by the
induction hypothesis we have that for any bt, . . . , bm ∈ {0, 1},

f̂t−1(bt, . . . , bm) = ft−1(bt, . . . , bm) = f̂(r1, . . . , rt−1, bt, . . . , bm).

So f̂t−1(xt, . . . , xm) and f̂(r1, . . . , rt−1, xt, . . . , xm) are two multilinear polynomials over Fm in m−
(t− 1) indeterminates xt, . . . , xm that agree on all values in {0, 1}m−(t−1), and so these polynomials
must be identical. We conclude that for any bt+1, . . . , bm ∈ {0, 1},

ft(bt+1, . . . , bm) = f̂t−1(rt, bt+1, . . . , bm) = f̂(r1, . . . , rt, bt+1, . . . , bm).

Completeness relies on the following claim.

Claim 3.7. For any t ∈ {1, 2, . . . ,m− 1}, it holds that wt+1(0) + wt+1(1) = ŵt(rt).

Proof. Fix t ∈ {1, 2, . . . ,m− 1}. Then we have that

wt+1(0) + wt+1(1) =
∑

b∈{0,1}

∑
bt+2,...,bm∈{0,1}

f̂t(b, bt+2 . . . , bm) · ĝt(b, bt+2, . . . , bm)

=
∑

bt+1,...,bm∈{0,1}

ft(bt+1, . . . , bm) · gt(bt+1, . . . , bm)

=
∑

bt+1,...,bm∈{0,1}

f̂t−1(rt, bt+1, . . . , bm) · ĝt−1(rt, bt+1, . . . , bm)

= ŵt(rt),

where the last equality follows since ŵt(x) and∑
bt+1,...,bm∈{0,1}

f̂t−1(x, bt+1, . . . , bm) · ĝt−1(x, bt+1, . . . , bm)

are both degree 2 polynomials in the indeterminate x, which by Step 3a, agree on all three points
λ ∈ Λ, hence they must be the same polynomial.

Next assume that ⟨f, g⟩ = v. Then we have that

w1(0) + w1(1) =
∑

b∈{0,1}

∑
b2,...,bm∈{0,1}

f̂0(b, b2 . . . , bm) · ĝ0(b, b2, . . . , bm)

∑
b1,b2,...,bm∈{0,1}

f0(b1, b2 . . . , bm) · g0(b1, b2, . . . , bm) = v0,

and so the verifier does not reject on Step 3b of the first iteration. Moreover, by Claim 3.7 above,
the verifier also does not reject on Step 3b in any of the iterations t ∈ {2, . . . ,m}. Furthermore, we
have that

α · β = fm · gm = f̂m−1(rm) · ĝm−1(rm) = ŵm(rm) = vm,

where the third equality follows by the same argument as in the proof of Claim 3.7, and so the
verifier does not reject on Step 5 as well. Finally, by Claim 3.6, the verifier outputs α, β, and r
which satisfy that α = fm = f̂(r) and β = gm = ĝ(r).

21

Soundness. Next assume that ⟨f, g⟩ ≠ v. Fix a prover strategy P ∗, and denote by w∗
1, w

∗
2, . . . , w

∗
m

the messages that P ∗ sends in Step 3a. Soundness relies on the following claim.

Claim 3.8. If for some t ∈ {1, 2, . . . ,m − 1}, it holds that ŵ∗
t (rt) ̸= ŵt(rt), and V does not reject

in Step 3b in iteration t+ 1, then with probability at least 1− 2
|Ft+1| over the choice of rt+1, it holds

that ŵ∗
t+1(rt+1) ̸= ŵt+1(rt+1).

Proof. Fix t ∈ {1, . . . ,m − 1}, and assume that ŵ∗
t (rt) ̸= ŵt(rt), and that V does not reject in

Step 3b in iteration t + 1. By assumption that V does not reject in Step 3b of iteration t + 1, we
have that w∗

t+1(0) + w∗
t+1(1) = ŵ∗

t (rt). On the other hand, by Claim 3.7 we know that wt+1(0) +
wt+1(1) = ŵt(rt). Therefore, by assumption that ŵ∗

t (rt) ̸= ŵt(rt), we have that w∗
t+1(0)+w∗

t+1(1) ̸=
wt+1(0) + wt+1(1). Hence ŵt+1 and ŵ∗

t+1 are two distinct degree 2 polynomials over Ft+1, and so
they agree on at most a 2

|Ft+1| -fraction of the points. Thus with probability at least 1− 2
|Ft+1| over

the choice of rt+1, it holds that ŵt+1(rt+1) ̸= ŵ∗
t+1(rt+1).

Now, if the verifier rejects in any of the iterations then we are done. Hence we may assume that
the verifier does not reject in any of the iterations.

By assumption that ⟨f, g⟩ ≠ v, we have that

w1(0) + w1(1) =
∑

b1,b2,...,bm∈{0,1}

f0(b1, b2 . . . , bm) · g0(b1, b2, . . . , bm) ̸= v0.

On the other hand, by assumption that the verifier does not reject on Step 3b, we also have that
w∗
1(0) + w∗

1(1) = v0. We conclude that ŵ1 and ŵ∗
1 are two distinct degree 2 polynomials, and

by the same argument as in the proof of Claim 3.8, this implies in turn that ŵ1(r1) ̸= ŵ∗
1(r1)

with probability at least 1 − 2
|F1| over the choice of r1. Applying Claim 3.8 above iteratively, and

using the union bound, we then conclude that with probability at least 1−
∑m

t=1
2

|Ft| , it holds that
ŵm(rm) ̸= ŵ∗

m(rm).
Next assume that this latter event holds, i.e., that ŵm(rm) ̸= ŵ∗

m(rm), and let α∗, β∗ denote the
messages sent by P on Step 4. Then assuming that the verifier does not reject on Step 5, we have
that α∗ ·β∗ = ŵ∗

m(rm). On the other hand, by Claim 3.6 we have that ŵm(rm) = fm ·gm = f̂(r)·ĝ(r).
We conclude that in this case α∗ · β∗ ̸= f̂(r) · ĝ(r), and so either f̂(r) ̸= α∗ or ĝ(r) ̸= β∗.

Overall, we obtain a soundness error of at most
m∑
t=1

2

|Ft|
≤

∞∑
t=1

2

|Ft|
=

∞∑
t=1

2

at
≤

∞∑
t=1

2(εγ)σ0

t2
≤ εσ0 ·

∞∑
t=1

2

t2
< ε,

where the last inequality follows for a sufficiently large constant σ0.

Number of rounds is clearly m + 1. Next we analyze the communication and randomness
complexity, and prover and verifier running time.

Communication and Randomness Complexity. In every round t, both the prover and the
verifier send a constant number of elements of Ft, where each field element can be represented using
O(log(|Ft|)) bits. Hence there exists an absolute constant ξ0 so that the total communication and
randomness complexity is at most

m∑
t=1

ξ0 · log(|Ft|) =
m∑
t=1

ξ0 · log(at) ≤ m ·O(log(am)) ≤ m ·O(log(m/ϵ)).

22

Prover complexity. In every round t, in both Steps 3a and 3e, the prover has to compute the
values of f̂t−1 and ĝt−1 on 2m−t points of the form (λ, bt+1, . . . , bm), where λ ∈ Ft and bt+1, . . . , bm ∈
{0, 1}. We claim that each such value can be computed using a constant number of field operations
over Ft. To see this, note that for any bt+1, . . . , bm ∈ {0, 1}m we have that f̂t−1(x, bt+1, . . . , bm) is a
degree 1 polynomial over Ft in the indeterminate x, and hence its value on any point in Ft can be
reconstructed from ft−1(0, bt+1, . . . , bm) and ft−1(1, bt+1, . . . , bm) using a constant number of field
operations in Ft (and similarly for ĝt−1). Hence, all the required values can be computed using
O(2m−t) field operations in Ft. Additionally, the prover has to use O(2m−t) field operations in Ft

to compute the inner product on Step 3a from these values.
Since each field operation in Ft can be performed in time polylog(|Ft|), overall there exists an

absolute constant ξ0 so that the prover can be implemented as a Boolean circuit of size:

m∑
t=1

2m−t · logξ0(|Ft|) = 2m
m∑
t=1

logξ0(at)

2t

≤ 2m
∞∑
t=1

log2ξ0(t/ϵ)

2t

≤ 2m
∞∑
t=1

log2ξ0(t) + log2ξ0(1/ε)

2t

≤ 2m · polylog(1/ε).

Verifier complexity. In every round t, Step 3b can be clearly performed using a constant number
of field operations in Ft. In Step 3d, the verifier needs to compute the value of ŵt on rt ∈ Ft. Since
ŵt is a degree 2 polynomial, this value can be computed from the values wt(λ) for λ ∈ Λ using a
constant number of field operations in Ft. So overall, the verifier performs a constant number of
field operations in Ft.

Therefore, there exists an absolute constant ξ0 so that the overall verifier running time is at
most

m∑
t=1

logξ0(|Ft|) =
m∑
t=1

logξ0(at) ≤ m · polylog(am) ≤ m · polylog(m/ϵ).

3.3 Computing a Matryoshka point in the MLE

Next we show that the multilinear extension of a given function f : {0, 1}m → F1 can be evaluated
in linear time on points coming from the Matryoshka series corresponding to our choice of field
ensemble.

Lemma 3.9. Let ϵ ∈ (0, 12) be a parameter, let γ > 0 be a constant, and let Ft and Mt be defined as
in Section 3.1 with respect to ϵ and γ. Then there exists a Boolean circuit of size 2m · polylog(1/ε)
that given as input a function f : {0, 1}m → F1 and a point r ∈ Mm, outputs f̂(r) ∈ Fm, where f̂
denotes the multilinear extension of f , when viewed as a function f : {0, 1}m → Fm.

Proof. The algorithm is presented in Fig. 2. Note that precisely the same procedure as in Figure
2 was used in the protocol of Figure 1 by the prover to compute the value of f̂(r), and exactly

23

Input: A function f : {0, 1}m → F1 and a point r = (r1, . . . , rm) ∈ Mm.
Output: f̂(r).

The Algorithm:

1. Set f0 := f .

2. For t = 1, 2, . . . ,m:
▷ Invariant: At the beginning of iteration t, the function ft−1 : {0, 1}m−(t−1) → Ft−1

has already been computed (where we set F0 := F1). Recalling that Ft−1 is a subfield of
Ft, in what follows, we view the range of ft−1 as being Ft.

Compute ft : {0, 1}m−t → Ft, defined as ft(bt+1, . . . , bm) = f̂t−1(rt, bt+1, . . . , bm)
for all bt+1, . . . , bm ∈ {0, 1}, where f̂t−1 : (Ft)

m−(t−1) → Ft denotes the multilinear
extension of ft−1 : {0, 1}m−(t−1) → Ft.

3. Output fm ∈ Fm.

Figure 2: Fast MLE Evaluation at Matroyshka Points

the same analysis shows that fm = f̂(r), and that the algorithm can be implemented as a Boolean
circuit of size 2m · polylog(1/ε).

3.4 Fast code switching for MLE

In this section, we use the algorithm from the previous section to design a constant-round interactive
protocol with a linear-size prover which reduces checking the evaluation of the multilinear extension
of a given function f : {0, 1}m → F1 at a Matryoshka point to checking the value of an entry in the
encoding of (the truth table of) f via a linear-time encodable code.

Lemma 3.10. Let ϵ ∈ (0, 12) be a parameter, let γ > 0 be a constant, and let Ft and Mt be defined
as in Section 3.1 with respect to ϵ and γ. Then there exists a systematic linear code ensemble
C = {(F1)

n → (F1)
n′}n∈N that can be encoded using a Boolean circuit of size n · poly(1/ϵ), and a

constant-round interactive protocol with the following properties:

• Prover’s input: The prover gets as input a point r ∈ Mm, a value v ∈ Fm, and a codeword
c = C(f) for some function f : {0, 1}m → F1, where f is viewed as a length 2m binary string.

• Verifier’s input: The verifier gets as input the point r ∈ Mm and the value v ∈ Fm.

• Completeness: If f̂(r) = v, then when V interacts with P , it outputs an entry ρ and a value
u ∈ F1 so that c(ρ) = u, where f̂ denotes the multilinear extension of f , when viewed as a
function f : {0, 1}m → Fm.

• Soundness: If f̂(r) ̸= v then, for every P ∗, when V interacts with P ∗, with probability at
least 1− ε, it either rejects or outputs ρ and u ∈ F1 so that c(ρ) ̸= u.

24

The protocol has communication complexity 2γm · poly(1/ε) and randomness complexity m +
O(log(1/ε)). The prover can be implemented as a Boolean circuit of size 2m · poly(1/ε), and the
verifier has running time 2O(γm) · poly(1/ε).

Proof. The protocol establishing Lemma 3.10 relies on the code switching technique of [RR24],
and uses the algorithm for fast MLE evaluation at Matryoshka points from the previous section to
compute the weighted sums in the protocol of [RR24] in linear time.

The code ensemble C: Let ℓ := ⌈2/γ⌉. Let {Cn : (F1)
n → (F1)

n′}n∈N be the systematic linear
code ensemble of relative distance 1− ϵ

ℓ that is encodable using a Boolean circuit of size n·poly(1/ε),
guaranteed by Theorem 2.10 for a sufficiently large constant σ0, and let C = {(Cn)

⊗ℓ}n∈N. Note
that by Fact 2.6, (Cn)

⊗ℓ : (F1)
nℓ → (F1)

(n′)ℓ can be encoded in time nℓ · poly(1/ε).
The encoding of a function f : {0, 1}m → F1 via C is performed as follows. Without loss of

generality, we may assume that ℓ divides m (otherwise, we can increase the number of variables by at
most ℓ, and embed the function f on all inputs that assign zeros to these additional variables), and let
n := m

ℓ . Let N := 2n, and for i ∈ [N], let i ∈ {0, 1}n denote its binary representation. We view f as a
string Mf ∈ (F1)

Nℓ (noting that N ℓ = 2n·ℓ = 2m) which satisfies that Mf (i1, . . . , iℓ) = f
(
i1, . . . , iℓ

)
for any i1, . . . , iℓ ∈ [N]. The encoding C(f) of f is (CN)⊗ℓ(Mf) ∈ (F1)

(N ′)ℓ .

The interactive protocol: The formal description of the protocol is presented in Fig. 3. In what
follows, every t, we view Ft as a loga1(at)-dimensional vector space over F1 (recalling that F1 ⊆ Ft),
and fix a basis Bt of the field Ft over F1. Every element α ∈ Ft can be uniquely expressed as a
linear combination α =

∑
b∈Bt

α|b · b where α|b ∈ F1. More generally, any vector w ∈ (Ft)
n can be

uniquely expressed as a linear combination w =
∑

b∈Bt
w|b · b, where w|b ∈ (F1)

n.
We proceed to show that the protocol satisfies the requirements.

Completeness. Completeness relies on the following claim.

Claim 3.11. It holds that

ŷ1(rn·(ℓ−1)+1, . . . , rn·ℓ) = f̂(r1, . . . , rn·ℓ),

and for any t ∈ {1, 2, . . . , ℓ− 1},

ŷt+1(rn·(ℓ−(t+1))+1, . . . , rn·(ℓ−t)) = wt(ρℓ−(t−1)).

Proof. We first show that ŷ1(rn·(ℓ−1)+1, . . . , rn·ℓ) = f̂(r1, . . . , rn·ℓ). For every i1, . . . , iℓ ∈ [N], it
holds that

f1,iℓ
(
i1, . . . , iℓ−1

)
= c0 (i1, . . . , iℓ) = Mf (i1, . . . , iℓ) = f

(
i1, . . . , iℓ

)
.

Hence for any i ∈ [N], the polynomials f̂1,i(x1, . . . , xn·(ℓ−1)) and f̂(x1, . . . , xn·(ℓ−1), i) are two
multilinear polynomials over n · (ℓ−1) variables that agree on all points of {0, 1}n·(ℓ−1), and so they
are the same polynomial, and in particular,

w1(i) = f̂1,i(r1, . . . , rn·(ℓ−1)) = f̂(r1, . . . , rn·(ℓ−1), ī).

25

Prover input: A point r ∈ Mm, a value v ∈ Fm, and a codeword c = (CN)⊗ℓ(Mf) ∈ (F1)
(N ′)ℓ

for some function f : {0, 1}m → F1

Verifier input: The point r ∈ Mm and the value v ∈ Fm

1. Set v0 := v and c0 := c.

2. For t = 1, 2, . . . , ℓ:
▷ Invariant: At the beginning of iteration t, a codeword ct−1 ∈ (CN)⊗(ℓ−(t−1)) and scalar
vt−1 ∈ Fn·(ℓ−(t−1)) have already been computed (where we set F0 := F1).

(a) For every i ∈ [N ′]:

i. Let ft,i : {0, 1}n·(ℓ−t) → F1 be the function given by

ft,i(i1, . . . , iℓ−t) = ct−1 (i1, . . . , iℓ−t, i)

for any i1, . . . , iℓ−t ∈ [N].
ii. P computes f̂t,i(r1, . . . , rn·(ℓ−t)) using the algorithm given by Lemma 3.9 (cf.,

Fig. 2), where f̂t,i : (Fn·(ℓ−t))
n·(ℓ−t) → Fn·(ℓ−t) denotes the multilinear extension

of ft,i, when viewed as a function ft,i : {0, 1}n·(ℓ−t) → Fn·(ℓ−t); Let wt(i) ∈
Fn·(ℓ−t) denote the output of the algorithm.

(b) P sends wt ∈ (Fn·(ℓ−t))
N ′ to V .

(c) For every b ∈ Bn·(ℓ−t), the verifier V checks that wt|b ∈ FN ′
1 is a codeword of CN ,

otherwise it rejects.

(d) Let yt ∈ (Fn·(ℓ−t))
N denote the systematic part of wt ∈ (Fn·(ℓ−t))

N ′ . View yt as
a function yt : {0, 1}n → Fn·(ℓ−(t−1)) (by identifying an element i ∈ [N] with its
binary representation i ∈ {0, 1}n, and recalling that Fn·(ℓ−t) ⊆ Fn·(ℓ−(t−1))), and let
ŷt : (Fn·(ℓ−(t−1)))

n → Fn·(ℓ−(t−1)) denote the multilinear extension of yt.
V checks that ŷt(rn·(ℓ−t)+1, . . . , rn·(ℓ−(t−1))) = vt−1, otherwise it rejects.

(e) V randomly chooses ρℓ−(t−1) ∈ [N ′] and sends it to P .

(f) Let ct ∈ (CN)⊗(ℓ−(t−1)) be defined as ct(i1, . . . , iℓ−t) = ct−1(i1, . . . , iℓ−t, ρℓ−(t−1)) for
any i1, . . . , iℓ−t ∈ [N ′], and let vt := wt(ρℓ−(t−1)) ∈ Fn·(ℓ−t).

3. V outputs the point ρ = (ρ1, . . . , ρℓ) ∈ (N ′)ℓ and the value vℓ.

Figure 3: Fast Code Switching for MLE

26

But this implies in turn that the polynomials ŷ1(x1, . . . , xn) and f̂(r1, . . . , rn·(ℓ−1), x1, . . . , xn) are
both multilinear polynomials over n variables that agree on all points of {0, 1}n, so they are the
same polynomial, and in particular

ŷ1(rn·(ℓ−1)+1, . . . , rn·ℓ) = f̂(r1, . . . , rn·ℓ).

Next fix t ∈ {1, 2, . . . , ℓ− 1}, we shall show that ŷt+1(rn·(ℓ−(t+1))+1, . . . , rn·(ℓ−t)) = wt(ρℓ−(t−1)).
For every i1, . . . , iℓ−t ∈ [N], it holds that

ft+1,iℓ−t

(
i1, . . . , iℓ−(t+1)

)
= ct (i1, . . . , iℓ−t) = ct−1

(
i1, . . . , iℓ−t, ρℓ−(t−1)

)
= ft,ρℓ−(t−1)

(
i1, . . . , iℓ−t

)
.

Hence for any i ∈ [N], the polynomials f̂t+1,i(x1, . . . , xn·(ℓ−(t+1))) and f̂t,ρℓ−(t−1)
(x1, . . . , xn·(ℓ−(t+1)), i)

are two multilinear polynomials over n·(ℓ−(t+1)) variables that agree on all points of {0, 1}n·(ℓ−(t+1)),
and so they are the same polynomial, and in particular,

wt+1(i) = f̂t+1,i(r1, . . . , rn·(ℓ−(t+1))) = f̂t,ρℓ−(t−1)
(r1, . . . , rn·(ℓ−(t+1)), ī).

But this implies in turn that the polynomials ŷt+1(x1, . . . , xn) and f̂t,ρℓ−(t−1)
(r1, . . . , rn·(ℓ−(t+1)), x1, . . . , xn)

are both multilinear polynomials over n variables that agree on all points of {0, 1}n, so they are the
same polynomial, and in particular

ŷt+1(rn·(ℓ−(t+1))+1, . . . , rn·(ℓ−t)) = f̂t,ρℓ−(t−1)
(r1, . . . , rn·(ℓ−t)) = wt(ρℓ−(t−1)).

Next assume that f̂(r) = v, we shall show that in this case the verifier does not reject, and
c(ρ1, . . . , ρℓ) = vℓ.

For any t ∈ [m2] and i ∈ [N ′], it is satisfied that wt(i) = f̂t,i(r1, . . . , rn·(ℓ−t)). By linearity of
the multilinear extension transformation, we get that wt is a linear combination of the codewords
in CN over the field Fn·(ℓ−t). Additionally, from the linearity of projection over base elements, we
get that for every b ∈ Bn·(ℓ−t) it happens that wt|b is a linear combination of the codewords of CN

and hence the verifier will not reject at Step 2c. Moreover, by assumption that f̂(r) = v, and by
the above Claim 3.11, the verifier does not reject on Step 2d. Finally, note that

vℓ = wℓ(ρ1) = cℓ−1(ρ1) = c(ρ1, . . . , ρℓ).

Soundness. Next assume that f̂(r) ̸= v. Fix a prover strategy P ∗, and denote by w∗
1, w

∗
2, . . . , w

∗
ℓ

the messages that P ∗ sends in Step 2b. For t ∈ [ℓ], let y∗t denote the systematic part of w∗
t .

Soundness relies on the following claim.

Claim 3.12. If for some t ∈ {1, 2, . . . , ℓ− 1}, it holds that wt(ρℓ−(t−1)) ̸= w∗
t (ρℓ−(t−1)), and V does

not reject on Steps 2c and 2d in iteration t+ 1, then with probability at least 1− ε
ℓ over the choice

of ρℓ−t, it holds that wt+1(ρℓ−t) ̸= w∗
t+1(ρℓ−t).

Proof. Fix t ∈ {1, 2, . . . , ℓ − 1}. Since the verifier does not reject on Step 2d of iteration t + 1, we
get that

ŷ∗t+1(rn·(ℓ−(t+1))+1, . . . , rn·(ℓ−t)) = w∗
t (ρℓ−(t−1)).

27

On the other hand, by Claim 3.11,

ŷt+1(rn·(ℓ−(t+1))+1, . . . , rn·(ℓ−t)) = wt(ρℓ−(t−1)).

Given the assumption of the claim, this implies in turn that

ŷt+1(rn·(ℓ−(t+1))+1, . . . , rn·(ℓ−t)) ̸= ŷ∗t+1(rn·(ℓ−(t+1))+1, . . . , rn·(ℓ−t)),

and so wt+1 ̸= w∗
t+1. Therefore there exists b ∈ Bn·(ℓ−t) such that wt|b ̸= w∗

t |b. Since V does not
reject on Step 2c of iteration t+1, we further have that both wt+1|b and w∗

t+1|b are codewords of CN ,
and so they must differ on at least a (1− ε

ℓ)-fraction of the entries. Consequently, with probability
at least 1 − ε

ℓ over the choice of ρℓ−t ∈ [N ′], it holds that wt+1|b(ρℓ−t) ̸= w∗
t+1|b(ρℓ−t), and so also

wt+1(ρℓ−t) ̸= w∗
t+1(ρℓ−t).

Now, if the verifier rejects in any of the iterations then we are done. Hence we may assume that
the verifier does not reject in any of the iterations, and we will show that in this case c(ρ) ̸= w∗

ℓ (rℓ)
with probability at least 1− ε over the choice of ρℓ, ρℓ−1, . . . , ρ1.

By assumption that f̂(r) ̸= v and by Claim 3.11, we have that ŷ1(rn·(ℓ−1)+1, . . . , rn·ℓ) ̸= v0.
On the other hand, by assumption that the verifier does not reject on Step 2d, we have that
ŷ∗1(rn·(ℓ−1)+1, . . . , rn·ℓ) = v0. So we conclude that w1 ̸= w∗

1, and in particular w1|b ̸= w∗
1|b for some

b ∈ Bn·(ℓ−1). By assumption that the verifier does not reject on Step 2c, we have that w1|b and
w∗
1|b are both codewords of CN , and so they differ by at least a (1 − ε

ℓ)-fraction of the entries.
Consequently, with probability at least 1− ε

ℓ over the choice of ρℓ, we have that w1|b(ρℓ) ̸= w∗
1|b(ρℓ),

and so w1(ρℓ) ̸= w∗
1(ρℓ). Applying Claim 3.12 iteratively, and using a union bound, we conclude

that with probability at least 1− ε over the choice of ρℓ, ρℓ−1, . . . , ρ1, it holds that wℓ(ρ1) ̸= w∗
ℓ (ρ1).

But since wℓ(ρ1) = cℓ−1(ρ1) = c(ρ1, . . . , ρℓ), this implies in turn that w∗
ℓ (ρ1) ̸= c(ρ1, . . . , ρℓ).

Number of rounds is clearly ℓ = ⌈1/γ⌉ = O(1). Next we analyze the communication and
randomness complexity, and prover and verifier running time.

Communication and Randomness Complexity. For any t ∈ [ℓ], in round t the prover sends
wt ∈ (Fn·(ℓ−t))

N ′ , where each element of Ft can be represented using O(log(|Ft|)) bits, so the
communication complexity is N ′ ·O(log(Fn·(ℓ−t))) ≤ N ′ ·O(log(|Fm|)). So the total communication
complexity is at most

ℓ ·N ′ ·O(log(|Fm|)) ≤ ℓ ·N · poly(1/ε) ·O(log(|Fm|))
= ℓ · 2m/ℓ · poly(1/ε) ·O(log(am))

≤ 2
γ
2
·m · poly(1/ε) ·O(log(m/ϵ))

≤ 2γm · poly(1/ε).

Additionally, in every round t the verifier sends a single element in [N ′] and hence the total
randomness complexity is at most

ℓ · log(N ′) ≤ ℓ · log
(
N · poly(1/ε)

)
≤ ℓ ·

(
log(N) +O(log(1/ε))

)
≤ m+O(log(1/ε)).

28

Prover Complexity. In Step 2(a)ii of round t, the prover runs the algorithm from Lemma 3.9
for N ′ times, on a function over n · (ℓ− t) variables. From the complexity analysis of the algorithm,
this can be done via a circuit of size 2n·(ℓ−t) · polylog(1/ε) ≤ 2n·(ℓ−1) · polylog(1/ε). Thus, overall,
the prover can be implemented as a Boolean circuit of size at most

ℓ ·N ′ · polylog(1/ε) · 2n·(ℓ−1) ≤ ℓ ·N · poly(1/ε) · 2n·(ℓ−1)

= ℓ · 2n · poly(1/ε) · 2n·(ℓ−1)

= ℓ · 2n·ℓ · poly(1/ε)
≤ 2m · poly(1/ε).

Verifier Complexity. In Step 2c of round t, the verifier first projects the string wt ∈ (Fn·(ℓ−t))
N ′

over all basis elements in Bn·(ℓ−t), which can be done in time N ′ ·polylog(|Fn·(ℓ−t)|) ≤ N ·poly(1/ε) ·
polylog(|Fm|) by solving a system of linear equation. Then, the verifier checks that every projection
is a codeword of CN which, since CN is a systematic code, can be done by re-encoding the word in
overall time N ·poly(1/ε). In Step 2d of iteration t, the verifier computes the multilinear extension of
yt ∈ (Fn·(ℓ−t))

N at a single point in Fn·(ℓ−(t−1)), which can be done in time poly(N, log(|Fn·(ℓ−(t−1))|)) ≤
poly(N, log(|Fm|)). So the total verifier complexity is at most

poly(N, 1/ε, log(|Fm|)) ≤ poly(2m/ℓ, 1/ε, log(m/ε)) ≤ 2O(γm) · poly(1/ε).

4 Inner product check in log star rounds

In this section, we prove our main technical result, an O(log∗(n))-round interactive proof with
a linear-size prover which reduces checking the inner product of a constant number of strings to
checking the value of an entry in the encoding of these strings via a linear-time encodable code C.

Theorem 4.1 (Inner product check with log star rounds). For any ϵ ∈ (0, 12), and constants
γ > 0 and d ∈ N, there exist a field F1 of characteristic 2 and of size poly(1/ε), and a family
C = {Cn : Fn

1 → Fn′
1 }n∈N of linear codes of constant relative distance that can be encoded by a

Boolean circuit of size n · poly(1/ε), so that the following holds.
There exists an O(log∗(n))-round interactive protocol, where the prover gets as input a tuple of

d codewords c1 = Cn(y1), . . . , cd = Cn(yd) ∈ Cn, where y1, . . . , yd ∈ Fn
1 , and a value v ∈ F1, and the

verifier gets as input only the value v. At the end of the interaction, the verifier either rejects or
outputs indices i1, . . . , id ∈ [n′] and values u1, . . . , ud ∈ F1 such that:

• Completeness: If
∑

i∈[n] y1(i) · · · yd(i) = v, then when V interacts with P it outputs i1, . . . , id ∈
[n′] and u1, . . . , ud ∈ F1 such that cj(ij) = uj for any j ∈ [d].

• Soundness: If
∑

i∈[n] y1(i) · · · yd(i) ̸= v then, for every P ∗, when V interacts with P ∗, with
probability at least 1 − ε, either V rejects or it outputs i1, . . . , id ∈ [n′] and u1, . . . , ud ∈ F1

such that cj(ij) ̸= uj for some j ∈ [d].

The protocol has communication complexity nγ ·poly(1/ε) and randomness complexity O(log(n))+
log∗(n) ·O(log(1/ε)). The prover can be implemented as a Boolean circuit of size n · poly(1/ε), and

29

the verifier has running time nO(γ) · poly(1/ε). Moreover, any code of C is a ⌈1/γ⌉-dimensional
tensor product, and the indices i1, . . . , id only depend on V’s randomness.

Using proof composition, the interactive proof given in the above theorem can be turned into
an O(log∗(n))-query IOP with a polylogarithmic-time verifier.

Corollary 4.2. For any ϵ ∈ (0, 12), and constants γ > 0 and d ∈ N, there exists a field F1 of
characteristic 2 and of size poly(1/ε), and a family C = {Cn : Fn

1 → Fn′
1 }n∈N of linear codes of

constant relative distance that can be encoded by a Boolean circuit of size n · poly(1/ε), so that the
following holds.

There exists an O(log∗(n))-round and (log∗(n) ·O(log(1/ϵ)))-query IOP, where the prover gets
as input a tuple of d codewords c1 = Cn(y1), . . . , cd = Cd(yd), where y1, . . . , yd ∈ Fn

1 , and a value
v ∈ F1, and the verifier gets implicit access to the codewords c1, . . . , cd, and explicit access to the
value v. At the end of the interaction, the verifier makes a single query to each codeword ci, and
either accepts or rejects, so that the following holds:

• Completeness: If
∑

i∈[n] y1(i) · · · yd(i) = v, then when V interacts with P it accepts with
probability 1.

• Soundness: If
∑

i∈[n] y1(i) · · · yd(i) ̸= v then, for every P ∗, when V interacts with P ∗, it
rejects with probability at least 1− ϵ.

The IOP has communication complexity nγ · poly(1/ε). The prover can be implemented as a
Boolean circuit of size n · poly(1/ε), and the verifier has running time polylog(n/ϵ). Moreover, any
code of C is a tensor product of dimension at least ⌈1/γ⌉.

To prove Theorem 4.1, we first set in Section 4.1 below the parameters that will be used
throughout this section. Then, in Section 4.2, we present an O(log∗ n)-round interactive proof
with a linear-size prover which reduces checking the inner product of a constant number of strings
to checking the evaluation of their low-degree extension at a special point coming from a Matryoshka
series. In Section 4.3, we show a linear-time algorithm for computing the evaluation of the low-degree
extension at Matryoshka points, and we use this algorithm in Section 4.4 to design a constant-round
interactive protocol with a linear-size prover which reduces checking the evaluation of the low-degree
extension at a Matryoshka point to checking the value of an entry in the encoding of the input strings
via a linear-time encodable (tensor) code.

The above Theorem 4.1 then follows as a direct corollary of Lemma 4.5 from Section 4.2 and
Lemma 4.11 from Section 4.4. In Section 4.5, we deduce Corollary 4.2 from Theorem 4.1 using proof
composition.

4.1 Setting of parameters

Our goal is to design a protocol that given d strings y1, . . . , yd ∈ Fn
1 and a value v ∈ F1, checks that∑

i∈[n] y1(i) · · · yd(i) = v. In this section, it will be convenient for us to view each string yj as (the
truth table of) a function fj : H1 ×H2 × · · · ×Hm → F1 for m = O(log∗(n)), and carefully chosen
domains H1, . . . ,Hm satisfying that

∏m
t=1 |Ht| = n. Under this notation, our goal is to check that∑

h∈H1×···×Hm
f1(h) · · · fd(h) = v. Next we specify our choice of the domains H1, . . . ,Hm.

Let σ0, σ1 be sufficiently large constants to be determined later on, let ε > 0 be a parameter,
and let γ > 0 and d ∈ N be constants. We start by specifying the number m of the Hi’s and their

30

sizes. Roughly speaking, we shall set m = m1 + m2 for m1 = Θ(log∗ n) and m2 = Θ(1/γ). The
initial sequence of m1 sets H1, . . . ,Hm1 will be chosen to be (sub-)exponentially increasing so that
|H1| · · · |Hm1 | ≈ polylog(n), while the next m2 sets Hm1+1, . . . ,Hm will be chosen to have the same
size, under the constraint that |H1| · · · |Hm| = n.

More formally, we first define a series of exponentially-increasing integers {ℓt}t∈N, by letting ℓ1
be a sufficiently large integer to be determined soon, and for t > 1,

ℓt := 2(ℓt−1)
1/(2σ0)

. (4)

Claim 4.3. For any sufficiently large t, it holds that ℓt ≥ (t+ 1)3.

Proof. We prove this by induction, we start with the induction step and then derive the constraint
on the base. Assume ℓt ≥ (t+ 1)3, then by the definition of the series:

ℓt+1 = 2(ℓt)
1/(2σ0) ≥ 2(t+1)3/(2σ0) ≥ (t+ 2)3,

where the last inequality holds for a sufficiently large t since the series (t+2)3

2(t+1)3/(2σ0)
converges to zero

for a constant σ0. Let t0 be the minimal t for which the inequality holds. We choose ℓ1 to be a
sufficiently large constant so that at ℓt0 ≥ (t0 + 1)3, so the induction basis holds.

Let m1 be the minimal integer so that
∏m1

t=1 ℓt ≥ logσ0(n), and note that

ℓm1 = 2(ℓm1−1)1/(2σ0) ≤ 2
√
logn. (5)

Claim 4.4. We have that m1 ≤ 2 · log∗(n).

Proof. For every σ0, from some N on, 2k1/(2·σ0) ≥ k2·σ0 for every k ≥ N . Hence from some point on,
given that ℓt is an increasing sequence,

ℓt+1 = 2(ℓt)
1/(2σ0)

= 2

(
2(ℓt−1)

1/(2·σ0)
)1/(2·σ0)

≥ 2((ℓt−1)2·σ0)
1/2·σ0

= 2ℓt−1 .

We set kt = ℓ2t−1, then kt ≥ 2kt−1 and hence kt−1 ≤ log(kt). Assume km3 = ℓm2 = logσ0(n) ≤ n,
and k1 = ℓ1 is some constant, then by the definition of log∗, we get m3 ≤ log∗(n). Taking into
account the relation between ℓt and kt, we get m2 ≤ 2 · log∗(n).

Let m2 = ⌈2/γ⌉ and m = m1 + m2. For t ∈ [m], we choose the size nt of Ht to be nt = ℓt

for t ≤ m1, and nt =
(

n
ℓ1ℓ2···ℓm1

)1/m2

for t > m1. Note that the nt’s are non-decreasing, that
n1 · n2 · · ·nm = n, and that m = O(log∗(n)), In particular, by assumption that γ is a constant, we
have that m ≤ 2 · log∗(n) +O(1).

For t ∈ [m], we shall choose Ht to be an arbitrary subset of size ℓt of a finite field Ft, where
F = (Ft)t∈N is an increasing field ensemble of characteristic 2. To make sure that F has these
properties, we first define a series {at}t∈N of increasing powers of 2, by letting at be the smallest
integer of the form 22

j that is larger than d·nt·t2
(εγ)σ1 . Note that for any t ∈ N,

d · nt · t2

(εγ)σ1
< at ≤

(
d · nt · t2

(εγ)σ1

)2

. (6)

For t ∈ [m], let Ft = GF(at). Note that the field ensemble F = (Ft)t∈N is an increasing field ensemble
of characteristic 2. Let M := MF = (Mt)t∈N denote its Matryoshka series (cf., Definition 3.4).

31

4.2 Reducing Inner Product Claim to Matryoshka points in LDE

In this section, we present an O(log∗(n))-round interactive protocol with a linear-size prover which
reduces checking the inner product of d functions f1, . . . , fd : H1 × · · · × Hm → F1 to checking
the evaluation of their low-degree extensions, at a special point coming from the Matryoshka series
defined in the previous section.

Lemma 4.5. Let ε ∈ (0, 12) be a parameter, let γ > 0 and d ∈ N be constants, and let m, Ft, Mt,
and Ht be defined as in Section 4.1 with respect to ε, γ, and d. Then there exists an (m+ 1)-round
interactive protocol, where the prover gets as input a tuple of d functions f1, . . . , fd : H1×· · ·×Hm →
F1 and a value v ∈ F1, and the verifier gets as input only the value v. At the end of the interaction,
the verifier either rejects or outputs a point r ∈ Mm and values α1, . . . , αd ∈ Fm such that:

• Completeness: If
∑

h∈H1×···×Hm
f1(h) · · · fd(h) = v, then when V interacts with P it outputs

r ∈ Mm and α1, . . . , αd ∈ Fm such that f̂j(r) = αj for any j ∈ [d], where f̂j : (Fm)m → Fm

denotes the low-degree extension of fj, when viewed as a function fj : H1 × · · · ×Hm → Fm.

• Soundness: If
∑

h∈H1×···×Hm
f1(h) · · · fd(h) ̸= v, then for every P ∗, when V interacts with

P ∗, with probability at least 1− ε, either V rejects or it outputs r ∈ Mm and α1, . . . , αd ∈ Fm

so that f̂j(r) ̸= αj for some j ∈ [d].

The protocol has communication complexity nγ ·O(log(1/ε)) and randomness complexity O(log(n))+
log∗(n) · O(log(1/ε)). The prover can be implemented as a Boolean circuit of size n · polylog(1/ε),
and the verifier has running time nγ · polylog(1/ε).

Proof. The protocol establishing Lemma 4.5 is very similar to the one given in Figure 1, where the
main difference is that the domain of the functions are now the Ht’s instead of just {0, 1}, and
to handle this we use the low-degree extension (LDE) instead of the multilinear extension (MLE).
The formal description of the protocol is given in Fig. 4. We proceed to show that it satisfies the
requirements.

Completeness. We start by proving the following claim:

Claim 4.6. For any j ∈ [d], t ∈ {0, 1, . . . ,m}, and (ht+1, . . . , hm) ∈ Ht+1 × · · · ×Hm it holds that

ft,j(ht+1, . . . , hm) = f̂j(r1, . . . , rt, ht+1, . . . , hm).

Proof. Fix j ∈ [d], the proof is by induction over t. For t = 0, this is true by our setting of f0,j = fj .
Assuming the claim holds for t− 1, we prove it holds for t. Fix (ht+1, . . . , hm) ∈ Ht+1 × · · · ×Hm,
we shall show that ft,j(ht+1, . . . , hm) = f̂j(r1, . . . , rt, ht+1, . . . , hm). By definition of ft,j in Step 2f,
we have that ft,j(ht+1, . . . , hm) = f̂t−1,j(rt, ht+1, . . . , hm). On the other hand, by the induction
hypothesis we have that for any h ∈ Ht,

f̂t−1,j(h, ht+1, . . . , hm) = ft−1,j(h, ht+1, . . . , hm) = f̂j(r1, . . . , rt−1, h, ht+1, . . . , hm).

8We assume without loss of generality that n is a power of 2, otherwise padding with zeros at most doubles the
input size.

32

Prover Input: A tuple of functions f1, . . . , fd : H1 × · · · ×Hm → F1, a value v ∈ F1.
Verifier Input: The same value v ∈ F1.

The Protocol:

1. Set v0 := v and f0,j := fj for every j ∈ [d].

2. For t = 1, 2, . . . ,m:
▷ Invariant: At the beginning of iteration t, the functions ft−1,1, . . . , ft−1,d : Ht × · · · ×
Hm → Ft−1 and scalar vt−1 ∈ Ft−1 have already been computed (where we set F0 := F1).
Recalling that Ft−1 is a subfield of Ft, we view the range of ft−1,1, . . . , ft−1,d as Ft.

(a) Let Λt ⊆ Ft be an arbitrary subset of d ·nt distinct field elements such that Ht ⊆ Λt.

(b) The prover P computes and sends to V the function wt : Λt → Ft defined as

wt(λ) =
∑

(ht+1,...,hm)∈Ht+1×···×Hm

f̂t−1,1(λ, ht+1, . . . , hm) · · · f̂t−1,d(λ, ht+1, . . . , hm),

where f̂t−1,j : (Ft)
m−(t−1) → Ft denotes the low-degree extension of ft−1,j : Ht ×

· · · ×Hm → Ft.
The computation is done as follows. For j ∈ [d] and h ∈ Ht+1×· · ·×Hm, let f̂t−1,j,h :
Ft → Ft denote the univariate extension of the function ft−1,j,h : Ht → Ft, defined
as ft−1,j,h(ht) = ft−1,j(ht, h) for any ht ∈ Ht, and note that f̂t−1,j(λ, h) = f̂t−1,j,h(λ)

for any λ ∈ Ft (since both f̂t−1,j(. . . , h) and f̂t−1,j,h are univariate polynomials over
Ft of degree at most |Ht| − 1 which agree on all points of Ht, and so they are the
same polynomial). Consequently, for any j ∈ [d] and h ∈ Ht+1 × · · · ×Hm, one can
compute the value f̂t−1,j(λ, h) = f̂t−1,j,h(λ) for all λ ∈ Λ using Theorem 2.9.

(c) V checks that
∑

λ∈Ht
wt(λ) = vt−1, otherwise it rejects.

(d) V randomly chooses rt ∈ Ft and sends it to P .

(e) V computes vt = ŵt(rt), where ŵt : Ft → Ft denotes the univariate extension of
wt : Λt → Ft (a degree d · nt − 1 polynomial).

(f) For any j ∈ [d], P computes ft,j : Ht+1 × · · · × Hm → Ft, defined as
ft,j(ht+1, . . . , hm) = f̂t−1,j(rt, ht+1, . . . , hm) for all ht+1, . . . , hm ∈ Ht+1 × · · · ×Hm.
as described in Step 2b.

3. P sends α1 = fm,1, . . . , αd = fm,d ∈ Fm.

4. V checks that α1 · · ·αd = vm, otherwise it rejects.

5. V outputs r = (r1, . . . , rm) ∈ Mm and α1, . . . , αd ∈ Fm.

Figure 4: Matroyshka Inner Product Check in Log-star Rounds

33

So f̂t−1,j(x, ht+1, . . . , hm) and f̂j(r1, . . . , rt−1, x, ht+1, . . . , hm) are two univariate polynomials over
Fm in the indeterminate x of degree at most |Ht| − 1 that agree on all values in Ht, and so these
polynomials must be identical. We conclude that

ft,j(ht+1, . . . , hm) = f̂t−1,j(rt, ht+1, . . . , hm) = f̂j(r1, . . . , rt, ht+1, . . . , hm).

Completeness relies on the following claim.

Claim 4.7. For any t ∈ {1, 2, . . . ,m− 1}, it holds that
∑

λ∈Ht+1
wt+1(λ) = ŵt(rt).

Proof. Fix t ∈ {1, 2, . . . ,m− 1}. Then we have that∑
λ∈Ht+1

wt+1(λ) =
∑

λ∈Ht+1

∑
(ht+2,...,hm)∈Ht+2×···×Hm

f̂t,1(λ, ht+2 . . . , hm) · · · f̂t,d(λ, ht+2, . . . , hm)

=
∑

(ht+1,...,hm)∈Ht+1×···×Hm

ft,1(ht+1, . . . , hm) · · · ft,d(ht+1, . . . , hm)

=
∑

(ht+1,...,hm)∈Ht+1×···×Hm

f̂t−1,1(rt, ht+1, . . . , hm) · · · f̂t−1,d(rt, ht+1, . . . , hm)

= ŵt(rt),

where the last equality follows since ŵt(x) and∑
(ht+1,...,hm)∈Ht+1×···×Hm

f̂t−1,1(x, ht+1, . . . , hm) · · · f̂t−1,d(x, ht+1, . . . , hm)

are both polynomials of degree at most d · nt − 1 in the indeterminate x, which by Step 2b, agree
on all d · nt points λ ∈ Λ, hence they must be the same polynomial.

Next assume that
∑

h∈H1×···×Hm
f1(h) · · · fd(h) = v. Then we have that∑

λ∈H1

w1(λ) =
∑
λ∈H1

∑
(h2,...,hm)∈H2×···×Hm

f̂0,1(λ, h2 . . . , hm) · · · f̂0,d(λ, h2, . . . , hm)

∑
h∈H1×···×Hm

f1(h) · · · fd(h) = v0,

and so the verifier does not reject on Step 2c of the first iteration. Moreover, by Claim 4.7 above,
the verifier also does not reject on Step 2c in any of the iterations t ∈ {2, . . . ,m}. Furthermore, we
have that

α1 · · ·αd = fm,1 · · · fm,d = f̂m−1,1(rm) · · · f̂m−1,d(rm) = ŵm(rm) = vm,

where the third equality follows by the same argument as in the proof of Claim 4.7, and so the
verifier does not reject on Step 4 as well. Finally, by Claim 4.6, the verifier outputs α1, . . . , αd, and
r which satisfy that αj = fm,j = f̂j(r) for any j ∈ [d].

34

Soundness. Next assume that
∑

h∈H1×···×Hm
f1(h) · · · fd(h) ̸= v. Fix a prover strategy P ∗, and

denote by w∗
1, w

∗
2, . . . , w

∗
m the messages that P ∗ sends in Step 2b. Soundness relies on the following

claim.

Claim 4.8. If for some t ∈ {1, 2, . . . ,m − 1}, it holds that ŵ∗
t (rt) ̸= ŵt(rt), and V does not reject

in Step 2c in iteration t+1, then with probability at least 1− d·nt+1

|Ft+1| over the choice of rt+1, it holds
that ŵ∗

t+1(rt+1) ̸= ŵt+1(rt+1).

Proof. Fix t ∈ {1, . . . ,m−1}, and assume that ŵ∗
t (rt) ̸= ŵt(rt), and that V does not reject in Step 2c

in iteration t+ 1. By assumption that V does not reject in Step 2c of iteration t+ 1, we have that∑
λ∈Ht

w∗
t+1(λ) = ŵ∗

t (rt). On the other hand, by Claim 4.7 we know that
∑

λ∈Ht
wt+1(λ) = ŵt(rt).

Therefore, by assumption that ŵ∗
t (rt) ̸= ŵt(rt), we have that

∑
λ∈Ht

w∗
t+1(λ) ̸=

∑
λ∈Ht

wt+1(λ).
Hence ŵt+1 and ŵ∗

t+1 are two distinct univariate polynomials of degree at most d · nt+1 − 1 over
Ft+1, and so they agree on at most a d·nt+1

|Ft+1| -fraction of the points. Thus with probability at least

1− d·nt+1

|Ft+1| over the choice of rt+1, it holds that ŵt+1(rt+1) ̸= ŵ∗
t+1(rt+1).

Now, if the verifier rejects in any of the iterations then we are done. Hence we may assume that
the verifier does not reject in any of the iterations.

By assumption that
∑

h∈H1×···×Hm
f1(h) · · · fd(h) ̸= v, we have that∑

λ∈H1

w1(λ) =
∑

h∈H1×···×Hm

f1(h) · · · fd(h) ̸= v0.

On the other hand, by assumption that the verifier does not reject on Step 2c, we also have that∑
λ∈H1

w∗
1(λ) = v0. We conclude that ŵ1 and ŵ∗

1 are two distinct univariate polynomials of degree
at most d · n1 − 1, and by the same argument as in the proof of Claim 4.8, this implies in turn that
ŵ1(r1) ̸= ŵ∗

1(r1) with probability at least 1− d·n1
|F1| over the choice of r1. Applying Claim 4.8 above

iteratively, and using the union bound, we then conclude that with probability at least 1−
∑m

t=1
d·nt
|Ft| ,

it holds that ŵm(rm) ̸= ŵ∗
m(rm).

Next assume that this latter event holds, i.e., that ŵm(rm) ̸= ŵ∗
m(rm), and let α∗

1, . . . , α
∗
d denote

the messages sent by P on Step 4. Then assuming that the verifier does not reject on Step 4, we
have that α∗

1 · · ·α∗
d = ŵ∗

m(rm). On the other hand, by Claim 4.6 we have that

ŵm(rm) = fm,1 · · · fm,d = f̂1(r) · · · f̂d(r).

We conclude that in this case there exists j ∈ [d] such that f̂j(r) ̸= α∗
j .

Overall, we obtain a soundness error of at most

m∑
t=1

n · dt
|Ft|

≤
∞∑
t=1

n · dt
|Ft|

=
∞∑
t=1

n · dt
at

≤
∞∑
t=1

(εγ)σ0

t2
≤ εσ1 ·

∞∑
t=1

1

t2
< ε,

where the last inequality follows for a sufficiently large constant σ1.

Number of rounds is clearly m + 1. Next we analyze the communication and randomness
complexity, and prover and verifier running time.

35

Randomness Complexity. In every round t, the verifier sends a single random elements of Ft,
where each field element can be represented using O(log(|Ft|)) bits. Hence there exists an absolute
constant ξ0 > 0 so that the total randomness complexity is at most

m∑
t=1

ξ0 · log(|Ft|) =
m∑
t=1

ξ0 · log(at)

≤ m1 ·O(log(am1)) +m2 ·O(log(am))

≤ m1 ·O(log(nm1 ·m/ε)) +m2 ·O(log(nm ·m/ε))

≤ m1 ·O(log(ℓm1)) +m2 ·O(log(n1/m2)) +m ·O(log(m/ε))

≤ O(m1

√
log n) +O(log n) +m ·O(log(m/ε))

≤ O(log n) + log∗(n) ·O(log(1/ε)).

Communication complexity. In every round t, the prover sends d · nt elements of the field Ft,
and so there exists an absolute constant ξ0 > 0 so that the total communication is at most

m∑
t=1

ξ0 · nt · log(|Ft|) =
m∑
t=1

ξ0 · nt · log(at)

≤ m · nm ·O(log(am))

≤ m · nm ·O(log(nm ·m/ε))

≤ m · n1/m2 ·O(log(n1/m2 ·m/ε))

≤ n2/m2 ·O(log(1/ε))

≤ nγ ·O(log(1/ε)).

Prover complexity. In every round t, in Step 2b, the prover has to compute for any j ∈ [d] and
(ht+1, . . . , hm) ∈ Ht+1 × · · · ×Hm, the value f̂t−1,j(λ, ht+1, . . . , hm) on all points λ ∈ Λ, which can
be done using Õ(nt) field operations by Theorem 2.9. In Step 2f, the prover has to compute for any
j ∈ [d] and (ht+1, . . . , hm) ∈ Ht+1 × · · · × Hm, an additional value f̂t−1,j(rt, ht+1, . . . , hm), which
can also be done using Õ(nt) field operations. Additionally, the prover has to use O(nt+1 · · ·nm)
field operations in Ft to compute the inner product on Step 2b from these values.

So overall, in round t the verifier has to use O(nt · nt+1 · · ·nm) · polylog(nt) field operations
over Ft. Since each field operation in Ft can be performed in time polylog(|Ft|) = polylog(at), and
recalling that at ≥ nt, overall there exists an absolute constant ξ0 > 0 so that the prover can be
implemented as a Boolean circuit of size:

m∑
t=1

nt · · ·nm · logξ0(at) =
m1∑
t=1

n

n1 · · ·nt−1
· logξ0(at) +

m∑
t=m1+1

n

n1 · · ·nt−1
· logξ0(at).

To bound the first summand, note that:

36

m1∑
t=1

n

n1 · · ·nt−1
· logξ0(at) ≤

m1∑
t=1

n

nt−2 · nt−1
· log2ξ0((t · nt)/ε)

=

m1∑
t=1

n

ℓt−2 · ℓt−1
· log2ξ0((t · ℓt)/ε)

≤
m1∑
t=1

n

ℓt−2 · ℓt−1
·
(
log2ξ0(t/ε) + log2ξ0(ℓt)

)
≤

m1∑
t=1

n

ℓt−2 · ℓt−1
·
(
log2ξ0(t/ε) + (ℓt−1)

ξ0/σ0

)
≤

m1∑
t=1

n

ℓt−2
· log2ξ0(t/ε)

≤
m1∑
t=1

n

t3
· log2ξ0(t/ε)

≤ n · polylog(1/ε),

where the third inequality follows by Eq. (4), the fourth inequality follows for σ0 ≥ ξ0, and the one
before last inequality follows by Claim 4.3.

Next we bound the second summand:

m∑
t=m1+1

n

n1 · · ·nt−1
· logξ0(at) ≤ m2 ·

n

n1 · · ·nm1

· polylog((t · nt)/ε)

≤ n

ℓ1 · · · ℓm1

· polylog(n/ε)

≤ n

logσ0 n
· polylog(n/ε)

≤ n · polylog(1/ε),

where the one before last inequality follows by our choice of m1, and the last inequality follows for
a sufficiently large constant σ0.

So overall, we get that the prover complexity is n · polylog(1/ε).

Verifier complexity. In iteration t, in Step 2c, the verifier computes the sum of nt elements in
Ft. In Step 2e, the verifier needs to compute the value of a polynomial of degree at most d · nt in
the field Ft given the values of d ·nt points, which can be done using Õ(nt) field operations over Ft.

Overall, we get that there exists an absolute constant ξ0 > 0 so that the verifier complexity is

37

at most
m∑
t=1

nt · logξ0(|Ft|) =
m∑
t=1

nt · logξ0(at)

≤ m · nm · polylog(am)

≤ m · nm · polylog(nm ·m/ε)

≤ m · n1/m2 · polylog(n1/m2 ·m/ε)

≤ n2/m2 · polylog(1/ε)
≤ nγ · polylog(1/ε).

4.3 Computing a Matryoshka point in the LDE

Next we show that the low-degree extension of a given function f : H1 × · · · × Hm → F1 can be
evaluated in linear time on points coming from the Matryoshka series corresponding to our choice
of field ensemble. In fact, for our final protocol, we shall need a slightly stronger statement that
applies to any m′ ≤ m.

Lemma 4.9. Let ε ∈ (0, 12) be a parameter, let γ > 0, and d ∈ N be constants, and let Ft, Mt,
and Ht be defined as in Section 4.1 with respect to ε, γ, and d. Let m′ ∈ [m] be a parameter.
Then there exists a Boolean circuit of size polylog(1/ε) ·

∏m′

t=1 |Hi| that given as input a function
f : H1 × · · · ×Hm′ → F1 and a point r ∈ Mm′, outputs f̂(r) ∈ Fm′ , where f̂ denotes the low-degree
extension of f , when viewed as a function f : H1 × · · · ×Hm′ → Ft. In particular, when m′ = m
the circuit size is n · polylog(1/ε), and when m′ < m the circuit size is at most n

|Hm| · poly(1/ε).

Proof. The algorithm is presented in Fig. 5. We proceed by proving it.

Correctness.

Claim 4.10. For every t ∈ {0, 1, . . . ,m′}, it holds that ft(ht+1, . . . , hm′) = f̂t−1(r1, . . . , rt, ht+1, . . . , hm′)
for every (ht+1, . . . , hm′) ∈ Ht × · · · ×Hm′.

Proof. We prove this by induction over t. For the base case (i.e. t = 0) this follows from the
definition of f0 and of low degree extension,

f0(h1, . . . , hm′) = f(h1, . . . , hm′) = f̂(h1, . . . , hm′).

Assuming the claim holds for t − 1, we prove it holds for t. Let (ht+1, . . . , hm′) ∈ Ht × · · · ×Hm′ ,
then the polynomials f̂t−1(∗, ht+1, . . . , hm′) and f̂(r1, . . . , rt−1, ∗, ht+1, . . . , hm′) are (|Ht|−1)-degree
polynomials. From the assumption over t− 1, these polynomials agree on all points in |Ht|, hence
they agree on all of Ft, specifically rt ∈ Ft,

ft(ht+1, . . . , hm′) = f̂t−1(rt, ht+1, . . . , hm′) = f̂(r1, . . . , rt, ht+1, . . . , hm′).

Correctness follows immediately from the claim above wrt t = m′.

38

Input: A function f : H1 × · · · ×Hm′ → F1 and a point r = (r1, . . . , rm′) ∈ Mm′ .
Output: f̂(r).

The Algorithm:

1. Set f0 := f .

2. For t = 1, 2, . . . ,m′:
▷ Invariant: At the beginning of iteration t, the function ft−1 : Ht × · · · ×Hm′ → Ft−1

has already been computed (where we set F0 := F1). Recalling that Ft−1 is a subfield of
Ft, in what follows, we view the range of ft−1 as being Ft.

Compute ft : Ht+1×· · ·×Hm′ → Ft, defined as ft(ht+1, . . . , hm′) = f̂t−1(rt, ht+1, . . . , hm′)
for all (ht+1, . . . , hm′) ∈ Ht+1 × · · · × Hm′ , where f̂t−1 denotes the low-degree extension
of ft−1 : Ht × · · · ×Hm′ → Ft.

3. Output fm′ ∈ Fm′ .

Figure 5: Fast LDE Evaluation at Matryoshka Points

Complexity. For every t, in step 2, the prover computes the |Ht+1 × · · · × Hm′ | values of ft.
Each of the values is computed as the (|Ht|−1)-degree extension of a previously computed function
over the field Ft, for each point this can be done through O(nt) · polylog(nt) operations in Ft by
Theorem 2.9.

Since these are constructible fields, operations in the field can be computed using boolean circuits
of size polylog(|Ft|) = polylog(at). Overall, given that at ≥ nt, there exists an absolute constant ξ0
such that the complexity is

m′∑
t=1

|Ht+1 × · · · ×Hm′ | · |Ht| · logξ0(at)

Recalling that nt = |Ht| and letting n′ :=
∏m′

t=1 nt, we get that the above expression is

m′∑
t=1

n′ · logξ0(at)∏t
i=1 ni

Similarly to the prover complexity analysis of Lemma 4.5, we get that the latter expression is
at most n′ · polylog(1/ε).

4.4 Fast code switching for LDE

In this section, we use the algorithm from the previous section to design a constant-round interactive
protocol with a linear-size prover which reduces checking the evaluation of the low-degree extension

39

of a given function f : H1× · · ·×Hm → F1 at a Matryoshka point to checking the value of an entry
in the encoding of (the truth table of) f via a linear-time encodable code.

Lemma 4.11. Let ε ∈ (0, 12) be a parameter, let γ > 0 and d ∈ N be constants, and let m, Ft, Mt,
and Ht be defined as in Section 4.1 with respect to ε, γ, and d. Then there exists a systematic linear
code ensemble C = {(F1)

n → (F1)
n′}n∈N of constant relative distance that can be encoded using a

Boolean circuit of size n · poly(1/ε), and a constant-round interactive protocol with the following
properties:

• Prover’s input: The prover gets as input a point r ∈ Mm, a value v ∈ Fm, and a codeword
c = C(f) for some function f : H1 × · · · ×Hm → F1, where f is viewed as a binary string of
length n = |H1| · · · |Hm|.

• Verifier’s input: The verifier gets as input the point r ∈ Mm and the value v ∈ Fm.

• Completeness: If f̂(r) = v, then when V interacts with P , it outputs an entry ρ and a value
u ∈ F1 so that c(ρ) = u, where f̂ denotes the low-degree extension of f , when viewed as a
function f : H1 × · · · ×Hm → Fm.

• Soundness: If f̂(r) ̸= v, then for every P ∗, when V interacts with P ∗, with probability at
least 1− ε, it either rejects or outputs ρ and u ∈ F1 so that c(ρ) ̸= u.

The protocol has communication complexity nγ · poly(1/ε) and randomness complexity log(n) +
O(log(1/ε)). The prover can be implemented as a Boolean circuit of size n · poly(1/ε), and the
verifier has running time nO(γ) · poly(1/ε). Moreover, any code of C is a ⌈1/γ⌉-dimensional tensor
product, and the entry ρ only depends on V’s randomness.

Proof. The protocol establishing Lemma 4.11 is very similar to the one given in Fig. 3, where the
main difference is that the domain of the functions are now the Ht’s instead of just {0, 1}, and that
we consider the low-degree extension (LDE) instead of the multilinear extension (MLE) of f .

The code ensemble C: Let {Cn : (F1)
n → (F1)

n′}n∈N be the systematic linear code ensemble of
relative distance 1− ϵ

m2+1 that is encodable using a Boolean circuit of size n ·poly(1/ε), guaranteed
by Theorem 2.10 for a sufficiently large constant σ1. For n ∈ N, let N1 :=

∏m1
t=1 nt and N2 := nm2+1,

and let C = {CN1 ⊗ (CN2)
⊗m2}n∈N. Note that by Fact 2.6, CN1 ⊗ (CN2)

⊗m2 is a code of message
length n = N1 · (N2)

m2 that can be encoded in time n · poly(1/ε).
The encoding of a function f : H1 × · · · × Hm → F1 via C is performed as follows. We

view f as a string Mf ∈ (F1)
N1×(N2)m2 (noting that N1 · (N2)

m2 = n) which satisfies that
Mf ((i1, . . . , im1), im1+1, . . . , im) = f(i1, . . . , im) for any (i1, . . . , im) ∈ [n1] × · · · × [nm], where we
associate indices it ∈ [nt] with elements of Ht, and tuples (i1, . . . , im1) ∈ [n1] × · · · × [nm1] with
elements of [N1]. The encoding C(f) of f is (CN1 ⊗ (CN2)

⊗m2)(Mf) ∈ (F1)
N ′

1×(N ′
2)

m2 .

The interactive protocol: The formal description of the protocol is given in Fig. 6. In what
follows, every t, we view Ft as a loga1(at)-dimensional vector space over F1 (recalling that F1 ⊆ Ft),
and fix a basis Bt of the field Ft over F1. Every element α ∈ Ft can be uniquely expressed as a
linear combination α =

∑
b∈Bt

α|b · b where α|b ∈ F1. More generally, any vector w ∈ (Ft)
n can be

uniquely expressed as a linear combination w =
∑

b∈Bt
w|b · b, where w|b ∈ (F1)

n.
We proceed to show that the protocol satisfies the requirements.

40

Prover input: A point r ∈ Mm, a value v ∈ Fm, and a codeword c = (CN1⊗(CN2)
⊗m2)(Mf) ∈

(F1)
N ′

1×(N ′
2)

m2 for a function f : H1 × · · · ×Hm → F1

Verifier input: The point r ∈ Mm and the value v ∈ Fm.

1. Set v0 := v and c0 := c.

2. For t = 1, 2, . . . ,m2:
▷ Invariant: At the beginning of iteration t, a codeword ct−1 ∈ CN1 ⊗ (CN2)

⊗(m2−(t−1))

and a scalar vt−1 ∈ Fm−(t−1) have already been computed.

(a) For every i ∈ [N ′
2]:

i. Let ft,i : H1 × · · · ×Hm−t → F1 be the function given by

ft,i(i1, . . . , im1 , im1+1, . . . , im−t) = ct−1((i1, . . . , im1), im1+1, . . . , im−t, i)

for any (i1, . . . , im−t) ∈ H1 × · · · ×Hm−t.
ii. P computes f̂t,i(r1, . . . , rm−t) using Lemma 4.9, where f̂t,i : (Fm−t)

m−t → Fm−t

is the low degree extension of ft,i, when viewed as a function ft,i : H1 × · · · ×
Hm−t → Fm−t; Let wt(i) ∈ Fm−t denote the output of the algorithm.

(b) P sends wt ∈ (Fm−t)
N ′

2 to V .

(c) For every b ∈ Bm−t, the verifier V checks that wt|b ∈ (F1)
N ′

2 is a codeword of CN2 .

(d) Let yt ∈ (Fm−t)
N2 denote the systematic part of wt ∈ (Fm−t)

N ′
2 . View yt as a

function yt : Hm−(t−1) → Fm−(t−1) (by identifying [N2] with Hm−(t−1) and recalling
that Fm−t ⊆ Fm−(t−1)), and let ŷt : Fm−(t−1) → Fm−(t−1) denote the low-degree
extension of yt. V checks that ŷt(rm−(t−1)) = vt−1.

(e) V randomly chooses ρm2−(t−1) ∈ [N ′
2] and sends it to P .

(f) Let ct ∈ CN1 ⊗ (CN2)
⊗(m2−t) be defined as

ct(i, im1+1, . . . , im−t) = ct−1(i, im1+1, . . . , im−t, ρm2−(t−1))

for any i ∈ [N ′
1] and im1+1, . . . , im−t ∈ [N ′

2], and let vt := wt(ρm2−(t−1)) ∈ Fm−t.

3. (a) P sends wm2+1 := cm2 ∈ CN1 to V .

(b) The verifier V checks that wm2+1 is a codeword of CN1 .

(c) Let ym2+1 ∈ (F1)
N1 denote the systematic part of wm2+1 ∈ (F1)

N ′
1 . View ym2+1 as

a function ym2+1 : H1 × · · · ×Hm1 → Fm1 (by identifying [N1] with H1 × · · · ×Hm1

and recalling that F1 ⊆ Fm1), and let ŷm2+1 : Fm1 → Fm1 denote the low-degree
extension of ym2+1. V checks that ŷm2+1(r1, . . . , rm1) = vm2 .

(d) V samples ρ0 ∈ [N ′
1] and outputs ρ = (ρ0, ρ1, . . . , ρm2) and vm2+1 := wm2+1(ρ0).

4. V accepts if all of its checks passed, otherwise it rejects.

Figure 6: Fast Code Switching for LDE
41

Completeness. Completeness relies on the following claim.

Claim 4.12. It holds that:

1. ŷ1(rm) = f̂(r1, . . . , rm).

2. For any t ∈ {1, 2, . . . ,m2 − 1}, ŷt+1(rm−t) = wt(ρm2−(t−1)).

3. ŷm2+1(r1, . . . , rm1) = wm2(ρ1).

Proof. We prove each of the items separately.

Item 1: For any (i1, . . . , im) ∈ H1 × · · · ×Hm, it holds that

f1,im (i1, . . . , im−1) = c0 ((i1, . . . , im1), im1+1, . . . , im)

= Mf ((i1, . . . , im1), im1+1, . . . , im)

= f (i1, . . . , im) .

Hence for any i ∈ Hm, the polynomials f̂1,i(x1, . . . , xm−1) and f̂(x1, . . . , xm−1, i) are two
polynomials over m− 1 variables x1, . . . , xm−1, where each variable xt has degree at most |Ht| − 1,
that agree on all points of H1×· · ·×Hm−1, and so they are the same polynomial, and in particular,

w1(i) = f̂1,i(r1, . . . , rm−1) = f̂(r1, . . . , rm−1, i).

But this implies in turn that the polynomials ŷ1(x) and f̂(r1, . . . , rm−1, x) are both univariate
polynomials in the indeterminate x of degree |Hm| − 1 that agree on all points of Hm, so they are
the same polynomial, and in particular ŷ1(rm) = f̂(r1, . . . , rm).

Item 2: Next fix t ∈ {1, 2, . . . ,m2 − 1}. For every (i1, . . . , im−t) ∈ H1 × · · · ×Hm−t, it holds that

ft+1,im−t

(
i1, . . . , im−(t+1)

)
= ct ((i1, . . . , im1), im1+1, . . . , im−t)

= ct−1

(
(i1, . . . , im1), im1+1, . . . , im−t, ρm2−(t−1)

)
= ft,ρm2−(t−1)

(i1, . . . , im−t) .

Hence for any i ∈ Hm−t, the polynomials f̂t+1,i(x1, . . . , xm−(t+1)) and f̂t,ρm2−(t−1)
(x1, . . . , xm−(t+1), i)

are two polynomials over variables x1, . . . , xm−(t+1), where each variable xt has degree at most
|Ht| − 1, that agree on all points of H1 × · · · ×Hm−(t+1), and so they are the same polynomial, and
in particular,

wt+1(i) = f̂t+1,i(r1, . . . , rm−(t+1)) = f̂t,ρm2−(t−1)
(r1, . . . , rm−(t+1), i).

But this implies in turn that the polynomials ŷt+1(x) and f̂t,ρm2−(t−1)
(r1, . . . , rm−(t+1), x) are both

univariate polynomials of degree at most |Hm−t| − 1 that agree on all points of Hm−t, so they are
the same polynomial, and in particular

ŷt+1(rm−t) = f̂t,ρm2−(t−1)
(rm−t) = wt(ρm2−(t−1)).

Item 3: For every (i1, . . . , im1) ∈ H1 × · · · ×Hm1 , it holds that

ym2 (i1, . . . , im1) = cm2 (i1, . . . , im1) = cm2−1 ((i1, . . . , im1), ρ1) = fm2,ρ1 (i1, . . . , im1) .

42

Hence the polynomials ŷm2+1(x1, . . . , xm1) and f̂m2,ρ1(x1, . . . , xm1) are the same polynomial, and
in particular

ŷm2+1(r1, . . . , rm1) = f̂m2,ρ1(r1, . . . , rm1) = wm2(ρ1).

Next assume that f̂(r) = v, we shall show that in this case the verifier does not reject, and
c(ρ0, ρ1, . . . , ρm2) = vm2+1.

For any t ∈ [m2] and i ∈ [N ′
2], it is satisfied that wt(i) = f̂t,i(r1, . . . , rm−t). By linearity of the

low-degree extension transformation, we get that wt is a linear combination of the codewords in
CN2 over the field Fm−t. Additionally, from the linearity of projection over base elements, we get
that for every b ∈ Bm−t it happens that wt|b is a linear combination of the codewords of CN2 and
hence the verifier will not reject at Step 2c. We also clearly have that wm2+1 = cm2 is a codeword of
CN1 , and so the verifier will not reject on Step 3b as well. Moreover, by assumption that f̂(r) = v,
and by the above Claim 4.12, the verifier does not reject on Steps 2d and 3c. Finally, note that
vm2+1 = cm2(ρ0) = c(ρ0, ρ1, . . . , ρm2).

Soundness. Next assume that f̂(r) ̸= v. Fix a prover strategy P ∗, and denote by w∗
1, w

∗
2, . . . , w

∗
m2

, w∗
m2+1

the messages that P ∗ sends in Steps 2b and 3a. For t ∈ [m2 + 1], let y∗t denote the systematic part
of w∗

t . Soundness relies on the following claim.

Claim 4.13. If for some t ∈ {1, 2, . . . ,m2 − 1}, it holds that wt(ρm2−(t−1)) ̸= w∗
t (ρm2−(t−1)), and

V does not reject on Steps 2c and 2d in iteration t+ 1, then with probability at least 1− ε
m2+1 over

the choice of ρm2−t, it holds that wt+1(ρm2−t) ̸= w∗
t+1(ρm2−t).

Proof. Fix t ∈ {1, 2, . . . ,m2−1}. Since the verifier does not reject on Step 2d of iteration t+1, we get
that ŷ∗t+1(rm−t) = w∗

t (ρm2−(t−1)). On the other hand, by Claim 4.12, ŷt+1(rm−t) = wt(ρm2−(t−1)).
Given the assumption of the claim, this implies in turn that ŷt+1(rm−t) ̸= ŷ∗t+1(rm−t), and so
wt+1 ̸= w∗

t+1. Therefore there exists b ∈ Bm−t such that wt|b ̸= w∗
t |b. Since V does not reject on

Step 2c of iteration t + 1, we further have that both wt+1|b and w∗
t+1|b are codewords of CN2 , and

so they must differ on at least a (1− ε
m2+1)-fraction of the entries. Consequently, with probability

at least 1− ε
m2+1 over the choice of ρm2−t ∈ [N ′

2], it holds that wt+1|b(ρm2−t) ̸= w∗
t+1|b(ρm2−t), and

so also wt+1(ρm2−t) ̸= w∗
t+1(ρm2−t).

Now, if the verifier rejects in any of the iterations then we are done. Hence we may assume
that the verifier does not reject in any of the iterations, and we will show that in this case
c(ρ0, ρ1 . . . , ρm2) ̸= w∗

m2+1(ρ0) with probability at least 1− ε over the choice of ρm2 , ρm2−1, . . . , ρ0.
By assumption that f̂(r) ̸= v and by Claim 4.12, we have that ŷ1(rm) ̸= v0. On the other

hand, by assumption that the verifier does not reject on Step 2d, we have that ŷ∗1(rm) = v0. So we
conclude that w1 ̸= w∗

1, and in particular w1|b ̸= w∗
1|b for some b ∈ Bm−1. By assumption that the

verifier does not reject on Step 2c, we have that w1|b and w∗
1|b are both codewords of CN , and so

they differ by at least a (1− ε
m2+1)-fraction of the entries. Consequently, with probability at least

1− ε
m2+1 over the choice of ρm2 , we have that w1|b(ρm2) ̸= w∗

1|b(ρm2), and so w1(ρm2) ̸= w∗
1(ρm2).

Applying Claim 4.13 iteratively, and using a union bound, we conclude that with probability at
least 1 − m2

m2+1 · ε over the choice of ρm2 , ρm2−1, . . . , ρ1, it holds that wm2(ρ1) ̸= w∗
m2

(ρ1). Next
assume that this latter event holds, i.e., that wm2(ρ1) ̸= w∗

m2
(ρ1).

43

Since the verifier does not reject on Step 3c, we get that ŷ∗m2+1(r1, . . . , rm1) = w∗
m2

(ρ1). On the
other hand, by Claim 4.12, ŷm2+1(r1, . . . , rm1) = wm2(ρ1). By assumption that wm2(ρ1) ̸= w∗

m2
(ρ1),

this implies in turn that ŷm2+1(r1, . . . , rm1) ̸= ŷ∗m2+1(r1, . . . , rm1), and so wm2+1 ̸= w∗
m2+1. Since V

does not reject on Step 3b, we further have that both wm2+1 = cm2 and w∗
m2+1 are codewords of

CN1 , and so they must differ on at least a (1 − ε
m2+1)-fraction of the entries. Consequently, with

probability at least 1− ε
m2+1 over the choice of ρ0 ∈ [N ′

1], it holds that wm2+1(ρ0) ̸= w∗
m2+1(ρ0).

By a union bound, we conclude that with probability at least 1−ϵ over the choice of ρm2 , ρm2−1, . . . , ρ0,
it holds that wm2+1(ρ0) ̸= w∗

m2+1(ρ0). But since wm2+1(ρ0) = cm2(ρ0) = c(ρ0, ρ1, . . . , ρm2), this
implies in turn that w∗

m2+1(ρ0) ̸= c(ρ0, ρ1, . . . , ρℓ).
Number of rounds is clearly m2 + 1 = ⌈1/γ⌉ + 1 = O(1). Next we analyze the communication

and randomness complexity, and prover and verifier running time.

Communication and Randomness Complexity. For any t ∈ [m2], in round t the prover
sends wt ∈ (Fm−t)

N ′
2 , where each element of Ft can be represented using O(log(|Ft|)) bits, so the

communication complexity is N ′
2 ·O(log(Fm))). In round m2+1, the prover sends wm2+1 ∈ (F1)

N ′
1 ,

so the communication complexity is N ′ ·O(log(Fn·(ℓ−t))) ≤ N ′
1 ·O(log(|F1|)) ≤ N ′

2 ·O(log(Fm))).
So the total communication complexity is at most

(m2 + 1) ·N ′
2 ·O(log(|Fm|)) ≤ (m2 + 1) ·N2 · poly(1/ε) ·O(log(|Fm|))

≤ (m2 + 1) · n1/m2 · poly(1/ε) ·O(log(nm/ϵ))

≤ n
γ
2 · poly(1/ε) ·O(log(nm/ϵ))

≤ nγ · poly(1/ε).

Additionally, in every round t ∈ [m2], the verifier sends a single element in [N ′
2], and in round

[m2 + 1], the verifier sends a single element in [N ′
2] and hence the total randomness complexity is

at most

log(N ′
1) +m2 · log(N ′

2) ≤ log(N1 · poly(1/ε)) +m2 · log(N2 · poly(1/ε))
≤ log(N1 · (N2)

m2) +O(log(1/ε))

≤ log(n) +O(log(1/ε)).

Prover Complexity. For any t ∈ [m2] Step 2(a)ii of round t, the prover runs the algorithm from
Lemma 4.9 for N ′

2 times, on a function over the domain H1 × · · · × Hm−t. From the complexity
analysis of the algorithm, this can be done via a circuit of size at most n

N2
· polylog(1/ε), by

Lemma 4.9. Thus, overall, in all rounds t ∈ [m2], the prover can be implemented as a Boolean
circuit of size at most

ℓ ·N ′
2 ·

n

N2
· polylog(1/ε) ≤ ℓ ·N2 · poly(1/ε) ·

n

N2
· polylog(1/ε) ≤ n · poly(1/ε).

Additionally, in Step 3a, the prover sends a string wm2+1 ∈ (F1)
N1 , which has length at most

N1 ·O(log(|F1|)) ≤ N1 ·poly(1/ε) ≤ (ℓm1)
m1 ·poly(1/ε) ≤ 2

√
logn·O(log∗(n)) ·poly(1/ε) ≤ n ·poly(1/ε).

So in total, the prover can be implemented as a Boolean circuit of size at most n · poly(1/ε).

44

Verifier Complexity. For every round t ∈ [m2], in Step 2c of round t, the verifier first projects
the string wt ∈ (|Fm−t|)N

′
2 over all basis elements in Bm−t, which can be done in time N ′

2 ·
polylog(|Fm−t|) ≤ N2 · poly(1/ε) · polylog(|Fm|) by solving a system of linear equation. Then,
the verifier checks that every projection is a codeword of CN2 which, since CN2 is a systematic code,
can be done by re-encoding the word in overall time N2 · poly(1/ε). In Step 2d of iteration t, the
verifier computes the low-degree extension of yt ∈ (Fm−t)

N2 at a single point in Fm−(t−1), which can
be done in time poly(N2, log(|Fm−(t−1)|)) ≤ poly(N2, log(|Fm|)). So the total verifier complexity in
the first m2 rounds is at most

poly(N2, 1/ε, log(|Fm|)) ≤ poly(n1/m2 , 1/ε, log(nm/ε)) ≤ nO(γ) · poly(1/ε).

In round m2+1, in Step 3b, the verifier checks that wm2+1 is a codeword of CN1 which, since CN1

is a systematic code, can be done by re-encoding the word in overall time N1 ·poly(1/ε). In Step 3c,
the verifier computes the low-degree extension of yt ∈ (F1)

N1 at a single point in H1×· · ·×Hm, which
can be done in time poly(N1, log(|Fm1 |)) ≤ poly(N1, log(|Fm|)). So the total verifier complexity in
round m2 + 1 is at most

poly(N1, 1/ε, log(|Fm|)) ≤ poly((ℓm1)
m1 , 1/ε, log(nm/ε))

≤ poly
(
2
√
logn·O(log∗(n)), 1/ε, log(nm/ε)

)
≤ nγ · poly(1/ε).

So overall the verifier running time is at most nO(γ) · poly(1/ε).

Moreover part: The entry ρ clearly only depends on V’s randomness. We also note that
we could have replaced the code ensemble C = {CN1 ⊗ (CN2)

⊗m2}n∈N with the code ensemble
{(C(N1)1/m2)

⊗m2 ⊗ (CN2)
⊗m2 = (C(N1)1/m2 ⊗CN2)

⊗m2}n∈N in which each code is a tensor product of
dimension m2 = ⌈1/γ⌉, and this would not change the complexity analysis and any of the properties
of the code and the protocol.

4.5 IOP for inner product check in log star rounds

Our Main Technical Theorem 4.1, which gives an interactive proof for inner product check in log
star rounds, follows as a direct corollary of Lemma 4.5 from Section 4.2 and Lemma 4.11 from
Section 4.4. Next we show how to deduce Corollary 4.2, which gives an interactive oracle proof
(IOP) for inner product check in log star rounds, from Theorem 4.1 using proof composition. To
this end, we use the following PCPP construction of Mie [Mie09].

Theorem 4.14. Let L be a pair language decidable in time T = T (m+n), where m,n are the explicit
and implicit input lengths, respectively. Then for any α = α(n) > 0, there exists an O(1/α)-query
α-PCPP for L with constant soundness error, prover’s running time poly(m,n, T (m + poly(n))),
and verifier’s running time poly(m, log n, log(T (m+ poly(n))), 1/α).

Remark 4.15. Mie [Mie09] gave a PCPP construction as above for any constant proximity parameter
α > 0. In Appendix A, we give a transformation which reduces the proximity parameter to any
subconstant function α = α(n), at the cost of increasing the query complexity by a factor of O(1/α),
which proves the above theorem.

45

Proof of Corollary 4.2. We start by setting some notation. Let C and (P,V) be the code ensemble
and the interactive protocol given by Theorem 4.1 for soundness error ϵ

2 and a sufficiently small
constant γ′ > 0, to be determined later on. Let m = O(log∗(n)) denote the round complexity of
(P,V). Without loss of generality, we may assume that all messages in the protocol (P,V) have
exactly the same length cc := nγ′ ·poly(1/ε) (we can pad the messages to achieve this length without
changing any of the properties of the protocol).

Let E be any polynomial-time encodable and decodable binary code ensemble of constant rate
ρ > 0 and constant relative distance δ > 0. For an element a ∈ F1, and an integer t ≥ 1, let
a(t) ∈ Ft

1 denote the string which consists of the concatenation of t copies of a. Let LV ⊆ {0, 1}∗
denote the pair language consisting of all strings of the form (xexp, ximp), where xexp = (R, v) for
R ∈ {0, 1}∗ and v ∈ {0, 1}, and ximp =

(
E(z1), . . . , E(zm), u

(cc/ρ)
1 , . . . , u

(cc/ρ)
d

)
for zi ∈ {0, 1}cc and

uj ∈ F1, and where on input v, randomness string R, and prover’s messages z1, . . . , zm, V does
not reject and outputs values u1, . . . , ud. Let Π be the α-PCPP for LV given by Theorem 4.14
for α := δ

2(m+d·log(|F1|)) , we may assume that Π has soundness error ϵ
2 , which can be achieved by

repeating the verification step for O(log(1/ϵ)) times and accepting if and only if all invocations
accept. Note that this increases the query complexity and verifier running time by a multiplicative
factor of O(log(1/ϵ)).

The protocol: The protocol (P ′,V ′) is obtained from (P,V) via the following modifications.
Let z1, . . . , zm denote the prover messages in (P,V). For i = 1, 2, . . . ,m, P ′ sends the message
wi = E(zi) ∈ {0, 1}cc/ρ. Let R denote V’s randomness string during the protocol, and let i1, . . . , id ∈
[n′] denote the indices that are output by V at the end of the protocol (whose location only
depend on R). Then P ′ and V ′ run the PCPP Π on explicit input (R, v) and implicit input
w :=

(
w1, . . . , wm, (c1(i1))

(cc/ρ), . . . , (cd(id))
(cc/ρ)

)
, and V ′ accepts if and only if the PCPP verifier

accepts (specifically, queries of the PCPP verifier VPCPP to the proof are answered using V ′’s PCPP
oracle, and queries of VPCPP to any of the wi’s or cj ’s are answered using V ′’s oracle wi or cj).

Complexity: It can be verified that the round complexity is m + 1 = O(log∗(n)), the query
complexity is log∗(n) · O(log(1/ϵ)), and the communication complexity is nO(γ′) · poly(1/ε). The
prover can be implemented as a Boolean circuit of size (n+ nO(γ′)) · poly(1/ε), and the verifier has
running time polylog(n/ϵ). Moreover, any code of C is a ⌈1/γ′⌉-dimensional tensor product. So all
the claimed properties hold for a sufficiently small constant γ′ (depending on γ). Completeness is
also straightforward. Next we show soundness.

Soundness: Assume that
∑

i∈[n] y1(i) · · · yd(i) ̸= v, and fix a prover’s strategy (P ′)∗. Let w∗
1, . . . , w

∗
m

denote the messages of (P ′)∗, and let R denote the randomness string of V ′. We shall show that
with probability at least 1 − ε

2 over the choice of R, w∗ is α-far from (LV)(R,v), and so the PCPP
verifier, and consequently also V ′, will reject with probability at least 1 − ϵ

2 (and hence the total
rejection probability is at least 1− ε).

For i ∈ [m], let c∗i = E(z∗i) ∈ {0, 1}cc/ρ be the codeword of E that is closest to w∗
i , and let

u∗1, . . . , u
∗
d ∈ F1 be the values output by V on input v, randomness string R, and prover’s messages

z∗1 , . . . , z
∗
m. Let w∗∗ = (c∗1, . . . , c

∗
m, (u∗1)

(cc/ρ), . . . , (u∗d)
(cc/ρ)). Note that by the soundness property of

the protocol (P,V), with probability at least 1− ε
2 over the choice of R, we have that w∗∗ /∈ (LV)(R,v).

In what follows, assume that this event holds.

46

Suppose that w̃ = (w̃1, . . . , w̃m, ṽ1, . . . , ṽd) is α-close to w∗, where w̃i ∈ {0, 1}cc/ρ and ṽj ∈ F(cc/ρ)
1 .

We shall show that w̃ /∈ (LV)(R,v), and so w∗ is at least α-far from (LV)(R,v). To see this, note that
if there exists i ∈ [m] so that w̃i is not a codeword of E, then clearly w̃ /∈ (LV)(R,v). Hence we
may assume that all w̃i are codewords of E. Moreover, by assumption that w̃ is α-close to w∗ for
α < δ

2(m+d·log(|F1|)) , we must have that dist(w̃i, w
∗
i) <

δ
2 for any i ∈ [m]. But since E has relative

distance at least δ, this implies in turn that w̃i = c∗i . Similarly, if there exists j ∈ [d] so that ṽj is
not the concatenation of cc/ρ identical copies of an element in F1, then clearly w̃ /∈ (LV)(R,v). Hence
we may assume that for all j ∈ [d], ṽj = (ũj)

(cc/ρ) for some ũj ∈ F1. Moreover, by assumption that
w̃ is α-close to w∗ for α < 1

m+d·log(|F1|) , we must have that ũj = u∗j for all j ∈ [d]. So we conclude
that w̃ = w∗∗ /∈ (LV)(R,v).

5 From inner product check to IOPs for circuits

In this section we describe our IOP for circuit satisfiability using the inner product IOP of Theorem 4.1.
Specifically, we target circuits that have some regularity properties: for example, a batch computation
of the same function, or a sequentially composed function.

The construction is entirely standard, and follows the one in [HR22], which uses a (by now
standard) arithmetization following Chiesa et al. [CHM+20]). For simplicity we target a constant
soundness error, but remark that using the techniques from [HR22], the soundness error can be
reduced to 2−λ with only polylog(λ) multiplicative overhead.

It is convenient to describe the construction using the language of R1CS (for Rank 1 Constraint
Satisfaction). Recall that R1CS is an NP-complete language, that is linear-time reducible from
circuit SAT. In this problem we consider fixed matrices A,B,C ∈ Fn×n and say that an input x is
in the language if there exists w so that (Az) ◦ (Bz) = Cz, where z = x||w ∈ FS and ◦ denotes
the pointwise product of the two vectors (aka Hadamard product). Following [BCR+19,HR22], we
restrict our attention to matrices A, B and C which are tensor products of a polylog(n)×polylog(n)
identity matrix and another another matrix of dimension n/polylog(n)×n/polylog(n).9 Such R1CS
are the instances that are derived by starting off from circuits that have a regular wiring pattern.

We construct an IOP for this R1CS problem as follows. Let E : {0, 1}n → {0, 1}n′ be the
sytematic linear-time encodable tensor code from Theorem 4.1 (using the terminology from that
theorem, E is the tensor code C⊗t, but we use E to avoid the notation collision with the R1CS
matrices). As E is a linear code, we use the notation Em to denote the encoding of the message m.

The prover computes a = Az, b = Bz and c = Cz and sends, as oracles, the codewords ẑ = Ez,
â = Ea, b̂ = Eb and ĉ = Ec.

The prover needs to perform a few tests:

1. (Proximity Test:) Using the fact that E is a tensor code of dimension at least 3, by [Vid15] it is
locally testable using O(S2/3) queries for a codeword of size S. By composing with a PCPP of
nearly linear length, the query complexity reduces to a constant and with a sub-linear length
oracle.

Actually, while we believe that the PCPP of [Mie09] can be implemented with a quasi-linear
time prover, we are unaware of a formal proof of this fact. We sidestep this issue by making

9Actually [HR22] consider a richer class (called tensor circuits), but for simplicity we focus on the simplest case
which covers, in particular, batch computation or repeated composition of a circuit.

47

E be a larger (but still constant) dimensional tensor (which we can, via Theorem 4.1). Via
[Vid15] we can now reduce the query complexity to Sε, for any desired constant ε > 0. Now,
for any polynomial-time computable PCPP, we can choose ε to be sufficiently small so that
we can afford the composition.

Once proximity of all oracles to corresponding codewords has been verified, the verifier can
access the underlying codewords using the relaxed corrector for tensors of [GRR18], which are
again composed with a PCPP to reduce the query complexity.

2. (Hadamard Test:) We want to check that a ◦ b ≡ c. To do so, the verifier chooses a random
vector r ∈ {0, 1}n from a small-bias set. The test now reduces to checking that

∑
i∈[n] ri·âi·b̂i =∑

i∈[n] ri · ĉi. Each side of this equation can be directly verified using the inner product check
of Theorem 4.1, in O(log∗(n)) rounds. To run this check, the verifier needs to be able to
emulate queries to the encoding Er of the small-bias sequence. This can be done using the
fact that E is a (square) tensor code, and using a tensor based construction of a small-bias
generator (see [RR25, Claim E.1.]).

3. (Lincheck Test:) We also need to check that â, b̂ and ĉ are all consistent with ẑ. For simplicity
we consider only checking consistency of â with ẑ (and note that b̂ and ĉ can be handled
similarly).

Using the fact that E is a tensor code, and that A is the tensor product of a polylog(n) ×
polylog(n) identity matrix and another arbitrary matrix, following [HR22], we can reduce
the problem by a polylog(n) factor and then solve it using PCPPs. This step also involves
an initial preprocessing of the R1CS matrices. Using the fact that they are structured, this
preprocessing step can also be done in polylog(n) time.

Overall the total number of rounds is O(log∗(S)) as desired.
Finally, we remark that the IOP can be transformed into a succinct argument using the standard

transformation [Kil92, BCS16] (see also the textbook [CY24]), while using the linear-size multi-
selection circuit of [HR24] to efficiently compute the projections of the oracles to the queried
locations.

Acknowledgments

We thank Oded Goldreich for inspiring this work by pointing out that the [RR25] protocol can be
reduced to O(log log(n)) rounds, by composing it with a PCPP after O(log log(n)) rounds (along
the lines of the sketch at the beginning of Section 1.2.2).

We also thank Giacomo Fenzi and Justin Thaler for helpful discussions.

References

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. STIR: Reed-
Solomon proximity testing with fewer queries. In Leonid Reyzin and Douglas Stebila,
editors, Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part X, volume
14929 of Lecture Notes in Computer Science, pages 380–413. Springer, 2024. 7

48

[ACFY25] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. WHIR: Reed-Solomon
proximity testing with super-fast verification. In Serge Fehr and Pierre-Alain Fouque,
editors, Advances in Cryptology - EUROCRYPT 2025 - 44th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Madrid, Spain,
May 4-8, 2025, Proceedings, Part IV, volume 15604 of Lecture Notes in Computer
Science, pages 214–243. Springer, 2025. 7

[ACY22] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. A PCP theorem for interactive proofs
and applications. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in
Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3,
2022, Proceedings, Part II, volume 13276 of Lecture Notes in Computer Science, pages
64–94. Springer, 2022. 12

[ACY23] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. IOPs with inverse polynomial
soundness error. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2023, Santa Cruz, CA, USA, November 6-9, 2023, pages 752–761. IEEE, 2023. 4

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly
optimal recovery. In proceedings of the 36th Annual IEEE Symposium on Foundations
of Computer Science (FOCS), pages 512–519. IEEE Computer Society, 1995. 17

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 2087–2104. ACM, 2017.
4

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las
Vegas, Nevada, USA, pages 106–115. IEEE Computer Society, 2001. 3

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum.
On the (in)security of Kilian-based SNARGs. In Dennis Hofheinz and Alon Rosen,
editors, Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes in
Computer Science, pages 522–551. Springer, 2019. 3

[BCF+25] Martijn Brehm, Binyi Chen, Ben Fisch, Nicolas Resch, Ron D. Rothblum, and Hadas
Zeilberger. Blaze: Fast SNARKs from interleaved RAA codes. In Serge Fehr and Pierre-
Alain Fouque, editors, Advances in Cryptology - EUROCRYPT 2025 - 44th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Madrid, Spain, May 4-8, 2025, Proceedings, Part IV, volume 15604 of Lecture Notes in
Computer Science, pages 123–152. Springer, 2025. 13

[BCFW25] Benedikt Bünz, Alessandro Chiesa, Giacomo Fenzi, and William Wang. Linear-time
accumulation schemes. Cryptology ePrint Archive, Paper 2025/753, 2025. 13

49

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi,
and Sune K. Jakobsen. Linear-time zero-knowledge proofs for arithmetic circuit
satisfiability. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part III, volume 10626 of Lecture Notes in Computer Science, pages 336–
365. Springer, 2017. 4, 13

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with
sublinear verification from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA,
November 16-19, 2020, Proceedings, Part II, volume 12551 of Lecture Notes in Computer
Science, pages 19–46. Springer, 2020. 5, 13

[BCGL22] Jonathan Bootle, Alessandro Chiesa, Ziyi Guan, and Siqi Liu. Linear-time probabilistic
proofs with sublinear verification for algebraic automata over every field. IACR Cryptol.
ePrint Arch., page 1056, 2022. 13

[BCR+19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza,
and Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-
23, 2019, Proceedings, Part I, pages 103–128, 2019. 47

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. In
Theory of Cryptography - 14th International Conference, TCC 2016-B, Beijing, China,
October 31 - November 3, 2016, Proceedings, Part II, pages 31–60, 2016. 4, 14, 48

[BFK+24] Alexander R. Block, Zhiyong Fang, Jonathan Katz, Justin Thaler, Hendrik Waldner,
and Yupeng Zhang. Field-agnostic SNARKs from expand-accumulate codes. In Leonid
Reyzin and Douglas Stebila, editors, Advances in Cryptology - CRYPTO 2024 - 44th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2024, Proceedings, Part X, volume 14929 of Lecture Notes in Computer Science, pages
276–307. Springer, 2024. 4

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking
computations in polylogarithmic time. In Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA,
pages 21–31, 1991. 13

[BGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput,
36(4):889–974, 2006. 54, 55

[BMMS25] Anubhav Baweja, Pratyush Mishra, Tushar Mopuri, and Matan Shtepel. FICS and
FACS: Fast IOPPs and accumulation via code-switching. Cryptology ePrint Archive,
Paper 2025/737, 2025. 13

50

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008. 11

[CCH+18] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, and
Ron D. Rothblum. Fiat-Shamir from simpler assumptions. IACR Cryptol. ePrint Arch.,
page 1004, 2018. 5

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
1082–1090. ACM, 2019. 5

[CHM+20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal and updatable SRS.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT
2020 - 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I,
volume 12105 of Lecture Notes in Computer Science, pages 738–768. Springer, 2020.
47

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash
Functions. 2024. 48

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. 11

[DP24] Benjamin E Diamond and Jim Posen. Polylogarithmic proofs for multilinears over binary
towers. Cryptology ePrint Archive, 2024. 14

[DSW06] Irit Dinur, Madhu Sudan, and Avi Wigderson. Robust local testability of tensor products
of LDPC codes. In proceedings of the 9th International Workshop on Randomization and
Computation (RANDOM), pages 304–315. Springer, 2006. 16

[DT24] Quang Dao and Justin Thaler. More optimizations to sum-check proving. IACR Cryptol.
ePrint Arch., page 1210, 2024. 9

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986. 3

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.
17

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-
14 October 2003, Cambridge, MA, USA, Proceedings, pages 102–113. IEEE Computer
Society, 2003. 3

51

[GLS+23] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S.
Wahby. Brakedown: Linear-time and field-agnostic SNARKs for R1CS. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023
- 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,
CA, USA, August 20-24, 2023, Proceedings, Part II, volume 14082 of Lecture Notes in
Computer Science, pages 193–226. Springer, 2023. 4, 13

[GRR18] Tom Gur, Govind Ramnarayan, and Ron D. Rothblum. Relaxed locally correctable
codes. In 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, pages 27:1–27:11, 2018. 6, 48

[Gru24] Angus Gruen. Some improvements for the PIOP for zerocheck. IACR Cryptol. ePrint
Arch., page 108, 2024. 13

[HR22] Justin Holmgren and Ron D. Rothblum. Faster sounder succinct arguments and
IOPs. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology -
CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part I, volume 13507 of
Lecture Notes in Computer Science, pages 474–503. Springer, 2022. 3, 4, 5, 13, 18, 47,
48

[HR24] Justin Holmgren and Ron Rothblum. Linear-size Boolean circuits for multiselection. In
Rahul Santhanam, editor, 39th Computational Complexity Conference, CCC 2024, July
22-25, 2024, Ann Arbor, MI, USA, volume 300 of LIPIcs, pages 11:1–11:20. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024. 5, 13, 48

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 723–732, 1992. 48

[KRS25] Dmitry Khovratovich, Ron D. Rothblum, and Lev Soukhanov. How to prove false
statements: Practical attacks on Fiat-Shamir. IACR Cryptol. ePrint Arch., page 118,
2025. 3

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992. 6, 19

[Mei13] Or Meir. IP = PSPACE using error-correcting codes. SIAM J. Comput., 42(1):380–403,
2013. 10

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with O(1) queries. Ann.
Math. Artif. Intell, 56(3-4):313–338, 2009. 11, 45, 47, 53, 54

[NST24] Vineet Nair, Ashish Sharma, and Bhargav Thankey. BrakingBase - a linear prover,
poly-logarithmic verifier, field agnostic polynomial commitment scheme. IACR Cryptol.
ePrint Arch., page 1825, 2024. 13

[RR19] Noga Ron-Zewi and Ron Rothblum. Local proofs approaching the witness length.
Electron. Colloquium Comput. Complex., TR19-127, 2019. 54

52

[RR24] Noga Ron-Zewi and Ron Rothblum. Local proofs approaching the witness length. J.
ACM, 71(3):18, 2024. 4, 5, 10, 13, 25

[RR25] Noga Ron-Zewi and Ron Rothblum. Proving as fast as computing: Succinct arguments
with constant prover overhead. J. ACM, 72(2), March 2025. 3, 4, 5, 6, 7, 10, 13, 14, 17,
48

[RRR21] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. SIAM J. Comput., 50(3), 2021. 4, 12, 14

[RW24] Noga Ron-Zewi and Mor Weiss. Zero-knowledge IOPs approaching witness length. In
Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology - CRYPTO 2024
- 44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2024, Proceedings, Part X, volume 14929 of Lecture Notes in Computer Science,
pages 105–137. Springer, 2024. 4, 13

[Spi96] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory, 42(6):1723–1731, 1996. 6, 17

[Suc] Succinct. SP1 hardware acceleration. Accessed 6-17-2025. 3

[Sud01] Madhu Sudan. Algorithmic introduction to coding theory (lecture notes), 2001. 16

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur.,
4(2-4):117–660, 2022. 9

[Vid15] Michael Viderman. A combination of testability and decodability by tensor products.
Random Structures and Algorithms, 46(3):572–598, 2015. 6, 47, 48

[VSBW13] Victor Vu, Srinath T. V. Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid
architecture for interactive verifiable computation. In 2013 IEEE Symposium on Security
and Privacy, SP 2013, Berkeley, CA, USA, May 19-22, 2013, pages 223–237. IEEE
Computer Society, 2013. 8, 9

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra (3. ed.).
Cambridge University Press, 2013. 17

[Wie88] Doug Wiedemann. An iterated quadratic extension of GF(2). The Fibonacci Quarterly,
26(4):290–295, 1988. 14

[XZS22] Tiancheng Xie, Yupeng Zhang, and Dawn Song. Orion: Zero knowledge proof with linear
prover time. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology
- CRYPTO 2022 - 42nd Annual International Cryptology Conference, CRYPTO 2022,
Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part IV, volume 13510 of
Lecture Notes in Computer Science, pages 299–328. Springer, 2022. 13

A PCPPs with improved proximity parameter dependence

In this section we prove Theorem 4.14. For this, we shall use the following PCPP due to [Mie09].
(The prover’s running time is not explicitly stated in [Mie09], but can be deduced from the proof).

53

Theorem A.1 ([Mie09, Theorem 1]). Let L be a pair language decidable in time T = T (m + n),
where m,n are the explicit and implicit input lengths, respectively. Then for any constant α > 0,
there exists a constant query α-PCPP for L with constant soundness error, prover’s running time
poly(m,n, T (m+ n)), and verifier’s running time poly(m, log n, log(T (m+ n))).

Theorem A.1 gives a constant query PCPP with constant proximity parameter. Next we give a
transformation that reduces the proximity parameter to any subconstant function α = α(n), at the
cost of increasing the query complexity by a factor of O(1/α). A similar transformation was given
in [RR19, Lemma 8.6], albeit with a larger overhead of poly(1/α) in the query complexity. The
transformation relies on the following notion of a relaxed locally decodable code [BGH+06].

Definition A.2 (Relaxed Locally Decodable Codes (RLDCs)). Let C : Σk → Σn be an error
correcting code. We say that C is a q-query relaxed locally decodable code (RLDC) from α-fraction
of errors if there exists a randomized oracle machine M , called the local decoder, which gets as input
oracle access to w ∈ Σn and explicit access to an index i ∈ [k], makes at most q queries to the oracle
and satisfies the following two conditions.

1. If w = C(m), then Mw(i) = mi with probability 1.

2. If w is α-close to some codeword c = C(m) ∈ C, then with probability at least 1
2 it holds that

Mw(i) either outputs mi or a special abort symbol ⊥.

Lemma A.3. Let L be a pair language, and let α = α(n) > 0. Suppose that the following exist.

• A relaxed locally decodable code C = {Cn : {0, 1}n → {0, 1}n′}n∈N with relative distance δ,
decoding radius δ

2 , and query complexity qrlcc(n).

• A PCPP for L′ := {(x,C(w)) : (x,w) ∈ L} with communication complexity cc(n), query
complexity q(n), proximity parameter δ

2 , and soundness error 1
2 , where n is the length of the

implicit input w.

Then, there exists a PCPP for L with communication complexity n′ + cc(n), query complexity
q(n)+ qrlcc(n) ·O(1/α), proximity parameter α, and soundness error 1

2 , where n is the length of the
implicit input w.

Moreover,

• If the verifier in the PCPP for L′ has running time T (n), and the relaxed local decoder for
C has running time time Trlcc(n), then the verifier in the resulting PCPP has running time
T (n) + Trlcc(n) ·O(1/α).

• If the prover in the PCPP for L′ has running time T (n), and C has encoding time Tenc(n),
then the prover in the resulting PCPP has running time T (n) + Tenc(n).

Proof. The PCPP Π for L consists of the string C(w), followed by the PCPP Π′ for L′ with respect
to the explicit input x and implicit input C(w). Let z denote the first part of the proof Π that is
allegedly equal to C(w).

In the query phase, the verifier first runs the check of Π′, with respect to the explicit input
x and the implicit input z. If Π′ rejects, then the verifier rejects. Otherwise, the verifier repeats
the following procedure O(1/α) times: the verifier picks a uniform random i ∈ [n], and applies the
relaxed local decoder C on input coordinate i with oracle access to z. If in any of the invocations

54

the output of the relaxed local decoder is different than wi (which it obtains by making a query to
the implicit input w) then the verifier rejects. Otherwise, the verifier accepts.

It can be verified that the communication complexity, query complexity, and verifier and prover
running times are all as claimed. Completeness is also straightforward. Next we show soundness.

Suppose that w is α-far from Lx. If z is δ
2 -far from any codeword of C then Π′ rejects with

probability at least 1
2 . Hence we may assume that z is δ

2 -close to some codeword C(w′). Next
assume that w′ /∈ Lx. Then, since the code C has relative distance at least δ, we have that C(w′)
is δ-far from L′

x. By the triangle inequality, this implies in turn that z is δ
2 -far from L′

x, and so Π′

will once more reject with probability at least 1
2 . Thus, we may also assume that C(w′) ∈ L′

x.
By definition, if C(w′) ∈ L′

x then w′ ∈ Lx. But as we have assumed that w is α-far from Lx,
the above implies in turn that dist(w,w′) ≥ α. Thus, with probability at least α, the verifier will
pick i ∈ [n] on which w and w′ differ, and moreover, the relaxed local decoder will output w′

i or ⊥
with probability at least 1

2 . As both events are independent, we conclude that the verifier rejects
with probability at least α

2 on each of the invocations. Finally, repeating this procedure for O(1/α)
times gives rejection probability at least 1

2 .

Theorem 4.14 follows by instantiating Lemma A.3 with an explicit rLDC code with constant
relative distance, constant query complexity, polynomial length, and poly-logarithmic running time
(e.g., the rLDC of [BGH+06] suffices10).

10 [BGH+06] do not explicitly state the running time of their rLDCs. However, they construct rLDCs out of PCPPs
in a black-box way, where the running time of the rLDC is the same as the running time of the PCPP verifier. The
running time of the rLDC can be made polylogarithmic by instantiating it with a PCPP of constant query complexity,
polynomial length, and logarithmic verifier running time (e.g., the PCPP given by Theorem A.1).

55

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

